

11) Número de publicación: 1 190

21 Número de solicitud: 201700488

(51) Int. CI.:

B64C 29/00 (2006.01)

12 SOLICITUD DE MODELO DE UTILIDAD

22 Fecha de presentación:
15.06.2017

43 Fecha de publicación de la solicitud:
03.11.2017

Solicitantes:

MUÑOZ SAIZ, Manuel (100.0%)
Los Picos nº 5, 3º, 6
04004 Almería ES

72 Inventor/es:
MUÑOZ SAIZ, Manuel

54) Título: Sistema de sustentación, estabilización y propulsión para aeronaves eléctricas de despegue y aterrizaje vertical

DESCRIPCIÓN

Sistema de sustentación, estabilización y propulsión para aeronaves eléctricas de despegue y aterrizaje vertical.

Campo de la invención

5

10

15

20

35

40

45

50

En aeronaves tripuladas, drones o UAVs tipo VTOL cuya alimentación principal o única es eléctrica. Incluyendo los de radiocontrol.

Estado de la técnica

Las aeronaves: Aviones, UAVs o drones que actualmente utilizan la alimentación eléctrica tienen poca autonomía, o los propulsados por turbinas de gas necesitan largas pistas de aterrizaje, grandes flaps y trenes de aterrizaje. La presente invención simultanea el despegue vertical y la propulsión utilizando exclusiva o principalmente energía eléctrica para solucionar dicho problema.

Descripción de la invención

Objetivo de la invención y ventajas.

Utilizar el despegue y aterrizaje vertical.

No necesitar largas y costosas pistas, ni costosos y pesados aviones, flaps y trenes de aterrizaje.

Utilizar como energía principal la de las baterías eléctricas.

30 Utilizar para el despegue y aterrizaje energías complementarias a la de las baterías.

Problema a resolver.

La gran contaminación y altos costes de los motores o turbinas alimentados con combustibles fósiles y similares, y también la necesidad de largas y caras pistas de despegue. Por otra parte se evita el uso de flaps y complicados trenes de aterrizaje, utilizando otros más sencillos.

El sistema de sustentación, estabilización y propulsión para aeronaves eléctricas de despegue y aterrizaje vertical de la invención consiste en utilizar durante el despegue, aterrizaje y demás fases del vuelo como elementos sustentadores, estabilizadores y propulsores de las aeronaves: hileras de fanes o turbinas eléctricas distribuidos en las aeronaves por los bordes de salida o la superficie del fuselaje, alas, empenajes o estabilizadores horizontales, aletas canard y en los zócalos o pestañas en los laterales del fuselaje, accionados por motores eléctricos alimentados por baterías eléctricas, pilas o células de combustible, generadores impulsados por aire a presión y volantes de inercia. La aeronave es controlada manualmente o con los sistemas de vuelo automático.

En los despegues y aterrizajes el flujo de los fanes o turbinas eléctricas se dirige hacia abajo a) Colocando los fanes verticalmente, b) Deflectando el flujo mediante aletas deflectoras o c) Girando las alas o porciones de ellas y con ello los fanes. La aeronave asciende o desciende estabilizada con dos o más fanes o turbinas eléctricas situadas en las esquinas o extremos de las alas, estabilizador o fuselaje de las aeronaves. La propulsión se inicia inclinando levemente el flujo de aire, bien inclinando los fanes o variando o reduciendo el grado de deflexión de las alas o aletas deflectoras. Al alcanzar el nivel de crucero los fanes se colocan inclinados

proporcionando simultáneamente la sustentación y la propulsión de la aeronave, o bien se colocan con su eje horizontal produciendo solamente la propulsión y las alas la sustentación. En vuelo de crucero la estabilización se puede realizar principalmente con las aletas de los alerones, timones de profundidad y dirección.

5

- La estabilización también se puede realizar con al menos dos fanes en puntos estratégicos de la aeronave distantes del centro de la misma y controlados por el procesador, sistema de control de vuelo (AFCS), o piloto automático.
- 10 En vuelo vertical y en crucero la estabilización se puede realizar variando la potencia de dos o más de los fanes de las esquinas o de los puntos más distantes del centro de la aeronave.
 - También puede colocarse un estabilizador en la zona delantera del fuselaje, de forma similar a un avión canard.

15

- Los fanes cuando no actúan de propulsores deben quedar protegidos en el interior de las alas, fuselaje, zócalos, etc. y cubiertos con unas aletas.
- Los fanes y turbinas eléctricas pueden colocarse sobresalientes o en voladizo en los laterales de los fuselajes de las aeronaves.
 - Los fanes y turbinas eléctricas deben utilizarse por parejas en contra rotación con el fin de evitar o contrarrestar el par de giro de los mismos.
- 25 El control como en todas las aeronaves se puede efectuar manual o automáticamente mediante un sistema de vuelo o piloto automático y cuando proceda teledirigido.
 - Las aeronaves deben estar construidas con materiales ultraligeros de fibra de carbono, kevlar y resinas, y fibras o materiales reforzados con grafeno y oxido de grafeno.

30

Descripción de los dibujos

La figura 1 muestra una vista esquematizada y en planta de una aeronave de cuatro alas utilizando hileras de fanes o turbinas eléctricas perpendiculares o en modo de sustentación. Se puede sustituir por otra aeronave de dos alas con empenaje de cola.

La figura 2 muestra una vista esquematizada y en planta de una aeronave utilizando hileras de fanes o turbinas eléctricas inclinadas en modo de propulsión y sustentación. Se puede sustituir por otra aeronave de dos alas con empenaje de cola.

40

35

- La figura 3 muestra una vista esquematizada y en planta de una aeronave utilizando hileras de fanes o turbinas eléctricas horizontales o en modo de propulsión, la sustentación la generarían las alas. Se puede sustituir por otra aeronave de dos alas con empenaje de cola.
- La figura 4 muestra una vista esquematizada y en planta de una aeronave de dos alas, estabilizador de cola y aletas canard en zona delantera, utilizando hileras de fanes o turbinas eléctricas verticales, pero con una pequeña inclinación.
- La figura 5 muestra una vista esquematizada y en planta de una aeronave de cuatro alas, utilizando hileras de fanes o turbinas eléctricas verticales en modo de sustentación.

La figura 6 muestra una vista esquematizada y en planta de una variante de aeronave con las hileras de fanes en unos zócalos laterales del fuselaje y en unos grandes empenajes de cola. Todos los fanes se encuentran en modo de sustentación o desplazamiento vertical.

La figura 7 muestra una vista esquematizada y en planta de una variante de aeronave de cuatro alas, con hileras de fanes. Utiliza alas y empenajes de cola inclinables.

La figura 8 muestra una vista esquematizada y en planta de una variante de aeronave del tipo de ala volante con hileras de fanes.

La figura 9 muestra una vista esquematizada y en alzado de la aeronave de la figura 8.

La figura 10 muestra una vista esquematizada y en planta de una variante de aeronave con unos deflectores del flujo de los fanes.

La figura 11 muestra una hilera de fanes, en posición de sustentación, accionada mediante un cable o varilla.

La figura 12 muestra una hilera de fanes, en posición de propulsión y sustentación, accionada mediante un cable o varilla.

La figura 13 muestra una hilera de fanes, en posición de propulsión, accionada mediante un cable o varilla.

La figura 14 muestra una hilera de fanes y unas aletas deflectoras.

La figura 15 muestra una hilera de fanes y unas aletas deflectoras.

25 Descripción más detallada de una forma de realización

La figura 1, 2 y 3 muestran una forma de realización de la invención en una aeronave (1) de cuatro alas. La figura 1 presenta la aeronave (1) en el suelo preparada para iniciar un modo despegue vertical, este se realiza aplicando máxima potencia a las hileras de fanes o turbinas eléctricas (3) sobre los bordes de salida de las alas (2). Las hileras de fanes se giran o accionan simultáneamente manualmente, o eléctrica, neumática o hidráulicamente, mediante el actuador (6), los cables, varillas o conductos (4) y los ejes (14). El punto (5) representa una unión cardan, unos engranajes, o bifurcación de conductos. (6) puede representar una palanca de actuación mediante cables o varillas para en caso de emergencia. La figura 2 muestra los fanes (3) en posición inclinada proporcionando sustentación y propulsión simultáneamente. La figura 3 muestra los fanes (3) en posición horizontal, produciendo la propulsión y ayudando a las alas en la generación de sustentación. La estabilización se consigue variando la potencia de algunos fanes en las esquinas y/o más distantes del centro de la aeronave. También se pueden utilizar fanes adicionales e independientes para ese cometido. Las hileras de fanes pueden formar parte de una porción de ala giratoria (13) en el borde de salida del ala, similar a lo mostrado en la figura 4. Esto es mostrado por líneas de trazos en solo un ala, en la figura 1.

La figura 4 muestra una aeronave (1) con alas (2), empenaje horizontal de cola (20), aletas canard (21) con hileras de fanes (3) ligeramente inclinados y soportada cada hilera por una placa o armazón (10) que gira sobre sus ejes (11). Las hileras de fanes se giran o accionan simultáneamente manual, eléctrica, neumática o hidráulicamente, mediante el actuador (6), y los cables o conductos (4). El punto (5) representa una unión cardan, unos engranajes, o bifurcación cruce de conductos. Los fanes podrían mostrar un modo de actuación de sustentación con un pequeño avance.

La figura 5 muestra una aeronave (1) de cuatro alas (2), con las hileras de fanes (3) en las puntas de alas, dichas puntas (22) son giratorias y son accionadas mediante unos actuadores eléctricos, neumáticos o hidráulicos (6a). Las superficies superiores del fuselaje, alas y

4

50

5

20

30

35

40

45

estabilizador horizontal en su caso, portan paneles fotovoltaicos que alimentan los fanes y las baterías.

- La figura 6 muestra una aeronave (1) de gran superficie repartida entre 1 fuselaje, los zócalos (7) en los laterales del fuselaje y el empenaje horizontal de cola (20). Las hileras de fanes se giran o accionan simultáneamente manual, eléctrica, neumática o hidráulicamente, mediante el actuador (6), y los cables o conductos (4). El punto (5) representa una unión cardan, unos engranajes, o bifurcación o cruce de conductos.
- La figura 7 muestra una aeronave (1) de cuatro alas giratorias (2a), con las hileras de fanes (3), dichas alas son accionadas manualmente o mediante unos actuadores eléctricos, neumáticos o hidráulicos (6a) y los cables o conductos (4). El punto (5) representa una unión cardan, unos engranajes, o bifurcación o cruce de conductos. (6) puede ser una palanca utilizada para accionar las alas manualmente.

La figura 8 muestra una aeronave ala volante (1), cuyas alas (2) portan las hileras de fanes (3) Las hileras de fanes se giran o accionan simultáneamente manual, eléctrica, neumática o hidráulicamente, mediante el actuador (6), y los cables o conductos (4). El punto (5) representa una unión cardan, unos engranajes, o bifurcación o cruce de conductos.

La figura 9 muestra una vista lateral de la aeronave (1) de la figura (8).

15

20

25

30

45

50

La figura 10 muestra una aeronave (1) de cuatro alas (2), con las hileras de fanes fijos e inclinados (3), en el modo de propulsión y sustentación, el flujo igualmente lanzado inclinado hacia abajo y hacia atrás. Dicho flujo es desviado hacia adelante mediante las placas deflectoras (9) durante el movimiento o desplazamiento vertical. Las hileras de fanes se giran o accionan simultáneamente manual, eléctrica, neumática o hidráulicamente, mediante el actuador (6), y los cables o conductos (4). El punto (5) representa una unión cardan, unos engranajes, o bifurcación o cruce de conductos.

- La figura 11 muestra la hilera de fanes o turbinas (3) en posición de sustentación o vertical. Se gira mediante el cable o varilla (15) y el brazo (16) que le hacen girar alrededor del soporte o eje de giro (17).
- La figura 12 muestra la hilera de fanes o turbinas (3) en posición inclinada o de sustentación y propulsión. Se gira mediante el cable o varilla (15) y el brazo (16) que le hacen girar alrededor del soporte o eje de giro (17).
- La figura 13 muestra la hilera de fanes o turbinas (3) en posición horizontal o de propulsión, la sustentación se produce en las alas. Se gira mediante el cable o varilla (15) y el brazo (16) que le hacen girar alrededor del soporte o eje de giro (17).
 - La figura 14 muestra la hilera de fanes o turbinas (3) en posición inclinada y fija. El cable o varilla (15a) coloca el deflector (9a) en la posición de sustentación, o empuje hacia arriba, girando mediante el brazo (16a) alrededor del eje (19).
 - La figura 15 muestra la hilera de fanes o turbinas (3) en posición inclinada y fija. El cable o varilla (15a) coloca el deflector (9a) en la posición de sustentación y propulsión, paralelo al flujo de aire, girando alrededor del eje (19) mediante el brazo (16a).
 - Se gira mediante el cable o varilla (15) y el brazo (16) que le hacen girar alrededor del soporte o eje de giro (17).

En todos los casos y en especial en el vuelo de desplazamiento vertical, la estabilización de las aeronaves se consigue variando la potencia de dos o más de los fanes de las esquinas o más distantes del centro de la aeronave.

5 Las aeronaves mostradas en la presente invención son, a título de ejemplo no limitativo.

REIVINDICACIONES

- 1. Sistema de sustentación, estabilización y propulsión para aeronaves eléctricas de despegue y aterrizaje vertical utilizando turbinas o fanes accionados eléctricamente, **caracterizado** porque las aeronaves durante el despegue, aterrizaje y demás fases del vuelo disponen como elementos sustentadores, estabilizadores y propulsores de las aeronaves (1): hileras de fanes o turbinas eléctricas (3) distribuidas en las aeronaves por los bordes de salida o superficie del fuselaje, alas (2), empenajes o estabilizadores horizontales (20), aletas canard (21) y en los zócalos (7) o pestañas en los laterales del fuselaje, accionados por motores eléctricos alimentados por baterías eléctricas, pilas o células de combustible, generadores impulsados por aire a presión y volantes de inercia.
- 2. Sistema según reivindicación 1, **caracterizado** porque las hileras de fanes o turbinas eléctricas (3) se giran o inclinan con un eje común (14).
- 3. Sistema según reivindicación 1, **caracterizado** porque las hileras de fanes o turbinas eléctricas (3) se mantienen fijas.
- 4. Sistema según reivindicación 2, **caracterizado** porque las hileras de fanes o turbinas eléctricas se giran o inclinan manualmente, con un actuador (6) accionando unas varillas, cables (4) o impulsando por unos conductos de aire a presión o líquido hidráulico.
 - 5. Sistema según reivindicación 2, **caracterizado** porque las hileras de fanes o turbinas eléctricas se giran o inclinan manualmente con un actuador accionando unas varillas, cables o impulsando por unos conductos aire a presión o líquido hidráulico que gira las alas (2g), empenajes de cola y aletas canard.
 - 6. Sistema según reivindicación 2, **caracterizado** porque las hileras de fanes o turbinas eléctricas se giran o inclinan manualmente con un actuador accionando unas varillas, cables o impulsando por unos conductos de aire a presión o líquido hidráulico que gira una porción (10) de las alas que portan los fanes.
 - 7. Sistema según reivindicación 1, **caracterizado** porque las hileras de fanes o turbinas eléctricas se colocan en los zócalos (7) laterales del fuselaje de la aeronave.
 - 8. Sistema según reivindicación 1, **caracterizado** porque las hileras de fanes o turbinas eléctricas se colocan en los bordes de salida de las alas, empenajes de cola y aletas canard.
- Sistema según reivindicación 3, caracterizado porque las hileras de fanes o turbinas
 eléctricas fijas portan unos deflectores que desvían el flujo hacia abajo para el vuelo o desplazamiento vertical.
 - 10. Sistema según reivindicación 1, **caracterizado** porque los fanes y turbinas eléctricas se utilizan por parejas en contra rotación.
 - 11. Sistema según reivindicación 1, **caracterizado** porque las superficies superiores del fuselaje alas, empenaje horizontal y aletas canard portan unos paneles fotovoltaicos (25) que captan la energía solar, cargando las baterías o alimentado directamente los motores eléctricos de lo fanes.
 - 12. Sistema según reivindicación 1, **caracterizado** porque en vuelo vertical la estabilización se realiza variando la potencia de al menos dos fanes en puntos estratégicos de la aeronave, distantes del centro de la misma y controlados por el procesador, sistema de control de vuelo (AFCS), o piloto automático.

45

10

15

25

30

35

- 13. Sistema según reivindicación 1, **caracterizado** porque las aeronaves están construidas con materiales ultraligeros de fibra de carbono y kevlar con resinas, y fibras u otros materiales reforzados con grafeno u oxido de grafeno.
- 14. Sistema según reivindicación, **caracterizado** porque los fanes se colocan en los bordes y en la zona interna de la superficie alar de las aeronaves ala delta.
- 15. Sistema según reivindicación 1, **caracterizado** porque los fanes se colocan sobresalientes o en voladizo en los laterales de los fuselajes de las aeronaves.

5

20

25

- 16. Sistema según reivindicación 1, **caracterizado** porque los fanes se colocan en los bordes de salida de las aeronaves tipo alas volantes.
- 17. Sistema según reivindicación 1, **caracterizado** porque en los despegues y aterrizajes el flujo de los fanes o turbinas eléctricas se dirige hacia abajo colocando los fanes verticalmente.
 - 18. Sistema según reivindicación 1, **caracterizado** porque en los despegues y aterrizajes el flujo de los fanes o turbinas eléctricas se dirige hacia abajo deflectando el flujo mediante aletas deflectoras.
 - 19. Sistema según reivindicación 1, **caracterizado** porque en los despegues y aterrizajes el flujo de los fanes o turbinas eléctricas se dirige hacia abajo girando las alas o porciones de ellas, que portan los fanes.
 - 20. Sistema según reivindicación 1, **caracterizado** porque en los despegues y aterrizajes la aeronave asciende o desciende estabilizada con dos o más fanes o turbinas eléctricas situadas en las esquinas o extremos de las alas, estabilizador o fuselaje de las aeronaves.
- 21. Sistema según reivindicación 1, **caracterizado** porque la propulsión se inicia inclinando el flujo de aire, bien inclinando los fanes o variando o reduciendo el grado de deflexión de las aletas deflectora y al alcanzar el nivel de crucero los fanes se colocan inclinados proporcionando simultáneamente la sustentación y la propulsión de la aeronave.
- 22. Sistema según reivindicación 1, **caracterizado** porque la propulsión se inicia inclinando levemente el flujo de aire, bien inclinando los fanes o variando o reduciendo el grado de deflexión de las aletas deflectoras y hasta alcanzar el nivel de crucero,
- 23. Sistema según reivindicación 1, **caracterizado** porque los fanes o turbinas se colocan con su eje horizontal, produciendo la propulsión y al avanzar, las alas generan la sustentación.
 - 24. Sistema según reivindicación 1, **caracterizado** porque el control de la aeronave se efectúa manual o automáticamente mediante un sistema de vuelo o piloto automático.
- 45 25. Sistema según reivindicación 1, **caracterizado** porque el control de la aeronave se efectúa teledirigido.

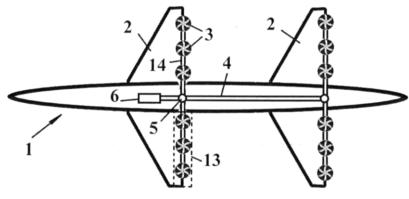


FIG. 1

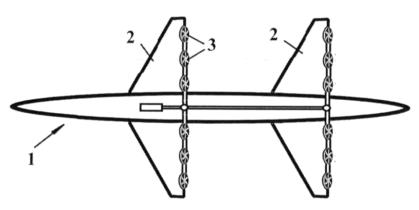
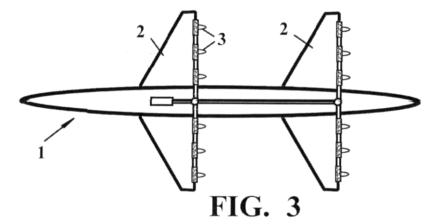
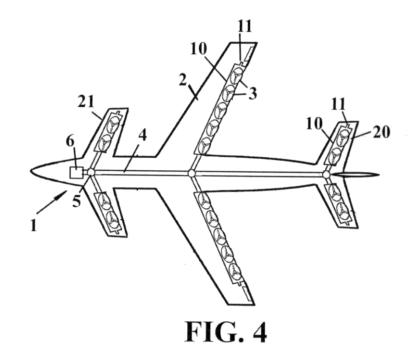
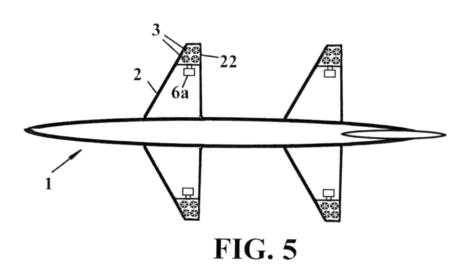
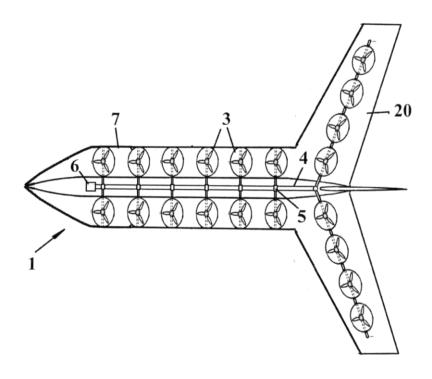
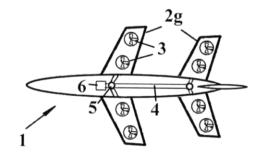
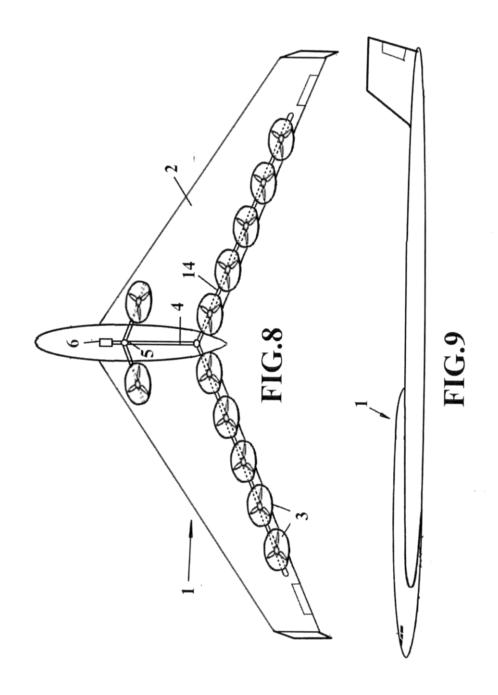
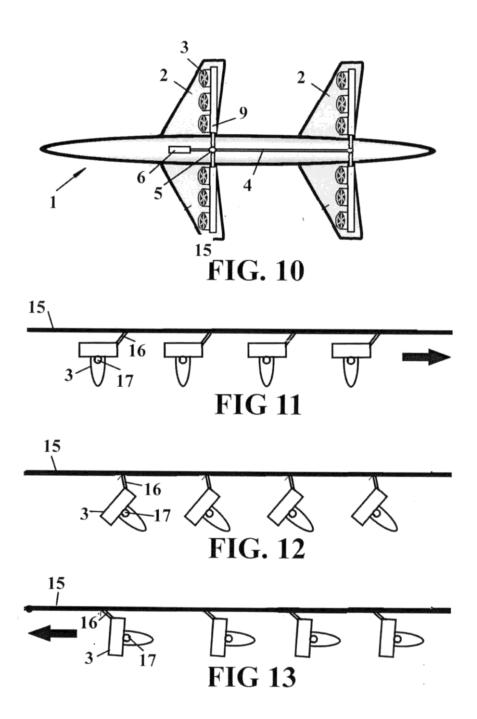
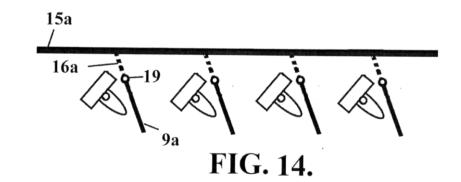






FIG. 2








FIG. 6

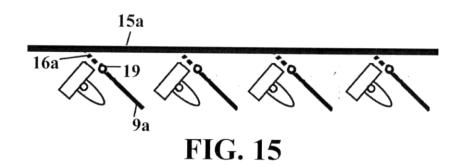


FIG. 7

