

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 355 952

(51) Int. Cl.:

C07K 14/71 (2006.01)

C12N 5/10 (2006.01)

C12N 15/85 (2006.01)

C12N 15/12 (2006.01)

C07K 19/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

Т3

- 96 Número de solicitud europea: 95916208.2
- 96 Fecha de presentación : **04.04.1995**
- 97 Número de publicación de la solicitud: **0804572** 97) Fecha de publicación de la solicitud: 05.11.1997
- 54) Título: Proteína de fusión que comprende bpTK7.
- (30) Prioridad: **04.04.1994 US 222616**

- (73) Titular/es: **GENENTECH**, Inc. 460 Point San Bruno Boulevard South San Francisco, California 94080, US
- Fecha de publicación de la mención BOPI: 01.04.2011
- (72) Inventor/es: Bennett, Brian, D.; Goeddel, David; Lee, James, M.; Matthews, William; Tsai, Siao, Ping y Wood, William, I.
- 45) Fecha de la publicación del folleto de la patente: 01.04.2011
- 74 Agente: Ponti Sales, Adelaida

ES 2 355 952 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

ANTECEDENTES DE LA INVENCIÓN

CAMPO DE LA INVENCIÓN

[0001] La presente invención se refiere a guimeras pTK-inmunoglobulina.

5 DESCRIPCIÓN DE LA TÉCNICA ANTERIOR

[0002] La transducción de señales que regulan el crecimiento y diferenciación celular está regulada en parte por la fosforilación de varias proteínas celulares. Las proteínas tirosina quinasa son enzimas que catalizan este proceso. Además, muchas actúan como receptores de factores de crecimiento. El subgrupo c-kit de receptores de tirosina quinasa catalizan la fosforilación de sustratos exógenos, así como residuos de tirosina en sus propias cadenas de polipéptidos (Ullrich et al., Cell 61:203 [1990]). Los miembros del subgrupo c-kit incluyen FLT/FLK (Kinasa de hígado fetal), FGF (Receptor del Factor de Crecimiento de Fibroblastos) y NGF (Receptor del Factor de Crecimiento Nervioso)

[0003] La subfamilia *EPH* de tirosina quinasa, Eph, Elk, Eck, Eek, Hek, Hek2, Sek, Ehk-1, Ehk-2, Cek-4 to -10, Tyro 1, 4, 5 y 6, parece ser la subfamilia más grande de tirosinas quinasas transmembrana (Hirai et al., Science 238:1717-1720 [1987]; Letwin et al., Oncogene 3:621-678 [1988]; Lhotak et al., Mol. Cell. Biol. 13:7071-7079 [1993]; Lindberg et al., Mol. cell. Biol. 10:6316-6324 [1990]; Bohme et al., Oncogene 8:2857-2862 [1993]; y Wicks et al., Proc. Natl. Acad. Sci. USA. 89:1611-1615 [1992]; Pasquale et al. Cell Regulation 2:523-534 [1991]; Sajjadi et al., New Biol. 3:769-778 [1991]; Wicks et al., Proc. Natl. Acad. Sci. USA. 89:1611-1615 [1992]; Lhotak et al., Mol. Cell. Bio. 11:2496-2502 [1991]; Gilardi-Hebenstreit et al., Oncogene 7:2499-2506 [1992]; Lai et al., Neuron 6:691-704 [1991]; Sajjadi et al., Oncogene 8:1807-1813 [1993]; and Maisonpierre et al., Oncogene 8:3277-3288 [1993]).

[0004] Las pTK adicionales y anticuerpos agonistas a las mismas son necesarias para estudiar adicionalmente el crecimiento y diferenciación de las células, para su uso como agentes terapéuticos y para fines de diagnóstico.

[0005] Ashman et al. (Journal of Cellular Physiology 158: 545-554; 1994) describe tres anticuerpos monoclonales al receptor tirosina quinasa c-kit humano.

- 25 [0006] WO 93/15201 A (New England Deaconess Hospital) describe información de la secuencia para las proteínas tirosina quinasa HpTK5, SAL-S1 y bpTK7, y propone el uso de las proteínas en ensayos para ligandos, tales como factores de crecimiento o factores de diferenciación que inhiben o aumentan la actividad quinasa y como inmunógenos para producir anticuerpos monoclonales o policlonales.
- [0007] Mark et al. (The Journal of Biological Chemistry 267: 26166-26171; 1992) describe que el receptor del factor 30 de crecimiento de hepatocitos (HGFr) es un receptor pTK y describe una proteína de fusión HGFr-IgG.

[0008] La presente invención proporciona anticuerpos agonistas que se unen al dominio extracelular del dominio quinasa de un receptor de proteína tirosina quinasa (pTK) seleccionado del grupo que consiste en:

- a) SAL-S1;
- b) HpTK 5; y
- 35 c) bpTK 7.
 - y lo activan

La presente invención también proporciona métodos de utilización de los mismos, quimeras del receptor bpTK7 y métodos para producir las quimeras.

DESCRIPCIÓN RESUMIDA DE LA INVENCIÓN

- 40 [0009] Los genes aislados tal como se describen en la presente invención son referidos, colectivamente, como "genes de proteína tirosina quinasa" o "genes de pTK". Las secuencias de ácidos nucleicos de algunos de estos genes, aislados tal como se describe aquí, muestran una homología significativa con proteínas tirosina quinasas identificadas previamente que contienen dominios extracelulares, que actúan como receptores de factores de crecimiento (por ejemplo, pTKs del subgrupo c-kit). Se ha observado que algunos de los genes de pTK están presentes tanto en células megacariocíticas como células linfocíticas.
- [0010] En particular, se han identificado catorce genes de pTK. Se identificaron dos genes de pTK, referidos como SAL-S1 y SAL-D4, en células megacariocíticas. SAL-D4 está relacionado con la familia CSK de pTK intracelulares y SAL-S1 está relacionado con la familia de receptores FGF de pTK. Se identificaron cinco genes de pTK, referidos como LpTK, en células linfocíticas y se ha observado que están presentes también en megacariocitos. Se identificó un gen de pTK, referido como HpTK5, en células de hematoma humano. Se hallaron seis genes de pTK, referidos

como genes de bpTK, en tejido de cerebro humano.

[0011] Los genes de pTK se identificaron en general utilizando dos grupos de cebadores de oligonucleótidos degenerados: un primer grupo que amplifica todos los segmentos de ADN de pTK (SEC ID NOS: 1-2), y un segundo grupo que amplifica secuencias altamente conservadas presentes en el dominio catalítico del subgrupo c-kit de pTKs (SEC ID NOS: 3-4). Los genes de pTK identificados de esta manera se describen a continuación.

[0012] SAL-S1 se expresa en varias líneas de células megacariocíticas, pero no en líneas de células eritroides. Se obtuvo la secuencia de nucleótidos de parte de SAL-S1, revelando una secuencia que contenía 160 pares de bases (SEC ID NO: 5). Este fragmento de ADN aislado codificaba una secuencia de aminoácidos (SEC ID NO: 6) que mostraba una homología de secuencia significativa con proteínas tirosina quinasas conocidas de la familia FLT/FLK. 10 La secuencia de aminoácidos deducida de SAL-S1 (SEC ID NO: 33) contiene 1298 residuos.

[0013] SAL-D4, también expresado en células megacariocíticas, es un fragmento de ADN que contiene la secuencia de nucleótidos de 147 pares de bases. (SEC ID NO: 7). Este fragmento de ADN aislado codificaba una secuencia de aminoácidos (SEC ID NO: 8) que mostraba una homología de secuencia significativa con proteínas tirosina quinasas conocidas de la familia de pTK intracelulares CSK.

- 15 [0014] Las LpTKs, incluyendo LpTK 2, LpTK 3, LpTK 4, LpTK 13 y LpTK 25, se expresan en células linfocíticas, así como células megacariocíticas. Se obtuvo la secuencia de nucleótidos (151 pares de bases) del gen de LpTK 3 (SEC ID NO: 11). Las secuencia de nucleótidos de los genes de LpTK 2, LpTK 4, y LpTK 13 contenían 149 pares de bases (SEC ID NO: 9), 137 pares de bases (SEC ID NO: 13), y 211 pares de bases (SEC ID NO: 15) respectivamente. La LpTK 25 tiene una secuencia de nucleótidos de 3120 b.p. (SEC ID NO: 22). Se ha obtenido una secuencia de genes de longitud completa para LpTK 2 (SEC ID NO: 19) que contiene 7607 b.p. La secuenciación adicional de LpTK 4 reveló una secuencia de 404 b.p. (SEC ID NO: 21).
 - [0015] El gen de HpTK5, expresado en células de hematoma humano, presenta una secuencia de nucleótidos de 3969 b.p. (SEC ID NO: 23).
- [0016] Las secuencias de nucleótidos de las bpTKs, incluyendo bpTK 1, bpTK 2, bpTK 3, bpTK 4, bpTK 5 y bpTK 7, 25 se expresan en tejido de cerebro humano y codifican proteínas que tienen las secuencias de aminoácidos de SEC ID NOS: 25-30 y 36, respectivamente.
 - [0017] De este modo, se puede aislar el ADN de una línea de células megacariocíticas humanas, que se hibrida al ADN que codifica una secuencia de aminoácidos que es altamente conservada en el dominio catalítico de proteínas tirosina quinasas del subgrupo c-kit.
- 30 [0018] Las proteínas codificadas por los genes de pTK identificadas tal como se describe en la presente invención muestran una homología de secuencia significativa con los miembros del subgrupo c-kit de pTKs, así como las proteínas codificadas por HpTK5 y las bpTKs. Son posibles homólogos o equivalentes de SAL-S1, SAL-D4, LpTK, HpTK5 y bpTK (es decir, proteínas que tienen secuencias de aminoácidos sustancialmente similares, pero no idénticas, a las de SAL-S1, SAL-D4, las LpTKs, HpTK5 y las bpTKs, que muestran actividad tirosina quinasa). Los péptidos (fragmentos de SAL-S1, SAL-D4, LpTK, HpTK5 y bpTK) que mantienen la actividad tirosina quinasa, aunque son menos que las secuencias completas de SAL-S1, SAL-D4, LpTK, HpTK5 y bpTK también son posibles; y se pueden prever usos para las secuencias de ácidos nucleicos de SAL-S1, SAL-D4, las LpTK, HpTK y las bpTK y equivalentes de SAL-S1, SAL-D4, LpTK, HpTK y bpTK.
- [0019] Las secuencias de ácidos nucleicos se pueden hibridar con ADN o ARN que codifican las proteínas descritas 40 en la presente invención y pueden mostrar una homología de secuencia significativa con FLT/FLK, el receptor de FGF o la familia de receptores NGF de proteínas tirosina quinasas contenidas en el subgrupo c-kit. Sichas secuencias de ácido nucleico son útiles como sondas para identificar genes de pTK en otros vertebrados, particularmente mamíferos, y en otros tipos de células. También se pueden utilizar como oligonucleótidos antisentido para inhibir la actividad de proteína tirosina quinasa, tanto in vitro como in vivo.
- 45 [0020] Las tirosina quinasas SAL-S1, SAL-D4, LpTK, HpTK y bpTK se pueden utilizar como proteínas diana conjuntamente con el desarrollo de fármacos y agentes terapéuticos para modular el crecimiento y diferenciación celular y otras funciones metabólicas. Las proteínas SAL-S1, SAL-D4, LpTK, HpTK o bpTK se pueden utilizar como agonistas o antagonistas a otras tirosina quinasas. Las pTKs también pueden jugar un papel decisivo en la modulación de interacciones de adhesión a megacariocitos y/o plaquetas.
- 50 [0021] Además, las tirosina quinasas SAL-51, SAL-D4, LpTK, HpTK y bpTK se pueden utilizar en ensayos de screening para detector factores de crecimiento y/o diferenciación celular. Utilizando técnicas de laboratorio estándar, se pueden identificar los ligandos de las pTK. En particular, la presente invención proporciona proteínas de fusión quiméricas bpTK7-inmunoglobulina que son útiles para aislar ligandos para las pTK descritas en la presente invención. Las proteínas quiméricas también son útiles para ensayos de diagnóstico diseñados para detectar estos
- 55 ligandos presentes de forma endógena, en las células, así como de forma exógena, en fluidos extracelulares. También se pueden diseñar ensayos, utilizando proteínas quiméricas, como herramientas de diagnóstico para detectar estos ligandos en fluidos corporales, tales como sangre y orina.

[0022] Los anticuerpos específicos para SAL-S1, SAL-D4, las LpTK, HpTK5 y las bpTK pueden ser agonistas para su respectiva pTK (donde la pTK es un receptor). En la presente invención se definen una línea de células de hibridoma y un ácido nucleico aislado que codifica un anticuerpo monoclonal.

- [0023] Un método para activar una pTK tal como se describe en la presente invención, puede comprender hacer reaccionar la pTK con un anticuerpo agonista para la misma. Un método para aumentar el crecimiento y/o diferenciación celular puede comprender administrar a un paciente humano con necesidad de dicho tratamiento una cantidad fisiológicamente eficaz de un anticuerpo agonista que activa una pTK tal como se describe en la presente invención.
- [0024] Un método para detectar una pTK puede implicar poner en contacto una fuente sospechosa de contener la pTK con un anticuerpo monoclonal marcado de forma detectable que reacciona de forma inmunológica con la pTK y determinar si el anticuerpo se une a la fuente.

BREVE DESCRIPCIÓN DE LAS FIGURAS

[0025]Las figuras 1A y 1B representan la secuencia de nucleótidos de SAL-S1 (SEC ID NO: 5) y su secuencia de aminoácidos deducida (SEC ID NO: 6).

15 Las figuras 2A y 2B representan la secuencia de nucleótidos de SAL-D4 (SEC ID NO: 7) y su secuencia de aminoácidos deducida (SEC ID NO: 8).

La figura 3A representa la secuencia de nucleótidos de LpTK 2 (SEC ID NO: 9) y su secuencia de aminoácidos deducida (SEC ID NO: 10).

La figura 3B representa la secuencia de nucleótidos de LpTK 3 (SEC ID NO: 11) y su secuencia de aminoácidos 20 deducida (SEC ID NO: 12).

La figura 3C representa la secuencia de nucleótidos de LpTK 4 (SEC ID NO: 13) y su secuencia de aminoácidos deducida (SEC ID NO: 14).

La figura 3D representa la secuencia de nucleótidos de LpTK 13 (SEC ID NO: 15) y su secuencia de aminoácidos deducida (SEC ID NO: 16).

25 Las figuras 4A-4I representan la secuencia de nucleótidos (SEC ID NO: 17) de SAL-S1 y su secuencia de aminoácidos deducida (SEC ID NO: 18).

Las figuras 5A-5K representan la secuencia de nucleótidos de longitud completa (SEC ID NO: 19) de LpTK2 y su secuencia de aminoácidos deducida (SEC ID NO: 20).

La figura 6 representa la secuencia de nucleótidos parcial (SEC ID NO: 21) para LpTK4.

30 Las figuras 7A-7C representan la secuencia de nucleótidos de longitud completa (SEC ID NO: 22) para LpTK25.

Las figuras 8A-8I representan la secuencia de nucleótidos de longitud completa (SEC ID NO: 23) y la secuencia de aminoácidos deducida de HpTK5 (SEC ID NO: 24).

La figura 9 representa la secuencia de aminoácidos (SEC ID NO: 25) de bpTK1.

La figura 10 representa la secuencia de aminoácidos (SEC ID NO: 26) de bpTK2.

35 La figura 11 representa la secuencia de aminoácidos (SEC ID NO: 27) de bpTK3.

La figura 12 representa la secuencia de aminoácidos (SEC ID NO: 28) de bpTK4.

La figura 13 representa la secuencia de aminoácidos (SEC ID NO: 29) de bpTK5.

La figura 14 representa la secuencia de aminoácidos (SEC ID NO: 30) de bpTK7.

Las figuras 15A-15F representan la secuencia de nucleótidos de longitud completa de SAL-S1 (SEC ID NO: 31) y su 40 secuencia de aminoácidos deducida (SEC ID NO: 33).

Las figuras 16A-16H representan la secuencia de nucleótidos de longitud completa de bpTK7 (SEC ID NO: 34) y su secuencia de aminoácidos deducida (SEC ID NO: 36).

DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS

[0026] Se han identificado nuevos genes de proteínas tirosina quinasa, se han determinado sus secuencias de ácido nucleicos y las secuencias de aminoácidos de las proteínas codificadas deducidas. Los genes aislados tal como se describen en la presente invención son referidos, colectivamente, como "genes de proteínas tirosina quinasa" o

"genes de pTK".

[0027] Para facilitar el aislamiento e identificación de estas pTKs nuevas, se utilizaron dos grupos de sondas de ADN, tal como se describe en el ejemplo 1. El primer grupo consistía en general de dos secuencias de oligonucleótidos degeneradas, pTK 1 (SEC ID NO: 1) y pTK 2 (SEC ID NO: 2) (Matthews, Cell 65:1143 [1991]; y 5 Wilks, Proc. Natl. Acad. Sci. USA 86:1603 [1989]). Estas secuencias se utilizaron como cebadores en una reacción en cadena de la polimerasa para amplificar los segmentos de ADN de tirosina quinasa (Mullis, et al., Cold Spring Harbor Symp. Advan. Biol. 51:263 [1986]).

- [0028] El segundo grupo consistía en general de dos secuencias de oligonucleótidos, pTK 3 (SEC ID NO: 3) y pTKKW (SEC ID NO: 4) diseñadas para amplificar la secuencia de ácidos nucleicos que codifica las regiones altamente conservadas de los dominios catalíticos de la familia c-kit de proteínas tirosina quinasas. Estas secuencias se utilizaron como cebadores en la reacción en cadena de la polimerasa (PCR) en una segunda ronda de amplificación de ADN. Utilizando este procedimiento de amplificación de dos etapas, se identificaron fragmentos de ADN que se hibridaban a estos cebadores de pTK, se aislaron y posteriormente se secuenciaron.
- [0029] En particular, se han identificado catorce genes de pTK. Se identificaron dos genes de pTK, referidos como SAL-S1 y SAL-D4, en varias líneas de células megacariocíticas, incluyendo CMK 11-5, DAMI, UT-7 y UT-7 desarrolladas en eritropoyetina, pero no en las líneas de células eritroides HEL, células HEL estimuladas con PMA, o K562. Se identificaron cinco genes de pTK, referidos como LpTKs, en células linfocíticas, así como en células megacariocíticas. Se identificó un gen de pTK, referido como HpTK5, en células de hematoma humano, y se identificaron seis genes, referidos como bpTKs, en tejido de cerebro humano.
- 20 [0030] La SAL-S1 (SEC ID NOS: 6, 18 y 33) codificada por la secuencia de ácidos nucleicos de SEC ID NOS: 5, 17 y 31 muestra una homología significativa con la familia FLT/FLK de pTKs. SAL-S1 tiene un péptido señal (es decir, residuos de aminoácidos 1 a 24 de la figura 15); dominios extracelulares (es decir, residuos de aminoácidos 25 a 775 de la figura 15); dominio transmembrana (es decir, residuos de aminoácidos 776 a 800 de la figura 15) y un dominio citoplasmático de tirosina quinasa (es decir, residuos de aminoácidos 801 a 1298 de la figura 15). La SAL-
- 25 D4 (SEC ID NO: 8) codificada por SEC ID NO: 7 se refiere a la familia CSK de pTKs intracelulares. Las LpTKs, LpTK 2 (SEC ID NOS: 10 y 20) codificadas por SEC ID NOS: 9 y 19; LpTK 3 (SEC ID NO: 12) codificada por SEC ID NO: 11; LpTK4 (SEC ID NO: 14) codificada por SEC ID NOS: 13 y 21; LpTK13 (SEC ID NO: 16) codificada por SEC ID NO: 15; y LpTK25 codificada por SEC ID NO: 22, también muestran una homología de secuencia con proteínas tirosina quinasas conocidas.
- 30 [0031] La HpTK5 (SEC ID NO: 24) codificada por SEC ID NO: 23 y las bpTKs 1, 2, 3, 4, 5 y 7 (SEC ID NOS: 25-29 y 36 respectivamente), muestran de manera similar una homología de secuencia con proteínas tirosina quinasas conocidas. La BpTK7 codifica un receptor de pTK con un péptido señal (es decir, residuos de aminoácidos 1-19 de la figura 16); dominio extracelular (es decir, residuos de aminoácidos 20-547 de la figura 16); y dominio transmembrana (es decir, residuos de aminoácidos 548-570 de la figura 16). La secuencia restante comprende el dominio tirosina quinasa intracelular.
- [0032] De este modo, tal como se ha descrito anteriormente, se han aislado y secuenciado moléculas de ADN que se hibridan con ADN que codifica las secuencias de aminoácidos presentes en el dominio catalítico de una proteína tirosina quinasa del subgrupo c-kit de proteínas quinasas. Se ha observado que estas secuencias de ADN aisladas, referidas colectivamente como "genes de pTK", (y sus secuencias de aminoácidos deducidas) muestran una 40 homología de secuencia significativa con miembros conocidos de familias pTK.
 - [0033] Una vez aislados, estos fragmentos de ADN se pueden amplificar utilizando técnicas estándar conocidas, tales como PCR. Estos fragmentos amplificados se pueden clonar a continuación en vectores de clonación apropiados y determinar sus secuencias de ADN.
- [0034] Estas secuencias de ADN se pueden escindir de los vectores de clonación, marcarse con un nucleótido radiomarcado, tal como ³²P, y utilizarse para cribar las bibliotecas de ADNc apropiadas para obtener el clon de ADNc de longitud completa.
- [0035] Los genes de pTK, tal como se han descrito anteriormente, se han aislado de la fuente en que están de forma natural, por ejemplo, células megacariocíticas y linfocíticas. La presente invención pretende incluir genes de pTK producidos utilizando técnicas de ingeniería genética, tales como tecnología recombinante, así como genes de pTK que se sintetizan químicamente.
- [0036] Las secuencias de aminoácidos deducidas de los genes de pTK incluyen secuencias de aminoácidos que codifican péptidos que muestran una homología significativa con el dominio catalítico de proteínas tirosina quinasa del subgrupo c-kit de tirosina quinasas. Estas proteínas, codificadas por los genes de pTK, pueden incluir secuencias en las que residuos de aminoácidos funcionalmente equivalentes están sustituidos por residuos en la secuencia, que dan lugar a un cambio silencioso, que es un cambio no detectado fenotípicamente. Por ejemplo, se pueden sustituir uno o más residuos de aminoácidos en la secuencia por otro aminoácido de una polaridad similar que actúa como equivalente funcional, dando lugar a una sustitución silenciosa.

- [0037] Además, la estructura de la proteína se puede modificar mediante deleciones, adiciones, inversión, inserciones o sustituciones de uno o más residuos de aminoácidos en la secuencia que no perjudican sustancialmente a las propiedades funcionales deseadas de tirosina quinasa del péptido.
- [0038] Las pTK modificadas, con actividad tirosina quinasa, se pueden producir utilizando técnicas de ADN recombinante, tales como escisión de un vector que contiene un ADNc que codifica dicha proteína, o mediante la síntesis del ADN que codifica la proteína deseada mecánica y/o químicamente utilizando técnicas conocidas.
- [0039] Una estrategia alternativa para producir pTK es utilizar la síntesis de péptidos para producir un péptido o polipéptido que tiene la secuencia de aminoácidos de dicha proteína, dependiendo de la longitud de pTK deseada. Los péptidos o equivalentes modificados de los mismos se pueden sintetizar directamente mediante química de fase sólida o líquida estándar para la síntesis de péptidos.
 - [0040] Preferiblemente, las pTK se producirán mediante la inserción de ADN que codifica las proteínas en un sistema vector/huésped apropiado donde se expresará. Las secuencias de ADN se pueden obtener de fuentes en las que tienen lugar de forma natural, se pueden sintetizar químicamente o se pueden producir utilizando tecnología recombinante estándar.
- 15 [0041] Un vector de expresión puede comprender un gen de pTK, que codifica una proteína que muestra actividad de receptor tirosina quinasa.
 - **[0042]** Los genes de pTK se pueden utilizar para un conjunto de fines de diagnóstico y terapéuticos. Por ejemplo, las secuencias de ácido nucleico de los genes de pTK se pueden utilizar como sondas para identificar otras proteínas tirosina quinasas presentes en otros tipos de células, incluyendo tipos de células eucariotas y procariotas.
- 20 [0043] Las secuencias de ácido nucleico también se pueden utilizar para diseñar fármacos que inhiben directamente la actividad quinasa de proteínas tirosina quinasa o para diseñar péptidos que se unen al dominio catalítico de tirosina quinasas, inhibiendo de este modo su actividad. Estas secuencias también se pueden utilizar para diseñar nucleótidos anti-sentido que también pueden inhibir o destruir actividad tirosina quinasa. Dicha inhibición de actividad tirosina quinasa sería deseable en estados patológicos donde la proliferación celular disminuida sería 25 beneficiosa, tales como leucemias u otros cánceres.
- [0044] Las secuencias de ácidos nucleicos también se pueden utilizar para diseñar fármacos, péptidos o nucleótidos antisentido como antes, pero con efectos potenciadores, n lugar de inhibidores, sobre tirosina quinasas. Dicha actividad aumentada de tirosina quinasa daría lugar a un incremento de la fosforilación de sustratos (exógenos, así como residuos de tirosina endógenos). Serían deseables efectos potenciados en estados en los que una mayor proliferación celular seria beneficiosa, tales como anemias, trastornos del sangrado y durante procedimientos quirúrgicos.
- [0045] Los genes de pTK también se pueden utilizar para obtener fragmentos solubles de receptores tirosina quinasa, capaces de unirse a sus ligandos respectivos. Los genes de pTK que codifican fragmentos solubles de tirosina quinasa se pueden producir utilizando técnicas de ADN recombinante o sintéticamente. En cualquier caso, el ADN obtenido codifica un fragmento de pTK soluble que carece de una parte sustancial de la región transmembrana hidrofóbica para permitir la solubilización del fragmento.
- [0046] Estos fragmentos de proteínas pTK se pueden introducir exógenamente para actuar como competidores con las pTK endógenas unidas a membrana por sus respectivos ligandos, inhibiendo así la actividad de tirosina quinasa. Alternativamente, se puede introducir un fragmento de proteína pTK soluble modificado que se une al ligando pero no activa la actividad quinasa.
- [0047] Estos fragmentos solubles de proteínas pTK también se pueden utilizar en ensayos de unión para detectar ligandos, tales como factores de crecimiento y diferenciación. Una vez se han identificado estos ligandos, se pueden alterar o modificar para inhibir o potenciar la actividad quinasa. Por ejemplo, los ligandos se pueden modificar o unir a sustancias que son tóxicas para la célula, tal como ricina, destruyendo así la célula diana. La sustancia puede ser una sustancia superactivante que, después de la unión a la pTK, puede incrementar sustancialmente la actividad quinasa, o activar otros factores de crecimiento.
- [0048] Los genes de pTK también serían útiles para desarrollar herramientas de diagnóstico para ensayos de cribado in vitro para ligandos, tales como factores de crecimiento o factores de diferenciación que inhiben o potencian la actividad quinasa. Las proteínas codificadas por los genes de pTK también se pueden utilizar en dichos ensayos, o como inmunógenos, para producir anticuerpos monoclonales o policlonales a utilizar en dichos ensayos.
 - **[0049]** En una realización de la invención, se puede construir una quimera que comprende una fusión del dominio extracelular de la bpTK7 y un dominio constante de inmunoglobulina que se puede utilizar para ensayar los ligandos para el receptor y se puede utilizar para la producción de anticuerpos contra el dominio extracelular del receptor.
- [0050] La expresión "dominio extracelular" o "ECD" cuando se utiliza en la presente invención se refiere a cualquier secuencia de polipéptido que comparte una función de unión a ligando del dominio extracelular del receptor natural

de pTKs descrito aquí. La función de unión a ligando del dominio extracelular se refiere a la capacidad del polipéptido de unirse a por lo menos un ligando de pTK. Por consiguiente, no es necesario incluir el dominio extracelular completo, ya que se encuentra que normalmente segmentos más pequeños son adecuados para unirse al ligando. El dominio extracelular truncado es en general soluble. El término ECD comprende secuencias de polipéptido en las que la secuencia transmembrana hidrofóbica (y, opcionalmente los aminoácidos 1-20 C-terminales y/o N-terminales con respecto al dominio transmembrana) de la pTK madura ha sido eliminada. De este modo, el polipéptido que contiene el dominio extracelular soluble puede comprender el dominio extracelular y el dominio citoplasmático de la pTK. Alternativamente, en la realización preferida, el polipéptido comprende sólo el dominio extracelular de la pTK. Los dominio extracelular y transmembrana de la pTK se pueden determinar fácilmente por el experto en la materia mediante la alineación de la pTK de interés con secuencias de aminoácidos de pTK conocidas para los que se han trazado estos dominios. Alternativamente, el dominio transmembrana hidrofóbico se puede trazar fácilmente en base a la representación de la hidrofobicidad de la secuencia. El dominio extracelular es N-terminal con respecto al dominio transmembrana.

[0051] El término "inmunoglobulina" se refiere en general a polipéptidos que comprende una cande aligera o pesada normalmente ambas unidas a disulfuro en la configuración "Y" nativa, aunque otras uniones entre ellos, incluyendo tetrámeros o agregados de los mismos, se encuentra en el alcance de la invención.

[0052] Las inmunoglobulinas (Ig) y ciertas variantes de las mismas son conocidas y muchas se han preparado en cultivo celular recombinante. Por ejemplo, véase la Patente de Estados Unidos 4,745,055; EP 256,654; Faulkner et al., Nature 398:286 [1982]; EP 120,694; EP 125,023; Morrison, J. Immun. 123:793 [1979]; Köhler et al., Proc. Nat'l. Acad. Sci. USA 77:2197 [1980]; Raso et al., Cancer Res . 41:2073 [1981]; Morrison et al., Ann. Rev. Immunol. 2:239 [1984]; Morrison, Science 229:1202 [1985]; Morrison et al., Proc. Nat'l. Acad. Sci. USA 81:6851 [1984]; EP 255,694; EP 266,663; y WO 88/03559. También se conocen cadenas de inmunoglobulina recombinadas. Véase, por ejemplo, la patente de Estados Unidos 4,444,878; WO 88/03565; y EP 68,763 y las referencias citadas en las mismas. La parte de inmunoglobulina en la quimera de la presente invención se puede obtener de los subtipos IgG1, IgG2, IgG3, o IgG4, IgA, IgE, IgD o IgM, pero preferiblemente IgG1 o IgG3. Más preferiblemente, la parte inmunoglobulina es la parte Fc de IgG-γ.

[0053] Los términos "quimera que comprende una fusión de un dominio extracelular de una pTK con una secuencia de dominio constante de inmunoglobulina" o "quimera pTK-inmunoglobulina" se refieren a un polipéptido que comprende un dominio extracelular que codifica una secuencia de aminoácido de una pTK conjugada a una secuencia de dominio constante de inmunoglobulina. Esta definición incluye quimeras en formas monoméricas, homomultiméricas o heteromultiméricas, y particularmente homodiméricas o heterodiméricas o tetraméricas.

[0054] Una realización preferida es la fusión del extremo C-terminal del dominio extracelular de una pTK, al Nterminal de la parte C-terminal de un anticuerpo (en particular, el dominio Fc) que contiene las funciones efectoras de inmunoglobulina G1. En una realización preferida, la región constante de cadena pesada completa se fusiona al dominio extracelular. En otra realización preferida, una secuencia que empieza en la región bisagra justo en dirección 5' del sitio de división por papaína (que define la Fv de IgG químicamente; el residuo 216, tomando el primer residuo de la región constante de la cadena pesada el 114 (Kabat et al., Sequences of Immunological Interest, National Institutes of Health, Bethesda, MD, [1987]), o sitios análogos de otras inmunoglobulinas) se fusiona con la ECD de la pTK.

- 40 [0055] En una realización particularmente preferida, el dominio extracelular de pTK se fusiona a la región bisagra y la bisagra CH2 y CH3 o CH1, dominio CH2 y CH3 de una cadena pesada de IgG1, IgG2 o IgG3. El sitio preciso en que la fusión se realiza no es crítico, y el sitio óptimo se puede determinar mediante experimentación de rutina. Una ventaja principal de las quimeras es que se secretan en el medio de cultivo de huéspedes recombinantes, aunque el grado de secreción podría ser diferente para varios sistemas de expresión.
- 45 [0056] En general, las quimeras de la presente invención se construyen de una manera similar a los anticuerpos quiméricos en los que un dominio variable de un anticuerpo de una especie se sustituye por el dominio variable de otra especie. Véase, por ejemplo, EP 0 125 023; EP 173,494; Munro, Nature 312: [13 Diciembre 1984]; Neuberger et al., Nature 312: [13 Diciembre 1984]; Sharon et al., Nature 309: [24 May 1984]; Morrison et al., Proc. Nat'l. Acad. Sci. USA 81:6851-6855 [1984]; Morrison et al. Science 229:1202-1207 [1985]; Boulianne et al., Nature 312:643-646 [13 Diciembre 1984]; Capon et al., Nature 337, 525-531 [1989]; Traunecker et al., Nature 339, 68-70 [1989].

[0057] Para preparar los polipéptidos quiméricos pTK-IgG, se divide el ADN que incluye una región que codifica la secuencia de pTK deseada mediante una enzima de restricción en el extremo 3' o próximo al mismo del ADN que codifica el dominio o dominios de tipo inmunoglobulina en un punto o próximo al ADN que codifica el extremo N-terminal de la pTK madura (donde se contempla el uso de una secuencia líder diferente) o en la región codificante N-terminal para pTK o próxima a la misma (donde se utiliza la secuencia señal nativa). Este fragmento de ADN se inserta fácilmente a continuación de forma próxima al ADN que codifica una región constante

de cadena ligera o pesada de inmunoglobulina y, si es necesario, la construcción resultante se ajusta mediante mutagénesis por deleción. Preferiblemente, la Ig es una inmunoglobulina humana cuando la variante está destinada a terapia in vivo para humanos. El ADN que codifica las regiones constantes de cadena ligera o pesada de

inmunoglobulina es conocido o fácilmente disponible a partir de bibliotecas de ADNc o se sintetiza. Véase, por ejemplo, Adams et al., Biochemistry 19:2711-2719 [1980]; Gough et al., Biochemistry 19:2702-2710 [1980]; Dolby et al., P.N.A.S. USA, 22:6027-6031 [1980]; Rice et al., P.N.A.S. USA 79:7862-7865 [1982]; Falkner et al., Nature 298:286-288 [1982]; y Morrison et al., Ann. Rev. Immunol. 2:239.256 [1984].

- 5 [0058] Las proteínas quiméricas descritas aquí son útiles como agentes de diagnóstico para aislar o cribar ligandos para la pTK de interés utilizando las técnicas de Lyman et al., Cell 75:1157-1167 [1993], por ejemplo. Además, las proteínas quiméricas son útiles para fines de diagnóstico para estudiar la interacción de varios ligandos con el dominio extracelular de las diversas pTK (véase, por ejemplo, Bennett et al., J. Biol, Chem. 266(34):23060-23067 [1991]). Las proteínas quiméricas son útiles además para la producción de anticuerpos contra el dominio extracelular 10 de la pTK (véase los ejemplos 3 y 5 de la presente invención). Las proteínas quiméricas también presentan una utilidad terapéutica adicional siempre que proporcionen una forma soluble del dominio extracelular de la pTK que generalmente presenta una mayor vida media en plasma (en comparación con el dominio extracelular solo) y, por lo tanto, se puede formular en un portador farmacéuticamente aceptable y se administra a un paciente. Las proteínas quiméricas se cree que son útiles como agentes terapéuticos para la eliminación del exceso de ligando de pTK 15 sistémico o localizado en un tejido que se ha administrado a un paciente. La eliminación del ligando en exceso es particularmente de forma deseable cuando el ligando puede ser tóxico para el paciente. La proteína quimérica actúa uniéndose al ligando en competición con la pTK endógena en el paciente. De forma similar, se contempla que la proteína quimérica se puede administrar a un paciente de manera simultánea, o posteriormente a la administración del ligando en forma de una composición de liberación prolongada. La proteína quimérica actúa como proteína de 20 unión soluble para el ligando, extendiendo de este modo la vida media del ligando.
 - **[0059]** El término "anticuerpo" se utiliza en la presente invención en el sentido más amplio y cubre específicamente anticuerpos policionales, anticuerpos monoclonales, cadenas de inmunoglobulinas o fragmentos de las mismas, que reaccionan inmunológicamente con una pTK.
- [0060] En la realización preferida de la invención, los anticuerpos son anticuerpos monoclonales producidos utilizando técnicas que son conocidas en el sector. Por ejemplo, se puede utilizar la técnica de hibridoma descrita originalmente por Kohler y Milstein, Eur. J. Immunol., 6:511 [1976], y también descrita por Hammerling et al., In: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 [1981]. Las técnicas de Cote et al. y Boerner et al. también están disponibles para la preparación de anticuerpos monoclonales humanos [Cote et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 [1985] y Boerner et al., J. Immunol., 147(1):86-95 30 [1991]).
- [0061] El término "anticuerpo monoclonal" tal como se utiliza en la presente invención se refiere a un anticuerpo (tal como se ha definido anteriormente en la presente invención) obtenido de una población de anticuerpos sustancialmente homogéneos, es decir, los anticuerpos individuales que comprenden la población son idénticos a excepción de posibles mutaciones naturales que pueden estar presentes en cantidades menores. Los anticuerpos monoclonales son muy específicos, dirigiéndose contra un único sitio antigénico. Además, a diferencia de las preparaciones de anticuerpos convencionales (policlonales) que incluyen habitualmente diferentes anticuerpos dirigidos contra diferentes determinantes (epítopos), cada anticuerpo monoclonal está dirigido contra un único determinante en el antígeno. Además de su especificidad, los anticuerpos monoclonales son ventajosos en que se pueden sintetizar mediante un cultivo de hibridoma, no contaminado por otras inmunoglobulinas.
- 40 [0062] Las formas "humanizadas" de anticuerpos no humanos (por ejemplo, murinos) son inmunoglobulinas, cadenas de inmunoglobulinas o fragmentos de las mismas (tales como, Fv, Fab, Fab', F(ab')₂ u otras subsecuencias de anticuerpos de unión a antígeno) que contienen mínimos residuos de aminoácidos derivados de una inmunoglobulina no humana. Para la mayor parte, los anticuerpos humanizados son inmunoglobulinas humanas (anticuerpo receptor) en que los residuos de una región determinante de complementariedad (CDR) del receptor se sustituyen por residuos de una CDR de una especie no humana (anticuerpo dador), tal como ratón, rata o conejo que tiene la especificidad, afinidad y capacidad deseadas. En algunos casos, la región armazón Fv (FR) de la inmunoglobulina humana se sustituye por los correspondientes residuos de FR no humana. Además, un anticuerpo humanizado puede comprender residuos que no se encuentran ni en el anticuerpo receptor ni en la CDR o secuencias del armazón importadas. Estas modificaciones se realizan para refinar adicionalmente y optimizar la acción del anticuerpo.
- [0063] Los anticuerpos monoclonales de la presente invención incluyen anticuerpos híbridos (quiméricos) y recombinantes producidos por el corte y empalme ("splicing") de un dominio variable (incluyendo hipervariable) de un anticuerpo anti-pTK con un dominio constante (por ejemplo, anticuerpos "humanizados"), sólo uno de los cuales dirigido contra una pTK, o cadena ligera con una cadena pesada, o una cadena de una especie con una cadena de otra especie, o fusiones con proteínas heterólogas, independientemente de especies de origen o designación de clase o subclase de inmunoglobulina, siempre que sean capaces de unirse a la pTK de interés [Véase, por ejemplo, Cabilly, et al., Patente de Estados Unidos No. 4,816,567; y Mage & Lamoyi, in Monoclonal Antibody Production Techniques and Applications, pág. 79-97 (Marcel Dekker, Inc., New York [1987]).
- [0064] Para anticuerpos "quméricos" y "humanizados", véase, por ejemplo, la patente de Estados Unidos No. 60 4,816,567; WO 91/09968; EP452,508; y WO 91/16927.

[0065] De este modo, el modificador "monoclonal" indica el carácter del anticuerpo obtenido de una población de anticuerpos sustancialmente homogéneos y no debe interpretarse que se requiere la producción del anticuerpo mediante ningún método particular.

[0066] Los anticuerpos pueden ser anticuerpos agonistas. Por "anticuerpo agonista" se entiende un anticuerpo que 5 es un anticuerpo agonista. Por "anticuerpo agonista" se entiende un anticuerpo que es capaz de unirse a una pTK particular y activarla. Por ejemplo, el agonista se puede unir al dominio extracelular de la pTK y causar de este modo la dimerización de la pTK, dando lugar a la transfosforilación y activación del dominio quinasa catalítico intracelular. Consecuentemente, esto puede dar lugar a la estimulación del crecimiento y/o diferenciación de células que expresan el receptor in vitro y/o in vivo. Los anticuerpos agonistas de la presente invención son preferiblemente 10 contra epítopos en el dominio extracelular de la pTK, y preferiblemente, presentan las mismas características biológicas que el anticuerpo monoclonal producido por la línea de células de hibridoma depositada en la American TIPO Culture Collection No. de Acceso. ATCC HB 11,583. Por "características biológicas" se entiende las actividades in vitro y/o in vivo del anticuerpo monoclonal, por ejemplo, capacidad de activar el dominio quinasa de una pTK particular, capacidad de estimular el crecimiento y/o diferenciación celular de células que expresan la pTK, 15 y características de unión del anticuerpo, etc. Por consiguiente, el anticuerpo se une preferiblemente a sustancialmente el mismo epítopo que el anticuerpo monoclonal anti-HpTK5 descrito específicamente en la presente invención. Más preferiblemente, el anticuerpo tendrá sustancialmente la misma afinidad de unión a antígeno o superior del anticuerpo monoclonal anti-HpTK5 descrito en la presente invención. Para determinar si un anticuerpo monoclonal presenta la misma especificidad que el anticuerpo anti-HpTK5 descrito específicamente (es decir, el 20 anticuerpo que tiene el depósito ATCC No. HB 11,583), se puede utilizar, por ejemplo, un ensayo de unión ELISA competitivo.

[0067] El ADN que codifica anticuerpos monoclonales se aísla y secuencia fácilmente utilizando procedimientos convencionales (por ejemplo, mediante la utilización de sondas de oligonucleótidos que son capaces de unirse específicamente a genes que codifican las cadenas pesada y ligera de anticuerpos murinos). Las células de hibridoma sirven como una fuente preferida de dicho ADN. Una vez aislado, el ADN se puede colocar en vectores de expresión que, a continuación, se transfectan en células huésped, tales como células E. coli, células COS de simio, células de Ovario de Hámster Chino (CHO), o células de mieloma que no producen de otro modo proteína inmunoglobulina, para obtener la síntesis de anticuerpos monoclonales en las células huésped recombinantes.

[0068] Los anticuerpos agonistas descritos en la presente invención son útiles para ensayos de diagnóstico in vitro para activar el receptor de pTK de interés. Esto es útil a efectos de estudiar el papel del receptor en el crecimiento y/o diferenciación celular.

[0069] Los anticuerpos agonistas de pTK presentan una utilidad terapéutica adicional en un método para aumentar el crecimiento y/o diferenciación celular que comprende administrar a un paciente humano con necesidad de dicho tratamiento una cantidad fisiológicamente eficaz de un anticuerpo agonista de pTK exógeno. Los anticuerpos agonistas para la pTK SAL-S1 pueden ser útiles en el tratamiento de trastornos con el sangrado y anemias, ya que se observó que esta pTK se expresaba en células megacariocíticas. Los anticuerpos agonistas de bpTK se pueden utilizar de forma similar para aumentar la diferenciación y/o proliferación de células de cerebro en enfermedades neurodegenerativas (tales como la enfermedad de Alzheimer) en base a la expresión de estos receptores en tejido cerebral. Finalmente, los anticuerpos agonistas de HpTK5 se pueden utilizar para aumentar la proliferación de células hematopoyéticas primitivas en pacientes que han experimentado quimioterapia o terapia por radiación o transplante de médula ósea.

[0070] Un compuesto terapéutico "exógeno" se define en la presente invención para significar un compuesto terapéutico que es exógeno para el paciente mamífero, u homólogo a un compuesto que se encuentra en el paciente mamífero, pero producido fuera del paciente mamífero.

45 [0071] Los anticuerpos también son adecuados para detector una pTK mediante el contacto de una fuente sospechosa de contener la pTK con un anticuerpo monoclonal marcado de forma detectable y determinar si el anticuerpo se une a la fuente. Existen muchos marcadores diferentes y métodos de marcaje conocidos en la técnica. Entre los marcadores adecuados se incluyen, por ejemplo, enzimas, radioisótopos, compuestos fluorescentes, compuestos quimioluminiscentes y bioluminiscentes, isótopos paramagnéticos. La pTK puede estar presente en muestras biológicas, tales como fluidos biológicos o tejidos. Para fines analíticos o de diagnóstico, los anticuerpos se administran en una cantidad suficiente para permitir la detección de un sitio en una pTK para el que el anticuerpo monoclonal es específico. La concentración del anticuerpo monoclonal marcado de forma detectable debe ser suficiente para proporcionar una señal detectable por encima de la línea base cuando se une a un epítopo de pTK.

[0072] Los anticuerpos agonistas de pTL descritos en la presente invención se pueden administrar a un mamífero, preferiblemente un humano, en una forma de dosificación farmacéuticamente aceptable, incluyendo aquellas que se pueden administrar a un humano de forma intravenosa como un bolo o mediante infusión continua durante un periodo de tiempo, mediante rutas intramuscular, subcutánea, intraarticular, intrasinovial, intratecal, oral, tópica o por inhalación.

[0073] Dichas formas de dosificación comprenden portadores farmacéuticamente aceptables que son

intrínsecamente no tóxicos y no terapéuticos. Entre los ejemplos de dichos portadores se incluyen intercambiadores de iones, alúmina, estearato de aluminio, lecitina, proteínas del suero, tales como albúmina de suero humano, sustancias tamponadoras, tales como fosfatos, glicina, ácido sórbico, sorbato de potasio, mezclas de glicéridos parciales de aceites grasos vegetales, agua, sales, o electrolitos, tales como sulfato de protamina, hidrogeno fosfato de disodio, hidrogeno fosfato de potasio, cloruro de sodio, sales de zinc, sílice coloidal, trisilicato de magnesio, polivinil pirrolidona, sustancias basadas en celulosa y polietilenglicol. Los portadores para formas tópicas o de base gel de anticuerpo incluyen polisacáridos, tales como carboximetilcelulosa de sodio o metilcelulosa, polivinilpirrolidona, poliacrilatos, polímeros en bloque de polioxietileno-polioxipropileno, polietilenglicol, y alcoholes de cera de madera. Para todas las administraciones, se utilizan de forma adecuada formas de depósito. Dichas formas 10 incluyen, por ejemplo, microcápsulas, nanocápsulas, liposomas, vendajes adhesivos, formas de inhalación, pulverizadores nasales y comprimidos sublinguales. El anticuerpo se formulará habitualmente en dichos vehículos a una concentración de aproximadamente 0,1 mg/ml a 100 mg/ml.

[0074] Las composiciones farmacéuticas se pueden preparar y formular en formas de dosificación mediante métodos conocidos en la técnica; por ejemplo, véase, Remington's Pharmaceutical Sciences, Mack Publishing Company, 15 Easton, Pennsylvania, 15a Edición 1975.

[0075] Una cantidad eficaz del anticuerpo agonista de pTK a utilizar terapéuticamente dependerá, por ejemplo, de los objetivos terapéuticos, la ruta de administración, y la condición del paciente. Por consiguiente, será necesario para el terapeuta titular la dosis y modificar la ruta de administración según se desee para obtener el efecto terapéutico óptimo. Una dosis diaria habitual podría variar desde aproximadamente 1 μg/kg hasta 1000 mg/kg o más, dependiendo de los factores mencionados anteriormente. Habitualmente, el médico administrará la molécula hasta alcanzar una dosis que consigue el efecto deseado. El proceso de esta terapia se controla fácilmente mediante ensayos convencionales.

[0076] Dependiendo del tipo y gravedad de la enfermedad, de aproximadamente 0,001 mg/kg a aproximadamente 1000 mg/kg, más preferiblemente aproximadamente 0,01 mg a 100 mg/kg, más preferiblemente aproximadamente 25 0,010 a 20 mg/kg del anticuerpo agonista podría ser una dosificación candidata inicial para la administración al paciente, mediante, por ejemplo una o más administraciones separadas o mediante infusión continua. Para administraciones repetidas durante varios días o más, dependiendo de la enfermedad, el tratamiento se repite hasta que tenga lugar una supresión deseada de síntomas de la enfermedad o se consigue la mejora deseada en la enfermedad del paciente. Sin embargo, también pueden ser útiles otras pautas de dosificación.

30 [0077] La presente invención se ilustrará a continuación mediante los siguientes ejemplos, que no pretenden ser limitantes en ningún caso.

EJEMPLO 1

IDENTIFICACIÓN Y AISLAMIENTO DE GENES DE pTK

[0078] Para facilitar el aislamiento e identificación de genes de pTK, se utilizaron en general dos grupos de sondas 35 de ADN (véase la Tabla 1).

[0079] El primer grupo consistía en dos secuencias de oligonucleótidos degenerados, pTK1 (SEC ID NO: 1) y pTK 2 (SEC ID NO: 2). Estas secuencias se utilizaron como cebadores de la reacción en cadena de la polimerasa (PCR) utilizando técnicas PCR estándar, para amplificar segmentos de ADN de tirosina quinasa.

[0080] El segundo grupo consistía en dos secuencias de oligonucleótidos, pTK 3 (SEC ID NO: 3) y pTKKW (SEC ID NO: 4) seleccionadas de las regiones altamente conservadas de los dominios catalíticos del subgrupo c-kit de proteínas tirosina quinasa. Estas secuencias también se utilizaron como cebadores de la reacción en cadena de la polimerasa en una segunda ronda de amplificación del ADN. Utilizando este procedimiento de amplificación de dos etapas, se identificaron, aislaron y posteriormente se secuenciaron fragmentos de ADN que se hibridaban a estos cebadores de pTK utilizando técnicas de laboratorio conocidas.

45 <u>TABLA 1</u>

Primera ronda de amplificación

Nombre de la sonda Secuencia

pTK1 5'-CGGATCCACAGNGACCT-3'

pTK2 5'-GGAATTCCAAAGGACCAGACGTC-3'

Segunda ronda de amplificación

pTK3 (específica de la familia kit)

5'-CGGATCCATCCACAGAGATGT-3'

pTKKW (específica de la familia kit)

5'-GGAATTCCTTCAGGAGCCATCCACTT-3'

EJEMPLO 2

AISLAMIENTO Y CARACTERIZACIÓN DE HpTK5

5 A. Amplificación de ADN y clonación de HpTK5

[0081] Las células mononucleares de médula ósea humana de densidad ligera, obtenidas de voluntarios normales utilizando protocolos aprobados por el Deaconess Hospital Institutional Review Board y con el consentimiento por escrito de los voluntarios, se separaron mediante anticuerpo anti-CD34 (AMAC, Westbrook, ME) y esferas inmunomagnéticas (Dynal, Oslo, Noruega). El análisis citométrico de flujo que utiliza anticuerpos anti-CD34 conjugados a FITC (AMAC) confirmó una positividad CD34 de células aisladas del ~95%. La línea celular de hematoma, Hep3B, se cultivó en medio alfa (Gibco, Grand Island, NY) suplementado con penicilina (100U/mL), estreptomicina (100 μg/mL) y suero bovino fetal al 10% (Gibco) a 37°C en un incubador de CO₂ al 5%. El ARN total extraído de células mononucleares de médula ósea CD34+ o células Hep3B se transcribió de forma inversa con cebadores aleatorios y la transcriptasa inversa (RT) del virus de leucemia murina de Moloney siguiendo las condiciones del fabricante (Gibco-BRL) en una reacción de 20 μl. La PCR se realizó en el producto de reacción de RT en una reacción de 100 μl que contenía KCl 50 mM, Tris- HCl 10 mM (pH 8,4), NaCl 1,5 mM, gelatina 20 μg/ml, dNTPs 0,2 mM, 2,5 unidades de Taq polimerasa (Perkin-Elmer/Cetus) y 50 pmol de cada uno de los cebadores degenerados específicos de pTK

[pTK1 5'TCGGATCCACA/CGNGAC/TC/TTGGC 3' (SEC ID NO. 37),

20 ptk1b 5'tcggatccac/tc/agngac/tc/ttngcngc 3' (sec id no. 38),

pTK2 5'CTCGAATTCCA/GA/TAA/GC/GT/ACCAG/CACA/GTC 3' (SEC ID NO. 39),

pTK2B 5'CTCGAATTCCA/GA/TAT/CC/GT/ACCAT/AACA/GTC 3'(SEC ID NO. 40)]

derivados de regiones de consenso entre pTK conocidas tal como se ha descrito por otros (Hanks et al., Science, 241:42-52 [1988]; Wilks, Proc. Nat. Acad. Sci.. USA 86:1603-1607 [1989]; y Matthews et al., Cell 65:1143-1152 [1991]). El ciclo PCR fue de 1,5 min a 95°C, 2 min a 37°C y 3 min a 63°C repetido 35 veces. El producto de reacción se separó electroforéticamente en un gel de agarosa de punto de fusión al 2%, se purificó en una columna Elutip-D (Schleicher & Schuell) digerida con EcoR1 y BamH1, y se subclonó en pUC19.

[0082] Se secuenciaron los recombinantes mediante el método didesoxi de Sanger y se evaluaron mediante el programa de análisis de secuencia de ácidos nucleicos FASTA. Se marcó radioactivamente un clon denominado HpTK5 (214 pb) mediante cebado aleatorio y se utilizó para cribar una biblioteca de ADN de lambda gt10 de Hep3B cebado con oligo dT. El ADN aislado 17 placas de fagos positivos y se subclonaron insertos en el sitio EcoRI de pBluescript (Stratagene La Jolla, CA). El inserto mayor, un ADNc de 3969 pb, se sonicó hasta un tamaño promedio de 800-2000 pb y se clonó en el sitio Smal de M13. Se secuenciaron clones solapantes utilizando el Método de Ciclo de Cebador de Colorante Taq (CABI) en la Catalyst 800 Molecular Biology Lab Station (ABI). A continuación, las reacciones de secuenciación se analizaron en el Secuenciador de ADN Automatizado ABI 373A.

[0083] Se aisló y secuenció un ADNc único de 3969 pb de longitud completa (figuras 8A-8F). El clon de longitud completa, denominado quinasa transmembrana de hepatoma (HTK) o HpTK5, incluía un marco de lectura abierto que se extendía del nucleótido 90 al 350 previsto para codificar una proteína de 987 aminoácidos de 108.270 Dalton. El codón de iniciación potencial está precedido por un codón de parada en el marco que empieza en la base 78.

40 Antes del marco de lectura abierto se encuentra una región 5' no traducida que es rica en GC como es característico para muchos factores de crecimiento o receptores de factores de crecimiento (Kozak, J. Cell Biol. 115:887-903 [1991]).

[0084] La secuencia de proteína prevista incluye una región transmembrana (aminoácidos 538-563) que divide la HpTK5 en dominios extracelulares (ECD) e intracelulares (ICD). El ECD de 538 aminoácidos incluye un péptido señal de 15 aminoácidos y una caja rica en cisteína que contiene 20 residuos de Cys. Además, existen dos repeticiones de fibronectina tipo III que abarcan los aminoácidos 321 a 425 y 435 a 526. La Asn en las posiciones 208, 340 y 341 son posibles sitios para la N-glicosilación.

[0085] El dominio intracelular potencial (ICD) contiene una región consenso quinasa de la posición 613 a 881. Esta región quinasa incluye un consenso potencial de unión a ATP (Gly-X-Gly-X-X-Gly) en el subdominio I en las

posiciones 622-627. Una Lys en la posición 647 (subdominio II) corresponde a una Lys invariante entre tirosina quinasas que se cree que son críticas para la reacción de fosfotransferencia. Las regiones distintivas indicativas de especificidad de sustrato sugieren que la HpTK5 es una tirosina en lugar de una serina/treonina quinasa. Éstas incluyen la secuencia en las posiciones 740-745 en el subdominio VI y la secuencia en las posiciones 783-790 en el subdominio VIII. Los residuos de tirosina en las posiciones 601, 619 y 741 son posibles sustratos para actividad tirosina quinasa.

[0086] La secuencia de aminoácidos prevista de HpTK5 que se parece más a la de la subfamilia definida originalmente por EPH. El patrón de expresión de la subfamilia de EPH sugiere un papel en la diferenciación y desarrollo. En particular, la aparición de elementos neurales corresponde con la expresión de ciertos genes 10 relacionados con EPH. Los receptores de la familia de EPH, Hek2 y Elk, son las pTK más estrechamente relacionadas con HpTK5. Comparten una identidad del 79,3 y 76,5% en el ICD, respectivamente, y una identidad del 45 y 42% en el CD, respectivamente.

B. Mapeo cromosómico de HpTK5

[0087] Se utilizaron ADN híbridos de células somáticas de un panel de 25 líneas de células humanas-hámster (Bios, New Haven, CN) para la localización cromosómica por PCR. Se eligieron dos grupos de cebadores de la región 3' no traducida de HpTK5. Se realizó la PCR con 250 ng de ADN y 50 pmol de cada uno de los cebadores 5' y 3', KCl 50 mM, MgCl₂ 1,5 mM, gelatina 20 μg/ml, dNTP 0,2 mM y 2,5 unidades de Taq polimerasa en un volumen final de 100 μl. Los ciclos de 94°C durante 30 s, 60°C durante 30 s y 72°C durante 30 s se repitieron 30 veces. Se sometió a electroforesis una parte de cada muestra (15 μl) a través de un gel de agarosa al 1,5%, se transfirió a una membrana de nylon y se hibridó a una sonda de ADNc de HpTK5 de longitud completa marcada con ³²P antes de una autorradiografía de 5 horas. Se anotaron los positivos y se compararon con un resumen de la matriz de material cromosómico humano presente en cada uno de los ADN híbridos de células somáticas.

[0088] La región 3' no traducida contiene de forma característica algunas, si están presentes, secuencias intermedias y presenta un grado elevado de diversidad entre los miembros de de familias de genes haciéndola preferida en este tipo de análisis. Ambos grupos de cebadores produjeron resultados que eran concordantes con sólo el cromosoma 7 humano. El cromosoma 7 humano también incluye los genes para el receptor de EGF, el receptor del factor de crecimiento de hepatocitos (HGF), HGF, el factor de crecimiento derivado de plaquetas (PDGF) y la interleuquina-6. Las anormalidades cariotípicas que implican este cromosoma son habituales entre las leucemias humanas, particularmente en leucemias mieloides agresivas que aparecen después de la radiación, quimioterapia con agente alquilante o una enfermedad mielodisplásica existente (Baer et al., Curr, Opin. Oncol. 4,:24-32 [1992]).

C. <u>Transferencia Northern de HpTK5</u>

[0089] Se sometió a electroforesis un ARN seleccionado de Poli-A a través de una agarosa al 1,2%, gel de formaldehído 2,2 M y se transfirió a un filtro de nylon. Se hibridaron filtros preparados u obtenidos comercialmente en formamida al 50% a 42°C a HpTK5 marcada con ³²P, gliceraldehído-3-fosfato deshidrogenasa (GAPDH) o inserciones de ADNc de actina y se lavaron bajo condiciones astringentes (lavado final: 0,1 x SSC, SDS al 0,2% SDS a 65°C). SSC es NaCl 0,15 M/Na₃·citrato 0,015M, pH 7,6. Las transferencias Northern de ARN de tejido fetal o adulto humano se obtuvieron de Clontech (Palo Alto, CA) y contenían 2 μg/carril de ARN seleccionado de poly A.

[0090] El análisis por transferencia Northern de tejidos fetales humanos reveló un único transcrito de ~4Kb en el 40 corazón, pulmón, hígado y riñón, con una señal menor detectable en el cerebro. En tejido humano adulto, no se detectó señal en cerebro, mientras que la placenta presentaba una señal particularmente intensa seguida del riñón, hígado, pulmón y páncreas. El músculo esquelético y el corazón presentaban una intensidad de señal inferior.

[0091] También se analizó la expresión de HpTK5 en líneas celulares de tumor humano mediante análisis de transferencia Northern realizado tal como se ha descrito anteriormente. Las líneas celulares derivadas de hígado, mama (MCF 7), (Colo 205), pulmón (NCI 69), melanocito (HM-1) o cuello del útero (HeLa) presentaban una señal detectable de tamaño apropiado. El mensaje estaba presente en líneas celulares seleccionadas de origen hematopoyético. K562 (una célula mieloide primitiva con multipotencial), THP-1 (una célula monocitoide), U937 (una línea celular mielomonocítica), Hep3B (una línea celular de hepatocarcinoma humano), y CMK (de origen megacariocítico) fueron todas positivas para el mensaje de HpTK5, pero linfoide (H9, Jurkat, JH-1, Raji, Ramos) u otras células mieloides seleccionadas (KG-1 o KMT2) no presentaban un transcrito detectable mediante análisis Northern.

[0092] La expresión diferencial del transcrito de HpTK5 en cerebro fetal frente a cerebro adulto sugiere que la HPTK5 puede compartir, con otros miembros de la subfamilia de EPH, un papel en sucesos relacionados con el desarrollo neural. Sin embargo, a diferencia de algunos miembros de la subfamilia de EPH que se expresan exclusivamente en neuronas (Maisonpierre et al., supra), la HpTK5 se expresa ampliamente en otros tejidos. En particular, la HpTK5 se expresa en células hematopoyéticas que incluyen células progenitoras hematopoyéticas CD34+. La presencia del mensaje de HpTK5 en células hematopoyéticas tempranas y líneas celulares de linaje mieloide, pero no en líneas celulares derivadas de células linfoides, sugiere que la HpTK5 puede presentar una

expresión limitada al linaje.

EJEMPLO 3

PRODUCCIÓN DE ANTICUERPOS POLICLONALES PARA HPTK5

[0093] Se construyó un gen de fusión de Fc de IgG1 humana y el dominio extracelular (ECD) de HpTK5 y se produjo 5 una proteína de fusión tal como se ha descrito previamente (Bennett et al., J. Biol. Chem. 266:23060-23067 [1991]). Se generaron anticuerpos policionales en conejos blancos de Nueva Zelanda contra la proteína de fusión; se emulsionaron 4 µg en 100 µl de PBS con 100 µl de adyuvante de Freund (adyuvante completo para la inyección primaria y adyuvante incompleto para todos los refuerzos). Para la inmunización primaria y el primer refuerzo, se inyectó la proteína directamente en los nódulos linfáticos poplíteos (Sigel et al., Methods Enzymol. 93:3-12 [1983]).

10 Para los refuerzos posteriores, la proteína se inyectó en sitios subcutáneos e intramusculares. Se inyectaron 1,3 μg proteína/kg de peso corporal cada 3 semanas con sangrados tomados 1 y 2 semanas después de cada refuerzo. La especificidad de HpTK5 del suero de conejo inmunizado se valoró mediante análisis citométrico de flujo de células NIH3T3 transfectadas con HpTK5 de longitud completa o vector solo utilizando una dilución 1:200 de suero preinmune o suero de Fc de IgG anti-HpTK5. Se observaron desplazamientos significativos en los picos en varios

15 clones que expresaban HpTK5 en comparación con los controles transfectantes de suero preinmune o vector solo.

EJEMPLO 4

UTILIDAD Y ACTIVIDAD AGONISTA DE ANTICUERPOS POLICLONALES PARA HPTK5

A. Construcción de la fusión FLAG-HpTK5

[0094] Se ligaron oligonucleótidos solapantes que codifican un péptido de 12 aminoácidos que tiene la secuencia 20 MDYKDDDDKKLAM (SEC ID NO: 41) que incluye el sitio de reconocimiento de anticuerpo de 4 aminoácidos "FLAG" (IBI, New Haven, CT) un sitio de restricción 5'-EcoRV y un sitio de restricción 3'-Ncol (5'-CCGGATATCATGGACTACAAGGACGATGACAAGAAGCTTGCCATGGAGCTC; SEC ID NO: 42), en el sitio Ncol (base 88) de HpTK5 en el vector Bluescript digerido con EcoRV (Stratagene, La Jolla, CA).

B. Transcripción y traducción in vitro

25 [0095] La transcripción se realiza en 2 pmol de PTK5 linealizado o plásmido que contenía FLAG-HpTK5 a 37°C durante 1 hora en un volumen de 50 µl que contenía ditiotreitol 10 mM, 2,5 µg de albúmina de suero bovino, 0,25 mM de cada dNTP, recubrimiento m7GRNA 0,5 M (New England Biolabs, Beverly, MA), 2,5 unidades de RNasin (Promega, Madison, WI), 3 unidades T3 ARN polimerasa (Pharmacia, Piscataway, NJ). Se añadió 1 μg de DNAasa (New England Biolabs, Beverly MA) durante 15 min a 37°C antes de la extracción con fenol/cloroformo y la 30 precipitación con etanol. La traducción se realizó utilizando el kit de de lisado de reticulocitos de conejo Promega según las instrucciones de fabricante con o sin el marcaje con 35 S-metionina (350 μ Ci). Se añadió tampón de muestra que contenía SDS y beta-mercaptoetanol 2-ME) antes de la ebullición y SDS-PAGE al 10%.

C. Expresión de HpTK5 en células NIH3T3

[0096] Se subclonaron un fragmento de ADNc Clal - Xbal de 4038 pb que contenía 23 pb de secuencia enlazadora, 35 37 pb de polienlazador pBluescript (Stratagene La Jolla, CA) y el ADNc de HpTK5 de 3969 pb completo en el vector de pRIS (Genentech, Inc.) bajo el control del promotor LTR del virus de sarcoma de Rous. Las células NIH3T3 mantenidas en un Medio de Eagle Modificado por Dulbecoo con glucosa elevada (DMEM) suplementado con FCS al 10% se cotransfectaron con pRIs-HpTK5 y pNeo (un vector basado en Sv40 que contenía el marcador de resistencia a neomicina) mediante el método de fosfato de calcio descrito por Gorman et al., en DNA Prot. Engineer. Tech. 2:3- $40\,$ 10 [1990]. Las colonias de resistencia a neomicina se seleccionaron 48 horas después de la transfección con Geneticina (Gibco/BRL) a 400 μg/ml. Catorce días después se aislaron las colonias resistentes individuales, se expandieron y analizaron mediante citometría de flujo para la expresión de HpTK5 utilizando antisuero policlonal de conejo.

D. Inmunoprecipitación

45 [0097] Se utilizaron células (Hep3B, control NIH3T3 o NIH33T3 transfectadas con HpTK5) o proteína traducida in vitro (HpTK5 o FLAGHpTK5) para la inmunoprecipitación con suero (pre-inmune o anti-HpTK5-lgG Fc) o anticuerpo monoclonal (específico de FLAG, M2, o control de isotipo) (IBI, Rochester, NY). Las células subconfluentes se marcaron con 200 μCi/ml de ³⁵S-metionina durante 18 horas y se lisaron en tampón de lisis (NaCl 150 mM, Tris-HCl 50 mM, pH 8,0, EDTA 1 mM, azida sódica 0,025, N-40 al 1%, SDS al 0,1%, glicerol al 10%, desoxicolato sódico al

 $50\,$ 0,5%, fluoruro de fenilmetilsulfonilo (PMSF) 1 mM, apronitina 10 μ g/ml, leupeptina 10 μ g/ml y vanadato de sodio 50 μM) durante 30 min en hielo. El lisado celular se centrifugó (12,000 X g) durante 10 min a 4°C. El sobrenadante del lisado celular o mezcla de traducción in vitro se preaclaró con 0,05 volumen de suero de conejo normal y se adsorbió con 0,05 volumen de proteína A Sefarosa CL4B de Staphylococcus aureus. Después de la centrifugación, el suero preinmune o inmune (dilución 1:100), o anticuerpo monoclonal, se añadieron y agitaron durante la noche a 4°C antes

55 de añadir 100 μl de proteína A Sefarosa CL4B y la solución se agitó a 4°C durante 2 h adicionales. Se lavaron los

inmunoprecipitados, se suspendieron en un tampón de carga de SDS/PAGE (glicerol al 10%, 2-ME al 5%, SDS al 2,3% y Tris-HCl 62,5 mM pH 6,8), se calentaron hasta 95°C durante 5 min y se analizaron mediante SDS-PAGE al 7,5%.

E. Fraccionamiento celular

- 5 [0098] El fraccionamiento celular de células Hep3B se realizó para confirmar la localización en la membrana de HpTK5 prevista mediante su secuencia de aminoácidos. Las células Hep-3B (1x10⁷) se marcaron durante toda la noche con 200 μCi/ml de ³⁵S-metionina en un medio alfa MEM que contenía FCS dializado al 10%. Las células se lavaron dos veces con PBS frío, se extrajeron en 1 ml de tampón frío (Tris-HCl 20 mM pH 7,5, EDTA 2 mM, EGTA 5 mM, sacarosa 0,25 M, leupeptina al 0,01%, PMSF 4 mM, 2-ME 10 mM) y se alteraron mediante sonicación durante 10 40 segundos. Se centrifugaron los homogenatos completos a 12.000 X g durante 15 min, se aislaron los residuos
- 40 segundos. Se centrifugaron los homogenatos completos a 12.000 X g durante 15 min, se aislaron los residuos nucleares y el sobrenadante decantado se centrifugó a 140.000 X g durante 40 min a 4°C para obtener residuos de membranas. El sobrenadante resultante se utilizó como la fracción citosólica (C). Las fracciones nucleares (N) y de membrana (M) se lavaron y disolvieron en tampón que contenía NP-40 al 0,5% antes de la inmunoprecipitación. Las fracciones c, N o M se inmunoprecipitaron con un suero anti-HpTK5 o pre-inmune (control), se sometieron a SDS-
- 15 PAGE al 12% y se autorradiografiaron. La HpTK5 se segregó predominantemente con la fracción de membrana, aunque el material inmunoprecipitado era evidente en un grado menor en el citosol.

F. Ensayo de proteína quinasa

[0099] Se lavaron los inmunoprecipitados una vez con tampón quinasa (Hepes 25 mM pH 7,4, DTT 1 mM, MgCl₂ 10 mM, MnCl 10 mM) y se resuspendió en 40 μl de tampón quinasa que contenía ATP no marcado o 10 μCi de ³²P-ATP (3000 Ci/mM). Después de una incubación de 10 minutos a 30°C, la reacción se detuvo mediante la adición de 40 μl de 2 X tampón de muestra y la ebullición de las muestras durante 3 min antes de la electroforesis en gel SDS-PAGE al 8,0%. El gel secado se cubrió con 4 láminas de papel de aluminio para bloquear la autorradiografía de proteína marcada con ³⁵S y el gel se colocó bajo una película durante 5 horas durante la noche.

G. Transferencia Western y ensayo de fosfotirosina

- 25 [0100] Las proteínas se transfirieron electroforéticamente a una membrana de nitrocelulosa de 0,2 μm (Bio-Rad) o una membrana de difluoruro de polivinilideno de 0,45 μm (Millipore) en un tampón que contenía Tris-HCl 25 mM (pH 7,5), glicina 192 mM y metanol al 20% a 100 mA durante 2 horas. Los filtros se lavaron en TBS (Tris-HCl 10 mM pH 8,0, NaCl 150 mM), se bloquearon durante la noche mediante la incubación en TBST (TBS con Tween-20 al 0,05%) más BSA al 5%. Los filtros se lavaron cuatro veces durante 5 minutos cada uno en TBST y se incubaron durante 2
- 30 horas con anticuerpo anti-fosfotirosina 4G10 de UBI (dilución 1:1000 en TBST). Los filtros se lavaron cuatro veces durante 5 minutos cada uno en TBST y se incubaron durante 1 hora con el anticuerpo secundario anti-ratón marcado con fosfatasa alcalina (Promega) a una dilución 1:7500 en TBST. Después de lavarse cuatro veces, se reveló la transferencia durante 30-60 min en tampón AP (Tris-HCl 100 mM, NaCl 100 mM, MgCl₂ 5 mM) más sustratos BCIP, NBT

35 H. Ensayo de fosforilación inducido por anticuerpo

[0101] Se analizó el anticuerpo de conejo para HptK5-Fc de IgG por su capacidad de inducir la fosforilación de HpTK5 en células NIH3T3 transfectadas con HpTK5. Las células se emplacaron a una densidad de 5 x 10⁵ células/pocillo en una placa de 6 pocillos y, después de 24 horas, se privaron de suero durante 1 hora antes de la adición de suero pre-inmune o inmune a una dilución de 1:50 durante 30 minutos. A continuación, las células se 40 lavaron en PBS y se lisaron en 2X tampón de muestra o tampón de lisis NP-40 tal como se ha descrito

- anteriormente. A continuación, los lisados crudos o lisados de células inmunoprecipitadas se separaron a través de un gradiente de SDS-PAGE al 4-12% y se analizaron mediante inmunotransferencia anti-fosfotirosina tal como se ha descrito anteriormente. Las células que expresaban HpTK5 se expusieron a antisuero y se separaron mediante SDS-PAGE con sin inmunoprecipitación. El gel electrotransferido se inmunotransfirió con anticuerpo anti-
- 45 fosfotirosina. Se observó una mayor fosforilación de tirosina de HpTK5 después de la exposición a antisuero policional mostrando un efecto de tipo agonista de la unión a anticuerpo. La interacción de HpTK5 con un anticuerpo dirigido contra su ECD induce la fosforilación. Esto apoya además que el HpTK5 pueda servir como receptor para un ligando que desencadena la activación de quinasa. Los detalles del mecanismo de señalización de HpTK5 se pueden explorar adicionalmente utilizando antisuero como ligando sustituto.

50 I. Conclusiones

[0102] Se expresó una proteína de fusión HpTK5-Fc de IgG, se purificó y utilizó para generar anti-suero de conejo que inmunoprecipitó una proteína de 120 kD de células Hep3B. La especificidad del antisuero se confirmó mediante inmunoprecipitación de ARN de HpTK5 traducido *in vitro* y células NIH3T3 transfectadas con HpTK5. Para determinar la capacidad funcional de HpTK5, se inmunoprecipitó la HpTK5 traducida *in vitro*, se expuso a condiciones de quinasa y se inmunotransfirieron utilizando un anticuerpo monoclonal específico de fosfotirosina. Los datos obtenidos indicaron que la HpTK5 se fosforila en tirosina. Sin embargo, la presencia de otras bandas que aparecían sistemáticamente en la inmunoprecipitación marcada con ³²P sugirió que la proteína HpTK5 estaba

únicamente parcialmente purificada y, por lo tanto, no se podía concluir que la HpTK5 era enzimáticamente activa. Para superar este problema, se generó una construcción de fusión en la que se añadió un epítopo de 8 aminoácidos (FLAP) al extremo N-terminal de HpTK5. La fusión FLAG-HpTK5 se tradujo in vivo y se inmunoprecipitó con un anticuerpo monoclonal específico de FLAG dando lugar a una única proteína de tamaño adecuado (~120kD). 5 Cuando se sometió a las condiciones de quinasa en presencia de ³²P-ATP, la proteína de fusión HpTK5-FLAG se marcó en la tirosina confirmando la autofosforilación de tirosina la autofosforilación de tirosina y, de este modo, la función quinasa de HpTK5.

EJEMPLO 5

PRODUCCIÓN DE ANTICUERPOS MONOCLONALES PARA HPTK5

- 10 [0103] Se produjeron anticuerpos monoclonales anti-HpTK5 mediante la hiperinmunización intraperitoneal de ratones BALB/c con la proteína de fusión Fc de IgG₁ Humana-dominio extracelular (ECD) de HpTK5 (producida utilizando las técnicas descritas anteriormente) en adyuvante RIBI (RIBI ImmunoChem Research, Hamilton, MT) y la fusión de esplenocitos con la línea celular de mieloma de ratón X63-Ag8.653 (Kearney et al., J. Immunol. 123:1548-1550 [1979]). Se purificaron los anticuerpos del fluido ascítico utilizando proteína A Sefarosa (Repligen Corp.,
- 15 Cambridge, MA) y se establecieron procedimientos de cromatografía de afinidad (Goding, J.W., J. Immunol. Methods 20:241-253 [1978]).
- [0104] Se cribaron anticuerpos monoclonales por su capacidad de unirse al antígeno de HpTK5. Comenzando en el día 15 después de la fusión, se recogieron los sobrenadantes del cultivo de las placas de fusión y se analizó su capacidad de "capturar" específicamente HpTK5-IgG. En este ensayo ELISA, se recubrió la IgG anti-ratón de cabra en placas de microtitulación de 96 pocillos. Se añadieron los sobrenadantes de cultivo (100 µl) a los pocillos y se unieron las IgG de ratón presentes mediante los anticuerpos IgG anti-ratón de cabra. Se lavaron las placas y se añadió HpTK5-IgG o CD4-IgG (100 µl a 6 nM). Se detectó inmunoadhesina "capturada" utilizando un conjugado de peroxidasa de rábano picante anti-hu de cabra (específico de Fc) y sustrato de ortofenilen diamina. Se determinó la
- 25 [0105] A continuación, se cribaron los anticuerpos agonistas para utilizar las técnicas descritas en el Ejemplo 6 siguiente. Se identificaron dos anticuerpos monoclonales agonistas, uno de los cuales fue depositado con la ATCC.

EJEMPLO 6

ACTIVIDAD AGONISTA DE ANTICUERPOS MONOCLONALES PARA HPTK5

cuantificación de catálisis de sustrato mediante la densidad óptica a 490 nm.

[0106] Se evaluaron los anticuerpos monoclonales producidos utilizando las técnicas descritas en el Ejemplo 5 por su capacidad de inducir la fosforilación de HpTK5 en células NIH3T3 transfectadas con HpK5. Se pusieron en placas las células a una densidad de 5 x 10⁵ células/pocillo en una placa de 6 pocillos y, después de 24 horas, se les privó de suero durante 1 hora antes de añadir suero pre-inmune o anticuerpo monoclonal anti-HpTK5 (se utilizaron medios de hibridoma acondicionados sin diluir) durante 30 minutos. A continuación, se lavaron las células en PBS y se lisaron en 2X de tampón de muestra o tampón de lisis NP-40 tal y como se ha descrito anteriormente. A continuación, se separaron los lisados crudos o los lisados de células inmunoprecipitadas mediante gradiente de SDS-PAGE al 4-12% y se analizaron mediante inmunotransferencia de antifosfotirosina tal y como se ha descrito anteriormente. Se expusieron células que expresaban HpTK5 al anticuerpo monoclonal y se separaron mediante SDS-PAGE con o sin inmunoprecipitación. El gel electrotransferido se inmunotransfirió con anticuerpo antifosfotirosina. Se observó una mayor fosforilación de tirosina de HpTK5 después de la exposición a anticuerpos monoclonales mostrando un efecto de tipo agonista de la unión a anticuerpo. Por consiguiente, la interacción de HpTK5 con un anticuerpo monoclonal dirigido contra su ECD es capaz de inducir la fosforilación del dominio quinasa del mismo.

EJEMPLO 7

PRODUCCIÓN DE ANTICUERPOS POLICLONALES PARA SAL-S1

- 45 [0107] Se construyó un gen de la fusión dominio extracelular (ECD) de SAL-S1-Fc de IgG1 humana y se produjo la proteína de fusión tal como se ha descrito previamente en Bennett et al., J. Biol. Chem. 266:23060-23067 [1991]. Brevemente, los cebadores de PCR otk 1.41.1 (SEC ID NO: 43) y otk 1.41.2 (SEC ID NO: 44) se utilizaron en la técnica de PCR utilizando el plásmido pRK5.tk1-1.1 (SEC ID NO: 45) que contenía el ácido nucleico de SAL-S1 como plantilla para crear un fragmento de ADN que, cuando se digiere con Sall/BstEII, generó un fragmento
- 50 Sall/BstEII de 155 pb. Este fragmento de 155 pb se combinó con un fragmento Sall/HindIII de 6839 pb aislado de pRKS.tk1-1.1 y un fragmento BstEII/HindIII de 719 pb aislado de pBSSK-CH2-CH3 (Bennett et al., supra). Estos fragmentos se ligaron para crear un plásmido pRK5.tk1.igl.1 (7713 pb de tamaño) que, cuando se transfectaron en células 293, se utilizaron para producir una proteína de fusión del dominio extracelular (ECD) de SAL-S1-Fc de IgG humana. La proteína de fusión se preparó y purificó tal como se ha descrito en Bennett et al., supra. Se generaron
- 55 anticuerpos policionales en conejos blancos hembra de Nueva Zelanda contra la proteína de fusión. Brevemente, se emulsionaron 12,5 μg de proteína de fusión en 0,625 ml de PBS con 0,625 ml de adyuvante de Freund (adyuvante completo para la invección primaria y adyuvante incompleto para todos los refuerzos). La invección primaria y todos

los refuerzos fueron intramusculares en dos sitios y subcutáneos en múltiples sitios. Los refuerzos se realizaron en intervalos de 3 semanas con sangrados tomados 1 y 2 semanas después de cada refuerzo. La especificidad de SAL-S1 del suero de conejo inmunizado se valoró mediante análisis citométrico de flujo de 293 (ATCC CRL 1593) y COS7 (ATCC CRL 1651) transfectadas con Sal-S1 de longitud completa o vector solo (ver a continuación) utilizando una dilución 1:200 de suero pre-inmune o suero anti-SAL-S1-Fc de IgG. Se observaron desplazamientos significativos de los picos en varios clones que expresan SAL-S1 en comparación con el suero preinmune o controles transfectantes de vector solo.

EJEMPLO 8

UTILIDAD Y ACTIVIDAD AGONISTA DE ANTICUERPOS POLICLONALES SAL-S1

10 A. Inmunoprecipitación

[0108] Se utilizaron células de control 293 y COS7 además de las células 293 y COS7 transfectadas con SAL-S1 para inmunoprecipitación con suero pre-inmune o anticuerpo policlonal anti-SAL-S1-Fc de IgG. Se transfectaron las células COS7 y 293 utilizando un procedimiento de CaPO₄ tal y como describe Gorman, C. DNA Cloning, Glover D. Ed., IRL Press, Oxford, vol2: 143-190 (1985). Para la expresión transitoria, se transfectaron células 293 tal y como describe Gearing et al. EMBO 8: 3667-3676 (1989). Se marcaron células subconfluentes con 200μCi/ml de ³⁵S-metionina durante 18 horas y se lisaron en tampón de lisis (NaCl 150 mM, HEPES 50mM, pH 7,5, EGTA 1 mM, azida de Na 0,025, Triton-X 100 al 1%, MgCl₂ 1,5mM, Glicerol al 10%, fluoruro de fenilmetilsulfonilo [PMSF] 1 mM, aprotinina 10 μg/ml, leupeptina 10 μg/ml y vanadato de Na 50 μM) durante 10 min en hielo. Se centrifugó el lisato celular (12.000 X g) durante 10 min a 4°C. Después de la centrifugación, se añadió anticuerpo preinmune o policlonal al sobrenadante y se giró durante 4 horas a 4°C antes de añadir 100 μl de proteína-A Sefarosa CL4B y la solución se agitó a 4°C durante 2 horas adicionales. Se lavaron los inmunoprecipitados, se suspendieron en tampón de carga SDS/PAGE (glicerol al 10%, 2-ME al 5%, SDS al 2,3% y Tris-HCl 62,5mM pH 6,8), se calentaron hasta 95°C durante 5 min y se analizaron mediante SDS-PAGE al 7,5%.

B. Transferencia western y ensayo de fosfotirosina

25 [0109] Se transfirieron electroforéticamente las proteínas a una membrana de nitrocelulosa de 0,2 μm (Bio-Rad) o una membrana de difluoruro de polivinilideno de 0,45 μm (Millipore) en un tampón que contenía Tris-HCl 25 mM (pH 7,5), glicina 192 mM y metanol al 20% a 100 mA durante 2 h. Se lavaron los filtros en TBS (Tris-HCl 10 mM pH 8,0, NaCl 150 mM), se bloquearon mediante incubación en TBST (TBS con Tween-20 al 0,05%) más BSA al 5% durante toda la noche. Se lavaron los filtros cuatro veces durante 5 min cada uno en TBST y se incubaron durante 2 h con anticuerpo 4G10 anti-fosfotirosina de UBI (dilución 1:1000 en TBST). Se lavaron los filtros cuatro veces durante 5 min cada uno en TBST y se incubaron durante 1 h con fosfatasa alcalina marcada con anticuerpo secundario antiratón (Promega) en una dilución 1:5000 en TBST. Después de lavar cuatro veces, se reveló la transferencia durante 30-60 min en tampón AP (Tris-HCl 100mM, NaCl 100 mM, MgCl₂ 5 mM) más sustratos BCIP, NBT.

C. Ensayo de fosforilación inducida por anticuerpo

35 [0110] Se evaluaron los antisueros de conejo para SAL-S1-Fc de IgG por su capacidad de inducir la fosforilación de SAL-S1 en células 293 transfectadas con SAL-S1. Se pusieron en placas las células a una densidad de 5 x 10⁵ células/pocillo en una placa de 6 pocillos y, después de 24 horas, se les privó de suero durante 12 horas antes de añadir suero pre-inmune o suero inmune en una dilución 1:5 durante 30 minutos. A continuación se lavaron las células en PBS y se lisaron en tampón de muestra o tampón de lisis Triton-X tal y como se describe anteriormente. A continuación, se separaron lisatos crudos o lisatos de células inmunoprecipitadas mediante gradiente de SDS-PAGE al 8% o al 4-12% y se analizaron mediante inmunotransferencia de antifosfotirosina tal y como se describe anteriormente. Se expusieron células que expresaban SAL-S1 a antisueros y se separaron mediante SDS-PAGE con o sin inmunoprecipitación. El gel electrotransferido se inmunotransfirió con anticuerpo anti-fosfotirosina. Se observó una mayor fosforilación de tirosina de SAL-S1 después de la exposición a antisuero policional mostrando un efecto de tipo agonista de la unión a anticuerpo. La interacción de SAL-S1 con un anticuerpo dirigido contra su ECD induce la fosforilación

EJEMPLO 9

PRODUCCIÓN DE ANTICUERPOS MONOCLONALES PARA SAL-S1

[0111] Se produjeron anticuerpos monoclonales anti-SAL-S1 mediante la hiperinmunización de ratones BALB/c en la 50 base de la pata con la proteína de fusión Fc de IgG₁ humana-dominio extracelular de SAL-S1 en adyuvante de RIBI (RIBI Immunochem Research, Hamilton, MT) y la fusión de linfocitos de nódulos linfáticos con la línea celular de mieloma de ratón X63-Ag8U1.

[0112] Empezando en el día 10 después de la fusión, se recogieron los sobrenadantes cultivados de las placas de fusión y se ensayó su capacidad de unirse a SAL-S1. En este ensayo ELISA, se recubrió IgG₁ SAL-S1 en placas de microtiulación de 96 pocillos. Se añadieron los sobrenadantes cultivados (100 µl) a los pocillos y se unieron los anticuerpos de ratón presentes a IgG₁ SAL-S1. Se lavaron las placas y se detectó IgG de ratón utilizando un

conjugado de peroxidasa de rábano picante con IgG de cabra anti-ratón (Fc específico sin reactividad cruzada contra Fc de IgG humano) y sustrato de ortofenilen diamina. Se determinó la cuantificación de catálisis de sustrato mediante densidad óptica a 490 nm.

[0113] A continuación, se evaluaron los sobrenadantes cultivados que fueron positivos en ELISA por su capacidad 5 de unirse específicamente a 293 transfectadas con receptor de SAL-S1 y se analizaron mediante citometría de flujo. A continuación, se cribaron los anticuerpos agonistas para utilizar las técnicas descritas en el Ejemplo 10 siguiente. Se identificaron seis anticuerpos monoclonales agonistas.

EJEMPLO 10

ACTIVIDAD AGONISTA DE ANTICUERPOS MONOCLONALES PARA SAL-S1

10 [0114] Se evaluaron los anticuerpos monoclonales por su capacidad de inducir la fosforilación de SAL-S1 en células 293 transfectadas con SAL-S1. Las células se recogieron de la placa de cultivo tisular mediante tampón de ensayo y se lavaron 2 veces con el mismo tampón. Se añadieron 1x10⁵ células a una placa de base U de 96 pocillos que se centrifugó y se extrajo el tampón de ensayo. Se añadieron 150 μl de sobrenadantes de cultivo a cada pocillo seguido de incubación a 37°C durante 30 minutos, la placa se centrifugó y se extrajeron los sobrenadantes de cultivo. Se añadieron 100 μl de solución de fijación, las células se fijaron durante 30 minutos a -20°C, las células se lavaron con tampón dos veces y se tiñeron con conjugado anti-fosfotirosina con FITC durante 60 minutos a 4°C. Las células se analizaron mediante citometría de flujo (FACScan Becton Dickinson, milplitas, CA). Los seis anticuerpos monoclonales anti-SAL-S1 eran capaces de inducir la fosforilación de SAL-S1 en células 293 transfectadas con SAL-S1

20 Depósito de materiales

[0115] Los siguientes materiales se han depositado con la American TIPO Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

Hibridoma	ATCC Dep. No.	Data del depósito
Anti-HpTK5	HB 11.583	15 de marzo de 1994

- [0116] Este depósito se realizó según lo estipulado en el Tratado de Budapest sobre el Reconocimiento Internacional del Depósito de Microorganismos a los fines del Procedimiento en Materia de Patentes y el Reglamento bajo el mismo (Tratado de Budapest). Esto asegura el mantenimiento de un cultivo viable del depósito durante 30 años a partir de la fecha del depósito. El organismo estará disponible mediante la ATCC según los términos del Tratado de Budapest, y están sujetos a un acuerdo entre Genentech, Inc. y ATCC, que asegura la disponibilidad permanente y sin restricción de la progenie del cultivo del depósito al uso público tras la concesión de la respectiva patente estadounidense o tras ponerse abierta a la inspección pública de cualquier solicitud de patente estadounidense o extranjera, la que sea primera, y asegura la disponibilidad de la progenie a la persona autorizada por el Comisionado de Estados Unidos de Patentes y Marcas de acuerdo con la norma 35 USC § 122 y las normas del Comisionado según lo acordado (incluyendo 37 CFR § 1.14 con particular referencia a 886 OG 638).
- [0117] El cesionario de la presente solicitud ha acordado que si un cultivo de los materiales en el depósito muriera o se perdiera o se destruyera cuando se cultiva en las condiciones adecuadas, los materiales serán inmediatamente remplazados en una notificación por otros iguales. La disponibilidad del material depositado no se interpreta como una licencia para realizar la invención contraviniendo los derechos concedidos bajo la autoridad de cualquier gobierno de acuerdo con sus leyes de patente.
- [0118] La memoria escrita anterior se considera que es suficiente para permitir a un experto en la materia realizar la invención. La presente invención no se limita en su alcance por la construcción depositada, ya que la realización depositada pretende ser una ilustración individual de ciertos aspectos de la presente invención y cualquier cultivo que sea funcionalmente equivalente están dentro del alcance de la presente invención. El depósito del material de la presente invención no constituye una admisión de que la descripción escrita contenida en la presente invención sea inadecuada para permitir la práctica de cualquier aspecto de la invención, incluyendo el modo óptimo de la misma, ni se interpreta como limitante del alcance de las reivindicaciones a las ilustraciones específicas que representa. De hecho, las diversas modificaciones además de las mostradas y descritas en la presente invención serán evidentes para los expertos en la materia a partir de la descripción anterior y caen dentro del alcance de las reivindicaciones adjuntas.

LISTADO DE SECUENCIAS

[0119]

- (1) INFORMACIÓN GENERAL:
- (i) SOLICITANTE: Genentech, Inc.

Bennett, Brian D.

5 Goeddel, David

Lee, James M.

Matthews, William

Tsai, Siao Ping

Wood, William I.

- 10 (ii) TÍTULO DE LA INVENCIÓN: ANTICUERPOS AGONISTAS DE PROTEÍNA TIROSINA QUINASA
 - (iii) NÚMERO DE SECUENCIAS: 45
 - (iv) DIRECCIÓN DE CORRESPONDENCIA:
 - (A) DESTINATARIO: Genentech, Inc.
 - (B) CALLE: 460 Point San Bruno Blvd
- 15 (C) CIUDAD: South San Francisco
 - (D) ESTADO: California
 - (E) PAÍS: USA
 - (F) CP: 94080
 - (v) FORMA DE LECTURA POR ORDENADOR:
- 20 (A) TIPO DE MEDIO: disquete de 5.25 pulgadas, 360 Kb
 - (B) ORDENADOR: IBM PC compatible
 - (C) SISTEMA OPERATIVO: PC-DOS/MS-DOS
 - (D) SOFTWARE: patin (Genentech)
 - (vi) DATOS DE LA PRESENTE SOLICITUD:
- 25 (A) NÚMERO DE SOLICITUD:
 - (B) FECHA DE SOLICITUD:
 - (C) CLASIFICACIÓN:
 - (vii) DATOS DE SOLICITUD ANTERIOR:
 - (A) NÚMERO DE SOLICITUD: 08/222616
- 30 (B) FECHA DE SOLICITUD: 04-APR-1994
 - (viii) INFORMACIÓN ABOGADO/AGENTE:
 - (A) NOMBRE: Wendy M. Lee
 - (B) NÚMERO DE REGISTRO: 00,000
 - (C) NÚMERO DE REFERENCIA/EXPEDIENTE: 821P3PCT
- 35 (ix) INFORMACIÓN DE COMUNICACIÓN:
 - (A) TELÉFONO: 415/225-1994

- (B) TELEFAX: 415/952-9881
- (C) TELEX: 910/371-7168
- (2) INFORMACIÓN PARA LA SEC ID NO:1:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- 5 (A) LONGITUD: 17 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:1:
- 10 CGGATCCACA GNGACCT 17
 - (2) INFORMACIÓN PARA LA SEC ID NO:2:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 23 bases
 - (B) TIPO: ácido nucleico
- 15 (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:2:
 - GGAATTCCAA AGGACCAGAC GTC 23
 - (2) INFORMACIÓN PARA LA SEC ID NO:3:
- 20 (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 21 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
- 25 (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:3:
 - CGGATCCATC CACAGAGATG T 21
 - (2) INFORMACIÓN PARA LA SEC ID NO:4:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 26 bases
- 30 (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:4:
 - **GGAATTCCTT CAGGAGCCAT CCACTT 26**
- 35 (2) INFORMACIÓN PARA LA SEC ID NO:5:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 160 bases

- (C) CADENA: única
- (D) TOPOLOGÍA: lineal
- (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:5:
- 5 GGATCCTGTG CATCAGTGAC TTAGGGCTAG GAACATTCTG CTGTCGGAAA 50
 - GCGACGTGGT GAAGATCTGT GACTTTGGCC TTGCCCGGGA CATCTACAAA 100
- GACCCCAGCT ACGTCCGCAA GCATGCCCGG CTGCCCCTGA AGTGGATGGC 150

GCCAGAATTC 160

- (2) INFORMACIÓN PARA LA SEC ID NO:6:
- 15 (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 53 aminoácidos
 - (B) TIPO: aminoácido
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:6:
- Asp Pro Val His Gln Xaa Leu Arg Ala Arg Asn Ile Leu Leu Ser
 1 5 10 15
 - Glu Ser Asp Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp
 20 25 30
- 25 Ile Tyr Lys Asp Pro Ser Tyr Val Arg Lys His Ala Arg Leu Pro 35 40 45

Leu Lys Trp Met Ala Pro Glu Phe 50 53

- (2) INFORMACIÓN PARA LA SEC ID NO:7:
- 30 (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 147 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
- 35 (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:7:

GGATCCATTC ACAGAGACCT AGCAGCACGC AACATCCTGG TCTCAGAGGA 50

CCTGGTAACC AAGGTCAGCG ACTTTGGCCT GGCCAAAGCC GAGCGGAAGG 100

5

GGCTAGACTC AAGCCGGCTG CCCGTCAAAT GGATGGCTCC CGAATTC 147

- (2) INFORMACIÓN PARA LA SEC ID NO:8:
- $10\,$ (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 49 aminoácidos
 - (B) TIPO: aminoácido
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:8:

15

- Gly Ser Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Ser
- Glu Asp Leu Val Thr Lys Val Ser Asp Phe Gly Leu Ala Lys Ala
- 20 Glu Arg Lys Gly Leu Asp Ser Ser Arg Leu Pro Val Lys Trp Met 45

Ala Pro Glu Phe

49

- 25 (2) INFORMACIÓN PARA LA SEC ID NO:9:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 149 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
- 30 (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:9:

	GT	rggaa	TTC	CTTC	CGGCG	C C	ATCC	ATTT	C AC	CGGC	AGCT	TTA	TTTC	GTG :	50
	TC	TAGAT	TCA	TAGA'	TGTCI	T C	ATTA'	TCTA	C CT	TAAA	AACT	CTG	GCAA	GTC :	100
5	CAJ	AATC	TGC	TACT	TTGTA	G A	TATT	ATGT	r ca	CCAA	CGAG	GAC	ATTC	CT 1	49
	(2) INFORM	IACIÓN	PARA	LA SE	C ID NC):10:									
	(i) CARACTERÍSTICAS DE LA SECUENCIA:														
	(A) LONGIT	UD: 47	amino	ácidos											
10	(B) TIPO: ar	minoácio	do												
	(D) TOPOLO	OGÍA: lir	neal												
	(xi) DESCR	IPCIÓN	DE LA	SECU	ENCIA:	SEC	ID NO:	10:							
	Val	Gly	Ile	Pro	Ser 5	Gly	Ala	Ile	His	Phe 10	Thr	Gly	Ser	Phe	Ile 15
15															
	Ser	Cys	Leu	Asp	Ser 20	Met	Ser	Ser	Leu	Ser 25	Thr	Leu	Lys	Thr	Leu 30
20	Ala	Ser	Pro	Lys	Ser 35	Ala	Thr	Leu	Ile	Leu 40	Суз	Ser	Pro	Thr	Arg 45
	Thr	Phe 47													
	(2) INFORM	/ACIÓN	I PARA	A LA SE	C ID NO	D:11:									
25	(i) CARACT	ERÍSTIC	CAS D	E LA SI	ECUEN	CIA:									
	(A) LONGIT	UD: 151	base	S											
	(B) TIPO: áo	cido nuc	leico												
	(C) CADEN	A: única													
	(D) TOPOL	⊃GÍ∆∙ lir	ادم												

 $30\,$ (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:11:

		GTGC	ACAG	GG A	TCTC	GCGG	СТ	CGGA	ACATO	CT	CGTC	GGGG	AAA	ACAC	CCT	50
		CTCG	aaag'	TT G	GGGA	CTTC	G GG	STTAC	CCAG	GC'	TAT	CAAG	GAG	GACG	TCT	100
5		ACCT	CTCC	CA 1	GACC	'ACAA'	T AT	rccc	TACA	AA'	rgga'	TGGC	CCC	TGAG	GGA	150
		A 15	1													
	(2) INFO	ORMAC	IÓN P	ARA L	A SEC	ID NO:1	12:									
10	(i) CARA	ACTER	ÍSTICA	S DE	LA SEC	CUENCI	IA:									
	(A) LON	IGITUD	: 50 an	ninoác	idos											
	(B) TIPO	D: amin	oácido													
	(D) TOP	OLOG	ÍA: line	al (xi)												
	DESCR	IPCIÓN	DE LA	A SEC	UENCI	A: SEC	ID NC	D:12:								
15																
	Val 1	His	Arg	Asp	Leu 5	Ala	Ala	Arg	Asn	Ile 10	Leu	Val	Gly	Glu	Asn 15	
	Thr	Leu	Ser	Lys	Val 20	Gly	Asp	Phe	Gly	Leu 25	Ala	Arg	Leu	Ile	Lys 30	
20	Glu	Asp	Val	Tyr	Leu 35	Ser	His	Asp	His	Asn 40	Ile	Pro	Tyr	Lys	Trp 45	
	Met	Ala	Pro	Glu	Gly 50											
25	(2) INFO	ORMAC	IÓN P	ARA L	A SEC	ID NO:1	13:									
	(i) CARA	ACTER	ÍSTICA	S DE	LA SEC	CUENCI	IA:									
	(A) LON	IGITUD	: 137 b	ases												
	(B) TIPO	D: ácido	nuclei	со												
	(C) CAE	DENA: τ	ínica													

 $30\,$ (D) TOPOLOGÍA: lineal

(xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:13:

GTTCACCGAG ATCTCAAGTC CAACAACATT TTGCTGCTGC AGCCCATTGA 50

GAGTGACGAC ATGGAGCACA AGACCCTGAA GATCACCGAC TTTGGCCTGG 100

CCCGAGAGTG GCACAAAACC ACACAAATGA GTGCCGC 137

- 5 (2) INFORMACIÓN PARA LA SEC ID NO:14:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 45 aminoácidos
 - (B) TIPO: aminoácido
 - (D) TOPOLOGÍA: lineal
- 10 (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:14:

Val His Arg Asp Leu Lys Ser Asn Asn Ile Leu Leu Cln Pro 1 5 10 15

Ile Glu Ser Asp Asp Met Glu His Lys Thr Leu Lys Ile Thr Asp
20 25 30

Phe Gly Leu Ala Arg Glu Trp His Lys Thr Thr Gln Met Ser Ala 35 40 45

- (2) INFORMACIÓN PARA LA SEC ID NO:15:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- 20 (A) LONGITUD: 211 bases

15

- (B) TIPO: ácido nucleico
- (C) CADENA: única
- (D) TOPOLOGÍA: lineal
- (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:15:
- GTCAATCGTG ACCTCGCCGC CCGAAATGTG TTGCTAGTTA CCCAACATTA 50

 CGCCAAGATC AGTGATTTCG GACTTTCCAA AGCACTGCGT GCTGATGAAA 100

 ACTACTACAA GGCCCAGACC CATGGAAAGT GGCCTGTCAA GTGGTACGCT 150
- 30 CCGGAATGCA TCAACTACTA CAAGTTCTCC AGCAAAAGCG ATGTCTGGTC 200

CTTTGGAATT C 211

- (2) INFORMACIÓN PARA LA SEC ID NO:16:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:

(A) LONGITUD: 70 aminoácidos

(B) TIPO: aminoácido

(D) TOPOLOGÍA: lineal

(xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:16:

5

Val Asn Arg Asp Leu Ala Ala Arg Asn Val Leu Leu Val Thr Gln
1 5 10 15

His Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys Ala Leu Arg
20 25 30

10 Ala Asp Glu Asn Tyr Tyr Lys Ala Gln Thr His Gly Lys Trp Pro 35 40 45

Val Lys Trp Tyr Ala Pro Glu Cys Ile Asn Tyr Tyr Lys Phe Ser 50 55 60

Ser Lys Ser Asp Val Trp Ser Phe Gly Ile
65 70

- (2) INFORMACIÓN PARA LA SEC ID NO:17:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 6827 bases
- 20 (B) TIPO: ácido nucleico
 - (C) CADENA: única

25

- (D) TOPOLOGÍA: lineal
- (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:17:

TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50

TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100

TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150

30 ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200

TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250

ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300 AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400 GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450 TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA 500 AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACTTGGCT TCGTTAGAAC GCGGCTACAA TTAATACATA 800 ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA GAATAACATC 850 CACTTTGCCT TTCTCTCCAC AGGTGTCCAC TCCCAGGTCC AACTGCACCT 900 CGGTTCTATC GATTGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT 950 CGAGATCCAT TGTGCTGGCG CGGATTCTTT ATCACTGATA AGTTGGTGGA 1000 CATATTATGT TTATCAGTGA TAAAGTGTCA AGCATGACAA AGTTGCAGCC 1050 GAATACAGTG ATCCGTGCCG CCCTAGACCT GTTGAACGAG GTCGGCGTAG 1100 ACGGTCTGAC GACACGCAAA CTGGCGGAAC GGTTGGGGGT TCAGCAGCCG 1150 GCGCTTTACT GGCACTTCAG GAACAAGCGG GCGCTGCTCG ACGCACTGGC 1200

CGAAGCCATG CTGGCGGAGA ATCATAGCAC TTCGGTGCCG AGAGCCGACG 1250 ACGACTGGCG CTCATTTCTG ACTGGGAATG CCCGCAGCTT CAGGCAGGCG 1300 CTGCTCGCCT ACCGCCAGCA CAATGGATCT CGAGGGATCT TCCATACCTA 1350 CCAGTTCTGC GCCTGCAGGT CGCGGCCGCA CTACTCTTTG ATGTATTACT 1400 CATATTACCA AGGAATAACT GGCGGGCACA GGGTCAGGTG CTGAAGGGAC 1450 ATTGTGAGAA GTGACCTAGA AGGCAAGAGG TGAGCCCTCT GTCACGCTGG 1500 CATAAGGGCC GCTTGAGGGC TCTTTGGTCA AGCAGTAACG CCAGTGTCTG 1550 GGAAGGCACC TGTTACTCAG CAGACCATGA AAGGGCGTCT CCCTTTCCTT 1600 GGAGCAGTCA GGGAACACTC TGCTCCACCA GCTTCTTGTG GGAGCCTGGA 1650 TATTATCCAG GCCTGCCCGC AGTCATCCGG AGGCCTAACC CCTCCCTGTG 1700 GTGCTTCAGT GGTCACACTC CTTGTCCACT TTCATGCTCC TCTTGGCCTC 1750 CTGGTTCCTC TTGGAAGTTT GTAGTAGATA GCAGAAGAA TAGCGAAAGT 1800 CTTAAAGTCT TTGATCTTTC TTATAAGTGC AGAGAAGAAA TGCTGACGTA 1850 TGCTGCCTTC TCTCTCTG CTTCAGCTAC CTGAAGCCGC TTTCTTGTCT 1900 ATACCTGCTC TCTATCTGCT CACACTCCTC CGAGGCCAGC ACCATCCCAC 1950 TGTCTGTCTG GTTGTCCACA GAGCCTTTGT AGGTCGTTGG GGTCATGGGG 2000 AATTCCTCAA ATGTCTTCAT CCTGGAGGAA CCACGGGTCT CAGCCCCTCT 2050 GGCCAGGCAC CCGGGAAAGG ACACCCAGTT GTAATACCTG GCGGCCAGGC 2100 TGTGGCGCTG CAGGCTTGGC GGGCTGTCCT CAGCGTCAGC CTGGGCGATG 2150

TGTAGGGCCA TGGTGGACAC CTGCGAGAAG CTGCCCTCTT CTGAGCTCTG 2200 AGAGCTGCGC GGGGCCATGC AGACCTCCTC TTCCTCTTGC AGGCCCCTGC 2250 CCTGGAGCAG GTCCCCCAGG ATCTCCACCA GCTCCGAGAA TGCAGGTCTC 2300 GCCTTGGGGT CTCCGGACCA GCAGTTCAGC ATGATGCGGC GTATGGCGGG 2350 AGTGGCCAGC TCCGGGGCCC TCATCCTTGT GCCGTCTCTC AGCCGCTGGC 2400 AGAACTCCTC ATTGATCTGC ACCCCAGGGT ACGGGGAGGC CCCCAGAGAG 2450 AAGATCTCCC AGAGAAGCAC CCCAAAGGAC CACACGTCAC TCTGCGTGGT 2500 GTACACCTTG TCGAAGATGC TTTCAGGGGC CATCCACTTC AGGGGCAGCC 2550 GGGCACTGCC CTTGCGGACG TAGTCGGGGT CTTTGTAGAT GTCCCGGGCA 2600 AGGCCAAAGT CACAGATCTT CACCACGTCG CTTTCCGACA GCAGAATGTT 2650 CCGAGCAGCC AGGTCTCTGT GGATGCACTT TCGGGAAGCC AGGAACTCCA 2700 TCCCTCTGGC CACCTGGAAG CTGTAGCAGA CAAGATCTTC CATGGTCAGC 2750 GGGCTCAGCC ACAGGTCCTC AGCTTCTTGG TCTGGAGAAG CCCGCCTCGC 2800 TCCGCCCTCG GTCTTCGAGA ACCGCGCGAA GAGGACCCTG TCGCTGCTCC 2850 CCGGCCGCCT CCGATCCAGC CTGGCGAGCT CCACCATGGC GCGGAAGCGT 2900 CCGCGCTGCT CGGGAGACTT CTCCTGCGGA TGCACGAAGC TGGCTCGAGG 2950 GCGCCCAGTC GTCCGCCGCA GAGGCGCCTC CATTCCCCCG CCGCCGCGG 3000 CGCCCGCAG GCCGCCCGCT CACCGNGCAG GGGCTGCGGC CGCGACTCTA 3050 GAGTCGACCT GCAGAAGCTT GGCCGCCATG GCCCAACTTG TTTATTGCAG 3100

CTTATAATGG TTACAAATAA AGCAATAGCA TCACAAATTT CACAAATAAA 3150 GCATTTTTT CACTGCATTC TAGTTGTGGT TTGTCCAAAC TCATCAATGT 3200 ATCTTATCAT GTCTGGATCG ATCGGGAATT AATTCGGCGC AGCACCATGG 3250 CCTGAAATAA CCTCTGAAAG AGGAACTTGG TTAGGTACCT TCTGAGGCGG 3300 AAAGAACCAG CTGTGGAATG TGTGTCAGTT AGGGTGTGGA AAGTCCCCAG 3350 GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA 3400 ACCAGGTGTG GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA GTATGCAAAG 3450 CATGCATCTC AATTAGTCAG CAACCATAGT CCCGCCCCTA ACTCCGCCCA 3500 TCCCGCCCCT AACTCCGCCC AGTTCCGCCC ATTCTCCGCC CCATGGCTGA 3550 CTAATTTTTT TTATTTATGC AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT 3600 ATTCCAGAAG TAGTGAGGAG GCTTTTTTGG AGGCCTAGGC TTTTGCAAAA 3650 AGCTGTTAAC AGCTTGGCAC TGGCCGTCGT TTTACAACGT CGTGACTGGG 3700 AAAACCCTGG CGTTACCCAA CTTAATCGCC TTGCAGCACA TCCCCCCTTC 3750 GCCAGCTGGC GTAATAGCGA AGAGGCCCGC ACCGATCGCC CTTCCCAACA 3800 GTTGCGTAGC CTGAATGGCG AATGGCGCCT GATGCGGTAT TTTCTCCTTA 3850 CGCATCTGTG CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG 3900 CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC 3950 GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT 4000 CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC 4050

GGGGGCTCCC TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC 4100 AAAAAACTTG ATTTGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGATA 4150 GACGGTTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC 4200 TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT 4250 GATTTATAAG GGATTTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT 4300 GATTTAACAA AAATTTAACG CGAATTTTAA CAAAATATTA ACGTTTACAA 4350 TTTTATGGTG CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAGC 4400 CAACTCCGCT ATCGCTACGT GACTGGGTCA TGGCTGCGCC CCGACACCCG 4450 CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC 4500 TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT 4550 CACCGTCATC ACCGAAACGC GCGAGGCAGT ATTCTTGAAG ACGAAAGGGC 4600 CTCGTGATAC GCCTATTTTT ATAGGTTAAT GTCATGATAA TAATGGTTTC 4650 TTAGACGTCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT 4700 GTTTATTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA 4750 CCCTGATAAA TCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA 4800 ACATTTCCGT GTCGCCCTTA TTCCCTTTTT GGCGGCATTT TGCCTTCCTG 4850 TTTTTGCTCA CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG 4900 TTGGGTGCAC GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT 4950 CCTTGAGAGT TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTTA 5000

AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTGATGACGC CGGGCAAGAG 5050 CAACTCGGTC GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC 5100 ACCAGTCACA GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT 5150 GCAGTGCTGC CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG 5200 ACAACGATCG GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG 5250 GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA 5300 TACCAAACGA CGAGCGTGAC ACCACGATGC CAGCAGCAAT GGCAACAACG 5350 TTGCGCAAAC TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA 5400 ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT 5450 CGGCCCTTCC GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG 5500 CGTGGGTCTC GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC 5550 CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC 5600 GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA 5650 CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA 5700 TTTTTAATTT AAAAGGATCT AGGTGAAGAT CCTTTTTGAT AATCTCATGA 5750 CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 5800 GAAAAGATCA AAGGATCTTC TTGAGATCCT TTTTTTCTGC GCGTAATCTG 5850 CTGCTTGCAA ACAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG 5900 ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG 5950 CAGATACCAA ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT 6000 CAAGAACTCT GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC 6050 CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA 6100 AGACGATAGT TACCGGATAA GGCGCAGCGG TCGGGCTGAA CCGGGGGTTC 6150 GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC 6200 TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG 6250 GACAGGTATC CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA 6300 GCTTCCAGGG GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC 6350 ACCTCTGACT TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG GGGGCGGAGC 6400 CTATGGAAAA ACGCCAGCAA CGCGGCCTTT TTACGGTTCC TGGCCTTTTG 6450 CTGGCCTTTT GCTCACATGT TCTTTCCTGC GTTATCCCCT GATTCTGTGG 6500 ATAACCGTAT TACCGCCTTT GAGTGAGCTG ATACCGCTCG CCGCAGCCGA 6550 ACGACCGAGC GCAGCGAGTC AGTGAGCGAG GAAGCGGAAG AGCGCCCAAT 6600 ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TCCAGCTGGC 6650 ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT 6700 GTGAGTTACC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC 6750 GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA 6800 ACAGCTATGA CCATGATTAC GAATTAA 6827

- (2) INFORMACIÓN PARA LA SEC ID NO:18:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 348 aminoácidos
- (B) TIPO: aminoácido
- (D) TOPOLOGÍA: lineal
- 5 (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:18:

Glu Lys Ser 1	Pro Glu 5	Gln	Arg	Gly	Arg	Phe 10	Arg	Ala	Met	Val	Glu 15
Leu Ala Arg	Leu Asp 20	Arg	Arg	Arg	Pro	Gly 25	Ser	Ser	Asp	Arg	Val 30
Leu Phe Ala	Arg Phe 35	Ser	Lys	Thr	Glu	Gly 40	Gly	Ala	Arg	Arg	Ala 45
Ser Pro Asp	Gln Glu 50	Ala	Glu	Asp	Leu	Trp 55	Leu	Ser	Pro	Leu	Thr 60
Met Glu Asp	Leu Val	Cys	Tyr	Ser	Phe	Gln 70	Val	Ala	Arg	Gly	Met 75
Glu Phe Leu	Ala Ser 80	Arg	Lys	Cys	Ile	His 85	Arg	Asp	Leu	Ala	Ala 90
Arg Asn Ile	Leu Leu 95	Ser	Glu	Ser	Asp	Val 100	Val	Lys	Ile	Cys	Asp 105
Phe Gly Leu	Ala Arg 110	Asp	Ile	Tyr	Lys	Asp 115	Pro	Asp	Tyr	Val	Arg 120
Lys Gly Ser	Ala Arg 125	Leu	Pro	Leu	Lys	Trp 130	Met	Ala	Pro	Glu	Ser 135
Ile Phe Asp	Lys Val 140	Tyr	Thr	Thr	Gln	Ser 145	Asp	Val	Trp	Ser	Phe 150
Gly Val Leu	Leu Trp 155	Glu	Ile	Phe	Ser	Leu 160	Gly	Ala	Ser	Pro	Tyr 165
Pro Gly Val	Gln Ile 170	Asn	Glu	Glu	Phe	Cys 175	Gln	Arg	Leu	Arg	As p 180
Gly Thr Arg	Met Arg 185	Ala	Pro	Glu	Leu	Ala 190	Thr	Pro	Ala	Ile	Ar g 195
Arg Ile Met	Leu Asn 200		Trp	Ser		Asp 205		Lys	Ala	Arg	Pro 210
Ala Phe Ser	Glu Leu 215		Glu	Ile	Leu	Gly 220	Asp	Leu	Leu	Gln	Gly 225
Arg Gly Leu	Gln Glu 230		Glu	Glu	Val	Cys 235	Met	Ala	Pro	Arg	Ser 240
Ser Gln Ser	Ser Glu 245		Gly	Ser	Phe	Ser 250	Gln	Val	Ser	Thr	Met 255

ES 2 355 952 T3

	Ala	Leu	His	Ile	Ala 260	Gln	Ala	Asp	Ala	Glu 265	Asp	Ser	Pro	Pro	Ser 270
5	Leu	Gln	Arg	His	Ser 275	Leu	Ala	Ala	Arg	Tyr 280	Tyr	Asn	Trp	Val	Ser 285
	Phe	Pro	Gly	Cys	Leu 290	Ala	Arg	Gly	Ala	Glu 295	Thr	Arg	Gly	Ser	Ser 300
0	Arg	Met	Lys	Thr	Phe 305	Glu	Glu	Phe	Pro	Met 310	Thr	Pro	Thr	Thr	Tyr 315
.0	Lys	Gly	Ser	Val	Asp 320	Asn	Gln	Thr	Asp	Ser 325	Gly	Met	Val	Leu	Ala 330
	Ser	Glu	Glu	Cys	Glu 335	Gln	Ile	Glu.	Ser	Arg 340	Tyr	Arg	Gln	Glu	Ser 345

- 15 Gly Phe Arg 348
 - (2) INFORMACIÓN PARA LA SEC ID NO:19:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 7607 bases
- $20\,$ (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:19:

TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50

TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100

TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150

ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200

TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250

ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300

AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350

TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400

GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450

TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA 500 AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACTTGGCT TCGTTAGAAC GCGGCTACAA TTAATACATA 800 ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA GAATAACATC 850 CACTTTGCCT TTCTCTCCAC AGGTGTCCAC TCCCAGGTCC AACTGCACCT 900 CGGTTCTATC GATTGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT 950 CGAGTCGACT TTTTTTTT TTTTTGTAGG CCAAAGGGTA CTTCTTTTC 1000 TTTATTAATT ACTCAGAAGT CTAGGCCACA GCAATCTACT GTTCTCCTCT 1050 CATTTTCCTA AACTATTTG ATACCTATTT CTCAGACTTT ATGGGCTATT 1100 AGACATTTCT CACATTTCCA TAGATAATAA CTCATCCGTT TTGCAACCTG 1150 ATTCTCAATA TTAAGAGATT AAAACTAATG TATATGACTC TCAGTTGACA 1200 CATACTGAAG TACAGAAAAA TTCCATCATT TCCTTCTGCA AAATGAAAAA 1250 GACTTCGTTT TCTCAACAGC TGCATCATTT TTTTATGCAT AGAAAAAAAT 1300 GTGCAATTAC TCCAAGTACA ATCAAGTCAT TTAACATGGC TTTACCATCA 1350 TTGTAGTTAC AGGATATTTT AAAAGAGAAA AAAAAATCTC AAAGCACAGG 1400 TCCTGCTGTG CAGCAAAGCA ATCAAATTCC TTCATAATAA CAGCCTGATG 1450 GGATTCAGCA ATCTGAGGAA TAATGAATAA CCACTCTAAT CAGTAAACAG 1500 GAAAATGCTA CAACAGTCAC TGAGTAAAAA TTGGACTATC ATCTGTTGAT 1550 TCTCTTGATC GACATTTCAA ACAATAAATG GAAATGTAAG TATCTCTTAA 1600 AAAGAAAAT AACTTGGTTT AGTGTGCTTA ATTTTACCAG GCAGTGAGGA 1650 AATTATATAT CACCTTGACT GTCCTGCAGT GTTGCCCAGT CAATAAAATG 1700 CACAAATAAT CTTTTCATA ATACATGGCC AACTTTATCC TATCACTTGA 1750 ATATGTCAGG ATAAACTGAT TGTGCAGTTG GTTGATAACA TTGTATTTTG 1800 GAATGGATTA TTTGAATTTG TTTTGCTACT TTATTATTTG ATATTCTTCT 1850 CCAGTGTTCA TCTTATGAAG TTATTTGCAT CTGAATATGA AGAGTCTGTT 1900 TCAAAATAGT CTTCAAGTTT CCAACGCAGT GTCTCAAATG TAGGTCGTTC 1950 CTTAGGCTCT GCATTCCAGC ACTCCAACAT GATGTTGTAA AATTGCTGTG 2000 GACAGTTGGA TGGTTGCGGA AGTCTATAGT TTTGAGCCAA CATCTGGATT 2050 ACCTGGGCAC CTGTCATACC ACTGTAAGGC ATTTTGCCAT AAGTAATGAT 2100 TTCATAAAGA AGGATTCCAA ATGACCATAC ATCGGACTTA ATGCTGAATT 2150 TATTACTACG AATGGCTTCG GGCGCAGTCC ACTTCACCGG CAGCTTTATT 2200 TCGTGTCTAG ATTCATAGAT GTCTTCATTA TCTACCTTAA AAACTCTGGC 2250 AAGTCCAAAA TCTGCTACTT TGTAGATATT ATGTTCACCA ACGAGGACAT 2300 TTCTGGCAGC CAGATCTCTG TGAATGTAGT TCCGAGACTC CAGATAGGCC 2350

ATTCCAGAGG CAACCTGTGC CGCCATGTCT ACCTGTTGAG TCAGATGGAT 2400 TTTTGATCCA GTGTCATTTT GGAGATATTC TTGCAGACTT CCATGTCTCA 2450 TCAACTCTGT AATAATATAA ATTGGATCTT CTAAAGTGCA AACAGCATAA 2500 AGCTGGATAA GCTTTGGATG TCTTAGGTTC TTCATTATCT GTGCCTCCCT 2550 CAGGAAGTCA TTTGGATCCA TTGAACCTGG TTTTAATGTT TTCACTGCTA 2600 CTGGAGTGGT ATTGTTCCAC AGACCTTCCC ATACTTCGCC AAACTGACCA 2650 GATCCCAATC GCTTCAGAAG CTGTATGGAG TTGCGGTCTA TCTCCCATTG 2700 GTCCACGGTT TTATACGACA AATCAAATGG AGCTGGGACC TGGATCTTTA 2750 AGCATGGTTT CCCCAGCTTG ACACACAGGC CGTCACTTGT CTTGGTGTAG 2800 TGGCTCACAA ATTCGTTCAG TGTTGAAAAG ATTCTTCTTC GCGTGAGAAA 2850 AAATCCCCCT TCATCCAGTC TTTTAATTCT GTAGTGTTTT ACAACTGCTC 2900 CATCTAAAAC TGAAAGAGAG AATTCTCCTT TTTGGCTTTC ACTTTCTCTG 2950 ATTAGAAAGG AACCGGTCTT GTTTTCTGAA TATAATAGTT GTTTCTCTGC 3000 ATCTGATCTT CCGATTGCTC CAAAGAACCA CGGCTCTGCC TGTAGGCTTC 3050 TGTCCTCAGC CACGTAGTTA GAAGGAATAT AGCCTTGTAG TTGCTGACTG 3100 GAGCCATCTC GTCTTTTCTC CAAGTGTCTG GCAAACCACC AGCCCTCATG 3150 CAAAGTGTCC AGAACTTGAA GTTTGTCACC TGCTCGGAAG CTCAAGTCCT 3200 CAGCAGTCCG AGCCTGGTAA TCAAACAAAG CCACAAAGTA GTGGCCATGC 3250 CTCTGTGACT GGGGAGAGCA AAGGGCCCCT GGATTTTCAA TCACGGTTGA 3300 CTTGTCTGCC TCCGTGGACA AACAGGGGAG ATAGGGTTCT AGGTACTCCC 3350 AGAGCCTCTG ACAGATGTTG CTCATTGTGC CTTGGTGGGG AGAAGAGGAG 3400 CAGGGCTTCT CCCTCTCCCC TTAGTCTCTG CGATCCACCT TATCTTCCTT 3450 CACCAGGCAA CTTTGAAGTC AGCACCAACT CACCATACTT CGGAGAGTAT 3500 GCAAAGTCCC GTTTCAGATC AGTCCAGCAG CTGGGTTGCA GCAAGTCCTA 3550 CCTGGAGAGA CTTACCGGCT TGCTTTCTGT GGCTGGAGGT GCTACCCCGA 3600 GGCAAAACTG AGCAGGAGCT GGGCAGCTGC TCACTAGGAA GGTGTCTTTT 3650 GGCTTTATTT AGACAAATAT CTGAGAACAG AATGGTGCCA TCTTGCCTTT 3750 TGTCCCAATA AAAAGTTAGC AAGAGGAAGC TACTAACCCC TGGTAAAACC 3800 TCCACGTCTT GCTTTCGCCA GGGTCGACTC GAGGGATCTT CCATACCTAC 3850 CAGTTCTGCG CCTGCAGGTC GCGGCCGCGA CTCTAGAGTC GACCTGCAGA 3900 AGCTTGGCCG CCATGGCCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA 3950 AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG 4000 CATTCTAGTT GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG 4050 GATCGGGAAT TAATTCGGCG CAGCACCATG GCCTGAAATA ACCTCTGAAA 4100 GAGGAACTTG GTTAGGTACC TTCTGAGGCG GAAAGAACCA GCTGTGGAAT 4150 GTGTGTCAGT TAGGGTGTGG AAAGTCCCCA GGCTCCCCAG CAGGCAGAAG 4200 TATGCAAAGC ATGCATCTCA ATTAGTCAGC AACCAGGTGT GGAAAGTCCC 4250

CAGGCTCCCC AGCAGGCAGA AGTATGCAAA GCATGCATCT CAATTAGTCA 4300 GCAACCATAG TCCCGCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC 4350 CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG 4400 CAGAGGCCGA GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA 4450 GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTGTTAA CAGCTTGGCA 4500 CTGGCCGTCG TTTTACAACG TCGTGACTGG GAAAACCCTG GCGTTACCCA 4550 ACTTAATCGC CTTGCAGCAC ATCCCCCTTT CGCCAGCTGG CGTAATAGCG 4600 AAGAGGCCCG CACCGATCGC CCTTCCCAAC AGTTGCGCAG CCTGAATGGC 4650 GAATGGCGCC TGATGCGGTA TTTTCTCCTT ACGCATCTGT GCGGTATTTC 4700 ACACCGCATA CGTCAAAGCA ACCATAGTAC GCGCCCTGTA GCGGCGCATT 4750 AAGCGCGGCG GGTGTGGTGG TTACGCGCAG CGTGACCGCT ACACTTGCCA 4800 GCGCCCTAGC GCCCGCTCCT TTCGCTTTCT TCCCTTCCTT TCTCGCCACG 4850 TTCGCCGGCT TTCCCCGTCA AGCTCTAAAT CGGGGGCTCC CTTTAGGGTT 4900 CCGATTTAGT GCTTTACGGC ACCTCGACCC CAAAAAACTT GATTTGGGTG 4950 ATGGTTCACG TAGTGGGCCA TCGCCCTGAT AGACGGTTTT TCGCCCTTTG 5000 ACGTTGGAGT CCACGTTCTT TAATAGTGGA CTCTTGTTCC AAACTGGAAC 5050 AACACTCAAC CCTATCTCGG GCTATTCTTT TGATTTATAA GGGATTTTGC 5100 CGATTTCGGC CTATTGGTTA AAAAATGAGC TGATTTAACA AAAATTTAAC 5150 GCGAATTTTA ACAAAATATT AACGTTTACA ATTTTATGGT GCACTCTCAG 5200

TACAATCTGC TCTGATGCCG CATAGTTAAG CCAGCCCCGA CACCCGCCAA 5250 CACCCGCTGA CGCGCCCTGA CGGGCTTGTC TGCTCCCGGC ATCCGCTTAC 5300 AGACAAGCTG TGACCGTCTC CGGGAGCTGC ATGTGTCAGA GGTTTTCACC 5350 GTCATCACCG AAACGCGCGA GACGAAAGGG CCTCGTGATA CGCCTATTTT 5400 TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT 5450 TTTCGGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA 5500 TTCAAATATG TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT 5550 AATATTGAAA AAGGAAGAGT ATGAGTATTC AACATTTCCG TGTCGCCCTT 5600 ATTCCCTTTT TTGCGGCATT TTGCCTTCCT GTTTTTGCTC ACCCAGAAAC 5650 GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT 5700 ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC 5750 GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC 5800 GGTATTATCC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC 5850 ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAAGCAT 5900 CTTACGGATG GCATGACAGT AAGAGAATTA TGCAGTGCTG CCATAACCAT 5950 GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA 6000 AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 6050 GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA 6100 CACCACGATG CCTGTAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG 6150

GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA CTGGATGGAG 6200 GCGGATAAAG TTGCAGGACC ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG 6250 GTTTATTGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA 6300 TTGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC 6350 ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA 6400 GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT 6450 CATATATACT TTAGATTGAT TTAAAACTTC ATTTTTAATT TAAAAGGATC 6500 TAGGTGAAGA TCCTTTTGA TAATCTCATG ACCAAAATCC CTTAACGTGA 6550 GTTTTCGTTC CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT 6600 CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAA 6650 CCACCGCTAC CAGCGGTGGT TTGTTTGCCG GATCAAGAGC TACCAACTCT 6700 TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTTC 6750 TTCTAGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG 6800 CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG 6850 CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA 6900 AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG 6950 GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA 7000 AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG 7050 GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC 7100 TGGTATCTTT ATAGTCCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG 7150

ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA 7200

ACGCGGCCTT TTTACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG 7250

TTCTTTCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT 7300

TGAGTGAGCT GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT 7350

CAGTGAGCGA GGAAGCGGAA GAGCGCCCAA TACGCAAACC GCCTCTCCCC 7400

GCGCGTTGGC CGATTCATTA ATGCAGCTGG CACGACAGGT TTCCCGACTG 7450

GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCATT 7500

AGGCACCCCA GGCTTTACAC TTTATGCTTC CGGCTCGTAT GTTGTGTGGA 7550

ATTGTGAGCG GATAACAATT TCACACAGGA AACAGCTATG ACATGATTAC 7600

GAATTAA 7607

- (2) INFORMACIÓN PARA LA SEC ID NO:20:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 505 aminoácidos
- 5 (B) TIPO: aminoácido
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:20:

Met 1	Ser	Asn	Ile	Cys 5	Gln	Arg	Leu	Trp	Glu 10	Tyr	Leu	Glu	Pro	Tyr 15
Leu	Pro	Cys	Leu	Ser 20	Thr	Glu	Ala	Asp	Lys 25	Ser	Thr	Val	Ile	Glu 30
Asn	Pro	Gly	Ala	Leu 35	Cys	Ser	Pro	Gln	Ser 40	Gln	Arg	His	Gly	His 45
Tyr	Phe	Val	Ala	Leu 50	Phe	Asp	Tyr	Gln	Ala 55	Arg	Thr	Ala	Glu	Asp 60
Leu	Ser	Phe	Arg	Ala 65	Gly	Asp	Lys	Leu	Gln 70	Val	Leu	Asp	Thr	Leu 75

His	Glu	Gly	Trp	Trp 80	Phe	Ala	Arg	His	Leu 85	Glu	Lys	Arg	Arg	Asp 90
Gly	Ser	Ser	Gln	Gln 95	Leu	Gln	Gly	Tyr	Ile 100	Pro	Ser	Asn	Tyr	Val 105
Ala	Glu	Asp	Arg	Ser 110	Leu	Gln	Ala	Glu	Pro 115	Trp	Phe	Phe	Gly	Ala 120
Ile	Gly	Arg	Ser	Asp 125	Ala	Glu	Lys	Gln	Leu 130	Leu	Tyr	Ser	Glu	Asn 135
Lys	Thr	Gly	Ser	Phe 140	Leu	Ile	Arg	Glu	Ser 145	Glu	Ser	Gln	Lys	Gly 150
Glu	Phe	Ser	Leu	Ser 155	Val	Leu	Asp	Gly	Ala 160	Val	Val	Lys	His	Tyr 165
Arg	Ile	Lys	Arg	Leu 170	Asp	Glu	Gly	Gly	Phe 175	Phe	Leu	Thr	Arg	Arg 180
Arg	Ile	Phe	Ser	Thr 185	Leu	Asn	Glu	Phe	Val 190	Ser	His	Tyr	Thr	Lys 195
Thr	Ser	Asp	Gly	Leu 200	Cys	Val	Lys	Leu	Gly 205	Lys	Pro	Cys	Leu	Lys 210
Ile	Gln	Val	Pro	Ala 215	Pro	Phe	Asp	Leu	Ser 220	Tyr	Lys	Thr	Val	Asp 225
Gln	Trp	Glu	Ile	Asp 230	Arg	Asn	Ser	Ile	Gln 235	Leu	Leu	Lys	Arg	Leu 240
Gly	Ser	Gly	Gln	Phe 245	Gly	Glu	Val	Trp	Glu 250	Gly	Leu	Trp	Asn	Asn 255
Thr	Thr	Pro	Val	Ala 260	Val	Lys	Thr	Leu	Lys 265	Pro	Gly	Ser	Met	Asp 270
Pro	Asn	Asp	Phe	Leu 275	Arg	Glu	Ala	Gln	Ile 280	Met	Lys	Asn	Leu	Arg 285
His	Pro	Lys	Leu	Ile 290	Gln	Leu	Tyr	Ala	Val 295	Cys	Thr	Leu	Glu	Asp 300
Pro	Ile	Tyr	Ile	Ile 305	Thr	Glu	Leu	Met	Arg 310	His	Gly	Ser	Leu	Gln 315
Glu	Tyr	Leu	Gln	Asn 320	Asp	Thr	Gly	Ser	Lys 325	Ile	His	Leu	Thr	Gln 330
Gln	Val	Asp	Met	Ala 335	Ala	Gln	Val	Ala	Ser 340	Gly	Met	Ala	Туг	Leu 345
Glu	Ser	Arg	Asn	Tyr 350	Ile	His	Arg	Asp	Leu 355	Ala	Ala	Arg	Asn	Val 360

Leu	Val	Gly	Glu	His 365	Asn	Ile	Tyr	Lys	Val 370	Ala	Asp	Phe	Gly	Le u 375
Ala	Arg	Val	Phe	Lys 380	Val	Asp	Asn	Glu	Asp 385	Ile	Tyr	Glu	Ser	Arg 390
His	Glu	Ile	Lys	Leu 395	Pro	Val	Lys	Trp	Thr 400	Ala	Pro	Glu	Ala	Ile 405
Arg	Ser	Asn	Lys	Phe 410	Ser	Ile	Lys	Ser	Asp 415	Val	Trp	Ser	Phe	Gly 420
Ile	Leu	Leu	Tyr	Glu 425	Ile	Ile	Thr	Tyr	Gly 430	Lys	Met	Pro	Tyr	Ser 435
Gly	Met	Thr	Gly	Ala 440	Gln	Val	Ile	Gln	Met 445	Leu	Ala	Gln	Asn	Tyr 450
Arg	Leu	Pro	Gln	Pro 455	Ser	Asn	Cys	Pro	Gln 460	Gln	Phe	Tyr	Asn	Ile 465
Met	Leu	Glu	Cys	Trp 470	Asn	Ala	Glu	Pro	Lys 475	Glu	Arg	Pro	Thr	Phe 480
Glu	Thr	Leu	Arg	Trp 485	Lys	Leu	Glu	Asp	Tyr 490	Phe	Glu	Thr	Asp	Ser 495
Ser	Tyr	Ser	Asp	Ala 500	Asn	Asn	Phe	Ile	Arg 505					

- (2) INFORMACIÓN PARA LA SEC ID NO:21:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 404 bases
- (B) TIPO: ácido nucleico
- 5 (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:21:

GCGGCCGCAG AGAAAGCAGA GGATGGGGCT TAGCAGCTGG CAGAGCCAGG 50

10

AGCGGGGAGG TAGCAGAAAG ACCACAAGTA CAAAGAAGTC CTGAAACTTT 100

GGTTTTGCTG CTGCAGCCCA TTGAGAGTGA CGACATGGAG CACAAGACCC 150

15

TGAAGATCAC CGACTTTGGC CTGGCCCGAG AGTGGCACAA AACCACACAA 200

ATGAGTGCCG CNGGCACCTA CNCCTGGATG GCTCCTGAGG TTATCAAGGC 250

CTCCACCTTC TCTAAGGGCA GTGACGTCTG GAGTTTTGGG GTGCTGCTG 300

GGGAACTGCT GACCGGGGAG NTGCCATACC GTGGCATTGA CTGCCTTGCT 350

GTGGCCTATG GCGTAGCTGT TAACAAGCTC ACACTGCCAT CCATCCACCT 400

GGCC 404

- (2) INFORMACIÓN PARA LA SEC ID NO:22:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- 30 (A) LONGITUD: 3120 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:22:

ATGAGAGCGT TGGCGCGCGA CGGCGGCCAG CTGCCGCTGC TCGTTGTTTT 50 TTCTGCAATG ATATTTGGGA CTATTACAAA TCAAGATCTG CCTGTGATCA 100 AGTGTGTTTT AATCAATCAT AAGAACAATG ATTCATCAGT GGGGAAGTCA 150 TCATCATATC CCATGGTATC AGAATCCCCG GAAGACCTCG GGTGTGCGTT 200 GAGACCCCAG AGCTCAGGGA CAGTGTACGA AGCTGCCGCT GTGGAAGTGG 250 ATGTATCTGC TTCCATCACA CTGCAAGTGC TGGTCGATGC CCCAGGGAAC 300 ATTTCCTGTC TCTGGGTCTT TAAGCACAGC TCCCTGAATT GCCAGCCACA 350 TTTTGATTTA CAAAACAGAG GAGTTGTTTC CATGGTCATT TTGAAAATGA 400 CAGAAACCCA AGCTGGAGAA TACCTACTTT TTATTCAGAG TGAAGCTACC 450 AATTACACAA TATTGTTTAC AGTGAGTATA AGAAATACCC TGCTTTACAC 500 ATTAAGAAGA CCTTACTTTA GAAAAATGGA AAACCAGGAC GCCCTGGTCT 550 GCATATCTGA GAGCGTTCCA GAGCGGATCC TGGAATGGGT GCTTTGCGAT 600

TCACAGGGG AAAGCTGTAA AGAAGAAAGT CCAGCTGTTG TTAAAAAGGA 650 GGAAAAGTG CTTCATGAAT TATTTGGGAC GGACATAAGG TGCTGTGCCA 700 GAAATGAACT GGGCAGGGAA TGCACCAGGC TGTTCACAAT AGATCTAAAT 750 CAAACTCCTC AGACCACATT GCCACAATTA TTTCTTAAAG TAGGGGAACC 800 CTTATGGATA AGGTGCAAAG CTGTTCATGT GAACCATGGA TTCGGGCTCA 850 CCTGGGAATT AGAAAACAAA GCACTCGAGG AGGGCAACTA CTTTGAGATG 900 AGTACCTATT CAACAACAG AACTATGATA CGGATTCTGT TTGCTTTTGT 950 ATCATCAGTG GCAAGAAACG ACACCGGATA CTACACTTGT TCCTCTTCAA 1000 AGCATCCCAG TCAATCAGCT TTGGTTACCA TCGTAGAAAA GGGATTTATA 1050 AATGCTACCA ATTCAAGTGA AGATTATGAA ATTGACCAAT ATGAAGAGTT 1100 TTGTTTTCT GTCAGGTTTA AAGCCTACCC ACAAATCAGA TGTACGTGGA 1150 CCTTCTCTG AAAATCATTT CCTTGTGAGC AAAAGGGTCT TGATAACGGA 1200 TACAGCATAT CCAAGTTTTG CAATCATAAG CACCAGCCAG GAGAATATAT 1250 ATTCCATGCA GAAAATGATG ATGCCCAATT TACCAAAATG TTCACGCTGT 1300 ATATAAGAAG GAAACCTCAA GTCCTCGCAG AAGCTTCGGC AAGTCAGGCG 1350 TCCTGTTTCT CGGATGGATA CCCATTACCA TCTTGGACCT GGAAGAAGTG 1400 TTCAGACAAG TCTCCCAACT GCACAGAAGA GATCACAGAA GGAGTCTGGA 1450 ATAGAAAGGC TAACAGAAAA GTGTTTGGAC AGTGGGTGTC GAGCAGTACT 1500 CTAAACATGA GTGAAGCCAT AAAAGGGTTC CTGGTCAAGT GCTGTGCATA 1550

CAATTCCCTT GGCACATCTT GTGAGACGAT CCTTTTAAAC TCTCCAGGCC 1600 CCTTCCCTTT CATCCAAGAC AACATCTCAT TCTATGCAAC AATTGGTGTT 1650 TGTCTCCTCT TCATTGTCGT TTTAACCCTG CTAATTTGTC ACAAGTACAA 1700 AAAGCAATTT AGGTATGAAA GCCAGCTACA GATGGTACAG GTGACCGGAT 1750 CCTCAGATTA TGAGTACTTC TACGTTGATT TCAGAGAATA TGAATATGAT 1800 GTCAAATGGG AGTTTCCAAG AGAAAATTTA GAGTTTGGGA AGGTACTAGG 1850 ATCAGGTGCT TTTGGAAAAG TGATGAACGC AACAGCTTAT GGAATTAGCA 1900 AAACAGGAGT CTCAATCCAG GTTACCGTCA AAATGCTGAA AGAAAAAGCA 1950 GACAGCTCTG AAAGAGAGGC ACTCATGTCA GAACTCAAGA TGATGACCCA 2000 GCTGGGAAGC CACGAGAATA TTGTGAACCT GCTGGGGGCG TGCACACTGT 2050 CAGGACCAAT TTACTTGATT TTTGAATACT GTTGCTATGG TGATCTTCTC 2100 AACTATCTAA GAAGTAAAAG AGAAAAATTT CACAGGACTT GGACAGAGAT 2150 TTTCAAGGAA CACAATTTCA GTTTTTACCC CACTTTCCAA TCACATCCAA 2200 ATTCCAGCAT GCCTGGTTCA AGAGAAGTTC AGATACACCC GGACTCGGAT 2250 CAAATCTCAG GGCTTCATGG GAATTCATTT CACTCTGAAG ATGAAATTGA 2300 ATATGAAAAC CAAAAAAGGC TGGAAGAAGA GGAGGACTTG AATGTGCTTA 2350 CATTTGAAGA TCTTCTTTGC TTTGCATATC AAGTTGCCAA AGGAATGGAA 2400 TTTCTGGAAT TTAAGTCGTG TGTTCACAGA GACCTGGCCG CCAGGAACGT 2450 GCTTGTCACC CACGGGAAAG TGGTGAAGAT ATGTGACTTT GGATTGGCTC 2500

GAGATATCAT GAGTGATTCC AACTATGTTG TCAGGGGCAA TGCCCGTCTG 2550 CCTGTAAAAT GGATGGCCCC CGAAAGCCTG TTTGAAGGCA TCTACACCAT 2600 TAAGAGTGAT GTCTGGTCAT ATGGAATATT ACTGTGGGAA ATCTTCTCAC 2650 TTGGTGTGAA TCCTTACCCT GGCATTCCGG TTGATGCTAA CTTCTACAAA 2700 CTGATTCAAA ATGGATTTAA AATGGATCAG CCATTTTATG CTACAGAAGA 2750 AATATACATT ATAATGCAAT CCTGCTGGGC TTTTGACTCA AGGAAACGGC 2800 CATCCTTCCC TAATTTGACT TCGTTTTTAG GATGTCAGCT GGCAGATGCA 2850 GAAGAAGCGA TGTATCAGAA TGTGGATGGC CGTGTTTCGG AATGTCCTCA 2900 CACCTACCAA AACAGGCGAC CTTTCAGCAG AGAGATGGAT TTGGGGCTAC 2950 TCTCTCCGCA GGCTCAGGTC GAAGATTCGT AGAGGAACAA TTTAGTTTTA 3000 AGGACTTCAT CCCTCCACCT ATCCCTAACA GGCTGTAGAT TACCAAAACA 3050 AGGTTAATTT CATCACTAAA AGAAAATCTA TTATCAACTG CTGCTTCACC 3100 AGACTTTTCT CTAGAGAGCG 3120

- (2) INFORMACIÓN PARA LA SEC ID NO:23:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 3969 bases
- (B) TIPO: ácido nucleico
- (C) CADENA: única
- 5 (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:23:

TCGGCGTCCA CCCGCCCAGG GAGAGTCAGA CCTGGGGGGG CGAGGGCCCC 50

CCAAACTCAG TTCGGATCCT ACCCGAGTGA GGCGGCGCCA TGGAGCTCCG 100

GGTGCTGCTC TGCTGGGCTT CGTTGGCCGC AGCTTTGGAA GAGACCCTGC 150 TGAACACAAA ATTGGAAACT GCTGATCTGA AGTGGGTGAC ATTCCCTCAG 200 GTGGACGGC AGTGGGAGGA ACTGAGCGC CTGGATGAGG AACAGCACAG 250 CGTGCGCACC TACGAAGTGT GTGACGTGCA GCGTGCCCCG GGCCAGGCCC 300 ACTGGCTTCG CACAGGTTGG GTCCCACGGC GGGGCGCCGT CCACGTGTAC 350 GCCACGCTGC GCTTCACCAT GCTCGAGTGC CTGTCCCTGC CTCGGGCTGG 400 GCGCTCCTGC AAGGAGACCT TCACCGTCTT CTACTATGAG AGCGATGCGG 450 ACACGGCCAC GGCCCTCACG CCAGCCTGGA TGGAGAACCC CTACATCAAG 500 GTGGACACGG TGGCCGCGGA GCATCTCACC CGGAAGCGCC CTGGGGCCGA 550 GGCCACCGGG AAGGTGAATG TCAAGACGCT GCGTCTGGGA CCGCTCAGCA 600 AGGCTGGCTT CTACCTGGCC TTCCAGGACC AGGGTGCCTG CATGGCCCTG 650 CTATCCCTGC ACCTCTTCTA CAAAAAGTGC GCCCAGCTGA CTGTGAACCT 700 GACTCGATTC CCGGAGACTG TGCCTCGGGA GCTGGTTGTG CCCGTGGCCG 750 GTAGCTGCGT GGTGGATGCC GTCCCCGCCC CTGGCCCCAG CCCCAGCCTC 800 TACTGCCGTG AGGATGGCCA GTGGGCCGAA CAGCCGGTCA CGGGCTGCAG 850 CTGTGCTCCG GGGTTCGAGG CAGCTGAGGG GAACACCAAG TGCCGAGCCT 900 GTGCCCAGGG CACCTTCAAG CCCCTGTCAG GAGAAGGGTC CTGCCAGCCA 950 TGCCCAGCCA ATAGCCACTC TAACACCATT GGATCAGCCG TCTGCCAGTG 1000 CCGCGTCGGG TACTTCCGGG CACGCACAGA CCCCCGGGGT GCACCCTGCA 1050

CCACCCTCC TTCGGCTCCG CGGAGCGTGG TTTCCCGCCT GAACGGCTCC 1100 TCCCTGCACC TGGAATGGAG TGCCCCCCTG GAGTCTGGTG GCCGAGAGGA 1150 CCTCACCTAC GCCCTCCGCT GCCGGGAGTG CCGACCCGGA GGCTCCTGTG 1200 CGCCCTGCGG GGGAGACCTG ACTTTTGACC CCGGCCCCCG GGACCTGGTG 1250 GAGCCCTGGG TGGTGGTTCG AGGGCTACGT CCTGACTTCA CCTATACCTT 1300 TGAGGTCACT GCATTGAACG GGGTATCCTC CTTAGCCACG GGGCCCGTCC 1350 CATTTGAGCC TGTCAATGTC ACCACTGACC GAGAGGTACC TCCTGCAGTG 1400 GGCTGTTCCC CGGGCACCCA GTGGGGCTGT GCTGGACTAC GAGGTCAAAT 1500 ACCATGAGAA GGGCGCCGAG GGTCCCAGCA GCGTGCGGTT CCTGAAGACG 1550 TCAGAAAACC GGGCAGAGCT GCGGGGGCTG AAGCGGGGAG CCAGCTACCT 1600 GGTGCAGGTA CGGGCGCGCT CTGAGGCCGG CTACGGGCCC TTCGGCCAGG 1650 AACATCACAG CCAGACCCAA CTGGATGAGA GCGAGGGCTG GCGGGAGCAG 1700 CTGGCCCTGA TTGCGGGCAC GGCAGTCGTG GGTGTGGTCC TGGTCCTGGT 1750 GGTCATTGTG GTCGCAGTTC TCTGCCTCAG GAAGCAGAGC AATGGGAGAG 1800 AAGCAGAATA TTCGGACAAA CACGGACAGT ATCTCATCGG ACATGGTACT 1850 AAGGTCTACA TCGACCCCTT CACTTATGAA GACCCTAATG AGGCTGTGAG 1900 GGAATTTGCA AAAGAGATCG ATGTCTCCTA CGTCAAGATT GAAGAGGTGA 1950 TTGGTGCAGG TGAGTTTGGC GAGGTGTGCC GGGGGCGGCT CAAGGCCCCA 2000

GGGAAGAGG AGAGCTGTGT GGCAATCAAG ACCCTGAAGG GTGGCTACAC 2050 GGAGCGGCAG CGGCGTGAGT TTCTGAGCGA GGCCTCCATC ATGGGCCAGT 2100 TCGAGCACCC CAATATCATC CGCCTGGAGG GCGTGGTCAC CAACAGCATG 2150 CCCGTCATGA TTCTCACAGA GTTCATGGAG AACGGCGCCC TGGACTCCTT 2200 CCTGCGGCTA AACGACGGAC AGTTCACAGT CATCCAGCTC GTGGGCATGC 2250 TGCGGGGCAT CGCCTCGGGC ATGCGGTACC TTGCCGAGAT GAGCTACGTC 2300 CACCGAGACC TGGCTGCTCG CAACATCCTA GTCAACAGCA ACCTCGTCTG 2350 CAAAGTGTCT GACTTTGGCC TTTCCCGATT CCTGGAGGAG AACTCTTCCG 2400 ATCCCACCTA CACGAGCTCC CTGGGAGGAA AGATTCCCAT CCGATGGACT 2450 GCCCCGGAGG CCATTGCCTT CCGGAAGTTC ACTTCCGCCA GTGATGCCTG 2500 GAGTTACGGG ATTGTGATGT GGGAGGTGAT GTCATTTGGG GAGAGGCCGT 2550 ACTGGGACAT GAGCAATCAG GACGTGATCA ATGCCATTGA ACAGGACTAC 2600 CGGCTGCCC CGCCCCAGA CTGTCCCACC TCCCTCCACC AGCTCATGCT 2650 GGACTGTTGG CAGAAGACC GGAATGCCCG GCCCCGCTTC CCCCAGGTGG 2700 TCAGCGCCCT GGACAAGATG ATCCGGAACC CCGCCAGCCT CAAAATCGTG 2750 GCCCGGGAGA ATGGCGGGGC CTCACACCCT CTCCTGGACC AGCGGCAGCC 2800 TCACTACTCA GCTTTTGGCT CTGTGGGCGA GTGGCTTCGG GCCATCAAAA 2850 TGGGAAGATA CGAAGAAAGT TTCGCAGCCG CTGGCTTTGG CTCCTTCGAG 2900 CTGGTCAGCC AGATCTCTGC TGAGGACCTG CTCCGAATCG GAGTCACTCT 2950

GGCGGGACAC CAGAAGAAAA TCTTGGCCAG TGTCCAGCAC ATGAAGTCCC 3000 AGGCCAAGCC GGGAACCCCG GGTGGGACAG GAGGACCGGC CCCGCAGTAC 3050 TGACCTGCAG GAACTCCCCA CCCCAGGGAC ACCGCCTCCC CATTTTCCGG 3100 GGCAGAGTGG GGACTCACAG AGGCCCCCAG CCCTGTGCCC CGCTGGATTG 3150 CACTTTGAGC CCGTGGGGTG AGGAGTTGGC AATTTGGAGA GACAGGATTT 3200 GGGGGTTCTG CCATAATAGG AGGGGAAAAT CACCCCCAG CCACCTCGGG 3250 GAACTCCAGA CCAAGGGTGA GGGCGCCTTT CCCTCAGGAC TGGGTGTGAC 3300 CAGAGGAAAA GGAAGTGCCC AACATCTCCC AGCCTCCCCA GGTGCCCCCC 3350 TCACCTTGAT GGGTGCGTTC CCGCAGACCA AAGAGAGTGT GACTCCCTTG 3400 CCAGCTCCAG AGTGGGGGG CTGTCCCAGG GGGCAAGAAG GGGTGTCAGG 3450 GCCCAGTGAC AAAATCATTG GGGTTTGTAG TCCCAACTTG CTGCTGTCAC 3500 CACCAAACTC AATCATTTT TTCCCTTGTA AATGCCCCTC CCCCAGCTGC 3550 TGCCTTCATA TTGAAGGTTT TTGAGTTTTG TTTTTGGTCT TAATTTTTCT 3600 CCCCGTTCCC TTTTTGTTTC TTCGTTTTGT TTTTCTACCG TCCTTGTCAT 3650 AACTTTGTGT TGGAGGGAAC CTGTTTCACT ATGGCCTCCT TTGCCCAAGT 3700 TGAAACAGGG GCCCATCATC ATGTCTGTTT CCAGAACAGT GCCTTGGTCA 3750 TCCCACATCC CCGGACCCCG CCTGGGACCC CCAAGCTGTG TCCTATGAAG 3800 GGGTGTGGGG TGAGGTAGTG AAAAGGGCGG TAGTTGGTGG TGGAACCCAG 3850 AAACGGACGC CGGTGCTTGG AGGGGTTCTT AAATTATATT TAAAAAAGTA 3900

ACTITITGTA TAAATAAAAG AAAATGGGAC GTGTCCCAGC TCCAGGGGTA 3950

ааааааааа ааааааааа 3969

- (2) INFORMACIÓN PARA LA SEC ID NO:24:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- 5 (A) LONGITUD: 1276 aminoácidos
 - (B) TIPO: aminoácido
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:24:

Met 1	Glu	Leu	Arg	Val 5	Leu	Leu	Cys	Trp	Ala 10	Ser	Leu	Ala	Ala	Ala 15
Leu	Glu	Glu	Thr	Leu 20	Leu	Asn	Thr	Lys	Leu 25	Glu	Thr	Ala	Asp	Leu 30
Lys	Trp	Val	Thr	Phe 35	Pro	Gln	Val	Asp	Gly 40	Gln	Trp	Glu	Glu	Le u 45
Ser	Gly	Leu	Asp	Glu 50	Glu	Gln	His	Ser	Val 55	Arg	Thr	Tyr	Glu	Val 60
Cys	Asp	Val	Gln	Arg 65	Ala	Pro	Gly	Gln	Ala 70	His	Trp	Leu	Arg	Thr 75
Gly	Trp	Val	Pro	Arg 80	Arg	Gly	Ala	Val	His 85	Val	Tyr	Ala	Thr	Leu 90
Arg	Phe	Thr	Met	Leu 95	Glu	Cys	Leu	Ser	Leu 100	Pro	Arg	Ala	Gly	Arg 105
Ser	Cys	Lys	Glu	Thr 110	Phe	Thr	Val	Phe	Tyr 115	Tyr	Glu	Ser	Asp	Ala 120
Asp	Thr	Ala	Thr	Ala 125	Leu	Thr	Pro	Ala	Trp 130	Met	Glu	Asn	Pro	Tyr 135
Ile	Lys	Val	Asp	Thr 140	Val	Ala	Ala	Glu	His 145	Leu	Thr	Arg	Lys	Arg 150
Pro	Gly	Ala	Glu	Ala 155	Thr	Gly	Lys	Val	Asn 160	Val	Lys	Thr	Leu	Arg 165
Leu	Gly	Pro	Leu	Ser 170	Lys	Ala	Gly	Phe	Tyr 175	Leu	Ala	Phe	Gln	Asp 180
Gln	Gly	Ala	Cys	Met 185	Ala	Leu	Leu	Ser	Leu 190	His	Leu	Phe	Tyr	Lys 195

Val	Pro	Arg	Glu	Leu 215	Val	Val	Pro	Val	Ala 220	Gly	Ser	Cys	Val	Val 225
Asp	Ala	Val	Pro	Ala 230	Pro	Gly	Pro	Ser	Pro 235	Ser	Leu	Tyr	Cys	Arg 240
Glu	Asp	Gly	Gln	Trp 245	Ala	Glu	Gln	Pro	Val 250	Thr	Gly	Cys	Ser	Cys 255
Ala	Pro	Gly	Phe	Glu 260	Ala	Ala	Glu	Gly	Asn 265	Thr	Lys	Cys	Arg	Ala 270
Cys	Ala	Gln	Gly	Thr 275	Phe	Lys	Pro	Leu	Ser 280	Gly	Glu	Gly	Ser	Cys 285
Gln	Pro	Cys	Pro	Ala 290	Asn	Ser	His	Ser	Asn 295	Thr	Ile	Gly	Ser	Ala 300
Val	Cys	Gln	Cys	Arg 305	Val	Gly	Tyr	Phe	Arg 310	Ala	Arg	Thr	Asp	Pro 315
Arg	Gly	Ala	Pro	Cys 320	Thr	Thr	Pro	Pro	Ser 325	Ala	Pro	Arg	Ser	Val 330
Val	Ser	Arg	Leu	Asn 335	Gly	Ser	Ser	Leu	His 340	Leu	Glu	Trp	Ser	Ala 345
Pro	Leu	Glu	Ser	Gly 350	Gly	Arg	Glu	Asp	Leu 355	Thr	Tyr	Ala	Leu	Arg 360
Cys	Arg	Glu	Cys	Arg 365	Pro	Gly	Gly	Ser	Cys 370	Ala	Pro	Cys	Gly	Gly 375
Asp	Leu •	Thr	Phe	Asp 380	Pro	Gly	Pro	Arg	Asp 385	Leu	Val	Glu	Pro	Trp 390
Val	Val	Val	Arg	Gly 395	Leu	Arg	Pro	Asp	Phe 400	Thr	Tyr	Thr	Phe	Glu 405
Val	Thr	Ala	Leu	Asn 410	Gly	Val	Ser	Ser	Leu 415	Ala	Thr	Gly	Pro	Val 420
Pro	Phe	Glu	Pro	Val 425	Asn	Val	Thr	Thr	Asp 430	Arg	Glu	Val	Pro	Pro 435
Ala	Val	Ser	Asp	Ile 440	Arg	Val	Thr	Arg	Ser 445	\$er	Pro	Ser	Ser	Leu 450
Ser	Leu	Ala	Trp	Ala 455	Val	Pro	Arg	Ala	Pro 460	Ser	Gly	Ala	Val	Leu 465
Asp	Tyr	Glu	Val	Lys 470	Tyr	His	Glu	Lys	Gly 475	Ala	Glu	Gly	Pro	Ser 480
Ser	Val	Arg	Phe	Leu 485	Lys	Thr	Ser	Glu	Asn 490	Arg	Ala	Glu	Leu	Arg 495

Gly	Leu	Lys	Arg	Gly 500	Ala	Ser	Tyr	Leu	Val 505	Gln	Val	Arg	Ala	Arg 510
Ser	Glu	Ala	Gly	Tyr 515	Gly	Pro	Phe	Gly	Gln 520	Glu	His	His	Ser	Gln 525
Thr	Gln	Leu	Asp	Glu 530	Ser	Glu	Gly	Trp	Arg 535	Glu	Gln	Leu	Ala	Leu 540
Ile	Ala	Gly	Thr	Ala 545	Val	Val	Gly	Val	Val 550	Leu	Val	Leu	Val	Val 555
Ile	Val	Val	Ala	Val 560	Leu	Cys	Leu	Arg	Lys 565	Gln	Ser	Asn	Gly	Arg 570
Glu	Ala	Glu	Tyr	Ser 575	Asp	Lys	His	Gly	Gln 580	Tyr	Leu	Ile	Gly	His 585
Gly	Thr	Lys	Val	Tyr 590	Ile	Asp	Pro	Phe	Thr 595	Tyr	Glu	Asp	Pro	Asn 600
Glu	Ala	Val	Arg	Glu 605	Phe	Ala	Lys	Glu	Ile 610	Asp	Val	Ser	Tyr	Val 615
Lys	Ile	Glu	Glu	Val 620	Ile	Gly	Ala	Gly	Glu 625	Phe	Gly	Glu	Val	Cys 630
Arg	Gly	Arg	Leu	Lys 635	Ala	Pro	Gly	Lys	Lys 640	Glu	Ser	Cys	Val	Ala 645
Ile	Lys	Thr	Leu	Lys 650	Gly	Gly	Tyr	Thr	Glu 655	Arg	Gln	Arg	Arg	Glu 660
Phe	Leu	Ser	Glu	Ala 665	Ser	Ile	Met	Gly	Gln 670	Phe	Glu	His	Pro	Asn 675
Ile	Ile	Arg	Leu	Glu 680	Gly	Val	Val	Thr	Asn 685	Ser	Met	Pro	Val	Met 690
Ile	Leu	Thr	Glu	Phe 695	Met	Glu	Asn	Gly	Ala 700	Leu	Asp	Ser	Phe	Leu 705
Arg	Leu	Asn	Asp	Gly 710	Gln	Phe	Thr	Val	Ile 715	Gln	Leu	Val	Gly	Met 720
Leu	Arg	Gly	Ile	Ala 725	Ser	Gly	Met	Arg	Tyr 730	Leu	Ala	Glu	Met	Ser 735
Tyr	Val	His	Arg	Asp 740	Leu	Ala	Ala	Arg	Asn 745	Ile	Leu	Val	Asn	Ser 750
Asn	Leu	Val	Cys	Lys 755	Val	Ser	Asp	Phe	Gly 760	Leu	Ser	Arg	Phe	Leu 765
Glu	Glu	Asn	Ser	Ser 770	Asp	Pro	Thr	Tyr	Thr 775	Ser	Ser	Leu	Gly	Gly 780

Lys 1	Ile	Pro	Ile	Arg 785	Trp	Thr	Ala	Pro	Glu 790	Ala	Ile	Ala	Phe	Arg 795
Lys I	Phe	Thr	Ser	Ala 800	Ser	Asp	Ala	Trp	Ser 805	Tyr	Gly	Ile	Val	Met 810
Trp (3lu	Val	Met	Ser 815	Phe	Gly	Glu	Arg	Pro 820	Tyr	Trp	Asp	Met	Ser 825
Asn (3ln	Asp	Val	Ile 830	Asn	Ala	Ile	Glu	Gln 835	Asp	Tyr	Arg	Leu	Pro 840
Pro I	Pro	Pro	Asp	Cys 845	Pro	Thr	Ser	Leu	His 850	Gln	Leu	Met	Leu	Asp 855
Cys 7	rrp	Gln	Lys	Asp 860	Arg	Asn	Ala	Arg	Pro 865	Arg	Phe	Pro	Gln	Val 870
Val S	Ser	Ala	Leu	Asp 875	Lys	Met	Ile	Arg	Asn 880	Pro	Ala	Ser	Leu	Lys 885
Ile V	Val	Ala	Arg	Glu 890	Asn	Gly	Gly	Ala	Ser 895	His	Pro	Leu	Leu	Asp 900
Gln A	Arg	Gln	Pro	His 905	Tyr	Ser	Ala	Phe	Gly 91 0	Ser	Val	Gly	Glu	Trp 915
Leu A	Arg	Ala	Ile	Lys 920	Met	Gly	Arg	Tyr	Glu 925	Glu	Ser	Phe	Ala	Ala 930
Ala	Gly	Phe	Gly	Ser 935	Phe	Glu	Leu	Val	Ser 940	Gln	Ile	Ser	Ala	Glu 945
Asp I	Leu	Leu	Arg	Ile 950	Gly	Val	Thr	Leu	Ala 955	Gly	His	Gln	Lys	Lys 960
Ile I	Leu	Ala	Ser	Val 965	Gln	His	Met	Lys	Ser 970	Gln	Ala	Lys	Pro	Gly 975
Thr I	ro	Gly	Gly	Thr 980	Gly	Gly	Pro		Pro 985	Gln	Tyr	Pro	Ala	Gly 990
Thr I	Pro	His	Pro	Arg 995	Asp	Thr	Ala		Pro 1000	Phe	Ser	Gly		Glu .005
Trp (31y	Leu		Glu 1010	Ala	Pro	Ser		Val 1015	Pro	Arg	Trp		Ala .020
Leu A	Ala	Arg	-	Val 1025	Arg	Ser	Trp		Phe .030	Gly	Glu	Thr	_	Phe .035
Gly G	ly	Ser		Ile 1040	Ile	Gly	Gly		Asn .045	His	Pro	Pro		Thr .050
Ser (Sly	Asn		Arg L055	Pro	Arg	Val		Ala .060	Pro	Phe	Pro		Asp .065

Trp	Val	Pro	Glu Glu 1070	Lys	Glu	Val	Pro Asn 1075	Ile	Ser	Gln	Pro Pro 1080
Gln	Val	Pro	Pro Ser 1085	Pro	Trp	Val	Arg Ser 1090	Arg	Arg	Pro	Lys Arg 1095
Val	Leu	Pro	Cys Gln 1100	Leu	Gln	Ser	Gly Gly 1105	Ala	Val	Pro	Gly Gly 1110
Lys	Lys	Gly	Cys Gln 1115	Gly	Pro	Val	Thr Lys 1120	Ser	Leu	Gly	Phe Val 1125
Val	Pro	Thr	Cys Cys 1130	Суѕ	His	His	Gln Thr 1135	Gln	Ser	Phe	Phe Ser 1140
Leu	Val	Asn	Ala Pro 1145	Pro	Pro	Ala	Ala Ala 1150	Phe	Ile	Leu	Lys Val 1155
Phe	Glu	Phe	Cys Phe 1160	Trp	Ser	Phe	Phe Ser 1165	Pro	Phe	Pro	Phe Cys 1170
Phe	Phe	Val	Leu Phe 1175	Phe	Tyr	Arg	Pro Cys 1180	His	Asn	Phe	Val Leu 1185
Glu	Gly	Thr	Cys Phe 1190	Thr	Met	Ala	Ser Phe 1195	Ala	Gln	Val	Glu Thr 1200
Gly	Ala	His	His His 1205	Val	Cys	Phe	Gln Asn 1210	Ser	Ala	Leu	Val Ile 1215
Pro	His	Pro	Arg Thr 1220	Pro	Pro	Gly	Thr Pro 1225	Lys	Leu	Cys	Pro Met 1230
Lys	Gly	Cys	Gly Val 1235	Arg	Lys	Gly	Arg Leu 1240	Val	Val	Glu	Pro Arg 1245
Asn	Gly	Arg	Arg Cys 1250	Leu	Glu	Gly	Phe Leu 1255	Asn	Tyr	Ile	Lys Ser 1260
Asn	Phe	Leu	Tyr Lys 1265	Lys	Lys	Met	Gly Arg 1270	Val	Pro	Ala	Pro Gly 1275
Val											

5	• •	NGITUI			LA SE	(2) INFORMACIÓN PARA LA SEC ID NO:25: (i) CARACTERÍSTICAS DE LA SECUENCIA:													
5	(B) TIP		(A) LONGITUD: 59 aminoácidos																
5	` ,	O: amiı		minoa	cidos														
	(D) TO		noácido)															
		POLOG	SÍA: line	eal															
	(xi) DE	SCRIP	CIÓN E	DE LA S	SECUE	ENCIA:	SEC I	D NO:2	25:										
		Ala	Ara	Asn	Ile	Leu	Val	Asn	Ser	Asn	Leu	Val	Cvs	Lvs '	Val	Ser			
		1	5			5					10		-,-	-,		15			
10																			
										~~	_			_	•				
		Asp	Phe	Gly	Leu	Ser 20	Arg	Pne	Leu	GIu	Asp 25	Asp	Thr	Ser	Asp	30			
					_	_ •		~-	-1	•	-1-	5		•	m	m\			
		Thr	Tyr	Thr	Ser	Ala 35	Leu	GIŸ	GIÀ	Lys	Ile 40	Pro	met	Arg	Trp	45			
15		_			_ •			_	_		 1	• • •	0	• • •	0				
		Ala	Pro	Glu	Ala	11e 50	Gin	Tyr	Arg	Lys	Phe 55	Ala	Ser	Ala	59				
	(2) INFORMACIÓN PARA LA SEC ID NO:26:																		
	(2) INFORMACION PARA LA SEC ID NO:26: (i) CARACTERÍSTICAS DE LA SECUENCIA:																		
	• •					CUEN	CIA:												
20	(A) LOI				cidos														
	(B) TIP																		
	(D) TO																		
	(xi) DE	SCRIP	CIÓN E	DE LA S	SECUE	ENCIA:	SEC I	D NO:2	26:										
~ ~		Asn	Val	Leu	Val	_	Ser	Pro	Asn	His	Val	Lys	Ile	Thr	Asp				
25		1				5					10					15			
		Gly	Leu	Ala	Arg	Leu	Leu	Glu	Gly	Asp	Glu	Lys	Glu	Tyr	Asn				
						20					25					3 (
		Asp	Gly	Gly	Lys	Met	Pro	Ile	Lys	Trp	Met	Ala	Leu	Glu	Cys	Ile			
30						35					40					45			
30		His	Tyr	Arg	Lys	Phe	Thr	His	Gln	Ser									
			-		-	50				54									
	(2) INF	ORMA	CIÓN F	PARAI	A SEC	C ID NC).27.												
	(i) CAR																		
35	(A) LOI						J., 1.												

(B) TIPO: aminoácido(D) TOPOLOGÍA: lineal

	(xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:27: Asn Cys Met Leu Ala Gly Asp Met Thr Val Cys Val Ala Asp Phe															
	,	Asn 1	Cys	Met	Leu	Ala 5	Gly	Asp	Met	Thr	Val 10	Cys	Val	Ala	Asp	Phe 15
5		Gly	Leu	Ser	Trp	Lys 20	Ile	Tyr	Ser	Gly	Ala 25	Thr	Ile	Val	Arg	Gly 30
		Cys	Ala	Ser	Lys	Leu 35	Pro	Val	Lys	Trp	Leu 40	Ala	Leu	Gly	Ser	Leu 45
10		Ala	Asp	Asn	Leu	Tyr 50	Thr	Val	His	Ser 54						
	(2) INFC	RMA	CIÓN F	PARA L	A SEC	ID NO	:28:									
	(i) CARA	CTER	ÍSTIC <i>A</i>	AS DE	LA SE	CUENC	CIA:									
	(A) LONG	SITUD): 27 ar	ninoác	idos											
	(B) TIPO															
15	(D) TOP															
	(xi) DESC				SECUE	NCIA: S	SEC ID	NO:28	B:							
	, ,															
		Asn 1	Cys	Leu	Val	Gly 5	Lys	Asn	Tyr	Thr	Ile 10	Lys	Ile	Ala	Asp	Phe 15
20	,	Gly	Met	Ser	Arg	Asn 20	Leu	Tyr	Ser	Gly	Asp 25	Tyr	Tyr 27			
	(2) INFO	RMAC	IÓN P	ARA L	A SEC	ID NO:	:29:									
	(i) CARA	CTER	ÍSTIC <i>A</i>	AS DE	LA SE	CUENC	CIA:									
	(A) LONG	SITUD): 58 ar	ninoác	idos											
25	(B) TIPO	: amin	oácido													
	(D) TOPO	OLOG	ÍA: line	al												
	(xi) DESC	CRIPC	IÓN D	E LA S	ECUE	NCIA: \$	SEC ID	NO:29) :							
30	Th	r Ai	rg As	sn Il	le Le	u Va 5	l Gl	u As	n Gl	u As:		g Val	l Lys	s Ile	Gly	
0	As	p Pl	ne Gl	ly Le		r Ly	rs Va	l Le	u Pr	o Gli 2		p Lys	s Glu	а Туг	Tyr 30	
	Ly	rs Va	al Ly	/s Gl		o G1	y Gl	u Se	r Pr	o Ile 4		e Trp	тут	r Ala	Pro 45	
35	Gl	u Se	er Le	eu Th		u Se	r Le	u Ph	e Se	r Va:		a Sei	Ası 58			

- (2) INFORMACIÓN PARA LA SEC ID NO:30:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 58 aminoácidos
- (B) TIPO: aminoácido
- (D) TOPOLOGÍA: lineal
- 5 (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:30:

Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser

1 5 10 15

Asp Phe Gly Met Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Ala 20 25 30

Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro 35 40 45

Glu Ala Ile Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp
50 55 58

15

10

- (2) INFORMACIÓN PARA LA SEC ID NO:31:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 4425 bases
- (B) TIPO: ácido nucleico
- 20 (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:31:

TCGGGTCGGA CCCACGCGCA GCGGCCGGAG ATGCAGCGGG GCGCCGCGCT 50 GTGCCTGCGA CTGTGGCTCT GCCTGGGACT CCTGGACGGC CTGGTGAGTG 100 GCTACTCCAT GACCCCCCG ACCTTGAACA TCACGGAGGA GTCACACGTC 150 ATCGACACCG GTGACAGCCT GTCCATCTCC TGCAGGGGAC AGCACCCCCT 200 CGAGTGGGCT TGGCCAGGAG CTCAGGAGGC GCCAGCCACC GGAGACAAGG 250 ACAGCGAGGA CACGGGGGTG GTGCGAGACT GCGAGGGCAC AGACGCCAGG 300 CCCTACTGCA AGGTGTTGCT GCTGCACGAG GTACATGCCA ACGACACAGG 350 CAGCTACGTC TGCTACTACA AGTACATCAA GGCACGCATC GAGGGCACCA 400 CGGCCGCCAG CTCCTACGTG TTCGTGAGAG ACTTTGAGCA GCCATTCATC 450 AACAAGCCTG ACACGCTCTT GGTCAACAGG AAGGACGCCA TGTGGGTGCC 500 CTGTCTGGTG TCCATCCCCG GCCTCAATGT CACGCTGCGC TCGCAAAGCT 550 CGGTGCTGTG GCCAGACGGG CAGGAGGTGG TGTGGGATGA CCGGCGGGGC 600 ATGCTCGTGT CCACGCCACT GCTGCACGAT GCCCTGTACC TGCAGTGCGA 650 GACCACCTGG GGAGACCAGG ACTTCCTTTC CAACCCCTTC CTGGTGCACA 700 TCACAGGCAA CGAGCTCTAT GACATCCAGC TGTTGCCCAG GAAGTCGCTG 750 GAGCTGCTGG TAGGGGAGAA GCTGGTCCTG AACTGCACCG TGTGGGCTGA 800 GTTTAACTCA GGTGTCACCT TTGACTGGGA CTACCCAGGG AAGCAGGCAG 850 AGCGGGGTAA GTGGGTGCCC GAGCGACGCT CCCAGCAGAC CCACACAGAA 900 CTCTCCAGCA TCCTGACCAT CCACAACGTC AGCCAGCACG ACCTGGGCTC 950 GTATGTGTGC AAGGCCAACA ACGGCATCCA GCGATTTCGG GAGAGCACCG 1000 AGGTCATTGT GCATGAAAAT CCCTTCATCA GCGTCGAGTG GCTCAAAGGA 1050 CCCATCCTGG AGGCCACGGC AGGAGACGAG CTGGTGAAGC TGCCCGTGAA 1100 GCTGGCAGCG TACCCCCCGC CCGAGTTCCA GTGGTACAAG GATGGAAAGG 1150 CACTGTCCGG GCGCCACAGT CCACATGCCC TGGTGCTCAA GGAGGTGACA 1200 GAGGCCAGCA CAGGCACCTA CACCCTCGCC CTGTGGAACT CCGCTGCTGG 1250 CCTGAGGCGC AACATCAGCC TGGAGCTGGT GGTGAATGTG CCCCCCCAGA 1300 TACATGAGAA GGAGGCCTCC TCCCCCAGCA TCTACTCGCG TCACAGCCGC 1350 CAGGCCCTCA CCTGCACGGC CTACGGGGTG CCCCTGCCTC TCAGCATCCA 1400 GTGGCACTGG CGGCCCTGGA CACCCTGCAA GATGTTTGCC CAGCGTAGTC 1450 TCCGGCGGCG GCAGCAGCAA GACCTCATGC CACAGTGCCG TGACTGGAGG 1500 GCGGTGACCA CGCAGGATGC CGTGAACCCC ATCGAGAGCC TGGACACCTG 1550 GACCGAGTTT GTGGAGGGAA AGAATAAGAC TGTGAGCAAG CTGGTGATCC 1600 AGAATGCCAA CGTGTCTGCC ATGTACAAGT GTGTGGTCTC CAACAAGGTG 1650 GGCCAGGATG AGCGGCTCAT CTACTTCTAT GTGACCACCA TCCCCGACGG 1700 CTTCACCATC GAATCCAAGC CATCCGAGGA GCTACTAGAG GGCCAGCCGG 1750 TGCTCCTGAG CTGCCAAGCC GACAGCTACA AGTACGAGCA TCTGCGCTGG 1800 TACCGCCTCA ACCTGTCCAC GCTGCACGAT GCGCACGGGA ACCCGCTTCT 1850

GCTCGACTGC AAGAACGTGC ATCTGTTCGC CACCCCTCTG GCCGCCAGCC 1900 TGGAGGAGGT GGCACCTGGG GCGCGCCACG CCACGCTCAG CCTGAGTATC 1950 CCCCGCGTCG CGCCCGAGCA CGAGGGCCAC TATGTGTGCG AAGTGCAAGA 2000 CCGGCGCAGC CATGACAAGC ACTGCCACAA GAAGTACCTG TCGGTGCAGG 2050 CCCTGGAAGC CCCTCGGCTC ACGCAGAACT TGACCGACCT CCTGGTGAAC 2100 GTGAGCGACT CGCTGGAGAT GCAGTGCTTG GTGGCCGGAG CGCACGCGCC 2150 CAGCATCGTG TGGTACAAAG ACGAGAGGCT GCTGGAGGAA AAGTCTGGAG 2200 TCGACTTGGC GGACTCCAAC CAGAAGCTGA GCATCCAGCG CGTGCGCGAG 2250 GAGGATGCGG GACGCTATCT GTGCAGCGTG TGCAACGCCA AGGGCTGCGT 2300 CAACTCCTCC GCCAGCGTGG CCGTGGAAGG CTCCGAGGAT AAGGGCAGCA 2350 TGGAGATCGT GATCCTTGTC GGTACCGGCG TCATCGCTGT CTTCTTCTGG 2400 GTCCTCCTCC TCCTCATCTT CTGTAACATG AGGAGGCCGG CCCACGCAGA 2450 CATCAAGACG GGCTACCTGT CCATCATCAT GGACCCCGGG GAGGTGCCTC 2500 TGGAGGAGCA ATGCGAATAC CTGTCCTACG ATGCCAGCCA GTGGGAATTC 2550 CCCCGAGAGC GGCTGCACCT GGGGAGAGTG CTCGGCTACG GCGCCTTCGG 2600 GAAGGTGGTG GAAGCCTCCG CTTTCGGCAT CCACAAGGGC AGCAGCTGTG 2650 ACACCGTGGC CGTGAAAATG CTGAAAGAGG GCGCCACGGC CAGCGAGCAC 2700 CGCGCGCTGA TGTCGGAGCT CAAGATCCTC ATTCACATCG GCAACCACCT 2750 CAACGTGGTC AACCTCCTCG GGGCGTGCAC CAAGCCGCAG GGCCCCCTCA 2800

TGGTGATCGT GGAGTTCTGC AAGTACGGCA ACCTCTCCAA CTTCCTGCGC 2850 GCCAAGCGGG ACGCCTTCAG CCCCTGCGCG GAGAAGTCTC CCGAGCAGCG 2900 CGGACGCTTC CGCGCCATGG TGGAGCTCGC CAGGCTGGAT CGGAGGCGGC 2950 CGGGGAGCAG CGACAGGGTC CTCTTCGCGC GGTTCTCGAA GACCGAGGGC 3000 GGAGCGAGGC GGGCTTCTCC AGACCAAGAA GCTGAGGACC TGTGGCTGAG 3050 CCCGCTGACC ATGGAAGATC TTGTCTGCTA CAGCTTCCAG GTGGCCAGAG 3100 GGATGGAGTT CCTGGCTTCC CGAAAGTGCA TCCACAGAGA CCTGGCTGCT 3150 CGGAACATTC TGCTGTCGGA AAGCGACGTG GTGAAGATCT GTGACTTTGG 3200 CCTTGCCCGG GACATCTACA AAGACCCTGA CTACGTCCGC AAGGGCAGTG 3250 CCCGGCTGCC CCTGAAGTGG ATGGCCCCTG AAAGCATCTT CGACAAGGTG 3300 TACACCACGC AGAGTGACGT GTGGTCCTTT GGGGTGCTTC TCTGGGAGAT 3350 CTTCTCTCTG GGGGCCTCCC CGTACCCTGG GGTGCAGATC AATGAGGAGT 3400 TCTGCCAGCG GCTGAGAGAC GGCACAAGGA TGAGGGCCCC GGAGCTGGCC 3450 ACTCCCGCCA TACGCCGCAT CATGCTGAAC TGCTGGTCCG GAGACCCCAA 3500 GGCGAGACCT GCATTCTCGG AGCTGGTGGA GATCCTGGGG GACCTGCTCC 3550 AGGGCAGGGG CCTGCAAGAG GAAGAGGAGG TCTGCATGGC CCCGCGCAGC 3600 TCTCAGAGCT CAGAAGAGGG CAGCTTCTCG CAGGTGTCCA CCATGGCCCT 3650 ACACATCGCC CAGGCTGACG CTGAGGACAG CCCGCCAAGC CTGCAGCGCC 3700 ACAGCCTGGC CGCCAGGTAT TACAACTGGG TGTCCTTTCC CGGGTGCCTG 3750

GCCAGAGGGG CTGAGACCCG TGGTTCCTCC AGGATGAAGA CATTTGAGGA 3800 ATTCCCCATG ACCCCAACGA CCTACAAAGG CTCTGTGGAC AACCAGACAG 3850 ACAGTGGGAT GGTGCTGGCC TCGGAGGAGT TTGAGCAGAT AGAGAGCAGG 3900 CATAGACAAG AAAGCGGCTT CAGGTAGCTG AAGCAGAGAG AGAGAAGGCA 3950 GCATACGTCA GCATTTTCTT CTCTGCACTT ATAAGAAAGA TCAAAGACTT 4000 TAAGACTTTC GCTATTTCTT CTGCTATCTA CTACAAACTT CAAAGAGGAA 4050 CCAGGAGGCC AAGAGGAGCA TGAAAGTGGA CAAGGAGTGT GACCACTGAA 4100 GCACCACAGG GAGGGGTTAG GCCTCCGGAT GACTGCGGGC AGGCCTGGAT 4150 AATATCCAGC CTCCCACAAG AAGCTGGTGG AGCAGAGTGT TCCCTGACTC 4200 CTCCAAGGAA AGGGAGACGC CCTTTCATGG TCTGCTGAGT AACAGGTGCC 4250 TTCCCAGACA CTGGCGTTAC TGCTTGACCA AAGAGCCCTC AAGCGGCCCT 4300 TATGCCAGCG TGACAGAGGG CTCACCTCTT GCCTTCTAGG TCACTTCTCA 4350 CAATGTCCCT TCAGCACCTG ACCCTGTGCC CGCCAGTTAT TCCTTGGTAA 4400 TATGAGTAAT ACATCAAAGA GTAGT 4425

- (2) INFORMACIÓN PARA LA SEC ID NO:32:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 4425 bases
- (B) TIPO: ácido nucleico
- 5 (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:32:

AGCCCAGCCT GGGTGCGCGT CGCCGGCCTC TACGTCGCCC CGCGGCGCGA 50 CACGGACGCT GACACCGAGA CGGACCCTGA GGACCTGCCG GACCACTCAC 100 CGATGAGGTA CTGGGGGGGC TGGAACTTGT AGTGCCTCCT CAGTGTGCAG 150 TAGCTGTGGC CACTGTCGGA CAGGTAGAGG ACGTCCCCTG TCGTGGGGGA 200 GCTCACCCGA ACCGGTCCTC GAGTCCTCCG CGGTCGGTGG CCTCTGTTCC 250 TGTCGCTCCT GTGCCCCCAC CACGCTCTGA CGCTCCCGTG TCTGCGGTCC 300 GGGATGACGT TCCACAACGA CGACGTGCTC CATGTACGGT TGCTGTGTCC 350 GTCGATGCAG ACGATGATGT TCATGTAGTT CCGTGCGTAG CTCCCGTGGT 400 GCCGGCGGTC GAGGATGCAC AAGCACTCTC TGAAACTCGT CGGTAAGTAG 450 TTGTTCGGAC TGTGCGAGAA CCAGTTGTCC TTCCTGCGGT ACACCCACGG 500 GACAGACCAC AGGTAGGGGC CGGAGTTACA GTGCGACGCG AGCGTTTCGA 550 GCCACGACAC CGGTCTGCCC GTCCTCCACC ACACCCTACT GGCCGCCCCG 600 TACGAGCACA GGTGCGGTGA CGACGTGCTA CGGGACATGG ACGTCACGCT 650 CTGGTGGACC CCTCTGGTCC TGAAGGAAAG GTTGGGGAAG GACCACGTGT 700 AGTGTCCGTT GCTCGAGATA CTGTAGGTCG ACAACGGGTC CTTCAGCGAC 750 CTCGACGACC ATCCCCTCTT CGACCAGGAC TTGACGTGGC ACACCCGACT 800 CAAATTGAGT CCACAGTGGA AACTGACCCT GATGGGTCCC TTCGTCCGTC 850 TCGCCCCATT CACCCACGGG CTCGCTGCGA GGGTCGTCTG GGTGTGTCTT 900 GAGAGGTCGT AGGACTGGTA GGTGTTGCAG TCGGTCGTGC TGGACCCGAG 950

CATACACACG TTCCGGTTGT TGCCGTAGGT CGCTAAAGCC CTCTCGTGGC 1000

TCCAGTAACA CGTACTTTTA GGGAAGTAGT CGCAGCTCAC CGAGTTTCCT 1050 GGGTAGGACC TCCGGTGCCG TCCTCTGCTC GACCACTTCG ACGGGCACTT 1100 CGACCGTCGC ATGGGGGGCG GGCTCAAGGT CACCATGTTC CTACCTTTCC 1150 GTGACAGGCC CGCGGTGTCA GGTGTACGGG ACCACGAGTT CCTCCACTGT 1200 CTCCGGTCGT GTCCGTGGAT GTGGGAGCGG GACACCTTGA GGCGACGACC 1250 GGACTCCGCG TTGTAGTCGG ACCTCGACCA CCACTTACAC GGGGGGGTCT 1300 ATGTACTCTT CCTCCGGAGG AGGGGGTCGT AGATGAGCGC AGTGTCGGCG 1350 GTCCGGGAGT GGACGTGCCG GATGCCCCAC GGGGACGGAG AGTCGTAGGT 1400 CACCGTGACC GCCGGGACCT GTGGGACGTT CTACAAACGG GTCGCATCAG 1450 AGGCCGCCGC CGTCGTCGTT CTGGAGTACG GTGTCACGGC ACTGACCTCC 1500 CGCCACTGGT GCGTCCTACG GCACTTGGGG TAGCTCTCGG ACCTGTGGAC 1550 CTGGCTCAAA CACCTCCCTT TCTTATTCTG ACACTCGTTC GACCACTAGG 1600 TCTTACGGTT GCACAGACGG TACATGTTCA CACACCAGAG GTTGTTCCAC 1650 CCGGTCCTAC TCGCCGAGTA GATGAAGATA CACTGGTGGT AGGGGCTGCC 1700 GAAGTGGTAG CTTAGGTTCG GTAGGCTCCT CGATGATCTC CCGGTCGGCC 1750 ACGAGGACTC GACGGTTCGG CTGTCGATGT TCATGCTCGT AGACGCGACC 1800 ATGGCGGAGT TGGACAGGTG CGACGTGCTA CGCGTGCCCT TGGGCGAAGA 1850 CGAGCTGACG TTCTTGCACG TAGACAAGCG GTGGGGAGAC CGGCGGTCGG 1900 ACCTCCTCCA CCGTGGACCC CGCGCGGTGC GGTGCGAGTC GGACTCATAG 1950

GGGGCGCAGC GCGGGCTCGT GCTCCCGGTG ATACACACGC TTCACGTTCT 2000 GGCCGCGTCG GTACTGTTCG TGACGGTGTT CTTCATGGAC AGCCACGTCC 2050 GGGACCTTCG GGGAGCCGAG TGCGTCTTGA ACTGGCTGGA GGACCACTTG 2100 CACTCGCTGA GCGACCTCTA CGTCACGAAC CACCGGCCTC GCGTGCGCGG 2150 GTCGTAGCAC ACCATGTTTC TGCTCTCCGA CGACCTCCTT TTCAGACCTC 2200 AGCTGAACCG CCTGAGGTTG GTCTTCGACT CGTAGGTCGC GCACGCGCTC 2250 CTCCTACGCC CTGCGATAGA CACGTCGCAC ACGTTGCGGT TCCCGACGCA 2300 GTTGAGGAGG CGGTCGCACC GGCACCTTCC GAGGCTCCTA TTCCCGTCGT 2350 ACCTCTAGCA CTAGGAACAG CCATGGCCGC AGTAGCGACA GAAGAAGACC 2400 CAGGAGGAGG AGGAGTAGAA GACATTGTAC TCCTCCGGCC GGGTGCGTCT 2450 GTAGTTCTGC CCGATGGACA GGTAGTAGTA CCTGGGGCCC CTCCACGGAG 2500 ACCTCCTCGT TACGCTTATG GACAGGATGC TACGGTCGGT CACCCTTAAG 2550 GGGGCTCTCG CCGACGTGGA CCCCTCTCAC GAGCCGATGC CGCGGAAGCC 2600 CTTCCACCAC CTTCGGAGGC GAAAGCCGTA GGTGTTCCCG TCGTCGACAC 2650 TGTGGCACCG GCACTTTTAC GACTTTCTCC CGCGGTGCCG GTCGCTCGTG 2700 GCGCGCGACT ACAGCCTCGA GTTCTAGGAG TAAGTGTAGC CGTTGGTGGA 2750 GTTGCACCAG TTGGAGGAGC CCCGCACGTG GTTCGGCGTC CCGGGGGAGT 2800 ACCACTAGCA CCTCAAGACG TTCATGCCGT TGGAGAGGTT GAAGGACGCG 2850 CGGTTCGCCC TGCGGAAGTC GGGGACGCGC CTCTTCAGAG GGCTCGTCGC 2900 GCCTGCGAAG GCGCGGTACC ACCTCGAGCG GTCCGACCTA GCCTCCGCCG 2950 GCCCCTCGTC GCTGTCCCAG GAGAAGCGCG CCAAGAGCTT CTGGCTCCCG 3000 CCTCGCTCCG CCCGAAGAGG TCTGGTTCTT CGACTCCTGG ACACCGACTC 3050 GGGCGACTGG TACCTTCTAG AACAGACGAT GTCGAAGGTC CACCGGTCTC 3100 CCTACCTCAA GGACCGAAGG GCTTTCACGT AGGTGTCTCT GGACCGACGA 3150 GCCTTGTAAG ACGACAGCCT TTCGCTGCAC CACTTCTAGA CACTGAAACC 3200 GGAACGGGCC CTGTAGATGT TTCTGGGACT GATGCAGGCG TTCCCGTCAC 3250 GGGCCGACGG GGACTTCACC TACCGGGGAC TTTCGTAGAA GCTGTTCCAC 3300 ATGTGGTGCG TCTCACTGCA CACCAGGAAA CCCCACGAAG AGACCCTCTA 3350 GAAGAGAGAC CCCCGGAGGG GCATGGGACC CCACGTCTAG TTACTCCTCA 3400 AGACGGTCGC CGACTCTCTG CCGTGTTCCT ACTCCCGGGG CCTCGACCGG 3450 TGAGGGCGGT ATGCGGCGTA GTACGACTTG ACGACCAGGC CTCTGGGGTT 3500 CCGCTCTGGA CGTAAGAGCC TCGACCACCT CTAGGACCCC CTGGACGAGG 3550 TCCCGTCCCC GGACGTTCTC CTTCTCCTCC AGACGTACCG GGGCGCGTCG 3600 AGAGTCTCGA GTCTTCTCCC GTCGAAGAGC GTCCACAGGT GGTACCGGGA 3650 TGTGTAGCGG GTCCGACTGC GACTCCTGTC GGGCGGTTCG GACGTCGCGG 3700 TGTCGGACCG GCGGTCCATA ATGTTGACCC ACAGGAAAGG GCCCACGGAC 3750 CGGTCTCCCC GACTCTGGGC ACCAAGGAGG TCCTACTTCT GTAAACTCCT 3800 TAAGGGGTAC TGGGGTTGCT GGATGTTTCC GAGACACCTG TTGGTCTGTC 3850

	TGTCACCCTA	CCACGACCGG	AGCCTCCTCA	AACTCGTCTA	TCTCTCGTCC	3900
	GTATCTGTTC	TTTCGCCGAA	GTCCATCGAC	TTCGTCTCTC	TCTCTTCCGT	3950
	CGTATGCAGT	CGTAAAAGAA	GAGACGTGAA	TATTCTTTCT	AGTTTCTGAA	4000
5	ATTCTGAAAG	CGATAAAGAA	GACGATAGAT	GATGTTTGAA	GTTTCTCCTT	4050
	GGTCCTCCGG	TTCTCCTCGT	ACTTTCACCT	GTTCCTCACA	CTGGTGACTT	4100
10	CGTGGTGTCC	CTCCCCAATC	CGGAGGCCTA	CTGACGCCCG	TCCGGACCTA	4150
	TTATAGGTCG	GAGGGTGTTC	TTCGACCACC	TCGTCTCACA	AGGGACTGAG	4200
	GAGGTTCCTT	TCCCTCTGCG	GGAAAGTACC	AGACGACTCA	TTGTCCACGG	4250
15	AAGGGTCTGT	GACCGCAATG	ACGAACTGGT	TTCTCGGGAG	TTCGCCGGGA	4300
	ATACGGTCGC	ACTGTCTCCC	GAGTGGAGAA	CGGAAGATCC	AGTGAAGAGT	4350
20	GTTACAGGGA	AGTCGTGGAC	TGGGACACGG	GCGGTCAATA	AGGAACCATT	4400

ATACTCATTA TGTAGTTTCT CATCA 4425

- (2) INFORMACIÓN PARA LA SEC ID NO:33:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 1298 aminoácidos
- 25 (B) TIPO: aminoácido
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:33:

Met 1	Gln	Arg	Gly	Ala 5	Ala	Leu	Cys	Leu	Arg 10	Leu	Trp	Leu	Cys	Leu 15
Gly	Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30
Thr	Leu	Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Ile	Asp	Thr	Gly	Asp 45
Ser	Leu	Ser	Ile	Ser 50	Cys	Arg	Gly	Gln	His 55	Pro	Leu	Glu	Trp	Ala 60

Trp Pro Gl	y Ala	Gln 65	Glu	Ala	Pro	Ala	Thr 70	Gly	Asp	Lys	Asp	Ser 75
Glu Asp Th	r Gly	Val 80	Val	Arg	Asp	Cys	Glu 85	Gly	Thr	Asp	Ala	Arg 90
Pro Tyr Cy	s Lys	Val 95	Leu	Leu	Leu	His	Glu 100	Val	His	Ala	Asn	Asp 105
Thr Gly Se	r Tyr	Val 110	Cys	Tyr	Tyr	Lys	Tyr 115	Ile	Lys	Ala	Arg	Ile 120
Glu Gly Th	r Thr	Ala 125	Ala	Ser	Ser	Tyr	Val 130	Phe	Val	Arg	Asp	Phe 135
Glu Gln Pr	o Phe	Ile 140	Asn	Lys	Pro	Asp	Thr 145	Leu	Leu	Val	Asn	Arg 150
Lys Asp Al	a Met	Trp 155	Val	Pro	Cys	Leu	Val 160	Ser	Ile	Pro	Gly	Leu 165
Asn Val Th	r Leu	Arg 170	Ser	Gln	Ser	Ser	Val 175	Leu	Trp	Pro	Asp	Gly 180
Gln Glu Va	l Val	Trp 185	Asp	Asp	Arg	Arg	Gly 190	Met	Leu	Val	Ser	Thr 195
Pro Leu Le	u His	Asp 200	Ala	Leu	Tyr	Leu	Gln 205	Cys	Glu	Thr	Thr	Trp 210
Gly Asp Gl		215					220					225
Gly Asn Gl	u Leu	Tyr 230	Asp	Ile	Gln	Leu	Leu 235	Pro	Arg	Lys	Ser	Leu 240
Glu Leu Le	u Val	Gly 245	Glu	Lys	Leu	Val	Leu 250	Asn	Cys	Thr	Val	Trp 255
Ala Glu Ph		260					265					270
Lys Gln Al		275			•		280					285
Gln Thr Hi	s Thr	Glu 290	Leu	Ser	Ser	Ile	Leu 295	Thr	Ile	His	Asn	Val 300
Ser Gln Hi		305					310					315
Ile Gln Ar	g Phe	Arg 320	Glu	Ser	Thr	Glu	Val 325	Ile	Val	His	Glu	Asn 330
Pro Phe Il	e Ser	Val 335	Glu	Trp	Leu	Lys	Gly 340	Pro	Ile	Leu	Glu	Ala 345

Thr	Ala	Gly	Asp	Glu 350	Leu	Val	Lys	Leu	Pro 355	Val	Lys	Leu	Ala	Ala 360
Tyr	Pro	Pro	Pro	Glu 365	Phe	Gln	Trp	Tyr	Lys 370	Asp	Gly	Lys	Ala	Leu 375
Ser	Gly	Arg	His	Ser 380	Pro	His	Ala	Leu	Val 385	Leu	Lys	Glu	Val	Thr 390
Glu	Ala	Ser	Thr	Gly 395	Thr	Tyr	Thr	Leu	Ala 400	Leu	Trp	Asn	Ser	Ala 405
Ala	Gly	Leu	Arg	Arg 410	Asn	Ile	Ser	Leu	Glu 415	Leu	Val	Val	Asn	Val 420
Pro	Pro	Gln	Ile	His 425	Glu	Lys	Glu	Ala	Ser 430	Ser	Pro	Ser	Ile	Tyr 435
Ser	Arg	His	Ser	Arg 440	Gln	Ala	Leu	Thr	Cys 445	Thr	Ala	Tyr	Gly	Val 450
Pro	Leu	Pro	Leu	Ser 455	Ile	Gln	Trp	His	Trp 460	Arg	Pro	Trp	Thr	Pro 465
Cys	Lys	Met	Phe	Ala 470	Gln	Arg	Ser	Leu	Arg 475	Arg	Arg	Gln	Gln	Gln 480
Asp	Leu	Met	Pro	Gln 485	Cys	Arg	Asp	Trp	Arg 490	Ala	Val	Thr	Thr	Gln 495
Asp	Ala	Val	Asn	Pro 500	Ile	Glu	Ser	Leu	Asp 505	Thr	Trp	Thr	Glu	Phe 510
Val	Glu	Gly	Lys	Asn 515	Lys	Thr	Val	Ser	Lys 520	Leu	Val	Ile	Gln	Asn 525
Ala	Asn	Val	Ser	Ala 530	Met	Tyr	Lys	Cys	Val 535	Val	Ser	Asn	Lys	Val 540
Gly	Gln	Asp	Glu	Arg 545	Leu	Ile	Tyr	Phe	Tyr 550	Val	Thr	Thr	Ile	Pro 555
Asp	Gly	Phe	Thr	Ile 560	Glu	Ser	Lys	Pro	Ser 565	Glu	Glu	Leu	Leu	Glu 570
Gly	Gln	Pro	Val	Leu 575	Leu	Ser	Cys	Gln	Ala 580	Asp	Ser	Tyr	Lys	Tyr 585
Glu	His	Leu	Arg	Trp 590	Tyr	Arg	Leu	Asn	Leu 595	Ser	Thr	Leu	His	Asp 600
Ala	His	Gly	Asn	Pro 605	Leu	Leu	Leu	Asp	Cys 610	Lys	Asn	Val	His	Leu 615
Phe	Ala	Thr	Pro	Leu 620	Ala	Ala	Ser	Leu	Glu 625	Glu	Val	Ala	Pro	Gly 630

Ala	Arg	His	Ala	Thr 635	Leu	Ser	Leu	Ser	Ile 640	Pro	Arg	Val	Ala	Pro 645
Glu	His	Glu	Gly	His 650	Tyr	Val	Cys	Glu	Val 655	Gln	Asp	Arg	Arg	Ser 660
His	Asp	Lys	His	Cys 665	His	Lys	Lys	Tyr	Leu 670	Ser	Val	Gln	Ala	Leu 675
Glu	Ala	Pro	Arg	Leu 680	Thr	Gln	Asn	Leu	Thr 685	Asp	Leu	Leu	Val	Asn 690
Val	Ser	Asp	Ser	Leu 695	Glu	Met	Gln	Cys	Leu 700	Val	Ala	Gly	Ala	His 705
Ala	Pro	Ser	Ile	Val 710	Trp	Tyr	Lys	Asp	Glu 715	Arg	Leu	Leu	Glu	Glu 720
Lys	ser	Gly	Val	Asp 725	Leu	Ala	Asp	Ser	Asn 730	Gln	Lys	Leu	Ser	Ile 735
Gln	Arg	Val	Arg	Glu 740	Glu	Asp	Ala	Gly	Arg 745	Tyr	Leu	Cys	Ser	Val 750
Cys	Asn	Ala	Lys	Gly 755	Cys	Val	Asn	Ser	Ser 760	Ala	ser	Val	Ala	Val 765
Glu	Gly	Ser	Glu	Asp 770	Lys	Gly	Ser	Met	Glu 775	Ile	Val	Ile	Leu	Val 780
Gly	Thr	Gly	Val	Ile 785	Ala	Val	Phe	Phe	Trp 790	Val	Leu	Leu	Leu	Leu 795
Ile	Phe	Cys	Asn	Met 800	Arg	Arg	Pro	Ala	His 805	Ala	Asp	Ile	Lys	Thr 810
Gly	Tyr	Leu	Ser	Ile 815	Ile	Met	Asp	Pro	Gly 820	Glu	Val	Pro	Leu	Glu 825
Glu	Gln	Cys	Glu	Tyr 830	Leu	Ser	Tyr	Asp	Ala 835	Ser	Gln	Trp	Glu	Phe 840
Pro	Arg	Glu	Arg	Leu 845	His	Leu	Gly	Arg	Val 850	Leu	Gly	Tyr	Gly	Ala 855
Phe	Gly	Lys	Val	Val 860	Glu	Ala	Ser	Ala	Phe 865	Gly	Ile	His	Lys	Gly 870
Ser	Ser	Cys	Asp	Thr ' 875	Val	Ala	Val	Lys	Met 880	Leu	Lys	Glu	Gly	Ala 885
Thr	Ala	Ser	Glu	His 890	Arg	Ala	Leu	Met	Ser 895	Glu	Leu	Lys	Ile	Leu 900
Ile	His	Ile	Gly	Asn 905	His	Leu	Asn	Val	Val 910	Asn	Leu	Leu	Gly	Ala 915

Cys	Thr	Lys	Pro	Gln	Gly	Pro	Leu	Met	Val	Ile	Val	Glu	Phe	
				920					925					930
Lys	Tyr	Gly	Asn	Leu 935	Ser	Asn	Phe	Leu	Arg 940	Ala	Lys	Arg	Asp	Ala 945
Phe	Ser	Pro	Cys	Ala 950	Glu	Lys	Ser	Pro	Glu 955	Gln	Arg	Gly	Arg	Phe 960
Arg	Ala	Met	Val	Glu 965	Leu	Ala	Arg	Leu	Asp 970	Arg	Arg	Arg	Pro	Gly 975
Ser	Ser	Asp	Arg	Val 980	Leu	Phe	Ala	Arg	Phe 985	Ser	Lys	Thr	Glu	Gly 990
Gly	Ala	Arg	Arg	Ala 995	Ser	Pro	Asp		Glu LOOO	Ala	Glu	Asp		Trp 1005
Leu	Ser	Pro		Thr 1010	Met	Glu	Asp		Val 1015	Cys	Tyr	Ser		Gln 1020
Val	Ala	Arg	_	Met 1025	Glu	Phe	Leu		Ser L030	Arg	Lys	Cys		His 1035
Arg	Asp	Leu		Ala 1040	Arg	Asn	Ile		Leu L045	Ser	Glu	Ser		Val 1050
Val	Lys	Ile	_	Asp 1055	Phe	Gly	Leu		Arg L060	Asp	Ile	туг		Asp 1065
Pro	Asp	Tyr		Arg 1070	Lys	Gly	Ser		Arg L075	Leu	Pro	Leu		Trp 1080
Met	Ala	Pro		Ser 1085	Ile	Phe	Asp		Val LO90	Tyr	Thr	Thr		Ser 1095
Asp	Val	Trp		Phe 1100	Gly	Val	Leu		Trp L105	Glu	Ile	Phe		Leu
Gly	Ala	Ser		Tyr 1115	Pro	Gly	Val		Ile L120	Asn	Glu	Glu		Cys .125
Gln	Arg	Leu	_	Asp 1130	Gly	Thr	Arg		Arg L135	Ala	Pro	Glu		Ala 140
Thr	Pro	Ala		Arg 1145	Arg	Ile	Met		Asn L150	Cys	Trp	Ser	_	As p
Pro	Lys	Ala	_	Pro 1160	Ala	Phe	Ser		Leu L165	Val	Glu	Ile		Gly 170
Asp	Leu	Leu		Gly 1175	Arg	Gly	Leu		Glu 1 18 0	Glu	Glu	Glu		Cys .185
Met	Ala	Pro		Ser 1190	Ser	Gln	Ser		Glu L195	Glu	Gly	Ser		Ser 200

Gln Val Ser Thr Met Ala Leu His Ile Ala Gln Ala Asp Ala Glu 1205 1210 1215

Asp Ser Pro Pro Ser Leu Gln Arg His Ser Leu Ala Ala Arg Tyr 1220 1225 1230

5 Tyr Asn Trp Val Ser Phe Pro Gly Cys Leu Ala Arg Gly Ala Glu 1235 1240 1245

> Thr Arg Gly Ser Ser Arg Met Lys Thr Phe Glu Glu Phe Pro Met 1250 1255 1260

> Thr Pro Thr Thr Tyr Lys Gly Ser Val Asp Asn Gln Thr Asp Ser 1265 1270 1275

Gly Met Val Leu Ala Ser Glu Glu Phe Glu Gln Ile Glu Ser Arg
1280 1285 1290

His Arg Gln Glu Ser Gly Phe Arg 1295 1298

- (2) INFORMACIÓN PARA LA SEC ID NO:34:
- 15 (i) CARACTERÍSTICAS DE LA SECUENCIA:

(A) LONGITUD: 3348 bases

(B) TIPO: ácido nucleico

(C) CADENA: única

(D) TOPOLOGÍA: lineal

20 (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:34:

ATGGCTGGGA TTTTCTATTT CGCCCTATTT TCGTGTCTCT TCGGGATTTG 50

CGACGCTGTC ACAGGTTCCA GGGTATACCC CGCGAATGAA GTTACCTTAT 100

TGGATTCCAG ATCTGTTCAG GGAGAACTTG GGTGGATAGC AAGCCCTCTG 150

GAAGGAGGGT GGGAGGAAGT GAGTATCATG GATGAAAAAA ATACACCAAT 200

CCGAACCTAC CAAGTGTGCA ATGTGATGGA ACCCAGCCAG AATAACTGGC 250

TACGAACTGA TTGGATCACC CGAGAAGGGG CTCAGAGGGT GTATATTGAG 300

ATTAAATTCA CCTTGAGGGA CTGCAATAGT CTTCCGGGCG TCATGGGGAC 350

TTGCAAGGAG ACGTTTAACC TGTACTACTA TGAATCAGAC AACGACAAAG 400

AGCGTTTCAT CAGAGAGAAC CAGTTTGTCA AAATTGACAC CATTGCTGCT 450

GATGAGAGCT TCACCCAAGT GGACATTGGT GACAGAATCA TGAAGCTGAA 500 CACCGAGATC CGGGATGTAG GGCCATTAAG CAAAAAGGGG TTTTACCTGG 550 CTTTTCAGGA TGTGGGGGCC TGCATCGCCC TGGTATCAGT CCGTGTGTTC 600 TATAAAAAGT GTCCACTCAC AGTCCGCAAT CTGGCCCAGT TTCCTGACAC 650 CATCACAGGG GCTGATACGT CTTCCCTGGT GGAAGTTCGA GGCTCCTGTG 700 TCAACAACTC AGAAGAGAAA GATGTGCCAA AAATGTACTG TGGGGCAGAT 750 GGTGAATGGC TGGTACCCAT TGGCAACTGC CTATGCAACG CTGGGCATGA 800 GGAGCGGAGC GGAGAATGCC AAGCTTGCAA AATTGGATAT TACAAGGCTC 850 TCTCCACGGA TGCCACCTGT GCCAAGTGCC CACCCCACAG CTACTCTGTC 900 TGGGAAGGAG CCACCTCGTG CACCTGTGAC CGAGGCTTTT TCAGAGCTGA 950 CAACGATGCT GCCTCTATGC CCTGCACCCG TCCACCATCT GCTCCCCTGA 1000 ACTTGATTTC AAATGTCAAC GAGACATCTG TGAACTTGGA ATGGAGTAGC 1050 CCTCAGAATA CAGGTGGCCG CCAGGACATT TCCTATAATG TGGTATGCAA 1100 GAAATGTGGA GCTGGTGACC CCAGCAAGTG CCGACCCTGT GGAAGTGGGG 1150 TCCACTACAC CCCACAGCAG AATGGCTTGA AGACCACCAA AGGCTCCATC 1200 ACTGACCTCC TAGCTCATAC CAATTACACC TTTGAAATCT GGGCTGTGAA 1250 TGGAGTGTCC AAATATAACC CTAACCCAGA CCAATCAGTT TCTGTCACTG 1300 TGACCACCAA CCAAGCAGCA CCATCATCCA TTGCTTTGGT CCAGGCTAAA 1350 GAAGTCACAA GATACAGTGT GGCACTGGCT TGGCTGGAAC CAGATCGGCC 1400

CAATGGGGTA ATCCTGGAAT ATGAAGTCAA GTATTATGAG AAGGATCAGA 1450 ATGAGCGAAG CTATCGTATA GTTCGGACAG CTGCCAGGAA CACAGATATC 1500 AAAGGCCTGA ACCCTCTCAC TTCCTATGTT TTCCACGTGC GAGCCAGGAC 1550 AGCAGCTGGC TATGGAGACT TCAGTGAGCC CTTGGAGGTT ACAACCAACA 1600 CAGTGCCTTC CCGGATCATT GGAGATGGGG CTAACTCCAC AGTCCTTCTG 1650 GTCTCTGTCT CGGGCAGTGT GGTGCTGGTG GTAATTCTCA TTGCAGCTTT 1700 TGTCATCAGC CGGAGACGGA GTAAATACAG TAAAGCCAAA CAAGAAGCGG 1750 ATGAAGAGA ACATTTGAAT CAAGGTGTAA GAACATATGT GGACCCCTTT 1800 ACGTACGAAG ATCCCAACCA AGCAGTGCGA GAGTTTGCCA AAGAAATTGA 1850 CGCATCCTGC ATTAAGATTG AAAAAGTTAT AGGAGTTGGT GAATTTGGTG 1900 AGGTATGCAG TGGGCGTCTC AAAGTGCCTG GCAAGAGAGA GATCTGTGTG 1950 GCTATCAAGA CTCTGAAAGC TGGTTATACA GACAAACAGA GGAGAGACTT 2000 CCTGAGTGAG GCCAGCATCA TGGGACAGTT TGACCATCCG AACATCATTC 2050 ACTTGGAAGG CGTGGTCACT AAATGTAAAC CAGTAATGAT CATAACAGAG 2100 TACATGGAGA ATGGCTCCTT GGATGCATTC CTCAGGAAAA ATGATGGCAG 2150 ATTTACAGTC ATTCAGCTGG TGGGCATGCT TCGTGGCATT GGGTCTGGGA 2200 TGAAGTATTT ATCTGATATG AGCTATGTGC ATCGTGATCT GGCCGCACGG 2250 AACATCCTGG TGAACAGCAA CTTGGTCTGC AAAGTGTCTG ATTTTGGCAT 2300 GTCCCGAGTG CTTGAGGATG ATCCGGAAGC AGCTTACACC ACCAGGGGTG 2350

GCAAGATTCC TATCCGGTGG ACTGCGCCAG AAGCAATTGC CTATCGTAAA 2400 TTCACATCAG CAAGTGATGT ATGGAGCTAT GGAATCGTTA TGTGGGAAGT 2450 GATGTCGTAC GGGGAGAGGC CCTATTGGGA TATGTCCAAT CAAGATGTGA 2500 TTAAAGCCAT TGAGGAAGGC TATCGGTTAC CCCCTCCAAT GGACTGCCCC 2550 ATTGCGCTCC ACCAGCTGAT GCTAGACTGC TGGCAGAAGG AGAGGAGCGA 2600 CAGGCCTAAA TTTGGGCAGA TTGTCAACAT GTTGGACAAA CTCATCCGCA 2650 ACCCCAACAG CTTGAAGAGG ACAGGGACGG AGAGCTCCAG ACCTAACACT 2700 GCCTTGTTGG ATCCAAGCTC CCCTGAATTC TCTGCTGTGG TATCAGTGGG 2750 CGATTGGCTC CAGGCCATTA AAATGGACCG GTATAAGGAT AACTTCACAG 2800 CTGCTGGTTA TACCACACTA GAGGCTGTGG TGCACGTGAA CCAGGAGGAC 2850 CTGGCAAGAA TTGGTATCAC AGCCATCACA CACCAGAATA AGATTTTGAG 2900 CAGTGTCCAG GCAATGCGAA CCCAAATGCA GCAGATGCAC GGCAGAATGG 2950 TTCCCGTCTG AGCCAGTACT GAATAAACTC AAAACTCTTG AAATTAGTTT 3000 ACCTCATCCA TGCACTTTAA TTGAAGAACT GCACTTTTTT TACTTCGTCT 3050 TCGCCCTCTG AAATTAAAGA AATGAAAAAA AAAAAACAAT ATCTGCAGCG 3100 TTGCTTGGTG CACAGATTGC TGAAACTGTG GGGCTTACAG AAATGACTGC 3150 CGGTCATTTG AATGAGACCT GGAACAAATC GTTTCTCAGA AGTACTTTTC 3200 TGTTCATCAC CAGTCTGTAA AATACATGTA CCTATAGAAA TAGAACACTG 3250 CCTCTGAGTT TTGATGCTGT ATTTGCTGCC AGACACTGAG CTTCTGAGAC 3300

ATCCCTGATT CTCTCTCCAT TTGGAATTAC AACGGTCGAC GAGCTCGA 3348

- (2) INFORMACIÓN PARA LA SEC ID NO:35:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 3348 bases
- (B) TIPO: ácido nucleico
- 5 (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:35:

TACCGACCCT AAAAGATAAA GCGGGATAAA AGCACAGAGA AGCCCTAAAC 50 GCTGCGACAG TGTCCAAGGT CCCATATGGG GCGCTTACTT CAATGGAATA 100 ACCTAAGGTC TAGACAAGTC CCTCTTGAAC CCACCTATCG TTCGGGAGAC 150 CTTCCTCCCA CCCTCCTTCA CTCATAGTAC CTACTTTTTT TATGTGGTTA 200 GGCTTGGATG GTTCACACGT TACACTACCT TGGGTCGGTC TTATTGACCG 250 ATGCTTGACT AACCTAGTGG GCTCTTCCCC GAGTCTCCCA CATATAACTC 300 TAATTTAAGT GGAACTCCCT GACGTTATCA GAAGGCCCGC AGTACCCCTG 350 AACGTTCCTC TGCAAATTGG ACATGATGAT ACTTAGTCTG TTGCTGTTTC 400 TCGCAAAGTA GTCTCTTTG GTCAAACAGT TTTAACTGTG GTAACGACGA 450 CTACTCTCGA AGTGGGTTCA CCTGTAACCA CTGTCTTAGT ACTTCGACTT 500 GTGGCTCTAG GCCCTACATC CCGGTAATTC GTTTTTCCCC AAAATGGACC 550 GAAAAGTCCT ACACCCCGG ACGTAGCGGG ACCATAGTCA GGCACAAAG 600 ATATTTTCA CAGGTGAGTG TCAGGCGTTA GACCGGGTCA AAGGACTGTG 650 GTAGTGTCCC CGACTATGCA GAAGGGACCA CCTTCAAGCT CCGAGGACAC 700

AGTTGTTGAG TCTTCTCTTT CTACACGGTT TTTACATGAC ACCCCGTCTA 750 CCACTTACCG ACCATGGGTA ACCGTTGACG GATACGTTGC GACCCGTACT 800 CCTCGCCTCG CCTCTTACGG TTCGAACGTT TTAACCTATA ATGTTCCGAG 850 AGAGGTGCCT ACGGTGGACA CGGTTCACGG GTGGGGTGTC GATGAGACAG 900 ACCCTTCCTC GGTGGAGCAC GTGGACACTG GCTCCGAAAA AGTCTCGACT 950 GTTGCTACGA CGGAGATACG GGACGTGGGC AGGTGGTAGA CGAGGGGACT 1000 TGAACTAAAG TTTACAGTTG CTCTGTAGAC ACTTGAACCT TACCTCATCG 1050 GGAGTCTTAT GTCCACCGGC GGTCCTGTAA AGGATATTAC ACCATACGTT 1100 CTTTACACCT CGACCACTGG GGTCGTTCAC GGCTGGGACA CCTTCACCCC 1150 AGGTGATGTG GGGTGTCGTC TTACCGAACT TCTGGTGGTT TCCGAGGTAG 1200 TGACTGGAGG ATCGAGTATG GTTAATGTGG AAACTTTAGA CCCGACACTT 1250 ACCTCACAGG TTTATATTGG GATTGGGTCT GGTTAGTCAA AGACAGTGAC 1300 ACTGGTGGTT GGTTCGTCGT GGTAGTAGGT AACGAAACCA GGTCCGATTT 1350 CTTCAGTGTT CTATGTCACA CCGTGACCGA ACCGACCTTG GTCTAGCCGG 1400 GTTACCCCAT TAGGACCTTA TACTTCAGTT CATAATACTC TTCCTAGTCT 1450 TACTCGCTTC GATAGCATAT CAAGCCTGTC GACGGTCCTT GTGTCTATAG 1500 TTTCCGGACT TGGGAGAGTG AAGGATACAA AAGGTGCACG CTCGGTCCTG 1550 TCGTCGACCG ATACCTCTGA AGTCACTCGG GAACCTCCAA TGTTGGTTGT 1600 GTCACGGAAG GGCCTAGTAA CCTCTACCCC GATTGAGGTG TCAGGAAGAC 1650

CAGAGACAGA GCCCGTCACA CCACGACCAC CATTAAGAGT AACGTCGAAA 1700 ACAGTAGTCG GCCTCTGCCT CATTTATGTC ATTTCGGTTT GTTCTTCGCC 1750 TACTTCTCTT TGTAAACTTA GTTCCACATT CTTGTATACA CCTGGGGAAA 1800 TGCATGCTTC TAGGGTTGGT TCGTCACGCT CTCAAACGGT TTCTTTAACT 1850 GCGTAGGACG TAATTCTAAC TTTTTCAATA TCCTCAACCA CTTAAACCAC 1900 TCCATACGTC ACCCGCAGAG TTTCACGGAC CGTTCTCTCT CTAGACACAC 1950 CGATAGTTCT GAGACTTTCG ACCAATATGT CTGTTTGTCT CCTCTCTGAA 2000 GGACTCACTC CGGTCGTAGT ACCCTGTCAA ACTGGTAGGC TTGTAGTAAG 2050 TGAACCTTCC GCACCAGTGA TTTACATTTG GTCATTACTA GTATTGTCTC 2100 ATGTACCTCT TACCGAGGAA CCTACGTAAG GAGTCCTTTT TACTACCGTC 2150 TAAATGTCAG TAAGTCGACC ACCCGTACGA AGCACCGTAA CCCAGACCCT 2200 ACTTCATAAA TAGACTATAC TCGATACACG TAGCACTAGA CCGGCGTGCC 2250 TTGTAGGACC ACTTGTCGTT GAACCAGACG TTTCACAGAC TAAAACCGTA 2300 CAGGGCTCAC GAACTCCTAC TAGGCCTTCG TCGAATGTGG TGGTCCCCAC 2350 CGTTCTAAGG ATAGGCCACC TGACGCGGTC TTCGTTAACG GATAGCATTT 2400 AAGTGTAGTC GTTCACTACA TACCTCGATA CCTTAGCAAT ACACCCTTCA 2450 CTACAGCATG CCCCTCTCCG GGATAACCCT ATACAGGTTA GTTCTACACT 2500 AATTTCGGTA ACTCCTTCCG ATAGCCAATG GGGGAGGTTA CCTGACGGGG 2550 TAACGCGAGG TGGTCGACTA CGATCTGACG ACCGTCTTCC TCTCCTCGCT 2600

GTCCGGATTT AAACCCGTCT AACAGTTGTA CAACCTGTTT GAGTAGGCGT 2650 TGGGGTTGTC GAACTTCTCC TGTCCCTGCC TCTCGAGGTC TGGATTGTGA 2700 CGGAACAACC TAGGTTCGAG GGGACTTAAG AGACGACACC ATAGTCACCC 2750 5 GCTAACCGAG GTCCGGTAAT TTTACCTGGC CATATTCCTA TTGAAGTGTC 2800 GACGACCAAT ATGGTGTGAT CTCCGACACC ACGTGCACTT GGTCCTCCTG 2850 GACCGTTCTT AACCATAGTG TCGGTAGTGT GTGGTCTTAT TCTAAAACTC 2900 10 GTCACAGGTC CGTTACGCTT GGGTTTACGT CGTCTACGTG CCGTCTTACC 2950 AAGGGCAGAC TCGGTCATGA CTTATTTGAG TTTTGAGAAC TTTAATCAAA 3000 TGGAGTAGGT ACGTGAAATT AACTTCTTGA CGTGAAAAAA ATGAAGCAGA 3050 15 AGCGGGAGAC TTTAATTTCT TTACTTTTTT TTTTTTGTTA TAGACGTCGC 3100 AACGAACCAC GTGTCTAACG ACTTTGACAC CCCGAATGTC TTTACTGACG 3150 GCCAGTAAAC TTACTCTGGA CCTTGTTTAG CAAAGAGTCT TCATGAAAAG 3200 20 ACAAGTAGTG GTCAGACATT TTATGTACAT GGATATCTTT ATCTTGTGAC 3250 GGAGACTCAA AACTACGACA TAAACGACGG TCTGTGACTC GAAGACTCTG 3300 25 TAGGGACTAA GAGAGAGGTA AACCTTAATG TTGCCAGCTG CTCGAGCT 3348

- (2) INFORMACIÓN PARA LA SEC ID NO:36:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 1104 aminoácidos
- 30 (B) TIPO: aminoácido
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:36:

Met Ala Gly Ile Phe Tyr Phe Ala Leu Phe Ser Cys Leu Phe Gly
1 5 10 15

Ile	Cys	Asp	Ala	Val 20	Thr	Gly	Ser	Arg	Val 25	Tyr	Pro	Ala	Asn	Glu 30
Val	Thr	Leu	Leu	Asp 35	Ser	Arg	Ser	Val	Gln 40	Gly	Glu	Leu	Gly	Trp 45
Ile	Ala	Ser	Pro	Leu 50	Glu	Gly	Gly	Trp	Glu 55	Glu	Val	Ser	Ile	Met 60
Asp	Glu	Lys	Asn	Thr 65	Pro	Ile	Arg	Thr	Tyr 70	Gln	Val	Cys	Asn	Val 75
Met	Glu	Pro	Ser	Gln 80	Asn	Asn	Trp	Leu	Arg 85	Thr	Asp	Trp	Ile	Thr 90
Arg	Glu	Gly	Ala	Gln 95	Arg	Val	Tyr	Ile	Glu 100	Ile	Lys	Phe	Thr	Leu 105
Arg	Asp	Cys	Asn	ser 110	Leu	Pro	Gly	Val	Met 115	Gly	Thr	Cys	Lys	Glu 120
Thr	Phe	Asn	Leu	Tyr 125	Tyr	Tyr	Glu	Ser	Asp 130	Asn	Asp	Lys	Glu	Arg 135
Phe	Ile	Arg	Glu	Asn 140	Gln	Phe	Val	Lys	Ile 145	Asp	Thr	Ile	Ala	Ala 150
Asp	Glu	Ser	Phe	Thr 155	Gln	Val	Asp	Ile	Gly 160	Asp	Arg	Ile	Met	Lys 165
Leu	Asn	Thr	Glu	11e 170	Arg	Asp	Val	Gly	Pro 175	Leu	Ser	Lys	Lys	Gly 180
Phe	Tyr	Leu	Ala	Phe 185	Gln	Asp	Val	Gly	Ala 190	Cys	Ile	Ala	Leu	Val 195
Ser	Val	Arg	Val	Phe 200	Tyr	Lys	Lys	Cys	Pro 205	Leu	Thr	Val	Arg	Asn 210
Leu	Ala	Gln	Phe	Pro 215	Asp	Thr	Ile	Thr	Gly 220	Ala	Asp	Thr	Ser	Ser 225
Leu	Val	Glu	Val	Arg 230	Gly	Ser	Cys	Val	Asn 235	Asn	Ser	Glu	Glu	Lys 240
Asp	Val	Pro	Lys	Met 245	туr	Cys	Gly	Ala	Asp 250	Gly	Glu	Trp	Leu	Val 255
Pro	Ile	Gly	Asn	Cys 260	Leu	Cys	Asn	Ala	Gly 265	His	Glu	Glu	Arg	Ser 270
Gly	Glu	Cys	Gln	Ala 275	Cys	Lys	Ile	Gly	Tyr 280	Tyr	Lys	Ala	Leu	Ser 285
Thr	Asp	Ala	Thr	Cys 290	Ala	Lys	Cys	Pro	Pro 295	His	Ser	Tyr	Ser	Val 300

Trp	Glu	Gly	Ala	Thr 305	Ser	Cys	Thr	Cys	Asp 310	Arg	Gly	Phe	Phe	Arg 315
Ala	Asp	Asn	Asp	Ala 320	Ala	Ser	Met	Pro	Cys 325	Thr	Arg	Pro	Pro	Ser 330
Ala	Pro	Leu	Asn	Leu 335	Ile	Ser	Asn	Val	Asn 340	Glu	Thr	Ser	Val	Asn 345
Leu	Glu	Trp	Ser	Ser 350	Pro	Gln	Asn	Thr	Gly 355	Gly	Arg	Gln	Asp	Ile 360
Ser	Tyr	Asn	Val	Val 365	Cys	Lys	Lys	Cys	Gly 370	Ala	Gly	Asp	Pro	Ser 375
Lys	Cys	Arg	Pro	Cys 380	Gly	Ser	Gly	Val	His 385	Tyr	Thr	Pro	Gln	Gln 390
Asn	Gly	Leu	Lys	Thr 395	Thr	Lys	Gly	Ser	Ile 400	Thr	Asp	Leu	Leu	Ala 405
His	Thr	Asn	Tyr	Thr 410	Phe	Glu	Ile	Trp	Ala 415	Val	Asn	Gly	Val	Ser 420
Lys	Tyr	Asn	Pro	Asn 425	Pro	Asp	Gln	Ser	Val 430	Ser	Val	Thr	Val	Thr 435
Thr	Asn	Gln	Ala	Ala 440	Pro	Ser	Ser	Ile	Ala 445	Leu	Val	Gln	Ala	Lys 450
Glu	Val	Thr	Arg	Tyr 455	Ser	Val	Ala	Leu	Ala 460	Trp	Leu	Glu	Pro	Asp 465
Arg	Pro	Asn	Gly	Val 470	Ile	Leu	Glu	Tyr	Glu 475	Val	Lys	Tyr	Tyr	Glu 480
Lys	Asp	Gln	Asn	Glu 485	Arg	Ser	Tyr	Arg	Ile 490	Val	Arg	Thr	Ala	Ala 495
Arg	Asn	Thr	Asp	Ile 500	Lys	Gly	Leu	Asn	Pro 505	Leu	Thr	Ser	Tyr	Val 510
Phe	His	Val	Arg	Ala 515	Arg	Thr	Ala	Ala	Gly 520	Tyr	Gly	Asp	Phe	ser 525
Glu	Pro	Leu	Glu	Val 530	Thr	Thr	Asn	Thr	Val 535	Pro	Ser	Arg	Ile	11e 540
Gly	Asp	Gly	Ala	Asn 545	Ser	Thr	Val	Leu	Leu 550	Val	Ser	Val	Ser	Gly 555
Ser	Val	Val	Leu	Val 560	Val	Ile	Leu	Ile	Ala 565	Ala	Phe	Val	Ile	Ser 570
Arg	Arg	Arg	Ser	Lys 575	Tyr	Ser	Lys	Ala	Lys 580	Gln	Glu	Ala	Asp	Glu 585

Glu Lys	His	Leu	Asn 590	Gln	Gly	Val	Arg	Thr 595	Tyr	Val	Asp	Pro	Phe 600
Thr Tyr	Glu	Asp	Pro 605	Asn	Gln	Ala	Val	Arg 610	Glu	Phe	Ala	Lys	Glu 615
Ile Asp	Ala	Ser	Cys 620	Ile	Lys	Ile	Glu	Lys 625	Val	Ile	Gly	Val	Gly 630
Glu Phe	Gly	Glu	Val 635	Cys	Ser	Gly	Arg	Leu 640	Lys	Val	Pro	Gly	Lys 645
Arg Glu	Ile	Cys	Val 650	Ala	Ile	Lys	Thr	Leu 655	Lys	Ala	Gly	Tyr	Thr 660
Asp Lys	Gln	Arg	Arg 665	Asp	Phe	Leu	Ser	Glu 670	Ala	Ser	Ile	Met	Gly 675
Gln Phe	Asp	His	Pro 680	Asn	Ile	Ile	His	Leu 685	Glu	Gly	Val	Val	Thr 690
Lys Cys	Lys	Pro	Val 695	Met	Ile	Ile	Thr	Glu 700	Tyr	Met	Glu	Asn	Gly 705
Ser Leu	Asp	Ala	Phe 710	Leu	Arg	Lys	Asn	Asp 715	Gly	Arg	Phe	Thr	Val 720
Ile Gln	Leu	Val	Gly 725	Met	Leu	Arg	Gly	Ile 730	Gly	Ser	Gly	Met	Lys 735
Tyr Leu	Ser	Asp	Met 740	Ser	Tyr	Val	His	Arg 745	Asp	Leu	Ala	Ala	Arg 750
Asn Ile	Leu	Val	Asn 755	Ser	Asn	Leu	Val	Cys 760	Lys	Val	Ser	Asp	Phe 765
Gly Met	Ser	Arg	Val 770	Leu	Glu	Asp	Asp	Pro 775	Glu	Ala	Ala	Tyr	Thr 780
Thr Arg	Gly	Gly	Lys 785	Ile	Pro	Ile	Arg	Trp 790	Thr	Ala	Pro	Glu	Ala 795
Ile Ala	Tyr	Arg	Lys 800	Phe	Thr	Ser	Ala	Ser 805	Asp	Val	Trp	Ser	Tyr 810
Gly Ile	Val	Met	Trp 815	Glu	Val	Met	Ser	Tyr 820	Gly	Glu	Arg	Pro	Tyr 825
Trp Asp	Met	Ser	Asn 830	Gln	Asp	Val	Ile	Lys 835	Ala	Ile	Glu	Glu	Gly 840
Tyr Arg	Leu	Pro	Pro 845	Pro	Met	Asp	Cys	Pro 850	Ile	Ala	Leu	His	Gln 855
Leu Met	Leu	Asp	Cys 860	Trp	Gln	Lys	Glu	Arg 865	Ser	Asp	Arg	Pro	Lys 870

	Phe	Gly	Gln	Ile	Val 875	Asn	Met	Leu	Asp	Lys 880	Leu	Ile	Arg	Asn	Pro 885
	Asn	Ser	Leu	Lys	Arg 890	Thr	Gly	Thr	Glu	Ser 895	Ser	Arg	Pro	Asn	Thr 900
5	Ala	Leu	Leu	Asp	Pro 905	Ser	Ser	Pro	Glu	Phe 910	Ser	Ala	Val	Val	Ser 915
	Val	Gly	Asp	Trp	Leu 920	Gln	Ala	Ile	Lys	Met 925	Asp	Arg	Tyr	Lys	Asp 930
10	Asn	Phe	Thr	Ala	Ala 935	Gly	Tyr	Thr	Thr	Leu 940	Glu	Ala	Val	Val	His 945
10	Val	Asn	Gln	Glu	Asp 950	Leu	Ala	Arg	Ile	Gly 955	Ile	Thr	Ala	Ile	Thr 960
	His	Gln	Asn	Lys	Ile 965	Leu	Ser	Ser	Val	Gln 970	Ala	Met	Arg	Thr	Gln 975
15	Met	Gln	Gln	Met	His 980	Gly	Arg	Met	Val	Pro 985	Val	Ala	Ser	Thr	Glu 990
	Thr	Gln	Asn	Ser	Asn 995	Phe	Thr	Ser		Met 1000	His	Phe	Asn	_	Thr 1005
	Ala	Leu	Phe		Leu L010	Arg	Leu	Arg		Leu 1015	Lys	Leu	Lys	_	Lys 1020
20	Lys	Lys	Asn		Ile 1025	Cys	Ser	Val		Trp 1030	Cys	Thr	Asp	_	Asn 035
	Cys	Gly	Ala		Arg 1040	Asn	Asp	Cys		Ser L045	Phe	Glu	Asp		Glu .050
	Gln	Ile	Val		Gln LO55	Lys	Tyr	Phe		Val 1060	His	His	Gln		Val .065
25	Lys	Tyr	Met		Leu 1070	Lys	Asn	Thr		Ser 1075	Glu	Phe	Cys		Ile .080
	Cys	Cys	Gln		Leu 1085	Ser	Phe	Asp		Pro 1090	Asp	Ser	Leu		Ile .095
30	Trp	Asn	Tyr		Gly 100	Arg	Arg		Arg 104						

- (2) INFORMACIÓN PARA LA SEC ID NO:37:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 24 bases
- (B) TIPO: ácido nucleico
- 35 (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:37:

TCGGATCCAC ACGNGACTCT TGGC 24

- (2) INFORMACIÓN PARA LA SEC ID NO:38:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- (A) LONGITUD: 28 bases
- 5 (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:38:

TCGGATCCAC TCAGNGACTC TTNGCNGC 28

- 10 (2) INFORMACIÓN PARA LA SEC ID NO:39:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 32 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
- 15 (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:39:

CTCGAATTCC AGATAAGCGT ACCAGCACAG TC 32

- (2) INFORMACIÓN PARA LA SEC ID NO:40:
- (i) CARACTERÍSTICAS DE LA SECUENCIA:
- 20 (A) LONGITUD: 32 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:40:
- 25 CTCGAATTCC AGATATCCGT ACCATAACAG TC 32
 - (2) INFORMACIÓN PARA LA SEC ID NO:41:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 13 aminoácidos
 - (B) TIPO: aminoácido
- 30 (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:41:

Met Asp Tyr Lys Asp Asp Asp Asp Lys Lys Leu Ala Met 1 5 10 13

- 35 (2) INFORMACIÓN PARA LA SEC ID NO:42:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 54 bases

- (B) TIPO: ácido nucleico
- (C) CADENA: única
- (D) TOPOLOGÍA: lineal
- (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:42:

5

CCGGATATCA TGGACTACAA GGACGACGAT GACAAGAAGC TTGCCATGGA 50

GCTC 54

- (2) INFORMACION PARA LA SEC ID NO:43:
- 10 (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 22 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
- 15 (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:43:
 - AGGCTGCTGG AGGAAAAGTC TG 22
 - (2) INFORMACIÓN PARA LA SEC ID NO:44:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 32 bases
- 20 (B) TIPO: ácido nucleico
 - (C) CADENA: única
 - (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:44:
 - GGAGGGTGAC CTCCATGCTG CCCTTATCCT CG 32
- 25 (2) INFORMACIÓN PARA LA SEC ID NO:45:
 - (i) CARACTERÍSTICAS DE LA SECUENCIA:
 - (A) LONGITUD: 9108 bases
 - (B) TIPO: ácido nucleico
 - (C) CADENA: única
- 30 (D) TOPOLOGÍA: lineal
 - (xi) DESCRIPCIÓN DE LA SECUENCIA: SEC ID NO:45:

TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100 TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150 ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200 TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250 ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300 AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400 GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450 TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA 500 AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACCCCTT GGCTTCGTTA GAACGCGGCT ACAATTAATA 800 CATAACCTTA TGTATCATAC ACATACGATT TAGGTGACAC TATAGAATAA 850 CATCCACTTT GCCTTTCTCT CCACAGGTGT CCACTCCCAG GTCCAACTGC 900 ACCTCGGTTC TATCGATTGA ATTCGCGGCC GCTCGGGTCG GACCCACGCG 950 CAGCGGCCGG AGATGCAGCG GGGCGCCGCG CTGTGCCTGC GACTGTGGCT 1000 CTGCCTGGGA CTCCTGGACG GCCTGGTGAG TGGCTACTCC ATGACCCCCC 1050 CGACCTTGAA CATCACGGAG GAGTCACACG TCATCGACAC CGGTGACAGC 1100 CTGTCCATCT CCTGCAGGGG ACAGCACCCC CTCGAGTGGG CTTGGCCAGG 1150 AGCTCAGGAG GCGCCAGCCA CCGGAGACAA GGACAGCGAG GACACGGGGG 1200 TGGTGCGAGA CTGCGAGGGC ACAGACGCCA GGCCCTACTG CAAGGTGTTG 1250 CTGCTGCACG AGGTACATGC CAACGACACA GGCAGCTACG TCTGCTACTA 1300 CAAGTACATC AAGGCACGCA TCGAGGGCAC CACGGCCGCC AGCTCCTACG 1350 TGTTCGTGAG AGACTTTGAG CAGCCATTCA TCAACAAGCC TGACACGCTC 1400 TTGGTCAACA GGAAGGACGC CATGTGGGTG CCCTGTCTGG TGTCCATCCC 1450 CGGCCTCAAT GTCACGCTGC GCTCGCAAAG CTCGGTGCTG TGGCCAGACG 1500 GGCAGGAGGT GGTGTGGGAT GACCGGCGGG GCATGCTCGT GTCCACGCCA 1550 CTGCTGCACG ATGCCCTGTA CCTGCAGTGC GAGACCACCT GGGGAGACCA 1600 GGACTTCCTT TCCAACCCCT TCCTGGTGCA CATCACAGGC AACGAGCTCT 1650 ATGACATCCA GCTGTTGCCC AGGAAGTCGC TGGAGCTGCT GGTAGGGGAG 1700 AAGCTGGTCC TGAACTGCAC CGTGTGGGCT GAGTTTAACT CAGGTGTCAC 1750 CTTTGACTGG GACTACCCAG GGAAGCAGGC AGAGCGGGGT AAGTGGGTGC 1800

CCGAGCGACG CTCCCAGCAG ACCCACACAG AACTCTCCAG CATCCTGACC 1850 ATCCACAACG TCAGCCAGCA CGACCTGGGC TCGTATGTGT GCAAGGCCAA 1900 CAACGGCATC CAGCGATTTC GGGAGAGCAC CGAGGTCATT GTGCATGAAA 1950 ATCCCTTCAT CAGCGTCGAG TGGCTCAAAG GACCCATCCT GGAGGCCACG 2000 GCAGGAGACG AGCTGGTGAA GCTGCCCGTG AAGCTGGCAG CGTACCCCCC 2050 GCCCGAGTTC CAGTGGTACA AGGATGGAAA GGCACTGTCC GGGCGCCACA 2100 GTCCACATGC CCTGGTGCTC AAGGAGGTGA CAGAGGCCAG CACAGGCACC 2150 TACACCTCG CCCTGTGGAA CTCCGCTGCT GGCCTGAGGC GCAACATCAG 2200 CCTGGAGCTG GTGGTGAATG TGCCCCCCA GATACATGAG AAGGAGGCCT 2250 CCTCCCCCAG CATCTACTCG CGTCACAGCC GCCAGGCCCT CACCTGCACG 2300 GCCTACGGGG TGCCCCTGCC TCTCAGCATC CAGTGGCACT GGCGGCCCTG 2350 GACACCCTGC AAGATGTTTG CCCAGCGTAG TCTCCGGCGG CGGCAGCAGC 2400 AAGACCTCAT GCCACAGTGC CGTGACTGGA GGGCGGTGAC CACGCAGGAT 2450 GCCGTGAACC CCATCGAGAG CCTGGACACC TGGACCGAGT TTGTGGAGGG 2500 AAAGAATAAG ACTGTGAGCA AGCTGGTGAT CCAGAATGCC AACGTGTCTG 2550 CCATGTACAA GTGTGTGGTC TCCAACAAGG TGGGCCAGGA TGAGCGGCTC 2600 ATCTACTTCT ATGTGACCAC CATCCCCGAC GGCTTCACCA TCGAATCCAA 2650 GCCATCCGAG GAGCTACTAG AGGGCCAGCC GGTGCTCCTG AGCTGCCAAG 2700 CCGACAGCTA CAAGTACGAG CATCTGCGCT GGTACCGCCT CAACCTGTCC 2750

ACGCTGCACG ATGCGCACGG GAACCCGCTT CTGCTCGACT GCAAGAACGT 2800 GCATCTGTTC GCCACCCCTC TGGCCGCCAG CCTGGAGGAG GTGGCACCTG 2850 GGGCGCCCA CGCCACGCTC AGCCTGAGTA TCCCCCGCGT CGCGCCCGAG 2900 CACGAGGGCC ACTATGTGTG CGAAGTGCAA GACCGGCGCA GCCATGACAA 2950 GCACTGCCAC AAGAAGTACC TGTCGGTGCA GGCCCTGGAA GCCCCTCGGC 3000 TCACGCAGAA CTTGACCGAC CTCCTGGTGA ACGTGAGCGA CTCGCTGGAG 3050 ATGCAGTGCT TGGTGGCCGG AGCGCACGCG CCCAGCATCG TGTGGTACAA 3100 AGACGAGAGG CTGCTGGAGG AAAAGTCTGG AGTCGACTTG GCGGACTCCA 3150 ACCAGAAGCT GAGCATCCAG CGCGTGCGCG AGGAGGATGC GGGACGCTAT 3200 CTGTGCAGCG TGTGCAACGC CAAGGGCTGC GTCAACTCCT CCGCCAGCGT 3250 GGCCGTGGAA GGCTCCGAGG ATAAGGGCAG CATGGAGATC GTGATCCTTG 3300 TCGGTACCGG CGTCATCGCT GTCTTCTTCT GGGTCCTCCT CCTCCTCATC 3350 TTCTGTAACA TGAGGAGGCC GGCCCACGCA GACATCAAGA CGGGCTACCT 3400 GTCCATCATC ATGGACCCCG GGGAGGTGCC TCTGGAGGAG CAATGCGAAT 3450 ACCTGTCCTA CGATGCCAGC CAGTGGGAAT TCCCCCGAGA GCGGCTGCAC 3500 CTGGGGAGAG TGCTCGGCTA CGGCGCCTTC GGGAAGGTGG TGGAAGCCTC 3550 CGCTTTCGGC ATCCACAGG GCAGCAGCTG TGACACCGTG GCCGTGAAAA 3600 TGCTGAAAGA GGGCGCCACG GCCAGCGAGC ACCGCGCGCT GATGTCGGAG 3650 CTCAAGATCC TCATTCACAT CGGCAACCAC CTCAACGTGG TCAACCTCCT 3700

CGGGGCGTGC ACCAAGCCGC AGGGCCCCCT CATGGTGATC GTGGAGTTCT 3750 GCAAGTACGG CAACCTCTCC AACTTCCTGC GCGCCAAGCG GGACGCCTTC 3800 AGCCCTGCG CGGAGAAGTC TCCCGAGCAG CGCGGACGCT TCCGCGCCAT 3850 GGTGGAGCTC GCCAGGCTGG ATCGGAGGCG GCCGGGGAGC AGCGACAGGG 3900 TCCTCTTCGC GCGGTTCTCG AAGACCGAGG GCGGAGCGAG GCGGGCTTCT 3950 CCAGACCAAG AAGCTGAGGA CCTGTGGCTG AGCCCGCTGA CCATGGAAGA 4000 TCTTGTCTGC TACAGCTTCC AGGTGGCCAG AGGGATGGAG TTCCTGGCTT 4050 CCCGAAAGTG CATCCACAGA GACCTGGCTG CTCGGAACAT TCTGCTGTCG 4100 GAAAGCGACG TGGTGAAGAT CTGTGACTTT GGCCTTGCCC GGGACATCTA 4150 CAAAGACCCT GACTACGTCC GCAAGGGCAG TGCCCGGCTG CCCCTGAAGT 4200 GGATGCCCC TGAAAGCATC TTCGACAAGG TGTACACCAC GCAGAGTGAC 4250 GTGTGGTCCT TTGGGGTGCT TCTCTGGGAG ATCTTCTCTC TGGGGGCCTC 4300 CCCGTACCCT GGGGTGCAGA TCAATGAGGA GTTCTGCCAG CGGCTGAGAG 4350 ACGGCACAAG GATGAGGGCC CCGGAGCTGG CCACTCCCGC CATACGCCGC 4400 ATCATGCTGA ACTGCTGGTC CGGAGACCCC AAGGCGAGAC CTGCATTCTC 4450 GGAGCTGGTG GAGATCCTGG GGGACCTGCT CCAGGGCAGG GGCCTGCAAG 4500 AGGAAGAGA GGTCTGCATG GCCCCGCGCA GCTCTCAGAG CTCAGAAGAG 4550 GGCAGCTTCT CGCAGGTGTC CACCATGGCC CTACACATCG CCCAGGCTGA 4600 CGCTGAGGAC AGCCCGCCAA GCCTGCAGCG CCACAGCCTG GCCGCCAGGT 4650

ATTACAACTG GGTGTCCTTT CCCGGGTGCC TGGCCAGAGG GGCTGAGACC 4700 CGTGGTTCCT CCAGGATGAA GACATTTGAG GAATTCCCCA TGACCCCAAC 4750 GACCTACAAA GGCTCTGTGG ACAACCAGAC AGACAGTGGG ATGGTGCTGG 4800 CCTCGGAGGA GTTTGAGCAG ATAGAGAGCA GGCATAGACA AGAAAGCGGC 4850 TTCAGGTAGC TGAAGCAGAG AGAGAGAAGG CAGCATACGT CAGCATTTTC 4900 TTCTCTGCAC TTATAGAAA GATCAAAGAC TTTAAGACTT TCGCTATTTC 4950 TTCTGCTATC TACTACAAAC TTCAAAGAGG AACCAGGAGG CCAAGAGGAG 5000 CATGAAAGTG GACAAGGAGT GTGACCACTG AAGCACCACA GGGAGGGGTT 5050 AGGCCTCCGG ATGACTGCGG GCAGGCCTGG ATAATATCCA GCCTCCCACA 5100 AGAAGCTGGT GGAGCAGAGT GTTCCCTGAC TCCTCCAAGG AAAGGGAGAC 5150 GCCCTTTCAT GGTCTGCTGA GTAACAGGTG CCTTCCCAGA CACTGGCGTT 5200 ACTGCTTGAC CAAAGAGCCC TCAAGCGGCC CTTATGCCAG CGTGACAGAG 5250 GGCTCACCTC TTGCCTTCTA GGTCACTTCT CACAATGTCC CTTCAGCACC 5300 TGACCCTGTG CCCGCCAGTT ATTCCTTGGT AATATGAGTA ATACATCAAA 5350 GAGTAGTGCG GCCGCGAATT CCCCGGGGAT CCTCTAGAGT CGACCTGCAG 5400 AAGCTTGGCC GCCATGGCCC AACTTGTTTA TTGCAGCTTA TAATGGTTAC 5450 AAATAAAGCA ATAGCATCAC AAATTTCACA AATAAAGCAT TTTTTTCACT 5500 GCATTCTAGT TGTGGTTTGT CCAAACTCAT CAATGTATCT TATCATGTCT 5550 GGATCGGGAA TTAATTCGGC GCAGCACCAT GGCCTGAAAT AACCTCTGAA 5600

AGAGGAACTT GGTTAGGTAC CTTCTGAGGC GGAAAGAACC AGCTGTGGAA 5650 TGTGTGTCAG TTAGGGTGTG GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA 5700 GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCAGGTG TGGAAAGTCC 5750 CCAGGCTCCC CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC 5800 AGCAACCATA GTCCCGCCC TAACTCCGCC CATCCCGCCC CTAACTCCGC 5850 CCAGTTCCGC CCATTCTCCG CCCCATGGCT GACTAATTTT TTTTATTTAT 5900 GCAGAGGCCG AGGCCGCCTC GGCCTCTGAG CTATTCCAGA AGTAGTGAGG 5950 AGGCTTTTTT GGAGGCCTAG GCTTTTGCAA AAAGCTGTTA ACAGCTTGGC 6000 ACTGGCCGTC GTTTTACAAC GTCGTGACTG GGAAAACCCT GGCGTTACCC 6050 AACTTAATCG CCTTGCAGCA CATCCCCCTT TCGCCAGCTG GCGTAATAGC 6100 GAAGAGGCCC GCACCGATCG CCCTTCCCAA CAGTTGCGCA GCCTGAATGG 6150 CGAATGGCGC CTGATGCGGT ATTTTCTCCT TACGCATCTG TGCGGTATTT 6200 CACACCGCAT ACGTCAAAGC AACCATAGTA CGCGCCCTGT AGCGGCGCAT 6250 TAAGCGCGGC GGGTGTGGTG GTTACGCGCA GCGTGACCGC TACACTTGCC 6300 AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC TTCCCTTCCT TTCTCGCCAC 6350 GTTCGCCGGC TTTCCCCGTC AAGCTCTAAA TCGGGGGCTC CCTTTAGGGT 6400 TCCGATTTAG TGCTTTACGG CACCTCGACC CCAAAAAACT TGATTTGGGT 6450 GATGGTTCAC GTAGTGGGCC ATCGCCCTGA TAGACGGTTT TTCGCCCTTT 6500 GACGTTGGAG TCCACGTTCT TTAATAGTGG ACTCTTGTTC CAAACTGGAA 6550

CAACACTCAA CCCTATCTCG GGCTATTCTT TTGATTTATA AGGGATTTTG 6600 CCGATTTCGG CCTATTGGTT AAAAAATGAG CTGATTTAAC AAAAATTTAA 6650 CGCGAATTTT AACAAAATAT TAACGTTTAC AATTTTATGG TGCACTCTCA 6700 GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGCCCCG ACACCCGCCA 6750 ACACCCGCTG ACGCGCCTG ACGGGCTTGT CTGCTCCCGG CATCCGCTTA 6800 CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTGTCAG AGGTTTTCAC 6850 CGTCATCACC GAAACGCGCG AGACGAAAGG GCCTCGTGAT ACGCCTATTT 6900 TTATAGGTTA ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC 6950 TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC 7000 ATTCAAATAT GTATCCGCTC ATGAGACAAT AACCCTGATA AATGCTTCAA 7050 TAATATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC GTGTCGCCCT 7100 TATTCCCTTT TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT CACCCAGAAA 7150 CGCTGGTGAA AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGAGTGGGT 7200 TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC 7250 CGAAGAACGT TTTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG 7300 CGGTATTATC CCGTATTGAC GCCGGGCAAG AGCAACTCGG TCGCCGCATA 7350 CACTATTCTC AGAATGACTT GGTTGAGTAC TCACCAGTCA CAGAAAAGCA 7400 TCTTACGGAT GGCATGACAG TAAGAGAATT ATGCAGTGCT GCCATAACCA 7450 TGAGTGATAA CACTGCGGCC AACTTACTTC TGACAACGAT CGGAGGACCG 7500

AAGGAGCTAA CCGCTTTTTT GCACAACATG GGGGATCATG TAACTCGCCT 7550 TGATCGTTGG GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG 7600 ACACCACGAT GCCTGTAGCA ATGGCAACAA CGTTGCGCAA ACTATTAACT 7650 GGCGAACTAC TTACTCTAGC TTCCCGGCAA CAATTAATAG ACTGGATGGA 7700 GGCGGATAAA GTTGCAGGAC CACTTCTGCG CTCGGCCCTT CCGGCTGGCT 7750 GGTTTATTGC TGATAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC 7800 ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC TCCCGTATCG TAGTTATCTA 7850 CACGACGGG AGTCAGGCAA CTATGGATGA ACGAAATAGA CAGATCGCTG 7900 AGATAGGTGC CTCACTGATT AAGCATTGGT AACTGTCAGA CCAAGTTTAC 7950 TCATATATAC TTTAGATTGA TTTAAAACTT CATTTTTAAT TTAAAAGGAT 8000 CTAGGTGAAG ATCCTTTTG ATAATCTCAT GACCAAAATC CCTTAACGTG 8050 AGTTTTCGTT CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT 8100 TCTTGAGATC CTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAA 8150 ACCACCGCTA CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC 8200 TTTTTCCGAA GGTAACTGGC TTCAGCAGAG CGCAGATACC AAATACTGTT 8250 CTTCTAGTGT AGCCGTAGTT AGGCCACCAC TTCAAGAACT CTGTAGCACC 8300 GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT GCTGCCAGTG 8350 GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT 8400 AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT 8450

GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG 8500 AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA TCCGGTAAGC 8550 GGCAGGGTCG GAACAGGAGA GCGCACGAGG GAGCTTCCAG GGGGAAACGC 8600 CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA CTTGAGCGTC 8650 GATTTTTGTG ATGCTCGTCA GGGGGGCGGA GCCTATGGAA AAACGCCAGC 8700 AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT 8750 GTTCTTTCCT GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT 8800 TTGAGTGAGC TGATACCGCT CGCCGCAGCC GAACGACCGA GCGCAGCGAG 8850 TCAGTGAGCG AGGAAGCGGA AGAGCGCCCA ATACGCAAAC CGCCTCTCCC 8900 CGCGCGTTGG CCGATTCATT AATGCAGCTG GCACGACAGG TTTCCCGACT 8950 GGAAAGCGGG CAGTGAGCGC AACGCAATTA ATGTGAGTTA GCTCACTCAT 9000 TAGGCACCCC AGGCTTTACA CTTTATGCTT CCGGCTCGTA TGTTGTGGG 9050 AATTGTGAGC GGATAACAAT TTCACACAGG AAACAGCTAT GACATGATTA 9100 CGAATTAA 9108

REIVINDICACIONES

- 1. Proteína quimérica que comprende una fusión del dominio extracelular de bpTK7 con una secuencia de dominio constante de inmunoglobulina.
- 2. Proteína quimérica según la reivindicación 1, donde la secuencia de dominio constante de inmunoglobulina es la de una inmunoglobulina IgG.
- 5 3. Ácido nucleico que codifica la proteína quimérica según la reivindicación 1.
 - 4. Vector replicable que comprende el ácido nucleico según la reivindicación 3.
 - 5. Célula huésped recombinante que comprende el ácido nucleico según la reivindicación 3.
- 6. Método de utilización de una molécula de ácido nucleico que codifica una proteína quimérica que comprende una fusión del dominio extracelular de bpTK7, con una secuencia de dominio constante de 10 inmunoglobulina, para realizar la producción de la proteína quimérica que comprende cultivar la célula huésped según la reivindicación 5.
 - 7. Utilización de la proteína quimérica según la reivindicación 1 en la producción de un anticuerpo que se une al dominio extracelular de bpTK7.

FIG. 1A

GGATCCTGTG	CATCAGTGAC	CATCAGTGAC TTAGGGCTAG GAACATTCTG CTGTCGGAAA GCGACGTGGT	GAACATTCTG	CTGTCGGAAA	GCGACGTGGT
GAAGATCTGT	GACTTTGGCC	GACTITGGCC TIGCCCGGGA CATCTACAAA GACCCCAGCT ACGICCGCAA	CATCTACAAA	GACCCCAGCT	ACGTCCGCAA
GCATGCCCGG	CTGCCCCTGA	CTGCCCCTGA AGTGGATGGC GCCAGAATTC	GCCAGAATTC		

Glu	Tyr	Trp
Ser 15	Ile	Lys
Leu	Asp 30	Leu
Leu	Arg	p Pro Ser Tyr Val Arg Lys His Ala Arg Leu Pro Leu Lys Trp 35
Ile	Ala	Leu
Asn	Leu	Arg
Arg 10	Gly	Ala
Ala	Phe 25	His
Arg	Asp	Lys 40
Leu	Cys	Arg
Xaa	Ile	Val
Gln 5	Lys	Туг
His	Val 20	Ser
Val	Val	Pro 35
Pro	Ser Asp Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr 25	Lys Asp
Asp 1	Ser	Lys

Met Ala Pro Glu Phe

FIG. 2A

GGATCCATTC	ACAGAGACCT	GGATCCATTC ACAGACCT AGCAGCACGC AACATCCTGG TCTCAGAGGA CCTGGTAACC	AACATCCTGG	TCTCAGAGGA	CCTGGTAACC	
AAGGTCAGCG	ACTITIGGCCT	AAGGTCAGCG ACTTTGGCCT GGCCAAAGCC GAGCGGAAGG GGCTAGACTC AAGCCGGCTG	GAGCGGAAGG	GGCTAGACTC	AAGCCGGCTG	
CCCGTCAAAT	CCCGTCAAAT GGATGGCTCC CGAATTC	CGAATTC				

60 120 147

FIG. 2B

_	_	
ຄູ	Arg	G1v
Ser 15	Glu	Pro
Val	Ala Glu Arg 30	Ala
Lea	Lys	Met 45
Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Ser Glu 5	r Lys Val Ser Asp Phe Gly Leu Ala Lys 1 25	Leu Asp Ser Ser Arg Leu Pro Val Lys Trp Met Ala Pro Glu 35
Asn	Leu	Lys
Arg 10	Gly	Val
Ala	Phe 25	Pro
Ala	Asp	Leu 40
Leu	Ser	Arg
Asp	Val	Ser
Arg 5	Lys	Ser
His	u Val Thr Lys 20	Asp
I]e	Val	Leu 35
	Asp Leu	Lys Gly
Gly Ser 1	Asp	Lys

Phe

48	96	144	149		8	96	144	151
		•						
TCG Ser	GCA	ACA Thr			ACC	GAC Asp	CCT	
ATT Ile 15	CTG Leu 30	AGG Arg 45			AAC Asn 15	GAG Glu	GCC	
TTT Phe	ACT	ACG Thr			GAA Glu	AAG Lys 30	ATG Met	
AGC	AAA Lys	CCA Pro			GGG Gly	ATC Ile	TCG Trp 45	
660 61y	TTA	TCA		m	GTC Val	CTT Leu	Lys	
ACC	ACC	TGT Cys		3B	CTC	AGG Arg	TAC	
TTC Phe 10	TCT Ser 25	TTA Leu 40		FIG.	ATC Ile 10	GCC	CCC TAC /	
CAT	TTA	ATA Ile		Ĭ	AAC Asn	TTA Leu 25	ATC Ile	
ATC Ile	TCA	TAG			CGG	666 G1y	AAT Asn 40	
GCC	TCT Ser	TTG			GCT	TTC Phe	CAC His	
660 61y	ATG Met	ACT			GCG	GAC TTC (Asp Phe (GAC	
TCC GGC GSer Gly P	TAG	GCT			CTC Leu 5	666 61y	CAT His	
CCT	TCA Ser 20	TCT Ser 35			AGG GAT CTC GCG GCT Arg Asp Leu Ala Ala 5	GTT Val 20	TCC CAT GAC CAC AAT ATC Ser His Asp His Asn Ile 40	
ATT Ile	GAT	AAA Lys			AGG Arg	AAA Lys	CTC Leu 35	«
GGA	CTA	CCA	£5		CAC His	TCG Ser	TAC Tyr	GGA G1y 50
GTT (Val)	TGT Cys	AGT	TTCCT Phe		GTG CAC P Val His P 1	CTC Leu	GTC Val	GAG Glu

FIG. 3C

8	96	137		8	96	144	192	211
ATT 11e	66C 61y			CAT His	GAT Asp	TGG Trp	GAT Asp	
CCC Pro 15	TTT Phe			CAA G1n 15	GCT Ala	AAG Lys	AGC	
CAG Gln	GAC ASP 30	ည		ACC	CGT Arg 30	GTC	AAA Lys	
CTG	ACC Thr	GCC Ala 45		GTT Val	CTG	CCT Pro 45	AGC Ser	
CTG	ATC Ile	AGT Ser		CTA	GCA	TGG Trp	TCC Ser 60	
TTG Leu	AAG Lys	ATG Met	_	TTG Leu	AAA Lys	AAG Lys	TTC Phe	
ATT Ile 10	CTG	CAA Gln	3D	GTG Val 10	TCC	CAT GGA His Gly B	AAG Lys	
AAC Asn	ACC Thr 25	ACA		AAT Asn	CTT Leu 25	CAT His	TAC	
AAC	AAG Lys	ACC Thr 40	FIG.	CGA Arg	GGA Gly	ACC Thr 40	TAC	
AAG TCC 1 Lys Ser 1	CAC His	AAA Lys		GCC	TTC Phe	CAG Gln	AAC Asn 55	O
AAG Lys	GAG Glu	CAC His		GCC	GAT	GCC	ATC Ile	ATT Ile 70
CTC Leu 5	ATG Met	TGG Trp		CTC Leu 5	AGT	AAG Lys	TGC Cys	GGA Gly
GAT Asp	GAC Asp 20	GAG Glu		GAC	ATC Ile 20	TAC Tyr	GAA Glu	TTT
CGA	GAC	CGA Arg 35		CGT	AAG	TAC Tyr 35	CCG	TCC
CAC	AGT	GCC		AAT	GCC	AAC	GCT Ala 50	TGG
GTT Val	GAG Glu	CTG		GTC Val	TAC	GAA Glu	TAC Tyr	GTC Val 65

FIG. 4A

TICGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT TACGGGGTCA	ATTATTGACT	AGTTATTAAT	AGTAATCAAT	TACGGGGTCA	9
TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA TGGCCCGCCT	GGAGTTCCGC	GTTACATAAC	TTACGGTAAA	TGGCCCGCCT	120
GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT TCCCATAGTA	CCGCCCATTG	ACGTCAATAA	TGACGTATGT	TCCCATAGTA	180
ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC	TTGACGTCAA	TGGGTGGAGT	ATTTACGGTA	AACTGCCCAC	240
TIGGCAGTAC ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT	TCATATGCCA	AGTACGCCCC	CTATTGACGT	CAATGACGGT	300
AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG	TGCCCAGTAC	ATGACCTTAT	GGGACTTTCC	TACTTGGCAG	360
TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA GTACATCAAT	CGCTATTACC	ATGGTGATGC	GGTTTTGGCA	GTACATCAAT	420
GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT TGACGTCAAT	CTCACGGGGA	TTTCCAAGTC	TCCACCCCAT	TGACGTCAAT	480
GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC	AAATCAACGG	GACTTTCCAA	AATGTCGTAA	CAACTCCGCC	540
CCATTGACGC AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT	TAGGCGTGTA	CGGTGGGAGG	TCTATATAAG	CAGAGCTCGT	909
TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA	CTGGAGACGC	CATCCACGCT	GTTTTGACCT	CCATAGAAGA	099
CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA TTGGAACGCG GATTCCCCGT	ອອວວອອວອວວ	GAACGGTGCA	TTGGAACGCG	GATTCCCCGT	720
GCCAAGAGTG ACGTAAGTAC CGCCTATAGA GTCTATAGGC CCACTTGGCT TCGTTAGAAC	CGCCTATAGA	GTCTATAGGC	CCACTTGGCT	TCGTTAGAAC	780
GCGGCTACAA TTAATACATA ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA	ACCTTATGTA	TCATACACAT	ACGATTTAGG	TGACACTATA	840
GAATAACATC CACTTTGCCT TTCTCCCAC AGGTGTCCAC TCCCAGGTCC AACTGCACCT	TTCTCTCCAC	AGGTGTCCAC	TCCCAGGTCC	AACTGCACCT	900
CGGTTCTATC GATTGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT CGAGATCCAT	CCCGGGGATC	CTCTAGAGAT	CCCTCGACCT	CGAGATCCAT	096
TGTGCTGGCG CGGATTCTTT ATCACTGATA AGTTGGTGGA CATATTATGT TTATCAGTGA	ATCACTGATA	AGTTGGTGGA	CATATTATGT	TTATCAGTGA	1020

FIG. 4B

2040	CCACGGGTCT	CCTGGAGGAA	ATGTCTTCAT	AGGTCGTTGG GGTCATGGGG AATTCCTCAA ATGTCTTCAT CCTGGAGGAA CCACGGGTCT	GGTCATGGGG	AGGTCGTTGG
1980	GAGCCTTTGT	GTTGTCCACA	TGTCTGTCTG	CACACTCCTC CGAGGCCAGC ACCATCCCAC TGTCTGTCTG GTTGTCCACA GAGCCTTTGT	CGAGGCCAGC	CACACTCCTC
1920	TCTATCTGCT	ATACCTGCTC	TTTCTTGTCT	TCTCTCTCTG CTTCAGCTAC CTGAAGCCGC TTTCTTGTCT ATACCTGCTC TCTATCTGCT	CTTCAGCTAC	TCTCTCTG
1860	TGCTGCCTTC	TGCTGACGTA	AGAGAAGAAA	CTTAAAGTCT TTGATCTTTC TTATAAGTGC AGAGAAGAAA TGCTGACGTA TGCTGCCTTC	TTGATCTTTC	CTTAAAGTCT
1800	TAGCGAAAGT	GCAGAAGAAA	GTAGTAGATA	TCTTGGCCTC CTGGTTCCTC TTGGAAGTTT GTAGTAGATA GCAGAAGAAA TAGCGAAAGT	creerrecre	TCTTGGCCTC
1740	TTCATGCTCC	CTTGTCCACT	GGTCACACTC	AGGCCTAACC CCTCCCTGTG GTGCTTCAGT GGTCACACTC CTTGTCCACT TTCATGCTCC	ccrccrere	AGGCCTAACC
1680	AGTCATCCGG	GCCTGCCCGC	TATTATCCAG	TGCTCCACCA GCTTCTTGTG GGAGCCTGGA TATTATCCAG GCCTGCCCGC AGTCATCCGG	GCTTCTTGTG	TGCTCCACCA
1620	GGGAACACTC	GGAGCAGTCA	CCCTTTCCTT	TGTTACTCAG CAGACCATGA AAGGGCGTCT CCCTTTCCTT GGAGCAGTCA GGGAACACTC	CAGACCATGA	TGTTACTCAG
1560	GGAAGGCACC	CCAGTGTCTG	AGCAGTAACG	CATAAGGGCC GCTTGAGGGC TCTTTGGTCA AGCAGTAACG CCAGTGTCTG GGAAGGCACC	GCTTGAGGGC	CATAAGGGCC
1500	GTCACGCTGG	TGAGCCCTCT	AGGCAAGAGG	CTGAAGGGAC ATTGTGAGAA GTGACCTAGA AGGCAAGAGG TGAGCCCTCT GTCACGCTGG	Attgtgagaa	CTGAAGGGAC
1440	GGGTCAGGTG	GGCGGGCACA	AGGAATAACT	CTACTCTTTG ATGTATTACT CATATTACCA AGGAATAACT GGCGGGCACA GGGTCAGGTG	ATGTATTACT	CTACTCTTTG
1380	CGCGGCCGCA	GCCTGCAGGT	CCAGTTCTGC	CAATGGATCT CGAGGGATCT TCCATACCTA CCAGTTCTGC GCCTGCAGGT CGCGGCCGCA	CGAGGGATCT	CAATGGATCT
1320	ACCGCCAGCA	CTGCTCGCCT	CAGGCAGGCG	CTCATITICIG ACTGGGAATG CCCGCAGCIT CAGGCAGGCG CTGCTCGCCT ACCGCCAGCA	ACTGGGAATG	CTCATTTCTG
1260	ACGACTGGCG	AGAGCCGACG	Treesteces	CGAAGCCATG CTGGCGGAGA ATCATAGCAC TTCGGTGCCG AGAGCCGACG ACGACTGGCG	CTGGCGGAGA	CGAAGCCATG
1200	ACGCACTGGC	GCGCTGCTCG	GAACAAGCGG	TCAGCAGCCG GCGCTTTACT GGCACTTCAG GAACAAGCGG GCGCTGCTCG ACGCACTGGC	GCGCTTTACT	TCAGCAGCCG
1140	GGTTGGGGGT	CTGGCGGAAC	GACACGCAAA	GTTGAACGAG GTCGGCGTAG ACGGTCTGAC GACACGCAAA CTGGCGGAAC GGTTGGGGGT	GTCGGCGTAG	GTTGAACGAG
1080	CCCTAGACCT	ATCCGTGCCG	GAATACAGTG	TAAAGTGTCA AGCATGACAA AGTTGCAGCC GAATACAGTG ATCCGTGCCG CCCTAGACCT	AGCATGACAA	TAAAGTGTCA

3060	GAGTCGACCT	CGCGACTCTA	GGGCTGCGGC	CGCCCCGCAG GCCGCCCGCT CACCGNGCAG GGGCTGCGGC CGCGACTCTA GAGTCGACCT	Loscocos	CGCCCCGCAG
3000	ອອວອວວວອວວ	CATTCCCCCG	GAGGCGCCTC	TGCTCGAGG GCGCCCAGTC GTCCGCCGCA GAGGCGCCTC CATTCCCCCG CCGCCGGG	GCGCCCAGTC	TGGCTCGAGG
2940	TGCACGAAGC	CTCCTGCGGA	CGGGAGACTT	CCACCATGGC GCGGAAGCGT CCGCGCTGCT CGGGAGACTT CTCCTGCGGA TGCACGAAGC	GCGGAAGCGT	CCACCATGGC
2880	CTGGCGAGCT	CCGATCCAGC	CCGGCCGCCT	ACCGCGCGAA GAGGACCCTG TCGCTGCTCC CCGGCCGCCT CCGATCCAGC CTGGCGAGCT	GAGGACCCTG	ACCGCGCGAA
2820	GTCTTCGAGA	rcccccrc	ccceccrcec	ACAGGICCIC AGCIICITGG ICIGGAGAAG CCCGCCICGC ICCGCCCICG GICITCGAGA	AGCTTCTTGG	ACAGGTCCTC
2760	GGGCTCAGCC	CATGGTCAGC	CAAGATCTTC	TCCCTCTGGC CACCTGGAAG CTGTAGCAGA CAAGATCTTC CATGGTCAGC GGGCTCAGCC	CACCTGGAAG	TCCCTCTGGC
2700	AGGAACTCCA	TCGGGAAGCC	GGATGCACTT	GCAGAATGIT CCGAGCAGCC AGGICTCTGI GGAIGCACII ICGGGAAGCC AGGAACICCA	CCGAGCAGCC	GCAGAATGTT
2640	CTTTCCGACA	CACCACGICG	CACAGATCTT	CTITGTAGAT GTCCCGGGCA AGGCCAAAGT CACAGATCTT CACCACGTCG CITTCCGACA	GTCCCGGGCA	CTTTGTAGAT
2580	TAGTCGGGGT	CTTGCGGACG	GGGCACTGCC	TITCAGGGG CATCCACTTC AGGGGCAGCC GGCCACTGCC CTTGCGGACG TAGTCGGGGT	CATCCACTTC	TITCAGGGG
2520	TCGAAGATGC	GTACACCTTG	rerecereer	AGAGAAGCAC CCCAAAGGAC CACACGTCAC TCTGCGTGGT GTACACCTTG TCGAAGATGC	CCCAAAGGAC	AGAGAAGCAC
2460	AAGATCTCCC	CCCCAGAGAG	Acggggaggc	AGAACTCCTC ATTGATCTGC ACCCCAGGGT ACGGGGAGGC CCCCAGAGAG AAGATCTCCC	ATTGATCTGC	AGAACTCCTC
2400	AGCCGCTGGC	GCCGTCTCTC	TCATCCTTGT	GTATGGCGGG AGTGGCCAGC TCCGGGGCCC TCATCCTTGT GCCGTCTCTC AGCCGCTGGC	AGTGGCCAGC	GTATGGCGGG
2340	ATGATGCGGC	GCAGTTCAGC	CTCCGGACCA	GCTCCGAGAA TGCAGGTCTC GCCTTGGGGT CTCCGGACCA GCAGTTCAGC ATGATGCGGC	TGCAGGTCTC	GCTCCGAGAA
2280	ATCTCCACCA	GTCCCCCAGG	CCTGGAGCAG	AGACCTCCTC TTCCTCTTGC AGGCCCCTGC CCTGGAGCAG GTCCCCCAGG ATCTCCACCA	TTCCTCTTGC	AGACCTCCTC
2220	GGGCCATGC	AGAGCTGCGC	CTGAGCTCTG	TGGTGGACAC CTGCGAGAAG CTGCCCTCTT CTGAGCTCTG AGAGCTGCGC GGGGCCATGC	CTGCGAGAAG	TGGTGGACAC
2160	TGTAGGGCCA	CTGGGCGATG	CAGCGTCAGC	TGTGGCGCTG CAGGCTTGGC GGCCTGTCCT CAGCGTCAGC CTGGGCGATG TGTAGGGCCA	CAGGCTTGGC	TGTGGCGCTG
2100	GCGGCCAGGC	GTAATACCTG	ACACCCAGTT	CAGCCCCTCT GGCCAGGCAC CCGGGAAAGG ACACCCAGTT GTAATACCTG GCGGCCAGGC	GGCCAGGCAC	CAGCCCCTCT

FIG. 4D

4080	CGATTTAGTG	TTTAGGGTTC	GGGGGCTCCC	TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTTAGGGGTTC CGATTTAGTG	TCCCCGTCAA	TCGCCGGCTT
4020	CTCGCCACGT	CCCTTCCTTT	TCGCTTTCTT	CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT CCCTTCCTTT CTCGCCACGT	CGCCCTAGCG	CACTTGCCAG
3960	GTGACCGCTA	TACGCGCAGC	GTGTGGTGGT	CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA	CGGCGCATTA	CGCCCTGTAG
3900	CCATAGTACG	GTCAAAGCAA	CACCGCATAC	TITCTCCITA CGCATCTGTG CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG	CGCATCTGTG	TTTCTCCTTA
3840	GATGCGGTAT	AATGGCGCCT	CTGAATGGCG	ACCGATCGCC CTTCCCAACA GTTGCGTAGC CTGAATGGCG AATGGCGCCT GATGCGGTAT	CTTCCCAACA	ACCGATCGCC
3780	AGAGGCCCGC	GTAATAGCGA	GCCAGCTGGC	CTTAATCGCC TTGCAGCACA TCCCCCCTTC GCCAGCTGGC GTAATAGCGA AGAGGCCCGC	TTGCAGCACA	CTTAATCGCC
3720	CGTTACCCAA	AAAACCCTGG	CGTGACTGGG	AGCTTGGCAC TGGCCGTCGT TTTACAACGT CGTGACTGGG AAAACCCTGG CGTTACCCAA	TGGCCGTCGT	AGCTTGGCAC
3660	AGCTGTTAAC	TTTTGCAAAA	AGGCCTAGGC	ATTCCAGAAG TAGTGAGGAG GCTTTTTGG AGGCCTAGGC TTTTGCAAAA AGCTGTTAAC	TAGTGAGGAG	ATTCCAGAAG
3600	CCTCTGAGCT	GCCGCCTCGG	AGAGGCCGAG	CCATGGCTGA CTAATTTTTT TTATTTATGC AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT	CTAATTTTT	CCATGGCTGA
3540	ATTCTCCGCC	AGTTCCGCCC	AACTCCGCCC	CCCGCCCCTA ACTCCGCCCA TCCCGCCCT AACTCCGCCC AGTTCCGCCC ATTCTCCGCC	ACTCCGCCCA	CCCGCCCCTA
3480	CAACCATAGT	AATTAGTCAG	CATGCATCTC	AGGCTCCCCA GCAGGCAGAA GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCATAGT	GCAGGCAGAA	AGGCTCCCCA
3420	GAAAGTCCCC	ACCAGGTGTG	TTAGTCAGCA	AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA ACCAGGTGTG GAAAGTCCCC	ATGCAAAGCA	AGGCAGAAGT
3360	GCTCCCCAGC	AAGTCCCCAG	AGGGTGTGGA	AAAGAACCAG CTGTGGAATG TGTGTCAGTT AGGGTGTGGA AAGTCCCCAG GCTCCCCAGC	CTGTGGAATG	AAAGAACCAG
3300	TCTGAGGCGG	TTAGGTACCT	AGGAACTTGG	AGCACCATGG CCTGAAATAA CCTCTGAAAG AGGAACTTGG TTAGGTACCT TCTGAGGCGG	CCTGAAATAA	AGCACCATGG
3240	AATTCGGCGC	ATCGGGAATT	GTCTGGATCG	TIGTCCAAAC TCATCAATGT ATCTTATCAT GTCTGGATCG ATCGGGAATT AATTCGGCGC	TCATCAATGT	TIGICCAAAC
3180	TAGTTGTGGT	CACTGCATTC	GCATTTTTTT	AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT CACTGCATTC TAGTTGTGGT	TCACAAATTT	AGCAATAGCA
3120	TTACAAATAA	CTTATAATGG	TTTATTGCAG	GCAGAAGCTT GGCCGCCATG GCCCAACTTG TTTATTGCAG CTTATAATGG TTACAAATAA	GGCCGCCATG	GCAGAAGCTT

FIG. 4E

5100	TTGAGTACTC	AATGACTTGG	CTATTCTCAG	CGGGCAAGAG CAACTCGGTC GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC	CAACTCGGTC	CGGGCAAGAG
5040	GTGATGACGC	GTATTATCCC	ATGTGGCGCG	TCCAATGATG AGCACTTTTA AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTGATGACGC	AGCACTTTTA	TCCAATGATG
4980	AAGAACGTTT	TTTCGCCCCG	CCTTGAGAGT	CATCGAACTG GATCTCAACA GCGGTAAGAT CCTTGAGAGT TTTCGCCCCG AAGAACGTTT	GATCTCAACA	CATCGAACTG
4920	GAGTGGGTTA	TTGGGTGCAC	TGAAGATCAG	CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG TTGGGTGCAC GAGTGGGTTA	CTGGTGAAAG	CCCAGAAACG
4860	TTTTTGCTCA	TGCCTTCCTG	GCCGCCATTT	ACATITCCGI GICGCCCITA IICCCITITI GGCGGCAIII IGCCITCCIG IITITIGCICA	GTCGCCCTTA	ACATTTCCGT
4800	rgagtattcaa	AGGAAGAGTA 1	TATTGAAAA 1	GAGACAATAA CCCTGATAAA TCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCAA	CCCTGATAAA	GAGACAATAA
4740	ATCCGCTCAT	TCAAATATGT	CTAAATACAT	TGTGCGCGGA ACCCCTATTT GTTTTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT	ACCCCTATTT	TGTGCGCGGA
4680	TTCGGGGAAA	GGTGGCACTT	TTAGACGTCA	ATAGGTTAAT GTCATGATAA TAATGGTTTC TTAGACGTCA GGTGGCACTT TTCGGGGAAA	GTCATGATAA	ATAGGTTAAT
4620	GCCTATTTT	CTCGTGATAC	ACGAAAGGGC	ACCGAAACGC GCGAGGCAGT ATTCTTGAAG ACGAAAGGGC CTCGTGATAC GCCTATTTT	GCGAGGCAGT	ACCGAAACGC
4560	CACCGTCATC	CAGAGGTTTT	CTGCATGTGT	TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT CACCGTCATC	GCTGTGACCG	TTACAGACAA
4500	CGCCATCCGC	TGTCTGCTCC	CTGACGGGCT	CCGACACCCG CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC	CCAACACCCG	CCGACACCCG
4440	TGGCTGCGCC	GACTGGGTCA	ATCGCTACGT	CTGATGCCGC ATAGTTAAGC CAACTCCGCT ATCGCTACGT GACTGGGTCA TGGCTGCGCC	ATAGTTAAGC	CTGATGCCGC
4380	ACAATCTGCT	CACTCTCAGT	TTTTATGGTG	CGAATTTTAA CAAAATATTA ACGTTTACAA TTTTATGGTG CACTCTCAGT ACAATCTGCT	CAAAATATTA	CGAATTTTAA
4320	AAATTTAACG	GATTTAACAA	AAAATGAGCT	GGATTITGCC GATTTCGCC TATTGGTTAA AAAATGAGCT GATTTAACAA AAATTTAACG	GATTTCGGCC	GGATTTTGCC
4260	GATTTATAAG	CTATTCTTTT	CTATCTCGGG	TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT GATTTATAAG	AACTGGAACA	TCTTGTTCCA
4200	AATAGTGGAC	CACGTTCTTT	CGTTGGAGTC	CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC	GACGGTTTTT	CGCCCTGATA
4140	AGTGGGCCAT	TGGTTCACGT	ATTTGGGTGA	CTTTACGGCA CCTCGACCCC AAAAACTTG ATTTGGGTGA TGGTTCACGT AGTGGGCCAT	CCTCGACCCC	CTTTACGGCA

FIG. 4F

6120	TACCGGATAA	AGACGATAGT	GTTGGACTCA	GTCTTACCGG	TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA AGACGATAGT TACCGGATAA	TGCCAGTGGC
6060	CAGTGGCTGC	ATCCTGTTAC	CGCTCTGCTA	CTACATACCT	CAAGAACTCT GTAGCACGGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC	CAAGAACTCT
9009	GCCACCACTT	CCGTAGTTAG	TCTAGTGTAG	ATACTGTCCT	CAGCAGAGCG CAGATACCAA ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT	CAGCAGAGCG
5940	TAACTGGCTT	TTTCCGAAGG	ACCAACTCTT	ATCAAGAGCT	AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT	AGCGGTGGTT
5880	CACCGCTACC	ACAAAAAAC	CTGCTTGCAA	GCGTAATCTG	TIGAGAICCI TITITICIGC GCGIAAICIG CIGCTIGCAA ACAAAAAAA CACGGCIACC	TTGAGATCCT
5820	AAGGATCTTC	GAAAAGATCA	AGACCCCGTA	ACTGAGCGTC	TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA AAGGATCTTC	TTAACGTGAG
5760	CCAAAATCCC	AATCTCATGA	CCTTTTTGAT	AGGTGAAGAT	TITITAATIT AAAAGGATCI AGGTGAAGAI CCTTTTTGAT AATCTCATGA CCAAAAICCC	TTTTAATTT
5700	TAAAACTTCA	TAGATTGATT	ATATATACTT	AAGTTTACTC	GCATTGGTAA CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA	GCATTGGTAA
5640	CACTGATTAA	ATAGGTGCCT	GATCGCTGAG	GAAATAGACA	TCAGGCAACT ATGGATGAAC GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA	TCAGGCAACT
5580	CGACGGGGAG	GTTATCTACA	CCGTATCGTA	ÇTAAGCCCTC	TGCAGCACTG GGGCCAGATG GTAAGCCCTC CCGTATCGTA GTTATCTACA CGACGGGAG	TGCAGCACTG
5520	GCGGTATCAT	cerecerere	AGCCGGTGAG	ATAAATCTGG	GGCTGGCTGG TITATIGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC GCGGTATCAT	GGCTGGCTGG
5460	CGGCCCTTCC	crrcrececr	TGCAGGACCA	CGGATAAAGT	ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT CGGCCCTTCC	ATTAATAGAC
5400	CCCGGCAACA	ACTCTAGCTT	CGAACTACTT	TATTAACTGG	GGCAACAACG TTGCGCAAAC TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA	GGCAACAACG
5340	CAGCAGCAAT	ACCACGATGC	CGAGCGTGAC	TACCAAACGA	ACCGGAGCTG AATGAAGCCA TACCAAACGA CGAGCGTGAC ACCACGATGC CAGCAGCAAT	ACCGGAGCTG
5280	ATCGTTGGGA	ACTCGCCTTG	GGATCATGTA	ACAACATGGG	GGAGCTAACC GCTTTTTTGC ACAACATGGG GGATCATGTA ACTCGCCTTG ATCGTTGGGA	GGAGCTAACC
5220	GAGGACCGAA	ACAACGATCG	CITACITICIG	CTGCGGCCAA	CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG ACAACGATCG GAGGACCGAA	CATAACCATG
5160	GCAGTGCTGC	AGAGAATTAT	CATGACAGTA	TTACGGATGG	ACCAGTCACA GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC	ACCAGTCACA

FIG. 4G

6827		GAATTAA	ACAGCTATGA CCATGATTAC GAATTAA	ACAGCTATGA	ATAACAATTT CACACAGGAA	TAACAATTT
6780	TTGTGAGCGG	TTGTGTGGAA	TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG	TTATGCTTCC	GGCACCCCAG GCTTTACACT	CACCCCAG
6720	TCACTCATTA	GTGAGTTACC	GTGAGCGCAA CGCAATTAAT GTGAGTTACC TCACTCATTA	GTGAGCGCAA	TCCCGACTGG AAAGCGGGCA	CCGACTGG
0999	ACGACAGGTT	TCCAGCTGGC	CGCGTTGGCC GATTCATTAA TCCAGCTGGC ACGACAGGTT	cecerreecc	ACGCAAACCG CCTCTCCCCG	SCAAACCG
0099	AGCGCCCAAT	GAAGCGGAAG	GCAGCGAGTC AGTGAGCGAG GAAGCGGAAG AGCGCCCAAT	GCAGCGAGTC	CCGCAGCCGA ACGACCGAGC	SCAGCCGA
6540	ATACCGCTCG	GAGTGAGCTG	ATAACCGTAT TACCGCCTTT GAGTGAGCTG ATACCGCTCG	ATAACCGTAT	GTTATCCCCT GATTCTGTGG	PATCCCCT
6480	TCTTTCCTGC	GCTCACATGT	TGGCCTTTTG CTGGCCTTTT GCTCACATGT TCTTTCCTGC	TGGCCTTTTG	CGCGGCCTTT TTACGGTTCC	GGCCTTT
6420	ACGCCAGCAA	CTATGGAAAA	GCTCGTCAGG GGGGGGAGC CTATGGAAAA ACGCCAGCAA	GCTCGTCAGG	TGAGCGTCGA TTTTTGTGAT	AGCGTCGA
6360	ACCTCTGACT	GGGTTTCGCC	GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT	GGTATCTTTA	GCTTCCAGGG GGAAACGCCT	FTCCAGGG
6300	GCACGAGGGA	ACAGGAGAGC	CGGTAAGCGG CAGGGTCGGA ACAGGAGGC GCACGAGGGA	CGGTAAGCGG	GAGAAAGGCG GACAGGTATC	SAAAGGCG
6240	TTCCCGAAGG	AGCGCCACGC	TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG	TACAGCGTGA	CTACACCGAA CTGAGATACC	ACACCGAA
6180	AGCGAACGAC	CCCAGCTTGG	CCGGGGGTIC GTGCACACA CCCAGCTTGG AGCGAACGAC	CCGGGGGTTC	GGCGCAGCGG TCGGGCTGAA	GCAGCGG

Leu	Phe	Asp	Leu	Ser 80	Ser	Ile	Leu	Gln	Leu 160	Gln	Pro
Glu Lys Ser Pro Glu Gln Arg Gly Arg Phe Arg Ala Met Val Glu Leu 1	Leu	Pro	Asp	Ala	Leu 95	Asp	Leu Pro Leu	Thr	Ser	Cys 175	Thr
Val		Ser	Glu	Leu	Leu	Arg 110		Thr	Phe	Phe	Ala 190
Met	Ser Asp Arg Val	Arg Ala	Met	Phe	Ile	Phe Gly Leu Ala Arg	Pro Asp Tyr Val Arg Lys Gly Ser Ala Arg 125	Tyr	Ile	Glu	Ala Pro Glu Leu Ala
Ala	Asp	Arg	Thr 60	Glu	Arg Asn	Leu	Ala	Phe Asp Lys Val	Glu	Asn Glu	Glu
Arg	Ser	Arg	Leu	Met 75		Gly	Ser	Lys	Leu Trp	Asn	Pro
Phe 10	Ser		Pro	Gly Met	Ala 90	Phe	Gly	Asp	Leu	11e 170	Ala
Arg	G1y 25	Gly Ala	Ser	Arg	Ala	Asp 105	Lys	Phe	Leu	Gln	Arg 185
Gly	Pro Gly 25	Gly 40	Leu	Ala	Leu	Cys	Arg 120	11e	Val	Val	Met
Arg	Arg	Glu Gly 40	Trp 55	Val	Arg Asp Leu	Ile	Val	Ser 135	Gly	Gly	Arg
Gln	Leu Asp Arg Arg Arg 20	Thr	Leu	Gln 70	Arg	Val Lys Ile	Tyr	Glu	Phe 150	Pro	Gly Thr Arg Met
G1u 5	Arg	Lys	Asp	Phe	His 85		Asp	Pro	Ser	Tyr 165	
Pro	Asp 20	Ser	Glu	Ser	Ile	Val	Pro	Ala	Trp	Pro	Arg Leu Arg Asp
Ser	Leu	Phe 35	Ala	Tyr	Суз	Asp	Asp 115	Met	Val	Ser	Arg
Lys		Arg	G1u 50	Cys	Lys	Ser	Lys	Trp 130	Asp	Ala	Leu
Glu 1	Ala Arg	Ala	Gln	Val 65	Arg Lys	Glu	Tyr	Lys	Ser 145	Gly	Arg

FIG. 4 I

Ala	Gln	Ser 240	Ala	Gln	Gly	Thr	Asp 320	Gln	
Lys	Leu	Arg	Met 255	Leu	Pro	Lys	Val	Glu 335	
Pro	Leu	Pro	Thr	Ser 270	Phe		Ser	cys	
Asp 205	Asp	Met Ala	Ser	Pro	Ser 285	Arg Met	Gly	Glu	*
Gly Asp 205	Gly Asp 220		Val	Pro	Val	Ser 300	Lys	Glu	Arg
Ser	Leu	Cys 235	Gln	Ser		Ser	Tyr 315	Ser	Phe Arg
Trp	Ile	Val	Ser 250	Asp	Asn	Gly	Thr	Ala 330	Gly
Cys	Val Glu	Glu	Phe	Glu 265	Tyr Tyr Asn Trp 280	Arg Gly	Thr	Leu	Ser Gly 345
Asn 200		Glu	Ser	Ala	Tyr 280	Thr	Pro	Val	
Met Leu	Leu 215	Glu	Gly	Asp	Arg	Glu 295	Thr	Met	Gln
Met	Glu	Glu 230	Glu	Gln Ala	Ala Ala	Ala	Met 310	Ser Gly Met 325	Tyr Arg Gln Glu
Ile	Ser	Gln	Glu 245	Gln	Ala	Gly	Pro	Ser 325	Tyr
Arg	Phe	Leu	Ser	Ala 260	Leu	Arg	Phe	Asp	Arg 340
Arg 195	Ala	Gly	Ser	Ile	Ser 275	Ala	Glu	Thr	Ser
Ile	Pro 210	Arg	Gln	His	His	Leu 290	Glu	Gln	Glu
Ala	Arg	G1y 225	Ser	Leu	Arg	Cys	Phe 305	Asn	Ile

FIG. 5A

960	CGAGTCGACT ACTCAGAAGT	CCCTCGACCT	CTCTAGAGAT	CGGTTCTATC GAITGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT CGAGTCGACT TITITITIT TITITGTAGG CCAAAGGGTA CTTCTTTTTC TITATTAATT ACTCAGAAGT	GATTGAATTC TTTTGTAGG
900	AACTGCACCT	TCCCAGGTCC	AGGTGTCCAC	GAATAACATC CACTTTGCCT TTCTCTCCAC AGGTGTCCAC TCCCAGGTCC AACTGCACCT	CACTITGCCT
840	TGACACTATA	ACGATTTAGG	TCATACACAT	GCGGCTACAA TTAATACATA ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA	TTAATACATA
780	TCGTTAGAAC	CCACTTGGCT	GTCTATAGGC	GCCAAGAGTG ACGTAAGTAC CGCCTATAGA GTCTATAGGC CCACTTGGCT TCGTTAGAAC	ACGTAAGTAC
720	GATTCCCCGT	TTGGAACGCG	GAACGGTGCA	CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA TTGGAACGCG GATTCCCCGT	GATCCAGCCT
099	CCATAGAAGA	GTTTTGACCT	CATCCACGCT	TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA	GTCAGATCGC
009	CAGAGCTCGT	TCTATATAAG	CGGTGGGAGG	CCATTGACGC AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT	AAATGGGCGG
540	CAACTCCGCC	AATGTCGTAA	GACTITCCAA	GGGAGTITGT ITTGGCACCA AAATCAACGG GACTITCCAA AATGTCGTAA CAACTCCGCC	TTTGGCACCA
480	TGACGTCAAT	TCCACCCCAT	TTTCCAAGTC	GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT TGACGTCAAT	AGCGGTTTGA
420	GTACATCAAT	GGTTTTGGCA	ATGGTGATGC	TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA GTACATCAAT	TATTAGTCAT
360	TACTTGGCAG	GGGACTTTCC	ATGACCTTAT	AAATGCCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG	CCTGGCATTA
300	CAATGACGGT	CTATTGACGT	AGTACGCCCC	TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGT	ATCAAGTGTA
240	AACTGCCCAC	ATTTACGGTA	TGGGTGGAGT	ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC	GGACTTTCCA
180	TCCCATAGTA	TGACGTATGT	ACGTCAATAA	GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT TCCCATAGTA	CCAACGACCC
120	TGGCCCGCCT	TTACGGTAAA	GTTACATAAC	TTAGTICATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA TGGCCCGCCT	GCCCATATAT
09	TACGGGGTCA	AGTAATCAAT	AGTTATTAAT	FTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT TACGGGGTCA	CCCGACATTG

FIG. 5B

2040	TTTGAGCCAA	AGTCTATAGT	TGGTTGCGGA	GATGTTGTAA AATTGCTGTG GACAGTTGGA TGGTTGCGGA AGTCTATAGT TTTGAGCCAA	AATTGCTGTG	GATGTTGTAA
1980	ACTCCAACAT	GCATTCCAGC	CTTAGGCTCT	CCAACGCAGT GTCTCAAATG TAGGTCGTTC CTTAGGCTCT GCATTCCAGC ACTCCAACAT	GTCTCAAATG	CCAACGCAGT
1920	CTTCAAGTTT	TCAAAATAGT	AGAGTCTGTT	TCTTATGAAG TTATTTGCAT CTGAATATGA AGAGTCTGTT TCAAAATAGT CTTCAAGTTT	TTATTTGCAT	TCTTATGAAG
1860	CCAGTGTTCA	ATATTCTTCT	TTATTATTTG	GAATGGATTA TITGAATITG TITTGCTACT ITAITATITG ATATICITCT CCAGIGITCA	TTTGAATTTG	GAATGGATTA
1800	TTGTATTTTG	GTTGATAACA	TGTGCAGTTG	TATCACTIGA ATATGTCAGG ATAAACTGAT TGTGCAGTTG GTTGATAACA TTGTATTTTG	ATATGTCAGG	TATCACTTGA
1740	AACTTTATCC	ATACATGGCC	CTTTTTCATA	GTTGCCCAGT CAATAAAATG CACAAATAAT CTTTTTCATA ATACATGGCC AACTTTATCC	CAATAAAATG	GTTGCCCAGT
1680	GTCCTGCAGT	CACCTTGACT	AATTATATAT	AGTGTGCTTA ATTTTACCAG GCAGTGAGGA AATTATATAT CACCTTGACT GTCCTGCAGT	ATTTTACCAG	AGTGTGCTTA
1620	AACTTGGTTT	AAAGAAAAT	TATCTCTTAA	GACATTICAA ACAATAAATG GAAATGTAAG TATCTCTTAA AAAGAAAAAT AACTTGGTTT	ACAATAAATG	GACATTTCAA
1560	TCTCTTGATC	ATCTGTTGAT	TTGGACTATC	GAAAATGCTA CAACAGTCAC TGAGTAAAAA TTGGACTATC ATCTGTTGAT TCTCTTGATC	CAACAGTCAC	GAAAATGCTA
1500	CAGTAAACAG	CCACTCTAAT	TAATGAATAA	CAGCCTGATG GGATTCAGCA ATCTGAGGAA TAATGAATAA CCACTCTAAT CAGTAAACAG	GGATTCAGCA	CAGCCTGATG
1440	TTCATAATAA	ATCAAATTCC	CAGCAAAGCA	AAAAAATCTC AAAGCACAGG TCCTGCTGTG CAGCAAAGCA ATCAAATTCC TTCATAATAA	AAAGCACAGG	AAAAAATCTC
1380	AAAAGAGAAA	AGGATATTTT	TTGTAGTTAC	ATCAAGTCAT TTAACATGGC TTTACCATCA TTGTAGTTAC AGGATATTTT AAAAGAGAAA	TTAACATGGC	ATCAAGTCAT
1320	TCCAAGTACA	GTGCAATTAC	AGAAAAAAT	TCTCAACAGC TGCATCATTT TTTTATGCAT AGAAAAAAT GTGCAATTAC TCCAAGTACA	TGCATCATTT	TCTCAACAGC
1260	GACTTCGTTT	AAATGAAAAA	TCCTTCTGCA	CATACTGAAG TACAGAAAA TTCCATCATT TCCTTCTGCA AAATGAAAAA GACTTCGTTT	TACAGAAAAA	CATACTGAAG
1200	TCAGTTGACA	TATATGACTC	AAAACTAATG	TIGCAACCIG AITCICAATA ITAAGAGAIT AAAACIAAIG TAIAIGACIC ICAGIIGACA	ATTCTCAATA	TIGCAACCIG
1140	CTCATCCGTT	TAGATAATAA	CACATTTCCA	CTCAGACTTT ATGGGCTATT AGACATTTCT CACATTTCCA TAGATAATAA CTCATCCGTT	ATGGGCTATT	CTCAGACTTT
.1080	ATACCTATTT	AACTATTTG	CATTTTCCTA	CTAGGCCACA GCAATCTACT GTTCTCCTCT CATTTTCCTA AACTATTTTG ATACCTATTT	GCAATCTACT	CTAGGCCACA

FIG. 5C

3060	TGTCCTCAGC	TGTAGGCTTC	ceecrerece	ATCTGATCTT CCGATTGCTC CAAAGAACCA CGGCTCTGCC TGTAGGCTTC TGTCCTCAGC	CCGATTGCTC	ATCTGATCTT
3000	GTTTCTCTGC	TATAATAGTT	GTTTTCTGAA	ACTITCICIG ATTAGAAAGG AACCGGICIT GITITCIGAA TATAATAGIT GITICICIGC	ATTAGAAAGG	ACTITCICIG
2940	TTTGGCTTTC	AATTCTCCTT	TGAAAGAGAG	GTAGTGTTTT ACAACTGCTC CATCTAAAAC TGAAAGAGAG AATTCTCCTT TTTGGCTTTC	ACAACTGCTC	GTAGTGTTTT
2880	TTTTAATTCT	TCATCCAGTC	AAATCCCCCT	TGTTGAAAAG ATTCTTCTTC GCGTGAGAAA AAATCCCCCT TCATCCAGTC TTTTAATTCT	ATTCTTCTTC	TGTTGAAAG
2820	ATTCGTTCAG	TGGCTCACAA	CTTGGTGTAG	CCCCAGCTIG ACACACAGGC CGTCACTIGT CTTGGTGTAG TGGCTCACAA ATTCGTTCAG	ACACACAGGC	CCCCAGCTTG
2760	AGCATGGTTT	TGGATCTTTA	AGCTGGGACC	GICCACGGIT ITATACGACA AAICAAAIGG AGCIGGGACC IGGAICITIA AGCAIGGIIT	TTATACGACA	GTCCACGGTT
2700	TCTCCCATTG	TTGCGGTCTA	CTGTATGGAG	AAACTGACCA GATCCCAATC GCTTCAGAAG CTGTATGGAG TTGCGGTCTA TCTCCCATTG	GATCCCAATC	AAACTGACCA
2640	ATACTTCGCC	AGACCTTCCC	ATTGTTCCAC	TITIAAIGII IICACIGCIA CIGGAGIGGI AIIGIICCAC AGACCIICCC AIACIICGCC	TTCACTGCTA	TTTAATGTT
2580	TTGAACCTGG	TTTGGATCCA	CAGGAAGTCA	TCTTAGGTTC TTCATTATCT GTGCCTCCCT CAGGAAGTCA TTTGGATCCA TTGAACCTGG	TTCATTATCT	TCTTAGGTTC
2520	GCTTTGGATG	AGCTGGATAA	AACAGCATAA	AATAATATAA ATTGGATCTT CTAAAGTGCA AACAGCATAA AGCTGGATAA GCTTTGGATG	ATTGGATCTT	AATAATATAA
2460	TCAACTCTGT	CCATGTCTCA	TTGCAGACTT	TITIGATCCA GIGICATITI GGAGATATIC TIGCAGACTI CCAIGICTCA ICAACICIGI	GTGTCATTTT	TTTTGATCCA
2400	TCAGATGGAT	ACCTGTTGAG	CGCCATGTCT	CAGATAGGCC ATTCCAGAGG CAACCTGTGC CGCCATGTCT ACCTGTTGAG TCAGATGGAT	ATTCCAGAGG	CAGATAGGCC
2340	TCCGAGACTC	TGAATGTAGT	CAGATCTCTG	ATGTICACCA ACGAGGACAT TTCTGGCAGC CAGATCTCTG TGAATGTAGT TCCGAGACTC	ACGAGGACAT	ATGTTCACCA
2280	TGTAGATATT	TCTGCTACTT	AAGTCCAAAA	GTCTTCATTA TCTACCTTAA AAACTCTGGC AAGTCCAAAA TCTGCTACTT TGTAGATATT	TCTACCTTAA	GTCTTCATTA
2220	ATTCATAGAT	TCGTGTCTAG	CAGCTTTATT	AATGGCTTCG GGCGCAGTCC ACTTCACCGG CAGCTTTATT TCGTGTCTAG ATTCATAGAT	GGCGCAGTCC	AATGGCTTCG
2160	TATTACTACG	ATGCTGAATT	ATCGGACTTA	TICATAAAGA AGGATICCAA ATGACCATAC ATGGGACTTA ATGCTGAATT TATTACTACG	AGGATTCCAA	TTCATAAAGA
2100	AAGTAATGAT	ATTTTGCCAT	ACTGTAAGGC	CATCTGGATT ACCTGGGCAC CTGTCATACC ACTGTAAGGC ATTTTGCCAT AAGTAATGAT	ACCTGGGCAC	CATCTGGATT

FIG. 5D

4080	CAGCACCATG	TAATTCGGCG	GATCGGGAAT	ATCATGTCTG	CAAACTCATC AATGTATCTT ATCATGTCTG GATCGGGAAT TAATTCGGCG CAGCACCATG	CAAACTCATC	
4020	GTGGTTTGTC	CATTCTAGTT	TTTTTCACTG	TAGCATCACA AATTTCACAA ATAAAGCATT TTTTCACTG CATTCTAGTT GTGGTTTGTC	AATTTCACAA	TAGCATCACA	
3960	AATAAAGCAA	AATGGTTACA	TGCAGCTTAT	AGCTTGGCCG CCATGGCCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA AATAAAGCAA	CCATGGCCCA	AGCTTGGCCG	
3900	GACCTGCAGA	CTCTAGAGTC	GCGGCCGCGA	CCATACCTAC CAGITCIGCG CCIGCAGGIC GCGGCCGCGA CICTAGAGIC GACCIGCAGA	CAGITCIGCG	CCATACCTAC	
3840	GAGGGATCTT	GGGTCGACTC	GCTTTCGCCA	TACTAACCCC TGGTAAAACC TCCACGTCTT GCTTTCGCCA GGGTCGACTC GAGGGATCTT	TGGTAAAACC	TACTAACCCC	
3780	AAGAGGAAGC	AAAAGTTAGC	TGTCCCAATA	CTGAGAACAG AATGGTGCCA TCTTGCCTTT TGTCCCAATA AAAAGTTAGC AAGAGGAAGC	AATGGTGCCA	CTGAGAACAG	
3720	AGACAAATAT	GGCTTTATTT	AAATTAAAAG	GCTTAAGAAT CCCACAACAA AAATAAAATA AAATTAAAAG GGCTTTATTT AGACAAATAT	CCCACAACAA	GCTTAAGAAT	
3660	CTTCTTATCT	GGTGTCTTTT	TCACTAGGAA	GGCAAAACTG AGCAGGAGCT GGGCAGCTGC TCACTAGGAA GGTGTCTTTT CTTCTTATCT	AGCAGGAGCT	GGCAAAACTG	
3600	GCTACCCCGA	GGCTGGAGGT	TGCTTTCTGT	GCAAGTCCTA CCTGGAGAA CTTACCGGCT TGCTTTCTGT GGCTGGAGGT GCTACCCCGA	CCTGGAGAGA	GCAAGTCCTA	
3540	CTGGGTTGCA	AGTCCAGCAG	GTTTCAGATC	CACCATACTT CGGAGAGTAT GCAAAGTCCC GTTTCAGATC AGTCCAGCAG CTGGGTTGCA	CGGAGAGTAT	CACCATACTT	
3480	AGCACCAACT	CTTTGAAGTC	CACCAGGCAA	TTAGICTCIG CGAICCACCI TAICTICCII CACCAGGCAA CIIIGAAGIC AGCACCAACI	CGATCCACCT	TTAGICTCTG	
3420	CCCTCTCCCC	CAGGGCTTCT	AGAAGAGGAG	ACAGATGTTG CTCATTGTGC CTTGGTGGGG AGAAGAGGAG CAGGGCTTCT CCCTCTCCCC	CTCATTGTGC	ACAGATGTTG	
3360	AGAGCCTCTG	AGGTACTCCC	ATAGGGTTCT	CTTGTCTGCC TCCGTGGACA AACAGGGGAG ATAGGGTTCT AGGTACTCCC AGAGCCTCTG	TCCGTGGACA	CTTGTCTGCC	
3300	TCACGGTTGA	GGATTTTCAA	AAGGGCCCCT	GTGGCCATGC CTCTGTGACT GGGGAGAGCA AAGGGCCCCT GGATTTTCAA TCACGGTTGA	CTCTGTGACT	GTGGCCATGC	
3240	CCACAAAGTA	TCAAACAAAG	AGCCTGGTAA	TGCTCGGAAG CTCAAGTCCT CAGCAGTCCG AGCCTGGTAA TCAAACAAAG CCACAAAGTA	CTCAAGTCCT	TGCTCGGAAG	
3180	GTTTGTCACC	AGAACTTGAA	CAAAGTGTCC	CAAGTGTCTG GCAAACCACC AGCCCTCATG CAAAGTGTCC AGAACTTGAA GTTTGTCACC	GCAAACCACC	CAAGTGTCTG	
3120	GTCTTTTCTC	GAGCCATCTC	TTGCTGACTG	CACGTAGTTA GAAGGAATAT AGCCTTGTAG TTGCTGACTG GAGCCATCTC GTCTTTTCTC	GAAGGAATAT	CACGTAGTTA	

1G. 5E

5040	CTCTTGTTCC	TAATAGTGGA TGATTTATAA	CCACGTTCTT	ACGTTGGAGT: CCTATCTCGG	AGACGGTTTT TCGCCCTTTG ACGTTGGAGT CCACGTTCTT TAATAGTGGA CTCTTGTTCC AACACTCAAC CCTATCTGG GCTATTCTTT TGATTTATAA GGGATTTTGC	AGACGGTTTT
4980	TCGCCCTGAT	TAGTGGGCCA	ATGGTTCACG	GATTTGGGTG	ACCTCGACCC CAAAAAACTT GATTTGGGTG ATGGTTCACG TAGTGGGCCA TCGCCCTGAT	CCTCGACCC
4920	GCTTTACGGC	CCGATTTAGT	CTTTAGGGTT	CGGGGGCTCC	TICCCCGICA AGCICTAAAI CGGGGGCICC CITIAGGGIT CCGATITAGI GCITTACGGC	rccccgrcA
4860	Tresceser	TCTCGCCACG	rccerecer	Tregettret	GCGCCCTAGC GCCCGCTCCT TTCGCTTTCT TCCCTTT TCTCGCCACG TTCGCCGGCT	SGCCCTAGC
4800	ACACTTGCCA	CGTGACCGCT	TTACGCGCAG	GGTGTGGTGG	GCGGCGCATT AAGCGCGGCG GGTGTGGTGG TTACGCGCAG CGTGACCGCT ACACTTGCCA	GGCGCATT
4740	GCGCCCTGTA	ACCATAGTAC	CGTCAAAGCA	ACACCGCATA	ACGCATCTGT GCGGTATTTC ACACCGCATA CGTCAAAGCA ACCATAGTAC GCGCCCTGTA	GCATCTGT
4680	TTTTCTCCTT	TGATGCGGTA	GAATGGCGCC	CCTGAATGGC	CCTTCCCAAC AGTTGCGCAG CCTGAATGGC GAATGGCGCC TGATGCGGTA TTTTCTCCTT	TTCCCAAC
4620	CACCGATCGC	AAGAGGCCCG	CGTAATAGCG	CGCCAGCTGG	CTIGCAGCAC ATCCCCCTIT CGCCAGCTGG CGTAATAGCG AAGAGGCCCG CACCGATCGC	TGCAGCAC
4560	ACTTAATCGC	GCGTTACCCA	GAAAACCCTG	TCGTGACTGG	CTGGCCGTCG ITTTACAACG TCGTGACTGG GAAAACCCTG GCGTTACCCA ACTTAATCGC	GCCGTCG
4500	CAGCTTGGCA	AAGCTGTTAA	CTTTTGCAAA	GAGGCCTAGG	GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTGTTAA CAGCTTGGCA	AGTGAGGA
4440	TATTCCAGAA	GCCTCTGAGC	GGCCGCCTCG	CAGAGGCCGA	ACTAAITITI TITATITAIG CAGAGGCCGA GGCCGCCTCG GCCTCTGAGC TAITCCAGAA	TATTTT
4380	CCCATGGCTG	CATTCTCCGC	CAGTTCCGCC	TAACTCCGCC	AACTECGECE ATCECGECEC TAACTECGEE CAGTTECGEE CATTETECGE CECATGGETG	CTCCGCCC
4320	recedencer	GCAACCATAG	CAATTAGTCA	GCATGCATCT	AGCAGGCAGA AGTATGCAAA GCATGCATCT CAATTAGTCA GCAACCATAG TCCCGCCCCT	CAGGCAGA
4260	CAGGCTCCCC	GGAAAGTCCC	AACCAGGTGT	ATTAGTCAGC	PATGCAAAGC ATGCATCTCA ATTAGTCAGC AACCAGGTGT GGAAAGTCCC CAGGCTCCCC	GCAAAGC
4200	CAGGCAGAAG	GGCTCCCCAG	AAAGTCCCCA	TAGGGTGTGG	CTGTGGAAT GTGTCAGT TAGGGTGTGG AAAGTCCCCA GGCTCCCCAG CAGGCAGAAG	GTGGAAT
4140	SAAAGAACCA	TTCTGAGGCG (GTTAGGTACC '	SAGGAACTTG	CCTGAAATA ACCTCTGAAA GAGGAACTTG GTTAGGTACC TTCTGAGGCG GAAAGAACCA	TGAAATA

FIG. 5F

TGCTCCCGGC GGTTTTCACC TATAGGTTAA ATGTGCGCGG TGAGACATA AACATTTCCG ACCCAGAAC TTCCAATGAT TTCCAATGAT CCGGGCAAGA CACCAGTCAC CCGGGCAAGA CACCAGTCAC AACCGGAGCT AGGAGCTAAC AACCGGAGCT	TGCTCCCGGC ATCCGCTTAC AGACAAGCTG TGACCGTCTC CGGGAGCTGC ATGTGTCAGA GGTTTTCACC GTCATCACCG AAACGCGCGA GACGAAAGGG CCTCGTGATA CGCCTATTTT TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT TTTCGGGGAA ATGTGCGCGG AACCCCTATT TGTTTTTTT TCTAAATACA TTCAAATATG TATCGGCTCA TGAGACATA ACCCTGATAA ATGCTTCAAT AATATTGAAA AAGGAAAGGT ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCT ACCTCGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGAATTA TGCAGTGCTG CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACATC GAAGGACCTG CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACATCT GACAGGACCGA AGGAGCTAAC GAATGAAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GAAGGACCGA AACCGGAGCTAAC CGCTTTTTTG CACAACATGG GCATGACATG AACCGGAGCTAAC CACAACATGG GGGATCATGT GACACGCTG AACCGGAGCTAAC CACAACATGG GGGATCATGT AACTCGCCTT GATCGTTTGG AACCGGAGCTAAC CACAACATGG GGGATCATGT AACTCGCCTT GATCGTTTGGG AACCGGAGCTAAC CACAACAACG ACGAGCGTGA CCCACGATG CCTGTAGCAA	AGACAAGCTG AAACGCGCGA ATAATGGTTT TGTTTATTTT TGTTTATTTT TGTTAATGTT ATGCTTCAAT ATGCTTCAAT GTAAAAGATG AGCGGTAAGA AAAGTTCTGC CGCCGCATAC CGCCGCATAC CGCCGCATAC CGCCGCATAC AAAGTTCTGC CGCCGCATAC AAAGTTCTGC CGCCGCATAC AAAGTTCTGC	TGACCGTCTC GACGAAAGGG CTTAGACGTC TCTAAATACA AATATTGAAA TTGCGGCATT CTGAAGATCA TCCTTGAGGC TATGTGGCCC ACTATTCTCA GCATCACTTCT ACTATTCTCA GCATCACTTCT ACTATTCTCT ACTATTCTCT ACTATTCTCT ACTATTCTCT ACTATTCTCT ACTACTTCT ACGAGCGTGA	CGGGAGCTGC CCTCGTGATA AGGTGGCACT TTCAAATATG AAGGAAGAGT TTTTCGCCCC GGTATTATCC GAATGACTTG AAGAGAATTA CACCACGCTT CACCACGATG	ATGTGTCAGA CGCCTATTTT TTTCGGGGAA TATCCGCTCA ATGAGTATTC GTTTTTGCTC CGAGTGGGTT GAAGAACGTT CGTATTGACT TGCAGTGCTC GGAGGACCTC CGTATTGACT CGTATTGACT CCTGTTGACT CCTGTAGCAA	5340 5400 5460 5520 5520 5700 5700 5700 5700 5940 6000
CGAITICGGC	CGAIIICGGC CIAITGGTTA AAAAATGAGC TGATTTAACA AAAATTTAAC GCGAATTTTA	AAAAATGAGC	TGATTTAACA	AAAATTTAAC	GCGAATTTTA	5160
ACAAAATATT	ACAAAATATT AACGTTTACA ATTTTATGGT GCACTCTCAG TACAATCTGC TCTGATGCCG	ATTTTATGGT	GCACTCTCAG	TACAATCTGC	TCTGATGCCG	5220
CATAGTTAAG	CATAGTTAAG CCAGCCCCGA CACCCGCCAA CACCCGCTGA CGCGCCTGA CGGGCTTGTC	CACCCGCCAA	CACCCGCTGA	CGCGCCCTGA	CGGGCTTGTC	5280
TGCTCCCGGC	ATCCGCTTAC	AGACAAGCTG	TGACCGICTC	CGGGAGCTGC	ATGTGTCAGA	5340
GGTTTTCACC	GTCATCACCG	AAACGCGCGA	GACGAAAGGG	CCTCGTGATA	CGCCTATITI	5400
TATAGGTTAA	TGTCATGATA	ATAATGGTTT	CTTAGACGTC	AGGTGGCACT	TTTCGGGGAA	5460
ATGTGCGCGG	AACCCCTATT	TGTTTATTTT	TCTAAATACA	TTCAAATATG	TATCCGCTCA	5520
TGAGACAATA	ACCCTGATAA	ATGCTTCAAT	AATATTGAAA	AAGGAAGAGT	ATGAGTATTC	5580
AACATTTCCG	TGTCGCCCTT	ATTCCCTTTT	TTGCGGCATT	TTGCCTTCCT	GTTTTTGCTC	5640
ACCCAGAAAC	GCTGGTGAAA	GTAAAAGATG	CTGAAGATCA	GTTGGGTGCA	CGAGTGGGTT	5700
ACATCGAACT	GGATCTCAAC	AGCGGTAAGA	TCCTTGAGAG	TTTTCGCCCC	GAAGAACGTT	5760
ITCCAATGAT	GAGCACTITT	AAAGTTCTGC	TATGTGGCGC	GGTATTATCC	CGTATTGACG	5820
CCGCCCAAGA	GCAACTCGGT	CGCCGCATAC	ACTATTCTCA	GAATGACTTG	GTTGAGTACT	5880
CACCAGTCAC	AGAAAAGCAT	CTTACGGATG	GCATGACAGT	AAGAGAATTA	TGCAGTGCTG	5940
CATAACCAT	GAGTGATAAC	ACTGCGGCCA	ACTTACTTCT	GACAACGATC	GGAGGACCGA	6000
GGAGCTAAC	CGCTTTTTTG	CACAACATGG	GGGATCATGT	AACTCGCCTT	GATCGTTGGG	0909
ACCGGAGCT	GAATGAAGCC	ATACCAAACG	ACGAGCGTGA	CACCACGATG	CCTGTAGCAA	6120

FIG. 5G

FIG. 5H

7607		GAATTAA	ACATGATTAC	AACAGCTATG	GATAACAATT TCACAGGA AACAGCTATG ACATGATTAC GAATTAA	GATAACAATT
7560	ATTGTGAGCG	GTTGTGTGGA	CGGCTCGTAT	TTTATGCTTC	AGGCACCCCA GGCTTTACAC TTTATGCTTC CGGCTCGTAT GTTGTGGGA ATTGTGAGCG	AGGCACCCCA
7500	CTCACTCATT	TGTGAGTTAG	ACGCAATTAA	AGTGAGCGCA	TTCCCGACTG GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCATT	TTCCCGACTG
744(CACGACAGGT	ATGCAGCTGG	CGATTCATTA	GCGCGTTGGC	TACGCAAACC GCCTCTCCCC GCGCGTTGGC CGATTCATTA ATGCAGCTGG CACGACAGGT	TACGCAAACC
7380	GAGCGCCCAA	GGAAGCGGAA	CAGTGAGCGA	CGCAGCGAGT	GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA GAGCGCCCAA	GCCGCAGCCG
732(GATACCGCTC	TGAGTGAGCT	TTACCGCCTT	GATAACCGTA	CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT GATACCGCTC	CGTTATCCCC
726	TTCTTTCCTG	TGCTCACATG	GCTGGCCTTT	CTGGCCTTTT	ACGCGCCTT TTTACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG TTCTTTCCTG	ACGCGGCCTT
720	AACGCCAGCA	CCTATGGAAA	GGGGGCGGAG	TGCTCGTCAG	TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG GGGGGGGGAG CCTATGGAAA AACGCCAGCA	TTGAGCGTCG

FIG. 5I

Leu	Pro	Val	Arg	Trp 80	ren	Gln	Lys	Glu	Ala 160	Phe	His
	Asn	Phe	Phe	Trp	Gln Gln 95	Leu	G1u	Arg	Gly	Phe 175	Ser
Cys Gln Arg Leu Trp Glu Tyr Leu Glu Pro Tyr 5 10	Ile Glu	Tyr	Ser	б1у		Glu Asp Arg Ser 110	Ala	Ile	Asp		Val 190
Glu	Ile	His 45	Leu	Glu	Ser	Arg	Asp 125	Leu	Leu	Gly	Phe
Leu	Thr Val	Gly His 1	Asp 60	His	Ser	Asp	Ser	Phe 140	Val	Glu Gly Gly	Glu
Tyr	Thr	His	Glu Asp 60	Leu 75	Gly	Glu	Arg		Ser 155	Asp	Asn
Glu 10	Ser	Arg	Ala	Thr	Asp 90	Ala	Gly	Gly	Leu	Leu 170	Leu Asn Glu
Trp	Lys 25	Gln	Thr	Asp	Arg	Val 105	Ile	Thr	Ser	Arg	Thr 185
Leu	Glu Ala Asp Lys 25		Arg	Leu	Arg	Tyr	Gly Ala Ile Gly Arg Ser Asp 120	Asn Lys Thr Gly Ser 135	Phe	Lys	Ser
Arg	Ala	Gln Ser 40	Ala 55	Val	Glu Lys	Asn	Gly	Asn 135	Glu	Ile	Phe
Gln	Glu	Pro	Gln	G1n 70		Ser	Phe	Glu	G1y 150	Arg	Ile
Cys 5	Thr	Ser	Tyr	Leu	Leu 85	Pro	Phe	Ser	Lys	Tyr 165	Arg
Ile	Ser 20	Cys	Asp	Lys	His	11e 100	Trp Phe	Tyr	Gln Lys Gly 150	His	Arg 180
Asn	Leu	Leu 35	Leu Phe Asp Tyr Gln Ala 50	Asp	Arg	Tyr	Pro 115	Leu Tyr	Ser	Lys	Arg
Ser	сув	Gly Ala Leu 35	Leu 50	Gly	Ala	Gln Gly	Glu	Leu 130	Glu	Val	Thr
Met 1	Pro	Gly	Ala	Ala 65	Phe	Gln	Ala	Gln	Ser 145	Val	Leu

FIG. 5J

Ø	-	30	ы	E	Ø	ø.	5 0	ส	EQ.	L.	-
Cys	Val	Leu 240	Thr	Asn	Lys	Ile	Asn 320	Ala	His	Ťyr	Glu
Pro	Thr	Arg	Asn 255	Pro	Pro	Tyr	Gln	Ala 335	Ile	Ile	Asn
Lys	Lys	Lys	Asn	Asp 270	His	Pro Ile	Leu	Met	Tyr 350	Asn	Asp
G1y 205	Tyr	Leu	Trp	Met	Arg 285	Pro	Tyr	Asp	Asn	His 365	Val Asp Asn
Leu	Ser 220	Leu	Leu	Ser	Leu	Asp 300	Glu Tyr	Val	Arg	Glu	Lys 380
Cys Val Lys Leu Gly 205	Leu	Gln 235	Gly	Gly	Asn	Glu	Gln 315	Gln	Ser	Gly	Phe
Val	Asp	Ile	G1u 250	Pro	Lys	Leu	Leu	Gln 330	Glu	Val	
Cys	Phe	Ser	Trp	Lys 265	Met		Ser		Leu 345	Leu	Arg Val
Leu 200	Pro	Asn	Val	Leu	11e 280	Cys Thr	Gly Ser	Leu Thr	Tyr	Val 360	Ala
Gly	Ala 215	Arg	Glu	Thr	Gln	Val 295	His	His	Ala	Asn	Leu 375
Ser Asp Gly Leu 200	Pro	Asp 230	Gly	Lys	Ala	Ala	Arg 310	Ile	Met	Arg	Gly
Ser		Ile	Phe 245	Val	Glu	Tyr	Met	Lys 325	Gly	Ala	Phe
Thr	Gln Val	Glu	Gln	Ala 260	Arg	Gln Leu	Leu	Ser	Ser 340	Ala	Asp
Lys 195	Ile	Gln Trp	Gly	Val	Leu 275		Glu	Gly	Ala	Leu 355	Ala
Thr	Lys 210	Gln	Ser	Pro	Phe	Ile 290	Thr	Thr	Val	Asp	Val 370
Tyr	Leu	Asp 225	Gly	Thr	Asp	Leu	11e 305	Asp	Gln	Arg	Lys

FIG. 5K

Thr 400	Val	Met	Gln	Asn	Phe 480	Ser	
Pro Val Lys Trp	Asp 415	Lys	Ala	Tyr	Thr	Ser 495	
Lys	Ser	G1y 430	Leu	Phe	Pro	Asp	
Val	Lys	Tyr	Met 445	Gln	Arg	Thr	
Pro	Ile	Thr	Gln	Gln 460	Glu	Glu	
Leu 395	Ser	Ile	Ile	Pro	Lys 475	Phe	
Ile Lys Leu 395	Phe 410	Ile	Gln Val	Cys	Pro	Tyr 490	*
Ile	Lys	Glu 425	Gln	Asn		Asp	Arg 505
Glu	Asn	Tyr	Ala 440	Ser	Asn Ala Glu	Glu Asp	Ile
His	Ser	Leu Leu	Gly	Pro 455	Asn	Leu	Phe
Arg 390	Arg	Leu	Thr	Gln	Trp 470	Ĺys	Asn
Ser	Ile 405	Ile	Met	Pro	Cys	Trp 485	Asn
Glu	Ala	G1y 420	Gly	Leu	Glu	Arg	Ala 500
Ile Tyr	Glu	Phe	Ser 435	Arg	Leu	Leu	Asp
	Pro	Ser	Tyr	Tyr 450	Met	Thr	Ser
Asp 385	Ala	Trp	Pro	Asn	Ile 465	Glu	Туг

404		၁၁၅၅	CCATCCACCT	ACACTGCCAT CCATCCACCT GGCC	GCGTAGCTGT TAACAAGCTC	GCGTAGCTGT
360	GTGGCCTATG	crecerreer	GTGGCATTGA	NTGCCATACC GTGGCATTGA CTGCCTTGCT GTGGCCTATG	GGGAACTGCT GACCGGGGAG	GGGAACTGCT
300	GTGCTGCTGT	GAGTTTTGGG	GTGACGTCTG	TCTAAGGGCA GTGACGTCTG GAGTTTTGGG GTGCTGCTGT	TTATCAAGGC CTCCACCTTC	TTATCAAGGC
240	GCTCCTGAGG	CNCCTGGATG	CNGGCACCTA	ATGAGTGCCG CNGGCACCTA CNCCTGGATG GCTCCTGAGG	AGTGGCACAA AACCACACAA	AGTGGCACAA
180	CTGGCCCGAG	CGACTTTGGC	TGAAGATCAC	CACAAGACCC TGAAGATCAC CGACTTTGGC CTGGCCCGAG	TTGAGAGTGA CGACATGGAG	TTGAGAGTGA
120	CTGCAGCCCA	GGTTTTGCTG	CTGAAACTTT	CAAAGAAGTC CTGAAACTTT GGTTTTGCTG CTGCAGCCCA	TAGCAGAAAG ACCACAAGTA	TAGCAGAAAG
9	AGCGGGGAGG	CAGAGCCAGG	TAGCAGCTGG	GCGGCCGCAG AGAAAGCAGA GGATGGGGCT TAGCAGCTGG CAGAGCCAGG AGCGGGGAGG	AGAAAGCAGA	GCGGCCGCAG

ATGAGAGCGT	TGGCGCGCGA	ATGAGAGCGT TGGCGCGCGA CGGCGGCCAG CTGCCGCTGC TCGTTGTTT TTCTGCAATG	creccecrec	TCGTTGTTTT	TTCTGCAATG	9
ATATTTGGGA	CTATTACAAA	ATATTTGGGA CTATTACAAA TCAAGATCTG CCTGTGATCA AGTGTGTTTT AATCAATCAT	CCTGTGATCA	AGTGTGTTTT	AATCAATCAT	120
AAGAACAATG	ATTCATCAGT	AAGAACAATG ATTCATCAGT GGGGAAGTCA TCATCATATC CCATGGTATC AGAATCCCCG	TCATCATATC	CCATGGTATC	AGAATCCCCG	180
GAAGACCTCG	GGTGTGCGTT	GAAGACCTCG GGTGTGCGTT GAGACCCCCAG AGCTCAGGGA CAGTGTACGA AGCTGCCGCT	AGCTCAGGGA	CAGTGTACGA	AGCTGCCGCT	240
GTGGAAGTGG	ATGTATCTGC	GTGGAAGTGG ATGTATCTGC TTCCATCACA CTGCAAGTGC TGGTCGATGC CCCAGGGAAC	CTGCAAGTGC	TGGTCGATGC	CCCAGGGAAC	300
ATTTCCTGTC	TCTGGGTCTT	ATITCCIGIC ICTGGGICIT TAAGCACAGC TCCCIGAAIT GCCAGCCACA ITITGAIFIA	TCCCTGAATT	GCCAGCCACA	TTTTGATTTA	360
CAAAACAGAG	GAGTTGTTTC	CAAAACAGÁG GAGITGITIC CAIGGICAII IIGAAAAIGA CAGAAACCCA AGCIGGAGAA	TTGAAAATGA	CAGAAACCCA	AGCTGGAGAA	420
TACCTACTTT	TTATTCAGAG	TACCTACTTT TTATTCAGAG TGAAGCTACC AATTACACAA TATTGTTTAC AGTGAGTATA	AATTACACAA	TATTGTTTAC	AGTGAGTATA	480
AGAAATACCC	TGCTTTACAC	AGAAATACCC TGCTTTACAC ATTAAGAAGA CCTTACTTTA GAAAAATGGA AAACCAGGAC	CCTTACTTTA	GAAAAATGGA	AAACCAGGAC	540
GCCCTGGTCT	GCATATCTGA	GCCCTGGTCT GCATATCTGA GAGCGTTCCA GAGCGGATCC TGGAATGGGT GCTTTGCGAT	GAGCGGATCC	TGGAATGGGT	GCTTTGCGAT	009
TCACAGGGG	AAAGCTGTAA	TCACAGGGGG AAAGCTGTAA AGAAGAAAGT CCAGCTGTTG TTAAAAAGGA GGAAAAAGTG	CCAGCTGTTG	TTAAAAAGGA	GGAAAAAGTG	099
CTTCATGAAT	TATTTGGGAC	CTTCATGAAT TATTTGGGAC GGACATAAGG TGCTGTGCCA GAAATGAACT GGGCAGGGAA	TGCTGTGCCA	GAAATGAACT	GGCAGGGAA	720
TGCACCAGGC	TGTTCACAAT	TGCACCAGGC TGTTCACAAT AGATCTAAAT CAAACTCCTC AGACCACATT GCCACAATTA	CAAACTCCTC	AGACCACATT	GCCACAATTA	780
TITCTTAAAG	TAGGGGAACC	TITCTTAAAG TAGGGGAACC CTTATGGATA AGGTGCAAAG CTGTTCATGT GAACCATGGA	AGGTGCAAAG	CTGTTCATGT	GAACCATGGA	840
TTCGGGCTCA	CCTGGGAATT	TTCGGGCTCA CCTGGGAATT AGAAAACAAA GCACTCGAGG AGGGCAACTA CTTTGAGATG	GCACTCGAGG	AGGGCAACTA	CTTTGAGATG	006
AGTACCTATT	CAACAAACAG	AGTACCTATT CAACAAACAG AACTATGATA CGGATTCTGT TTGCTTTTGT ATCATCAGTG	CGGATTCTGT	TTGCTTTTGT	ATCATCAGTG	096
GCAAGAAACG	ACACCGGATA	GCAAGAAACG ACACCGGATA CTACACTTGT TCCTCTTCAA AGCATCCCAG TCAATCAGCT	TCCTCTTCAA	AGCATCCCAG	TCAATCAGCT	1020
TTGGTTACCA	TCGTAGAAAA	TTGGTTACCA TCGTAGAAAA GGGATTTATA AATGCTACCA ATTCAAGTGA AGATTATGAA	AATGCTACCA	ATTCAAGTGA	AGATTATGAA	1080

FIG. 7B

2160	TTTCAAGGAA	GGACAGAGAT	CACAGGACTT	AACTATCTAA GAAGTAAAAG AGAAAATTT CACAGGACTT GGACAGAGAT TTTCAAGGAA	GAAGTAAAAG	AACTATCTAA
2100	TGATCTTCTC	GTTGCTATGG	TTTGAATACT	TGCACACTGT CAGGACCAAT TTACTTGATT TTTGAATACT GTTGCTATGG TGATCTTCTC	CAGGACCAAT	TGCACACTGT
2040	GCTGGGGGCG	TTGTGAACCT	CACGAGAATA	GAACTCAAGA TGATGACCCA GCTGGGAAGC CACGAGAATA TTGTGAACCT GCTGGGGGCG	TGATGACCCA	GAACTCAAGA
1980	ACTCATGTCA	AAAGAGAGGC	GACAGCTCTG	GTTACCGTCA AAATGCTGAA AGAAAAAGCA GACAGCTCTG AAAGAGAGGC ACTCATGTCA	AAATGCTGAA	GTTACCGTCA
1920	CTCAATCCAG	AAACAGGAGT	GGAATTAGCA	TTTGGAAAAG TGATGAACGC AACAGCTTAT GGAATTAGCA AAACAGGAGT CTCAATCCAG	TGATGAACGC	TTTGGAAAAG
1860	ATCAGGTGCT	AGGTACTAGG	GAGTTTGGGA	GTCAAATGGG AGTTTCCAAG AGAAATTTA GAGTTTGGGA AGGTACTAGG ATCAGGTGCT	AGTTTCCAAG	GTCAAATGGG
1800	TGAATATGAT	TCAGAGAATA	TACGTTGATT	GTGACCGGAT CCTCAGATTA TGAGTACTTC TACGTTGATT TCAGAGAATA TGAATATGAT	CCTCAGATTA	GTGACCGGAT
1740	GATGGTACAG	GCCAGCTACA	AGGTATGAAA	CTAATTTGTC ACAAGTACAA AAAGCAATTT AGGTATGAAA GCCAGCTACA GATGGTACAG	ACAAGTACAA	CTAATTTGTC
1680	TTTAACCCTG	TCATTGTCGT	TGTCTCCTCT	AACATCTCAT TCTATGCAAC AATTGGTGTT TGTCTCCTCT TCATTGTCGT TTTAACCCTG	TCTATGCAAC	AACATCTCAT
1620	CATCCAAGAC	CCTTCCCTTT	TCTCCAGGCC	GGCACATCTT GTGAGACGAT CCTTTTAAAC TCTCCAGGCC CCTTCCCTTT CATCCAAGAC	GTGAGACGAT	GGCACATCTT
1560	CAATTCCCTT	GCTGTGCATA	CTGGTCAAGT	CTAAACATGA GTGAAGCCAT AAAAGGGTTC CTGGTCAAGT GCTGTGCATA CAATTCCCTT	GTGAAGCCAT	CTAAACATGA
1500	GAGCAGTACT	AGTGGGTGTC	GTGTTTGGAC	GGAGTCTGGA ATAGAAAGGC TAACAGAAAA GTGTTTGGAC AGTGGGTGTC GAGCAGTACT	ATAGAAAGGC	GGAGTCTGGA
1440	GATCACAGAA	GCACAGAAGA	TCTCCCAACT	TCTTGGACCT GGAAGAAGTG TTCAGACAAG TCTCCCAACT GCACAGAAGA GATCACAGAA	GGAAGAAGTG	TCTTGGACCT
1380	CCCATTACCA	CGGATGGATA	TCCTGTTTCT	GTCCTCGCAG AAGCTTCGGC AAGTCAGGCG TCCTGTTTCT CGGATGGATA CCCATTACCA	AAGCTTCGGC	GTCCTCGCAG
1320	GAAACCTCAA	ATATAAGAAG	Trcacceter	GAAAATGATG ATGCCCAATT TACCAAAATG TTCACGCTGT ATATAAGAAG GAAACCTCAA	ATGCCCAATT	GAAAATGATG
1260	ATTCCATGCA	GAGAATATAT	CACCAGCCAG	TACAGCATAT CCAAGTTTTG CAATCATAAG CACCAGCCAG GAGAATATAT ATTCCATGCA	CCAAGTTTTG	TACAGCATAT
1200	TGATAACGGA	AAAAGGGTCT	CCTTGTGAGC	TGTACGTGGA CCTTCTCTCG AAAATCATTT CCTTGTGAGC AAAAGGGTCT TGATAACGGA	ccrrcrccc	TGTACGTGGA
1140	ACAAATCAGA	AAGCCTACCC	GTCAGGTTTA	ATTGACCAAT ATGAAGAGTT TTGTTTTTCT GTCAGGTTTA AAGCCTACCC ACAAATCAGA	ATGAAGAGTT	ATTGACCAAT

FIG. 7C

2760 2820 2880 2940 3000 3120	AATATACATT TAATTTGACT TGTGGATGGC AGAGATGGAT TTTAGTTTTA AGGTTAATTT CTAGAGAGGG	CTACAGAAGA CATCCTTCCC TGTATCAGAA CTTTCAGCAG AGAGGAACAA TACCAAAACA AGACTTTTCT	CCATTTTATG AGGAAACGGC GAAGAAGCGA AACAGGCGAC GAAGATTCGT GGCTGTAGAT CTGCTTCACC	AATGGATCAG TTTTGACTCA GGCAGATGCA CACCTACCAA GGCTCAGGTC ATCCCTAACA	CTGATTCAAA ATGGATTTAA AATGGATCAG CCATTTTATG CTACAGAAGA AATATACATT ATAATGCAAT CCTGCTGGGC TTTTGACTCA AGGAAACGGC CATCCTTCCC TAATTTGACT TCGTTTTTAG GATGTCAGCT GGCAGATGCA GAAGAAGCGA TGTATCAGAA TGTGGATGGC CGTGTTTCGG AATGTCCTCA CACCTACCAA AACAGGCGAC CTTTCAGCAG AGAGATGGAT TTGGGGCTAC TCTCTCCGCA GGCTCAGGTC GAAGATTCGT AGAGGAACAA TTTAGTTTTA AGGACTTCAT CCCTCCACCT ATCCCTAACA GGCTGTAGAT TACCAAAACA AGGTTAATTT CATCACTAAA AGAAAATCTA TTATCAACTG CTGCTTCACC AGACTTTTCT CTAGAGAGCG	GATTCAAA AATGCAAT GTTTTTAG TGTTTTGG GGGGCTAC GACTTCAT TCACTAAA
2940	AGAGATGGAT	CTTTCAGCAG	AACAGGCGAC	CACCTACCAA	AATGTCCTCA	rttcgg
2880	TGTGGATGGC	TGTATCAGAA	GAAGAAGCGA	GGCAGATGCA	GATGTCAGCT	ITTTAG
2820	TAATTTGACT	CATCCTTCCC	AGGAAACGGC	TTTTGACTCA	ccrecresse	FGCAAT
2760	AATATACATT	CTACAGAAGA	CCATTTTATG	AATGGATCAG	CTGATTCAAA ATGGATTAA AATGGATCAG CCATTTTATG CTACAGAAGA AATATACATT	TCAAA
2700	CTTCTACAAA	TTGATGCTAA	GGCATTCCGG	TCCTTACCCT	ATCTTCTCAC TIGGIGIGAA ICCTIACCCI GGCAITCCGG INGAIGCIAA CITCIACAAA	rcrcAc
2640	ACTGTGGGAA	ATGGAATATT	GTCTGGTCAT	TAAGAGTGAT	TITGAAGGCA TCTACACCAT TAAGAGTGAT GTCTGGTCAT ATGGAATATT ACTGTGGGAA	AGGCA
2580	CGAAAGCCTG	GGATGGCCCC	CCTGTAAAAT	Teccestere	AACTATGTTG TCAGGGGCAA TGCCCGTCTG CCTGTAAAAT GGATGGCCCC CGAAAGCCTG	ATGTTG
2520	GAGTGATTCC	GAGATATCAT	GGATTGGCTC	ATGTGACTTT	CACGGGAAAG TGGTGAAGAT ATGTGACTTT GGATTGGCTC GAGATATCAT GAGTGATTCC	SGAAAG
2460	GCTTGTCACC	CCAGGAACGT	GACCTGGCCG	TGTTCACAGA	TITCIGGAAT TIAAGICGIG IGITCACAGA GACCIGGCCG CCAGGAACGI GCIIGICACC	rggaat
2400	AGGAATGGAA	AAGTTGCCAA	TTTGCATATC	TCTTCTTTGC	AATGTGCTTA CATTTGAAGA TCTTCTTTGC TTTGCATATC AAGTTGCCAA AGGAATGGAA	FGCTTA
2340	GGAGGACTTG	TGGAAGAAGA	CAAAAAAGGC	ATATGAAAAC	CACTCTGAAG ATGAAATTGA ATATGAAAAC CAAAAAGGC TGGAAGAAGA GGAGGACTTG	TGAAG
2280	GAATTCATTT	GGCTTCATGG	CAAATCTCAG	GGACTCGGAT	AGAGAAGTTC AGATACACCC GGACTCGGAT CAAATCTCAG GGCTTCATGG GAATTCATTT	AGTTC
2220	GCCTGGTTCA	ATTCCAGCAT	TCACATCCAA	CACTITCCAA	CACAATITICA GITTITACCC CACTITCCAA TCACATCCAA AITCCAGCAT GCCTGGITCA	TTTCA

FIG. 8A

9	. 113	161	209	257	305	353	401	449	497
TCGGCGTCCA CCCGCCCAGG GAGAGTCAGA CCTGGGGGGG CGAGGGCCCC CCAAACTCAG	TTCGGATCCT ACCCGAGTGA GGCGGCGCC ATG GAG CTC CGG GTG CTC TGC Met Glu Leu Arg Val Leu Leu Cys 1	TGG GCT TCG TTG GCC GCA GCT TTG GAA GAG ACC CTG CTG AAC ACA AAA Trp Ala Ser Leu Ala Ala Leu Glu Glu Thr Leu Leu Asn Thr Lys 10	TTG GAA ACT GCT GAT CTG AAG TGG GTG ACA TTC CCT CAG GTG GAC GGG Leu Glu Thr Ala Asp Leu Lys Trp Val Thr Phe Pro Gln Val Asp Gly 25	CAG TGG GAA CTG AGC GGC CTG GAT GAG GAA CAG CAC AGC GTG CGC Gln Trp Glu Glu Leu Ser Gly Leu Asp Glu Glu Gln His Ser Val Arg 50 55	ACC TAC GAA GTG TGT GAC GTG CGT GCC CCG GGC CAG GCC CAC TGG Thr Tyr Glu Val Cys Asp Val Gln Arg Ala Pro Gly Gln Ala His Trp 60	CTT CGC ACA GGT TGG GTC CCA CGG CGG GGC GCC GTC CAC GTG TAC GCC Leu Arg Thr Gly Trp Val Pro Arg Arg Gly Ala Val His Val Tyr Ala 75	ACG CTG CGC TTC ACC ATG CTC GAG TGC CTG TCC CTG CCT CGG GCT GGG Thr Leu Arg Phe Thr Met Leu Glu Cys Leu Ser Leu Pro Arg Ala Gly 90	CGC TCC TGC AAG GAG ACC TTC ACC GTC TTC TAC TAT GAG AGC GAT GCG Arg Ser Cys Lys Glu Thr Phe Thr Val Phe Tyr Tyr Glu Ser Asp Ala 105	GAC ACG GCC ACG CCT ACG CCA GCC TGG ATG GAG AAC CCC TAC ATC ASp Thr Ala Thr Ala Leu Thr Pro Ala Trp Met Glu Asn Pro Tyr Ile 125

	ag	CTC ACC CGG AAG CGC CCT GGG 54: Leu Thr Arg Lys Arg Pro Gly 150	AAG ACG CTG CGT CTG GGA CCG 59: Lys Thr Leu Arg Leu Gly Pro 165	rTC CAG GAC CAG GGT GCC TGC 643 Phe Gln Asp Gln Gly Ala Cys 180	FAC AAA AAG TGC GCC CAG CTG 689 Fyr Lys Lys Cys Ala Gln Leu 195	ACT GTG CCT CGG GAG CTG GTT 737 Thr Val Pro Arg Glu Leu Val 210	SAT GCC GTC CCC GCC CCT GGC 789	SAT GGC CAG TGG GCC GAA CAG 833 Asp Gly Gln Trp Ala Glu Gln 245	GG TTC GAG GCA GCT GAG GGG 881 31y Phe Glu Ala Ala Glu Gly 260	GC ACC TTC AAG CCC CTG TCA 929 31y Thr Phe Lys Pro Leu Ser 275
FIG. 8B GTG GAC ACG GTG GCG CAG CAT CTC ACC CGG AAG CGC Val Asp Thr Val Ala Ala Glu His Leu Thr Arg Lys Arg 140 GAG GCC ACC GGG AAG GTG AAT GTC AAG ACG CTG Glu Ala Thr Gly Lys Val Asn Val Lys Thr Leu Arg Leu 155 AGC AAG GCT GC TTC TAC CTG GCC TTC CAG GAC CAG Ser Lys Ala Gly Phe Tyr Leu Ala Phe Gln Asp Gln Gly 170 GCC CTG CTA TCC CTG CAC CTC TTC TAC AAA AAG TGC GCC Ala Leu Leu Ser Leu His Leu Phe Tyr Lys Lys Cys Ala 190 GCC GTG GCT ACT CG GTG GTG GTG GTG CCT GG GAC Val Asn Leu Thr Arg Phe Pro Glu Thr Val Pro Arg Glu 200 GCC GTG GCC GGT AGC TGC GTG GTG GTG GCC Ser Pro GTG TTC TAC GTG GTG GTG GCC GTG GCC GTG GTG GTG GTG GTG GTG AGC CCC GTG GTG GTG GTG GTG GTG GTG AGC CCC GTG GTG GTG GTG GTG GTG GTG AGC CCC AGC TTC TAC TGC GTG GTG GTG GTG AGC CCC AGC TTC TAC TGC GTG GTG GTG GTG AGC CCC AGC TTC TAC TGC CTG GAG ACT GTG GCC Ser Pro Ser Leu Tyr Cys Arg Glu Asp Ala Val Pro Ala 225 GTC AGG TGC AGC TGT GCT CCG GGG TTC GAG GCC Ser Pro Ser Leu Tyr Cys Arg Glu Asp Gly Gln Trp Ala 235 GTC AGG TGC GTG GCC TGC GGG TTC GAG GCC AGC CTC TGC GTG GTG GTG GTG GTG GTG AGC CCC AGC TGC GTG GTG GTG GTG GTG AGC CCC AGC TGC GTG GTG GTG GTG GTG AGC CCC AGC TGC GTG GTG GTG GTG GTG AGC CCC AGC TGC GTG GTG GTG GTG GTG AGC CTC TGC GTG GTG GTG GTG GTG AGC CTC TGC GTG GTG GTG GTG TTC GTG AGC CTC AGG TGC GTG GTG GTG GTG TTC GTG AGC TGC AGC TGT GCT CCG GGG TTC GTG AGC TGC AGG TGT GCT CTG GTG GTG TTC GTG AGC TGC AGG TGT GTG GTG GTG TTC GTG AGC TGT GTG GTG GTG GTG GTG TTC GTG AGC TTC TTC TTC TTC TTC TTC TTC TTC TTC T										
FIG. 8B GTG GAC ACG GTG GCC GAG CAT CTC ACC CGG Val Asp Thr Val Ala Ala Glu His Leu Thr Arg GAG GCC ACC GGG AAG GTG AAT GTC AAG ACG CTG Glu Ala Thr Gly Lys Val Asn Val Lys Thr Leu 155 AGC AAG GCT GGC TTC TAC CTG GCC TTC CAG GAC Ser Lys Ala Gly Phe Tyr Leu Ala Phe Gln Asp 170 AGC CTG CTA TCC CTG CAC CTC TTC TAC AAA AAG Ala Leu Leu Ser Leu His Leu Phe Tyr Lys 195 GTG AAC CTG ACT CGA TTC CCG GAG ACT GTG Val Asn Leu Thr Arg Phe Pro Glu Thr Val Pro CCC GTG GCC GCT AGC TGC GTG GTG GAT GCC Pro Val Ala Gly Ser Cys Val Val Asp Ala Val AGC CCC AGC CTC TAC CGG GAG GAT GGC GTG FTC ACG GGC TGC TGC GTG GTG GAG GAT CCC GTG GCC TGC GTG GTG GAG GTC AGC CTC TAC TGC GTG GTG GAG GTC AGC CTC TAC TGC GTG GTG GAG GTC AGC CTC AGC TGC GTG GTG GAG GTC AGC CTC TAC TGC GTG GTG GAG GTC AGC CTC AGC TGC GTG GTG GAG GTC AGC CTC AGC TGC GTG GTG GTG GTG AGC TGC AGC TGT GCC CTG GGG TTC AGG GTC TGC AGC TGT GCC CTG GGG TTC AGG TGC CTG AGC TGT GCC CAG GGC ACC Thr Lys Cys Arg Ala Glu Asp Ala Glu 255 ACC AAG TGC CGA GCC TGT GCC CAG GGC ACC TTC Thr Lys Cys Arg Ala Glu Gly Thr Phe 275 ACC AAG TGC CGA GCC TGT GCC CAG GGC ACC TTC Thr Lys Cys Arg Ala Glu Gly Thr Phe 275		CGC Arg 150		GGT	GCC					
FIG. 8B GTG GAC ACG GTG GCC GCG GAG CAT CTC ACC Val Asp Thr Val Ala Ala Glu His Leu Thr 140 GAG GCC ACC GGG AAG GTG AAT GTC AAG ACG Glu Ala Thr Gly Lys Val Asn Val Lys Thr 155 AGC AAG GCT GGC TTC TAC CTG GCC TTC CAG Ser Lys Ala Gly Phe Tyr Leu Ala Phe Gln 170 GCC CTG CTA TCC CTG CAC CTG GCC TTC CAG Ala Leu Leu Ser Leu His Leu Phe Tyr Lys 195 GTG AAC CTG ACT GGA TTC CG GAG ACT GTG Val Asn Leu Thr Arg Phe Pro Glu Thr Val CCC GTG GCC GGT AGC TGC GTG GAG GAC FOO Val Ala Gly Ser Cys Val Val Asp Ala AGC CCC AGC CTC TAC TGC GTG GAG GGC FOO Val Ala Gly Ser Cys Arg Glu Asp Gly AGC CCC AGC TGC GGC TGC GGG TTC Val Thr Gly Cys Ser Cys Ala Pro Gly Phe 255 ACC AAG TGC GGA GCC TGT GGG TTC Val Thr Gly Cys Ser Cys Ala Pro Gly Phe 255 ACC AAG TGC GGA GCC TGT GGC AGC Thr Lys Cys Arg Ala Gly Thr 275		AAG Lys	CGT Arg 165		TGC Cys	CGG	CCC Pro	TGG Trp 245	GCA	AAG Lys
GTG GAC ACG GTG GCC GCG GAG CAT CTC Val Asp Thr Val Ala Ala Glu His Leu Glu Ala Thr Gly Lys Val Asn Val Lys CTC GC GC GC GC TTC Ser Lys Ala Gly Lys Val Asn Val Lys CTC ACG GC TTC TTC TAC Ser Lys Ala Gly Phe Tyr Leu Ala Phe Tyr GC GC TTC TAC TAC TAC TTC TAC ALB GCC GC GC TTC TTC TAC GCC GCG GCG GCG GCG GCG GCG GCG GCG G		CGG Arg	CTG	GAC Asp 180	AAG Lys	CCT	GTC Val	CAG Gln	GAG G1u 260	TTC Phe
GTG GAC ACG GTG GCC GCG CAG CAT Val Asp Thr Val Ala Ala Glu His 146 GLU Ala Thr Gly Lys Val Asn Val 155 GC CTG CTA GCC TTC TAC CTG GCC Ser Lys Ala Gly Phe Tyr Leu Ala 170 GCC CTG CTA TCC CTG CAC CTC TTC TAC GCC GAG Val Ala Gly Phe Tyr Leu Phe GTG AAC GTG ACT CGA TTC CGG GAG GAG GTG AAC GTG ATC CTG GAG Ser Leu Thr Arg Phe Pro Glu CCC GTG GCC GGT GGC GTG GTG GTG GTG GTG	~	ACC Thr			AAA Lys 195	GTG Val	GCC	66c 61y	TTC	ACC Thr 275
GTG GAC ACG GTG GCC GCG GAG Val Asp Thr Val Ala Ala Glu Ala Thr Gly Lys Val Asn 160 AGC GCG AAG GTG AAT 155 ABA GTG AAG GCC GCG AAG GTG AAT 150 ABA GLO AGC GTG GAC GTG GCC GTG GCC GTG GCC GTG GCC GTG GCC GTG GCC GTG AAG GTG GTG AAT 150 ABA GLU Leu Ser Leu His Leu GTG ACT GGA TTC CCG GTG AAC GTG GTG GTG AGC GTG GTG GTG AGC GTG GTG GTG GTG AGC GTG GTG GTG GTG GTG AGC GTG GTG GTG GTG GTG GTG GTG GTG GTG G										
GTG GAC ACG GTG GCC GCG Val Asp Thr Val Ala Ala GAG GCC ACC GGG AAG GTG Glu Ala Thr Gly Lys Val 170 GCC AAG GCT GGC TTC TAC Ser Lys Ala Gly Phe Tyr 170 GTG AAC CTG ACT CAA GCC GGT GCC TG AAC CTG ACT CGA TTC Val Asn Leu Ser Leu His CCC GTG GCC GGT ACC TGC Pro Val Ala Gly Ser Cys 220 AGC CCC AGC CTC TAC Ser Pro Ser Leu Tyr Cys 215 GTC ACG GGC TGC AGC TGT Val Thr Gly Cys Ser Cys 255 ACC AAG TGC CGA GCC TGT Val Thr Gly Cys ATG TGT Thr Lys Cys ATG AIA Cys	Ġ.								CCG	
GTG GAC ACG GTG GCC Val Asp Thr Val Ala 140 GAG GCC ACC GGG AAG Glu Ala Thr Gly Lys Ala Gly Phe 170 GCC CTG CTA TCC CTG Ala Leu Ser Leu GCC CTG ACC GGT ACC CTG ACC GTG ACC GTG ACC GTG ACC GTG ACC GCT ACC ACC GTG ACC ACC ACC CTC ACC ACC CTC ACC ACC ACC	Ī									
GTG GAC ACG GTG Val Asp Thr Val GAG GCC ACC GGG Glu Ala Thr Gly 170 GCC AAG GCT GGC Ser Lys Ala Gly 170 GTG AAC CTG ACT GTG AAC CTG ACT Val Asn Leu Euu Ser GTG AAC CTG GGT AGC CTG GCT AGC CTG GCT AGC CTG GCT Val Asn Leu Thr 205 GTC ACG GGC GTC Ser Lou 220 AGC CCC AGC CTC Ser Lou 235 GTC ACG GGC TGC Val Thr Gly Cys 250							TGC Cys			
GTG GAC ACG Val Asp Thr 140 GAG GCC ACC Glu Ala Thr 155 AGC AAG GCT Ser Lys Ala 170 GTG AAC CTG Val Asn Leu CCC GTG GCC Pro Val Asn Leu 220 AGC CCC AGC Ser Pro Ser 235 GTC ACG GGC Val Thr Gly 250 ACC AAG TGC Thr Lys Cys							AGC		AGC	
GTG GAC Val Asp GAG GCC Glu Ala 155 AGC AAG Ser Lys 170 GTG AAC Val Asn GTC GTG Pro Val AGC CCC Ser Pro Val Thr 250 ACC AAG										CGA Arg
GTG Val Val Ser 170 GCC Ala GCC Ala GCC Ala GCC Val 250 Thr		ACG Thr 140								TGC Cys
AAG Lys Lys Lys CCC Ala ATG Met Thr Thr Thr CCC Pro CCG Pro Asn ASn						GTG Val			GTC Val 250	
		AAG Lys	GCC	CTC	ATG Met 185	ACT	GTG Val	CCC Pro	CCG Pro	AAC Asn 265

FIG. 8C

977	1025	1073	1121	1169	1217	1265	1313	1361
ACC	CGC	cgg Arg	AGT Ser	CGC Arg 360	GAC	GTG Val	GCA	CCT
AAC Asn 295	GCA Ala	CCG	TGG Trp	CTC	GGA G1y 375	GTG Val	ACT	GAG
TCT	CGG Arg 310	GCT Ala	GAA Glu	GCC	666 61y	TGG Trp 390	GTC	TTT Phe
CAC His	TTC Phe	TCG Ser 325	CTG	TAC	TGC Cys	CCC	GAG Glu 405	CCA
AGC	TAC	CCT	CAC His 340	ACC	CCC	GAG Glu	TTT	GTC Val 420
AAT Asn	666 G1y	CCT	CTG	CTC Leu 355	GCG	GTG Val	Acc	CCC
GCC Ala 290	GTC Val	ACC	TCC	GAC Asp	TGT Cys 370	CTG	TAT	666 61y
CCA Pro	CGC Arg 305	ACC	TCC	GAG Glu	TCC	GAC Asp 385	Acc	Acg
TGC Cys	TGC Cys	TGC Cys 320	66C G1y	CGA Arg	66c 61y	CGG Arg	TTC Phe 400	GCC
CCA	CAG Gln	CCC Pro	AAC Asn 335	66C 61y	GGA G1γ	CCC	GAC	TTA Leu 415
CAG Gln	TGC Cys	GCA	CTG	GGT G1y 350	CCC	66c 61y	CCT	TCC
TGC Cys 285	GTC Val	GGT Gly	CGC Arg	TCT Ser	CGA Arg 365	CCC	CGT Arg	TCC
TCC	GCC Ala 300	CGG Arg	TCC	GAG Glu	TGC Cys	GAC Asp 380	CTA	GTA
666 G1y	TCA	CCC Pro 315	GTT Val	CTG	GAG Glu	TTT Phe	GGG G1y 395	666 61y
GAA Glu	GGA G1y	GAC Asp	GTG Val 330	CCC	CGG Arg	ACT	CGA	AAC Asn 410
GGA Gly	ATT Ile	ACA Thr	AGC	GCC Ala 345	TGC	CTG	GTT Val	TTG

_)
α)
C	j
Ц	_

	1409	1457	1505	1553	1601	1649	1697	1745	1793
	ATC Ile		CAT His	TCA Ser	CTG Leu	CAG Gln 520	GAG Glu	GTC Val	AAT Asn
	GAC	GCT Ala 455		ACG Thr	TAC	66C 61y	CGG Arg 535	CTG Leu	AGC
	TCT Ser	TGG Trp	AAA Lys 470	AAG Lys	AGC Ser	TTC Phe	TGG Trp	GTC Val 550	CAG Gln
	GTG Val	GCC Ala	GTC Val	CTG Leu 485	GCC	CCC	66c 61y	GTG (Val	AAG (Lys (565
	GCA Ala	CTG	GAG Glu	TTC Phe	GGA G1y 500	GGG G1y	GAG Glu	GGT Gly	AGG A
•	CCT Pro 435	AGC	TAC Tyf	CGG Arg	CGG	TAC TYr 515	AGC	GTG (Val	CTC / Leu /
2	CCT Pro	TTG Leu 450	GAC Asp	GTG Val	AAG Lys	GGC	GAG Glu 530	GTC (Val	TGC (Cys)
j	GTA Val	AGC	CTG Leu 465	AGC	CTG	GCC	GAT	GCA Ala 545	CTC 7
<u>.</u>	GAG Glu	AGC	GTG Val	AGC Ser 480	666 61y	GAG	CTG	ACG Thr	GTT (Val 1 560
	CGA Arg	CCC	GCT Ala	CCC	CGG Arg 495	TCT	CAA Gln	GGC 1 G1y 1	GCA CA
	GAC Asp 430	TCA	666 61y	GGT Gly	CTG	CGC Arg 510	ACC	GCG (Ala	GTC (Val A
	Act	TCC Ser 445	AGT Ser	GAG Glu	GAG Glu	GCG	CAG Gln 525	ATT (Ile /	GTG (val v
	Acc Thr	cgg Arg	CCC Pro 460	GCC	GCA Ala	CGG	Ser	CTG / Leu] 540	ATT (
	GTC Val	Acg Thr	GCA Ala	GGC G1y 475	CGG Arg	GTA	CAC	GCC (GTC 7 Val 1 555
	AAT Asn	GTG Val	CGG Arg	AAG Lys	AAC Asn 490	CAG	CAT	CTG Leu	GTG (Val V
	GTC Val 425	CGG Arg	CCC	GAG Glu	GAA Glu	GTG Val 505	GAA	CAG Gln	CTG (

	1841	1889	1937	1985	2033	2081	2129	2177	2225
	GGA G1y	AAT Asn 600	AAG Lys	GGG Gly	ACC	GAG Glu	GAG Glu 680	ATG Met	TTC
	ATC Ile	CCT	GTC Val 615	cgg Arg	AAG Lys	AGC	CTG	TTC Phe 695	CAG Gln
	CTC	GAC Asp	TAC Tyr	TGC Cys 630	ATC Ile	CTG	CGC	GAG	GGA G1y 710
	TAT Tyr	GAA Glu	TCC Ser	GTG Val	GCA Ala 645	TTT Phe	ATC	ACA Thr	GAC
	CAG Gln 580	TAT Tyr	GTC Val	GAG Glu	GTG Val	GAG G1u 660	ATC Ile	crc	AAC
	GGA Gly	ACT Thr 595	GAT Asp	GGC	TGT Cys	CGT Arg	AAT Asn 675	ATT Ile	CTA
3. 8E	CAC His	TTC	ATC Ile 610	TTT Phe	AGC	CGG Arg	CCC	ATG Met 690	CGG CTA AAC Arg Leu Asn
	AAA Lys	CCC	GAG Glu	GAG G1u 625	GAG Glu	CAG Gln	CAC His	GTC	CTG Leu 705
FIG.	TCG GAC AAA Ser Asp Lys 575	GAC	AAA Lys	GGT Gly	AAG Lys 640	ccc Arg	GAG	CCC	TTC
		ATC Ile	GCA Ala	GCA Ala	AAG Lys	GAG Glu 655	TTC	ATG	TCC
	TAT Tyr	TAC Tyr 590	TTT Phe	сст с1у	666 61у	ACG	CAG Gln 670	AGC Ser	GAC
	GAA Glu	GTC Val	GAA Glu 605	ATT Ile	CCA Pro	TAC Tyr	660 61y	AAC Asn 685	CTG
	GCA Ala	AAG Lys	AGG Arg	GTG Val 620	GCC	66c 61y	ATG Met	Acc Thr	GCC Ala 700
	GAA Glu	ACT	GTG Val	GAG Glu	AAG Lys 635	GGT	ATC Ile	GTC Val	66c 61y
	AGA Arg 570	GGT Gly	GCT Ala	GAA Glu	CTC Leu	AAG Lys 650	TCC	GTG	AAC Asn
	GGG Gly	CAT His 585	GAG Glu	ATT	CGG Arg	CTG Leu	GCC Ala 665	GGC	GAG

	2273	2321	2369	2417	2465	2513	2561	2609	2657
	GCC TCG GGC ATG Ala Ser Gly Met 725	CTG GCT GCT CGC Leu Ala Ala Arg	TCT GAC TTT GGC Ser Asp Phe Gly 760	ACC TAC ACG AGC Thr Tyr Thr Ser 775	CCG GAG GCC ATT Pro Glu Ala Ile 790	AGT TAC GGG ATT Ser Tyr Gly Ile 805	TAC TGG GAC ATG Tyr Trp Asp Met	TAC CGG CTG CCC ; Tyr Arg Leu Pro 840	ATG CTG GAC TGT Met Leu Asp Cys 855
8F	CGG GGC ATC Arg Gly Ile	CAC CGA GAC His Arg Asp 740	AAA GTG Lys Val 755	GAT CCC Asp Pro	ACT GCC Thr Ala	GCC TGG Ala Trp	AGG CCG Arg Pro 820	CAG GAC Gln Asp 835	CAG CTC Gln Leu
FIG. 8	ATG CTG CG Met Leu Ar 720	TAC GTC CA Tyr Val Hi	CTC GTC TGC Leu Val Cys	AAC TCT TCC Asn Ser Ser 770	ATC CGA TGG Ile Arg Trp 785	GCC AGT GAT Ala Ser Asp 800	TTT GGG GAG Phe Gly Glu	GCC ATT GAA Ala Ile Glu	TCC CTC CAC Ser Leu His 850
	CTC GTG GGC Leu Val Gly	GAG ATG AGC Glu Met Ser 735	AAC AGC AAC Asn Ser Asn 750	CTG GAG GAG Leu Glu Glu 765	AAG ATT CCC Lys Ile Pro	TTC ACT TCC Phe Thr Ser	GTG ATG TCA Val Met Ser 815	GTG ATC AAT Val Ile Asn 830	TGT CCC ACC Cys Pro Thr 845
	ACA GTC ATC CAG Thr Val Ile Gln 715	CGG TAC CTT GCC Arg Tyr Leu Ala 730	AAC ATC CTA GTC Asn ile Leu Val 745	CTT TCC CGA TTC Leu Ser Arg Phe	TCC CTG GGA GGA Ser Leu Gly Gly 780	GCC TTC CGG AAG Ala Phé Arg Lys 795	GTG ATG TGG GAG Val Met Trp Glu 810	AGC AAT CAG GAC Ser Asn Gln Asp 825	CCG CCC CCA GAC Pro Pro Pro Asp

FIG. 8	IG. 8G
TGG CAG AAA GAC CGG AAT GCC CGG CCC CG Trp Gln Lys Asp Arg Asn Ala Arg Pro Ar 860	G CCC CGC TTC CCC CAG GTG GTC AGC 2705 G Pro Arg Phe Pro Gln Val Val Ser 865
GCC CTG GAC AAG ATG ATC CGG AAC CCC GC Ala Leu Asp Lys Met Ile Arg Asn Pro Al 875	
CGG GAG AAT GGC GGG GCC TCA CAC CCT CT Arg Glu Asn Gly Gly Ala Ser His Pro Le 890	
CAC TAC TCA GCT TTT GGC TCT GTG GGC GA His Tyr Ser Ala Phe Gly Ser Val Gly Gl 905	
ATG GGA AGA TAC GAA GAA AGT TTC GCA GC Met Gly Arg Tyr Glu Glu Ser Phe Ala Al 925	
GAG CTG GTC AGC CAG ATC TCT GCT GAG GA Glu Leu Val Ser Gln Ile Ser Ala Glu As 940	
ACT CTG GCG GGA CAC CAG AAG AAA ATC TT Thr Leu Ala Gly His Gln Lys Lys Ile Le 955	
AAG TCC CAG GCC AAG CCG GGA ACC CCG GG Lys Ser Gln Ala Lys Pro Gly Thr Pro Gl 970	
CCG CAG TAC TGA CCT GCA GGA ACT CCC CA Pro Gln Tyr * Pro Ala Gly Thr Pro Hi 985	

FIG. 8H

TTT TCC GGG GCA GAG TGG GGA CTC ACA GAG GCC CCC AGC CCT G Phe Ser Gly Ala Glu Trp Gly Leu Thr Glu Ala Pro Ser Pro V Phe Ser Gly Ala Glu Trp Gly Leu Thr Glu Ala Pro Ser Pro V CGC TGG ATT GCA CTT TGA GCC CGT GGG GTG AGG AGT TGG CAA T Arg Trp Ile Ala Leu * Ala Arg Gly Val Arg Ser Trp Gln P Arg Trp Ile Ala Leu * Ala Arg Gly Val Arg Ser Trp Gln P Glu Thr Gly Phe Gly Gly Ser Ala Ile Ile Gly Gly Glu Asn H CCA GCC ACC TCG GGG AAC TCC AGA CCA AGG GTG AGG GCG CCT T Pro Ala Thr Ser Gly Asn Ser Arg Pro Arg Val Arg Ala Pro I 1015 CAG GAC TGG GTG TCA CCA AGG GAA GTG CCC AAC ATC T GGIn Asp Trp Val * Pro Glu Glu Lys Glu Val Pro Asn Ile S CCT CCC CAG GTG CCC CC TCA CCT TGA TGG GTG CGT TCC CGC T CT CCC CAG GTG CCC CC TCA CCT TGA TGG GTG GGG GCT T AAG AGA GTG TCA CTC TGC CAG CTG ATG GTG GGG GGG GCT T Bro Pro Glu Val Pro Pro Ser Pro * Trp Val Arg Ser Arg T Bro Pro Glu Val Pro Pro Ser Pro * Trp Val Arg Ser Arg T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG GTG GGG GGT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT T AAG AGA GGG TGT CAG TGC CAG CTC CAG AGT CAG AGT TGC CAG TTC CAG AGT TGC CAG TGT CAG AGT TGC CAG TGT CAG AGT TGC TGT CAG AGT TGC CAG TGT CAG AGT TGC TGT CAG CTC CAG CTC CAG TTC CAG TGT C	3137	3185	3233	3281	3329	3377	3425	3473	3521
	TCC GGG GCA GAG TGG GGA CTC ACA GAG GCC CCC AGC Ser Gly Ala Glu Trp Gly Leu Thr Glu Ala Pro Ser 1005	TGG ATT GCA CTT TGA GCC Trp Ile Ala Leu * Ala 1020	ACA GGA TTT GGG GGT TCT GCC ATA ATA GGA GGG GAA AAT Thr Gly Phe Gly Gly Ser Ala Ile Ile Gly Gly Glu Asn 1035	GCC ACC TCG GGG AAC TCC AGA CCA AGG GTG AGG GCG CCT Ala Thr Ser Gly Asn Ser Arg Pro Arg Val Arg Ala Pro 1060	CCA GAG GAA AAG GAA GTG CCC AAC ATC Pro Glu Glu Lys Glu Val Pro Asn Ile 1075	CCT CCC CAG GTG CCC CCC TCA CCT TGA TGG GTG CGT Pro Pro Pro Ser Pro * Trp Val Arg 1085	AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT Arg Val * Leu Pro Cys Gln Leu Gln Ser Gly Gly Ala 1100	GGC AAG AAG GGG TGT CAG GGC CCA GTG ACA AAA TCA TTG Gly Lys Lys Gly Cys Gln Gly Pro Val Thr Lys Ser Leu 1115	TTT GTA GTC CCA ACT TGC TGC TGT CAC CAC CAA ACT CAA TCA TTT TTT Phe Val Val Pro Thr Cys Cys Cys His His Gln Thr Gln Ser Phe Phe

	3569	3617	3665	3713	3761	3809	3857	3905	3950	3969
						.,	n	E E	ñ	39
	GTT Val 1160		GAG Glu	GCC	CCC	666 61y	1240 66A 31y	TTT		
	AAG Lys	TTT	TTG	666 61y	CAT	TGT (Cys (AC G	AAC T	GTA Val	
ļ	TTG	CCT	GTG TTG Val Leu	GAA ACA GGG Glu Thr Gly		3GG	IGA A	AGT AAC Ser Asn		
į	Ile	TTC	TTT Phe	GAA ACA Glu Thr 1205	GTC ATC CCA Val Ile Pro 1220	AAG (Lys (CCC AGA AAC GGA Pro Arg Asn Gly	AAA AGT AAC Lys Ser Asn	CCA GGG Pro Gly	0
Ì	Ala Ala Phe Ile Leu Lys	TTC TCC CCG TTC Phe Ser Pro Phe 1170	CCT TGT CAT AAC TTT Pro Cys His Asn Phe 1185	GTT Val	GTC ATC Val Ile 1220	CCT ATG AAG C Pro Met Lys C 1235	GTG GTG GAA CCC AGA AAC GGA Val Val Glu Pro Arg Asn Gly	CAA A	CT C	4
—	1155	C TCC	CAT His	GCC CAA Ala Gln	TTG	CCT / Pro }	GTG GTG GAA Val Val Glu 1250	ATT TAA	CCA GCT Pro Ala	
∞ 5	a Al	r TTC P Phe	r TG1 Cys		CAG AAC AGT GCC Gln Asn Ser Ala 1215	TGT Cys	GTG (Val 1250	TAT		
E. E	Pro Ala	A TTT Phe	F CCT 7 3 Pro (TCC TTT Ser Phe 1200	AGT	CTG Leu	TTG	AAT TAT Asn Tyr 1265	CGT (
•	O Pr	T TAA	c cGT		CAG AAC Gln Asn 1215	AAG Lys	TAG *	TTA	GGA CGT GTC Gly Arg Val 1280	
CCT CCC	Pro Pro 1150	G TCT P Ser	C TAC	ATG GCC Met Ala	Gln 1	ACC CCC AAG Thr Pro Lys 1230	GGG CGG Gly Arg	TTC Phe	ATG	
ວ	Ala Pr 11	TTT TGG Phe Trp 1165	TTT TTC TAC Phe Phe Tyr	r ATG	TTC	ACC Thr 1230	666 61y	TTG GAG GGG Leu Glu Gly 1260	AAA	
AAT GCC	ri A		TTG TTT Leu Phe 1180	ACT	Cys	666 61y	AAA Lys 1245	TTG GAG GGG Leu Glu Gly 1260	AAG Lys	AAAA
GTA AA	val As	TIT TGT Phe Cys		TGT TTC ACT A Cys Phe Thr M	CAT CAT GTC His His Val 1210	CCT	TGA *	TTG (Leu (1260	ξ*	AAAA
FT G	n c	Glu Ph	TTC GTT Phe Val	r c 1.9 급	CAT CAT His His 1210	Pro	TAG *	TGC Cys	AAA Lys 1275	AA A
TCC CTT	1145		TTC TTC Phe Phe			CGG ACC CCG Arg Thr Pro 1225	GTG AGG TAG TGA AAA GGG Val Arg * * Lys Gly 1245	CGG Arg	TAT Tyr	аалалала алалалал
Ē	5 -	T E	1 E	GGA	CAT His	CGG / Arg 7 1225	GTG Val	CGC	TTG	AAA

Ser Ala Leu Gly Gly Lys Ile Pro Met Arg Trp Thr Ala Pro Glu 35 Gly Leu Ser Arg Phe Leu Glu Asp Asp Thr Ser Asp Pro Thr 25 Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser 1

Ala Ile Gln Tyr Arg Lys Phe Ala Ser Ala Ser 50

FIG. 10

Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe Gly 1 5 15

Leu Ala Arg Leu Leu Glu Gly Asp Glu Lys Glu Tyr Asn Ala Asp Gly 25

Gly Lys Met Pro Ile Lys Trp Met Ala Leu Glu Cys Ile His Tyr Arg 35

Lys Phe Thr His Gln Ser 50

Asn Cys Met Leu Ala Gly Asp Met Thr Val Cys Val Ala Asp Phe Gly 1

Ser Trp Lys Ile Tyr Ser Gly Ala Thr Ile Val Arg Gly Cys Ala 25

Ser Lys Leu Pro Val Lys Trp Leu Ala Leu Gly Ser Leu Ala Asp Asn 35

Leu Tyr Thr Val His Ser 50

FIG. 12

Asn Cys Leu Val Gly Lys Asn Tyr Thr Ile Lys Ile Ala Asp Phe Gly 1

Met Ser Arg Asn Leu Tyr Ser Gly Asp Tyr Tyr 25

Thr Arg Asn Ile Leu Val Glu Asn Glu Asn Arg Val Lys Ile Gly Asp 1 Gly Leu Thr Lys Val Leu Pro Gln Asp Lys Glu Tyr Tyr Lys Val 20 30 Lys Glu Pro Gly Glu Ser Pro Ile Phe Trp Tyr Ala Pro Glu Ser Leu 35 45 Thr Glu Ser Leu Phe Ser Val Ala Ser Asp 50

FIG. 14

Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp 1 10 15 Thr Phe Gly Met Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr 25 Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp 50

12

FIG. 15A

1	TCGGGTCGGA	CCCACGCGCA	GCGGCCGGAG	ATGCAGCGGG	GCGCCGCGCT	GTGCCTGCGA
1	AGCCCAGCCT	GGGTGCGCGT	CGCCGGCCTC		A A L	
-						
61	CTGTGGCTCT	GCCTGGGACT	CCTGGACGGC	CTGGTGAGTG	GCTACTCCAT	GACCCCCCG
11		CGGACCCTGA		GACCACTCAC L V S G		T P P
11	LWLC	псп	L D G	L V 3 G	1 3 H	
121	ACCTTGAACA	TCACGGAGGA	GTCACACGTC	ATCGACACCG	GTGACAGCCT	GTCCATCTCC
2.1		AGTGCCTCCT T E E		TAGCTGTGGC I D T G		CAGGTAGAGG S I S
31	TLNI	TEE	5 H V	1 D 1 G	D 3 L	3 1 3
181	TGCAGGGGAC	AGCACCCCCT	CGAGTGGGCT	TGGCCAGGAG	CTCAGGAGGC	GCCAGCCACC
	ACGTCCCCTG	TCGTGGGGGA	GCTCACCCGA	ACCGGTCCTC	GAGTCCTCCG	CGGTCGGTGG
51	CRGQ	H P L	E W A	WPGA	QEA	PAT
241	GGAGACAAGG	ACAGCGAGGA	CACGGGGGTG	GTGCGAGACT	GCGAGGGCAC	AGACGCCAGG
		TGTCGCTCCT	GTGCCCCCAC	CACGCTCTGA	CGCTCCCGTG	
71	G D K D	S E D	T G V	V R D C	E G T	DAR
301	CCCTACTGCA	AGGTGTTGCT	GCTGCACGAG	GTACATGCCA	ACGACACAGG	CAGCTACGTC
	GGGATGACGT	TCCACAACGA	CGACGTGCTC	CATGTACGGT	TGCTGTGTCC	GTCGATGCAG
91	PYCK	V L L	L H E	VHAN	DТG	s y v
361	TGCTACTACA	AGTACATCAA	GGCACGCATC	GAGGGCACCA	CGGCCGCCAG	CTCCTACGTG
	ACGATGATGT	TCATGTAGTT	CCGTGCGTAG	CTCCCGTGGT	GCCGGCGGTC	GAGGATGCAC
111	C A. A K	Y I K	ARI	EGTT	AAS	s y v
421	TTCGTGAGAG	ACTTTGAGCA	GCCATTCATC	AACAAGCCTG	ACACGCTCTT	GGTCAACAGG
	AAGCACTCTC	TGAAACTCGT	CGGTAAGTAG	TTGTTCGGAC	TGTGCGAGAA	CCAGTTGTCC
131	F V R D	F E Q	PFI	N K P D	TLL	V N R
401	********	TGTGGGTGCC	Стетстесте	TCCATCCCCG	GCCTCAATGT	CACGCTGCGC
401	TTCCTGCGGT	ACACCCACGG	GACAGACCAC	AGGTAGGGGC	CGGAGTTACA	GTGCGACGCG
151	K D A M		C L V	S I P G	LNV	TLR
- 4.1	maga: 110cm	CGGTGCTGTG	CCCACACCC	CACCACCTCC	TOTOGOATGA	cceccecec
541	ACCOUNTICGA	GCCACGACAC	CGGTCTGCCC	GTCCTCCACC	ACACCCTACT	GGCCGCCCCG
171	S Q S S	V L W	P D G	QEVV	W D D	R R G
					maa. amaaa.	03.003.00000
601	ATGCTCGTGT	CCACGCCACT GGTGCGGTGA	CGACGTGCTA	CGGGACATGG	ACGTCACGCT	CTGGTGGACC
191	M L V S	T P L	L H D	A L Y L	Q C E	TTW
661	GGAGACCAGG	ACTTCCTTTC	CAACCCCTTC	CTGGTGCACA	TCACAGGCAA	CGAGCTCTAT
211	CCTCTGGTCC	TGAAGGAAAG F L S	N P F	I. V H T	T G N	E L Y
211	ם עע ע		•• •		,	

FIG. 15B

721	GACATCCAGC	TGTTGCCCAG	GAAGTCGCTG CTTCAGCGAC	GAGCTGCTGG	TAGGGGAGAA	GCTGGTCCTG CGACCAGGAC
231	D I Q L	L P R	K S L	E L L V	G E K	L V L
	TTGACGTGGC	ACACCCGACT	GTTTAACTCA CAAATTGAGT	CCACAGTGGA	AACTGACCCT	GATGGGTCCC
	N C T V	WAE	F N S	GVTF	D W D	Y P G
	TTCGTCCGTC	TCGCCCCATT	GTGGGTGCCC CACCCACGGG	CTCGCTGCGA	GGGTCGTCTG	GGTGTGTCTT
271	K Q A E	R G K	WVP	ERRS	QQT	H T E
	GAGAGGTCGT	AGGACTGGTA	CCACAACGTC GGTGTTGCAG	TCGGTCGTGC	TGGACCCGAG	GTATGTGTGC CATACACACG
	L S S I	LTI	H N V	S Q H D	L G S	Y V C
	TTCCGGTTGT	TGCCGTAGGT	GCGATTTCGG CGCTAAAGCC	GAGAGCACCG CTCTCGTGGC	AGGTCATTGT TCCAGTAACA	GCATGAAAAT CGTACTTTTA
311	K A N N	G I Q	R F R	E S T E	V I V	H E N
1021	CCCTTCATCA	GCGTCGAGTG	GCTCAAAGGA CGAGTTTCCT	GGGTAGGACC	TCCGGTGCCG	AGGAGACGAG TCCTCTGCTC
331	P F I S		L K G	PILE	АТА	G D E
1081	CTGGTGAAGC	TGCCCGTGAA ACGGGCACTT	GCTGGCAGCG CGACCGTCGC	TACCCCCCGC	CCGAGTTCCA GGCTCAAGGT	GTGGTACAAG CACCATGTTC
351	L V K L			Y P P P	E F Q	W Y K
1141	GATGGAAAGG	GTGACAGGCC	GCGCCACAGT CGCGGTGTCA	GGTGTACGGG	ACCACGAGTT	GGAGGTGACA CCTCCACTGT
• • •	D G K A	LSG	R H S	PHAL	V L K	EVT
	CTCCGGTCGT	GTCCGTGGAT	CACCCTCGCC GTGGGAGCGG	GACACCTTGA	GGCGACGACC	CCTGAGGCGC GGACTCCGCG
391	E A S T	G T Y	T L A	L W N S	A A G	L R R
1261	AACATCAGCC	TGGAGCTGGT	GGTGAATGTG CCACTTACAC	CCCCCCAGA	TACATGAGAA ATGTACTCTT	GGAGGCCTCC CCTCCGGAGG
411	N I S I	ELV	V N V	P P Q I	H E K	E A S
	AGGGGGTCGT	AGATGAGCGC	TCACAGCCGC AGTGTCGGCG	GTCCGGGAGT	GGACGTGCCG	CTACGGGGTG GATGCCCCAC
	S P S I	YSR	H S R	QALT	CTA	Y G V
1381	CCCCTGCCTC	TCAGCATCCA	GTGGCACTGG CACCGTGACC	CGGCCCTGGA GCCGGGACCT	CACCCTGCAA GTGGGACGTT	GATGTTTGCC CTACAAACGG
	PLPI	, s I Q	W H W	RPWT	PCK	MFA
1441	CAGCGTAGTC	TCCGGCGGCG	GCAGCAGCAA CGTCGTCGTT	GACCTCATGC CTGGAGTACG	CACAGTGCCG GTGTCACGGC	TGACTGGAGG ACTGACCTCC
471	Q R S I	R R R	Q Q Q	D L M P	Q C R	D W R

FIG. 15C

	CGCCACTGGT	CGCAGGATGC GCGTCCTACG Q D A	GCACTTGGGG	TAGCTCTCGG	ACCTGTGGAC	CTGGCTCAAA
	•	AGAATAAGAC				
	CACCTCCCTT	TCTTATTCTG N K T	ACACTCGTTC	GACCACTAGG	TCTTACGGTT	GCACAGACGG
1621	ATGTACAAGT	GTGTGGTCTC	CAACAAGGTG	GGCCAGGATG	AGCGGCTCAT	CTACTTCTAT
531	TACATGTTCA M Y K C	CACACCAGAG V V S	GTTGTTCCAC N K V	CCGGTCCTAC G Q D E	TCGCCGAGTA R L I	GATGAAGATA Y F Y
1681	GTGACCACCA	TCCCCGACGG AGGGGCTGCC	CTTCACCATC	GAATCCAAGC	CATCCGAGGA	GCTACTAGAG
551	V T T I	P D G	F T I	E S K P	S E E	L L E
1741	GGCCAGCCGG	TGCTCCTGAG ACGAGGACTC	CTGCCAAGCC GACGGTTCGG	GACAGCTACA CTGTCGATGT	AGTACGAGCA TCATGCTCGT	TCTGCGCTGG AGACGCGACC
571	G Q P V	L L S	C Q A	D S Y K	Y E H	L R W
1801	TACCGCCTCA	ACCTGTCCAC TGGACAGGTG	GCTGCACGAT CGACGTGCTA	GCGCACGGGA CGCGTGCCCT	ACCCGCTTCT TGGGCGAAGA	GCTCGACTGC CGAGCTGACG
591	Y R L N	L S T	L H D	A H G N	P L L	L D C
1861	AAGAACGTGC	ATCTGTTCGC TAGACAAGCG	CACCCCTCTG	GCCGCCAGCC CGGCGGTCGG	TGGAGGAGGT ACCTCCTCCA	GGCACCTGGG CCGTGGACCC
611	K N V H		T P L	A A S L	E E V	A P G
1921	GCGCGCCACG	CCACGCTCAG	CCTGAGTATC	CCCCGCGTCG	CGCCCGAGCA GCGGGCTCGT	CGAGGGCCAC
631	A R H A		L S I	P R V A	P E H	E G H
1981	TATGTGTGCG	AAGTGCAAGA TTCACGTTCT	CCGGCGCAGC GGCCGCGTCG	CATGACAAGC GTACTGTTCG	ACTGCCACAA TGACGGTGTT	GAAGTACCTG CTTCATGGAC
651	Y V C E	V Q D	R R S	H D K H	с н к	K Y L
2041	TCGGTGCAGG	CCCTGGAAGC GGGACCTTCG	CCCTCGGCTC	ACGCAGAACT TGCGTCTTGA	TGACCGACCT ACTGGCTGGA	CCTGGTGAAC GGACCACTTG
671	S V Q A	L E A	P R L	T Q N L	T D L	L V N
2101	GTGAGCGACT	CGCTGGAGAT GCGACCTCTA	GCAGTGCTTG	GTGGCCGGAG	CGCACGCGCC	CAGCATCGTG GTCGTAGCAC
691	V S D S	L E M	Q C L	V A G A	H A P	S I V
2161	TGGTACAAAG	ACGAGAGGCT TGCTCTCCGA	GCTGGAGGAA	AAGTCTGGAG	TCGACTTGGC	GGACTCCAAC CCTGAGGTTG
711	W Y K D	E R L	L E E	K S G V	D L A	D S N
2221	CAGAAGCTGA	GCATCCAGCG CGTAGGTCGC	CGTGCGCGAG	GAGGATGCGG	GACGCTATCT	GTGCAGCGTG
731	Q K L S	I Q R	V R E	E D A G	R Y L	C S V

FIG. 15D

2281	TGCAACGCCA ACGTTGCGGT	AGGGCTGCGT TCCCGACGCA	CAACTCCTCC GTTGAGGAGG	GCCAGCGTGG CGGTCGCACC	CCGTGGAAGG GGCACCTTCC	CTCCGAGGAT GAGGCTCCTA
751	C N A K				V E G	
	TTCCCGTCGT	ACCTCTAGCA	CTAGGAACAG	CCATGGCCGC	TCATCGCTGT AGTAGCGACA	GAAGAAGACC
771	K G S M	E I V	I L V	G T G V	I A V	F F W
	CAGGAGGAGG	AGGAGTAGAA	GACATTGTAC	TCCTCCGGCC	CCCACGCAGA GGGTGCGTCT	GTAGTTCTGC
791	V L L L	L I F	C N M	RRPA	H A D	I К Т
2461	GGCTACCTGT CCGATGGACA	CCATCATCAT GGTAGTAGTA	GGACCCCGGG CCTGGGGCCC	GAGGTGCCTC CTCCACGGAG	TGGAGGAGCA ACCTCCTCGT	ATGCGAATAC TACGCTTATG
811	G Y L S				E E Q	
2521	CTGTCCTACG	ATGCCAGCCA	GTGGGAATTC	CCCCGAGAGC	GGCTGCACCT CCGACGTGGA	GGGGAGAGTG
831	L S Y D	A S Q	W E F	PRER	L H L	G R V
2581	CTCGGCTACG	GCGCCTTCGG	GAAGGTGGTG	GAAGCCTCCG	CTTTCGGCAT GAAAGCCGTA	CCACAAGGGC
851	L G Y G			E A S A		H K G
2641	AGCAGCTGTG	ACACCGTGGC	CGTGAAAATG	CTGAAAGAGG	GCGCCACGGC CGCGGTGCCG	CAGCGAGCAC
871	S S C D			L K E G		S E H
2701	CGCGCGCTGA	TGTCGGAGCT	CAAGATCCTC	ATTCACATCG	GCAACCACCT CGTTGGTGGA	CAACGTGGTC
891	R A L M		K I L	I H I G		N V V
2761	AACCTCCTCG	GGGCGTGCAC	CAAGCCGCAG	GGCCCCCTCA	TGGTGATCGT ACCACTAGCA	GGAGTTCTGC
911	N L L G		K P Q		V I V	E F C
2821	AAGTACGGCA	ACCTCTCCAA	CTTCCTGCGC	GCCAAGCGGG	ACGCCTTCAG TGCGGAAGTC	CCCCTGCGCG
931	K Y G N			A K R D		P C A
2881	GAGAAGTCTC	CCGAGCAGCG	CGGACGCTTC	CGCGCCATGG	TGGAGCTCGC ACCTCGAGCG	CAGGCTGGAT
951	E K S P				E L A	
2941	CGGAGGCGGC	CGGGGAGCAG	CGACAGGGTC	CTCTTCGCGC	GGTTCTCGAA	GACCGAGGGC
971	R R R P	G S S	D R V	L F A R	CCAAGAGCTT F S K	T E G
3001	GGAGCGAGGC	GGGCTTCTCC	AGACCAAGAA	GCTGAGGACC	TGTGGCTGAG ACACCGACTC	CCCGCTGACC
991	G A R R	A S P	D Q E	A E D L	W L S	P L T

FIG. 15E

3061	ATGGAAGATC	TTGTCTGCTA	CAGCTTCCAG	GTGGCCAGAG	GGATGGAGTT CCTACCTCAA	CCTGGCTTCC
1011	M E D L	V C Y	S F Q	V A R G	M E F	L A S
3121	CGAAAGTGCA	TCCACAGAGA AGGTGTCTCT	CCTGGCTGCT GGACCGACGA	CGGAACATTC GCCTTGTAAG	TGCTGTCGGA ACGACAGCCT	AAGCGACGTG TTCGCTGCAC
1031	R K C I	H R D	L A A	RNIL	L S E	S D V
3181					AAGACCCTGA TTCTGGGACT	
					D P D	
3241	AAGGGCAGTG TTCCCGTCAC	CCCGGCTGCC	CCTGAAGTGG GGACTTCACC	ATGGCCCCTG TACCGGGGAC	AAAGCATCTT TTTCGTAGAA	CGACAAGGTG GCTGTTCCAC
	K G S A	R L P	L K W	MAPE	S I F	D K V
3301	ATGTGGTGCG	TCTCACTGCA	CACCAGGAAA	CCCCACGAAG	TCTGGGAGAT AGACCCTCTA	CTTCTCTCTG GAAGAGAGAC
1091	Y T T Q	S D V	W S F	G V L L	WEI	F S L
	CCCCGGAGGG	GCATGGGACC	CCACGTCTAG	TTACTCCTCA	TCTGCCAGCG AGACGGTCGC	CGACTCTCTG
					CQR	
3421	GGCACAAGGA CCGTGTTCCT	TGAGGGCCCC ACTCCCGGGG	GGAGCTGGCC CCTCGACCGG	ACTCCCGCCA TGAGGGCGGT	TACGCCGCAT ATGCGGCGTA	CATGCTGAAC GTACGACTTG
1131	G T R M	R A P	ELA	T P A I	RRI	M L N
3481	TGCTGGTCCG ACGACCAGGC	CTCTGGGGTT	CCGCTCTGGA	CGTAAGAGCC	AGCTGGTGGA TCGACCACCT	CTAGGACCCC
	C W S G	D P K	A R P	A F S E	LVE	I L G
	CTGGACGAGG	TCCCGTCCCC	GGACGTTCTC	CTTCTCCTCC	TCTGCATGGC AGACGTACCG	GGGCGCGTCG
	D L L Q	G R G	L Q E	EEEV	C M A	PRS
3601	TCTCAGAGCT AGAGTCTCGA	CAGAAGAGGG GTCTTCTCCC	CAGCTTCTCG GTCGAAGAGC	CAGGTGTCCA GTCCACAGGT	CCATGGCCCT GGTACCGGGA	ACACATCGCC TGTGTAGCGG
	S Q S S	E E G	S F S	QVST	M A L	H I A
3661	CAGGCTGACG	CTGAGGACAG	CCCGCCAAGC GGGCGGTTCG	CTGCAGCGCC GACGTCGCGG	ACAGCCTGGC TGTCGGACCG	CGCCAGGTAT GCGGTCCATA
1211	QADA	E D S	P P S	L Q R H	S L A	A R Y
3721	TACAACTGGG	TGTCCTTTCC ACAGGAAAGG	CGGGTGCCTG GCCCACGGAC	GCCAGAGGGG CGGTCTCCCC	CTGAGACCCG GACTCTGGGC	TGGTTCCTCC ACCAAGGAGG
	Y N W V	SFP	G C L	ARGA	ETR	G S S
	TCCTACTTCT	GTAAACTCCT	TAAGGGGTAC	TGGGGTTGCT	CCTACAAAGG GGATGTTTCC	GAGACACCTG
1251	R M K T	FEE	F P M	тетт	Y K G	s v D

FIG. 15F

3841		ACAGTGGGAT TGTCACCCTA				
1271	N Q T D	S G M	V L A	S E E F	E Q I	E S R
3901		AAAGCGGCTT TTTCGCCGAA				
1291		S G F			1010110001	coming.
3961		CTCTGCACTT GAGACGTGAA				
4021		CTACAAACTT GATGTTTGAA				
4081		GACCACTGAA CTGGTGACTT				
4141		AATATCCAGC TTATAGGTCG				
4201		AGGGAGACGC TCCCTCTGCG				
4261		TGCTTGACCA ACGAACTGGT				
4321		GCCTTCTAGG CGGAAGATCC				
4381		TCCTTGGTAA AGGAACCATT				

FIG. 16A

1	ATGGCTGGGA	TTTTCTATTT	CGCCCTATTT	TCGTGTCTCT	TCGGGATTTG
	TACCGACCCT	AAAAGATAAA	GCGGGATAAA	AGCACAGAGA	AGCCCTAAAC
1	MetAlaGlyI	lePheTyrPh	eAlaLeuPhe	SerCysLeuP	heGlyIleCy
	CGACGCTGTC	ACAGGTTCCA	GGGTATACCC	CGCGAATGAA	GTTACCTTAT
	GCTGCGACAG	TGTCCAAGGT	CCCATATGGG	GCGCTTACTT	CAATGGAATA
	sAspAlaVal	ThrGlySerA	rgValTyrPr	oAlaAsnGlu	ValThrLeuLeu
101	TGGATTCCAG	ATCTGTTCAG	GGAGAACTTG	GGTGGATAGC	AAGCCCTCTG
	ACCTAAGGTC	TAGACAAGTC	CCTCTTGAAC	CCACCTATCG	TTCGGGAGAC
35			GlyGluLeuG		
			GAGTATCATG		
			CTCATAGTAC		
	GluGlyGlyT	rpGluGluVa	lSerIleMet	AspGluLysA	snThrProIle
201	СССАВССТВС	CAAGTGTGCA	ATGTGATGGA	ACCCAGCCAG	AATAACTGGC
201			TACACTACCT		
68			snValMetGl		
•			CGAGAAGGGG		
			GCTCTTCCCC		
			ArgGluGlyA		
301	ATTAAATTCA	CCTTGAGGGA	CTGCAATAGT	CTTCCGGGCG	TCATGGGGAC
	TAATTTAAGT	GGAACTCCCT	GACGTTATCA	GAAGGCCCGC	AGTACCCCTG
101	IleLysPheT	hrLeuArgAs	pCysAsnSer	LeuProGlyV	alMetGlyTh
	TTGCAAGGAG	ACGTTTAACC	TGTACTACTA	TGAATCAGAC	AACGACAAAG
	AACGTTCCTC	TGCAAATTGG	ACATGATGAT	ACTTAGTCTG	TTGCTGTTTC
	rCysLysGlu	ThrPheAsnL	euTyrTyrTy	rGluSerAsp	AsnAspLysGlu

FIG. 16B

401		CAGAGAGAAC			
		GTCTCTCTTG			
135	ArgPheIl	eArgGluAsn	GlnPheValL	ysIleAspTh	rIleAlaAla
		TCACCCAAGT			
		AGTGGGTTCA			
	AspGluSerP	heThrGlnVa	lAspIleGly	AspArgIleM	etLysLeuAsn
501	CACCGAGATC	CGGGATGTAG	GGCCATTAAG	CAAAAAGGGG	TTTTACCTGG
	GTGGCTCTAG	GCCCTACATC	CCGGTAATTC	GTTTTTCCCC	AAAATGGACC
168		ArgAspValG			
		TGTGGGGGCC			
		ACACCCCCGG			
	laPheGlnAs	pValGlyAla	CysIleAlaL	euValSerVa	lArgValPhe
601		GTCCACTCAC			
		CAGGTGAGTG			
201		ysProLeuTh			
		GCTGATACGT			
		CGACTATGCA			
	_	_			GlySerCysVal
701		AGAAGAGAAA			
		TCTTCTCTTT			
235		rGluGluLys			
	GGTGAATGGC	TGGTACCCAT	TGGCAACTGC	CTATGCAACG	CTGGGCATGA
		ACCATGGGTA			
					laGlyHisGlu
801	GGAGCGGAGC	GGAGAATGCC	AAGCTTGCAA	AATTGGATAT	TACAAGGCTC
	CCTCGCCTCG	CCTCTTACGG	TTCGAACGTT	TTAACCTATA	ATGTTCCGAG
268	GluArgSer	GlyGluCysG	lnAlaCysLy	sIleGlyTyr	TyrLysAlaL
	TCTCCACGGA	TGCCACCTGT	GCCAAGTGCC	CACCCCACAG	CTACTCTGTC
	AGAGGTGCCT	ACGGTGGACA	CGGTTCACGG	GTGGGGTGTC	GATGAGACAG
	euSerThrAs	pAlaThrCys	AlaLysCysP	roProHisSe	rTyrSerVal

FIG. 16C

901	TGGGAAGGAG	CCACCTCGTG	CACCTGTGAC	CGAGGCTTTT	TCAGAGCTGA
	ACCCTTCCTC	GGTGGAGCAC	GTGGACACTG	GCTCCGAAAA	AGTCTCGACT
301	TrpGluGlyA	laThrSerCy	sThrCysAsp	ArgGlyPheP	heArgAlaAs
	CAACGATGCT	GCCTCTATGC	CCTGCACCCG	TCCACCATCT	GCTCCCCTGA
	GTTGCTACGA	CGGAGATACG	GGACGTGGGC	AGGTGGTAGA	CGAGGGGACT
	pAsnAspAla	AlaSerMetP	roCysThrAr	gProProSer	AlaProLeuAsn
1001	ACTTGATTTC	AAATGTCAAC	GAGACATCTG	TGAACTTGGA	ATGGAGTAGC
	TGAACTAAAG	TTTACAGTTG	CTCTGTAGAC	ACTTGAACCT	TACCTCATCG
335				alAsnLeuGl	
	CCTCAGAATA	CAGGTGGCCG	CCAGGACATT	TCCTATAATG	TGGTATGCAA
	GGAGTCTTAT	GTCCACCGGC	GGTCCTGTAA	AGGATATTAC	ACCATACGTT
	ProGlnAsnT	hrGlyGlyAr	gGlnAspIle	SerTyrAsnV	alValCysLys
1101	GAAATGTGGA	GCTGGTGACC	CCAGCAAGTG	CCGACCCTGT	GGAAGTGGGG
	CTTTACACCT	CGACCACTGG	GGTCGTTCAC	GGCTGGGACA	CCTTCACCCC
368	LysCysGly	AlaGlyAspP	roSerLysCy	sArgProCys	GlySerGlyV
	TCCACTACAC	CCCACAGCAG	AATGGCTTGA	AGACCACCAA	AGGCTCCATC
	AGGTGATGTG	GGGTGTCGTC	TTACCGAACT	TCTGGTGGTT	TCCGAGGTAG
	alHisTyrTh	rProGlnGln	AsnGlyLeuL	ysThrThrLy	sGlySerIle
1201	ACTGACCTCC	TAGCTCATAC	CAATTACACC	TTTGAAATCT	GGGCTGTGAA
	TGACTGGAGG	ATCGAGTATG	GTTAATGTGG	AAACTTTAGA	CCCGACACTT
401	ThrAspLeuL	euAlaHisTh	rAsnTyrThr	PheGluIleT	rpAlaValAs
	TGGAGTGTCC	AAATATAACC	CTAACCCAGA	CCAATCAGTT	TCTGTCACTG
	ACCTCACAGG	TTTATATTGG	GATTGGGTCT	GGTTAGTCAA	AGACAGTGAC
	nGlyValSer	LysTyrAsnP	roAsnProAs	pGlnSerVal	SerValThrVal
1301	TGACCACCAA	CCAAGCAGCA	CCATCATCCA	TTGCTTTGGT	CCAGGCTAAA
	ACTGGTGGTT	GGTTCGTCGT	GGTAGTAGGT	AACGAAACCA	GGTCCGATTT
435	ThrThrAs	nGlnAlaAla	ProSerSerI	leAlaLeuVa	lGlnAlaLys
	GAAGTCACAA	GATACAGTGT	GGCACTGGCT	TGGCTGGAAC	CAGATCGGCC
	CTTCAGTGTT	CTATGTCACA	CCGTGACCGA	ACCGACCTTG	GTCTAGCCGG
	GluValThrA	rgTyrSerVa	lAlaLeuAla	TrpLeuGluP	roAspArgPro

FIG. 16D

1401	CAATGGGGTA	ATCCTGGAAT	ATGAAGTCAA	GTATTATGAG	AAGGATCAGA
	GTTACCCCAT	TAGGACCTTA	TACTTCAGTT	CATAATACTC	TTCCTAGTCT
468	AsnGlyVal	IleLeuGluT	yrGluValLy	sTyrTyrGlu	LysAspGlnA
	ATGAGCGAAG	CTATCGTATA	GTTCGGACAG	CTGCCAGGAA	CACAGATATC
	TACTCGCTTC	GATAGCATAT	CAAGCCTGTC	GACGGTCCTT	GTGTCTATAG
	snGluArgSe	rTyrArgIle	ValArgThrA	laAlaArgAs	nThrAspIle
1501	AAAGGCCTGA	ACCCTCTCAC	TTCCTATGTT	TTCCACGTGC	GAGCCAGGAC
	TTTCCGGACT	TGGGAGAGTG	AAGGATACAA	AAGGTGCACG	CTCGGTCCTG
501	LysGlyLeuA	snProLeuTh	rSerTyrVal	PheHisValA	rgAlaArgTh
	AGCAGCTGGC	TATGGAGACT	TCAGTGAGCC	CTTGGAGGTT	ACAACCAACA
				GAACCTCCAA	
	rAlaAlaGly	TyrGlyAspP	heSerGluPr	oLeuGluVal	ThrThrAsnTh
1601	CAGTGCCTTC	CCGGATCATT	GGAGATGGGG	CTAACTCCAC	AGTCCTTCTG
				GATTGAGGTG	
535				laAsnSerTh	
				GTAATTCTCA	
				CATTAAGAGT	
	ValSerValS	erGlySerVa	lValLeuVal	VallleLeuI	leAlaAlaPhe
1701	TGTCATCAGC	CGGAGACGGA	GTAAATACAG	TAAAGCCAAA	CAAGAAGCGG
	ACAGTAGTCG	GCCTCTGCCT	CATTTATGTC	ATTTCGGTTT	GTTCTTCGCC
568	VallleSer	ArgArgArgS	erLysTyrSe	rLysAlaLys	GlnGluAlaA
	ATGAAGAGAA	ACATTTGAAT	CAAGGTGTAA	GAACATATGT	GGACCCCTTT
	TACTTCTCTT	TGTAAACTTA	GTTCCACATT	CTTGTATACA	CCTGGGGAAA
	${\tt spGluGluLy}$	sHisLeuAsn	${\tt GlnGlyValA}$	rgThrTyrVa	lAspProPhe

FIG. 16E

1801		ATCCCAACCA			
		TAGGGTTGGT			
601	ThrTyrGluA	spProAsnGl	nAlaValArq	GluPheAlaL	ysGluIl eA s
	CGCATCCTGC	ATTAAGATTG	AAAAAGTTAT	AGGAGTTGGT	GAATTTGGTG
	GCGTAGGACG	TAATTCTAAC	TTTTTCAATA	TCCTCAACCA	CTTAAACCAC
	pAlaSerCys	IleLysIleG	luLysValIl	eGlyValGly	GluPheGlyGlu
1901	AGGTATGCAG	TGGGCGTCTC	AAAGTGCCTG	GCAAGAGAGA	GATCTGTGTG
	TCCATACGTC	ACCCGCAGAG	TTTCACGGAC	CGTTCTCTCT	CTAGACACAC
635	ValCysSe	rGlyArgLeu	LysValProG	lyLysArgGl	uIleCysVal
	GCTATCAAGA	CTCTGAAAGC	TGGTTATACA	GACAAACAGA	GGAGAGACTT
	CGATAGTTCT	GAGACTTTCG	ACCAATATGT	CTGTTTGTCT	CCTCTCTGAA
	AlaIleLysT	hrLeuLysAl	aGlyTyrThr	AspLysGlnA	rgArgAspPhe
2001	CCTGAGTGAG	GCCAGCATCA	TGGGACAGTT	TGACCATCCG	AACATCATTC
		CGGTCGTAGT			
668	LeuSerGlu	AlaSerIleM	etGlyGlnPh	eAspHisPro	AsnIleIleH
	ACTTGGAAGG	CGTGGTCACT	AAATGTAAAC	CAGTAATGAT	CATAACAGAG
	TGAACCTTCC	GCACCAGTGA	TTTACATTTG	GTCATTACTA	GTATTGTCTC
		yValValThr			
2101	TACATGGAGA	ATGGCTCCTT	GGATGCATTC	CTCAGGAAAA	ATGATGGCAG
		TACCGAGGAA			
701		${\tt snGlySerLe}$			
		ATTCAGCTGG			
		TAAGTCGACC			
					GlySerGlyMet
2201		ATCTGATATG			
		TAGACTATAC			
735	LysTyrLe	uSerAspMet	SerTyrValH	isArgAspLe	uAlaAlaArg
		TGAACAGCAA			
		ACTTGTCGTT			
	AsnIleLeuV	alAsnSerAs	nLeuValCys	LysValSerA	spPheGlyMet

FIG. 16F

2301	GTCCCGAGTG	CTTGAGGATG	ATCCGGAAGC	AGCTTACACC	ACCAGGGGTG
	CAGGGCTCAC	GAACTCCTAC	TAGGCCTTCG	TCGAATGTGG	TGGTCCCCAC
768	SerArgVal	LeuGluAspA	spProGluAl	aAlaTyrThr	ThrArgGlyG
	GCAAGATTCC	TATCCGGTGG	ACTGCGCCAG	AAGCAATTGC	CTATCGTAAA
	CGTTCTAAGG	ATAGGCCACC	TGACGCGGTC	TTCGTTAACG	GATAGCATTT
	lyLysIlePr	olleArgTrp	ThrAlaProG	luAlaIleAl	aTyrArgLys
2401	TTCACATCAG	CAAGTGATGT	ATGGAGCTAT	GGAATCGTTA	TGTGGGAAGT
	AAGTGTAGTC	GTTCACTACA	TACCTCGATA	CCTTAGCAAT	ACACCCTTCA
801	PheThrSerA	laSerAspVa	lTrpSerTyr	GlyIleValM	etTrpGluVa
	GATGTCGTAC	GGGGAGAGGC	CCTATTGGGA	TATGTCCAAT	CAAGATGTGA
	CTACAGCATG	CCCCTCTCCG	GGATAACCCT	ATACAGGTTA	GTTCTACACT
	lMetSerTyr	GlyGluArgP	roTyrTrpAs	pMetSerAsn	GlnAspValIle
2501	TTAAAGCCAT	TGAGGAAGGC	TATCGGTTAC	CCCCTCCAAT	GGACTGCCCC
				GGGGAGGTTA	
835	LysAlaIl	eGluGluGly	TyrArgLeuP	roProProMe	tAspCysPro
				TGGCAGAAGG	
				ACCGTCTTCC	
	IleAlaLeuH	isGlnLeuMe	tLeuAspCys	TrpGlnLysG	luArgSerAsp
2601	CAGGCCTAAA	TTTGGGCAGA	TTGTCAACAT	GTTGGACAAA	CTCATCCGCA
				CAACCTGTTT	
868		_		tLeuAspLys	
				AGAGCTCCAG	
				TCTCGAGGTC	
	snProAsnSe	rLeuLysArg	ThrGlyThrG	luSerSerAr	gProAsnThr

FIG. 16G

2701	GCCTTGTTGG	ATCCAAGCTC	CCCTGAATTC	TCTGCTGTGG	TATCAGTGGG
	CGGAACAACC	TAGGTTCGAG	GGGACTTAAG	AGACGACACC	ATAGTCACCC
901	AlaLeuLeuA	spProSerSe	rProGluPhe	SerAlaValV	alSerValGl
	CGATTGGCTC	CAGGCCATTA	AAATGGACCG	GTATAAGGAT	AACTTCACAG
	GCTAACCGAG	GTCCGGTAAT	TTTACCTGGC	CATATTCCTA	TTGAAGTGTC
	yAspTrpLeu	GlnAlaIleL	ysMetAspAr	gTyrLysAsp	AsnPheThrAla
2801	CTGCTGGTTA	TACCACACTA	GAGGCTGTGG	TGCACGTGAA	CCAGGAGGAC
	GACGACCAAT	ATGGTGTGAT	CTCCGACACC	ACGTGCACTT	GGTCCTCCTG
935	AlaGlyTy	rThrThrLeu	GluAlaValV	alHisValAs	nGlnGluAsp
	CTGGCAAGAA	TTGGTATCAC	AGCCATCACA	CACCAGAATA	AGATTTTGAG
		·		GTGGTCTTAT	
*	_	_			ysIleLeuSer
2901	CAGTGTCCAG	GCAATGCGAA	CCCAAATGCA	GCAGATGCAC	GGCAGAATGG
				CGTCTACGTG	
968	SerValGln	AlaMetArgT	hrGlnMetGl	nGlnMetHis	GlyArgMetV
				AAAACTCTTG	
				TTTTGAGAAC	
	_			lnAsnSerOp	
3001	ACCTCATCCA	TGCACTTTAA	TTGAAGAACT	GCACTTTTTT	TACTTCGTCT
				CGTGAAAAAA	
1001				AlaLeuPheL	_
	TCGCCCTCTG	AAATTAAAGA	AATGAAAAA	AAAAAACAAT	ATCTGCAGCG
				TTTTTTGTTA	
	uArgProLeu	LysLeuLysL	ys0p*LysLy	sLysAsnAsn	IleCysSerVal

FIG. 16H

310:	L TTGCTTGGTG	CACAGATTGC	TGAAACTGTG	GGGCTTACAG	AAATGACTGC
	AACGAACCAC	GTGTCTAACG	ACTTTGACAC	CCCGAATGTC	TTTACTGACG
103	AlaTroCv	sThrAspCvs	Op*AsnCvsG	lvAlaTvrAr	qAsnAspCvs
	CGGTCATTTG	AATGAGACCT	GGAACAAATC	GTTTCTCAGA	AGTACTTTTC
	GCCAGTAAAC	TTACTCTGGA	CCTTGTTTAG	CAAAGAGTCT	TCATGAAAAG
	ArgSerPheG	luOp*AspLe	uGluGlnIle	ValSerGlnL	vsTyrPheSer
3203	LTGTTCATCAC	CAGTCTGTAA	AATACATGTA	CCTATAGAAA	TAGAACACTG
	ACAAGTAGTG	GTCAGACATT	TTATGTACAT	GGATATCTTT	ATCTTGTGAC
1068	NalHisHis	GlnSerValL	ysTyrMetTy	rLeuAm*Lys	Am*AsnThrA
	CCTCTGAGTT	TTGATGCTGT	ATTTGCTGCC	AGACACTGAG	CTTCTGAGAC
	GGAGACTCAA	AACTACGACA	TAAACGACGG	TCTGTGACTC	GAAGACTCTG
	laSerGluPh	eOp*CysCys	IleCysCysG	lnThrLeuSe	rPheOp*Asp
330	1 ATCCCTGATT				
				TTGCCAGCTG	
110	l IleProAspS	erLeuSerIl	eTrpAsnTyr	AsnGlyArgA	rgAlaArg

REFERENCIAS CITADAS EN LA DESCRIPCIÓN

Esta lista de referencias citadas por el solicitante está prevista únicamente para ayudar al lector y no forma parte del documento de patente europea. Aunque se ha puesto el máximo cuidado en su realización, no se pueden excluir errores u omisiones y la OEP declina cualquier responsabilidad al respecto.

Documentos de patente citados en la descripción

• WO 9315201	Α	[0006]	
--------------	---	--------	--

• US 4745055 A [0052]

• EP 256654 A [0052]

• EP 120694 A [0052]

• EP 125023 A [0052]

• EP 255694 A [0052]

• EP 266663 A [0052]

• WO 8803559 A [0052]

• US 4444878 A [0052]

• WO 8803565 A [0052]

• EP 68763 A [0052]

• EP 0125023 A [0056]

EP 173494 A [0056]

US 4816567 A, Cabilly [0063] [0064]

• WO 9109968 A [0064]

• EP 452508 A [0064]

• WO 9116927 A [0064]

• WO 08222616 B [0119]

Documentos no procedentes de patentes citados en la descripción

- Ullrich et al. Cell, 1990, vol. 61, 203 [0002]
- · Hirai et al. Science, 1987, vol. 238,

[0003]

- Letwin et al. Oncogene, 1988, vol. 3, 621-678 [0003] 1992, vol. 267, 26166-26171 [0007]
- Lhotak et al.Mol. Cell. Biol., 1993, vol.13, 7071-7079 [0003]
- · Lindberg et al.Mol. cell. Biol.,

6316-6324 [0003]

- Bohme et al. Oncogene, 1993, vol. 8, 2857-2862 [0003]
- · Wicks et al. Proc. Natl. Acad. Sci. USA., 1992, vol. 89, 1611-1615 [0003]
- · Pasquale et al. Cell Regulation,

523-534 [0003]

- Sajjadi et al. New Biol., 1991, vol. 3, 769-778 [0003]
- · Wicks et al. Proc. Natl. Acad. Sci. USA, 1992, vol. 89, 1611-1615 [0003]
- Lhotak et al. Mol. Cell. Bio., 1991, vol. 11, 2496-2502
- Gilardi-Hebenstreit et al. Oncogene, 1992, vol. 7, 2499-2506 [0003]
- Lai et al. Neuron, 1991, vol. 6, 691-704 [0003]
- · Sajjadi et al. Oncogene, 1993, vol. 8, 1807-1813 [0003]
- · Maisonpierre et al. Oncogene,

3277-3288 [0003]

· Ashman et al. Journal of Cellular Physiology, 1994,

vol. 158, 545-554 [0005]

The Journal of Biological hemistry,

- Matthews. Cell, 1991, vol. 65, 1143 [0027]
- · Wilks. Proc. Natl. Acad. Sci. USA, 1989, vol. 86, 1603 [0027]
- Mullis et al. Cold Spring Harbor Symp. Advan. Biol., 1986, vol. 51, 263 [0027]
- Faulkner et al. Nature, 1982, vol. 398, 286 [0052]
- Morrison. J. Immun., 1979, vol. 123, 793 [0052]
- · Köhler et al. Proc. Nat'l. Acad. Sci. USA, 1980, vol. 77, 2197 [0052]
- Raso et al. Cancer Res, 1981, vol. 41, 2073 [0052]
- · Morrison et al. Ann. Rev. Immunol., 1984, vol. 2, 239 [0052]
- Morrison. Science, 1985, vol. 229, 1202 [0052]
- Morrison et al. Proc. Nat'l. Acad. Sci. USA, 1984, vol. 81, 6851 [0052]
- · Kabat et al. Sequences of Immunological Interest. National Institutes of Health, 1987 [0054]

- Munro. Nature, 13 December 1984, vol. 312 [0056]
- Neuberger et al. Nature, 13 December 1984, vol. 312 [0056]
- Sharon et al. Nature, 24 May 1984, vol. 309 [0056]
- Morrison et al. Proc. Nat'l. Acad. Sci. USA, 1984, vol. 81, 6851-6855 [0056]
- Morrison et al. Science, 1985, vol. 229, 1202-1207 [0056]
- Boulianne et al.Nature, 13 December 1984, vol. 312, 643-646 [0056]
- Capon et al. Nature, 1989, vol. 337, 525-531 [0056]
- Traunecker et al.Nature, 1989, vol. 339, 68-70 [0056]
- Adams et al. Biochemistry, 1980, vol. 19, 2711-2719 [0057]
- Gough et al. Biochemistry, 1980, vol. 19, 2702-2710 [0057]
- Dolby et al. P.N.A.S. USA, 1980, vol. 22, 6027-6031 [0057]
- Rice et al. P.N.A.S. USA, 1982, vol. 79, 7862-7865 [0057]
- Falkner et al. Nature, 1982, vol. 298, 286-288 [0057]
- Morrison et al. Ann. Rev. Immunol., 1984, vol. 2, 239.256 [0057]
- Lyman et al. Cell, 1993, vol. 75, 1157-1167 [0058]
- Bennett et al. J. Biol, Chem., 1991, vol. 266 (34), 23060-23067 [0058]
- Kohler ; Milstein. Eur. J. Immunol., 1976, vol. 6, 511 [0060]
- Hammerling et al. Monoclonal Antibodies and T-Cell Hybridomas. Elsevier, 1981, 563-681 [0060]
- Cote et al. Monoclonal Antibodies and Cancer Therapy. Alan R. Liss, 1985, 77 [0060]
- Boerner et al. J. Immunol., 1991, vol. 147 (1), 86-95 [0060]
- Mage; Lamoyi. Monoclonal Antibody Production Techniques and Applications. Marcel Dekker, Inc, 1987, 79-97 [0063]
- Remington's Pharmaceutical Sciences. Mack Publishing Company, 1975 [0074]
- Hanks et al. Science, 1988, vol. 241, 42-52 [0081]
- Wilks. Proc. Nat. Acad. Sci.. USA, 1989, vol. 86, 1603-1607 [0081]

- Matthews et al.Cell, 1991, vol. 65, 1143-1152 [0081]
- Kozak. J. Cell Biol., 1991, vol. 115, 887-903 [0083]
- Baer et al. Curr, Opin. Oncol., 1992, vol. 4, 24-32 [0088]
- Bennett et al.J. Biol. Chem., 1991, vol. 266, 23060-23067 [0093] [0107]
- Sigel et al. Methods Enzymol., 1983, vol. 93, 3-12 [0093]
- Gorman et al. DNA Prot. Engineer. Tech., 1990, vol. 2, 3-10 [0096]
- Kearney et al.J. Immunol., 1979, vol. 123, 1548-1550 [0103]
- Goding, J.W. J. Immunol. Methods, 1978, vol. 20, 241-253 [0103]
- Gorman, C. DNA Cloning. IRL Press, 1985, vol. 2, 143-190 [0108]
- Gearing et al. EMBO, 1989, vol. 8, 3667-3676 [0108]