

 \bigcirc Número de publicación: $2\ 345\ 527$

21) Número de solicitud: 200900281

(51) Int. Cl.:

A61K 31/37 (2006.01) **A61K 38/17** (2006.01) **A61K 9/00** (2006.01)

② SOLICITUD DE PATENTE A1

22 Fecha de presentación: 30.01.2009

(71) Solicitante/s:

Hospital Clinic i Provincial de Barcelona c/ Villarroel, 170 08036 Barcelona, ES Universidad de Valladolid

③ Prioridad: **08.10.2008 EP 08105518**

43 Fecha de publicación de la solicitud: 24.09.2010

(72) Inventor/es: Heras Fortuny, María Magdalena; Roqué Moreno, Mercè; Pérez García, María Teresa; López López, José Ramón y Cidad Velasco, Pilar

43 Fecha de publicación del folleto de la solicitud: 24.09.2010

(74) Agente: Carpintero López, Mario

Título: Sustancias bloqueadoras de los canales Kv1.3 para el tratamiento de enfermedades asociadas a hiperplasia de la íntima.

(57) Resumen:

Sustancias bloqueadoras de los canales Kv1.3 para el tratamiento de enfermedades asociadas a hiperplasia de la íntima

La presente invención proporciona una herramienta terapéutica contra la hiperplasia de la íntima que consiste en la utilización de sustancias bloqueadoras de los canales Kv1.3, capaces de parar selectivamente la migración y multiplicación celular de las CMLV.

DESCRIPCIÓN

Sustancias bloqueadoras de los canales Kv1.3 para el tratamiento de enfermedades asociadas a hiperplasia de la íntima.

Campo de la invención

5

La presente invención se encuadra en el campo de las patologías cardiovasculares, en particular en el campo de las enfermedades derivadas de la hiperplasia de la túnica íntima.

Antecedentes de la invención

La pared de los vasos sanguíneos está constituida por tres estratos concéntricos o túnicas (la íntima, la media y la adventicia) de estructura y composición bien diferenciada. La túnica íntima está compuesta por una monocapa de células endoteliales asentadas sobre una membrana basal rica en colágeno y proteoglicanos y separada de la media por la lámina elástica interna. La túnica media está formada por células musculares lisas vasculares (CMLV) y matriz extracelular y la adventicia, la capa más externa, está compuesta fundamentalmente por tejido conectivo y fibroblastos.

Las CMLV se localizan fisiológicamente en la túnica media. Sin embargo, se pueden encontrar CMLV en la capa íntima como consecuencia de una desorganización de la estructura de la pared vascular debida a lesiones o patologías vasculares tales como la ateroesclerosis, hiperplasia de la túnica íntima.

La hiperplasia de la íntima es un cambio en la estructura vascular que se produce a consecuencia de los mecanismos biológicos de reparación tras una lesión vascular, bien sea de tipo mecánico, quirúrgico, inflamatorio o inmunológíco. El hallazgo más característico de este cambio estructural es el engrosamiento de la capa íntima, debido tanto a un incremento en el número de células como a un aumento en la síntesis de matriz extracelular en la que se hallan inmersas estas células (*Davies MG*, *Hagen PO*. *Pathobiology of intimal hyperplasia*. *British Journal of Surgery 1994*; 81:1254-1269). En última instancia este proceso deriva en un estrechamiento o estenosis de la luz vascular.

Las situaciones patológicas asociadas a hiperplasia de la íntima son diversas y, en general, los factores desencadenantes pueden agruparse como lesiones físicas (en muchos casos yatrogénicas por la cirugía vascular) inflamatorias (como en las lesiones ateroscleróticas) o por aumento de la tensión de la pared (como en el caso de la hipertensión pulmonar o la utilización de injertos venosos en la cirugía de by-pass). Entre las enfermedades asociadas a hiperplasia de la íntima se encuentran:

Oclusión tardía de by-pass

La revascularización con injertos venosos es la terapia estándar para las enfermedades arteriales oclusivas cuando el segmento ocluido es grande y no se puede practicar una endarterectomía. La técnica más utilizada es el transplante autogénico de un segmento de vena safena, y se utiliza tanto en cirugía coronaria como en la cirugía vascular periférica (claudicación intermitente, tromboarteritis obliterante de la arteria tibial, etc.)- Aunque el procedimiento tiene un resultado inmediato muy bueno, a largo plazo, el injerto venoso sufre una respuesta crónica maladapatativa a un entorno arterial cuyo componente primario es la proliferación descontrolada de las células del músculo liso vascular dando lugar a una hiperplasia de la íntima que puede complicarse posteriormente por el desarrollo de aterosclerosis y trombosis (*Murphy GJ, Angelini GD. Cardiovasc Ultrasound 2004; 21:2-8*). La posibilidad de manipular los transplantes venosos *ex vivo* de forma previa a su implantación utilizando métodos farmacológicos, terapia génica o aplicación de recubrimientos sintéticos es una alternativa que se ha intentando explotar para prevenir el fallo del injerto vascular (Mann MJ, Whittermore AD, Donaldson MC, *et al*, Lancet 1999; 354: 1493-8; Bhardwaj S, Roy H, Ylä Herttuala, Expert Rev Cardiovasc Ther 2008; 6:641-52) y que en algunos casos ha demostrado ser efectiva en animales de experimentación.

Vasculopatía coronaria post-transplante

La vasculopatía coronaria post-transplante es el principal factor limitante de la supervivencia a largo plazo después de un transplante cardiaco. Se manifiesta como una forma especialmente agresiva de enfermedad arterial coronaria diferente de la arteriosclerosis convencional, que se origina por la combinación de factores físicos, químicos e inmunológicos que producen una lesión endotelial que a su vez desencadena la proliferación de las células del músculo liso vascular y la hiperplasia de la íntima El análisis patológico de las lesiones revela un engrosamiento de la íntima en el que participan las células del músculo liso desdiferenciadas y macrófagos y linfocitos. Este engrosamiento de la íntima lleva a la obstrucción de las arterias coronarias lo que en último término conduce al fallo del injerto (*Aranda and Hill, Chest 2000, 118(6): 1792-1800; Schmauss and Weis, Circulation (2008) 117(16): 2131-41M: Weiss et al., Front Biosci. (2008) 13:2980-8*).

Un aspecto importante de la patogenia de la vasculopatía es la interacción de factores inmunológicos y no inmunológicos. De hecho, durante muchos años se ha pensado que la hiperplasia de la íntima era debida exclusivamente a factores inmunológicos. Sin embargo las terapias inmunosupresoras no han demostrado ser capaces de reducir su incidencia. Más bien al contrario, se ha observado un aumento de la hiperplasia tras la introducción de tratamientos basados en el uso de inmunosupresores como la ciclosporina. En estudios realizados con modelos animales de

experimentación se han obtenido resultados prometedores cuando estos agentes inmunosupresores se combinan con drogas como el MMF (mofetil micofenolato) que inhibe la síntesis de ADN y tiene por tanto un efecto antiproliferativo generalizado que se extiende más allá de las células inmunes. Aunque los procedimientos de revascularización (angioplastia coronaria percutánea, aterectomía coronaria, cirugía de bypass coronario o implantación de stents) pueden ser utilizados en pacientes que presenten estenosis localizadas, el carácter difuso de la arteriopatía hace que el uso de estas terapias sea limitado, por lo cual el desarrollo de nuevas terapias farmacológicas dirigidas a controlar los factores que determinan la hiperplasia de la íntima en esta vasculopatía es necesario.

Nefropatía crónica post-transplante

10

Los factores desencadenantes de la vasculopatía coronaria están también presentes en otras vasculopatías posttransplante, como es el caso de la nefropatía postransplante, que de nuevo representa la causa más frecuente de fallo del transplante renal.

Además de las mencionadas, existen otras enfermedades derivadas de la hiperplasia de la íntima. Para identificar cuando una enfermedad es debida a hiperplasia de la íntima, el experto en la materia utilizará técnicas de imagen. Concretamente, en el árbol coronario se utiliza la angiografía coronaria, con la inyección de contraste en el ostium de dichas arterias. Así mismo, el TAC multicorte de 64 coronas y la angioresonancia cardíaca también son capaces de visualizar lesiones ateroescleróticas en la circulación coronaria.

20

15

Las técnicas angiográficas se complementan con técnicas de ultrasonidos como la ecografía intravascular que permiten visualizar el grosor de la capa íntima arterial, y determinar si hay lesión ateroesclerosa y sus características. En condiciones normales, el grosor de la íntima no se puede medir microscópicamente ya que se trata de una sola capa de células. Sin embargo, cualquier grosor medible (que sea superior a una monocapa celular) es patológico (Figura 1).

25

Hay otras técnicas como la histología virtual, que permite determinar la presencia de lípidos, calcio, trombo, tejido fibroso e hiperplasia, y la OCT (optical coherence tomography) que utiliza tecnología láser para determinar todo el grosor de la pared vascular y así identificar las zonas de hiperplasia intimal (ver Figura 2). Tanto en especímenes arteriales humanos como en muestras experimentales de modelos animales, para el análisis histológico del grosor de las diversas capas de la pared arterial, se utiliza la morfometría. Después del periodo de tratamiento adecuado, se procederá a la eutanasia del animal y extracción de los vasos estudiados y su fijación para su posterior análisis. Se obtendrán cortes histológicos y se teñirán con hematoxilina eosina. Se identificará la lámina elástica interna y se evaluará las áreas de las diferentes capas vasculares (Gallo et al., 1998 Circulation 97:581-588).

Dada la incidencia y severidad de estas patologías, surge la necesidad de desarrollar una herramienta que limite o impida la hiperplasia de la íntima y las situaciones patológicas que se derivan de ella, especialmente tras intervenciones quirúrgicas o cirugía de transplante.

Sorprendentemente, los inventores de la presente solicitud han descubierto que los bloqueadores del canal de potasio activado por voltaje 1.3 (Kv1.3) limitan significativamente la hiperplasia de la íntima.

Tradicionalmente, los inhibidores de Kv1.3 se han utilizado en terapias contra enfermedades de origen inmunológico, como la encefalomielitis o la esclerosis múltiple (*Wulff, H. et al.*, 2003. *Curr. Opin. Drug Discov. Devel. 6:* 640-647. *Cahalan, M. D., et al.*, 2001. *J. Clin. Immunol.* 21:235-252). El Kv1.3 se identificó por primera vez en los linfocitos T (*Hu et al.*, *The Journal of Immunology,* 2007, 179: 4563-4570. *Grissmer et al.*, *Proc. Nat. Acad. Sci. 87:* 9411-9415, 1990). En ellos, el canal Kv1.3 es tetrahomomérico, mientras que en otros tipos celulares, Kv1.3 se asocia con subunidades de otros canales activados por voltaje de la familia Kv1 para formar canales de potasio heteroméricos (*Hu et al.*, *The Journal of Immunology,* 2007, 179: 4563-4570). Como consecuencia, la regulación de los flujos de K⁺ a través de la membrana de las células es, a menudo, el resultado combinatorial de múltiples vías de señalización molecular. La importancia de Kv1.3 en enfermedades relacionadas con el sistema inmune se ha evidenciado en diversos estudios.

El documento *WO2008088422* revela la utilidad de los péptidos inhibidores del Kv1.3 para el tratamiento de enfermedades autoinmunes, alergias, diabetes y obesidad y detalla la fabricación y purificación de derivados de las toxinas ShK, MgTx₁ MTX₁ HsTxI wGVIA, HaTxI, etc. Según los datos mostrados, los péptidos derivados de ShK son capaces de inhibir la corriente del Kv1.3 humano con una IC de -150 pM. ShK es, además, un potente inhibidor de la proliferación de las células T por lo que proponen su utilización en terapias para el tratamiento de enfermedades de origen inmunológico tales como la esclerosis múltiple, la artritis reumatoide, la dermatitis, la diabetes tipo I, etc.

Canales K⁺ en el músculo liso vascular

Los canales de potasio juegan un papel muy relevante también en la regulación, inmediata y a largo plazo, de la función de las células del músculo liso vascular. Las CMLV de las paredes de los vasos son células que expresan un repertorio único de proteínas contráctiles, canales iónicos y moléculas señalizadoras dirigidas a mantener el tono vascular. Se han identificado al menos cuatro tipos de canales de K⁺ en las CMLV: Canales de K⁺ dependientes de voltaje (Kv) como Kv1.2, Kv1.3, Kv1.5, Kv1.6 y Kv2.1, canales de K⁺ activados por calcio (como los canales maxiK 6 BK), canales de K⁺ rectificadores hacia adentro (como los canales K_{IR} y los canales K_{ATP}) y canales de K⁺ de doble poro, responsables de las corrientes "background" como los canales TASK y TWIK (revisado en *Jackson WF*,

Microcirculation 12,113-121, 2005). La existencia además de subunidades reguladoras de estos canales junto con las variaciones en su expresión en función del lecho vascular, contribuye a la fina regulación de la fisiología del músculo liso. Así, los procesos patológicos pueden estar asociados a la desregulación de múltiples mecanismos de control que actúan en paralelo o de forma combinada. Determinar qué mecanismo conduce a una enfermedad vascular concreta es una tarea ardua de experimentación científica.

Según lo expuesto, y debido a la localización difusa y distal de las lesiones hiperplásicas, el campo de la técnica no puede proporcionar terapias efectivas para el tratamiento de la hiperplasia de la íntima. Por ello seria conveniente desarrollar una herramienta terapéutica dirigida a controlar los factores que determinan la hiperplasia de la túnica íntima y capaz de frenar la migración y proliferación de las CMLV en ella, así como la secreción de componentes de la matriz celular.

Breve descripción de las figuras

- Figura 1. Microfotografías representativas de secciones de una arteria normal (panel izquierdo) y de una arteria con hiperplasia de la íntima (panel derecho), donde puede observarse la mayor densidad de células musculares lisas en la pared arterial.
- Figura 2. Micrografía de OCT (optical coherence tomography) identificando zonas de hiperplasia intimal mediante tecnología láser
 - Figura 3. Ejemplo del ensayo para determinar si una sustancia es bloqueadora del canal Kv1.3. En el panel A se muestran trazos representativos de las corrientes evocadas por los distintos pulsos despolarizantes (desde -60 hasta +80 mV) en una célula HEK transfectada con el canal Kv1.3, en condiciones de registro control, en presencia de 10 nM de PAP-1 en la solución del baño y tras lavar la droga. El diagrama inferior muestra el esquema del protocolo de pulsos aplicado. La amplitud de la corriente máxima evocada por cada pulso de voltaje se representa en el panel B en función del valor del potencial de membrana, con lo cual se construye la curva corriente (I) voltaje (V) para las tres situaciones.
- Figura 4. Niveles de mRNA del canal Kv1.3 en células en fenotipo contráctil y en los dos modelos de fenotipo proliferativo estudiados. Se muestra la cuantificación de los niveles de mRNA del canal Kv1.3 obtenidos en las distintas preparaciones con los métodos descritos en el ejemplo. Los valores se han normalizado con relación a los niveles de expresión obtenidos en células en fenotipo contráctil. Los datos muestran la media de 3-4 experimentos en cada situación. (** p<0.01; *** p<0.001).
 - Figura 5. Expresión de la proteína del canal Kv1.3 determinada por inmunocitoquímica en células aisladas (panel A) o inmunohistoquímica en secciones de arterias controles y dañadas a distintos tiempos (panel B). En la parte A se muestra el mareaje del anticuerpo combinado con el mareaje de los núcleos con DAPI para estimar el número de células en el campo. La parte B muestra un ejemplo de mareaje con el anticuerpo anti Kv1.3 como un punteado con mayor intensidad de grises-negros) en una arteria sin lesionar y en una arteria lesionada a dos tiempos distintos. Las barras son el promedio del área marcada (en porcentaje) observada en 15-30 cortes en cada condición. * p<0.05; ** p<0.01.
- Figura 6. Caracterización de la expresión funcional de los canales Kv1.3. La parte superior muestra registros representativos de corrientes inducidas por la aplicación de un pulso despolarizante desde un potencial de reposo de -80 mV hasta un potencial de +40 mV en condiciones control y en presencia de un bloqueador de los canales Kv1.3, la Margatoxina, a una concentración de 10 nM. Se muestran trazos representativos obtenidos en una CMLV recién disociada de la pared de la arteria (contráctil) y en una CMLV en cultivo. En el panel inferior se muestra las medias (± error estándar de la media) obtenidas en 10-12 células en cada grupo en las que se aplicaron tanto bloqueadores selectivos de los canales Kv1.3 como 10 nM margatoxina o 10 nM PAP-1) como bloqueadores de todos los canales Kv1 (como correolide).
 - Figura 7. Efecto de los bloqueadores del canal Kv1.3 sobre la migración de CMLV de arteria uterina humana. Los paneles de la izquierda muestran fotografías representativas de la migración observada en cultivos controles y tratados con las drogas indicadas. La superficie irregular creada por la línea punteada se ha dibujado bordeando el área libre de células al tiempo 0, y esa misma superficie se ha transpuesto al cultivo al cabo de 24 h para ofrecer una estimación visual del área invadida en cada uno de los tres ejemplos. Los resultados obtenidos en 8-10 experimentos similares se han expresado como porcentaje del área a tiempo 0 que está cubierta de células a 24 h y se muestran en la parte derecha de la figura (* p<0.05; **p<0.01).
 - Figura 8. Efecto de los bloqueadores del canal Kv1.3 sobre la proliferación de CMLV de arteria uterina humana la figura muestra un ejemplo representativo, en el que se ilustran fotos tomadas con el mareaje con DAPI (para contar el número de células) y el mismo campo con el mareaje con BrdU (para determinar el número de células proliferando). De nuevo se realizaron estos experimentos en células en medio control y células en las que se añadió al medio margatoxina o PAP. Como se ve en el ejemplo, en estos dos últimos casos se observa un menor número de núcleos marcados. La cuantificación de 8-12 campos en 6 experimentos diferentes indicó que estas variaciones eran estadísticamente significativas. La gráfica de barras de la derecha muestra las medias de estos experimentos (**p<0.01).

Figura 9. Ejemplo de una micrografía de una sección de un vaso coronario teñida en la que se pueden diferenciar las distintas capas vasculares para realizar análisis morfométricos, midiendo el grado de endotelización de la zona del stent, el contenido de CMLV en la íntima y su grosor en relación con el grosor del vaso y el área de la luz.

Resumen de la invención

De acuerdo con la necesidad de desarrollar una herramienta para una terapia efectiva contra la hiperplasia de la túnica íntima vascular. Los inventores de la presente solicitud proponen la utilización de sustancias bloqueadoras de los canales Kv1.3 en la fabricación de una herramienta farmacológica para el tratamiento de enfermedades relacionadas con la hiperplasia de la íntima.

Una ventaja de la presente invención es el bloqueo selectivo de los canales Kv1.3 de las CMLV mediante la utilización de sustancias bloqueadoras pertenecientes al grupo de margatoxina, toxina ShK, psoralen, kaliotoxin, correolide, J123, derivados y combinaciones, para la fabricación de una herramienta farmacológica para el tratamiento de enfermedades relacionadas con la hiperplasia de la túnica íntima vascular. Según esto, una realización posible de la presente invención es la utilización de bloqueadores de Kv1.3 en la fabricación de una herramienta farmacológica para el tratamiento de enfermedades vasculares que producen restenosis y comprenden la nefropatía crónica post-transplante, la oclusión tardía de by-pass y la vasculopatía coronaria post-transplante, equivalentes y combinaciones. En particular, la presente invención comprende el uso de Shk-L5, PAP-1 o ambas, en la fabricación de una herramienta farmacológica para el tratamiento de dichas enfermedades vasculares. Una realización ventajosa de la presente invención es la utilización de dichas sustancias bloqueadoras en la fabricación de una herramienta farmacológica para el tratamiento y/o la prevención de la restenosis.

La práctica clínica se beneficiaría de la aplicación de un protocolo preventivo y/o terapéutico contra la hiperplasia de la túnica íntima. Correspondientemente, una posible realización de la presente invención consiste en un método para la prevención o el tratamiento de la hiperplasia de la íntima que comprende la administración de una sustancia bloqueadora de Kv1.3. Ventajosamente, este método se emplea para el bloqueo selectivo de los canales Kv1.3 de las CMLV mediante la utilización de herramientas farmacológicas fabricadas con sustancias bloqueadores pertenecientes al grupo de margatoxina, toxina ShK, psoralen, kaliotoxin, correolide, J123, derivados y combinaciones, preferentemente Shk-L5, PAP-1 o ambas. En particular, este método puede aplicarse en el tratamiento de enfermedades que provoquen restenosis tales como la nefropatía crónica post-transplante, la oclusión tardía de by-pass y la vasculopatía coronaria post-transplante, equivalentes y combinaciones.

La farmacología cardiovascular carece de herramientas eficaces diseñadas para el tratamiento de enfermedades derivadas de la hiperplasia de la túnica íntima. Con el objeto de solventar esta carencia, una posible realización de la presente invención consiste en un aparato dosificador, para implante en un vaso arterial de un animal, que puede ser un humano, que comprende un sistema contenedor de una sustancia bloqueadora de Kv1.3. Una ventaja de este aparato es que el principio activo que dosifica es un bloqueador selectivo de los canales Kv1.3 de las CMLV perteneciente al grupo de margatoxina, toxina ShK, psoralen, kaliotoxin, correolide, J123, derivados y combinaciones. Preferentemente, la presente invención comprende las sustancias Shk-L5, PAP-1 o ambas. En particular, este aparato puede aplicarse en el tratamiento de enfermedades que producen restenosis tales como la nefropatía crónica post-transplante, la oclusión tardía de by-pass y la vasculopatía coronaria post-transplante.

Descripción detallada de la invención

45

50

Los inventores de la presente solicitud proponen el uso de sustancias bloqueadoras de Kv1.3 tal, y como se describe a continuación, para el tratamiento de las enfermedades derivadas del engrosamiento de la íntima.

La invención está basada en el descubrimiento de que las células musculares lisas localizadas en la íntima hiperplasia expresan preferentemente Kv1.3 (figuras 3, 4, 5 y 6) y que utilizando sustancias bloqueadoras específicas para los canales Kv1.3 se reduce la tasa de división celular y migración de las CMLV (figuras 7 y 8) y el consiguiente engrosamiento de la íntima tras una lesión vascular.

Las sustancias bloqueadoras de los canales Kv 1.3 pueden utilizarse, según la presente invención, como herramientas farmacológicas para el tratamiento de enfermedades vasculares. En el contexto de la presente invención, una herramienta farmacológica es cualquier sustancia, composición, utensilio, dispositivo, mecanismo, ingenio, artilugio, instrumento, máquina, o aparato adaptado, estudiado o diseñado para ser utilizado en el tratamiento, la curación, la prevención o el diagnóstico de una enfermedad, o para evitar la aparición de un proceso fisiológico no deseado.

Las enfermedades vasculares pueden ser consecuencia de la desorganización de la estructura normal de la pared vascular. Las tres capas concéntricas de la pared vascular o túnicas, pueden desorganizarse durante procesos patológicos o como consecuencia de lesiones físicas, originando un estrechamiento de la luz vascular (Figura 1). En particular, en muchas enfermedades, incluyendo la nefropatía crónica post-transplante, la oclusión tardía de by-pass y la vasculopatía coronaria post-transplante, la desorganización de la estructura de la pared vascular se manifiesta mediante la hiperplasia de la túnica íntima (Figura 1). En el contexto de la presente invención, hiperplasia se refiere a cualquier engrosamiento valorable de la capa íntima (más allá de una monocapa celular) Utraestructuralmente, se observa en la íntima hiperplásica, un aumento de componentes del tejido conectivo, específicamente de la matriz celular, incluyendo colágeno, proteoglicanos y fibras elásticas, así como el incremento en el número de células de origen mesodérmico.

Las células que pueden encontrarse en la íntima hiperplásica incluyen, a parte de células endoteliales monocapa, células del sistema inmune y células del músculo liso cardiovascular. Estas últimas, ausentes de la túnica íntima en situaciones fisiológicas, han sufrido procesos de migración celular y proliferación en la túnica íntima. Debido a esta actividad celular, que conlleva la secreción de matriz celular, se produce el citado engrosamiento y, consecuentemente, la reducción de la luz vascular. En el contexto de la presente invención, el término restenosis se refiere a esta reducción en diámetro de la luz vascular. La restenosis es una consecuencia de la desorganización de la pared vascular y es por tanto común a muchas enfermedades vasculares incluyendo la nefropatía crónica post-transplante, la oclusión tardía de by-pass y la vasculopatía coronaria post-transplante. En el contexto de la presente invención, por tanto, enfermedades equivalentes a la nefropatía crónica post-transplante, la oclusión tardía de by-pass y la vasculopatía coronaria post-transplante son aquellas que presenten una desorganización de la estructura de la pared vascular que se manifieste mediante hiperplasia de la íntima y provoque un estrechamiento de la luz vascular o restenosis. En el contexto de la presente invención, se considera así mismo que estenosis y restenosis son términos equivalentes entre si y se refieren a una obstrucción ≥ 50% de la luz vascular en un segmento dado.

A continuación se detallan las instrucciones y procedimientos para el adecuado uso de sustancias bloqueadoras de Kv1.3 en terapias contra enfermedades relacionadas con la hiperplasia de la íntima. Este documento recoge en sus diferentes secciones, las enseñanzas para que el experto en la materia pueda identificar este tipo de enfermedades y las sustancias que ejercen como bloqueadoras de los canales Kv1.3. Los bloqueadores del canal Kv1.3 han de ser capaces de disminuir de forma dependiente de la dosis el flujo de corriente a través de estos canales evocado por un pulso de voltaje despolarizante. La presente solicitud detalla en el Ejemplo 1 uno estos métodos conocidos.

Para demostrar que una sustancia actúa como bloqueadora de los canales Kv1.3, el experto en la materia utiliza un sistema de expresión heterólogo. En el campo de la técnica se han descrito, y están disponibles, algunas líneas celulares estables que expresan el canal Kv1.3 por ejemplo las descritas en *Grissmer et al.*, *Mol. Pharmacol 44*, 1221-34, 1994. Estas u otras células equivalentes pueden solicitarse a sus inventores.

Alternativamente, el experto en la materia conoce las técnicas apropiadas para desarrollar un sistema heterólogo de expresión en mamíferos. Para ello, puede comprar alguna línea celular de la colección de células de ATCC, como por ejemplo las células HEK293 (Human Embrionic Kidney, nº catálogo ATCC CRC-1573), las células CHO-K1 (Chinese Hamster Ovary, nº catálogo ATCC CCL-61) o las células COS-7 (fibroblastos de riñón de mono, nº catálogo ATCC CRC-1651) comercializadas en Europa a través de LGC Standards, UK. A modo de ejemplo, el canal Kv1.3 se puede expresar en las células HEK293 mediante transfección con Lipofectamina de un plásmido apropiado para expresión en mamíferos, que contenga el cDNA de la secuencia codificante del canal Kv1.3. Opcionalmente, el experto, puede realizar una co-transfección con moléculas marcadoras para identificar las células que expresan efectivamente el canal transfectado.

La utilizanción de experimentos como el detallado en el ejemplo 1, ha permitido en el campo de la técnica la identificación de un gran número de compuestos descritos como bloqueadores de los canales Kv1.3 Algunos de estos compuestos y sus respectivas afinidades por el canal Kv1.3 se especifican en la tabla 1:

(Tabla pasa a página siguiente)
45
50

15

TABLA 1

Valores de Kd para péptidos y pequeñas moléculas bloqueadores de los canales Kv1.3

-	
J	
_	

Sustancia Bloqueadora	Afinidad (Kd)
Stichodactyla helianthus toxin (ShK)	11 pM
Heterometrus spinnifer toxin 1	12 pM
ShK-F6CA	48 pM
Pandinus imperator toxin 2	50 pM
ShK-Dap22	52 pM
Hongotoxin	Mq 88
Margatoxin	110 pM
Agiotoxin-2	200 pM
Pandinus imperator toxin 3	500 pM
Kaliotoxin	650 pM
Buthus martensii Karsch toxin (J123 peptide)	790 pM
Noxiustoxin	1 nM
Pap-1	2 nM
Psora4	3 nM
Charybdotoxin	3 nM
Titystoxin-Kα	4 nM
Odonthobthus doriae toxin 2 (OdK2)	7 nM
Pandinus imperator toxin 1	11 nM
Bunodosoma granulifera	39 nM
trans-N-propyl-	50 nM
carbamoyloxy-PAC Correolide	90 nM
Sulfamidbenzamidoindane	100 nM
Maurotoxin	150 nM
CP339818	150 nM
WIN173173	200 nM
UK78282	200 nM
Dendrotoxin	250 nM
PAC	270 nM
Parabuthus toxin 3	492 nM
Parabuthus toxin 1	800 nM
Resiniferatoxin	3 μМ
Nifedipine	5 µМ

Nitrendipine	5 μΜ
Ibu8	5 μМ
Phencyclidine	5 μM
Verapamil	6 μM
Н37	10 μΜ
Hg ²⁺	10 μΜ
Quinine	14 μΜ
Cicutotoxin	18 μΜ
La ³⁺	20 μΜ
Trifluoperazine	20 μΜ
Capsaicin	26 μМ
Diltiazem	27 μΜ
Progesterone	30 μМ
κ-Hefutoxin	40 μΜ
Luteolin	50 μΜ
Flecainide	60 μм
4-AP	190 μМ
Zn^{2+} , Co^{2+}	200 μΜ
Ba ²⁺ , Cd ²⁺	2 mM
TEA	10 mM
Mn ²⁺	20 mM

Abreviaturas: 4-AP, 4-aminopiridina; ShK-Dap22, *Stichodactyla helianthus* toxin con el ácido diaminopropiónico en posición 22 sustituyendo a la Lys nativa; ShK-F6CA, *Stichodactyla helianthus* toxin-fluorescein-6-carboxylic acid; TEA, cloruro de tetraetilamonio.(Datos tomados de *Schimtz et al.*, *Mol Pharmacol 2005*, *68:1254-1270*; *Chandy et al.*, *TIPS 2004*, *25: 280-288*; *Abdel-Mottaleb et al.*, *Toxicon 2008*, *51:1424-1430*; *Shijin Y et al.*, *Peptides 2008*, *29:1514-1520*).

Los bloqueadores descritos arriba pueden utilizarse, según la presente invención, en la manufactura de una herramienta farmacológica que puede ser comúnmente un medicamento que contiene cualquier excipiente farmacológicamente aceptable y el bloqueador de Kv1.3 como principio activo, solo o en combinación con otros principios activos. La presente invención comprende todas las dosis efectivas en cualquiera de las enfermedades comprendidas así como cualquiera de los métodos de administración posibles independientemente de la raza, género, biotipo, peso o edad del individuo a tratar.

Una aplicación directa de la presente invención es el desarrollo de un nuevo método para la prevención y el tratamiento de enfermedades vasculares que son consecuencia de la desorganización de la estructura normal de la pared vascular. Este método consiste en la administración o el implante de una herramienta farmacológica que comprende al menos un principio activo de efecto bloqueador de los canales Kv1.3. Preferentemente, el método de la presente invención consistente en la administración de un bloqueador de los canales Kv1.3 del grupo de la margatoxina, toxina ShK, psoralen, kaliotoxin, correolide, J123, derivados y combinaciones. Muy preferentemente, las sustancias bloqueadoras comprenden las toxinas ShK-L5 o PAP-1. El ejemplo 4, figuras 6, 7 y 8, ilustra el efecto de estas toxinas sobre las CMLV y el ejemplo 5 detalla el protocolo de administración.

Otra aplicación importante de la presente invención consiste en el diseño y elaboración de un sistema que permita la liberación controlada de la sustancia bloqueadora de Kv1.3 tal como un stent recubiertos con un biopolímero donde se encuentra alojado el bloqueador para su liberación paulatina. El ejemplo 5 detalla los pormenores de esta aplicación.

Ejemplos

Ejemplo 1

5 Ensayo para determinar si una sustancia es bloqueadora de los canales Kv1.3

Para evaluar si una sustancia es capaz de disminuir, de forma dependiente de la dosis, el flujo de corriente a través los Kv1.3 (es decir, si es un bloqueadora de Kv1.3). Las corrientes a través de los canales Kv1.3 expresados en el sistema heterólogo, se estudiaron mediante la técnica de patch-clamp en la configuración de célula entera (wholecell). Las corrientes se registraron a temperatura ambiente (21-25°C). Las células, colocadas en una cámara de registro situada en un microscopio invertido, se perfundieron con una solución salina fisiológica (en mM: 141 NaCl, 4.7 KCl, 1.2 MgCl₂, 1.8 CaCl₂, 10 glucosa y 10 HEPES (pH 7.4 con NaOH). Las pipetas de registro se fabricaron a partir de vidrio de borosilicato (2.0 mm OD, WPI) con un estirador de pipetas (Narishige PP-83) para que tengan resistencias entre 2 y 5 MΩ al rellenarlas con una solución interna que contiene (en mM) 125 KCl, 4 MgCl₂, 10 HEPES, 10 EGTA, 5 MgATP; (pH 7.2 con KOH). Las corrientes de célula entera se registraron con un amplificador Axopatch 200 o equivalente, filtrando a a 2 kHz y muestreando a 10 kHz. Los registros se digitalizaron con una interfase Digidata 1200 A/D comandada por el software CLAMPEX 8 software (Axon Instruments) o un sistema equivalente, en un ordenador. Las células se mantuvieron a un potencial de reposo de -80 mV y desde ahí se aplicaron pulsos despolarizantes de 200 ms de duración desde -60 mV hasta +80 mV en intervalos de 10 mV cada 15 segundos. De esta forma el experto pudo construir una curva corriente-voltaje para el canal Kv1.3. La figura 3 muestra un ejemplo de este tipo de experimentos. Como puede observarse, la aplicación de PAP-1 a una concentración de 10 nM produjo una reducción de la corriente de en torno a un 80-85% para potenciales desde +10 hasta +80 mV. El efecto de pulsos despolarizantes repetitivos desde -80 mV hasta +40 mV aplicados cada segundo fue evaluado con el fin de caracterizar la inactivación acumulativa característica de las corrientes Kv1.3. Las potenciales sustancias bloqueadoras se aplican disueltas en la solución externa, para estudiar el efecto de su aplicación con los protocolos descritos arriba y conocidos en el campo de la técnica, de forma que se puedan caracterizar los posibles efectos de estas sustancias sobre la amplitud de la corriente, el curso temporal y la dependencia de voltaje de su activación e inactivación.

Al observar modificaciones en alguno de estos parámetros por la aplicación de un bloqueador putativo, ha de procederse al análisis de la curva dosis-respuesta del efecto bloqueador, así como de la reversibilidad del efecto tras el lavado del bloqueador. El análisis cuidadoso de la velocidad de instauración y lavado de los efectos permite obtener una estimación de la constante de afinidad de la sustancia por el canal.

Tomando el valor de la amplitud de la corriente a un voltaje determinado (por ejemplo +40 mV) en ausencia de bloqueador como la corriente total (100%) se puede definir la reducción porcentual de la amplitud de la corriente en presencia del bloqueador como un valor entre 0 y 1 (Corriente con sustancia en análisis en el medio/corriente control). Si existe una reducción de la corriente en presencia de la sustancia en análisis, se construye una curva dosis-respuesta para tratar de definir la IC₅₀ (o Kd) del bloqueo de la corriente Kv1.3 por la sustancia en análisis.

Para determinar la especificidad de las sustancias que se definan así como bloqueadores del Kv1.3 se utiliza el mismo tipo de estrategia experimental.

Ejemplo 2

Modificación de la expresión de los canales Kv1.3 en CMLV de arterias femorales de ratón con fenotipo proliferativo

Se estudiaron los cambios en la expresión de los canales Kv1.3 comparando CMLV de arterias femorales de ratón en fenotipo contráctil y proliferativo. El fenotipo contráctil son las células aisladas directamente de la capa media de la arteria femoral, y el efecto del cambio fenotípico se estudió en dos modelos de proliferación diferentes: un modelo *in vivo* en el que la hiperplasia de la íntima se induce por lesión endoluminal con el procedimiento previamente descrito (*Roqué et al.*, *Arterioscler Thromb Vasc Biol* **20**, 335-342, 2000) y un modelo *in vitro* en el que se obtienen CMLV en cultivo a partir de explantes de arteria femoral de ratón (Miguel-Velado *et al.*, Circ Res 97, 1280-1287, 2005).

Los ratones BPN se obtuvieron de Jackson Laboratories y se mantuvieron mediante cruces endogámicos en el animalario de la Facultad de Medicina o el animalario del IDIBAPS, en condiciones controladas de temperatura (21°C) con ciclos de 12 h de luz y oscuridad y con libre acceso a agua y comida.

Para aislar las CMLV (modelo de células en fenotipo contráctil), los animales se sacrificaron por decapitación tras anestesia con isofluorano (5% a 2.5 l O₂ min⁻¹). Las arterias femorales se disecaron y se retiró el tejido conectivo y endotelial y se obtuvieron las células mediante una dispersión enzimática con el protocolo previamente descrito (Miguel-Velado *et al.*, Circ Res 97, 1280-1287, 2005).

Para obtener las CMLV en cultivo (modelo de fenotipo proliferativo *in vitro*), pequeños fragmentos (0.5 mm) de arterias femorales limpias de endotelio y conectivo se colocaron en placas de cultivo Petri de 35 mm cubiertas de 2% gelatina (Tipo B, Sigma) en un medio de cultivo DMEM con 20% de suero fetal bovino, 100 U/ml penicilina, 100 U/ml estreptomicina y 2 mM L-glutamina a 37°C en una atmósfera de 5% CO₂. la migración y proliferación de CMLV a partir de estos explantes fue evidente a los 6-10 días, pero los explantes se mantuvieron hasta que la monocapa de CMLV se hizo confluente. En este momento, mediante raspado mecánico con una espátula de goma las células se

soltaron y se sembraron en una nueva placa de cultivo a 1/3 de su densidad original. Las CMLV se sometieron de esta forma a varios pases (3-4) sin mostrar cambios morfológicos aparentes.

Finalmente, para el modelo de proliferación *in vivo*, a la edad de 12-16 semanas los ratones BPN se sometireon a lesión transluminal unilateral de la arteria femoral mediante el pase repetido de un catéter de angioplastia de 0.25 mm de diámetro siguiendo el protocolo previamente descrito (Roqué *et al.*, *Arterioscler Thromb Vaso Biol* 20, 335-342, 2000). Al cabo de 48 h, 1 semana o 4 semanas los ratones se sacrificaron mediante sobredosis de pentobarbital para extraer las arterias femorales controles y lesionadas.

El estudio de la expresión de los canales Kv1.3 en estas tres preparaciones experimentales se llevó a cabo determinando los niveles de mRNA del Kv1.3 mediante PCR a tiempo real (Figura 4) y la expresión de la proteína del Kv1.3 mediante inmunohistoquímica en CMLV en fenotipo contráctil y CMLV en cultivo o inmunocitoquímica en secciones de arterias femorales fijadas, para el modelo de proliferación *in vivo* con un anticuerpo anti-Kv1.3 (clone L23/27 de Neuromab UC Davis NIH and Antibodies Inc.) y marcado con un anticuerpo secundario fluorescente (Figura 5). El procesamiento de las muestras y la extracción de RNA se realizó con los protocolos previamente descritos (Miguel-Velado *et al.*, Circ Res 97, 1280-1287, 2005) y los niveles de mRNA se determinaron utilizando sondas Taqman para el Kv1.3 que se obtuvieron de Applied Biosystems.

Para la inmunocitoquímica con el anticuerpo anti-Kv1.3, las CMLV recién disociadas o en cultivo se sembraron en cubres de vidrio de 12 mm de diámetro, se fijaron con 4% de paraformaldehído en bufer de fosfato a pH 7.5 durante 15 minutos a 20°C, se lavaron con PBSTx (PBS 0.1% Tritón X-100) y se bloquearon con PBSTx conteniendo 10 mg/ml de albúmina bovina y 2% de suero de cabra no inmune durante 10 min. El anticuerpo anti-Kv1.3 se diluyó en la solución de bloqueo a una concentración 1:100 durante 40-60 min a 21°C. Después de tres lavados de 5 minutos en PBSTx las células se incubaron con el anticuerpo secundario (Alexa 488 goat anti-mouse de Molecular Probes) a una dilución de 1:1000 en solución de bloqueo durante 30 minutos. Tras otros tres lavados con PBSTx los cubres se montaron con VectaShield H100-DAPI (vector Labs) y las células se examinaron en un microscopio de fluorescencia Nikon con un filtro de longitud de onda de 488 nm.

Para los estudios de inmunohistoquímica, los animales eutanizados se fijaron con perfusión intravenosa de 4% de paraformaldehído en PBS durante 5 minutos a 100 mmHg para obtener secciones de parafina de las arterias femorales tal y como está descrito (Roqué *et al.*, *Arterioscler Thromb Vasc Biol* **20**, 335-342, 2000). Las secciones fueron posteriormente desparafinadas, rehidratadas y tratadas con 1% de ácido cítrico y bloqueadas con 3% de peróxido de hidrógeno (DakoCytomatation) antes de la incubación con el anticuerpo primario durante 12 h a 4°C. Después, las secciones se lavaron con PBS y se incubaron con un anticuerpo anti.mouse IgG conjugado con peroxidasa (DakoCytomatation) durante 30 minutos a temperatura ambiente y la señal se detectó utilizando 3,3 diaminobencidina (DakoCytomatation). Tras lavar las secciones en agua destilada, se contratiñeron con hematoxilina (Roqué *et al.*, *Arterioscler Thromb Vasc Biol* **20**, 335-342, 2000) y se observaron al microscopio.

Finalmente, tanto en las CMLV en fenotipo contráctil como las CMLV en cultivo se estudió la contribución funcional de los canales Kv1.3 a las corrientes de membrana mediante la técnica de patch-clamp en la configuración de célula entera con los protocolos previamente descritos (ver ejemplo 1 y también Miguel-Velado *et al.*, Circ Res 97, 1280-1287, 2005). Los bloqueadores utilizados fueron correolide a una concentración 10 μM (generosamente proporcionado por los laboratorios MercK), Margatoxina 10 nM (obtenida de Alomone labs) (Figura 6) y PAP-1 10 nM (obtenido de Sigma). Las drogas se prepararon a las concentraciones finales indicadas en la solución salina del baño siguiendo las instrucciones de los proveedores y se aplicaron a las células durante un periodo de 1-2 min. Se registraron las corrientes antes de aplicar la droga (control) y en presencia de la droga, y se calculó el porcentaje de reducción en la amplitud de las corrientes inducido por los distintos bloqueadores.

Resultados

50

El análisis de la expresión del mRNA del canal Kv1.3 muestra un aumento muy significativo de los niveles de expresión en las dos condiciones de proliferación (cultivo y lesión endoluminal) con respecto a las células contráctiles tal y como se ilustra en la figura 4.

El estudio de la expresión de la proteína Kv1.3 mostró que mientras que sólo una pequeña fracción de las CMLV en fenotipo contráctil se marcaban con el anticuerpo frente al Kv1.3, la práctica totalidad de las CMLV en cultivo mostraban un mareaje intenso (Figura 5, panel A). Resultados similares se obtuvieron con la inmunohistoquímica con el anticuerpo anti-KKv1.3 en secciones de arterias femorales (Figura 5, panel B). El mareaje en las arterias controles, sin lesión y por tanto con CMLV en fenotipo contráctil fue escaso y limitado a la capa media, mientras que tras la lesión endoluminal se observa un aumento de la proliferación (la hiperplasia de la íntima) y un aumento del número de células inmunopositivas tanto en la neoíntima como en la capa muscular. La cuantificación de varios experimentos realizados en diferentes animales confirmó un aumento significativo del área marcada en las arterias lesionadas (Figura 5, panel B).

Finalmente, el estudio de la expresión funcional de los canales Kv1.3 registrados con técnicas electrofisiológicas nos permitió confirmar que este aumento de la expresión del mRNA y la proteína del Kv1.3 en CMLV en fenotipo proliferativo refleja un aumento de la expresión funcional de los canales, ya que las corrientes mediadas por el Kv1.3 fueron significativamente mayores en CMLV en cultivo que en CMLV recién disociadas, contráctiles (Figura 6).

Tal como se aprecia en el panel B de la figura 6, el efecto de estos bloqueadores (y por tanto la fracción de la corriente que representan los canales Kv1.3) fue significativamente mayor en las CMLV en cultivo en todos los casos. Por ejemplo, en el caso de la Margatoxina, la corriente bloqueada por esta droga fue el 10.6 ± 2.03 de la corriente Kv en las CMLV contráctiles y el 58.15 ± 4.54 de la corriente Kv en las CMLV en cultivo, y en el caso del PAP-1 (es decir, los canales Kv1.3 contribuyen al 10% de la corriente total en las células diferenciadas y casi el 60% de la corriente total en las células en cultivo.

Todos estos datos en su conjunto apuntan a un aumento de la contribución de estos canales a las corrientes de las CMLV proliferantes, y evidencian que estos canales podrían representar valiosas herramientas terapéuticas para el bloqueo de la proliferación ya que el aumento en su expresión participa en los cambios que llevan a las CMLV a proliferar.

Ejemplo 4

5 Efecto del bloqueo especifico de canal Kv1.3 con Margatoxina y con PAP-1 sobre la velocidad de migración y proliferación de las CMLV en cultivo

Métodos: Los estudios de migración se han realizado en cultivos de células de músculo liso obtenidas a partir de explantes de arterias uterinas humanas confluentes, mantenidas en un medio de cultivo DMEM suplementado con 20% de suero fetal bovino, 100 U/ml de penicilina y estreptomicina y 2 mM de L-glutamina a 37°C en un incubador humidificado con una atmósfera de 5% CO₂. En estos cultivos, mediante la punta de una pipeta P10 estéril se rasca una pequeña superficie de la monocapa creando un espacio sin células y se dejan 24-48 h en el mismo medio de cultivo pero sin suplementar con suero fetal bovino para bloquear la proliferación. El área de la superficie sin células creada por la punta de la pipeta se cuantificó mediante el software de análisis de imagen del programa Image J, midiéndolo a 0, 24 y 48 h. El área libre de células a 0 h se toma como control y el área a 24 o 48 h se expresa como fracción del área control, lo que nos permite determinar el grado de migración como el porcentaje de área libre de células a las 24 o 48 h respecto del área libre de células a las 0 h (el 100%). Se estudió la migración en estos cultivos en situación control y en presencia de margatoxina (10 nM) o PAP-1 (10 nM). Las drogas se preparan en solución salina estéril a una concentración de 10 μM y se añaden al medio de cultivo sin suero (1 μl/ml para obtener la concentración final de 10 nM.

Para los estudios de proliferación hemos determinado la fracción de células que incorporan 5-bromo-2'-desoxiuridina (BrdU). La BrdU es un análogo de la timidina que puede ser incorporado en su lugar durante la fase de síntesis del ciclo celular. Las células que han incorporado BrdU pueden ser detectadas mediante observación al microscopio de fluorescencia al utilizar un anticuerpo monoclonal frente a esta molécula y un anticuerpo secundario conjugado con un fluorocromo. El ensayo se realizó con un kit comercial (5-Bromo-2'-deoxy-uridine labeling and Detection Kit I; Roche Applied Science, Germany). Las células de músculo liso de arteria uterina humana fueron crecidas durante 48 h en cubres de cristal de 12 mm de diámetro en medio DMEM suplementado con suero y antibióticos como se ha descrito anteriormente, hasta conseguir una confluencia cercana al 50%. En este momento, los cubres se mantienen durante 24 h a 37°C y en atmósfera de 5% CO₂ en medio de cultivo con 5% de suero fetal bovino (control), medio con 5% de suero y 10 nM de PAP-1 y medio con 5% de suero y 10 nM de Margatoxina, tras lo cual se realiza el ensayo de incorporación de BrdU siguiendo las instrucciones de la casa comercial. Para cuantificar los resultados, se cuentan en 10-20 campos en cada experimento el número de células positivas para BrdU respecto al número total de células en el campo (que se determina marcando los núcleos con el colorante fluorescente DAPI).

Resultados: La migración de las CMLV de arteria uterina se redujo significativamente en presencia de estos bloqueadores de los canales Kv1.3. La figura 7 muestra en los paneles de la izquierda las imágenes tomadas en un cultivo representativo en el cual se estudió el efecto de estas dos drogas sobre la migración de las CMLV a 24 h, así como resultados promedio (panel derecho).

En relación con los experimentos de proliferación, también observamos una disminución en la fracción de células marcadas con BrdU en los grupos tratados con los bloqueadores del canal Kv1.3, indicando que el bloqueo del canal inhibe la proliferación (ver figura 8).

Estos resultados indican que de nuevo el aumento de la expresión del Kv1.3 está asociado a la proliferación y migración de las células en esta preparación, en la cual nuestros resultados previos mostraban que, al igual que en las CMLV de arteria femoral de ratón, la proliferación induce un aumento en la expresión de Kv1.3 tanto a nivel de mRNA como de proteína (Miguel-Velado *et al.*, Circ Res 97, 1280-1287, 2005).

50 Ejemplo 5

(Profético)

Modelo animal porcino para el tratamiento de la restenosis

Métodos: Se utilizan stents de acero inoxidable expansibles (Cordis Co) de 18 mm de largo recubiertos de una fina capa de un copolímero de poli-n-butil metacrilato y polietilen-vinil acetato conteniendo $200 \,\mu g$ de PAP-1 o $200 \,\mu g$ de ShK-L5. El peso total del polímero con la droga está en torno a $500 \,\mu g$ y la relación droga:polímero es de un 30%.

11

50

45

Los stents se empaquetan de forma individual, se codifican con un código de barras (para hacer un experimento doble ciego) y se esterilizan con óxido de etileno.

36 stents (12 con el polímero sólo, 12 con PAP y 12 con ShK) se implantan en 12 cerdos jóvenes (25-35 kg) en las ramas descendente anterior o circunfleja de la arteria coronaria izquierda o en la arteria coronaria derecha (a razón de 3 stents por animal). Los animales se recuperan de la operación y se devuelven al animalario donde reciben una dieta normal suplementada con aspirina (325 mg/d). Se obtienen muestras de sangre de los animales a las 6, 12, 24, 48 y 96 horas para determinar los niveles plasmáticos de PAP y ShK. A los 7 (n=4) o 28 días (n=8) los animales se eutanizan tras la realización de una arteriografía coronaria para el análisis cuantitativo. En un animal de cada grupo (7 y 28 d), tras la eutanasia se disecan las arterias coronarias, se retira el stent y se congelan las muestras en nitrógeno líquido, para determinación de distintos marcadores mediante western-blot de los tejidos y para determinaciones de los niveles de PAP y ShK en la pared arterial. En el resto de los animales, inmediatamente después de la eutanasia, se colectan los corazones y las arterias coronarias se fijan por perfusión de formalina al 10% durante 30 min. A continuación los vasos coronarios se disecan y se procesan para su análisis inmunohistológico y morfométrico realizando secciones de la zona donde se sitúa el stent y los márgenes superiores e inferiores.

Se realiza un análisis morfométrico midiendo el grado de endotelización de la zona del stent, el contenido de CMLV en la íntima y su grosor en relación con el grosor del vaso y el área de la luz (ver figura 9).

Los estudios farmacocinéticos muestran que los niveles de PAP-1 y ShK en sangre son máximos en la medida inicial a las 6 horas tras el implante del stent (en torno a 3 ng/ml) y disminuyen y se mantienen debajo del límite de detección a los 4 días (<0.2 ng/ml). El contenido de PAP y ShK en el tejido arterial es de 97 y 83 ng/arteria a los 7 días y de 30 y 25 ng/arteria a los 28 días.

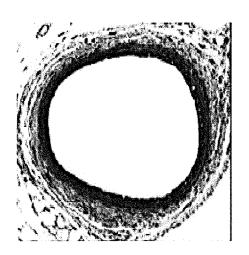
Los estudios morfométricos indican que no se observan diferencias en el nivel de endotelización entre los stents controles y los stents con los bloqueadores. Sin embargo, el número de CMLV en la íntima se redujo significativamente en las arterias con los stents tratados con PAP y ShK, al igual que se redujo el grado de estenosis (45% en control frente a 27% en presencia de PAP-1 y 26.2% con ShK) y el área de la íntima (5.07 mm² en control frente a 2.23 mm² con PAP-1 y 2.06 mm² con ShK).

Las determinaciones de la expresión de proteínas marcadoras de la formación de la íntima como PCNa y pRb y de marcadores de inflamación como IL6 se realizan mediante Western-blot y se cuantifican por densitometría. Los resultados muestran de nuevo una disminución significativa de la presencia de todos estos marcadores en los segmentos arteriales donde se colocan los stents con los bloqueadores del Kv1.3, en los que los niveles de estas proteínas representan entre un 30 y un 50% de los niveles que se observan en las zonas donde se colocan los stents controles.

Los resultados indican que el método es eficaz para reducir la proliferación de la íntima y la respuesta inflamatoria sin producir reacciones alérgicas o inmunológicas locales. Asimismo, el sistema de liberación de los bloqueadores produce sus efectos localmente pero los niveles circulantes son indetectables, reduciendo la posibilidad de efectos secundarios. Este tipo de aproximación podría plantearse para su uso en humanos.

12

30


45

50

55

REIVINDICACIONES

- 1. Utilización de sustancias bloqueadoras de los canales Kv1.3 en la fabricación de una herramienta farmacológica para el tratamiento de enfermedades vasculares relacionadas con la hiperplasia de la íntima.
- 2. Uso según la reivindicación 1 donde la sustancia bloqueadora se escoge del grupo de margatoxina, toxina ShK, psoralen, kaliotoxin, correolide, J123, derivados y combinaciones.
 - 3. Uso según la reivindicación 1 donde la sustancia bloqueadora se escoge del grupo de ShK-L5, PAP-1 o ambos.
- 4. Composición, según la reivindicación 1, que comprende al menos una sustancia bloqueadora de Kv1.3 y al menos un excipiente farmacológicamente aceptable.
- 5. Uso según la reivindicación 1, donde dichas enfermedades vasculares comprenden, la restenosis, la nefropatía crónica post-transplante, la oclusión tardía de by-pass, la vasculopatía coronaria post-transplante, equivalentes y combinaciones.

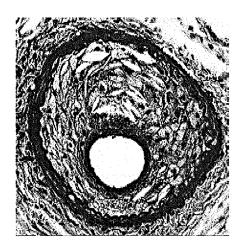
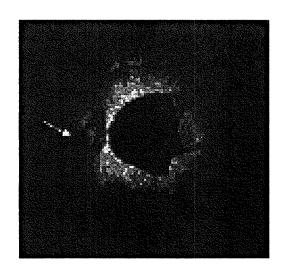



Figura 1

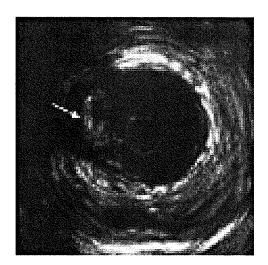


Figura 2

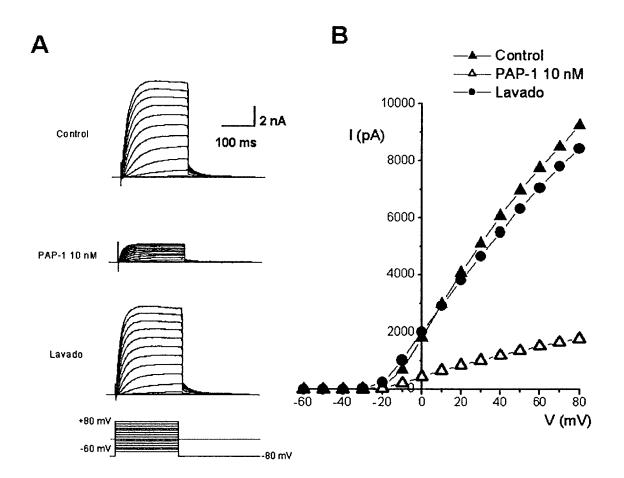


Figura 3

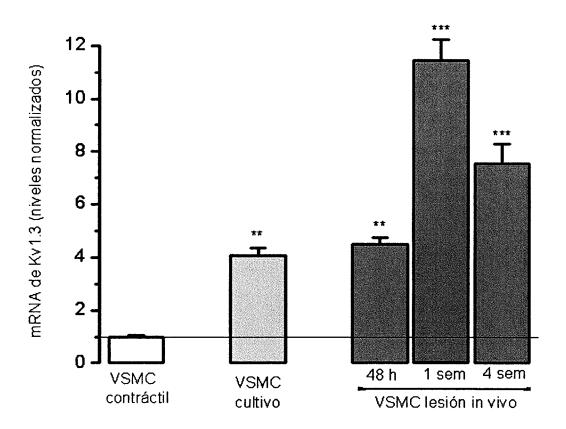
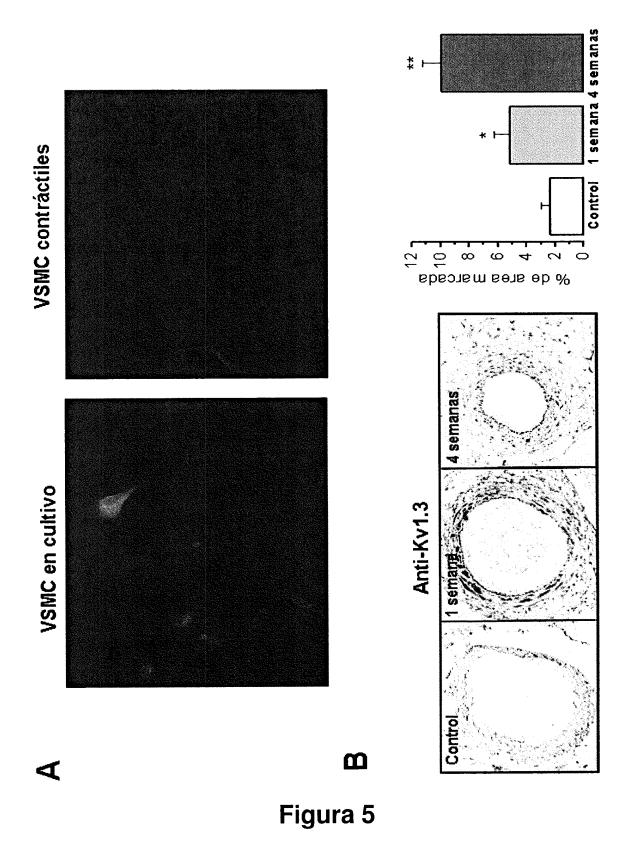



Figura 4

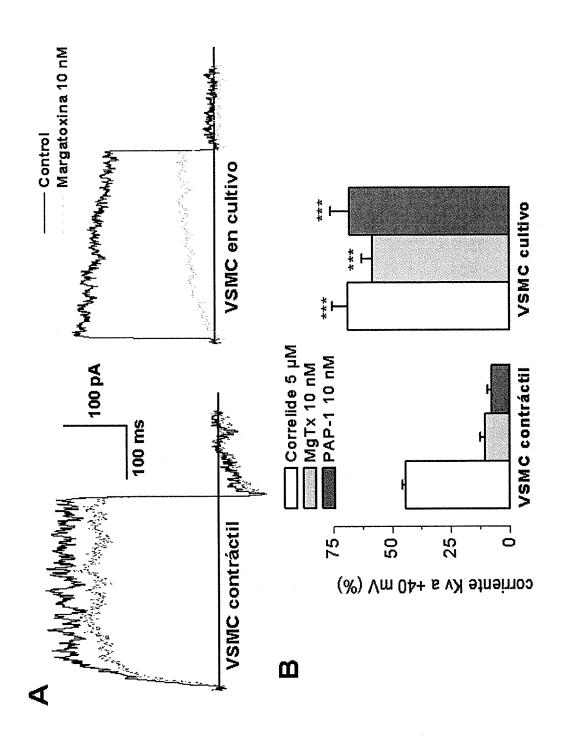


Figura 6

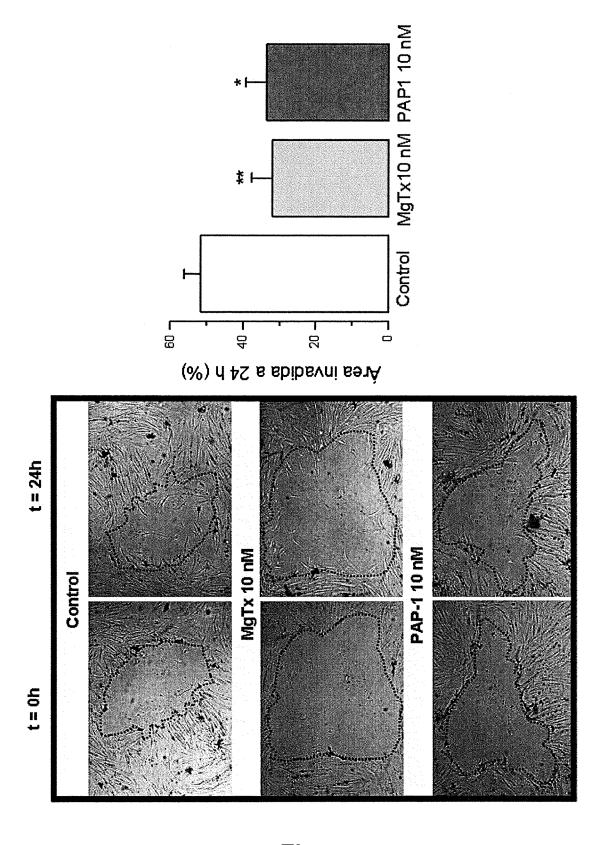


Figura 7

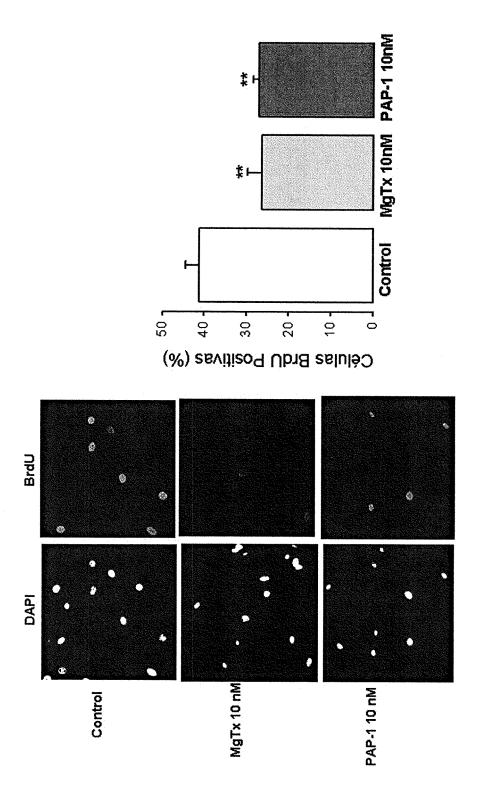


Figura 8

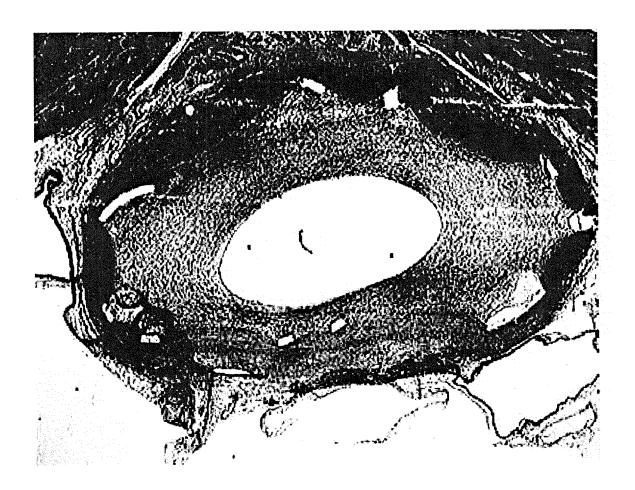


Figura 9

① ES 2 345 527

(21) Nº de solicitud: 200900281

22 Fecha de presentación de la solicitud: 30.01.2009

32 Fecha de prioridad: **08.10.2008**

INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51)	Int. Cl.:	Ver hoja adicional

DOCUMENTOS RELEVANTES

Categoría	56	Documentos citados R	eivindicacione afectadas
Х	response to injury and neoint	of Kv1.3 channel smooth muscle imal hyperplasia. FASEB JOURNAL. 69. Experimental Biology 2007 6638. Resumen.	1-5
X	WO 9307748 A1 (THE GENE todo el documento.	ERAL HOSPITAL CORP. (US)) 29.04.1993,	1-5
Х	WO 9705127 A1 (PDT SYST	EMS, INC. (US)) 13.02.1997, resumen.	1-5
Χ	US 5116864 A (MARCH KEI todo el documento.	TH L. y col.) 26.05.1992,	1-5
Χ	US 5354774 A (DECKELBAL todo el documento.	JM, LAWRENCE I. y col.) 11.10.1994,	1-5
A	Kv1.3 blocker, for the suppres	f PAP-1, a selective small molecule ssion of effector memory T cells in cular Pharmacology. 2005, Vol. 68, do el documento.	1-5
Categorí	ía de los documentos citados		
Y: de parti misma	icular relevancia icular relevancia combinado con otro/s o categoría el estado de la técnica	O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de preser de la solicitud E: documento anterior, pero publicado después de la de presentación de la solicitud	
	nte informe ha sido realizado	Dave les reiniesties sieres re.	
	todas las reivindicaciones	para las reivindicaciones nº:	I
Fecha d	Fecha de realización del informe 24.08.2010 Examinador E. Albarrán Gómez		Página

INFORME DEL ESTADO DE LA TÉCNICA

 $N^{\mbox{\tiny 0}}$ de solicitud: 200900281

CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD
A61K 31/37 (2006.01) A61K 38/17 (2006.01) A61K 9/00 (2006.01)
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
A61K
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
INVENES, EPODOC, WPI, MEDLINE

OPINIÓN ESCRITA

Nº de solicitud: 200900281

Fecha de Realización de la Opinión Escrita: 24.08.2010

Declaración

Novedad (Art. 6.1 LP 11/1986) Reivindicaciones 3 SÍ

Reivindicaciones 1-2, 4-5

Actividad inventiva Reivindicaciones SÍ

(Art. 8.1 LP 11/1986) Reivindicaciones 1-5

Se considera que la solicitud cumple con el requisito de **aplicación industrial.** Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión:

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como ha sido publicada.

OPINIÓN ESCRITA

 N° de solicitud: 200900281

1. Documentos considerados:

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	Experimental Biology Annual Meeting	2007
D02	WO 9307749 A1	29-04-1993
D03	WO 9705127 A1	13-02-1997
D04	US 5116864 A	26-05-1992
D05	US 5354774 A	11-10-1994
D06	Molecular Pharmacology, Vol. 68, No 5	2005

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La invención se refiere a la utilización de sustancias bloqueadoras de los canales de potasio Kv1.3 entre las que se citan margatoxina, toxina ShK, psoraleno, kaliotoxin, coreolide, J123, y en especial ShK-L5 y el 5 (4-fenoxibutoxi) psoralen (conocido como (PAP-1)) en el tratamiento de enfermedades vasculares relacionadas con la hiperplasia de la capa íntima de la pared de los vasos sanguíneos como restenosis, nefropatía crónica post-transplante, oclusión tardía del by-pass y vasculopatía coronaria post-transplante.

El documento D01 divulga un estudio en el que los autores observan que las sustancias bloqueadoras de Kv1.3, margatoxina y correolide, inhiben la motilidad celular de las células musculares lisas vasculares tanto en ratón como en humanos y reducen la formación de una capa neoíntima de la pared vascular.

El documento D02 se refiere al uso de psoralenos fotoreactivos en la preparación de un medicamento para la inhibición de la proliferación de las células musculares lisas. Entre los derivados de psoralenos con esta actividad se reivindican 8-metoxipsoraleno, 5-metoxipsoraleno, trimetilpsoraleno, kallein, 3-carbetoxipsoraleno, furocumarina, angelicina.

El documento D03 tiene por objeto el uso furocumarinas como compuestos fotoactivables para la prevención de hiperplasia de la capa íntima de la pared vascular.

Los documentos D04 y D05 se refieren a un método para la prevención de la restenosis que comprende la administración de un psoraleno fotoactivable, citándose expresamente el 8-metoxipsoraleno.

A la vista de los documentos D01-D05 del estado de la técnica, se considera que las reivindicaciones 1 a 5 de la solicitud carecen de novedad y actividad inventiva (Art. 6.1 y 8.1 LP11/1986).