

① Número de publicación: 2 340 979

21) Número de solicitud: 200803496

(51) Int. Cl.:

A61K 31/395 (2006.01) **A61P 35/00** (2006.01)

(12) SOLICITUD DE PATENTE A1

22 Fecha de presentación: 10.12.2008

(1) Solicitante/s: Universitat de les Illes Balears Ctra. de Valldemossa, Km. 7,5 07122 Palma de Mallorca, Illes Balears, ES

43 Fecha de publicación de la solicitud: 11.06.2010

(72) Inventor/es: Costa Torres, Antonio; Rotger Pons, María del Carmen; Fernández de Mattos, Silvia y Villalonga Smith, Priam de

43 Fecha de publicación del folleto de la solicitud: 11.06.2010

(74) Agente: Pons Ariño, Ángel

(54) Título: Uso de compuestos cicloescuaramídicos como agentes antitumorales.

(57) Resumen:

Uso de compuestos cicloescuaramídicos como agentes antitumorales.

Uso de compuestos macrocíclicos de base escuaramida como agentes inhibidores de kinasas y como agentes antitumorales. Más concretamente, estos compuestos se utilizan para el tratamiento de enfermedades tales como el cáncer, diabetes, enfermedades neurodegenerativas, replicación de virus HIV, etc. Además, la presente invención también se refiere a composiciones farmacéuticas que contiene dichos compuestos.

DESCRIPCIÓN

Uso de compuestos cicloescuaramídicos como agentes antitumorales.

La presente invención se refiere al uso de compuestos macrocíclicos de base escuaramida, como agentes inhibidores de una serie de kinasas y como agentes antitumorales. Las kinasas inhibidas son enzimas muy relevantes para la proliferación y transformación celular y están relacionadas con enfermedades tales como el cáncer, diabetes, enfermedades neurodegenerativas, replicación de virus HIV etc. Además, la presente invención también se refiere a composiciones farmacéuticas que contiene dichos compuestos.

Estado de la técnica anterior

El término cáncer engloba a un extenso conjunto (>100) de entidades patológicas diferentes cuyo denominador común es el crecimiento celular descontrolado, como consecuencia de alteraciones genéticas características de la célula tumoral. Los genes alterados (oncogenes y supresores tumorales) envían mensajes equivocados o diferentes a los que deberían. Como consecuencia, la célula adquiere la capacidad de multiplicarse de forma autónoma y descontrolada provocando el desarrollo de tumores, que a su vez adquieren características progresivamente más malignas como la angiogénesis y la metástasis o diseminación a distancia. Así, la mutación de un oncogén como K-Ras, muy frecuente en células cancerosas, induce la hiperactivación de determinadas vías de señalización celular, que transfieren información al núcleo donde activan los programas responsables de la división celular y la supervivencia, entre otros procesos. Estas alteraciones pueden constituir la diana terapéutica con el fin de inhibir la proliferación celular, inducir la apoptosis o ambos.

Muchas de las alteraciones que se dan en las células malignas están vinculadas a receptores implicados con la actividad enzimática. Hay cuatro clases de enzimas ligados a receptores de este tipo: guanilil ciclasas, tirosina fosfatasas, serina/treonina kinasas, y protein-tirosina kinasas. Las tres últimas juegan un papel muy importante en las transformaciones malignas celulares.

La señalización celular en el interior de las células malignas también puede ser inhibida por agentes externos. Dado que la regulación anormal de kinasas y fosfatasas parece contribuir directamente a la aparición de un buen número de cánceres, existe un gran interés en la búsqueda de inhibidores selectivos de kinasas con dos finalidades: en primer lugar, bloquear el ciclo celular y con ello detener la proliferación celular, con lo cual se constituyen en agentes antitumorales *per se*, o bien, alternativamente, con el objetivo de inhibir el efecto de los puntos de control del ciclo celular o "checkpoints" (G1, S y G2) evitando la corrección del daño en el ADN provocado por antitumorales clásicos y evitando así los mecanismos de resistencia celular a la acción de antitumorales (figura 1). Este último, permite disminuir drásticamente las dosis de citotóxicos convencionales sin que se pierda la eficacia del tratamiento y con ello reducir sus efectos secundarios.

En esta línea se ha demostrado que inhibidores de tirosin kinasas son útiles como inhibidores selectivos del crecimiento de células cancerígenas en mamíferos. Por ejemplo el GleevecTM, también conocido como imatinib masilato, o STI571, inhibe entre otras la actividad de la kinasa producto de la fusión de los genes BCR-ABL y ha sido aprobado para el tratamiento de CML. Existen algunos inhibidores de kinasa que muestran incluso una mayor selectividad frente a las kinasas, como por ejemplo el TarcevaTM que inhibe solamente el EGF receptor kinasa con elevada potencia aunque también puede inhibir la señal de transducción de otros receptores-kinasa, probablemente debido a que estos receptores heterodimerizan con el receptor de EGF.

En general, los antitumorales tradicionales (agentes alquilantes, antimetabolitos, derivados de cis-platino, etc.) son citotóxicos, lo que conlleva una falta de selectividad y provoca la aparición de los efectos secundarios adversos. En la actualidad, a medida que se conocen mejor los mecanismos tumorigénicos, la terapia contra el cáncer esta evolucionando de forma inteligente hacia el desarrollo de agentes terapéuticos que actúen de forma específica contra las células cancerígenas mediante el desarrollo de agentes que inhiben la proliferación y supervivencia celular, los llamados fármacos de diana.

Aunque compuestos como los descritos anteriormente han contribuido notablemente al desarrollo de agentes antitumorales, existe una continua necesidad de obtener fármacos anticancerígenos mejores y sobretodo es deseable desarrollar nuevos compuestos con mejor selectividad o potencia, además de reducir sus efectos secundarios y toxicidad.

Las escuaramidas consideradas vinílogas a las amidas son una unidad estructural muy adecuada para preparar compuestos miméticos a las proteínas y poseen una gran capacidad para intervenir en la formación de enlaces de hidrógeno y unas propiedades dinámicas favorables para el establecimiento de estructuras secundarias. Este hecho se fundamenta en que una escuaramida disecundaria ofrece dos oxígenos donadores y dos grupos NH aceptores de enlace hidrógeno, dispuestos de forma que puedan actuar sinérgicamente para establecer interacciones secundarias favorables.

Compuestos del tipo (arilamidoaril) escuaramida e indazol escuaramida han probado ser potentes inhibidores de receptores kinasa del tipo c-Kit y CHK1, CHK2, SGK respectivamente, lo que les confiere una interesante actividad antitumoral.

Por otra parte, macrociclos son estructuras abundantes en la naturaleza y sus usos potenciales son ilimitados, convirtiéndolos en sujeto de una intensa investigación (Driggers, E.M., *et al.*, *Nature reviews. Drug discovery.* Jul. 2008, 7(7), 608-624). Estas estructuras tipo anillo formadas generalmente por C, N y O han sido durante los últimos 50 años base de muchos compuestos líder en estudios farmacológicos, sirviendo de inspiración para casi cada nuevo fármaco introducido por la industria farmacéutica en el mercado, tal es el ejemplo de la cliclosporina y la vancomicina entre otros. La estructura macrocíclica es particularmente atractiva para la industria farmacéutica ya que la estructura tipo anillo ayuda a estabilizar la droga frente a la biodegradación que sufren en el cuerpo humano y aumenta la efectividad fijando la conformación biológicamente activa.

Descripción de la invención

La presente invención proporciona el uso de compuestos macrocíclicos de base escuaramida, como agentes inhibidores de kinasas y agentes antitumorales. Las kinasas inhibidas son enzimas muy relevantes para la proliferación y transformación celular y están relacionadas con enfermedades tales como el cáncer, diabetes, enfermedades neurodegenerativas, replicación de virus HIV, entre otras. Los resultados obtenidos (ver ejemplos) demuestran el uso de macrociclos escuaramídicos en el desarrollo de fármacos indicados para el tratamiento de diversos tipos de cáncer, como son el linfoma de células B y T ó el glioblastoma.

Los compuestos macrocíclicos, de la presente invención, de base escuaramida y de diverso tamaño, resultan ser potentes inhibidores kinasas "*in vitro*". Además, se demuestra (ver ejemplos) que poseen una actividad citotóxica y citoestática frente a líneas tumorales humanas de linfoma y glioblastoma.

Los macrociclos de la invención se pueden obtener a partir de una reacción de macrociclación de las oligoescuaramidas de partida. Se trata de escuaramidas secundarias unidas entre si mediante espaciadores de diversa naturaleza y funcionalizados, en todos los casos o en algunos, con grupos donadores y/o aceptores de enlaces de hidrógeno. El número de unidades escuaramida en los macrociclos puede variar desde 2 hasta 10.

La capacidad donadora-aceptora de enlaces de hidrógeno de las escuaramidas permite la síntesis de los compuestos macrocíclicos a partir de compuestos oligoescuaramídicos preorganizados, mediante una sencilla reacción de macrociclación, obteniéndose en todos los casos excelentes rendimientos (>80%).

Un primer aspecto de la presente invención se refiere al uso de los compuestos de fórmula general (I) o cualquiera de sus sales (a partir de ahora compuestos de la invención) para la elaboración de una composición farmacéutica:

35

25

40

45

50

55

60

HN NH

donde:

X e Y, son iguales o diferentes y se seleccionan de la lista que comprende:

- un grupo alquil (C₁-C₁₀);
- un grupo -R¹-NR-R²-; o
- un grupo -(R¹-NR-R²-esquaramida- R¹-NR-R²)_n; donde

R se selecciona de entre los grupos, sustituidos o no sustituidos, alquil (C_1-C_{10}) , aril o heteroaril;

 R^1 y R^2 son iguales o diferentes y se seleccionan de entre los grupos, sustituidos o no sustituidos, alquil (C_1 - C_5) o acilo; y

n toma los valores de 1 a 8, preferiblemente n toma los valores de 1 a 6.

Se entiende por "escuaramida" al grupo de fórmula:

5

10

El término "alquilo" se refiere en la presente invención a cadenas alifáticas, lineales o ramificadas, que tienen de 1 a 10 átomos de carbono, por ejemplo, metilo, etilo, n-propilo, i-propilo, n-butilo, tert-butilo, sec-butilo, n-pentilo, etc. Los radicales alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como un cicloalquilo, arilo, heteroarilo, alcoxilo, halógeno, nitro, amino o amonio. Preferiblemente es un grupo bencil, que a su vez puede estar opcionalmente sustituido por uno o más sustituyentes tales como alcoxilo, halógeno, nitro, amino o amonio.

15

El término "arilo" se refiere en la presente invención a una cadena carbocíclica aromática, que tiene de 6 a 18 átomos de carbono, pudiendo ser de anillo único ó múltiple, en este último caso con anillos separados y/o condensados. Un ejemplo, no limitante, de arilo es un grupo fenil, naftilo, indenilo, etc... Preferiblemente el grupo arilo es un fenil.

2.5

El término "heteroarilo" se refiere en la presente invención a una cadena cíclica aromática que tiene de 5 a 18 átomos, incluyendo de 1 a 5 heteroátomos, principalmente N pero que puede contener O y/o S. La cadena puede ser de anillo único o múltiple. Como ejemplos no limitantes de heteroarilo se citan, azina, pirrol, ozazol, piridina, pirimidina, diazina, purina, etc

El término "acilo" se refiere, en la presente invención, a un derivado de ácido carboxílico por eliminación de un grupo hidroxilo. Los derivados de ácido carboxílico tienen como fórmula general R3-CO-, donde R3 es un grupo alquilo con las acepciones anteriores y preferiblemente se refiere a grupos alquilo (C₁-C₇), lineal o ramificado. R² forma un grupo amida con el nitrógeno del grupo -R¹NRR²-, y puede estar opcionalmente sustituido por uno o más sustituyentes tales como un alquilo, cicloalquilo, heterocicloalquilo, arilo, heteroarilo, alcoxilo, halógeno, haloalquilo, nitro, amino, amonioalquilo, amoniocicloalquilo o tiol. Preferiblemente, R3 puede estar sustituido por un grupo tiol, que a su vez puede estar sustituido por un grupo alquilo.

En una realización preferida de los compuestos de la invención, X o Y es un grupo heptil.

Cuando X 6 Y se selecciona del grupo -R¹NRR²- o del grupo -(R¹-NR-R²-esquaramida- R¹-NR-R²)_n, preferiblemente R¹ ó R² es un grupo propil o un grupo acilo (COR³), donde R³ es un grupo alquilo, preferiblemente un grupo metilo, sustituido por un grupo tioalquilo ($\dot{S}(C_1-C_3)$), preferiblemente un grupo tiolmetil. En una realización preferida R es un grupo metil, bencil o bencil sustituido. Cuando R es un grupo bencil sustituido es preferiblemente por un grupo nitro formando un grupo nitrobencil.

45

Los compuestos de fórmula general (I) se pueden seleccionar de entre las siguientes fórmulas de 1 a 11:

50

60

55

Compuesto 1

Compuesto 2

Compuesto 5

Compuesto 6

Compuesto 7

Compuesto 8

Compuesto 10

15

25

30

Otro aspecto de la presente invención se refiere al uso de los compuestos de la invención para la elaboración de una composición farmacéutica para el tratamiento de enfermedades asociadas con la inhibición de kinasas.

Las enfermedades asociadas con la inhibición de kinasas se pueden seleccionar entre enfermedades tumorales, diabetes, enfermedades neurodegenerativas (como por ejemplo Alzheimer) o replicación de virus HIV.

Entre los tumores se destacan, sin excluir a otros tipos, los linfomas de células B y T y el glioblastoma.

Otro aspecto de la presente invención se refiere a composición farmacéutica que comprende al menos un compuesto de fórmula general (I) junto con un vehículo farmacéuticamente aceptable. Dicha composición se utilizará en una cantidad terapéuticamente efectiva.

Los adyuvantes y vehículos farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los adyuvantes y vehículos conocidos por los técnicos en la materia y utilizados habitualmente en la elaboración de composiciones terapéuticas.

Los compuestos de la invención, sus sales farmacéuticamente aceptables, profármacos y/o solvatos, así como las composiciones farmacéuticas que los contienen, pueden ser utilizados junto con otros fármacos, o principios activos, adicionales para proporcionar una terapia de combinación. Dichos fármacos adicionales pueden formar parte de la misma composición farmacéutica o, alternativamente, pueden ser proporcionados en forma de una composición separada para su administración simultánea o no a la de la composición farmacéutica que comprende un compuesto de fórmula (I), o un profármaco, solvato, derivado o una sal farmacéuticamente aceptable de los mismos.

En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad del agente o compuesto capaz de desarrollar la acción terapéutica determinada por sus propiedades farmacológicas, calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de los compuestos, incluyendo la edad, estado del paciente, la severidad de la alteración o trastorno, y de la ruta y frecuencia de administración.

45

40

Dicha composición terapéutica se puede preparar en forma de una forma sólida o suspensión acuosa, en un diluyente farmacéuticamente aceptable. La composición terapéutica proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada, para lo cual dicha composición se formulará en la forma farmacéutica adecuada a la vía de administración elegida. En una realización particular, la administración de la composición terapéutica proporcionada por esta invención se efectúa por vía oral, tópica, rectal o parenteral (incluyendo subcutánea, intraperitoneal, intradérmica, intramuscular, intravenosa, etc.). Una revisión de las distintas formas farmacéuticas de administración de medicamentos y de los excipientes necesarios para la obtención de las mismas puede encontrarse, por ejemplo, en el "Tratado de Farmacia Galénica", C. Faulí i Trillo, 1993, Luzán 5, S.A. Ediciones, Madrid, o en otros habituales o similares de las Farmacopeas Española y de Estados Unidos.

55

Otro aspecto de la presente invención se refiere a los compuestos 1 a 5, descritos anteriormente.

60

A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.

Breve descripción de las figuras

- Fig. 1. Representa la viabilidad celular (células Jeko-1) en función de la concentración del compuesto 10, con el fin de calcular la IC₅₀.
- Fig. 2. Representa la viabilidad celular (células Jeko-1) en función de la concentración del compuesto 11, con el fin de calcular la IC_{50} .
- Fig. 3. Muestra los perfiles citométricos tras mareaje con ioduro de propidio de células Jeko tratadas durante el tiempo indicado con el compuesto 10.
 - Fig. 4. Muestra los perfiles citométricos tras mareaje con ioduro de propidio de células JVM-2 tratadas durante el tiempo indicado con el compuesto 10.
- Fig. 5. Muestra las imágenes representativas de células U87 tratadas con el compuesto 10 y de células control. La gráfica representa la cuantificación porcentual de la formación de esferoides multicelulares tumorales en ambas condiciones.
- Fig. 6. Muestra los ensayos de crecimiento celular en placa. En la gráfica se representa el crecimiento celular (incremento del número de células/día) de las células U87 sin tratar (control) o tratadas con el compuesto 10.

Ejemplos

5

A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la especificidad y efectividad de los compuestos de la invención.

La reacción de macrociclación, así como la síntesis y descripción de los compuestos 9 a 11, están descritos en el artículo de Rotger, C, *et al.*, *Angew. Chem. Int.*, 2006, 45, 6844-6848. Para la síntesis del resto de compuestos descritos en esta invención se utiliza la misma metodología a la ya descrita en dicho artículo.

1. Inhibición de kinasas

Se demuestra la capacidad de estos compuestos para inhibir de forma significativa un amplio número de proteínas kinasa "*in vitro*" muchas de ellas de gran relevancia clínica. Concretamente, frente a un panel de 210 kinasas representativas del kinoma humano, los compuestos testados inhibieron en un 75% la actividad de 25 de ellas en ensayos *in Vitro* (Tabla 1).

TABLA 1

Se indica en las siguientes tablas el nombre de la kinasa y el efecto (por duplicado) del compuesto 10 sobre su actividad. El número indicado representa el % de actividad kinasa residual

#	Kinasa	10	10
1	ABL1	12	13
2	ABL1 TI	70	60
3	ABL2	163	166
4	ACK1	2	2
5	ACV-R1	55	61
6	ACV-R1B	104	91
7	AKT1	78	73

8	AKT2	149	123
9	AKT3	97	89
10	ALK	63	66
11	AMPK-alpha1 fl	71	76
12	AMPK-alpha1 tr	30	28
13	ARK5	83	81
14	Aurora-A	86	69
15	Aurora-B	183	196

60

40

45

50

55

İ	16	Aurora-C	198	196	65	EPHB2	35	37
	17	AXL	53	48	66	EPHB3	169	171
5	18	BLK	86	73	67	EPHB4	69	69
	19	ВМХ	232	231	68	ERBB2	63	154
	20	B-RAF VE	119	133	69	ERBB4	184	191
	21	B-RAF wt	115	127	70	ERK2	203	170
10	22	BRK	47	46	71	FAK fI	29	27
	23	ВТК	299	303	72	FAK tr	31	26
	24	CAMK2A	46	49	73	FER	161	161
	25	CDC42BPA	273	258	74	FGF-R1	232	180
15	26	CDC42BPB	62	59	75	FGF-R1 VM	17	15
	27	CDK1/CycB1	38	38	76	FGF-R2	18	13
	28	CDK1/CycE	70	71	77	FGF-R3	164	177
	29	CDK2/CycA	30	27	78	FGF-R4	196	211
20	30	CDK2/CycE	40	43	79	FGR	137	134
	31	CDK3/CycE	48	45	80	FLT3	92	81
	32	CDK4/CycD1	96	99	81	FLT3 DY	507	547
	33	CDK4/CycD3	20	21	82	FRK	174	172
25	34	CDK5/p25NCK	17	16	83	FYN	51	26
	35	CDK5/p35NCK	26	23	84	GRK2	157	163
	36	CDK6/CycD1	96	98	85	GRK3	54	43
	37	CDK7/CycH/Mat1	21	19	86	GRK4	146	108
30	38	CDK8/CycC	57	63	87	GRK6	222	229
	39	CDK9/CycT	12	12	88	GSK3-alpha	118	108
	40	CHK1	23	22	89	GSK3-beta	31	42
25	41	CHK2	106	87	90	нск	145	138
35	42	CK1-alpha1	176	169	91	HIPK1	87	88
	43	CK1-delta	133	133	92	HIPK3	60	51
	44	CK1-gamma1	152	145	93	HRI	136	133
40	45	CK1-gamma2	74	65	94	IGF1-R	165	161
40	46	CK1-gamma3	161	157	95	IKK-alpha	73	71
	47	CK2-alpha1	611	541	96	IKK-beta	85	84
	48	CK2-alpha2	250	218	97	IKK-epsilon	178	169
45	49	CLK1	128	129	98	INS-R	32	28
	50	COT	90	96	99	IRAK1	126	138
	51	CSF1R	83	76	100	IRAK4	38	46
	52	CSK	5	4	101	ITK	27	27
50	53	DAPK1	57	55	102	JAK2	55	59
	54	DAPK2	61	54	103	JAK3	52	47
	55	DAPK3	37	35	104	JNK1	40	40
	56 57	DCAMKL2	111	86	105	JNK3	43	44
55	58	DYRK1A	25	29	106	KIT	132	120
	59	EEF2K EGF-R	111 175	112 172	107 108	LCK	92	84
	60	EPHA1	81	82	109	LIMK1 LYN	71 56	68 69
	61	EPHA2	123	195	110	MAP4K4	256	190
60	62	EPHA3	172	158	111	MAPKAPK3	45	41
	63	EPHA4	63	58	112	MAPKAPK5	37	34
	64	EPHB1	140	146	113	MARK1	75	68
'		ı					, , ,	00 1

	114	MARK2	72	74		163	PLK1	83	86
	115	MARK3	45	49		164	PLK3	129	120
5	116	MATK	2	9		165	PRK1	14	26
	117	MEK1 SESE	103	91		166	PRKG1	119	125
	118	MEK1 wt	85	85		167	PRKG2	42	46
	119	MET	26	24		168	PRKX	25	41
10	120	MINK1	56	42		169	PYK2	67	64
	121	MKK6 SDTD	291	230		170	RAF1	127	120
	122	MST1	77	58		171	RET	151	143
	123	MST2	35	38		172	ROCK1	157	152
15	124	MST3	73	83		173	ROCK2	54	47
	125	MST4	96	106		174	RON	87	62
	126	MUSK	20	17		175	ROS	26	24
	127	MYLK2	67	71		176	RPS6KA1	46	30
20	128	NEK2	94	92		177	RPS6KA2	81	60
	129	NEK3	207	184		178	RPS6KA3	28	23
	130	NEK6	25	23		179	RPS6KA4	49	46
ļ	131	NEK7	119	101		180	RPS6KA5	72	71
25	132	NIK	95	83		181	RPS6KA6	40	37
	133	NLK	8	8		182	S6K	24	21
	134	p38-alpha	252	167		183	SAK	133	111
	135	p38-beta	280	201		184	SGK1	47	49
30	136	p38-gamma	165	134		185	SGK2	160	183
	137	PAK1	153	155		186	SGK3	94	96
	138	PAK2	88	83		187	SNARK	84	86
35	139	PAK3	78	68		188	SNK	44	44
33	140	PAK4	20	19		189	SRC	192	239
	141	PAK6	17	19		190	SRPK1	43	42
	142	PAK7	17	13		191	SRPK2	35	32
40	143	PBK	26	18		192	SYK	100	105
10	144 145	PCTAIRE1	59	59		193	TBK1	144	119
	146	PDGFR-alpha PDGFR-beta	48 53	46		194	TGFB-R1	17	21
1	147	PDK1	34	42		195	TIE2	97	63
45		PIM1	23	35 20		196	TRK-A	159	154
		PIM2	126	91		197	TRK-B	32	27
		PKA	367	404		198 199	TRK-C TSF1	17	17
i		PKC-alpha	13	12		200	TSK2	117	105
50		PKC-beta1	.0 17	20	Ī	201	TTK	56	61
1		PKC-beta2	25	31		202	TYRO3	71	68
!		PKC-delta	140	167	1	203	VEGF-R1	388	367
1		PKC-epsilon	173	158		204	VEGF-R2	118 168	131
55		PKC-eta	22	33		205	VEGF-R3		189
1		PKC-gamma	16	24	1	206	VRK1	104 18	109
		PKC-iota	120	164	ĺ	207	WEE1	43	41
	159	PKC-mu	196	212	1	208	WNK3	131	136
60	160	PKC-nu	26	35		209	YES	100	105
	161	PKC-theta	29	38	l	210	ZAP70	19	20
	162	PKC-zeta	110	124	•				

Las celdas sombreadas corresponden a una actividad residual $\leq 50\%$

Determinación comparativa de la actividad de 4 compuestos frente a 25 kinasas

5 TABLA 2

Valores de actividad kinasa residual (en %) en respuesta al tratamiento con 4 compuestos, dos de ellos controles y dos efectivos en ensayos celulares (Compuestos 6, 7, 10 y 11)

#	Kinasa	6	7	10	11
1	ABL1	94	46	14	17
2	CDK1	402	185	14	128
3	CDK4/CycD3	100	90	90	58
4	CDK5/p25NCK	81	65	18	38
5	CDK7/CycH/Mat1	117	97	30	112
6	CDK9/CycT	57	62	12	17
7	CHK1	50	20	24	27
8	CSK	66	42	3	37
9	FGF-R1 VM	83	53	12	29
10	FGF-R2 VM	80	71	12	76
11	MATK	186	157	0	117
12	MET	91	66	13	21
13	MUSK	96	44	14	15
14	NLK	78	67	6	32
15	PAK4	70	68	22	27
16	PAK7	70	59	12	32
17	PKC-alpha	93	58	13	17
18	PKC-beta1	85	55	14	44
19	PKC-gamma	101	77	4	11
20	PRK1	86	53	36	49
21	S6K	78	32	13	20
22	TGFB-R1	91	41	10	37
23	TRK-C	106	170	8	73
24	VRK1	74	29	11	32
25	ZAP70	434	413	5	286

Las celdas sombreadas corresponden a una actividad residual ≤ 50%

Entre estas kinasas se encuentran algunas tan relevantes para la biología tumoral como Abl1, cdk4, Chk1, PKC, c-Met y FGFR, entre otras.

Cálculo de las IC₅₀

10

15

20

25

30

35

40

45

60

65

Se determinó las IC₅₀ de las kinasas más sensibles frente al compuesto 10, obteniéndose valores para dicho parámetro, mayoritariamente en el rango micromolar. Para ello se seleccionaron las 25 kinasas inhibidas más del 80% por el compuesto en ensayos *in vitro*. Los valores obtenidos se resumen en la tabla 3.

TABLA 3

Valores de IC₅₀ para el compuesto 10, obtenidos para 25 kinasas. Para las kinasas ACK1, MATK y ZAP70 los valores de IC₅₀ no se pudieron calcular

5			
	No. ensayos	Kinasa	IC50
	1	ABL1	5.40E-06
40	2	ACK1	-
10	3	CDK4/CycD3	5.40E-06
	4	CDK4/CycD3	5.30E-06
	5	CDK5/p25NCK	9.20E-06
15	6	CDK7/CycH/Mat1	2.80E-05
	7	CDK9/CycT	3.70E-06
	8	CHK1	1.40E-06
20	9	CSK	1.30E-05
20	10	CSK	7.20E-06
	11	FGF-R1 VM	2.60E-06
	12	FGF-R2	5.40E-06
25	13	MATK	-
	14	MATK	-
	15	MET	3.70E-06
20	16	MUSK	1.50E-06
30	17	NLK	4.30E-06
	18	NLK	4.30E-06
	19	PAK4	4.30E-06
35	20	PAK7	4.90E-06
	21	PKC-alpha	2.30E-06
	22	PKC-beta1	7.60E-06
40	23	PKC-gamma	5.80E-06
40	24	PKC-gamma	4.90E-06
	25	PLK1	2.60E-05
	26	S6K	4.40E-06
45	27	TGFB-R1	3.30E-06
	28	TRK-C	7.20E-06
	29	TRK-C	6.60E-06
	30	VRK1	2.40E-06
50	31	ZAP70	-
	32	ZAP70	-

Es interesante destacar que las IC₅₀ determinadas frente a kinasas en ensayos *in vitro* son muy similares a las GC₅₀ obtenidas en ensayos de viabilidad celular, sugiriendo que estos compuestos atraviesan de forma muy eficiente las membranas celulares y son razonablemente estables en el citosol.

Debe tenerse en cuenta el elevado interés biomédico de la inhibición de algunas de las kinasas analizadas. A modo de ejemplo, la kinasa **Ack1** (inhibida en un 85% por el compuesto 10) está claramente implicada en el desarrollo del cáncer de próstata. La kinasa **c-Met** (inhibida en un 80-85% por los compuestos 10 y 11), por su parte, es un receptor tirosina kinasa claramente implicado en el desarrollo de diferentes neoplasias, y específicamente en la invasión tumoral. Por otro lado, las kinasas **cdk5** y **cdk9** (inhibidas en un 80% y 87% por el compuesto 10) están implicadas tanto en cáncer como en diversas enfermedades neurodegenerativas, en diabetes e incluso en la replicación del virus VIH. Podríamos continuar citando más ejemplos, aunque baste señalar el papel clave de kinasas inhibidas por estos compuestos como **S6K** o **PKC**α, entre otras, en procesos de señalización celular desregulados en numerosos tumores y enfermedades metabólicas. Finalmente, cabe recordar que las kinasas evaluadas representan una fracción del kinoma

humano, por lo que quizás haya kinasas no evaluadas todavía cuya inhibición por cicloescuaramidas sea mucho mayor y por lo tanto más relevante.

5 Tests antitumor

10

15

20

25

30

35

40

50

55

60

65

La eficacia antiproliferativa de los macrociclos oligoescuaramídicos se ha demostrado en células cancerígenas de linfoma humanas: linfoma T (Hut, Karpas-45), linfoma B-MCL (Jeko-1, JVM-2, Rec-1, Granta-519) y glioblastoma (U-87).

A modo de ejemplo se presenta los resultados obtenidos en ensayos de viabilidad celular en la tabla 4.

TABLA 4

Resumen de la viabilidad celular (48 y 72 h) tras tratamiento con el compuesto 10. La viabilidad se expresa como el porcentaje de células viables tras el tratamiento respecto a las células control (no tratadas)

Linea Celular	% Viabilidad Celular
Glioblastoma	72h
U87 U251	25 85
Linfoma T	72h
Hut	60
Karpas-45	13
Linfoma B (MCL)	48h
Jeko-1	46
JVM-2	24
Rec-1	44
Granta-519	58

⁴⁵ Determinación de la IC₅₀ en ensayos de viabilidad celular

Se determinó las IC₅₀ en ensayos de viabilidad celular para algunos de los macrociclos preparados en células tipo Jeko-1(linfoma B (MCL). Con un periodo total de incubación de 48 h.

TABLA 5

IC₅₀ obtenidos para los compuestos testados frente a células Jeko-1

Compuesto	IC ₅₀ (μM)
Compuesto 10	30.7
Compuesto 11	9.4
Compuesto 12	10
Compuesto 5	50
Compuesto 3	34
Compuesto 1	27
Compuesto 4	24
Compuesto 2	45

A modo de ejemplo, se muestran las curvas de crecimiento obtenidas en los ensayos de viabilidad celular para el cálculo de las IC_{50} frente a células Jeko-1 para los compuestos 10 y 11 (Fig. 1 y 2).

Las oligoescuaramidas macrocíclicas ejercen efectos citostáticos y citotóxicos en los diversos modelos celulares de tumores de origen humano probados.

Estudios del perfil de ciclo celular y apoptosis mediante citometría de flujo

Se ha comprobado mediante citometría de flujo que las oligoescuaramidas macrocíclocas testadas inducen, en función de la línea celular, la inhibición de la progresión de la fase G1 del ciclo celular y/o la inducción de apoptosis (sub-G1) (ver Fig. 3 y 4).

5 Ensayos de crecimiento de esferoides multicelulares

En las células U87 de Glioblastoma, estos compuestos reducen su crecimiento y viabilidad a largo plazo y en 3D, al inhibir la formación de esferoides multicelulares tumorales y reducir su capacidad clonogénica. (ver Fig. 5).

Toxicidad y Selectividad

20

30

35

40

45

50

55

60

Además, es especialmente interesante resaltar que estos compuestos no actúan como tóxicos celulares indiscriminados sino que muestran una elevada selectividad frente a algunos tipos celulares. De hecho, no afectan a la viabilidad de células normales como las NIH 3T3. Esta selectividad se muestra incluso frente a líneas de células tumorales del mismo origen: por ejemplo, mientras que son muy activos en células U87 de glioblastoma, prácticamente no afectan a las células U251, también de glioblastoma. De forma similar, muestran mucha mayor actividad frente a algunos subtipos de células de linfoma que otros. Todo esto sugiere que actúan contra dianas celulares específicas de algunos tipos celulares, en correlación con su actividad frente a numerosas kinasas.

REIVINDICACIONES

1. Uso del compuesto de fórmula general (I):

5

10

15

20

25

30

35

donde:

X e Y, son iguales o diferentes y se seleccionan de la lista que comprende:

- un grupo alquil (C₂-C₉);
 - un grupo -R¹-NR-R²-; o
 - un grupo -(R¹-NR-R²-esquaramida -R¹-NR-R²)_n; donde

R se selecciona de entre los grupos, sustituidos o no sustituidos, alquil (C_1-C_5) , aril o heteroaril;

 R^1 y R^2 , son iguales o diferentes y se seleccionan de entre los grupos, sustituidos o no sustituidos, alquil (C_1 - C_5) o acilo; y 40

(1)

n toma los valores de entre 1 y 8.

o cualquiera de sus sales, para la elaboración de una composición farmacéutica.

45

50

- 2. Uso del compuesto según la reivindicación 1, donde X o Y es un grupo heptilo.
- 3. Uso del compuesto según cualquiera de las reivindicaciones 1 ó 2, donde X ó y es un grupo -R¹-NR-R²-.
- 4. Uso del compuesto según la reivindicación 3, donde R¹ ó R² es un grupo propilo.
- 5. Uso del compuesto según la reivindicación 3, donde R¹ o R² es un grupo acilo (COR³), y R³ es un grupo alquilo sustituido con un grupo tioalquilo (C_1-C_3) .
- 55 6. Uso del compuesto según cualquiera de las reivindicaciones 1 a 5, donde X e Y son un grupo -(R¹-NR-R²esquaramida $-R^1-NR-R^2$ _n, donde n toma los valores de 1 a 6.
- 7. Uso del compuesto según cualquiera de las reivindicaciones 1 a 6, donde R es un grupo metil, bencil o bencil sustituido. 60
 - 8. Uso del compuesto según reivindicación 7, donde R es un grupo nitrobencil.

9. Uso del compuesto según la reivindicación 1, de fórmula:

- 10. Uso del compuesto según cualquiera de las reivindicaciones 1 a 9, para el tratamiento de enfermedades asociadas con la inhibición de kinasas.
- 11. Uso del compuesto según la reivindicación 10, donde las enfermedades asociadas con la inhibición de kinasas son enfermedades tumorales.
 - 12. Uso del compuesto según la reivindicación 11, donde los tumores son el linfoma de células B y T o el glioblastoma.
- 13. Uso del compuesto según la reivindicación 10, donde las enfermedades asociadas con la inhibición de kinasas es diabetes.
 - 14. Uso del compuesto según la reivindicación 10, donde las enfermedades asociadas con la inhibición de kinasas son enfermedades neurodegenerativas.
 - 15. Uso del compuestos según la reivindicación 14, donde la enfermedad neurodegenerativa es Alzheimer.
 - 16. Uso del compuesto según la reivindicación 10, donde las enfermedades asociadas con la inhibición de kinasas es replicación de virus HIV.
 - 17. Composición farmacéutica que comprende al menos un compuesto de fórmula general (I) junto con un vehículo farmacéuticamente aceptable.
 - 18. Composición farmacéutica según la reivindicación 17 que además comprende otro principio activo.
 - 19. Compuesto de fórmula seleccionado de la lista que comprende:

15

20

25

30

35

40

45

50

FIG.1

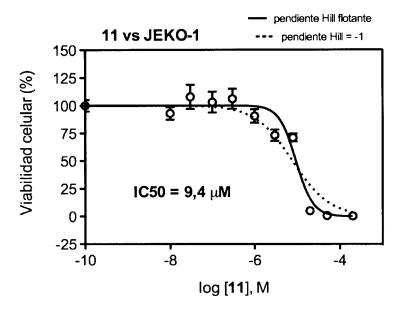


FIG.2

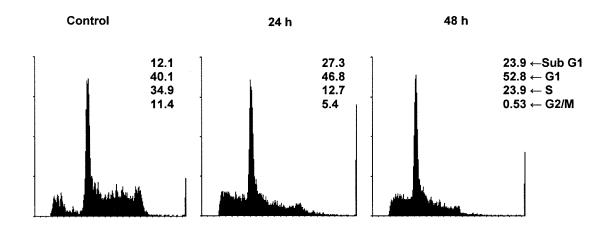


Fig.3

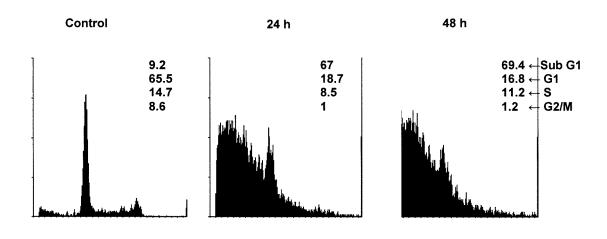


Fig. 4

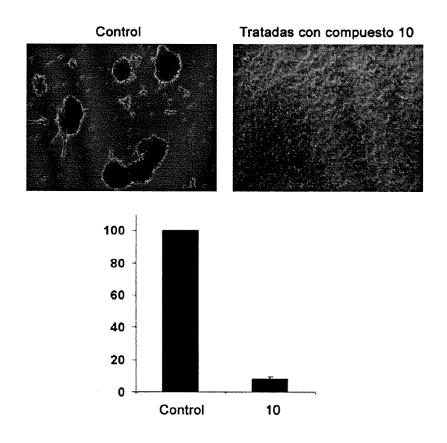


Fig. 5

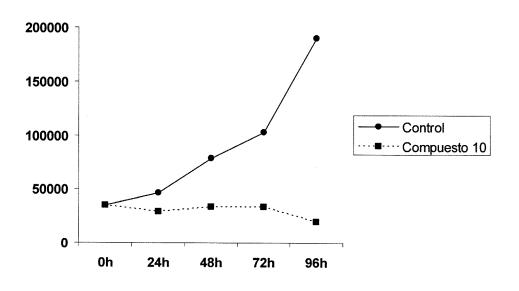


Fig. 6

(1) ES 2 340 979

(21) Nº de solicitud: 200803496

22 Fecha de presentación de la solicitud: 10.12.2008

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51)	Int. Cl.:	A61K 31/395 (2006.01)
		A61P 35/00 (2006.01)

DOCUMENTOS RELEVANTES

Categoría	66)	Documentos citados	Reivindicaciones afectadas
Α	US 20080234266 A1 (MEDE reivindicaciones 1,17-30.	RSKI et al.) 25.09.2008,	1-19
Α	US 20060111349 A1 (CASTI reivindicaciones 1,34-40.	ELHANO et al.) 25.05.2006,	1-19
Α	palindromic oligosquaramide	macrocyclization of preorganized s" Angewandte Chemie-International páginas 6844-6848, página 6847,	1-19
A	macrocyclization of squaram	national preferences and self-template ide-based foldable modules". J. Org. s 2302-2308, página 2308, esquema 4.	1-19
X: de part Y: de part	ía de los documentos citados icular relevancia icular relevancia combinado con otro/s o categoría	O: referido a divulgación no escrita	entación
	categoria el estado de la técnica	de la solicitud E: documento anterior, pero publicado después de de presentación de la solicitud	a fecha
	nte informe ha sido realizado todas las reivindicaciones	para las reivindicaciones nº:	
Fecha d	le realización del informe 22.03.2010	Examinador H. Aylagas Cancio	Página 1/4

INFORME SOBRE EL ESTADO DE LA TÉCNICA

Nº de solicitud: 200803496

·
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
A61K, A61P
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
INVENES, EPODOC, WPI, XPESP, EMBASE, MEDLINE, NPL, BIOSIS, REGISTRY, HCAPLUS

OPINIÓN ESCRITA

Nº de solicitud: 200803496

Fecha de Realización de la Opinión Escrita: 22.03.2010

Declaración

Novedad (Art. 6.1 LP 11/1986) Reivindicaciones 1-19 SÍ

Reivindicaciones NO

Actividad inventiva Reivindicaciones 1-19 SÍ

(Art. 8.1 LP 11/1986) Reivindicaciones NO

Se considera que la solicitud cumple con el requisito de **aplicación industrial.** Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión:

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como ha sido publicada.

OPINIÓN ESCRITA

Nº de solicitud: 200803496

1. Documentos considerados:

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	US 20080234266 A1	25-09-2008
D02	US 20060111349 A1	25-05-2006
D03	Angewandte Chemie- International edition, vol. 45, n° 41, páginas 6844-6848.	2006
D04	J.Org. Chem. vol. 69, páginas 2302-2308.	2004

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La presente solicitud se refiere al uso de compuestos cicloescuaramídicos de fórmula I en la elaboración de composiciones farmacéuticas en el tratamiento de enfermedades asociadas con la inhibición de kinasas, tales como enfermedades tumorales, diabetes, enfermedades neurodegenerativas como el Alzheimer y replicación de virus HIV.

Los documentos D1 y D2 se refieren a derivados de escuaramida no cíclicos y sus composiciones farmacéuticas utilizadas como inhibidores de kinasas y que se usan para tratar enfermedades proliferativas tales como el cáncer, en el tratamiento y prevención de diabetes, obesidad, síndrome metabólico, etc (ver reivindicaciones 1, 17-30 del documento D1 y reivindicaciones 1, 35-40 del documento D2).

Los documentos D3 y D4 se refieren a la macrociclización de oligoescuaramidas y de escuaramidas. Los compuestos obtenidos (ver documento D3, figura 6 y documento D4, esquema 4) son los compuestos cíclicos utilizados en la presente solicitud.

Sin embargo ninguno de los compuestos citados se refiere a la utilización de dichos compuestos en la preparación de composiciones farmacéuticas y su uso como inhibidores de kinasas, así como su uso en el tratamiento del cáncer. Por lo tanto, a la vista de los documentos citados las reivindicaciones 1-19 de la presente solicitud presentan novedad, actividad inventiva y tienen aplicación industrial (Artículos 6.1 y 8.1 de la ley de patentes 11/1986).