

Número de publicación: 1 180 41

21) Número de solicitud: 201730321

61 Int. CI.:

E02F 5/20 (2006.01)

(12)

SOLICITUD DE MODELO DE UTILIDAD

U

(22) Fecha de presentación:

22.03.2017

(43) Fecha de publicación de la solicitud:

11.04.2017

71 Solicitantes:

VALLÈS SALVADÓ, Jordi (100.0%) Plaça Onze de Setembre, 9 17852 SERINYÀ (Girona) ES

(72) Inventor/es:

VALLÈS SALVADÓ, Jordi

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

54) Título: DISPOSITIVO AUTOMÁTICO PARA CLAVAR ESTACAS

DISPOSITIVO AUTOMÁTICO PARA CLAVAR ESTACAS

DESCRIPCIÓN

5 Campo de la invención

La invención se refiere a un dispositivo automático para clavar estacas que comprende: una carcasa, un casquillo de recepción que forma una cavidad de recepción para recibir a través de un extremo de inserción, el primer extremo de golpeo de una estaca que se debe clavar en el suelo, unos medios de accionamiento automático, unos medios de impacto y una guía longitudinal para guiar dichos medios de impacto.

Estado de la técnica

Son conocidos dispositivos automáticos para clavar estacas como los descritos en el párrafo anterior.

- Los dispositivos conocidos presentan un casquillo de recepción montado externamente y adyacente a una carcasa principal, en el que se inserta la estaca que debe ser clavada. Además, estos dispositivos incorporan unos medios de accionamiento, como por ejemplo, un motor de gasolina o neumático, que accionan unos medios de impacto que golpean la estaca. Estos medios están formados por un elemento pesado deslizante en una guía en la carcasa, que golpea sobre el extremo de golpeo de la estaca. El extremo de golpeo es el extremo opuesto al extremo de clavado, que es el extremo que se clava en el suelo. Gracias a los medios de accionamiento, el usuario no tiene que mover el peso con la fuerza de su propio cuerpo para golpear la estaca, sino que el golpeo es automático.
- 25 Este tipo de dispositivos realiza entre 800 y 1500 golpes por minuto sobre la estaca. Para reducir las vibraciones que recibe el usuario provocadas por el golpeo, el dispositivo tiene las empuñaduras amortiguadas. No obstante, a pesar de la

amortiguación de las empuñaduras, el resto del dispositivo sí se ve afectado por este golpeo. En particular, el casquillo es altamente solicitado a fatiga y es frecuente que se rompa por el punto más próximo a la zona adyacente a la carcasa en la que se produce el golpeo de la estaca.

5 <u>Sumario de la invención</u>

10

15

20

25

La invención tiene como finalidad proporcionar un dispositivo automático para clavar estacas del tipo indicado al principio, que evite roturas prematuras en el dispositivo y en especial que prolongue la vida del casquillo de recepción.

Esta finalidad se consigue mediante un dispositivo automático para clavar estacas del tipo indicado al principio, caracterizado por que dichos medios de impacto son móviles a lo largo de dicha guía, accionados de forma alternativa por parte de dichos medios de accionamiento entre una primera posición alejada de dicho casquillo de recepción y una segunda posición en la que dichos medios de impacto imparten un impulso de clavado sobre dicho primer extremo de dicha estaca, por que dicho casquillo de recepción está montado en un asiento de dicha carcasa mediante un ajuste del grupo que comprende los ajustes a presión y los ajustes a presión en caliente y por que dicho casquillo de recepción forma, por lo menos, una parte de dicha guía destinada a guiar dichos medios de impacto.

En efecto, el casquillo según la invención tiene continuidad en el interior de la carcasa y se asienta de manera firme dentro del asiento de la carcasa. Esto tiene un efecto multiplicador de la resistencia a la fatiga del conjunto, debido a que los medios de impacto golpean en una zona en la que el casquillo tiene continuidad y se absorben mejor los esfuerzos de flexión sobre el casquillo. En el momento del impacto sobre la estaca, el conjunto de medios de impacto, casquillo y carcasa, en la zona de golpeo forman una unidad estructural muy reforzada que permite repartir las tensiones provocadas por las percusiones de forma mucho más repartida. Por consiguiente, la resistencia del casquillo y del dispositivo en general mejora notablemente respecto a los del estado de la técnica.

Además, la invención abarca una serie de características preferentes que son objeto de las reivindicaciones dependientes y cuya utilidad se pondrá de relieve más adelante en la descripción detallada de una forma de realización de la invención.

- Preferentemente, dichos medios de impacto comprenden un martillo y un yunque, siendo dicho martillo accionado por dichos medios de accionamiento contra dicho yunque para que dicho yunque impacte sobre dicho primer extremo de dicha estaca. En este caso, el martillo, es un elemento ligero que se puede mover fácilmente de forma alternativa, mientras que el yunque es un elemento más pesado y rígido. Esto permite que el yunque tenga un diámetro que recubra toda la zona de golpeo, distribuyendo mejor los esfuerzos y prolongando su vida útil. De este modo la presión ejercida por dichos medios de impacto se ejerce sobre la totalidad de la superficie del primer extremo de la estaca y además, se evita que el martillo esté en contacto directo con dicha estaca y, por lo tanto, que la pueda dañar.
- 15 Preferentemente, dicho martillo o dicho yunque comprenden eje centrador y dicho dispositivo, además comprende un anillo amortiguador que está montado en dicho eje centrador, guiado en dicha guía longitudinal para amortiguar los movimientos laterales de dichos medios de impacto cuando dicho martillo y dicho yunque imparten dicho impulso. Evitar que los movimientos laterales originados en la percusión se transmitan 20 al resto de dispositivo, también prolonga la vida útil del casquillo de recepción.

En una forma de realización dicho anillo amortiguador comprende una primera y una segunda semicarcasas metálicas separadas por un anillo elástico, lo cual reduce el desgaste de la guía del dispositivo.

Preferentemente, en el dispositivo según la invención, por lo menos uno de entre dicho yunque y dicho martillo son huecos interiormente, lo cual reduce las inercias de los elementos móviles y permite incrementar la velocidad de golpeo.

En otra forma de realización tiene por objetivo evitar atascos en los medios de accionamiento dicho yunque comprende una primera ranura perimetral próxima a la zona en la que dicho yunque golpea sobre dicha estaca y en dicha primera ranura está

montado un primer anillo rascador de sección trapezoidal que sobresale del perímetro de dicho yunque, colocado de manera que la base mayor de dicha sección trapezoidal está del lado de dicha cavidad. Gracias a esta forma trapezoidal el anillo rascador evita que astillas o trozos metálicos de la estaca puedan penetrar en la zona de la guía y por consiguiente puedan llegar a dañar los componentes guiados o la propia guía. De forma especialmente preferente, la sección de dicho anillo es un trapecio rectángulo.

En otra forma de realización preferente, dicho anillo rascador comprende una primera parte exterior realizada en un polímero rígido y una parte interior a modo de junta tórica de goma. El polímero rígido puede ser, por ejemplo, una poliamida (PA) con carga de fibra de vidrio, un acrilonitrilo butadieno estireno (ABS) u otros plásticos resistentes al desgaste. La junta tórica proporciona elasticidad al anillo rascador para garantizar un buen rascado de la superficie, mientras que la parte exterior de polímero rígido evita que puedan penetrar las astillas u otros trozos sueltos de material.

De forma especialmente preferente, dicho yunque comprende una segunda ranura perimetral adyacente a dicha primera ranura perimetral y en dicha segunda ranura está montado un anillo de guiado realizado en un polímero rígido. Este anillo, de guiado es preferentemente de sección cuadrada o rectangular para garantizar un buen apoyo sobre las paredes de la guía. La combinación con el anillo rascador proporciona resultados muy eficientes de guiado.

En otra forma de realización el yunque comprende una tercera ranura perimetral adyacente a dicha segunda ranura perimetral y en dicha tercera ranura está montada una junta tórica de goma que proporciona una buena estanqueidad en el interior del cilindro y evita la salida masiva de aceite de lubricación.

25 En otra forma de realización dichos medios de accionamiento comprenden un pistón que desplaza neumáticamente dicho martillo contra dicho yunque de forma alternativa entre dicha primera y dicha segunda posición, y dicho pistón comprende una cuarta ranura perimetral próxima a la zona en la que dicho pistón acciona neumáticamente dicho martillo y en dicha cuarta ranura está montado un segundo anillo rascador de

sección trapezoidal que sobresale del perímetro de dicho pistón, colocado de manera que la base mayor de dicha sección trapezoidal está del lado de dicho martillo.

En una forma de realización especialmente preferente, dicho martillo comprende una quinta ranura perimetral próxima al extremo de dicho martillo alejado de dicho yunque y en dicha quinta ranura está montado un segundo anillo de guiado que comprende una junta tórica de goma interior y una parte exterior de polímero rígido.

10

15

20

25

30

De forma especialmente preferente, el dispositivo según la invención comprende también un casquillo de reducción montado dentro de dicho casquillo de recepción para reducir la sección transversal de dicha cavidad de recepción de manera tal que se adapta al contorno exterior de dicha estaca y que en la posición montada, se extiende por el interior de dicho casquillo de recepción hasta una posición en la que, en dicha segunda posición, dichos medios de impacto no impactan sobre dicho casquillo de reducción y unos medios de sujeción para sujetar dicho casquillo de reducción en dicha posición montada. Gracias al casquillo de reducción, el casquillo de recepción se adapta perfectamente al contorno de la estaca que se debe clavar. Por consiguiente, los esfuerzos que recibe el casquillo durante el golpeo están centrados. de manera que no se introducen esfuerzos de flexión no deseados en el casquillo de recepción. Cabe destacar que en la invención, el concepto de adaptarse al contorno exterior de la estaca no quiere decir forzosamente que el casquillo de reducción tenga una sección transversal que sea la forma en negativo del contorno de la estaca. Simplemente, el casquillo de reducción proporciona el apoyo necesario, a través de por lo menos tres puntos que formen un triángulo de apoyo del contorno de la estaca para evitar que la estaca se mueva libremente. Por ejemplo, si la estaca es de sección transversal rectangular, el casquillo de reducción puede tener una sección transversal circular. No obstante, las cuatro aristas de la sección transversal de la estaca están lo suficientemente guiadas en el interior de casquillo de reducción como para evitar la introducción de esfuerzos de flexión de la estaca en el casquillo de recepción.

De forma especialmente preferente, el dispositivo comprende una carcasa y dicho casquillo de recepción forma por lo menos la parte de dicha guía destinada a guiar dicho yunque y dicho casquillo de recepción está montado en dicha carcasa mediante un ajuste a presión o un ajuste a presión en caliente. Por un lado, se mejora la

estanqueidad del conjunto, ya que el yunque hace todo su recorrido por la parte del casquillo montada en la carcasa. Por el otro lado, los esfuerzos de percusión provocados por el golpeo del yunque pasan del casquillo a la carcasa y son amortiguados de forma más eficiente.

Preferentemente, dichos medios de sujeción comprenden por lo menos un pasador precargado elásticamente que se conecta transversalmente a dicho casquillo de recepción. Este tipo de unión es fácil de mecanizar y montar y desmontar. Este tipo de unión, es aconsejable para aplicaciones de estacas de dimensiones reducidas.

En otra forma de realización dichos medios de sujeción comprenden un casquillo de sujeción, y dicho casquillo de sujeción y dicho casquillo de recepción comprenden unos medios de rosca para el montaje mutuo entre ambos. Este tipo de unión permite la unión entre piezas de diferentes materiales y resiste bien los esfuerzos producidos por el dispositivo. Además, este tipo de unión es estándar e intercambiable.

Alternativamente, dichos medios de sujeción comprenden un casquillo de sujeción, y por que dicho casquillo de sujeción y dicho casquillo de recepción comprenden medios de bayoneta para el montaje mutuo entre ambos. Gracias a este tipo de unión, el operario puede montar y desmontar fácilmente la unión ganando velocidad de trabajo cuando hay muchos tipos de estacas distintas que se deben clavar.

Asimismo, la invención también abarca otras características de detalle ilustradas en la descripción detallada de una forma de realización de la invención y en las figuras que la acompañan.

Breve descripción de los dibujos

15

25

Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relatan unas formas preferentes de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran:

Fig. 1, una vista lateral explicativa del principio de funcionamiento del dispositivo automático para clavar estacas según la invención.

- Fig. 2, una vista en perspectiva frontal, inferior de una primera forma de realización de un dispositivo según la invención, sin el motor.
- Fig. 3, una vista en perspectiva trasera, superior de una primera forma de realización de un dispositivo según la invención, sin el motor.
- Fig. 4, un corte longitudinal del dispositivo de las figuras 2 y 3 por un plano central del mismo, pero con un casquillo de reducción montado sobre el casquillo de recepción.
 - Fig. 4A, un detalle ampliado de la zona A de la figura 4.
 - Fig. 4B, un detalle ampliado de la zona B de la figura 4.
- Fig. 5A, un detalle parcial, cortado longitudinalmente, de una segunda forma de realización de un dispositivo según la invención en una primera posición alejada.
 - Fig. 5B, un detalle parcial, cortado longitudinalmente, de una segunda forma de realización de un dispositivo según la invención en una segunda posición de impacto.
- Fig. 6, un detalle parcial, cortado longitudinalmente, de una tercera forma de realización de un dispositivo según la invención, en particular de la zona del casquillo
 de recepción.
 - Fig. 7, una vista en perspectiva del casquillo de sujeción de la figura 6.
 - Fig. 8, un detalle parcial, cortado longitudinalmente, de una cuarta forma de realización de un dispositivo según la invención, en particular de la zona del casquillo de recepción.

20 <u>Descripción detallada de unas formas de realización de la invención</u>

25

En la figura 1 se muestra un dispositivo 1 automático genérico para clavar estacas 100 según la invención. En el contexto de la invención, una estaca 100 puede ser un palo de madera con un extremo puntiagudo, pero también puede ser un poste metálico terminado en punta, clavos de grandes dimensiones u otros elementos longitudinales similares, destinados a montar cercados, o estructuras para colgar vegetales tales como parras, hortalizas u otros.

Por otra parte, la sección transversal de la estaca 100 no debe ser interpretada de forma limitativa. La sección transversal es habitualmente circular o cuadrada en el caso de estacas de madera. No obstante, en el caso de postes metálicos, las formas pueden ser tubos circulares, cuadrangulares, perfiles en U, en L u otros.

Además, un dispositivo 1 con accionamiento automático se refiere a que el operario 108 que utiliza el dispositivo no debe realizar la parte principal de la fuerza de clavado de la estaca. Al contrario, esta fuerza proviene de la interacción entre un motor, y un peso que es accionado por el motor para llevar a cabo el esfuerzo principal de golpeo sobre la estaca. No obstante, el operario debe sujetar el dispositivo y acompañarlo en su movimiento descendente de clavado. Eventualmente, el operario 108 puede empujar levemente el dispositivo en sentido descendente cuando el suelo sobre el que se clava la estaca es especialmente duro.

En las figuras 2 a 4 se muestra una primera forma de realización del dispositivo 1 automático para clavar estacas 100 según la invención. El dispositivo 1 que comprende una carcasa 22 en la que está montado un casquillo de recepción 2 que forma la cavidad 4 de recepción para recibir a través del extremo de inserción 6, el primer extremo 102 de golpeo de la estaca 100 que se debe clavar en el suelo 104.

El dispositivo 1 presenta también unos medios de accionamiento 8 automático que pueden ser, por ejemplo, un motor eléctrico, de gasolina, neumático o similar. No obstante, teniendo en cuenta que un dispositivo 1 para clavar estacas de este tipo, se suele utilizar en un medio rural, es preferente que el motor sea de gasolina. Esto proporciona una mayor autonomía de alimentación al dispositivo 1. En las figuras 2 y 3 no está representado el motor, mientras que en la figura 4, éste se representa con un rectángulo a trazos. El motor, acciona un árbol principal 84 provisto de un piñón 86 que engrana con una corona 88 que hace girar el eje del cigüeñal 90 que está mecánicamente unido a la biela 92 del pistón 68.

20

25

Gracias a este mecanismo, el pistón 68 se desplaza en un movimiento alternativo ascendente, descendente que provoca un efecto neumático gracias a las lumbreras provistas en el cilindro.

Además, el dispositivo 1 comprende también unos medios de impacto 10, formados por un martillo 18 y un yunque 20 y una guía 12 longitudinal para guiar los medios de impacto 10. De forma especialmente preferente, tanto el martillo 18, como el yunque 20, son de acero al carbono, total o parcialmente templados.

- Los medios de impacto 10 son móviles a lo largo de la guía 12, accionados de forma alternativa por parte de dichos medios de accionamiento 8 entre una primera posición alejada de dicho casquillo de recepción 2 y una segunda posición en la que dichos medios de impacto 10 imparten un impulso de clavado sobre el primer extremo 102 de dicha estaca 100.
- En las figuras 4 y 4B se aprecia, que el casquillo de recepción 2 está montado en un asiento 34 de la carcasa 22 mediante un ajuste a presión lo cual refuerza notablemente esta zona del dispositivo que es en la que se producen las percusiones. De forma especialmente preferente, el montaje del casquillo de recepción 2 se lleva a cabo a presión en caliente.
- Otro de los elementos que resuelven el problema técnico de evitar roturas prematuras en el dispositivo y en especial que prolongue la vida del casquillo de recepción consiste en que dicho casquillo de recepción 2 forme por lo menos una parte de dicha guía 12 destinada a guiar dichos medios de impacto 10. De forma especialmente preferente, dicho casquillo de recepción 2 forma la parte de la guía 12 sobre la que se desplaza la totalidad del yunque 20. Con ello, en punto donde se producen los impactos el conjunto casquillo de recepción 2, yunque 20 y carcasa 22 forman una zona muy robusta para absorber correctamente las percusiones que se producen.

En las figuras, se aprecia como el martillo 18 es accionado por los medios de accionamiento 8 contra dicho yunque 20 para que el yunque 20 impacte sobre el primer extremo 102 de la estaca 100.

25

30

En el dispositivo 1 de las figuras 2 a 4B, el martillo 18 forma también un eje centrador 38. Sobre el eje centrado 38 está montado el diámetro interior de un anillo amortiguador 40 que exteriormente está guiado en la guía 12 longitudinal para amortiguar los movimientos laterales de del martillo 18 y el yunque 20 cuando imparten el impulso. Es especialmente preferente que el anillo amortiguador 40

comprenda una primera y una segunda semicarcasas 78, 80 metálicas separadas por un anillo elástico 82. Además, puede estar previsto otro anillo elástico 94 por la parte superior del amortiguador 40 que amortigüe el rebote del anillo amortiguador contra la carcasa 22 durante las percusiones.

En la figura 4A se aprecia que el yunque 20 comprende una primera ranura 50 perimetral próxima a la zona en la que el yunque 20 golpea sobre la estaca 100. En esta zona se pueden desprender astillas o trozos de la estaca 100. Por ello, para evitar que estos trozos puedan entrar en el interior de la guía 12 y provocar el gripaje del dispositivo 1, en la primera ranura 50 está montado un primer anillo rascador 52 de sección trapezoidal que sobresale del perímetro de dicho yunque 20, colocado de manera que la base mayor 54 de dicha sección trapezoidal esté del lado de la cavidad 4. De forma especialmente preferente, la sección del anillo rascador 52 es un trapecio, con dos lados paralelos.

Por otra parte, como se aprecia en la figura 4A, el anillo rascador 52 está formado por dos partes. Una primera parte exterior 56 está realizada a partir de un polímero rígido, tal como poliamida 6, poliamida 66 o ABS y la parte interior 58 está configurada a modo de junta tórica de goma de tipo caucho. La parte exterior 56 garantiza un desgaste reducido, mientras que la parte interior proporciona elasticidad para que el anillo rascador 52 se adapte mejor a la superficie de la guía 12. Cabe comentar que la junta tórica no excluye otras secciones distintas de la circular. Por ejemplo, podría ser una junta cuadrada, como las montadas en otras partes del dispositivo 1.

20

30

El yunque 20 presenta una segunda ranura 60 perimetral adyacente a la primera ranura perimetral 50 y en ella está montado un anillo de guiado 62 realizado en un polímero rígido.

Además, el yunque 20 presenta una tercera ranura 64 perimetral adyacente a la segunda ranura perimetral 60 y en la que está montada una junta tórica 66 de goma que evita la salida de aceite lubricante del interior del cilindro.

Por otra parte, en el dispositivo 1 de las figuras 2 a 4B, los medios de accionamiento 8 además del motor y la transmisión por engranajes, comprenden un pistón 68 que desplaza neumáticamente el martillo 18 contra dicho yunque 20 de forma alternativa

entre la primera posición alejada del casquillo de recepción 2 y la segunda posición en la que el yunque 20 golpea sobre la estaca 100 impulsado por el martillo 18. Este pistón 68 comprende una cuarta ranura 70 perimetral próxima a la zona en la que el pistón 68 acciona neumáticamente dicho martillo 18. En esta cuarta ranura 70 está montado un segundo anillo rascador 72 de sección trapezoidal que sobresale del perímetro de dicho pistón 68, colocado de manera que la base mayor de dicha sección trapezoidal está del lado de dicho martillo 18.

Finalmente, en las figuras se aprecia que el martillo 18 comprende una quinta ranura 74 perimetral próxima al extremo del martillo 18 alejado del yunque 20. En la quinta ranura 74 está montado un segundo anillo de guiado 76 que comprende una junta tórica de goma interior y una parte exterior de polímero rígido.

A continuación se describe una segunda forma de realización del dispositivo 1 según la invención sobre la base de las figuras 5A a 5B.

La segunda forma de realización del dispositivo 1 de las figuras 5A y 5B presenta una 15 carcasa 22 sobre la que están montados los medios de accionamiento 8 automáticos.

Preferentemente, la carcasa 22 está fabricada en una aleación ligera, como por ejemplo, aleación de aluminio.

El dispositivo 1 comprende además, un casquillo de recepción 2 a modo de cuerpo cilíndrico hueco montado en la carcasa 22, unos medios de impacto 10 y una guía 12 longitudinal para guiar los medios de impacto 10.

En la carcasa 22 están dispuestas un par de empuñaduras 44 a través de las cuales, el operario 108 puede manipular el dispositivo 1 durante su uso o transporte. Preferentemente, las empuñaduras 44 se extienden en una dirección, paralela a la dirección del casquillo de recepción 2 de la estaca. Además, las empuñaduras 44 presentan unos medios de amortiguación, como por ejemplo, un muelle en cada empuñadura 44 que las desacopla del movimiento oscilante del eje 36 sobre el que están montadas y por consiguiente del resto del dispositivo 1. Esto evita que el operario 108 reciba la parte más nociva de las vibraciones del dispositivo 1.

Alternativamente, las empuñaduras 44 de los dispositivos 1 según la invención pueden estar orientadas en dirección transversal a la dirección del casquillo de recepción 2.

Oportunamente, las empuñaduras 44 disponen de un sistema de activación y apagado del motor, para mejorar la seguridad de uso. Este sistema, no mostrado en detalle en la invención consiste en un doble botón, diametralmente opuesto en la empuñadura 44. El primer botón de activación, se acciona con la palma de la mano y permite activar el segundo botón de aceleración del motor. Con ello, si el operario 108 no acciona ambos botones de manera simultánea, el dispositivo 1 se para automáticamente.

10 En esta forma de realización los medios de impacto 10 son de nuevo un martillo 18 y un yunque 20. Tanto el martillo 18, como el yunque 20 están quiados lateralmente mediante juntas tóricas de sección preferentemente circular. El martillo 18 es accionado por un efecto neumático proporcionado por el empuje de aire del motor dentro de la camisa 42 del cilindro. Esta camisa 42 actúa como guía 12 longitudinal para el martillo 18, mediante un juego de lumbreras no mostrado en detalle. Para ello, el motor está acoplado a un sistema de biela y émbolo, no mostrados, encargados de generar la presión sobre el martillo 18, que es el que se mueve de forma alternativa. Este principio de accionamiento neumático es ampliamente conocido por el experto en la materia. El cilindro 42 es preferentemente de sección transversal cilíndrica, pero 20 tampoco es esencial para la invención. Preferentemente, el yunque 20 es un cilindro hueco interiormente, y cerrado por la superficie de golpeo, lo cual permite reducir peso y ganar velocidad de accionamiento del martillo 18. Más adelante, se explicará en detalle el funcionamiento de martillo 18 y yunque 20 para clavar la estaca 100. De forma especialmente preferente, tanto el martillo 18, como el yunque 20, son de acero al carbono, total o parcialmente templados.

15

25

30

También de forma preferente, el yunque 20 comprende eje centrador 38 superior configurado para recibir los impactos de dicho martillo 18 y el dispositivo 1, además comprende un anillo amortiquador 40 que está montado en dicho eje centrador 38, guiado en la guía 12 longitudinal para amortiguar los movimientos laterales de dicho yunque 20 cuando recibo los impactos de dicho martillo 18.

De la parte inferior de la carcasa 22 sobresale el casquillo de recepción 2 hueco que forma una cavidad 4 de recepción para recibir la estaca 100. A través del extremo de inserción 6 del casquillo de recepción 2, es decir, el extremo alejado de la carcasa 22, el dispositivo 1 recibe el primer extremo 102 de la estaca 100. El casquillo de recepción 2 es preferentemente cilíndrico. No obstante, podría presentar otras secciones transversales.

El casquillo de recepción 2 está fabricado en un material duro, como por ejemplo, un acero al carbono aleado con cromo.

El martillo 18 y el yunque 20 son móviles a lo largo de la guía 12, accionados de forma alternativa por parte de los medios de accionamiento 8 entre una primera posición alejada del casquillo de recepción 2 (ver figura 5A) y una segunda posición en la que los medios de impacto 10, es decir el martillo 18 primero, y luego el yunque 20, imparten un impulso de clavado sobre el primer extremo 102 de la estaca 100 (ver figura 5B). Al recibir el impacto del martillo 18, el yunque 20 desciende para golpear sobre el primer extremo 102 de la estaca 100. El segundo extremo 106 de la estaca tiene una punta destinada a facilitar la penetración de la estaca 100 en el suelo 104.

10

15

20

25

30

Para reforzar el casquillo de recepción 2 y prolongar su vida útil, en la invención está previsto un casquillo de reducción 14, montado dentro del casquillo de recepción 2 para reducir la sección transversal de la cavidad 4 de recepción. De esta forma, la cavidad 4 se adapta a por lo menos tres puntos de la sección transversal de la estaca y proporcionar un centrado lateral de la estaca. La unión entre el casquillo de reducción 14 y la estaca 100 es una unión con un leve juego. Esto permite que la forma interior del casquillo de reducción 14 se adapte al contorno exterior de la estaca 100, lo cual evita que la estaca 100 se pueda mover libremente dentro del casquillo de recepción 2.

Además, en otra mejora adicional de la invención, está previsto que en la posición montada, el casquillo de reducción 14 se extienda por el interior del casquillo de recepción 2, pero sólo, hasta una posición en la que, en la segunda posición de funcionamiento del dispositivo 1, es decir en el momento que el yunque 20 golpea sobre la estaca 100, los medios de impacto 10 no impacten nunca sobre el casquillo

de reducción 14. Esta mejora es especialmente relevante, ya que el casquillo de reducción 14 no recibe la parte más importante de los impactos del yunque 20.

Finalmente, el dispositivo 1 también comprende unos medios de sujeción 16 para sujetar el casquillo de reducción 14 en posición montada. Gracias a que el casquillo de reducción 14 no recibe impactos del yunque 20, se evita dañar innecesariamente los medios de sujeción 16 por los esfuerzos longitudinales derivados del golpeo de la estaca 100.

En esta segunda forma de realización, para evitar retener el casquillo de sujeción 24 en su posición montada, este último y el casquillo de recepción 2 comprenden unos medios de rosca 26 para el montaje mutuo entre ambos. Adicionalmente, y para evitar que el casquillo de sujeción 24 se pueda aflojar debido a las vibraciones del golpeo, el dispositivo 1 comprende un pasador 28 precargado elásticamente que conecta transversalmente el casquillo de recepción 2 con el casquillo de sujeción 24. De forma especialmente preferente, el dispositivo 1 según la invención incorpora un juego de varios casquillos reducción 14, para dar mayor versatilidad al dispositivo 1.

10

15

20

Tanto el casquillo de reducción 14, como su disposición dentro del casquillo de recepción 2, así como los medios de sujeción 16 para sujetar ambos casquillos unidos también están contemplados para ser montados en el dispositivo 1 antes descrito.

Para montar el casquillo de reducción 14 hay suficiente con insertarlo en el casquillo de recepción, y luego enroscar el casquillo de sujeción 24 sobre la rosca del casquillo de recepción 2. Finalmente, se inserta el pasador 28 en el correspondiente orificio del casquillo de recepción 2 para evitar que el casquillo de reducción se afloje durante el procedimiento de clavado.

También para obtener una fijación óptima, el casquillo de reducción 14 presenta un reborde anular 46 que sobresale radialmente. A su vez, el casquillo de sujeción 24 presenta un reborde anular 48 que penetra radialmente. De esta forma, el casquillo de reducción 14 queda perfectamente retenido en la dirección longitudinal del casquillo de recepción 2 ya que el reborde anular 46, queda atrapado entre el borde anterior del casquillo de recepción 2 y el reborde anular 48 del casquillo de sujeción 24.

De forma especialmente preferente, en esta forma de realización y con el objetivo de incrementar todavía más la durabilidad del casquillo de recepción 2, el propio casquillo de recepción 2 forma parte de la guía 12 longitudinal. En esta forma de realización el casquillo de recepción 2 forma parte de la guía 12 destinada a guiar la totalidad del yunque 20, mientras que el martillo 18 está guiado en una camisa 42 independiente. Con ello, también se mejora la estanqueidad del dispositivo 1 en la zona del martillo 18.

Igual que en la forma de realización anterior, el casquillo de recepción 2 está montado en la carcasa 22 mediante un ajuste a presión o un ajuste a presión en caliente.

10 Además, para tener un montaje óptimo, por su parte superior, el casquillo de recepción 2 presenta un reborde anular 32 que sobresale del cuerpo principal del casquillo de recepción 2. Este reborde anular 32 se apoya sobre un asiento 34 anular previsto en la carcasa 22.

A continuación se muestran otras formas de realización del dispositivo automático para clavar estacas según la invención que comparten gran parte de las características descritas en los párrafos anteriores. Por consiguiente, en adelante sólo se describirán los elementos diferenciadores, mientras que para los elementos comunes se hace referencia a la descripción de las primera y segunda formas de realización.

En la forma de realización de las figuras 6 y 7 los medios de sujeción 16 comprenden un casquillo de sujeción 24 similar al de la forma de realización anterior. No obstante, en este caso el casquillo de sujeción 24 y el casquillo de recepción 2 comprenden medios de bayoneta 30 para el montaje mutuo entre ambos para facilitar la rapidez de montaje y desmontaje del casquillo de reducción 14. Los medios de bayoneta están formados por tres ranuras en L que empiezan en la boca de inserción del casquillo de sujeción 24. De forma correspondiente, el casquillo de recepción 2 incorpora tres tetones distribuidos, preferentemente a 120º alrededor del perímetro del casquillo 12 y que encajan en las citadas ranuras.

20

25

30

Esta forma de realización también incorpora un pasador 28 precargado elásticamente que conecta transversalmente el casquillo de recepción 2 con el casquillo de sujeción 24.

Finalmente, la forma de realización según la figura 8 el dispositivo 1 incorpora dos pasadores 28 precargados elásticamente que conectan transversalmente el casquillo de recepción 2 con el casquillo de reducción 14.

Todos los medios de sujeción 16 aquí descritos podrían ser montados en las formas de realización antes descritas, con un casquillo de recepción adecuado.

Para utilizar el dispositivo 1 según la invención de forma especialmente ergonómica por parte de un solo usuario, es preferente, que el operario coloque la estaca en el suelo, apoyada sobre algún objeto que eleve levemente el primer extremo 102 de golpeo. En esta posición, el operario 108 inserta el primer extremo 102 dentro del 10 casquillo de recepción 2 o dado el caso, dentro del casquillo de reducción 14 hasta que haga tope. Luego eleva el dispositivo 1 para poner el conjunto formado por estaca 100 y dispositivo 1 en la dirección de clavado. La dirección de clavado no tiene por qué ser vertical. Finalmente, se accionan el botón de activación y el botón de aceleración del motor y simplemente se sujeta el dispositivo 1 como en la figura 1 y se acompaña durante el clavado.

Las formas de realización hasta aquí descritas representan ejemplos no limitativos, de manera que el experto en la materia entenderá que más allá de los ejemplos mostrados, dentro del alcance de la invención son posibles múltiples combinaciones entre las características reivindicadas.

20

REIVINDICACIONES

- 1.- Dispositivo (1) automático para clavar estacas (100) que comprende:
 - [a] una carcasa (22),
- [b] un casquillo de recepción (2) que forma una cavidad (4) de recepción para recibir a través de un extremo de inserción (6), el primer extremo (102) de golpeo de una estaca (100) que se debe clavar en el suelo (104),
 - [c] unos medios de accionamiento (8) automático,
 - [d] unos medios de impacto (10) y
 - [e] una guía (12) longitudinal para guiar dichos medios de impacto (10),

caracterizado por que

10

15

- [f] dichos medios de impacto (10) son móviles a lo largo de dicha guía (12), accionados de forma alternativa por parte de dichos medios de accionamiento (8) entre
 - [i] una primera posición alejada de dicho casquillo de recepción (2) y
 - [ii] una segunda posición en la que dichos medios de impacto (10) imparten un impulso de clavado sobre dicho primer extremo (102) de dicha estaca (100), por que
- [g] dicho casquillo de recepción (2) está montado en un asiento (34) de dicha carcasa (22) mediante un ajuste del grupo que comprende los ajustes a presión y los ajustes a presión en caliente y por que
- [h] dicho casquillo de recepción (2) forma, por lo menos, una parte de dicha guía (12) destinada a guiar dichos medios de impacto (10).
- 25 2.- Dispositivo según la reivindicación 1, **caracterizado por que** dichos medios de impacto (10) comprenden un martillo (18) y un yunque (20), siendo dicho martillo (18) accionado por dichos medios de accionamiento (8) contra dicho yunque (20) para que dicho yunque (20) impacte sobre dicho primer extremo (102) de dicha estaca (100).
- 3.- Dispositivo según la reivindicación 2, caracterizado por que dicho martillo (18) o
 30 dicho yunque (20) comprenden eje centrador (38) y por que dicho dispositivo (1),
 además comprende un anillo amortiguador (40) que está montado en dicho eje

centrador (38), guiado en dicha guía (12) longitudinal para amortiguar los movimientos laterales de dichos medios de impacto (10) cuando dicho martillo (18) y dicho yunque (20) imparten dicho impulso.

- 4.- Dispositivo según la reivindicación 3, **caracterizado por que** dicho anillo amortiguador (40) comprende una primera y una segunda semicarcasas (78, 80) metálicas separadas por un anillo elástico (82).
 - 5.- Dispositivo (1) según cualquiera de las reivindicaciones 2 a 4, **caracterizado por que** dicho yunque (20) comprende una primera ranura (50) perimetral próxima a la zona en la que dicho yunque (20) golpea sobre dicha estaca (100) y por que en dicha primera ranura (50) está montado un primer anillo rascador (52) de sección trapezoidal que sobresale del perímetro de dicho yunque (20), colocado de manera que la base mayor (54) de dicha sección trapezoidal está del lado de dicha cavidad (4).

10

- 6.- Dispositivo (1) según la reivindicación 5, **caracterizado por que** dicho anillo rascador (52) comprende una primera parte exterior (56) realizada en un polímero rígido y una parte interior (58) a modo de junta tórica de goma.
- 7.- Dispositivo (1) según la reivindicación 5 o 6, **caracterizado por que** dicho yunque (20) comprende una segunda ranura (60) perimetral adyacente a dicha primera ranura perimetral (50) y por que en dicha segunda ranura (60) está montado un anillo de guiado (62) realizado en un polímero rígido.
- 8.- Dispositivo (1) según cualquiera de las reivindicaciones 5 a 7, caracterizado por que dicho yunque (20) comprende una tercera ranura (64) perimetral adyacente a dicha segunda ranura perimetral (60) y por que en dicha tercera ranura (64) está montada una junta tórica (66) de goma.
- 9.- Dispositivo (1) según cualquiera de las reivindicaciones 2 a 8, caracterizado por que dichos medios de accionamiento (8) comprenden un pistón (68) que desplaza neumáticamente dicho martillo (18) contra dicho yunque (20) de forma alternativa entre dicha primera y dicha segunda posición, y por que dicho pistón (68) comprende una cuarta ranura (70) perimetral próxima a la zona en la que dicho pistón (68) acciona neumáticamente dicho martillo (18) y por que en dicha cuarta ranura (70) está

montado un segundo anillo rascador (72) de sección trapezoidal que sobresale del perímetro de dicho pistón (68), colocado de manera que la base mayor de dicha sección trapezoidal está del lado de dicho martillo (18).

- 10.- Dispositivo (1) según cualquiera de las reivindicaciones 2 a 9, **caracterizado por que** dicho martillo (18) comprende una quinta ranura (74) perimetral próxima al extremo de dicho martillo (18) alejado de dicho yunque (20) y por que en dicha quinta ranura (74) está montado un segundo anillo de guiado (76) que comprende una junta tórica de goma interior y una parte exterior de polímero rígido.
- 11.- Dispositivo según cualquiera de las reivindicaciones 1 a 10, caracterizado por10 que además comprende

15

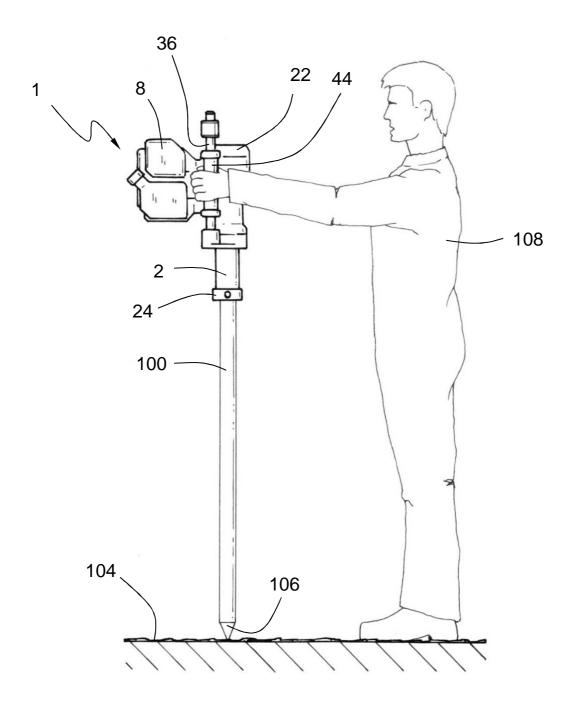
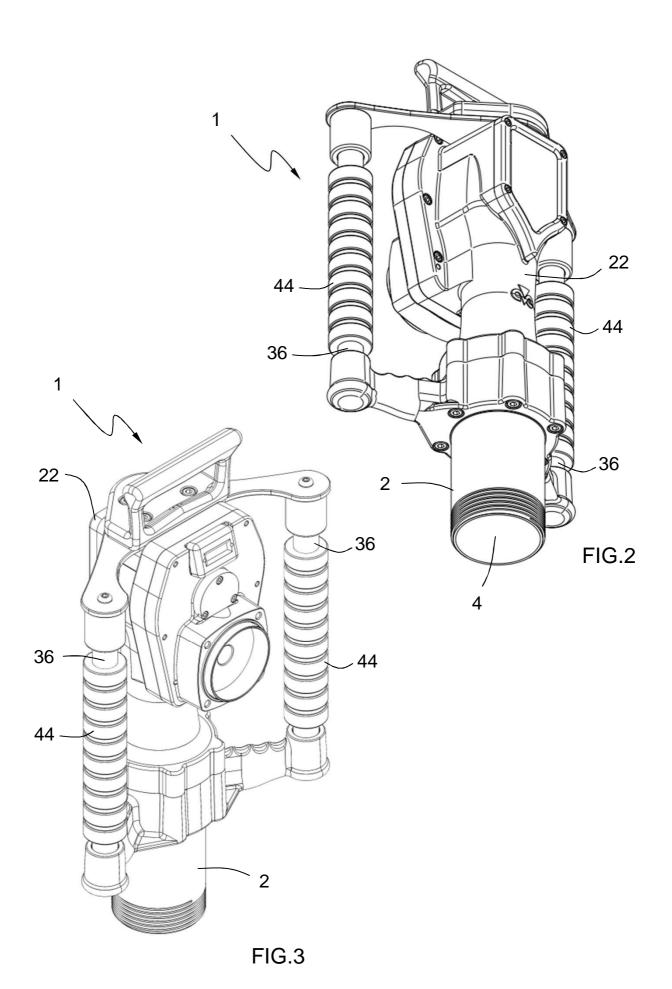
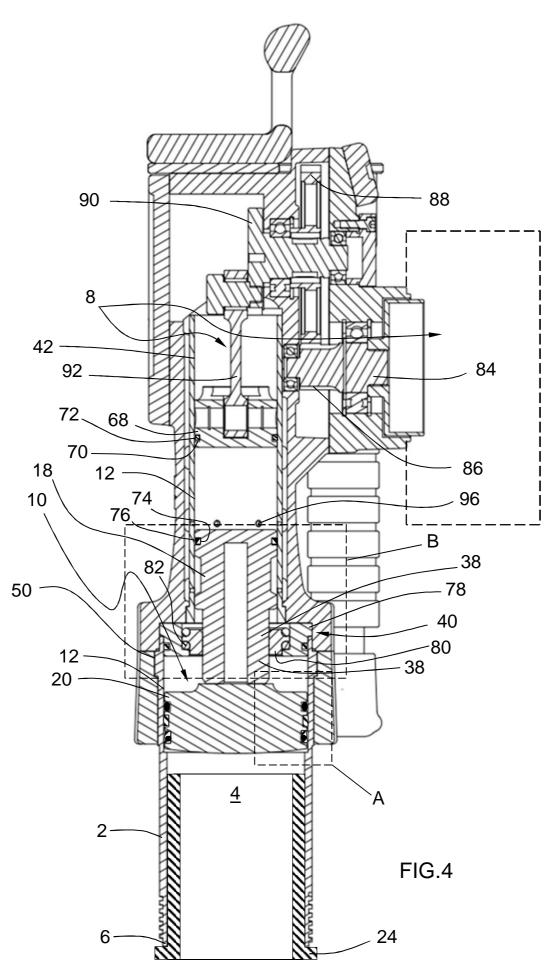
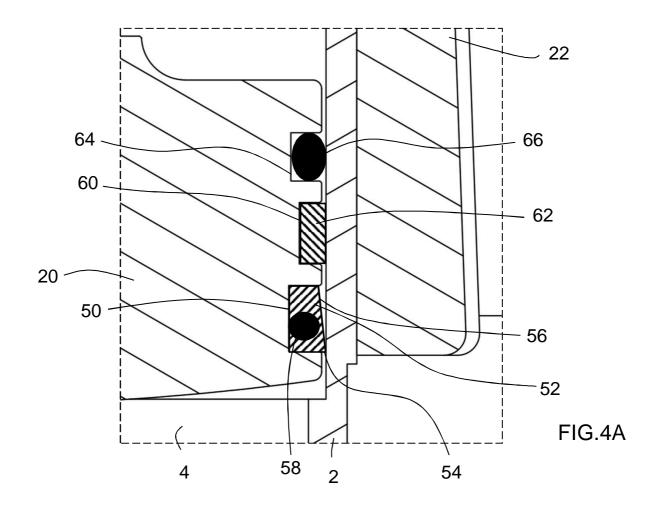
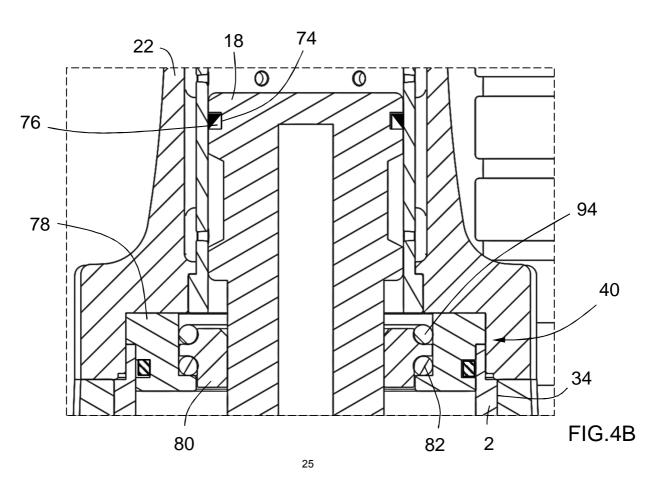
25

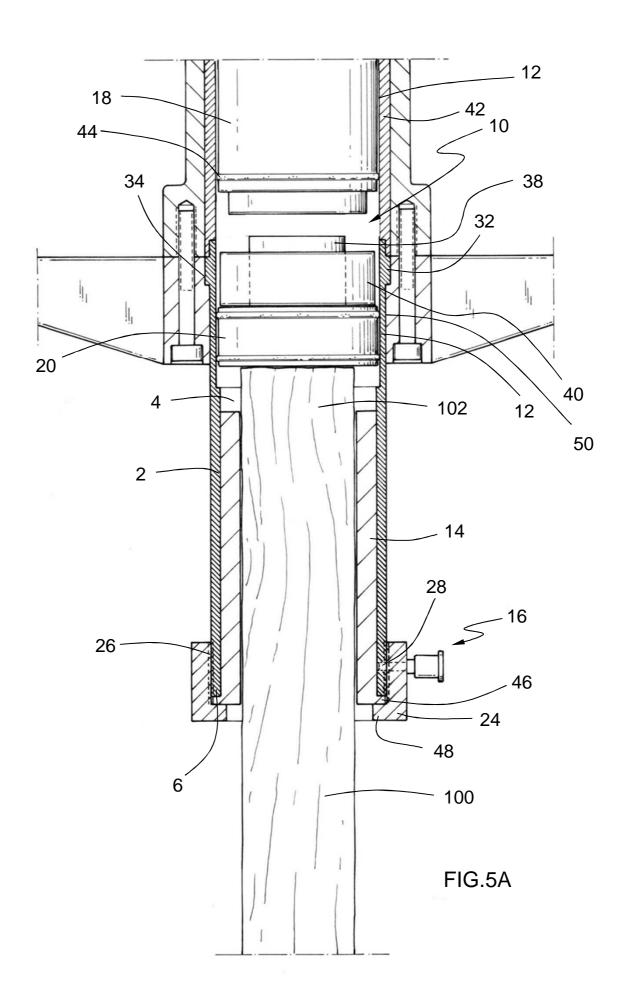
[a] un casquillo de reducción (14) montado dentro de dicho casquillo de recepción (2) para reducir la sección transversal de dicha cavidad (4) de recepción de manera tal que se adapta al contorno exterior de dicha estaca (100) y que en la posición montada, se extiende por el interior de dicho casquillo de recepción (2) hasta una posición en la que, en dicha segunda posición, dichos medios de impacto (10) no impactan sobre dicho casquillo de reducción (14) y

[b] unos medios de sujeción (16) para sujetar dicho casquillo de reducción (14) en dicha posición montada.

- 20 12.- Dispositivo según la reivindicación 11, **caracterizado por que** dichos medios de sujeción (16) comprenden por lo menos un pasador (28) precargado elásticamente que se conecta transversalmente a dicho casquillo de recepción (2).
 - 13.- Dispositivo según la reivindicación la reivindicación 12, **caracterizado por que** dichos medios de sujeción (16) comprenden un casquillo de sujeción (24), y por que dicho casquillo de sujeción (24) y dicho casquillo de recepción (2) comprenden unos medios de rosca (26) para el montaje mutuo entre ambos.
 - 14.- Dispositivo según la reivindicación 12, caracterizado por que dichos medios de sujeción (16) comprenden un casquillo de sujeción (24), y por que dicho casquillo de

sujeción (24) y dicho casquillo de recepción (2) comprenden medios de bayoneta (30) para el montaje mutuo entre ambos.


FIG.1

