

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 356 374

(51) Int. Cl.:

A61M 1/16 (2006.01)

$\overline{}$,
12)	
12)	TRADUCCIÓN DE PATENTE EUROPEA
1-/	

Т3

- 96 Número de solicitud europea: 04711604 .1
- 96 Fecha de presentación : 17.02.2004
- 97 Número de publicación de la solicitud: 1615680 97 Fecha de publicación de la solicitud: 18.01.2006
- 54) Título: Dispositivo de hemodiálisis.
- (30) Prioridad: 11.04.2003 DE 103 17 024
- (73) Titular/es: FRESENIUS MEDICAL CARE **DEUTSCHLAND GmbH** Else-Kröner-Strasse 1 61352 Bad Homburg V.D.H., DE
- (45) Fecha de publicación de la mención BOPI: 07.04.2011
- (72) Inventor/es: Wupper, Andreas y Gross, Malte
- (45) Fecha de la publicación del folleto de la patente: 07.04.2011
- (74) Agente: Urízar Anasagasti, José Antonio

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

La invención se refiere al ámbito de dispositivos de tratamiento de sangre, con un elemento de purificación de sangre según el concepto general de la reivindicación 1.

En la terapia de reemplazo renal se aplican diferentes procedimientos. En algunos de estos procedimientos la sangre de un paciente es sacada de manera continua e introducida en un circuito extracorpóreo. Allí recorre un elemento de purificación de sangre, para luego ser reenviado al paciente. El

elemento de purificación de sangre suele tener un dispositivo de filtración de dos cámaras, separadas por una membrana semipermeable, a través de una de las cuales circula la sangre. Hoy en día se utilizan para ello sobre todo elementos de filtración que contienen miles de fibras capilares, cuyo interior es

10 atravesado por la sangre.

5

15

20

25

30

35

40

45

50

55

En la hemodiálisis la otra cámara es atravesada por un fluido de diálisis, que absorbe mediante difusión sustancias a eliminar de la sangre, como por ejemplo el ácido úrico, y que con respecto a otras sustancias que deben permanecer en la sangre, como por ejemplo los electrolitos, presenta una composición parecida a la de un conteo sanguíneo sano. Los volúmenes líquidos a eliminar, igualmente son segregados mediante una componente regulada por la ultrafiltración, desde la cámara de sangre hacía la cámara del fluido de diálisis del elemento de filtración.

En el caso de la hemofiltración, la otra cámara del elemento de filtración, a continuación llamada "primera cámara", no es del todo atravesada por el fluido de diálisis. A esta cámara sólo se suministra, a través de la membrana, un ultrafiltrado que luego es eliminado por una derivación de ultrafiltrado. Mientras, el volumen de líquido derivado es mantenido mucho por encima del que tiene que ser eliminado del paciente para alcanzar su peso en seco. De esta manera, las sustancias a eliminar de la sangre, como el ácido úrico, son derivadas en cantidades significativas mediante convección con el ultrafiltrado. A la vez, casi todo el volumen de líquido es sustituido por un líquido de reemplazo, que es devuelto al paciente en un punto adecuado a través del circuito extracorpóreo.

Dado que convección y difusión pueden eliminar moléculas de tamaños diferentes a través de la membrana con más o menos eficiencia, se aplica también una combinación de los dos métodos en forma del tratamiento de hemodiafiltración. Las máquinas de diálisis modernas ofrecen la posibilidad de cambiar entre los modos de tratamiento sin la necesidad de un complejo reajuste. Algunos aparatos conocidos tienen la opción de suministrar, durante el tratamiento en línea, el fluido de diálisis y el líquido de reemplazo, de agua y el concentrado correspondiente, a través de la máquina. Con estos dispositivos ya no es necesario tener a disposición grandes cantidades (hasta aproximadamente 2001) de estos líquidos en bolsas. Uno de estos dispositivos es por ejemplo objeto de la EP 0 930 080 A1.

Para controlar el éxito de una terapia de reemplazo renal, la evaluación de parámetros de terapia en estos dispositivos de purificación de sangre, sobre todo el rendimiento de purificación de sangre del elemento de purificación de sangre, es de gran interés. Para el rendimiento de purificación de sangre suele indicarse la *Clearance* o dialisancia del elemento de purificación de sangre.

La *Clearance* K define el flujo de sangre que es completamente liberado de una sustancia (por ejemplo ácido úrico) por el elemento de purificación de sangre. En el caso de un tratamiento de hemodiafiltración, se presupone que en el momento de su entrada en el dializador, el líquido de diálisis no contiene la sustancia a eliminar. La *Clearance* depende de la superficie y el material del dializador, y de sus respectivas condiciones de funcionamiento (flujo de la sangre, del líquido de diálisis y del ultrafiltrado). La *Clearance* se produce tanto mediante difusión, como mediante convección a través de la membrana

del elemento de filtración del dializador.

El término de *Clearance* se puede ampliar también a sustancias, como por ejemplo los iones de sodio, que ya existen en el líquido de diálisis. En este caso se habla de la dialisancia D. Ésta se define como el flujo de sangre que se lleva completamente al nivel de concentración en el líquido de diálisis.

De la *Clearance* K se puede calcular el valor sin dimensión Kt/V, en el que t es la duración del tratamiento y V el volumen de distribución de la sustancia en el cuerpo humano. Kt/V para ácido úrico es una medida aplicada muy corriente para la eficiencia de un tratamiento de diálisis.

Sin embargo la medición de la concentración de ácido úrico es hasta hoy bastante laboriosa. O requiere la extracción de pruebas de sangre, que conlleva inconvenientes para el paciente y además no permite un análisis rápido y automatizado, o sigue siendo todavía bastante laboriosa en forma de una medición en el líquido de diálisis gastado.

En la actualidad existe una alternativa en la definición de la dialisancia iónica. El principio fundamental de estas mensuraciones se basa en el hecho de que el ácido úrico e iones pequeños como Na+, etc. tienen un comportamiento de difusión casi idéntico. La concentración de estos iones en el

líquido de diálisis se puede definir fácilmente a través de mediciones de la conductividad eléctrica, la cual se averigua mediante células de medición instaladas de manera relativamente sencilla. Así que en lugar de la *Clearance* de ácido úrico, se define primero la dialisancia iónica. Ésta, por el igual comportamiento de difusión, que es de esperar, se puede luego equiparar a la *Clearance* de ácido úrico.

Dado que, en la hemodiálisis, la *Clearance* es sólo un caso especial de la dialisancia, para el caso de que la sustancia en cuestión no exista en el líquido de diálisis, a continuación se incluirá de manera sinónima en el término "dialisancia".

En el Estado de la Técnica existen varias publicaciones sobre el cálculo de la dialisancia (por ejemplo J.Sargent und F.Gotch, en: Replacement of Renal Functions by Dialysis, 4ª edición, editado por C. Jacobs et al., Kluwer, Dordrecht, 1996, Págs. 39 y siguientes). Sin ultrafiltración, se puede expresar, en la llamada forma del lado de lo dializado, con la siguiente ecuación:

$$D = Qd \frac{Cdo - Cdi}{\alpha Cbi - Cdi} \tag{1},$$

siendo

10

25

30

35

Qd: flujo del fluido de diálisis

15 Cdo: concentración de la sustancia observada en el fluido de diálisis derivado

Cdi: concentración de la sustancia observada en el fluido de diálisis suministrado

Cbi: concentración de la sustancia observada en la sangre entrando en el circuito extracorpóreo (siendo observada sólo la parte del volumen en el que la sustancia existe efectivamente)

α: Factor Gibbons-Donnan

El factor Gibbs-Donnan considera el hecho de que iones cargados en el lado de la sangre, como Na+, a veces son unidos a proteínas, cargados negativamente y que no pasan por el dializador. La consecuencia de este efecto es que, en el caso de un equilibrio difuso (desapareciendo los flujos), se

produciría una concentración de iones ligeramente mayor en el plasma sanguíneo que en el fluido de diálisis, porque un campo eléctrico actúa en contra de la difusión. Para el caso de los iones de sodio en el plasma sanguíneo, muy relevante en la práctica, α está en un 0,95. Si no se requiere exactitud, este factor puede ser ignorado.

En la ecuación (1), todas las cantidades menos Cbi pueden ser medidas con facilidad. Para ello basta con situar dos células de medición de conductividad en el circuito del fluido de diálisis, que determinan las conductividades respectivas en la entrada y en la salida del dializador. Éstas se pueden convertir fácilmente en las concentraciones Cdi y Cdo. En el caso de que la concentración Cdi esté predeterminada, y por tanto conocida, por ejemplo porque se usan fluidos definidos con exactitud, la medición de Cdi incluso puede ser prescindida. El flujo del fluido de diálisis Qd suele predeterminarse en el aparato de hemodiálisis y por tanto es conocido también. En caso contrario, se pueden por supuesto prever sensores adicionales.

Por razones practicas, sin embargo, las mediciones de conductividad en el lado de la sangre son problemáticos. Pero existe la posibilidad de eliminar la cantidad Cbi cambiando la concentración del Cdi. Esto se puede realizar, por ejemplo, en forma de etapa, o de bolus. La primera está descrita en la DE 39 38 662 A1, el segundo en la DE 197 47 360 A1 o en el WO 00/02604. Ambas posibilidades a continuación serán alternativas para una modificación de la concentración en un fluido fresco, necesaria para el tratamiento de sangre. La dialisancia puede entonces determinarse de la siguiente manera:

$$D = Qd\left(1 - \frac{Cdo2 - Cdo1}{Cdi2 - Cdi1}\right) = Qd\left(1 - \frac{\Delta Cdo}{\Delta Cdi}\right)$$
(2),

40 siendo

Cdi1,2: Cdi antes y después (etapa) o fuera y durante (bolus) el cambio

Cdo1,2: Cdo antes y después (etapa) o fuera y durante (bolus) el cambio

En el caso de un cambio por etapa, _Cdi o _Cdo son simples diferencias, en el caso del método por bolus se les entiende como el cambio integrado a través del bolus con respecto al nivel de base.

Con la ayuda de D, ahora también Cbi puede ser determinada con la ecuación (1). Ello sería el equivalente de determinar Cbi como el parámetro a determinar de una fórmula correspondiente a la fórmula (2), que sale de la fórmula (1) cuando D es eliminado.

Hay otros métodos conocidos en el Estado de la Técnica, como la WO 98/32476 A1 o la EP 0658352, que no utilizan explícitamente la ecuación (2) para la determinación de D, pero que finalmente siempre se basan en el principio de generar una cambio de una característica físico-química Cdi, y medir el cambio correspondiente Cdo, para permitir una declaración sobre la característica físico-química Cbi en el lado de la sangre o sobre el rendimiento de purificación de sangre D. En la EP 0 658 352 A1 o la US 5,567,320, que son parte de la misma familia de patentes, la *Clearance* de ácido úrico es derivada de la dialisancia D para sodio.

5

10

15

20

25

30

35

40

45

50

Para describir el rendimiento de purificación de sangre de un elemento de purificación de sangre como un dializador, a veces se utiliza también el coeficiente de intercambio de masas o de filtro k0A, que está relacionado fijamente con la dialisancia D. El coeficiente K0A se determina únicamente por la sustancia observada y por la membrana usada del dializador, y no por parámetros del tratamiento como el flujo de sangre, fluido de diálisis o de ultrafiltrado. Es el producto del parámetro pendiente de la membrana k0 y la superficie total de la membrana A. En ello, k0 corresponde al flujo de difusión de la sustancia observada por unidad de superficie de membrana, dividido entre el descenso de concentración en la membrana. KOA puede interpretarse como la máxima dialisancia posible en el caso ideal de una transporte meramente difusivo con flujos de fluidos de diálisis y de sangre de dimensiones infinitas.

El coeficiente K0A para una sustancia puede ser determinado mediante la medición de la dialisancia D según la ecuación (3):

$$k0A = \frac{QbQd}{Qd - Qb} \ln \frac{Qb(D - Qd)}{Qd(D - Qb)}$$
(3).

En el Estado de la Técnica se indican sin excepción alguna métodos que permiten una determinación durante un tratamiento de hemodiálisis. Es verdad que allí también se encuentran indicaciones - en parte diferentes - de cómo puede considerarse el flujo de fluido del ultrafiltrado Qf, derivado de la sangre durante un tratamiento de hemodiálisis, en las fórmulas (1) y (2). Que sea

mencionada en este lugar como ejemplar la EP 1 062 960 A2, según la que Qd es sustituido por la suma de los flujos Qd y Qf. Pero en un tratamiento de hemodiálisis, el flujo de ultrafiltrado Qf es muy pequeño comparado con el flujo de fluido de diálisis, y también con el flujo de sangre Qb, es decir, se trata de un efecto de alteración relativamente pequeño. Así que los valores típicos rondan los, por ejemplo, Qf=15ml/min, Qd=500ml/min o Qb=300ml/min.

Para el flujo de sangre Qb en la ecuación (3) se aplican limitaciones parecidas a las aplicadas para la concentración Cbi en la ecuación (1). En la ecuación (3), en parte sólo hay que observar la parte del volumen de sangre en la que efectivamente está disuelta la sustancia observada. Dependiendo de la

sustancia, esto puede ser la parte del agua sanguínea sin o con células sanguíneas. Aquí el especialista conoce de sobra las maneras de derivar la parte del flujo respectivo al flujo sanguíneo completo a base de datos de media, supuestos o medidos sobre la composición de la sangre (hematocrito, proteínas etc.), (por ejemplo J.Sargent und F.Gotch, en: Replacement of Renal Functions by Dialysis, 4ª edición, editado por C. Jacobs et al., Kluwer, Dordrecht, 1996, Págs. 41 y siguientes, por lo que en este lugar se prescinde de una descripción detallada.

Pero en una terapia de reemplazamiento renal, el conocimiento sobre el rendimiento del elemento de purificación de sangre es de igual interés cuando se trata de un tratamiento de hemofiltración – sea sólo o sea en combinación con un tratamiento de hemodiálisis en forma de un tratamiento de hemodiafiltración.

Tal y como se describe en la prerregistrada registración de patentes alemana 10212247.4, los métodos desarrollados para la hemodiálisis se pueden aplicar a la hemofiltración y a la hemodiafiltración, cuando el flujo de fluido de diálisis Qd contiene el flujo del líquido de reemplazo y si la concentración para el fluido fresco de diálisis es igual a la concentración del líquido de reemplazo. En este caso, el flujo de fluido de diálisis Qd en las ecuaciones (1) y (2) se tiene que equiparar a la suma del flujo de fluido de diálisis fluyendo en la primera cámara del hemodializador, del flujo Qs del líquido de reemplazo, y del flujo del ultrafiltrado a retirar de la sangre, en total.

Con los métodos indicados hasta ahora es posible - como se ha descrito arriba - , determinar la concentración Cbi de una primera sustancia en la sangre que fluye hacía la unidad de purificación de sangre, y/o el rendimiento de purificación de sangre de la unidad de purificación de sangre, a base de mediciones de concentración en el fluido de diálisis. Sin embargo, hay que cambiar la concentración de la primera sustancia durante el proceso. Esto requiere un cierto tiempo mínimo de medición para el correspondiente ajuste o cambio de la concentración. Una gran desventaja es que con estos métodos no

se puede acceder a sustancias que no suelen existir en el fluido fresco de diálisis (como por ejemplo la creatinina o el fosfato), o cuya alteración podría ser crítica con respecto a la tolerancia del paciente (como por ejemplo el potasio).

Como se ha descrito en la US 6,126,831, se conocen otros métodos, en los que para la medición de componentes sanguíneos en el lado de lo dializado, el flujo del fluido de la sangre se ralentiza o incluso se detiene, de manera que la concentración de ambos líquidos se iguala, así que la concentración en el fluido de diálisis responderá directamente a la concentración Cbi en la sangre. Estos métodos igualmente son muy largos y requieren una intervención directa en el tratamiento de sangre.

5

10

15

20

25

30

35

40

45

50

55

Por lo tanto, la función de la invención consiste en proporcionar un dispositivo que permita, sin necesidad de otra intervención en el tratamiento de sangre realizado con un elemento de purificación de sangre, la determinación de otro rendimiento de purificación de sangre del elemento de purificación de sangre respecto a otra sustancia y así también ofrecer la posibilidad de determinar la concentración en sangre de esta otra sustancia.

La solución se consigue mediante las características de la reivindicación 1. Las reivindicaciones secundarias muestran las formas de aplicación ventajosas.

La invención se basa en la observación de que los dispositivos para hemodiálisis actuales suelen tener la capacidad probada de determinar el rendimiento de purificación de sangre del elemento de purificación de sangre (en este caso, la dialisancia del dializador) respecto a una primera sustancia. En esto puede determinarse, como se ha descrito anteriormente, la dialisancia de iones de sodio gracias a la modificación de la concentración del fluido fresco de diálisis. En este caso, es posible determinar el segundo rendimiento de purificación de sangre, diferente al primer rendimiento de purificación de sangre, para una segunda sustancia sin necesidad de llevar a cabo otro proceso de medición. Más bien, puede determinarse directamente el segundo rendimiento de purificación de sangre mediante las relaciones establecidas en una unidad de evaluación entre los dos rendimientos de purificación de sangre, que superan una simple asignación de identidad para rendimientos de purificación de sangre idénticos, como en el caso de los iones de sodio y la urea. Esta relación, que puede determinarse previamente en pruebas de laboratorio, sólo depende del tipo de elemento de purificación de sangre utilizado.

Al mismo tiempo, la presente invención tiene la ventaja de que, mediante la medición realizada anteriormente del rendimiento de purificación de sangre para una primera sustancia, es posible un ajuste individual de los valores reales del rendimiento de purificación de sangre para una segunda sustancia, que toma suficientemente en consideración la modificación del rendimiento de purificación de sangre de un determinado elemento de purificación de sangre, por ejemplo, durante un tratamiento de sangre. En este sentido, la invención va más allá del simple cálculo del rendimiento de purificación de sangre para distintos tamaños de moléculas mediante datos característicos de membranas.

Una mejora importante de la invención consiste en que, con ayuda de un sensor para la medición de la concentración de la segunda sustancia en el fluido de diálisis utilizado y (en el caso de que no se conozca la concentración de esta sustancia en el fluido fresco de diálisis) de un sensor correspondiente para el fluido fresco de diálisis, puede determinarse la concentración de esta sustancia en la sangre que fluye al elemento de purificación de sangre gracias al rendimiento de purificación de sangre determinado anteriormente y sin la necesidad de intervenir en la concentración de fluido de diálisis o las velocidades de suministro de los distintos fluidos.

Un importante perfeccionamiento de la invención consiste en que, con ayuda de un sensor para medir la concentración de la segunda sustancia en el fluido de diálisis usado y – en caso de no conocerse la concentración de dicha sustancia en el fluido de diálisis fresco – con ayuda del sensor respectivo para el fluido de diálisis fresco, se puede determinar la concentración de esta sustancia en la sangre que afluye al elemento de purificación de la sangre con ayuda del rendimiento de purificación sanguínea determinado previamente, sin que sea necesario intervenir en la concentración del fluido de diálisis o en las velocidades de transporte de los fluidos concretos. Esto es posible sin limitación alguna para todas las sustancias cuya concentración en el fluido de diálisis se pueda determinar con técnicas de medición - independientemente de su presencia en el fluido de diálisis fresco o de una posibilidad limitada de la variación.

A continuación se explica más detalladamente a partir de la figura tanto la invención como una forma de ejecución de un dispositivo de hemodiafiltración conforme a la invención presentado a modo de ejemplo. La figura muestra una representación esquemática de esta forma de ejecución.

El núcleo del dispositivo de hemodiafiltración es el hemodializador 1. El hemodializador 1 está dividido en dos cámaras 3 y 4 mediante una membrana semipermeable 2, la primera de las cámaras 3 forma parte de una circulación de fluido de diálisis y la segunda 4 forma parte de una circulación sanguínea extracorpórea.

La circulación sanguínea extracorpórea comprende, entre otras cosas, componentes corrientes que no se muestran con mayor detalle, una línea de alimentación de sangre 5 con una bomba de alimentación de sangre 9 y un interceptor de burbujas arterial 32 para la admisión de sangre del paciente en la cámara 4 así como una línea de salida de sangre 6 con un interceptor de burbujas venoso 31 para el retorno de la sangre al paciente.

La circulación del fluido de diálisis contiene una línea de salida de fluido de diálisis dividida en las secciones 8a y 8b, a partir de esta línea se bifurca una línea de salida de ultrafiltrado 8b'. La sección 8a sale de la primera cámara 3 habiéndose previsto la presencia de una válvula 24 para bloquear esta línea de salida del hemodializador. Al final de la sección 8a se ha previsto un primer sensor aguas abajo configurado como célula de medición de conductividad 28 para registrar la conductividad eléctrica, con este sensor se puede determinar de manera ya conocida la concentración de iones o bien fundamentalmente la concentración de sodio C1do. Para ello la célula de medición 28 está conectada con una unidad central de control y evaluación 30 a través de una línea de datos 28a.

5

10

15

20

25

30

35

40

45

50

55

En la sección 8b está instalada la bomba de fluido de diálisis 20 que no tiene que satisfacer requisitos de precisión especiales. Únicamente tiene que tener la suficiente capacidad de alimentación para que la primera mitad 19 de la cámara de balance 18 que está conectada a la sección 8b se pueda llenar en el tiempo previsto. La cámara de balance 18 sirve para garantizar que sólo recorre la sección 8b una parte del flujo de fluido de diálisis evacuado que se corresponde con el flujo de fluido suministrado al dispositivo de hemodiafiltración (fluido de sustitución con flujo Qs y fluido de diálisis fresco con flujo Qd). Para ello la cámara de balance 18 se compone de dos cámaras de balance conectadas en paralelo a fin de poder garantizar un flujo prácticamente constante. Para simplificar, en la figura se ha prescindido de la representación de la segunda cámara de balance y de las diversas válvulas de entrada y salida.

En la sección 8b' se ha previsto una bomba de transporte 45 configurada como bomba volumétrica, preferentemente como bomba de membrana. Con esta bomba se transporta el flujo de ultrafiltrado Qf a retirar que hay que extraer en total del paciente. La cámara de balance 18 así como las bombas 20 y 45 están conectadas con la unidad de evaluación y control 30 a través de las correspondientes líneas de control 18a, 20a y 45a.

Las secciones 8b y 8b' desembocan finalmente en un desagüe 16 con lo que tiene importancia si ambas secciones se unen o no en el dispositivo como se muestra.

La fuente de líquido de diálisis, la cual forma parte del sistema de preparación del fluido de diálisis, provee fluido fresco de substitución o de diálisis. El técnico tiene varias alternativas a su disposición para ampliar la fuente de líquido. Junto a una elaboración de la solución preparada en bolsas, la otra alternativa es sobre todo la del tratamiento del fluido compuesto por agua y concentrado en el dispositivo de filtración de sangre. Para esta función el dispositivo cuenta con diversos elementos de medida y de control a lo que no se hará referencia porque son conocidos suficientemente.

La circulación de fluido de diálisis está compuesta por los siguientes componentes: El fluido fresco de diálisis fluye de la fuente de fluido 11 por una primera sección 7a de una línea de suministro de fluido de diálisis a la que se conectan las secciones 7b y 7c. En la sección 7a está conectada la segunda mitad de la cámara de balance 17 a la cámara de balance 18. La sección desemboca finalmente en la primera cámara 12 de un primer filtro estéril 15 el cual está separado por una membrana semipermeable 13 en dos cámaras 12 y 14. El fluido, tras pasar por la membrana 13, abandona la segunda cámara 14 del primer filtro estéril a través de la sección 7b de la línea de suministro de fluido de diálisis la cual conduce a la primera cámara 36 del segundo filtro estéril separado en dos cámaras 36 y 39 por una membrana semipermeable 38. En la sección 7b está previsto un primer sensor aguas arriba 27, correspondiente al primer sensor aguas abajo 28, para detectar la conductibilidad del fluido que corre por este sensor, el cual está conectado por su parte a la unidad de evaluación y de control por medio de un cable de datos 27a.

El fluido de substitución que circula por la membrana 38 abandona la segunda cámara 39 del filtro estéril 37 por medio de la línea de fluido de substitución 7c'. En esta sección está prevista una bomba de elevación 41 para impulsar la corriente le fluido de substitución Qs. Antes de que la línea de substitución desemboque en el detector de aire venoso 31 (post-dilución), se encuentra una válvula de bloqueo 43. De forma alternativa o adicional está previsto (dibujado con puntos) que la línea de fluido de substitución 7c' desemboque en el detector de aire arterial (predilución). En esta sección estaría prevista otra válvula de bloqueo 46.

De la primera cámara 36 del segundo filtro estéril 37, una sección 7c de la línea de fluido de diálisis conduce a la primera cámara 3 del dializador de sangre 1. La sección 7c se puede cerrar mediante una válvula de bloqueo 23, la cual está conectada a la unidad de medida y de control 30 mediante una línea de control 23a. Mediante esta válvula se puede controlar si el tratamiento debe ser un tratamiento de filtración de sangre completo (válvula cerrada) o formando parte de un tratamiento de filtración de sangre (válvula abierta). También es posible cambiar el módulo del tratamiento mientras se está realizando. Además también se puede realizara un tratamiento de filtración de sangre completo deteniendo la bomba 41 y cerrando las válvulas 43 y 46.

Con ayuda de las válvulas 43 y 46 (control mediante las líneas 43a y 46a) se puede cambiar entre predilución y post-dilución e incluso que ambas funcionen simultáneamente. Para ello está previsto colocar las válvulas 43 y 46 para controlar la corriente o para completar/sustituir por un medio propio y hacerse cargo de la distribución de la corriente de fluido de substitución.

Para las funciones de seguridad y de limpieza que no se han descrito está previsto además un conducto de bypass 21, el cual conecta la primera cámara 12 del primer filtro estéril 15 con la sección 8a de la línea de retirada

de fluido de diálisis y la cual se puede cerrar mediante una válvula 22 durante el funcionamiento normal. Lo mismo ocurre con un segundo conducto de bypass 25 que se ramifica a partir de la sección 7b de la línea de entrada de fluido de diálisis y desemboca a su vez aguas arriba en la sección 8a de la línea de retirada de fluido de diálisis. El segundo conducto de bypass se puede cerrar también mediante una válvula 26.

El dispositivo de filtración de sangre contiene además una unidad de evaluación y de control 30 que está compuesta por su parte por una unidad de evaluación 33 y una unidad de control 34 que están conectadas por medio de un cable de datos 35. La unidad de control está conectada por medio de las líneas de control 9a, 11a,, 18a, 20a, 23a, 41a, 43a, 45a y 46a con los diversos elementos del dispositivo de filtración de sangre para poder controlar el funcionamiento. Sólo se han mencionado los elementos y líneas de control que son necesarios para entender el invento.

5

10

15

20

25

30

35

40

45

50

55

La unidad de evaluación está conectada a algunos sensores mediante cables de datos. En este caso se refiere en particular a los sensores de conductibilidad 27 y 28. Además está previsto un segundo sensor de aguas arriba 47 y un segundo sensor de aguas abajo 48 para detectar la conductibilidad de la concentración de una segunda sustancia, como por ejemplo, potasio, calcio, fosfato, creatinina y glucosa en la circulación del fluido de diálisis. Para ampliar este tipo de sensores 47 y 48, el técnico tiene normalmente distintas formas de ampliación ajustadas a esta función. Los sensores 47 y 48 están conectados a la unidad de evaluación 33 mediante unos cables de datos 47a y 48a. Se puede ahorrar el empleo de un segundo sensor de aguas arriba si se conoce la concentración de la segunda sustancia en el fluido fresco de diálisis. Esto se puede emplear sobre todo con una gran exactitud cuando no se existe la segunda sustancia en el fluido fresco de diálisis, como por ejemplo, productos de secreción corporal como la creatinina.

El volumen de contenido de la cámara de balance se conoce exactamente. Mediante la frecuencia del tacto de la cámara de balance se puede determinar exactamente la circulación Qs+Qd. La bomba 45 es volumétrica y también se puede utilizar para determinar la corriente Qf y, como en este caso, como bomba de membrana para determinar la frecuencia del compás de la bomba y la mencionada cilindrada. Esto elimina cualquier imprecisión que pueda surgir por ejemplo mediante una bomba de rodillos configurada como una bomba de fluido de substitución cuya cantidad suministrada puede fluctuar debido a las oscilaciones de tolerancia de los segmentos de la manguera de la bomba y también debido a las oscilaciones de la presión de carga en un sector determinado.

El dispositivo inventado es adecuado para llevar a cabo las siguientes etapas del proceso. En primer lugar por razones de sencillez se ha aceptado que durante la detección de los valores de medida se lleve a cabo un tratamiento de filtración de sangre sin utrafiltración, es decir Qs=Qf=0

La fuente de fluido 11 se maneja de tal manera que ella misma prepara un fluido de diálisis con una concentración de sodio C1di1. El sensor aguas arriba 27 registra esta concentración y la transmite a la unidad de evaluación 33. Las corrientes de fluido Qb y Qd se ajustarán en las bombas 9, 18, 20, 41 y 45 así como se abrirán o cerrarán las válvulas 23, 43 y 46 según el tipo de diálisis de sangre. La unidad de control 34 transmite además los datos Qb y Qd a la unidad de evaluación 33. El sensor aguas abajo 28 registrará los valores de la concentración de sodio C1do1 y los transmitirá a la unidad de evaluación 33.

En un momento determinado en el que el transcurso de la operación lo automatiza o lo provoca por cualquier razón (por ejemplo, de forma manual) la fuente de fluido 11 ejecuta un cambio en la concentración de sodio del fluido de diálisis, por ejemplo en forma de bolus, siguiendo las instrucciones de la unidad de control 34, es decir se cambia la concentración por un corto periodo de tiempo y adopta de nuevo los valores iniciales. Se registrarán dichas concentraciones C1di2 y C1do2 y se transmitirán a la unidad de evaluación 33. Tras la disminución del bolus, la unidad de evaluación determina la dialisancia iónica y la dialisancia de iones de sodio D1 del dispositivo de filtración de sangre como un rendimiento de purificación de sangre L1 del elemento de purificación de sangre 1 para una primera sustancia de la forma conocida con ayuda de la ecuación (2). Este valor se podrá registrar mediante una unidad de registro la cual no se muestra y que normalmente forma parte de este tipo de dispositivos de tratamiento de sangre. El valor medido de dialisancia D1 se denominará a partir de ahora dialisancia efectiva D1eff para poder diferenciarlo de la dialisancia teórica D1th que se espera debido al conocimiento del material de la membrana.

Para determinar el rendimiento de purificación de sangre L2 del elemento de purificación 1 de una segunda sustancia la unidad de evaluación 33 es adecuada según el invento para utilizar uno de los dos procedimientos que se describen a continuación. En ambos procedimientos se parte de los coeficientes de intercambio de masa k0A1,2 que ha calculado la unidad de evaluación para las dos sustancias en consideración las cuales están relacionadas mutuamente:

$$k0A2 = f \cdot k0A1 \tag{4}.$$

En un filtro de diálisis distribuido, que la empresa que presenta la patente denomina F60, se pueden encontrar valores de k0A1=734.7 ml/min y f=1,08 por ejemplo de urea (o sodio) para la primera sustancia y de potasio para la segunda sustancia.

Queda constancia de estos valores o de los valores de k0A1 y k0A2 en la unidad de evaluación 33.

Con ayuda de los citados valores la unidad de evaluación 33 puede determinar los valores respectivos de la dialisancia teórica D1th y D2th mediante la solución de la ecuación (3) ya que los valores de la corriente de sangre Qb y de la corriente de fluido de dialisancia Qd también están registrados en la unidad de evaluación 33. Con ayuda del valor efectivo de dialisancia D1eff medido de sodio se puede determinar el valor efectivo de dialisancia D2eff de potasio con la ecuación (5):

$$D2eff = D1eff \frac{D2th}{D1th}$$
 (5).

Por otra parte también es posible que la unidad de evaluación 33 determine gracias a la dialisancia medida

D1eff de sodio el coeficiente de intercambio de masa efectivo correspondiente k0A1 con ayuda de la ecuación (3).

Los valores de f guardados se utilizarán en la ecuación (4) para determinar el coeficiente de intercambio de masa k0A2 de potasio. El cual será utilizado a su vez en la ecuación (3) para determinar la dialisancia efectiva D2eff de potasio.

Al contrario que en el primer método, en este caso sólo se necesita guardar el factor f sin además guardar el valor de k0A1.

Los valores guardados de k0A pueden guardarse en este sentido para una serie de dializadores los cuales sólo se diferencian en la superficie activa de la membrana A pero que presentan el mismo tipo de membrana, ya que sólo se necesita guardar un valor específico de membrana (como es k0) mientras que los demás valores se calculan respectivamente mediante la proporcionalidad a A. En el segundo método esto no es necesario ya que el factor f es independiente de la superficie activa de la membrana A.

Es obvio que se puede llevar a cabo el cálculo de todas las segundas sustancias, para las que ya existen los datos correspondientes según la ecuación (4). Por ejemplo para la membrana F60 son válidos f=0,52 de glucosa, f=0,71 de creatinina y f= 0,66 de fosfato.

Después que la unidad de evaluación 33 haya determinado la dialisancia D2eff de una segunda sustancia como rendimiento de purificación de sangre del elemento de purificación 1, ésta se le puede dar a conocer al usuario en una unidad de visualización.

En una ejecución especialmente útil del invento se utilizará el valor D2eff constatado para determinar la concentración C2bi de la segunda sustancia en la línea de suministro de sangre 5. Para ello se guardaran en la unidad de evaluación 33 los valores de los sensores aguas arriba y aguas abajo 47 y 48 los cuales determinan la concentración C2di y C2do de la segunda sustancia del fluido fresco y usado de diálisis. Para ello no se necesita ninguna intervención en el proceso de tratamiento. La unidad de evaluación determina entonces C2bi tras solucionar la ecuación (1) según Cbi.

Los dos procedimientos descritos para la aplicación de la ecuación (4) dan los mismos resultados numéricos cuando la aplicación se produce en sistemas "ideales". Ahora bien, en la aplicación práctica surgen divergencias menores cuyas causas se explican más detalladamente a continuación.

Una de las principales causas de estas divergencias consiste en el hecho de que en un sistema de diálisis real se produce una recirculación de sangre purificada que reduce la dialisancia Dth alcanzable en teoría. Las mediciones sólo permiten determinar la dialisancia Deff real disminuida. La recirculación puede producirse en el vaso del paciente – la mayoría de las veces una fístula arteriovenosa – al que se retira la sangre y se devuelve nuevamente. En ese caso puede retornar sangre purificada inmediatamente al dializador 1. Ahora bien, esta recirculación, conocida como recirculación fistular, se puede evitar en gran medida mediante la elección adecuada del flujo de sangre Qb, siempre que el flujo de sangre Qb sea menor que el flujo de sangre que afluye a la fístula. Pero una parte de la sangre purificada retorna directamente a la fístula a través del sistema de vasos del paciente en lo que se conoce como recirculación cardiopulmonar sin haber sido metabolizada. Esta parte de la recirculación se produce de forma inherente y no se puede evitar, si bien no se trata de un efecto predominante.

La influencia de la recirculación sobre la dialisancia o la clearance ha sido descrita, entre otros, por H. D. Polaschegg y N. W. Levin (en "Replacement of Renal Functions by Dialysis", 4ª. edición, editado por C. Jacobs y otros, Kluwer, Dordrecht, 1996, pág. 371). De acuerdo con esta descripción existe la siguiente interrelación entre la dialisancia Deff real disminuida por la recirculación R y la correspondiente dialisancia Dth sin recirculación para el mismo dializador y las mismas relaciones de flujo:

$$Deff = Dth \frac{1 - R}{1 - R(1 - \frac{Dth}{Qb})}$$
(6),

50

5

15

25

30

35

40

45

siendo R la cuota de sangre recirculada entre 0 y 1 en el flujo sanguíneo Qb. Si se conoce la recirculación R (mediante otros procedimientos de medición), se puede tener en cuenta la ecuación (6) para mejorar la exactitud de D2eff.

Se producen otras diferencias entre ambos métodos de cálculo debidas a que los parámetros empleados, como los flujos de fluido o también los valores de k0A y/o f, sólo se conocen dentro de ciertos márgenes de error. Esto tiene como consecuencia que, al introducir el valor real D1 eff para la dialisancia para la primera sustancia, se produzcan diversos errores subsecuentes para D2eff cuya influencia, no obstante, es limitada y se puede analizar previamente en el laboratorio mediante mediciones de calibrado.

La invención se puede emplear no sólo en la pura hemodiálisis sino también en caso de una ultrafiltración no desconectada (Qf >0) y/o la hemodiafiltración (Qs >0). Para ello, tal y como recoge la solicitud de patente alemana 10212247.4, a través de la línea 35 se transmiten a la unidad de evaluación 33 no sólo los valores de Qd y Qb sino también de Qf y Qs. A continuación la unidad de evaluación 33 puede determinar la parte difusiva de la dialisancia a partir de la ecuación (7):

$$Ddiff = \frac{Qb + \kappa Qs}{Qb - Qf - (1 - \kappa)Qs} \left(\frac{Qb + \kappa Qs}{Qb} D - Qf - Qs \right)$$
(7),

15

siendo κ=1 en la predilución y κ=0 en la postdilución. Después se puede determinar el coeficiente de difusión de membrana k0A para el que sólo es relevante la parte difusiva de la dialisancia:

$$k0A = \frac{(Qb + \kappa Qs)Qd}{Qd - Qb - \kappa Qs} \ln \frac{\frac{Ddiff}{Qd} - 1}{\frac{Ddiff}{Qb + \kappa Qs} - 1}$$
(8).

REIVINDICACIONES

- Un dispositivo de tratamiento de sangre que tiene un elemento de purificación de sangre (1) el cual está dividido en dos cámaras por una membrana semipermeable (2), la primera cámara (3) de las cuales es parte de la circulación de fluido de diálisis y la segunda cámara (4) de las cuales es parte de una circulación de sangre extracorpórea,
 - que tiene una línea de suministro de fluido de diálisis para suministrar fluido fresco de diálisis a la primera cámara (3) y/o a la circulación de fluido,

que tiene una línea de retirada de fluido de diálisis para retirar fluido usado de diálisis de la primera cámara (3),

que tiene una unidad de control (34) para controlar el dispositivo de tratamiento de sangre,

que tiene una unidad de evaluación (33),

que tiene al menos un sensor (27, 28) conectado a la unidad de evaluación (33) en al menos una de la circulación de sangre o la circulación de fluido de diálisis para detectar la concentración de una primera sustancia, que es capaz de penetrar a través de la membrana semipermeable (2),

siendo la unidad de evaluación (33) adecuada para determinar el rendimiento de purificación de sangre L1 del elemento de purificación de sangre para la primera sustancia en base a los valores medidos del al menos un sensor (27, 28),

caracterizado porque

la unidad de evaluación (33) es también adecuada para determinar el rendimiento de purificación de sangre L2 del elemento de purificación de sangre para una segunda sustancia, que es diferente del rendimiento de purificación de sangre L1 para la primera sustancia, en base al rendimiento de purificación de sangre para la primera sustancia, y

la segunda sustancia es potasio, glucosa o calcio.

- 2. El dispositivo de tratamiento de sangre según la reivindicación 1, **caracterizado porque** el rendimiento de purificación de sangre es la dialisancia efectiva Deff.
- 3. El dispositivo de tratamiento de sangre según la reivindicación 2, **caracterizado porque** la unidad de evaluación (33) es adecuada para derivar un coeficiente efectivo de intercambio de masa k0A1 eff a partir de la dialisancia D1 eff medida para la primera sustancia, determinar el coeficiente k0A2 eff para la segunda sustancia a partir de la relación f registrada entre el coeficiente teórico de intercambio de masa k0A2th de la segunda sustancia en relación al coeficiente teórico de intercambio de masa k0A1th de la primera sustancia por multiplicación con k0A1 eff, y derivar de k0A2 eff la dialisancia efectiva D2eff para la segunda sustancia.
- 4. El dispositivo de tratamiento de sangre según la reivindicación 2, caracterizado porque la unidad de evaluación (33) es adecuada para derivar a partir de los coeficientes teóricos registrados de intercambio de masa k0A1th para la primera sustancia y k0A2th para la segunda sustancia valores correspondientes a ellas para las dialisancias teóricas D1th y D2th y para determinar la dialisancia real D2eff para la segunda sustancia a partir de la dialisancia medida D1 eff para la primera sustancia multiplicada por la relación entre D2th y D1th.
- 5. El dispositivo de tratamiento de sangre según una cualquiera de las reivindicaciones precedentes, caracterizado porque el al menos un sensor es un primer sensor aguas abajo (28) en la línea de salida de fluido de diálisis para medir la concentración de la primera sustancia en el fluido de diálisis usado.
- 6. El dispositivo de tratamiento de sangre según la reivindicación 5, **caracterizado porque** también comprende una unidad procesadora de fluido de diálisis (11) conectada a la unidad de control (34).
- 7. El dispositivo de tratamiento de sangre según la reivindicación 6, **caracterizado porque** la unidad de evaluación (33) y la unidad de control (34) son aptas para realizar la determinación del rendimiento de purificación de sangre L1 para la primera sustancia por el método siguiente:

registrar la concentración C1di1 de la primera sustancia en el fluido fresco de diálisis en la unidad de evaluación (33).

medir la concentración C1do1 de la primera sustancia en el fluido usado de diálisis con el primer sensor aguas abajo (28) y registrar C1do1 en la unidad de evaluación (33),

alterar la concentración C1 di de la primera sustancia en el fluido fresco de diálisis por la unidad procesadora de fluido de diálisis (11) por comando de la unidad de control (34),

45

5

10

15

20

25

30

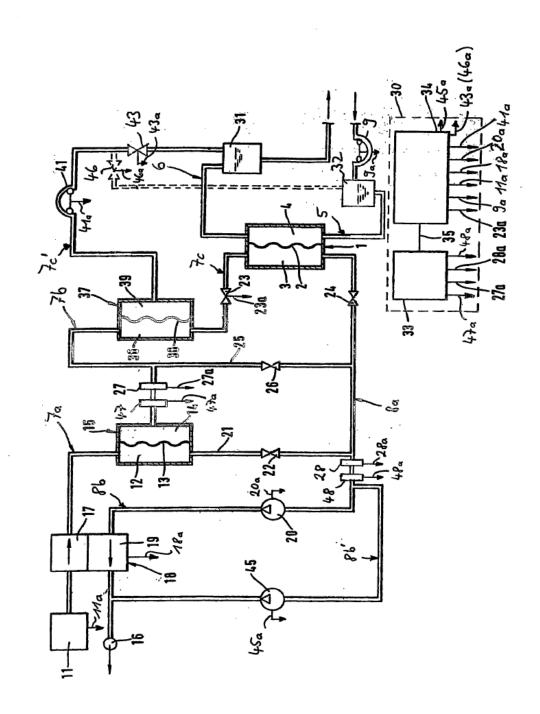
35

40

50

registrar la concentración modificada C1di2 de la primera sustancia en el fluido de diálisis usado (28) en la unidad de evaluación (33),

medir la concentración alterada C1do2 de la primera sustancia en el fluido usado de diálisis con el primer sensor aguas abajo (28) y registrar C1do2 en la unidad de evaluación (33), y


determinar el rendimiento de purificación de sangre L1 por la unidad de evaluación en base a las concentraciones C1di1, C1do2 de la primera sustancia el en fluido de diálisis fresco y usado.

- 8. El dispositivo de tratamiento de sangre según la reivindicación 7, **caracterizado porque** la unidad procesadora de fluido de diálisis (11) realiza el cambio en la concentración C1d1 por etapas o por bolus.
- 9. El dispositivo de tratamiento de sangre según la reivindicación 7, caracterizado porque también comprende un primer sensor aguas arriba (27) conectado a la unidad de evaluación (33) y situado en la línea de entrada de fluido de diálisis (7b) para medir las concentraciones C1di1 y C1di2 en el fluido fresco de diálisis.
- 10. El dispositivo de tratamiento de sangre según una cualquiera de las reivindicaciones precedentes, caracterizado porque también comprende un segundo sensor aguas abajo (48), que está situado en la línea de salida de fluido de diálisis (8a) para medir la concentración C2do de la segunda sustancia en el fluido usado de diálisis.
- 11. El dispositivo de tratamiento de sangre según la reivindicación 10, caracterizado porque la unidad de evaluación (33) es apta para determinar la concentración C2bi de la segunda sustancia en la sangre que fluye a la segunda cámara (4) en base a la concentración medida C2do de la segunda sustancia en el fluido usado de diálisis y la concentración registrada C2di de la segunda sustancia en el fluido fresco de diálisis así como el rendimiento L2 de purificación de sangre determinado para la segunda sustancia.
- 12. El dispositivo de tratamiento de sangre según una cualquiera de las reivindicaciones precedentes, caracterizado porque la primera sustancia es sodio.

15

10

20

