

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de publicación: $2\ 356\ 703$

(51) Int. Cl.:

C07K 19/00 (2006.01)

C12N 9/28 (2006.01)

A21D 8/04 (2006.01)

C12N 15/56 (2006.01)

C12N 5/10 (2006.01)

C12N 1/14 (2006.01)

C12N 1/20 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 05822874 .3
- 96 Fecha de presentación : 22.12.2005
- 97 Número de publicación de la solicitud: 1926753 97 Fecha de publicación de la solicitud: 04.06.2008
- 🗿 Título: Enzimas híbridas que consisten en una primera secuencia de aminoácidos de endoamilasa y un módulo de unión de carbohidratos como segunda secuencia de aminoácidos.
- (30) Prioridad: 22.12.2004 DK 2004 01976 09.09.2005 DK 2005 01261
- 73 Titular/es: NOVOZYMES A/S Krogshojvej 36 2880 Bagsværd, DK
- (45) Fecha de publicación de la mención BOPI: 12.04.2011
- (2) Inventor/es: Svendsen, Allan; Andersen, Carsten; Spendler, Tina; Viksoe-Nielsen, Anders y Østdal, Henrik
- 45) Fecha de la publicación del folleto de la patente: 12.04.2011
- (74) Agente: Tomás Gil, Tesifonte Enrique

ES 2 356 703 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Enzimas híbridas que consisten en una primera secuencia de aminoácidos de endoamilasa y un módulo de unión de carbohidratos como segunda secuencia de aminoácidos.

Campo de la invención

La presente invención se refiere, entre otras cosas, a enzimas híbridas comprendiendo un módulo de unión a carbohidratos y teniendo actividad endo-amilasa. Las enzimas se pueden utilizar en procesos comprendiendo la modificación y/o degradación de almidón, o en procesos de producción de puré.

Antecedentes de la invención

Se usan endo-amilasas bacterianas en un gran número de procesos, por ejemplo, para la licuefacción de almidón en procesos donde se modifica, y/o degrada almidón a polímeros más pequeños o monómeros de glucosa. Los productos de degradación pueden usarse en la industria, por ejemplo, como maltosa y/o jarabes de fructosa o además procesarse en un paso de fermentación a un producto de fermentación, por ejemplo, etanol. Las endo-amilasas bacterianas se usan en la cocción para dar blandura adicional y una mejor humedad de la miga de pan. No obstante, es fácil sobredosificar las endo-amilasas, lo cual puede resultar en una gomosidad y una pérdida indeseable de elasticidad en el producto horneado. Existe una necesidad de endo-amilasas con propiedades para el uso mejoradas en varios procesos, por ejemplo, dentro del tratamiento y de la cocción de almidón.

Resumen de la invención

2.5

Los presentes inventores han descubierto ahora sorprendentemente que añadiendo un módulo de unión a carbohidratos (CBM) a una endo-amilasa se puede modificar la actividad catalítica de la endo-amilasa dando así como resultado un rendimiento de cocción aumentado en comparación con la enzima de tipo salvaje. No hay ningún cambio significante en el sabor o el olor del producto horneado. Sin atarse a la teoría se sugiere que el efecto se debe a una actividad aumentada hacia el almidón crudo en la masa conferida por el CBM, y/o una actividad reducida hacia el almidón calentado en el pan de cocción conferida por el CBM. La endo-amilasa con un CBM se puede usar como una enzima de cocción con menos riesgo de sobredosificación en comparación con la enzima sin un CBM. Tales híbridos que consisten en un polipéptido teniendo actividad endo-amilasa y un módulo de unión a carbohidratos, principalmente teniendo afinidad con el almidón como por ejemplo con el CBM20, tiene la ventaja sobre las endo-amilasas existentes que seleccionando un dominio catalítico con propiedades deseadas como por ejemplo el perfil de pH, el perfil de temperatura, la resistencia a la oxidación, la estabilidad del calcio, la afinidad del sustrato o el perfil del producto se puede combinar con un módulo de unión a carbohidratos con afinidades de enlace más débiles o más fuertes, por ejemplo, afinidades específicas con la amilosa, afinidades específicas con la amilopectina o afinidades con la estructura específica en el carbohidrato. El híbrido se puede utilizar como un aditivo de cocción, por ejemplo, como una enzima anti-endurecimiento.

Los presentes inventores también han descubierto sorprendentemente que añadiendo un módulo de unión a carbohidratos (CBM) a una endo-amilasa la actividad y la especificidad se pueden alterar aumentando así la eficacia de diferentes procesos de degradación de almidón, por ejemplo, comprendiendo la degradación de la sustancia cruda, por ejemplo, almidón no gelatinizado al igual que almidón gelatinizado. Debido a la actividad de hidrólisis superior de estas endo-amilasas teniendo un CBM el proceso de conversión de almidón global se puede realizar sin tener que gelatinizar el almidón, es decir las endo-amilasas teniendo un CBM hidrolizan almidón granulado en un proceso de almidón crudo al igual que almidón completamente o parcialmente gelatinizado en un proceso de almidón tradicional.

Por consiguiente la invención proporciona en un primer aspecto un polipéptido que es un híbrido comprendiendo; una primera secuencia de aminoácidos teniendo actividad endo-amilasa y teniendo al menos un 60% de identidad con la secuencia de aminoácidos mostrada en la SEC ID NO: 35 y una segunda secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos y teniendo al menos un 60% de identidad con la secuencia de aminoácidos mostrada como los residuos de aminoácidos 485 a 586 en la SEC ID NO: 2, donde dicha primera secuencia de aminoácidos y/o dicho segundo amino se deriva de una bacteria.

La invención proporciona además un proceso preparando una masa o un producto comestible hecho de una masa, comprendiendo el proceso añadir el polipéptido del primer aspecto a la masa.

La invención proporciona además un proceso comprendiendo; (a) poner en contacto un almidón con un polipéptido según el primer aspecto, (b) incubar dicho almidón con dicho polipéptido durante un tiempo y a una temperatura suficiente para conseguir la conversión de al menos el 90% p/p de dicho sustrato de almidón en azúcares fermentables, (c) fermentar para producir un producto de fermentación, (d) opcionalmente recuperar el producto de fermentación.

La invención proporciona además un aditivo para mejorar el pan o la masa en forma de un granulado o polvo aglomerado comprendiendo el polipéptido del primer aspecto.

La invención proporciona además una secuencia de ADN codificando el polipéptido del primer aspecto.

La invención proporciona además un constructo de ADN comprendiendo la secuencia de ADN al igual que una célula huésped comprendiendo el constructo de ADN.

Descripción detallada de la invención

Enzimas híbridas

El polipéptido de la invención es una enzima híbrida comprendiendo una primera secuencia de aminoácidos teniendo actividad endo-amilasa, y una segunda secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos (CBM). El híbrido se puede producir por fusión de unas primeras secuencias de ADN codificando unas primeras secuencias de aminoácidos y unas segundas secuencias de ADN codificando unas segundas secuencias de aminoácidos, o el híbrido se puede producir como un gen completamente sintético basado en el conocimiento de las secuencias de aminoácidos de CBMs adecuados, enlazadores y dominios catalíticos.

15

35

El término "enzima híbrida" (también referido como, "proteína de fusión", "híbrido", "polipéptido híbrido" o "proteína híbrida") se usa aquí para caracterizar los polipéptidos de la invención comprendiendo una primera secuencia de aminoácidos comprendiendo al menos un módulo catalítico teniendo actividad endo-amilasa y una segunda secuencia de aminoácidos comprendiendo al menos un módulo de unión a carbohidratos donde la primera y la segunda están derivadas de distintas fuentes. El término "fuente" siendo entendido como por ejemplo, pero no limitado a, una enzima parental, o una variante de la misma, por ejemplo, una amilasa o glucoamilasa, u otra actividad catalítica comprendiendo un módulo catalítico adecuado y/o un CBM adecuado y/o un enlazador adecuado. No obstante el CBM también puede estar derivado de un polipéptido no teniendo ninguna actividad catalítica. La primera y la segunda secuencia de aminoácidos se pueden derivar de la misma cepa bacteriana, de cepas en las mismas especies, de especies estrechamente relacionadas u organismos menos relacionados. Preferiblemente la primera y la segunda secuencia de aminoácidos de los híbridos derivados de distintas fuentes, por ejemplo, de distintas enzimas de la misma cepa y/o especies, o por ejemplo, de cepas dentro de especies diferentes.

Los números de clasificación enzimáticos (números EC) referidos en la presente especificación están conforme a las Recomendaciones del Comité de Nomenclatura de la Unión Internacional de Bioquímica y Biología Molecular (http://www.chem.qmw.ac.uk/iubmb/enzyme/).

Enzimas híbridas como las denominadas en este caso incluyen especies comprendiendo una secuencia de aminoácidos de una endo-amilasa, es decir una alfa-amilasa (EC 3.2.1.1) la cual se enlaza (es decir, mediante unión covalente) a una secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos (CBM). La enzima híbrida es así una enzima capaz de catalizar hidrólisis de almidón en una endo-forma.

Enzimas híbridas conteniendo CBM, al igual que descripciones detalladas de la preparación y purificación de las mismas, se conocen en la técnica [véase, por ejemplo, WO 90/00609, WO 94/24158 y WO 95/16782, al igual que Greenwood et al. Biotechnology and Bioengineering 44 (1994) págs. 1295-1305]. Estas pueden, por ejemplo, prepararse transformando en una célula huésped un constructo de ADN comprendiendo al menos un fragmento de ADN codificando el módulo de unión a carbohidratos ligado, con o sin un enlazador, a una secuencia de ADN codificando la enzima de interés, y cultivando la célula huésped transformada para expresar el gen fundido. El enlazador puede ser una unión (es decir, comprendiendo 0 residuos), o un grupo corto de enlaces comprendiendo de aproximadamente 2 a aproximadamente 100 átomos de carbono, en particular de de 2 a 40 átomos de carbono. No obstante, el enlazador es preferiblemente una secuencia de 0 residuos de aminoácidos (p. ej., justo un enlace) o es de aproximadamente 2 a aproximadamente 100 residuos de aminoácidos, más preferiblemente de entre 2 y 40 residuos de aminoácidos, tal como de 2 a 15 residuos de aminoácidos. Preferiblemente el enlazador no es sensible a o al menos tiene una sensibilidad baja a la hidrólisis por una proteasa, la cual por ejemplo, puede estar presente durante la producción del híbrido y/o durante la aplicación industrial del híbrido. El CBM en una enzima híbrida del tipo en cuestión puede estar situado C-terminalmente, N-terminalmente o internamente en la enzima híbrida. En una forma de realización un polipéptido puede comprender más de un CBM, por ejemplo, dos CBMs; uno situado C-terminalmente, el otro N-terminalmente o los dos CBMs situados en serie C-terminalmente, N-terminalmente o internamente. No obstante, los polipéptidos con más de dos CBMs son igualmente contemplados.

55

Identidad del polipéptido

El término "identidad" del polipéptido se entiende como el grado de identidad entre dos secuencias indicando una derivación de la primera secuencia de la segunda. La identidad se puede determinar adecuadamente mediante programas informáticos conocidos en la técnica tales como GAP proporcionado en el paquete de programas GCG (Manual del Programa para el paquete informático Wisconsin, versión 8, agosto de 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, EEUU 53711) (Needleman, S.B. y Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453. Se usan los siguientes ajustes para la comparación de secuencias de aminoácidos: penalización de creación de gaps de 3.0 y penalización de extensión de gaps de 0.1. La parte pertinente de la secuencia de aminoácidos para la determinación de identidad es el polipéptido maduro, es decir sin el péptido señal.

Módulos de enlace de carbohidratos

Un módulo de unión a carbohidratos (CBM), o como frecuentemente es referido, un dominio de unión a carbohidratos (CBD), es una secuencia de aminoácidos de polipéptidos que se une preferentemente a un poli- u oligosacárido (carbohidrato), frecuentemente, pero no necesariamente de forma exclusiva, a una forma insoluble en agua (incluyendo cristalina) de la misma.

CBMs derivados de enzimas de degradación de almidón son frecuentemente referidos como módulos de unión a almidón o SBMs (CBMs que pueden ocurrir en determinadas enzimas amilolíticas, tales como determinadas glucoamilasas, o en enzimas tales como glucanotransferasas de ciclodextrina, o en endo-amilasas). Los SBMs son frecuentemente referidos como SBDs (Starch Binding Domains: Dominios de unión a almidón). Se prefieren para la invención CBMs los cuales son Módulos de unión a almidón.

Los CBMs se encuentran como partes integrales de polipéptidos grandes o proteínas que consisten en dos o más regiones de secuencia de aminoácidos de polipéptido, especialmente en enzimas hidrolíticas (hidrolasas) las cuales típicamente comprenden un módulo catalítico conteniendo el sitio activo para la hidrólisis del sustrato y un módulo de unión a carbohidratos (CBM) para la unión con el sustrato de carbohidrato en cuestión. Tales enzimas pueden comprender más de un módulo catalítico y uno, dos o tres CBMs, y opcionalmente además comprender una o más regiones de secuencia de aminoácidos de polipéptido conectando el CBM(s) con el módulo(s) catalítico, una región del tipo último normalmente denominada como "enlazador". También se han sido encontrado CBMs en algas, por ejemplo, en el alga roja *Porphyra purpurea* de alga en forma de una proteína de proteína de unión de polisacáridos no hidrolítica.

En proteínas/polipéptidos en las cuales ocurren CBMs (p. ej., enzimas, normalmente enzimas hidrolíticas), un CBM se puede localizar en el terminal N ó C o en una posición interna.

La parte de un polipéptido o proteína (p. ej., enzima hidrolítica) que constituye un CBM per se típicamente consiste en más de aproximadamente 30 y menos de aproximadamente 250 residuos de aminoácidos. El "Módulo de unión a carbohidratos de la Familia 20" o un módulo CBM-20 se define en el contexto de esta invención como una secuencia de aproximadamente 100 aminoácidos teniendo al menos un 45% de identidad con el Módulo de unión a carbohidratos (CBM) del polipéptido descrito en la Figura 1 por Joergensen *et al* (1997) en Biotechnol. Lett. 19: 1027-1031. El CBM comprende los últimos 102 aminoácidos del polipéptido, es decir la subsecuencia desde el aminoácido 582 al aminoácido 683. La numeración de las Familias de hidrolasa glucósida usadas en esta descripción sigue el concepto de Coutinho, P.M. & Henrissat, B. (1999) CAZy - servidor de enzimas carbohidratas activas en la URL: http://afmb.cnrs-mrs.fr/<"cazy/CAZY/index.html o alternativamente Coutinho, P.M. & Henrissat, B. 1999 la estructura modular de celulasas y otras enzimas activas de carbohidrato: un enfoque de base de datos integrada. En "Genetics, Biochemistry and Ecology of Cellulose Degradation", K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita and T. Kimura eds., Uni Publishers Co., Tokyo, pp. 15-23, y Bourne, Y. & Henrissat, B. 2001 Glycoside hydrolases and glycosyltransferases: families and functional modules, Current Opinion in Structural Biology 11: 593-600.

Ejemplos de enzimas que comprenden un CBM adecuado para el uso en el contexto de la invención son endo-amilasas (es decir, alfa-amilasas en EC 3.2.1.1), alfa-amilasas maltogénicas (EC 3.2.1.133), glucoamilasas (EC 3.2.1.3) o CGTasas (EC 2.4.1.19).

Se prefieren para la invención los CBMs de la Familia 20 del Módulo de unión a carbohidratos. Los CBMs de la familia CBM 20 adecuados para la invención se pueden derivar a partir de beta-amilasas de *Bacillus cereus* (SWISS-PROT P36924), o de CGTasas de *Bacillus circulans* (SWISSPROT P43379). Otros CBMs adecuados de la familia CBM 20 se pueden encontrar en la URL: http://afmb.cnrs-mrs.fr/<"cazy/CAZY/index.html).

Una vez se ha identificado una secuencia de nucleótidos codificando la región de unión a sustratos (unión a carbohidratos), o bien como ADNc o como ADN cromosómico, se puede manipular entonces en una variedad de maneras para fundir ésta a una secuencia de ADN codificando la enzima de interés. El fragmento de ADN codificando la secuencia de aminoácidos de unión a carbohidratos y el ADN codificando la enzima de interés se ligan después con o sin un enlazador. El ADN ligado resultante se puede manipular en una variedad de formas para conseguir la expresión.

Son adecuados para el uso en el contexto de la invención CBMs de origen de Bacillus, tales como un CBM20 de *Bacillus flavothermus* (Syn. *Anoxybacillus contaminans*), preferiblemente de la amilasa AMY1048 (SEC ID NO: 2 aquí), AMY1039, o AMY1079 (descrito como respectivamente las SEC ID NO1, 2 y 3 en la PCT/US2004/023031), las amilasas de Bacillus descritas en WO 2002068589 de Diversa, *Bacillus* sp. TS23 (Corea) (Lin, L.-L.; Sometido (01-MAR-1995) a las bases de datos EMBL/GenBank/DDBJ. Liu Lin, Food Industry Research Institute, Culture Collection and Research Center, 331 Food Road, Hsinchu, Taiwan 300, República de China).

En una forma de realización particular la secuencia del CBM tiene la secuencia de aminoácidos mostrada como los residuos de aminoácidos 485 a 586 en la SEC ID NO: 2 o la secuencia del CBM tiene una secuencia de aminoácidos teniendo al menos un 60%, al menos un 70%, al menos un 80% o incluso al menos un 90% de identidad con la secuencia de aminoácidos mencionada anteriormente.

En otra forma de realización preferida la secuencia del CBM tiene una secuencia de aminoácidos que difiere de la secuencia de aminoácidos mostrada como los residuos de aminoácidos 485 a 586 en la SEC ID NO: 2 en no más de 10 posiciones, no más de 9 posiciones, no más de 8 posiciones, no más de 7 posiciones, no más de 6 posiciones, no más de 5 posiciones, no más de 4 posiciones, no más de 2 posiciones, o incluso no más de 1 posición.

Secuencia de endo-amilasas

Las endo-amilasas que son apropiadas como la base para híbridos de CBM/amilasa de los tipos empleados en el contexto de la presente invención incluyen los de origen bacteriano y teniendo actividad endo-amilasa. La endo-actividad de la amilasa se puede determinar según el ensayo en la sección "Materiales y métodos" de la presente solicitud. Se prefieren las endo-amilasas derivadas de Bacillus sp., particularmente de B. licheniformis, B. amyloliquefaciens, B. stearothermophilus o B. flavotermus. La endo-amilasa es preferiblemente una endo-amilasa teniendo al menos un 60%, al menos un 70%, al menos un 80% o incluso al menos un 90% de identidad con la amilasa de Bacillus licheniformis (BLA, SEC ID NO: 8 en WO2002/010355) mostrada en la SEC ID NO: 35 aquí. Esto incluye pero de forma no limitativa la amilasa de la variante LE429 de B. licheniformis (WO2002/010355) mostrada en la SEC ID NO: 41 aquí, la amilasa de B. stearothermophilus (BSG, SEC ID NO: 6 en WO2002/010355) mostrada en la SEC ID NO: 36 aquí, la amilasa de B. amiloliquefaciens (BAN, SEC ID NO: 10 en WO2002/010355) mostrada en la SEC ID NO: 37 aquí, la amilasa de B. halodurans SP722 (SEC ID NO: 4 en WO2002/010355) mostrada en la SEC ID NO: 38 aquí, SP690 (WO9526397) mostrada en la SEC ID NO: 39 aquí, la amilasa de AA560 (SEC ID NO: 12 en WO2002/010355) mostrada en la SEC ID: 40 aquí, la amilasa de cepas de alcalino Bacillus como por ejemplo, SP707 (Tsukamoto et al., actividad endo-amilasa, 151 (1988), págs. 25-31.), la amilasa KSM-AP1378 (WO9700324/KAO), las amilasas KSM-K36 y KSM-K38 (EP 1,022,334-A/KAO/1,022,334-A/KAO), la amilasa SP7-7 (WO0210356/Henkel), y la amilasa AAI-6 (WO0060058), fragmentos de AMRK385 (PCT/DK01/00133), variantes o formas truncadas de lo anterior.

Preferiblemente la endo-amilasa es una enzima de tipo salvaje o la endo-amilasa es una endo-amilasa variante comprendiendo modificaciones de aminoácidos conduciendo a actividad aumentada y/o estabilidad de proteína aumentada a bajo pH, y/o a alto pH, estabilidad aumentada hacia la depleción de calcio, y/o estabilidad aumentada a temperatura elevada. Mutantes modificados química o genéticamente de tales endo-amilasas se incluyen a este respecto.

La endo-amilasa de *B. licheniformis* BLA mostrada en la SEC ID NO: 35 es una amilasa de tipo salvaje de un fragmento catalítico de 483 aminoácidos. El dominio catalítico se puede dividir en el dominio de núcleo central conteniendo el centro catalítico y un dominio C c-terminal para el dominio catalítico. En la Sec. ID 8/NN10062 el dominio de núcleo catalítico consiste en los primeros 396 aminoácidos y el dominio C se define como los aminoácidos del 397 al 483.

La variante de la endo-amilasa de *B. licheniformis*, LE429 mostrada en la SEC ID NO: 41 consiste en un fragmento catalítico de 481 aminoácidos. El dominio catalítico se puede dividir en el dominio de núcleo central conteniendo el centro catalítico y un dominio C c-terminal para el dominio catalítico. En la SEC ID NO: 41 el dominio de núcleo catalítico consiste en los primeros 394 aminoácidos y el dominio C se define como los aminoácidos del 395 al 481.

La endo-amilasa de *B. amiloliquefacience*, BAN mostrada en la SEC ID NO: 37 es una amilasa de tipo salvaje de un fragmento catalítico de 483 aminoácidos. El dominio catalítico se puede dividir en el dominio de núcleo central conteniendo el centro catalítico y un dominio C c-terminal para el dominio catalítico. En la SEC ID NO: 37 el dominio de núcleo catalítico consiste en los primeros 396 aminoácidos y el dominio C se define como los aminoácidos del 397 al 483.

La endo-amilasa de *B. stearothermophilus*, BSG mostrada en la SEC ID NO: 36 es un amilasa de tipo salvaje de un fragmento catalítico de 483 aminoácidos y además una extensión c-terminal. El dominio catalítico se puede dividir además en el dominio de núcleo central conteniendo el centro catalítico y un dominio C c-terminal para el dominio catalítico. En la SEC ID NO: 36 el dominio del núcleo catalítico consiste en los primeros 396 aminoácidos, el dominio C se define como los aminoácidos del 397 al 483 y la extensión c-terminal se define como los aminoácidos del 484 al 515.

La endo-amilasa de *B. halodurance* SP722 mostrada en la SEC ID NO: 38 es un amilasa de tipo salvaje de un fragmento catalítico de 485 aminoácidos. El dominio de núcleo se puede dividir además en el dominio AB central conteniendo el centro catalítico y un dominio C c-terminal para el dominio catalítico. En la SEC ID NO: 38 el dominio del núcleo catalítico consiste en los primeros aminoácidos 398 y el dominio C se define como los aminoácidos del 399 al 485.

La endo-amilasa de *Bacillus alcalina*, AA560 mostrada en la SEC ID: 40 aquí es un amilasa de tipo salvaje de un fragmento catalítico de 485 aminoácidos. El dominio de núcleo se puede dividir además en el dominio AB central conteniendo el centro catalítico y un dominio C c-terminal para el dominio catalítico. El dominio de núcleo catalítico consiste en los primeros 398 aminoácidos y el dominio C se define como los aminoácidos del 399 al 485. El dominio de núcleo catalítico se codifica por los nucleótidos 1-1194 y el dominio C se codifica por los nucleótidos 1189-1455.

En el primer aspecto la secuencia de endo-amilasas tiene la secuencia de aminoácidos mostrada en la SEC ID NO: 35, o la secuencia de endo-amilasas tiene una secuencia de aminoácidos teniendo al menos un 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97% o incluso al menos un 99% de identidad con cualquiera de las secuencias de aminoácidos mencionadas anteriormente.

En otra forma de realización preferida del primer aspecto la secuencia de endo-amilasas tiene una secuencia de aminoácidos que difiere de la secuencia de aminoácidos mostrada en la SEC ID NO: 35, en no más de 10 posiciones, no más de 9 posiciones, no más de 8 posiciones, no más de 7 posiciones, no más de 6 posiciones, no más de 5 posiciones, no más de 4 posiciones, no más de 3 posiciones, no más de 2 posiciones, o incluso no más de 1 posición.

En una forma de realización preferida del primer aspecto la secuencia de endo-amilasa tiene una secuencia de aminoácidos como se muestra en la SEQ ID: 40 (AA560), y comprendiendo una o más de las siguientes alteraciones R118K, D183*, G184*, N195F, R320K y R458K|.

15

En otra forma de realización particularmente preferida del primer aspecto la secuencia de endo-amilasa tiene una secuencia de aminoácidos como se muestra en la |SEQ ID: 40, y comprendiendo una o más, por ejemplo, así como todas, de las siguientes alteraciones R118K, D183*, G184*, N195F, R320K, R458K, N33S, D36N, K37L, E391I, Q394R, K395D, T452i y N484P.

En otra forma de realización particularmente preferida del primer aspecto la secuencia de endo-amilasas tiene una secuencia de aminoácidos como se muestra en la |SEQ ID: 40, y comprendiendo una o más, por ejemplo, así como todas, de las siguientes alteraciones R118K, D183*, G184*, N195F, R320K, R458K y N484Pl.

25

En otra forma de realización altamente preferida del primer aspecto la secuencia de endo-amilasas tiene una secuencia de aminoácidos como se muestra en la SEC ID NO: 37 y comprende una o más, p. ej así como todas las siguientes alteraciones: S31A, D32N, 133L, E178*, G179*, N190F, K389I, K392R, E393D, V508A.

Híbridos preferidos

En una forma de realización particular el híbrido de la invención tiene la secuencia de aminoácidos mostrada en la SEC ID NO: 4, o el híbrido de la invención tiene una secuencia de aminoácidos teniendo al menos un 60%, al menos un 70%, al menos un 80% o incluso al menos un 90% de identidad con la SEC ID NO: 4.

30

En otra forma de realización preferida el híbrido de la invención tiene una secuencia de aminoácidos que difiere de la secuencia de aminoácidos mostrada en la SEC ID NO: 4 en no más de 10 posiciones, no más de 9 posiciones, no más de 8 posiciones, no más de 7 posiciones, no más de 6 posiciones, no más de 4 posiciones, no más de 3 posiciones, no más de 2 posiciones, o incluso no más de 1 posición.

En una forma de realización preferida el polipéptido de la invención comprende a) el dominio catalítico mostrado en la SEC ID NO: 40 o un dominio catalítico homólogo, y b) el CBM mostrado como los residuos del 485 al 585 de la SEC ID NO: 2, donde una o más, o preferiblemente todas, de las siguientes sustituciones se han introducido: R118K, D183*, G184*, N195F, R320K, R458K, N33S, D36N, K37L, E391I, Q394R, K395D, T452Y y N484P, usando la numeración de la SEC ID nº: 40.

45

En otra forma de realización preferida el polipéptido de la invención comprende el dominio catalítico mostrado en la SEC ID NO: 40 o un dominio catalítico homólogo, y b) el CBM mostrado como los residuos del 485 al 585 de la SEC ID NO: 2, donde una o más, o preferiblemente todas, de las siguientes sustituciones se han introducido: R118K, D183*, G184*, N195F, R320K, R458K y N484P, usando la numeración de la SEC ID nº: 40.

50

En otra forma de realización preferida el polipéptido de la invención comprende el dominio catalítico mostrado en la SEQ.ID: 37 y comprende uno o más, por ejemplo así como todas las siguientes alteraciones: S31A, D32N, I33L, E178*, G179*, N190F, K3891; K392R, E393D, V508A y un CBM teniendo la secuencia de aminoácidos mostrada como los residuos de aminoácidos del 485 al 586 en la SEC ID NO: 2.

Estabilización de híbridos

Un híbrido de la invención puede ser volátil a la incursión proteolítica si el CBM y las proteínas de dominio catalítico no forman interacciones proteína-proteína suficientemente apretadas. No obstante, la estabilidad del híbrido se puede mejorar por sustituciones de introducción en la superficie de cualquiera de las proteínas para crear un híbrido estable.

Los presentes inventores han identificado los siguientes residuos de aminoácidos en la superficie de endo-amilasas bacterianas, por ejemplo, tales polipéptidos teniendo al menos un 60% de identidad con la amilasa de Bacillus licheniformis (SEC ID NO: 8), para estar en contacto cercano con el CBM comprendido en el híbrido de la invención, es decir a menos de 5.0 Å de distancia. Estos residuos son objetivos adecuados para mutaciones para hacer un híbrido estable: 12, 29, 30, 32, 33, 34, 35, 36, 37, 38, 368, 371, 372, 381, 383, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396,

422, 423, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 483, 484, 485 usando la numeración de la SEC ID nº: 40. El dominio catalítico del híbrido de la invención pueden comprender una o más sustituciones en las posiciones correspondientes a estos residuos.

El híbrido de la invención puede comprender a) el dominio catalítico mostrado en la SEC ID NO: 40 o un dominio catalítico homólogo, y b) el CBM mostrado como los residuos del 485 al 585 de la SEC ID NO: 2, donde una o más, o preferiblemente todas, de las siguientes sustituciones se han introducido: N33S, K35S/A, D36A/N/S, K37L, E391I, Q394R, K395D, N484A/P usando la numeración de la SEC ID nº: 40.

En la superficie del CBM que sobresale hacia el dominio catalítico del híbrido los siguientes residuos se encuentran en contacto cercano con el dominio catalítico, es decir dentro de un radio de 5.0 Å de distancia, y estos residuos son objetivos adecuados para mutaciones para hacer un híbrido estable: 485, 486, 487, 488, 507, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 538, 539, 540, 541, 553, 554, 555, 556, 557, 558, 559 usando la numeración de la SEC ID nº: 2.

Vectores de expresión

15

30

45

55

La presente invención también se refiere a vectores de expresión recombinantes que pueden comprender una secuencia de ADN que codifica la enzima híbrida, un promotor, una secuencia de péptido señal, y señales de parada traduccionales y transcripcionales. Los diferentes ADN y secuencias de control anteriormente descritas se pueden unir para producir un vector de expresión recombinante que puede incluir uno o más sitios de restricción convenientes para permitir la inserción o sustitución de la secuencia de ADN que codifica el polipéptido en tales sitios. Alternativamente, la secuencia de ADN de la presente invención se puede expresar por inserción de la secuencia de ADN o un constructo de ADN comprendiendo la secuencia en un vector apropiado para la expresión. En la creación del vector de expresión, la secuencia codificante se localiza en el vector de modo que la secuencia codificante está operativamente vinculada con las secuencias de control apropiadas para la expresión, y posiblemente la secreción.

El vector de expresión recombinante puede ser cualquier vector (p. ej., un plásmido o virus), que puede ser convenientemente sometido a procedimientos de ADN recombinante y pueden provocar la expresión de la secuencia de ADN. La elección del vector típicamente dependerá de la compatibilidad del vector con la célula huésped en la que el vector ha de ser introducido. Los vectores pueden ser plásmidos lineales o circulares cerrados. El vector puede ser un vector de replicación autónoma, es decir un vector que existe como una entidad extracromosómica, la replicación del cual es independiente de replicación cromosómica, por ejemplo, un plásmido, un elemento extracromosómico, un minicromosoma, un cósmido o un cromosoma artificial. El vector puede contener cualquier medio para asegurar la autorreplicación. Alternativamente, el vector puede ser uno que, introducido en la célula huésped, se integra en el genoma y replica con la cromosoma(s) en el cual se ha integrado. El sistema de vector puede ser un único vector o plásmido o dos o más vectores o plásmido que juntos contienen el ADN total a introducir en el genoma de la célula huésped, o un transposón.

Células huéspedes

La célula huésped de la invención, o bien comprendiendo un constructo de ADN o un vector de expresión comprendiendo la secuencia de ADN que codifica el polipéptido del primer aspecto, por ejemplo, una enzima híbrida, se usa ventajosamente como una célula huésped en la producción recombinante de la enzima híbrida, enzima de tipo salvaje o una enzima de tipo salvaje genéticamente modificada. La célula se puede transformar con un vector de expresión. Alternativamente, la célula se puede transformar con el constructo de ADN de la invención codificando la enzima híbrida o un enzima de tipo salvaje genéticamente modificada, integrando convenientemente el constructo de ADN (en una o más copias) en el cromosoma huésped. La integración del constructo de ADN en el cromosoma huésped se puede realizar según métodos convencionales, por ejemplo, por recombinación homóloga o heteróloga.

La célula huésped puede ser cualquier célula eucariótica o procariótica apropiada, por ejemplo, una célula bacteriana, una célula fúngica filamentosa, una célula de levadura, una célula vegetal o una célula mamífera.

Aislamiento y clonación de una secuencia de ADN codificando una endo-amilasa parental

Las técnicas usadas para aislar o clonar una secuencia de ADN que codifica el polipéptido del primer aspecto, por ejemplo, una enzima híbrida, se conocen en la técnica e incluyen el aislamiento de ADN genómico, la preparación de ADNc, o una combinación de los mismos. La clonación de las secuencias de ADN de la presente invención de tal ADN genómico se pueden efectuar, por ejemplo, usando la bien conocida reacción en cadena de la polimerasa (PCR) o la selección de anticuerpos de bibliotecas de expresión para detectar fragmentos de ADN clonados con características estructurales compartidas. Véase, por ejemplo, Innis *et al.*, 1990, PCR: A Guide to Methods and Application, Academic Press, Nueva York. Se pueden utilizar otros procedimientos de amplificación de ADN tales como la reacción en cadena de la ligasa (LCR), la transcripción activada ligada (LAT) y la amplificación basada en la secuencia de ADN (NASBA).

La secuencia de ADN codificando una endo-amilasa parental se puede aislar a partir de cualquier célula o microorganismo produciendo la endo-amilasa en cuestión, usando varios métodos bien conocidos en la técnica. Primero, se debería construir un ADN genómico y/o una genoteca de ADNc usando ADN cromosómico o ARN mensajero del organismo que produce la endo-amilasa a estudiar. Luego, si la secuencia de aminoácidos de la endo-amilasa es conocida, se pueden sintetizar sondas de oligonucleótidos marcadas y usar para identificar clones codificando endoamilasa a partir de una genoteca genómica obtenida a partir del organismo en cuestión. Alternativamente, una sonda de oligonucleótidos marcada conteniendo secuencias homólogas a otros genes de endo-amilasa conocidos se podría usar como una sonda para identificar clones codificando endo-amilasa, usando condiciones de hibridación y lavado de una astringencia muy baja a altísima.

Otro método para identificar clones codificando endo-amilasa implicarían insertar fragmentos de ADN genómico en un vector de expresión, tales como un plásmido, transformar bacterias endo-amilasas negativas con la genoteca de ADN resultante, y luego colocar en placas las bacterias transformadas sobre agar conteniendo un sustrato para la endo-amilasa (es decir, maltosa), permitiendo así que los clones expresen la endo-amilasa a identificar.

15

Alternativamente, la secuencia de ADN codificando la enzima se puede preparar sintéticamente por métodos estándar establecidos, por ejemplo, el método de fosforamidita descrito por S.L. Beaucage y M.H. Caruters, (1981), letras de tetraedro 22, p. 1859-1869, o el método descrito por Mattes et al. (1984), EMBO J. 3, p. 801-805. En el método de fosforamidita, se sintetizan oligonucleótidos, por ejemplo, en un sintetizador de ADN automático, se purifican, recuecen, ligan y clonan en vectores apropiados.

Finalmente, la secuencia de ADN puede ser de origen mezclado sintético y genómico, origen mezclado sintético y de ADNc u origen mezclado genómico y de ADNc, preparado ligando fragmentos de origen sintético, genómico o de ADNc (según sea apropiado, los fragmentos correspondientes a diferentes partes de la secuencia de ADN entera), conforme a técnicas estándar. La secuencia de ADN también se puede preparar por reacción en cadena de la polimerasa (PCR) usando cebadores específicos, por ejemplo como se describe en ÚS 4.683.202 o por R.K. Saiki et al. (1988), Science 239, 1988, págs. 487-491.

Secuencia de ADN aislada

La presente invención se refiere, entre otras cosas, a una secuencia de ADN aislada comprendiendo una secuencia de ADN que codifica un polipéptido del primer aspecto, por ejemplo, una enzima híbrida.

El término "secuencia de ADN aislada" como se utiliza en este caso se refiere a una secuencia de ADN, la cual está esencialmente libre de otra secuencias de ADN, por ejemplo, al menos aproximadamente un 20% pura, preferiblemente al menos aproximadamente un 40% pura, más preferiblemente al menos aproximadamente un 60% pura, incluso más preferiblemente al menos aproximadamente un 80% pura, y de la forma más preferible al menos aproximadamente un 90% pura como se determina por electroforesis de agarosa.

Por ejemplo, una secuencia de ADN aislada se puede obtener por procedimientos de clonación estándar usados en ingeniería genética para recolocar la secuencia de ADN de su ubicación natural a un sitio diferente dónde éste estará reproducido. Los procedimientos de clonación pueden implicar escisión y aislamiento de un fragmento de ADN deseado comprendiendo la secuencia de ADN que codifica el polipéptido de interés, inserción del fragmento en una molécula de vector, e incorporación del vector recombinante en una célula huésped dónde copias múltiples o clones de la secuencia de ADN estará replicada. Una secuencia de ADN aislada se puede manipular en una variedad de vías para proveer a expresión del polipéptido de interés. Manipulación de la secuencia de ADN antes de la inserción su en un vector necesario o puede ser deseable dependiendo del vector de expresión. Las técnicas para modificar secuencias de ADN utilizando métodos DNA recombinante se conocen bien en la técnica.

50

Constructo de ADN

La presente invención se refiere, entre otras cosas, a un constructo de ADN comprendiendo una secuencia de ADN que codifica un polipéptido del primer aspecto. "Constructo de ADN" se define aquí como una molécula de ADN, o bien bicatenaria o única, la cual se aísla a partir de un gen de origen natural o la cual se ha modificado para contener segmentos de ADN, los cuales se combinan y superponen de tal manera, que de otro modo no existirían en la naturaleza. El término constructo de ADN es sinónimo del término cassette de expresión cuando el constructo de ADN contiene todas las secuencias de control requeridas para la expresión de una secuencia codificante de la presente invención.

Mutagénesis dirigida

Una vez se ha aislado una secuencia de ADN codificando endo-amilasa parental adecuada para el uso en un polipéptido del primer aspecto, y se han identificado sitios deseables para la mutación, se pueden introducir mutaciones usando oligonucleótidos sintéticos. Estos oligonucleótidos contienen secuencias de nucleótidos flanqueando los sitios de mutación deseados. En un método específico, un fragmento monocatenario de ADN, la secuencia codificando en-

do-amilasa, se crea en un vector llevando el gen de endo-amilasa. Luego el nucleótido sintético, llevando la mutación deseada, se recuece a una parte homóloga del ADN monocatenario. El espacio restante se llena después con ADN polimerasa I (fragmento Klenow) y el constructo se liga usando la ligasa T4. Un ejemplo específico de este método se describe en Morinaga et al. (1984), Biotechnology 2, p. 646-639. US 4.760.025 describe la introducción de oligonucleótidos codificando mutaciones múltiples mediante la realización de alteraciones menores del casete. No obstante, una variedad incluso mayor de mutaciones se pueden introducir en cualquier momento por el método de Morinaga, porque se puede introducir una multitud de oligonucleótidos, de diferentes longitudes.

Otro método para introducir mutaciones en secuencias de ADN codificando endo-amilasa se describe en Nelson y Long, (1989), Analytical Biochemistry 180, p. 147-151. Éste implica la generación en 3 fases de un fragmento de PCR conteniendo la mutación deseada introducida usando una cadena de ADN químicamente sintetizada como uno de los cebadores en las reacciones de la PCR. Del fragmento generado por reacción en cadena de la polimerasa, un fragmento de ADN llevando la mutación se puede aislar por escisión con endo-nucleasas de restricción y reinsertar en un plásmido de expresión.

Mutagénesis aleatoria localizada

La mutagénesis aleatoria se puede localizar ventajosamente en una parte de la endo-amilasa parental en cuestión. Esto puede, por ejemplo, ser ventajoso cuando regiones determinadas de la enzima se han identificado por ser particularmente importantes para una propiedad dada de la enzima, y al modificarse se espera que resulten en un variante con propiedades mejoradas. Tales regiones se pueden identificar normalmente cuando la estructura terciaria de la enzima parental se ha dilucidado y relacionado con la función de la enzima.

25 La mutagénesis aleatoria localizada o de región específica se realiza convenientemente usando técnicas de mutagénesis generadas de PCR como se ha descrito anteriormente o cualquier otra técnica adecuada conocida en la técnica. Alternativamente, la secuencia de ADN codificando la parte de la secuencia de ADN a modificar se puede aislar, por ejemplo, por inserción en un vector adecuado, y dicha parte se puede someter posteriormente a mutagénesis usando cualquiera de los métodos de mutagénesis mencionados anteriormente.

Expresión de las enzimas en plantas

Una secuencia de ADN codificando una enzima de interés, tal como una enzima híbrida de la presente invención, se puede transformar y expresar en plantas transgénicas como se describe abajo.

La planta transgénica puede ser dicotiledónea o monocotiledónea, para abreviar una dicot o una monocot. Ejemplos de plantas monocot son hierbas, tales como poa de los prados (*Poa pratense*, Poa), hierba forrajera tal como Festuca, Lolium, césped templado, tal como Agrostis, y cereales, por ejemplo, trigo, avena, centeno, cebada, arroz, sorgo y maíz (en grano).

Ejemplos de plantas dicot son tabaco, leguminosas, tales como altramuces, patata, remolacha azucarera, guisantes, moldura y semilla de soja, y plantas crucíferas (de la familia Brassicaceae), tales como la coliflor, aceite de semilla de colza y el organismo modelo estrechamente relacionado Arabidopsis thaliana.

Ejemplos de partes de planta son vástago, callo, hojas, raíz, frutos, semillas, y tubérculos como weii como los tejidos individuales comprendiendo estas partes, por ejemplo, epidermis, mesophyli, parenchyma, tejidos vasculares, meristemas. En el presente contexto, también compartimentos de células vegetales específicos, tales como cloroplasto, apoplasto, mitocondria, vacuola, peroxisomas y citoplasma se consideran como partes de planta. Además, cualquier célula vegetal, cualquiera que sea el origen del tejido, se considera como una parte de planta. Asimismo, partes de planta tales como tejidos específicos y células aisladas para facilitar la utilización de la invención también se consideran partes de planta, por ejemplo, embriones, endospermas, aleurona y revestimientos de semillas.

También se incluye dentro del campo de la invención la progenie de tales plantas, partes de planta y células vegetales.

La planta transgénica o célula vegetal expresando la enzima de interés se puede construir conforme a métodos conocidos en la técnica. En resumidas cuentas la planta o célula vegetal se construye incorporando uno o más constructos de expresión codificando la enzima de interés en el genoma huésped de la planta y propagando la planta modificada resultante o célula vegetal en una planta transgénica o célula vegetal.

Convenientemente, el constructo de expresión es un constructo de ADN que comprende un gen codificando la enzima de interés en asociación operable con secuencias reguladoras apropiadas requeridas para la expresión del gen en la planta o parte de la planta de elección. Además, el constructo de expresión puede comprender un marcador seleccionable útil para identificar células huéspedes en las cuales el constructo de expresión se ha integrado y secuencias de ADN necesarias para introducir el constructo en la planta en cuestión (esto depende del método de introducción de ADN a usar).

9

15

30

La elección de secuencias reguladoras, así como secuencias de promotor y de terminador y opcionalmente secuencias de señal o de tránsito se determina, por ejemplo, basándose en cuándo, dónde y cómo se desea expresar la enzima. Por ejemplo, la expresión del gen codificando la enzima de la invención puede ser constitutiva o inducible, o puede ser desarrollable, específica de fase o tejido, y el producto genético se puede prever en un compartimiento celular, tejido o parte de planta específicos tales como semillas u hojas. Se describen secuencias reguladoras, por ejemplo, por Tague *et al*, Plant, Phys., 86, 506, 1988.

Para la expresión constitutiva se puede usar el 35S-CaMV, la ubiquitina de maíz 1 y el promotor de actina 1 de arroz (Franck et al. 1980. Cell 21: 285-294, Christensen AH, Sharrock RA y Quail 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mo. Biol. 18, 675-689.; Zhang W, McElroy D. y Wu R 1991, Analysis of rice Act1 5' region activity in transgenic rice plants. Plant Cell 3, 1155-1165). Promotores órgano-específicos pueden ser, por ejemplo, un promotor de tejidos sumidero de almacenamiento tales como semillas, tubérculos de patata, y frutos (Edwards & Coruzzi, 1990. Annu. Rev. Genet. 24: 275-303), o de tejidos sumidero metabólicos tales como meristemas (Ito et al., 1994. Plant Mol. Biol. 24: 863-878), un promotor de semilla específico tal como la glutelina, prolamina, globulina o promotor de albúmina de arroz (Wu et al., Plant and Cell Physiology Vol. 39, No. 8 págs. 885-889 (1998), un promotor Vicia faba de la legúmina B4 y el gen de proteína de semilla desconocido de Vicia faba descrito por Conrad U. et al, Journal of Plant Physiology Vol. 152, no. 6 págs. 708-711 (1998), un promotor de una proteína corporal de aceite de semilla (Chen et al., Plant and cell physiology vol. 39, nº. 9 págs. 935-941 (1998), el promotor napA de proteína de almacenamiento Brassica napus, o cualquier otro promotor específico de semilla conocido en la técnica, por ejemplo, como se describe en WO 91/14772. Además, el promotor puede ser un promotor específico de hoja tal como el promotor rbcs de arroz o tomate (Kiozuka et al., Plant Physiology Vol. 102, nº. 3 págs. 991-1000 (1993), el promotor de gen de metiltransferasa de adenina del virus chlorella (Mitra, A. y Higgins, DW, Plant Molecular Biology vol. 26, n°. 1 págs. 85-93 (1994), o el promotor del gen aldP de arroz (Kagaya et al., Molecular and General Genetics vol. 248, nº. 6 págs. 668-674 (1995), o un promotor inducible dañado tal como el promotor pin2 de patata (Xu et al, Plant Molecular Biology vol. 22, nº. 4 págs. 573-588 (1993). Asimismo, el promotor se puede inducir por tratamientos abióticos tales como temperatura, sequía o alteraciones en la salinidad o inducidas por sustancias exógenamente aplicadas que activan el promotor, por ejemplo, etanol, estrógenos, hormonas de planta como etileno, ácido abscísico y ácido giberélico y metales pesados.

Un elemento promotor intensificador se puede utilizar para conseguir una mayor expresión de la enzima en la planta. Por ejemplo, el elemento intensificador promotor puede ser un intrón el cual se coloca entre el promotor y la secuencia de nucleótidos codificando la enzima. Por ejemplo, Xu *et al.* op cit revela el uso del primer intrón del gen actina 1 de arroz para mejorar la expresión.

El gen marcador seleccionable y cualquier otra parte del constructo de expresión se pueden elegir a partir de las disponibles en la técnica.

El constructo de ADN se incorpora en el genoma de la planta según técnicas convencionales conocidas en la técnica, incluyendo transformación mediada por Agrobacterium, transformación mediada por virus, micro inyección, bombardeo de partículas, transformación biolística, y electroporación (Gasser *et al*, Science, 244, 1293; Potrykus, Bio/Techn. 8, 535, 1990; Shimamoto *et al*, Nature, 338, 274, 1989).

Actualmente, la transferencia genética mediada por *Agrobacterium tumefaciens* es el método de elección para generar dicots transgénicas (para revisión Hooikas & Schilperoort, 1992. Plant Mol. Biol. 19: 15-38), y también se pueden usar para transformar monocots, aunque se usan frecuentemente otros métodos de transformación para estas plantas. Actualmente, el método de elección para generar monocots transgénicas complementando el método del Agrobacterium es el bombardeo de partículas (oro microscópico o partículas de tungsteno revestidas con el ADN de transformación) de callos embrionarios o desarrollando embriones (Christou, 1992. Plant J. 2: 275-281; Shimamoto, 1994. Curr. Opin. Biotechnol. 5: 158-162; Vasil *et al.*, 1992. Bio/Technology 10: 667-674). Un método alternativo para la transformación de monocots se basa en la transformación de protoplastos como se describe por Omirulleh S, *et al.*, Plant Molecular biology Vol. 21, nº. 3 págs. 415-428 (1993).

La siguiente transformación, teniendo incorporados los transformantes el constructo de expresión se seleccionan y regeneran en plantas enteras según métodos bien conocidos en la técnica. Frecuentemente el procedimiento de transformación se diseña para la eliminación selectiva de genes de selección o bien durante la regeneración o en las siguientes generaciones usando por ejemplo, la co-transformación con dos constructos de T-ADN separados o una escisión sitio-específica del gen de selección por una recombinasa específica.

Productos a base de masa

La enzima híbrida de la presente invención se puede utilizar para la preparación de un producto basado en masa comestible tal como, pan, tortillas, pasteles, panqueques, bizcochos, galletas, costras de pastel, más preferiblemente productos horneados, tales como, productos de pan.

La masa usada para preparar el producto basado en masa generalmente comprende harina, por ejemplo, de granos, tal como, harina de trigo, harina de maíz, harina de centeno, harina de avena, o harina de sorgo. La masa generalmente

se leuda por la adición de un cultivo de levadura adecuado, tal como un cultivo de *Saccharomyces cerevisiae* (levadura de panadero) o un agente de leudación químico.

El producto basado en masa comestible puede ser preferiblemente cualquier tipo de producto horneado obtenido a partir de masa, tanto de carácter blando como crujiente, tanto de tipo blanco, claro u oscuro. Productos a base de masa comestibles preferidos incluyen pan (en particular pan blanco, de trigo, integral, bajo en carbohidratos, marrón, multi-cereales, oscuro y de centeno), típicamente en forma de barras, panecillos o bollos, y más preferiblemente, pan árabe, panecillos de hamburguesa, pan de tipo Baguette francesa, pan pita, tortillas, pasteles, panqueques, bizcochos, galletas, costras de pastel, pan crujiente, pan vaporizado, corteza de pizza y similares.

El producto a base de masa comestible se hace calentando la masa, por ejemplo, por cocción o vaporización. Ejemplos son el pan horneado o vaporizado (en particular el pan blanco, integral o de centeno), típicamente en forma de barras o bollos. El producto comestible a base de masa también se puede preparar por fritura (p. ej., fritura profunda en grasa o aceite caliente). Un ejemplo de tal producto comestible es un donut.

La enzima híbrida del primer aspecto de la invención tiene preferiblemente una alta tolerancia a la sobredosificación. La adición del polipéptido de la invención, por ejemplo, el polipéptido del primer aspecto, en 2 veces, 3 veces, preferiblemente 4 veces, más preferiblemente 5 veces, de la forma más preferible 6 veces la dosis eficaz de dicho polipéptido a una masa resulta en un ELR y/o un ELRN inferior al 15%, menos del 10%, menos del 7%, menos del 6%, menos del 5%, menos del 4% o incluso menos del 3%.

El polipéptido de la invención puede tener una actividad residual de al menos un 20%, tal como al menos un 25% o un 30%, preferiblemente al menos un 35%, más preferiblemente al menos un 40% y de la forma más preferible al menos un 50%, en las condiciones de prueba dadas en la especificación.

El polipéptido de la presente invención puede tener además una proporción exo-a-endo mejorada definida como IEF1 o IEF2 en la especificación. La IEF1 o IEF2 del polipéptido puede ser más grande que 1, tal como 1,1 ó 1,5, preferiblemente 2 ó 2,5 o 3, más preferiblemente 3,5 ó 4, de la forma más preferible 5 ó 7 ó 10.

En otras formas de realización la invención proporciona polipéptidos con características que son de interés particular para objetivos de cocción, concretamente una actividad residual de al menos un 25% a 70°C en las condiciones de prueba dadas en la especificación, una proporción exo-a-endo aumentada (IEF), donde IEF es más grande que 1, y finalmente una firmeza reducida inferior a un 5% (en las condiciones de prueba dadas en la especificación) mientras que el cambio en la dureza es de al menos 85 unidades (en las condiciones de prueba dadas en la especificación) y/o el cambio de movilidad de agua libre es de al menos 1100 unidades (en las condiciones de prueba dadas en la especificación).

Para fines de cocción el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 5%, mientras que la dureza d, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 85 unidades, tal como 90 unidades o 100 unidades, preferiblemente 150 unidades o 200 unidades, más preferiblemente 250 unidades o 300 unidades, de la forma más preferible 400 unidades o 600 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 4%, mientras que la dureza d, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 85 unidades, tal como 90 unidades o 100 unidades, preferiblemente 150 unidades o 200 unidades, más preferiblemente 250 unidades o 300 unidades, de la forma más preferible 400 unidades o 600 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 2%, mientras que la dureza d, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 85 unidades, tales como 90 unidades o 100 unidades, preferiblemente 150 unidades o 200 unidades, más preferiblemente 250 unidades o 300 unidades, de la forma más preferible 400 unidades o 600 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 1%, mientras que la dureza d, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 85 unidades, tales como 90 unidades o 100 unidades, preferiblemente 150 unidades o 200 unidades, más preferiblemente 250 unidades o 300 unidades, de la manera más preferible 400 unidades o 600 unidades.

Cuando el polipéptido de la invención se añade junto con 300 MANU Novamyl®/kg de harina éste puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 5%, mientras la dureza d, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 15 unidades, tales como 20 unidades o 30 unidades, preferiblemente 40 unidades o 50 unidades, más preferiblemente 60 unidades o 70 unidades, de la forma más preferible 85 unidades o 100 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 4%, mientras la dureza d, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 15 unidades, tal como 20 unidades o 30 unidades, preferiblemente 40 unidades o 50 unidades, más preferiblemente 60 unidades o 70 unidades, de la forma más preferible 85 unidades o 100 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 2%, mientras la dureza d, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 15 unidades, tal como 20 unidades o 30 unidades, preferiblemente 40 unidades o 50 unidades, preferiblemente 40 unidades, de la forma

11

15

25

más preferible 85 unidades o 100 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 1%, mientras dHardness (dureza d), cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 15 unidades, tal como 20 unidades o 30 unidades, preferiblemente 40 unidades o 50 unidades, más preferiblemente 60 unidades o 70 unidades, de la forma más preferible 85 unidades o 100 unidades.

Para fines de cocción el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 5%, mientras dMobility (movilidad d), cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 300 unidades, tal como 400 unidades o 500 unidades, preferiblemente 600 unidades o 700 unidades, más preferiblemente 800 unidades o 900 unidades, de la forma más preferible 1000 unidades o 1200 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 4%, mientras dMobility, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 300 unidades, tal como 400 unidades o 500 unidades, preferiblemente 600 unidades o 700 unidades, más preferiblemente 800 unidades o 900 unidades, de la forma más preferible 1000 unidades o 1200 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción en la firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 2%, mientras dMobility, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 300 unidades, tal como 400 unidades o 500 unidades, preferiblemente 600 unidades o 700 unidades, más preferiblemente 800 unidades o 900 unidades, de la forma más preferible 1000 unidades o 1200 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando medido en las condiciones de prueba dadas en la especificación, de al menos 1%, mientras dMobility, cuando medido en las condiciones de prueba dadas en la especificación, es al menos 300 unidades, tales como 400 unidades o 500 unidades, preferiblemente 600 unidades o 700 unidades, más preferiblemente 800 unidades o 900 unidades, de la forma más preferible 1000 unidades o 1200 unidades.

25

Cuando el polipéptido de la invención se añade junto con 300 MANU Novamyl®/kg de harina éste puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 5%, mientras dMobility, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 1000 unidades, tal como 1100 unidades o 1200 unidades, preferiblemente 1400 unidades o 1500 unidades, más preferiblemente 1800 unidades o 2000 unidades, de la forma más preferible 2200 unidades o 2500 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 4%, mientras dMobility, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 1000 unidades, tal como 1100 unidades o 1200 unidades, preferiblemente 1400 unidades o 1500 unidades, más preferiblemente 1800 unidades o 2000 unidades, de la forma más preferible 2200 unidades o 2500 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 2%, mientras dMobility, cuando se mide en las condiciones de prueba dadas en la especificación, es al menos 1000 unidades, tal como 1100 unidades o 1200 unidades, preferiblemente 1400 unidades o 1500 unidades, más preferiblemente 1800 unidades o 2000 unidades, de la forma más preferible 2200 unidades o 2500 unidades. En otra forma de realización el polipéptido de la invención puede dar una reducción de firmeza, cuando se mide en las condiciones de prueba dadas en la especificación, de al menos un 1%, mientras dMobility, cuando se mide en las condiciones de prueba dadas en la especificación, es de al menos 1000 unidades, tal como 1100 unidades o 1200 unidades, preferiblemente 1400 unidades o 1500 unidades, más preferiblemente 1800 unidades o 2000 unidades, de la forma más preferible 2200 unidades o 2500 unidades.

45

Los valores anteriores para la reducción de la firmeza, dHardness y dMobility son particularmente relevantes para el pan, en particular para el pan preparado por el método de esponja y masa. Una correlación similar entre reducción de firmeza y dHardness y dMobility se describe en el Ejemplo 7.

50 Enzima adicional opcional

La enzima híbrida de la presente invención se puede usar opcionalmente junto con una o más enzimas adicionales y/o agentes antiendurecimiento.

Agentes antiendurecimiento incluyen, pero de forma no limitativa, emulsionantes, hidrocoloides y agentes antiendurecimiento enzimáticos. Como se utiliza en este caso, un agente antiendurecimiento se refiere a un agente químico, enzimático o biológico que puede retardar el endurecimiento de los productos a base de masa, es decir, que puede reducir el índice de deterioro de la blandura del producto a base de masa durante el almacenamiento. La blandura de productos a base de masa (y el efecto antiendurecimiento del agente antiendurecimiento) se puede evaluar empíricamente por los panaderos expertos o medir usando un analizador de textura (por ejemplo; TAXT2), como se conoce en la técnica.

Ejemplos de agentes antiendurecimiento químicos incluyen lípidos polares, por ejemplo, ácidos grasos y sus ésteres de monoglicéridos, tales como, se describe en la patente estadounidense nº. 4.160.848.

55

El agente antiendurecimiento puede ser una enzima antiendurecimiento, la cual preferiblemente se añade a la masa antes de cocinarla (p. ej., hornearla). Ejemplos de enzimas antiendurecimiento incluyen, sin limitación, endo-amilasas, tales como los híbridos de la invención, exo-endo-amilasas, tales como, por ejemplo, la exo-amilasa descrita

en la patente estadounidense n°. 6.667.065 y US 2004/0043109, pululanasas, glicosiltransferasas, amiloglicosidasas, enzimas de ramificación (enzima ramificadora 1,4-alfa-glyucan), 4-alfa-glyucanotransferasas (transferasa de dextrina), beta-amilasas, alfa-amilasas maltogénicas, lipasas, fosfolipasas, galactolipasas, aciltransferasas, pectato liasas, xilanasas, endotransglucosilasas de xiloglucano, proteasas, por ejemplo, como se describe en WO 2003/084331, peptidasas y combinaciones de las mismas.

La amilasa puede ser de un hongo, bacteria o planta. Puede ser una endo-amilasa, por ejemplo, de Bacillus, particularmente *B. licheniformis* o *B. amyloliquefaciens*, una beta-amilasa, por ejemplo, de planta (p. ej., soja) o de fuentes microbianas (por ejemplo, Bacillus), tal como la alfa-amilasa de *Bacillus clausii* no maltogénica descrita en WO9950399A2, la amilasa *Pseudomonas saccharofilia* en la SEC ID NO: 1 de WO 2004111217, o una glucoamilasa, o una endo-amilasa fúngica, por ejemplo, de *A. niger* o *A. oryzae*.

Más preferiblemente, la enzima adicional es una enzima de antiendurecimiento y preferiblemente la enzima de antiendurecimiento es una amilasa maltogénica (EC 3.2.1.133). Las amilasas maltogénicas se añaden a la masa en una cantidad eficaz para retardar el endurecimiento del producto, tal como, al menos 500 MANU/kg de harina, más preferiblemente en una cantidad de al menos 500 a 1500 MANU/kg de harina. Una amilasa maltogénica se puede obtener de cualquier fuente adecuada, tal como derivada de una bacteria, tal como Bacillus, preferiblemente *B. stearothermophilus*, por ejemplo, de la cepa NCIB 11837 o una variante de la mismo hecha por modificación de aminoácido (EP 494233 B1, Pat n°. 6.162.628). La amilasa maltogénica se puede añadir preferiblemente en una dosis de 20 a 2000 MANU/kg de harina, preferiblemente 500 a 1000 MANU/kg de harina, más preferiblemente, al menos 750 MANU/kg de harina, al menos 1000 MANU/kg de harina. Una amilasa maltogénica preferida es Novamyl[®] (disponible a través de Novozymes A/S).

En otra forma de realización preferida, la enzima antiendurecimiento es una xilanasa. La xilanasa se puede obtener de cualquier fuente adecuada, por ejemplo, de Bacillus, por ejemplo, *Bacillus subtilis*, como se describe en WO 2003/010923, WO 2001/066711 o WO 2000/039289, y Aspergillus, en particular de *A. aculeatus, A. niger, A. awamori*, o *A. tubigensis* o Trichoderma y Thermomyces como se describe en WO 96/32472, por ejemplo, *T. reesei*, o de una cepa de Humicola, por ejemplo, *H. insolens*. Opcionalmente, una enzima adicional se puede utilizar con las enzimas antiendurecimiento anteriores, tales como, una enzima lipolítica, particularmente actividad fosfolipasa, galactoilipasa y/o triacil glicerol lipasa, por ejemplo, como se describe en WO 9953769, WO 0032758, WO 0200852 o WO 2002066622. O por ejemplo, una transglutaminasa, una enzima celulítica, por ejemplo, una celulasa, una aciltransferasa, una proteína disulfuro isomerasa, una pectinasa, una pectato liasa, una oxidorreductasa. La enzima puede ser de cualquier origen, incluyendo de origen mamífero, vegetal, y preferiblemente microbiano (bacteriano, de levadura o fúngico) y se puede obtener por técnicas usadas de forma convencional en la técnica.

La enzima adicional también puede ser una enzima lipolítica, particularmente actividad fosfolipasa, galactoilipasa y/o triacil glicerol lipasa, por ejemplo, como se describe en WO 9953769, WO 0032758, WO 0200852 o WO 2002066622.

Además, la enzima adicional puede ser una segunda amilasa, una glucanotransferasa de ciclodextrina, una proteasa o peptidasa, en particular una exopeptidasa, una transglutaminasa, una lipasa, una fosfolipasa, una celulasa, una hemicelulasa, una glicosiltransferasa, una enzima ramificadora (enzima ramificadora 1,4-alfa-glucano) o una oxidorreductasa. La enzima adicional puede ser de origen mamífero, vegetal o microbiano (bacteriano, de levadura o fúngico).

La segunda amilasa puede ser de un hongo, bacteria o planta. Puede ser una amilasa maltogénica (EC 3.2.1.133), por ejemplo, de *B. stearothermophilus*, una endo-amilasa, por ejemplo, de Bacillus, particularmente *B. licheniformis* o *B. amyloliquefaciens*, una beta-amilasa, por ejemplo, de planta (p. ej., soja) o de fuentes microbianas (por ejemplo, Bacillus), una glucoamilasa, por ejemplo, de *A. niger*, o una endo-amilasa fúngica, por ejemplo, de *A. oryzae* o de *Pseudomonas saccharofilia* tal como la alfa-amilasa no maltogénica descrita en WO9950399A2.

La hemicelulasa puede ser una pentosanasa, por ejemplo, una xilanasa que puede ser de origen microbiano, por ejemplo, derivada de una bacteria u hongo, tal como una cepa de Aspergillus, en particular de *A. aculeatus, A. niger, A. awamori*, o *A. tubigensis*, de una cepa de Trichoderma, por ejemplo, *T. reesei*, o de una cepa de Humicola, por ejemplo, *H. insolens*.

La proteasa puede ser de Bacillus, por ejemplo, *B. amyloliquefaciens*.

La oxidorreductasa puede ser una glucosa oxidasa, una carbohidrato oxidasa, una hexosa oxidasa, una lipoxigenasa, una peroxidasa, o una lacasa.

Aditivo de mejora de la masa y/o del pan

15

25

La enzima híbrida de la presente invención se puede proporcionar como una masa y/o aditivo de mejora del pan en forma de un granulado o polvo aglomerado. La masa y/o aditivo de mejora del pan puede tener preferiblemente una distribución del tamaño de las partículas reducida con más de un 95% (en peso) de las partículas en el rango de 25 a 500 μM.

En una forma de realización preferida una composición, por ejemplo, un aditivo de mejora del pan, se produce en un proceso que incluye las etapas de; a) proporcionar una primera secuencia de aminoácidos teniendo actividad endoamilasa; b) proporcionar una segunda secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos; c) y construir un polipéptido comprendiendo dicha primera secuencia de aminoácidos y segunda secuencia de aminoácidos; d) proporcionar una secuencia de ADN codificando dicho polipéptido; e) expresar dicha secuencia de ADN en una célula huésped adecuada y recuperar dicho polipéptido; f) añadir dicho polipéptido a harina o a un granulado o polvo aglomerado.

Los granulados y polvos aglomerados se pueden preparar por métodos convencionales, por ejemplo, pulverizando la amilasa, es decir la enzima híbrida, sobre un portador en un granulador de lecho fluidizado. El portador puede consistir en núcleos granulosos con un tamaño de partícula adecuado. El portador puede ser soluble o insoluble, por ejemplo, una sal (tal como NaCl o sulfato de sodio), un azúcar (tal como sacarosa o lactosa), un alcohol de azúcar (tal como sorbitol), almidón, arroz, sémola de maíz, o soja.

Tratamiento de almidón

15

2.5

45

60

El polipéptido de esta invención, es decir una endo-amilasa con un CBM, posee propiedades valiosas que permiten una variedad de aplicaciones industriales. En particular, enzimas del primer aspecto son aplicables como un componente en composiciones detergentes de lavado, lavado de vajilla y limpieza de superficie duras. Numerosas variantes son particularmente útiles en la producción de edulcorantes y etanol de almidón, y/o para el desencolado textil. Un ejemplo de producción de etanol, donde se puede utilizar una endo-amilasa de la invención se describe en la patente estadounidense nº. 5.231.017 la cual se incorpora por referencia por la presente.

Además, un proceso donde se puede utilizar una endo amilasa de la invención se describe en la solicitud de patente danesa PA 2003 01568 (por la presente incorporada por referencia). Dicho proceso comprende hidrolizar almidón en un hidrolizado de almidón soluble a una temperatura inferior a la temperatura de gelatinización inicial de dicho almidón granulado. Otro proceso adecuado se describe en WO2004081193 (por la presente incorporado por referencia).

Condiciones para procesos de conversión de almidón convencionales, incluyendo la licuefacción de almidón y/o procesos de sacarificación se describen en, por ejemplo, 3.912.590 y en las publicaciones de patente EP Nos. 252.730 y 63.909.

Un uso preferido es en un proceso de fermentación donde un sustrato de almidón se licúa y/o sacarifica en presencia de la endo-amilasa teniendo un CBM para producir glucosa y/o maltosa, por ejemplo, para el uso como edulcorantes o adecuado para la conversión en un producto de fermentación por un organismo de fermentación, preferiblemente una levadura. Tales procesos de fermentación incluyen un proceso para producir etanol para etanol combustible o potable (alcohol portátil), un proceso para producir una bebida, un proceso para producir compuestos orgánicos, tal como ácido cítrico, ácido itacónico, ácido láctico, ácido glucónico; cetonas; aminoácidos, tales como ácido glutámico (monoglutaminato de sodio), pero también más compuestos complejos tales como antibióticos, tales como penicilina, tetraciclina; enzimas; vitaminas, tales como riboflavina, B12, betacarotenos; hormonas, las cuales son difíciles de producir sintéticamente.

Producción de edulcorantes de almidón

Un proceso "tradicional" para la conversión de almidón a jarabes de fructosa normalmente consiste en tres procesos enzimáticos consecutivos, es decir, un proceso de licuefacción seguido de un proceso de sacarificación y un proceso de isomerización. Durante el proceso de licuefacción, el almidón se degrada a dextrinas por una endo-amilasa, preferiblemente por una endo-amilasa con un CBM, tal como el polipéptido de la invención a valores de pH de entre 5.5 y 6.2 y a temperaturas de 95-160°C durante un periodo de aprox. 2 horas. Para asegurar una estabilidad enzimática óptima bajo estas condiciones, se añade 1 mM de calcio (40 ppm de iones de calcio libres).

Después del proceso de licuefacción las dextrinas se convierten en dextrosa por la adición de una glucoamilasa (por ejemplo, AMGTM) y una enzima desramificante, tal como una isoamilasa o una pululanasa (p. ej., PromozymeTM). Antes de esta fase el pH se reduce a un valor inferior a 4.5, manteniendo la alta temperatura (por encima de 95°C), y se desnaturaliza la actividad endo-amilasa liquefactante. La temperatura se baja a 60°C, y se agrega glucoamilasa y enzima desramificante. El proceso de sacarificación continúa durante 24-72 horas.

Después del proceso de sacarificación el pH se aumenta a un valor en el rango de pH de 6-8, preferiblemente 7.5, y el calcio se retira por intercambio iónico. El jarabe de dextrosa se convierte luego en jarabe rico en fructosa usando, por ejemplo, una glucosaisomerasa inmovilizada (tal como SweetzymeTM).

En una forma de realización de un proceso de almidón de la invención, se descompone materia prima de grano entero gelatinizada molida (hidrolizada) en maltodextrinas (dextrinas) principalmente de un DE superior a 4 usando el polipéptido del primer aspecto. La materia prima es en una forma de realización de la invención grano molido (entero).

En una forma de realización de la invención, se lleva a cabo una licuefacción enzimática como un proceso de compuesto acuoso caliente de tres pasos. El compuesto acuoso se calienta a entre 60-95°C, preferiblemente 80-85°C, y la(s) enzima(s) se añade(n) para iniciar la licuefacción (dilución), se añade al menos un polipéptido del primer aspecto. Entonces el compuesto acuoso se cuece a chorro a una temperatura entre de 95-140°C, preferiblemente 105-125°C para completar la gelanitización del compuesto acuoso. Luego el compuesto acuoso se enfría a 60-95°C y más enzima(s), preferiblemente comprendiendo el polipéptido del primer aspecto, se añade(n) para finalizar la hidrólisis (licuefacción secundaria). El proceso de licuefacción se realiza a pH 4.5-6.5, en particular a un pH entre 5 y 6. Los granos enteros molidos y licuados se conocen como masa. El polipéptido del primer aspecto se puede añadir en cantidades eficaces bien conocidas por el experto en la técnica.

En un aspecto el proceso puede comprender; a) poner en contacto un sustrato de almidón con una endo-amilasa teniendo un CBM, por ejemplo, el polipéptido del primer aspecto; b) incubar dicho sustrato de almidón con dicho polipéptido y una alfa-amilasa fúngica y/o o una glucoamilasa durante un tiempo y a una temperatura suficiente para conseguir la licuefacción y la sacarificación de al menos un 90%, o al menos un 92%, al menos un 94%, al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98%, al menos un 99%, al menos un 99,5% p/p de dicho sustrato de almidón en azúcares fermentables; c) fermentar hasta producir un producto de fermentación, d) opcionalmente recuperar el producto de fermentación.

En otro aspecto el proceso comprendiendo la licuefacción y/o la hidrólisis de un compuesto acuoso de almidón gelatinizado o granulado, en particular la licuefacción y/o la hidrólisis de almidón granulado en un hidrolizado de almidón soluble a una temperatura por debajo de la temperatura de gelatinización inicial de dicho almidón granulado. Además de haberse puesto en contacto con un polipéptido de la invención, p. ej, el polipéptido del primer aspecto, el almidón se puede poner en contacto con una enzima seleccionada del grupo que consiste en; una alfa-amilasa fúngica (EC 3.2.1.1), una beta-amilasa (E.C. 3.2.1.2), y una glucoamilasa (E.C.3.2.1.3). En una forma de realización se puede añadir además una enzima desramificante, tal como una isoamilasa (E.C. 3.2.1.68) o unas pululanasas (E.C. 3.2.1.41).

En una forma de realización el proceso se lleva a cabo a una temperatura por debajo de la temperatura de gelatinización inicial. Preferiblemente la temperatura en la cual los procesos se llevan a cabo es al menos 30°C, al menos 31°C, al menos 32°C, al menos 33°C, al menos 34°C, al menos 35°C, al menos 36°C, al menos 37°C, al menos 38°C, al menos 36°C, al menos 37°C, al menos 38°C, al menos 40°C, al menos 40°C, al menos 42°C, al menos 43°C, al menos 44°C, al menos 45°C, al menos 52°C, al menos 55°C, al menos 55°

El compuesto acuoso de almidón a usar en cualquiera de los aspectos anteriores pueden tener un 20-55% de almidón granulado de sólidos secos, preferiblemente un 25-40% de almidón granulado de sólidos secos, más preferiblemente un 30-35% de almidón granulado de sólidos secos. Después de ponerse en contacto con la endo-amilasa teniendo un CBM, p. ej, el polipéptido del primer aspecto al menos un 85%, al menos un 86%, al menos un 87%, al menos un 88%, al menos un 89%, al menos un 90%, al menos un 91%, al menos un 92%, al menos un 93%, al menos un 94%, al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98%, o preferiblemente al menos un 99% de los sólidos secos del almidón granulado se convierte en un hidrolizado de almidón soluble.

La endo-amilasa con un CBM, p. ej, el polipéptido del primer aspecto, se puede utilizar en un proceso para la licuefacción, la sacarificación de un almidón gelatinizado, por ejemplo, pero no limitándose a la gelatinización por cocinado a chorro. El proceso puede comprender la fermentación para producir un producto de fermentación, por ejemplo, etanol. Tal proceso para producir etanol a partir de material conteniendo almidón por fermentación comprende: (i) licuefactar dicho material conteniendo almidón con una endo-amilasa conteniendo un CBM, p. ej, el polipéptido del primer aspecto; (ii) sacarificar la masa licuada obtenida; (iii) fermentar el material obtenido en la fase (ii) en presencia de un organismo de fermentación. Opcionalmente el proceso comprende además la recuperación del etanol. La sacarificación y la fermentación se pueden realizar como una proceso de sacarificación y fermentación simultáneas (proceso SSF). Durante la fermentación el contenido de etanol alcanza al menos un 7%, al menos un 8%, al menos un 9%, al menos un 10% tal como al menos un 11%, al menos un 12%, al menos un 13%, al menos un 14%, al menos un 15% tal como al menos un 16% de etanol.

El almidón a procesar en cualquiera de los procesos anteriores se puede obtener en particular a partir de tubérculos, raíces, tallos, leguminosas, cereales o grano entero. Más específicamente el almidón granulado se puede obtener a partir de granos, mazorcas, trigo, cebada, centeno, milo, sagú, mandioca, tapioca, sorgo, arroz, guisantes, judías, plátanos o patatas. Se contemplan especialmente ambos tipos ceroso y no ceroso de maíz y cebada.

65

Composiciones de la invención

La invención también se refiere a una composición comprendiendo el polipéptido del primer aspecto. La composición puede comprender además una enzima seleccionada del grupo comprendido por; una alfa-amilasa fúngica (EC 3,2,1,1), una beta-amilasa (E.C. 3,2,1,2), una glucoamilasa (E.C.3,2,1,3) y unas pululanasas (E.C. 3,2,1,41). La glucoamilasa puede derivar preferiblemente de una cepa de *Aspergillus* sp., tal como *Aspergillus* niger, o de una cepa de *Talaromyces* sp. y en particular derivar de *Talaromyces leycettanus* tal como la glucoamilasa descrita en la patente estadounidense nº. Re. 32.153, *Talaromyces duponti* y/o *Talaromyces thermopiles* tales como las glucoamilasas descritas en la patente estadounidense nº. 4.587.215 y más preferiblemente se deriva de *Talaromyces emersonii*. De la forma más preferible la glucoamilasa se deriva de la cepa CBS 793.97 de *Talaromyces emersonii* y/o teniendo la secuencia descrita como la SEC ID nº: 7 en WO 99/28448. Es más preferible una glucoamilasa teniendo una secuencia de aminoácidos teniendo al menos un 50%, al menos un 60%, al menos un 70%, al menos un 80%, al menos un 90% o incluso al menos un 95% de homología con la secuencia de aminoácidos mencionada. Una preparación de glucoamilasa de Talaromyces comercial se suministra por Novozymes A/S como Spirizyme Fuel.

15

También se prefieren para una composición comprendiendo el polipéptido del primer aspecto y una glucoamilasa polipéptidos teniendo actividad glucoamilasa los cuales se derivan de una cepa del género Trametes, preferiblemente *Trametes cingulata*. Se prefieren además polipéptidos teniendo actividad glucoamilasa y conteniendo al menos un 50%, al menos un 60%, al menos un 70%, al menos un 80%, al menos un 90% o incluso al menos un 95% de homología con los aminoácidos para los aminoácidos de polipéptido maduros del 1 al 575 de la SEC ID nº: 5 en la solicitud de patente estadounidense 60/650,612.

20 h

También se prefiere para una composición comprendiendo el polipéptido del primer aspecto y una glucoamilasa polipéptidos teniendo actividad glucoamilasa los cuales se derivan de una cepa del género Pachykytospora, preferiblemente *Pachykytospora papiracea*. También se prefieren los polipéptidos teniendo actividad glucoamilasa y conteniendo al menos un 50%, al menos un 60%, al menos un 70%, al menos un 80%, al menos un 90% o incluso al menos un 95% de homología con los aminoácidos para los aminoácidos de polipéptido maduros del 1 al 556 de la SEC ID nº: 2 en la solicitud de patente estadounidense 60/650.612.

La composición anteriormente descrita se puede utilizar licuefactar y/o sacarificar un almidón gelatinizado o granulado, al igual que un almidón parcialmente gelatinizado, por ejemplo en una producción de edulcorante, o un proceso de fermentación, tal como para etanol. Un almidón parcialmente gelatinizado es un almidón que se gelatiniza hasta cierto punto, es decir donde parte del almidón se ha hinchado y gelatinizado irreversiblemente y parte del almidón sigue estando presente en un estado granuloso.

55

La composición anteriormente descrita también puede comprender una alfa-amilasa ácida fúngica presente en una cantidad de 0,01 a 10 AFAU/g de DS, preferiblemente de 0,1 a 5 AFAU/g de DS, más preferiblemente de 0,5 a 3 AFAU/AGU, y de la forma más preferible de 0,3 a 2 AFAU/g DS. La composición se puede añadir en cualquiera de los procesos de almidón anteriormente descritos.

40

Producción de productos de fermentación

45 pr far

A partir de almidón gelatinizado: en este aspecto la presente invención se refiere a un proceso para producir un producto de fermentación, especialmente etanol, a partir de material conteniendo almidón, incluyendo el proceso una fase de licuefacción y una fase(s) de sacarificación y fermentación realizadas separada o simultáneamente. El producto de fermentación, tal como especialmente etanol, se puede recuperar opcionalmente después de la fermentación, por ejemplo, por destilación. Materias primas adecuadas con almidón se catalogan en la sección "Materiales conteniendo almidón", más adelante. Enzimas contempladas se catalogan en la sección "Enzimas", más adelante. La fermentación se realiza preferiblemente en presencia de levadura, preferiblemente una cepa de Saccharomyces. Organismos de fermentación adecuados se catalogan en la sección "Organismos de fermentación", más adelante.

1

Un proceso preferido comprende a) poner en contacto un compuesto de almidón acuoso con un polipéptido comprendiendo una primera secuencia de aminoácidos teniendo actividad alfa-amilasa y una segunda secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos, b) incubar dicho compuesto acuoso de almidón con dicho polipéptido, c) fermentar para producir un producto de fermentación, y d) opcionalmente recuperar el producto de fermentación. Preferiblemente el paso b) se realiza durante un tiempo y a una temperatura suficiente para conseguir la conversión de al menos un 90% p/p de dicho sustrato de almidón en azúcares fermentables. Preferiblemente la primera secuencia de aminoácidos y/o la segunda secuencia de aminoácidos de dicho polipéptido se deriva de una bacteria. Dicho polipéptido puede ser preferiblemente el híbrido del primer aspecto.

60

El compuesto acuoso puede contener un 10-40% en peso, preferiblemente un 25-35% en peso de material conteniendo almidón. El compuesto acuoso se calienta a una temperatura mayor a la de gelatinización y se puede añadir alfa-amilasa fúngica bacteriana y/o ácida para iniciar la licuefacción (dilución). En una forma de realización el compuesto acuoso se puede cocinar a chorro para gelatinizar aún más el compuesto acuoso antes de someterse a una alfa-amilasa en la fase (a) de la invención.

Más específicamente la licuefacción se puede realizar como un proceso de compuesto acuoso caliente de tres fases. El compuesto acuoso se calienta a entre 60-95°C, preferiblemente 80-85°C, y se añade alfa-amilasa para iniciar la licuefacción (dilución). Después el compuesto acuoso se puede cocer a chorro a una temperatura de entre 95-140°C, preferiblemente 105-125°C, durante 1-15 minutos, preferiblemente durante 3-10 minutos, especialmente alrededor de 5 minutos. El compuesto acuoso se enfría a 60-95°C y se añade más alfa-amilasa para finalizar la hidrólisis (licuefacción secundaria). El proceso de licuefacción se realiza normalmente a pH 4.5-6.5, en particular a un pH entre 5 y 6. Los granos enteros molidos y licuados se conocen como puré.

La sacarificación en la fase se puede realizar usando condiciones bien conocidas en la técnica. Por ejemplo, un proceso de sacarificación completo puede durar hasta de aproximadamente 24 a aproximadamente 72 horas, no obstante, es común hacer solamente una pre-sacarificación de típicamente 40-90 minutos a una temperatura de entre 30-65°C, normalmente de aproximadamente 60°C, seguida de la sacarificación completa durante la fermentación en un proceso de sacarificación y fermentación simultáneas (SSF). La sacarificación se realiza normalmente a temperaturas de 30-65°C, normalmente alrededor de 60°C, y a un pH de entre 4 y 5, normalmente a aproximadamente pH 4.5.

15 El proceso más extensamente usado en la producción de etanol es el proceso de sacarificación y fermentación simultáneas (SSF), en el cual no hay ninguna fase de retención para la sacarificación, significando que los organismos

20

de fermentación, tales como levadura, y enzima(s) se pueden juntos. Al realizar el SSF es común introducir una fase de pre-sacarificación a una temperatura mayor de 50°C, justo antes de la fermentación.

Conforme a la presente invención la fase de fermentación (c) incluye, sin limitación, procesos de fermentación usados para producir alcoholes (p. ej., etanol, metanol, butanol); ácidos orgánicos (p. ej., ácido cítrico, ácido acético, ácido itacónico, ácido láctico, ácido glucónico); cetonas (p. ej., acetona); aminoácidos (p. ej., ácido glutámico); gases (p. ej., H2 y CO2); antibióticos (p. ej., penicilina y tetraciclina); enzimas; vitaminas (p. ej., riboflavina, B12, betacaroteno); y hormonas. Procesos de fermentación preferidos incluyen procesos de fermentación alcohólicos, como se conocen en la técnica. Son procesos de fermentación preferidos los procesos de fermentación anaeróbicos, como se conocen bien en la técnica.

A partir de almidón no gelatinizado: en esta forma de realización la invención se refiere a procesos para producir un producto de fermentación a partir de material conteniendo almidón sin la gelatinización del material conteniendo almidón. En una forma de realización se usa un polipéptido de la invención, por ejemplo la enzima híbrida del primer aspecto, y opcionalmente una glucoamilasa durante la sacarificación y la fermentación. Según la invención el producto de fermentación deseado, tal como etanol, se puede producir sin licuefactar el compuesto acuoso conteniendo el material con almidón. En una forma de realización un proceso de la invención incluye sacarificar material conteniendo almidón molido por debajo de la temperatura de gelatinización inicial en presencia de la enzima híbrida del primer aspecto y una glucoamilasa para producir azúcares que se pueden fermentar en el producto de fermentación deseado mediante un organismo de fermentación adecuado.

Un proceso preferido comprende a) poner en contacto un compuesto acuoso de almidón granulado acuoso con un polipéptido comprendiendo una primera secuencia de aminoácidos teniendo actividad alfa-amilasa y una segunda secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos, b) incubar dicho compuesto acuoso de almidón con dicho polipéptido, c) fermentar para producir un producto de fermentación, y d) opcionalmente recuperar el producto de fermentación. Preferiblemente la fase b) se realiza durante un tiempo y a una temperatura suficientes para conseguir la conversión de al menos un 90% p/p de dicho sustrato de almidón en azúcares fermentables. Preferiblemente la primera secuencia de aminoácidos y/o la segunda secuencia de aminoácidos de dicho polipéptido se deriva de una bacteria. Dicho polipéptido puede ser preferiblemente el híbrido del primer aspecto.

El término "temperatura de gelatinización inicial" significa la temperatura mínima a la cual comienza la gelatinización del almidón. El almidón calentado en agua comienza a gelatinizarse a entre 50°C y 75°C; la temperatura exacta de gelatinización depende del almidón específico, y puede ser fácilmente determinada por el experto en la técnica. Así, la temperatura de gelatinización inicial puede variar según la especie de la planta, la variedad particular de la especie de planta al igual que con las condiciones de crecimiento. En el contexto de esta invención la temperatura de gelatinización inicial de un material conteniendo almidón dado es la temperatura a la cual la birrefringencia se pierde en un 5% de los gránulos de almidón usando el método descrito por Gorinstein. S. y Lii. C., Starch/Stärke, Vol. 44 (12) págs. 461-466 (1992).

Antes de la fase (a) se puede preparar un compuesto acuoso de material con almidón, tal como almidón granulado, teniendo un 20-55% en peso de sólidos secos, preferiblemente un 25-40% en peso de sólidos secos, más preferiblemente un 30-35% de sólidos secos de material con almidón. El compuesto acuoso puede incluir agua y/o aguas de proceso, tales como aguas residuales (volúmenes anteriores), agua del lavador, condensada o destilada del evaporador, agua de destilación de la depuradora lateral, u otro agua del proceso del producto de fermentación vegetal. Debido a que el proceso de la invención se realiza por debajo de la temperatura de gelatinización y por tanto no tiene lugar un aumento de viscosidad significante, se pueden usar altos niveles de aguas residuales si se desea. En una forma de realización el compuesto acuoso contiene de aproximadamente un 1 a aproximadamente un 70% en volumen de aguas residuales, preferiblemente un 15-60% en volumen de aguas residuales, especialmente de aproximadamente un 30 a un 50% en volumen de aguas residuales.

El material molido conteniendo almidón se puede preparar moliendo material conteniendo almidón hasta conseguir un tamaño de partícula de 0,05 a 3,0 mm, preferiblemente de 0,1-0,5 mm. Después de haberse sometido a un proceso de la invención al menos un 85%, al menos un 86%, al menos un 87%, al menos un 88%, al menos un 89%, al menos un 90%, al menos un 91%, al menos un 92%, al menos un 93%, al menos un 94%, al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98%, o preferiblemente al menos un 99% de los sólidos secos del material conteniendo almidón se convierte en un hidrolizado de almidón soluble.

El proceso de la invención se lleva a cabo a una temperatura inferior a la temperatura de gelatinización inicial. Preferiblemente la temperatura a la cual la fase (a) se realiza es de entre 30-75°C, preferiblemente de entre 45-60°C.

En una forma de realización preferida la fase (a) y la fase (b) se realizan como un proceso de sacarificación y fermentación simultáneas. En tal forma de realización preferida el proceso se lleva a cabo normalmente a una temperatura de entre 28°C y 36°C, tal como a entre 29°C y 35°C, tal como a entre 30°C y 34°C, tal como alrededor de 32°C. Según la invención la temperatura se puede aumentar o disminuir durante la fermentación.

En una forma de realización la sacarificación y fermentación simultáneas se llevan a cabo de modo que el nivel de azúcar, así como el nivel de glucosa, se mantiene a un nivel bajo tal como por debajo de aproximadamente un 3% en peso, preferiblemente por debajo de aproximadamente un 2% en peso, más preferiblemente por debajo de aproximadamente un 0,5%, o incluso más preferiblemente por debajo de aproximadamente un 0,1% en peso. Tales niveles bajos de azúcar se pueden conseguir simplemente utilizando cantidades de enzima y organismo de fermentación ajustadas. Un experto en la técnica puede determinar fácilmente qué cantidades de enzima y organismo de fermentación se deben emplear. Las cantidades empleadas de enzima y organismo de fermentación también ser pueden seleccionar para mantener concentraciones bajas de maltosa en el caldo de fermentación. Por ejemplo, el nivel de maltosa puede mantenerse por debajo de aproximadamente un 0,5% en peso o por debajo de aproximadamente un 0,2% en peso.

El proceso de la invención se puede llevar a cabo a un pH en el rango de entre 3 y 7, preferiblemente de 3,5 a 6, o más preferiblemente de 4 a 5.

Materiales conteniendo almidón

15

30

60

Cualquier materia prima adecuada conteniendo almidón, incluyendo almidón granulado, se puede utilizar según la presente invención. La materia prima se selecciona generalmente en base al producto de fermentación deseado. Ejemplos de materias primas conteniendo almidón, adecuadas para el uso en un proceso de la presente invención, incluyen tubérculos, raíces, tallos, granos enteros, granos, mazorcas, trigo, cebada, centeno, milo, sagú, mandioca, tapioca, sorgo, guisantes de arroz, alubias, o cereales, materias primas conteniendo azúcares, tales como melaza, materias de fruta, azúcar, bastonera o remolacha azucarera, patatas, y materias conteniendo celulosa, tales como madera o residuos vegetales. Se contemplan ambos tipos no cerosos y cerosos de maíz y cebada.

El término "almidón granulado" significa almidón crudo no cocido, es decir, almidón en su forma natural encontrada en cereales, tubérculos o granos. El almidón se forma dentro de células vegetales como gránulos ínfimos insolubles en agua. Al ponerlo en agua fría, los gránulos de almidón pueden absorber una pequeña cantidad del líquido e hincharse. A temperaturas de hasta 50°C a 75°C el hinchamiento puede ser reversible. No obstante, a temperaturas más altas comienza un hinchamiento irreversible llamado "gelatinización". El almidón granulado a procesar puede ser un almidón de calidad altamente refinada, preferiblemente de al menos un 90%, al menos un 95%, al menos un 97% o al menos un 99,5% puro o éste puede ser un almidón más crudo conteniendo material comprendiendo grano entero molido incluyendo fracciones no amiláceas tales como residuos de germen y fibras. La materia prima, tal como grano entero, se muele para descubrir la estructura y permitir un tratamiento posterior. Se prefieren dos procesos de molienda según la invención: molienda húmeda y seca. En la molienda seca se muelen y se usan granos enteros. La molienda húmeda ofrece una buena separación de germen y harina (gránulos de almidón y proteína) y se aplica frecuentemente en lugares donde el hidrolizado de almidón se usa en la producción de jarabes. Ambas moliendas seca y húmeda son bien conocidas en la técnica del tratamiento de almidón y se contemplan igualmente para el proceso de la invención.

El material con almidón se muele para exponer más área de superficie. En una forma de realización el tamaño de partícula es de entre 0,05 a 3,0 mm, preferiblemente de 0,1-0,5 mm, o de modo que al menos un 30%, preferiblemente al menos un 50%, más preferiblemente al menos un 70%, incluso más preferiblemente al menos un 90% del material molido conteniendo almidón pase a través de una criba con una malla de criba de 0,05 a 3,0 mm, preferiblemente una malla de 0,1-0,5 mm.

Producto de fermentación

El término "producto de fermentación" significa un producto producido mediante un proceso incluyendo una fase de fermentación usando un organismo de fermentación. Productos de fermentación contemplados según la invención incluyen alcoholes (p. ej., etanol, metanol, butanol); ácidos orgánicos (p. ej., ácido cítrico, ácido acético, ácido itacónico, ácido láctico, ácido glucónico); cetonas (p. ej., acetona); aminoácidos (p. ej., ácido glutámico); gases (p. ej., H2 y CO2); antibióticos (p. ej., penicilina y tetraciclina); enzimas; vitaminas (p. ej., riboflavina, B12, betacaroteno); y hor-

monas. En una forma de realización preferida el producto de fermentación es etanol, por ejemplo, etanol combustible; etanol potable, es decir, licores neutrales potables; o etanol industrial o productos usados en la industria alcohólica de consumo (p. ej., cerveza y vino), industria lechera (p. ej., productos lácteos fermentados), industria de cuero e industria de tabaco. Los tipos de cerveza preferidos comprenden las cervezas Ale, Stout, Porter, Lager, Bitter, soluciones de malta, Happoushu, cerveza con un alto porcentaje de alcohol, cerveza con un bajo porcentaje de alcohol, cerveza con un bajo nivel de calorías o cerveza light. Procesos de fermentación preferidos usados incluyen procesos de fermentación alcohólicos, como se conocen en la técnica. procesos de fermentación preferidos son procesos de fermentación anaeróbicos, como se conocen bien en la técnica.

10

Organismos de fermentación

Con "organismo de fermentación" se hace referencia a cualquier organismo, incluyendo organismos fúngicos y bacterianos, adecuados para el uso en un proceso de fermentación y capaces de producir un producto de fermentación deseado. Organismos de fermentación especialmente adecuados son capaces de fermentar, es decir, convertir azúcares, tales como glucosa o maltosa, directa o indirectamente en el producto de fermentación deseado. Ejemplos de organismos de fermentación incluyen organismos fúngicos, tales como levadura. La levadura preferida incluye cepas de *Saccharomyces* spp., en particular, *Saccharomyces cerevisiae*.

En una forma de realización preferida el organismo de fermentación, por ejemplo la levadura, se puede transformar con el polipéptido del primer aspecto y aplicar en un proceso comprendiendo; a) poner en contacto un sustrato de almidón con una célula de organismo de fermentación transformada para expresar un polipéptido comprendiendo una primera secuencia de aminoácidos teniendo actividad alfa-amilasa y una segunda secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos; b) retener dicho sustrato de almidón con dicha levadura durante un tiempo y a una temperatura suficientes para conseguir la conversión de al menos un 90% p/p de dicho sustrato de almidón en azúcares fermentables; c) fermentar para producir un producto de fermentación, por ejemplo, etanol, d) opcionalmente recuperar el producto de fermentación, por ejemplo, etanol. Los pasos a, b, y c se realizan separadamente o simultáneamente. En una forma de realización preferida la primera secuencia de aminoácidos y/o la segunda secuencia de aminoácidos de dicho polipéptido se derivan de una bacteria.

30

Materiales y métodos

Actividad amilolítica KNU: La actividad amilolítica se puede determinar usando almidón de patata como sustrato. Este método se basa en la descomposición de almidón de patata modificado por la enzima, y la reacción se continúa mezclando muestras de la solución de almidón/enzima con una solución de yodo. Inicialmente, se forma un color azul negruzco, pero durante la descomposición del almidón el color azul se torna más débil y gradualmente se transforma en un marrón rojizo, el cual se compara con un estándar de vidrio coloreado.

Una unidad de Alfa-amilasa Kilo Novo (KNU) se define como la cantidad de enzima que, bajo condiciones estándar (es decir, a 37°C+/- 0,05, 0,0003 m Ca²⁺; y a pH 5.6) dextriniza 5,26 g de sustancia seca de almidón Merck Amylum solubile. Una carpeta AF 9/6 describiendo este método analítico en más detalle está disponible bajo pedido a Novozymes A/S, Dinamarca, cuya carpeta se incluye por la presente por referencia.

Ensayo de endo actividad: La actividad de endo-amilasa se puede determinar usando el ensayo de endo actividad. 1 ml de sustrato de Phadebas resuspendido (0,25 comprimidos/ml 50 mM de acetato sódico, 1 mM de CaCl₂, ajustado a pH 5.7) se incuba con 25 microL de enzima durante 15 min a 40°C con agitación. La reacción se detiene por adición de 0,5 ml de 1 m de NaOH y la mezcla se centrifuga en un centrifugador de tabla a 14,000 r.p.m. Se mide la absorbancia del sobrenadante a 620 nm. La actividad se determina comparando un estándar con actividad declarada (BAN 480 L, 480 KNU/g).

Actividad amilasa maltogénica: una MANU (Unidad de amilasa maltogénica Novo) se puede definir como la cantidad de enzima requerida para liberar un micromol de maltosa por minuto en una concentración de 10 mg de sustrato de maltotriosa (Sigma M 8378) por ml de 0,1 m de tampón de citrato, a pH 5.0 a 37°C durante 30 minutos (la unidad MANU también se define en US Pat. n°. 6.162.628, la cual se incorpora por la presente por referencia).

Manipulaciones de ADN

A menos que se declare de otra manera, las manipulaciones y transformaciones de ADN se realizaron usando métodos estándar de biología molecular como se describe en Sambrook *et al.* (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor lab. Cold Spring Harbor, NY; Ausubel, F. M. *et al.* (eds.) "Current protocols in Molecular Biology", John Wiley and Sons, 1995; Harwood, C. R. y Cutting, S. M. (eds.).

Ejemplo 1

35

45

50

60

Construcción de híbridos entre una endo-amilasa y el CBM a partir de AMY1048

La amilasa AMY1048 es un amilasa de Bacillus de tipo salvaje de un fragmento catalítico de 484 aminoácidos y además un fragmento CBM20 de 101 aminoácidos. La secuencia de ADN codificando la AMY1048 se incluye como la SEC ID NO: 1 y la secuencia AMY1048 madura se incluye como la SEC ID NO: 2. En la SEC ID NO: 1 el CBM se define como los residuos de aminoácidos del 485 al 586 los cuales corresponden a los nucleótidos 1540-1845 en la SEC ID NO: 2. La amilasa incluyendo el CBM se puede expresar de una construcción similar a la cual se ha descrito para otras amilasas, es decir, por ejemplo, insertada en un vector bajo el control de un promotor constitutivo activo y flanqueada por la secuencia señal (SEC ID NO: 15) y la secuencia del terminador de la endo-amilasa de *B. licheniformis*.

La sustitución del fragmento catalítico de la endo-amilasa AMY1048 con un dominio catalítico de otra endo-amilasa, creando así un híbrido del CBM a partir de AMY1048 y una endo-amilasa nueva, se hace amplificando el fragmento de ADN codificando el dominio catalítico de la amilasa nueva por PCR usando dos oligonucleótidos. El oligonucleótido sentido es en su extremidad 5' idéntico a los últimos 20 nucleótidos de la secuencia de ADN codificando la secuencia señal previa a la secuencia madura AMY1048 y además en ello es extremidad 3' es idéntica al primero 20 nucleótidos de secuencia de ADN codificando la parte madura del ADN de amilasa deseado. Los oligonucleótidos antisentido son en su extremidad 5' idénticos al ADN antisentido de los primeros 20 nucleótidos de la secuencia de ADN codificando el CBM de AMY1048 y además en su extremidad 3' es idéntica al antisentido de los últimos 20 nucleótidos de la secuencia de ADN codificando la parte madura del ADN de amilasa deseado.

Tanto el ADN de amilasa amplificado como el vector huésped en la amilasa AMY1048, se digiere con SacII y ScaI y el vector y fragmentos de la PCR ligados antes de la transferencia en la cepa SHA273 de *Bacillus subtilis*. En las secuencias de cebador de debajo los sitios de reconocimiento de las enzimas de restricción se indican mediante subrayado.

Para construir un híbrido de la endo-amilasa de *B. licheniformis* (SEC ID NO: 35) y el CBM20 de la amilasa de *B. flavotermus* los siguientes oligonucleótidos fueron usados por los presentes inventores:

Sentido: 5'-ctcattctgcagccgcgcagcaaatcttaatgggacgct-3' (P1s SEC ID NO: 19).

Antisentido: 5'-atttgggaagtagtacttattctttgaacataaattgaaa-3' (P1as SEC ID NO: 20).

La secuencia de ADN resultante codificando el polipéptido maduro y la secuencia de aminoácidos del polipéptido maduro se incluyen como SEC ID NO: 3 y SEC ID NO: 4, respectivamente

Para construir un híbrido de la variante LE429 de la endo-amilasa de *B. licheniformis* (SEC ID NO: 41) y el CBM20 de la amilasa de *B. flavotermus* se usaron los siguientes oligonucleótidos:

Sentido: 5'-ctcattctgcagccgcggcagtaaatggcacgctgatgca-3' (P2s SEC ID NO: 21).

Antisentido: 5'-atttgggaagtagtacttatttttggaacataaattgaaa-3' (P2as SEC ID NO: 22).

La secuencia de ADN resultante codificando el polipéptido maduro y la secuencia de aminoácidos del polipéptido maduro se incluyen como SEC ID NO: 5 y SEC ID NO: 6, respectivamente

Para construir un híbrido de la endo-amilasa de *B. stearothermophilus* (SEC ID NO: 36) y el CBM20 de la amilasa de *B. flavotermus* se usaron los siguientes oligonucleótidos:

Sentido: 5'-ctcattctgcagccgcggcagcaccgtttaacggctttaa-3' (P3s SEC ID NO: 23).

Antisentido: 5'-atttgggaagtagtacttattttaggaacccaaaccgaaa-3' (P3as SEC ID NO: 24)

La secuencia de ADN resultante codificando el polipéptido maduro y la secuencia de aminoácidos del polipéptido maduro se incluyen como SEC ID NO: 7 y SEC ID NO: 8, respectivamente

Para construir un híbrido de una variante de la endo-amilasa de sp. SP722 de *Bacillus alcalina* (SEC ID NO: 38) y el CBM20 de la amilasa de *B. flavotermus* se usaron los siguientes oligonucleótidos:

5 Sentido: 5'-ctcattctgcagccgcggcacatcataatgggacaaatgg-3' (P4s SEC ID NO: 25).

Antisentido: 5'-atttgggaagtaatacttatccatttgtcccattatgatg-3' (P4as SEC ID NO: 26).

La secuencia de ADN resultante codificando el polipéptido maduro y la secuencia de aminoácidos del polipéptido maduro se incluyen como SEC ID NO: 9 y SEC ID NO: 10, respectivamente.

Para construir un híbrido de una variante de la endo-amilasa de la especie AA560 de *Bacillus alcalina* (SEC ID NO: 40) y el CBM20 de la amilasa de *B. flavotermus* se usaron los siguientes oligonucleótidos:

Sentido: 5'-ctcattctgcagccgcggcacaccataatggtacgaacgg-3' (P5s SEC ID NO: 27)

Antisentido: 5'-atttgggaagtagtacttattttgtttacccaaatagaaa-3' (P5as SEC ID NO: 28).

La secuencia de ADN resultante codificando el polipéptido maduro y la secuencia de aminoácidos del polipéptido maduro se incluyen como SEC ID NO: 11 y SEC ID NO: 12, respectivamente.

Para construir un híbrido de una variante de la endo-amilasa de *Bacillus amiloliquefaciens* (SEC ID NO: 37) y el CBM20 de *B. flavotermus* amilasa se usaron los siguientes oligonucleótidos:

Sentido: 5'-ctcattctgcagccggcagtaaatggcacgctgatgca-3' (P6s SEC ID NO: 29)

Antisentido: 5'-atttgggaagtagtacttatttttggaacataaatggaga-3' (P6as SEC ID NO: 30)

La secuencia de ADN resultante codificando el polipéptido maduro y la secuencia de aminoácidos del polipéptido maduro se incluyen como SEC ID NO: 13 y SEC ID NO: 14, respectivamente.

Las enzimas híbridas descritas anteriormente se expresaron por *B. subtilis* cultivada en frascos de agitación durante 72 horas y segregada en el sobrenadante. La presencia de enzima híbrida en el sobrenadante se demostró mediante SDS-PAGE.

45 Ejemplo 2

10

30

35

Construcción de una amilasa híbrida con dominio de enlace a carbohidratos

El fragmento catalítico de la endo-amilasa de *B. flavotermus*, AMY 1048 se puede dividir en el dominio AB central conteniendo el centro catalítico y un dominio C c-terminal al dominio catalítico pero anterior al CBM. En la SEC ID NO: 2 el dominio de núcleo catalítico consiste en los primeros 397 residuos de aminoácidos, el dominio C se define como los residuos de aminoácidos del 398 al 484 y el CBM se define como los residuos de aminoácidos del 485 al 586. En la SEC ID NO: 1 la secuencia señal se codifica por los nucleótidos 1 a 87, el dominio de núcleo catalítico se codifica por los nucleótidos 88-1278, el dominio C se codifica por los nucleótidos 1279-1539, y el CBM se codifica por los nucleótidos 1540-1845.

La amilasa incluyendo el CBM se puede expresar a partir de una construcción de vector similar a la que se ha descrito en WO0060060A2 en el ejemplo 4, es decir el gen de amilasa se inserta en un vector bajo el control de un promotor de amilasa y flanqueado por la secuencia señal y la secuencia del terminador de la endo-amilasa de *B. licheniformis*.

Como una alternativa a contener el gen en un plásmido, el casete incluyendo la codificación de secuencia de ADN para el marcador antibiótico, promotor, secuencia señal, la proteína madura y el terminador se puede integrar en el genoma del *B. subtilis* por cruce homólogo *in vivo*, por ADN genómico flanqueado corriente arriba y corriente abajo con una alta similitud a una parte no esencial del ADN de *B. subtilis*. Regiones de ADN útiles podrían ser la pectato liasa o la endo-amilasa loci. En este ejemplo la AMY1048 y el híbrido se insertan en los la amilasa loci en dirección opuesta en relación a la amilasa de *B. subtilis* original.

El dominio de núcleo catalítico de la endo-amilasa AMY1048 se sustituyó por un dominio de núcleo catalítico de la endo-amilasa de *Bacillus starotermofilus* (BSG), creando así un híbrido del dominio C y el CBM de AMY1048 y el dominio de núcleo catalítico de la endo-amilasa nueva.

El fragmento de ADN codificando el núcleo catalítico de la amilasa de *B. stearothermophilus* (SEC ID NO: 36) se amplificó por PCR usando dos oligonucleótidos. Los oligonucleótidos sentido eran en su extremidad 5' idénticos a los últimos 20 nucleótidos de la secuencia de ADN (SEC ID NO: 15) codificando la secuencia señal previa a la secuencia madura de AMY1048 (SEC ID NO: 1) y también en su extremidad 3' idénticos a los primeros 20 nucleótidos de la secuencia de ADN codificando la parte madura del ADN de amilasa deseado. Los oligonucleótidos antisentido eran en su extremidad 5' idénticos al ADN antisentido de los primeros 20 nucleótidos de la secuencia de ADN codificando el dominio C de AMY1048 y además en su extremidad 3' eran idénticos al antisentido de los últimos 20 nucleótidos de la secuencia de ADN codificando el núcleo catalítico del ADN de amilasa BSG.

Para construir un híbrido del dominio de núcleo de la endo-amilasa de *B. stearothermophilus* y el dominio C y el CBM20 de la amilasa de *B. flavotermus* los siguientes oligonucleótidos fueron usados por los presentes inventores:

Sentido: 5'-ctcattctgcagccgcggcagcaccgtttaacggctttaa-3' (P7s SEC ID NO: 31).

Antisentido: 5'-atatagtcgtgctgtgttccgtaagcataatccctgcgcg7-3' (P7as SEC ID NO: 32).

Para facilitar la integración de genoma, un fragmento de 5 kb corriente arriba de la secuencia señal y en la secuencia del genoma de la amilasa se hace por PCR usando la construcción genómica de AMY1048 como patrón, y el cebador inverso del cebador antisentido y el cebador específico del genoma: 5'-ctgcatcagggctgcggcatcc-3 (P8 SEC ID NO: 33).

Otro fragmento de la terminación del gen y corriente arriba de la amilasa de *B. subtilis* genómica se hace por PCR usando la construcción genómica de AMY1048 como patrón, y el cebador inverso del cebador sentido y el cebador específico del genoma: 5'-ctgcatcagggctgcggcatcc-3'; (P9 SEC ID NO: 34).

Tomando ventajas del recubrimiento de 40 par de bases, los tres fragmentos de la PCR se ensamblaron por PCR y el producto resultante se amplificó en otra PCR usando los cebadores específicos del genoma, antes de transferirlos a la cepa SHA273 de *Bacillus subtilis* (descrita en WO92/11357 y WO95/10603).

La secuencia de ADN resultante codificando el polipéptido maduro y el polipéptido maduro se incluyen como SEC ID NO: 17 y SEC ID NO: 18, respectivamente.

La enzima híbrida se expresó cultivando *B. subtilis* en medios PS1 en frascos de agitación durante 72 horas a 37°C y segregados en el sobrenadante. La presencia de enzima híbrida en el sobrenadante se demostró mediante SDS-PAGE.

45 Ejemplo 3

20

Determinación del Factor de mejora de Exo-Endo (EIF)

EIF es la medida de un incremento de la proporción exo/endo en relación a una enzima parental, es decir EIF = (exo/endo de variante)/(exo/endo de enzima parental). Una enzima tiene un aumento en la proporción exo/endo en comparación con su enzima parental si EIF>1. EIF se puede basar en uno de los siguientes métodos.

Ensayo de Endo actividad EIF1: El Test de amilasa de Phadebas (Pharmacia Diagnostics) se lleva a cabo según las recomendaciones de los proveedores y las unidades endo calculadas a partir de la fórmula proporcionada donde el logaritmo natural para la actividad equivale a N, donde N = A + raíz cuadrada [B + C * In(Abs)]. Abs es la absorbancia a 620 nm, A = -13.3235, B = 243.3293, y C = 26.73797.

Ensayo de Exo actividad: 50 microL de 50 mM de citrato sódico, 5 mM de CaCl₂, a pH 6.5 se mezclan con 25 microL de enzima en el mismo tampón y 25 microL de sustrato de Betamyl (Método Betamyl, Megazyme) se disuelven según las recomendaciones de proveedores. La mezcla del ensayo se incuba durante 30 min. a 40°C y la reacción se detiene añadiendo 150 microL de un 4% (p/p) de base Trizma (Tris(hidroximetil)-aminometano). La actividad se expresa directamente como la absorbancia a 420 nm medido usando un lector de placa de microtitulación.

Ensayo de Endo actividad EIF2: 1 mL de sustrato de Phadebas resuspendido (Pharmacia Diagnostics) (0,25 comprimidos/ml de 50 mM de acetato de sodio, 1 mM de CaCl₂, ajustado a pH 5.7) se incuba con 25 microL de enzima durante 15 min a 40°C con agitación. La reacción se detiene por adición de 0,25 ml de 1 M de NaOH y la mezcla se centrifuga en un centrifugador de tabla a 14,000 r.p.m. Se mide la absorbancia del sobrenadante a 620 nm. La actividad se determina comparando con un estándar la actividad declarada (BAN 480 L, 480 KNU/g).

Ensayo de Exo actividad: 900 microL de un 3,3% de almidón de maíz céreo solubilizado (3,3% de almidón se hierve en 50 mM de acetato sódico, 1 mM de CaCl₂, a pH 5.7 durante 5 min y se enfría a 40°C) se incuba con 100 microL de enzima a 40°C con agitación. Después del tiempo de reacción apropiado el almidón restante se precipita por adición de 450 microL a 4°C con un 96% de etanol. El precipitado se retira inmediatamente por centrifugado a 3000 G durante 20 min. El carbohidrato total en el sobrenadante se determina mezclando 200 microL de sobrenadante con 50 microL de un 2% de triptófano y 900 microL de un 64% de ácido sulfúrico. La mezcla se calienta durante 15 min a 95°C y la absorbancia a 630 nm se mide tras el enfriamiento a temperatura ambiente. La actividad se determina comparando con la absorbancia de estándares de glucosa en el mismo ensayo. Una unidad se define como la cantidad de enzima que a índices iniciales libera 1 mg de productos oligoméricos (productos que no se precipitan mediante etanol) por min.

Ejemplo 4

5 Licuefacción y sacarificación con una endo-amilasa con un CBM

Este ejemplo ilustra la conversión de almidón de trigo granuloso en glucosa usando una endo-amilasa bacteriana con un CBM (SEC ID NO: 4) o la misma endo-amilasa bacteriana sin CBM (SEC ID NO: 35) junto con una glucoamilasa y una amilasa ácida fúngica. Un compuesto acuoso con un 33% de sólidos secos (DS) de almidón granulado se preparó añadiendo 247,5 g de almidón de trigo bajo agitación a 502,5 ml de agua. El pH se ajustó con HCl a 4.5. El compuesto acuoso de almidón granuloso se distribuyó en matraces Erlenmeyer de 100 ml con 75 g en cada matraz. Los matraces se incubaron con agitación magnética en un baño maría a 60°C. En la hora cero las actividades enzimáticas dadas en la tabla 1 se dosificaron en los matraces. Las muestras se retiraron después de 24, 48 y 73 y 94 horas. Los niveles enzimáticos usados fueron endo-amilasa +/CBM 100 KNU/kg de DS, glucoamilasa 200 AGU/kg de DS, alfamilasa fúngica ácida 50 AFAU/g de DS.

El almidón de sólidos secos total se determinó usando el siguiente método. El almidón se hidrolizó completamente añadiendo una cantidad excesiva de endo-amilasa (300 KNU/kg de sólidos secos) y colocando la muestra en un baño de aceite a 95°C durante 45 minutos. Posteriormente las muestras se enfriaron a 60°C y se añadió una cantidad excesiva de glucoamilasa (600 AGU/kg de DS) seguida de una incubación durante 2 horas a 60°C.

Los sólidos secos solubles en el hidrolizado de almidón se determinaron midiendo el índice de refracción en muestras después del filtrado a través de un filtro de 0,22 microM. El perfil de azúcar se determinó por HPLC. La cantidad de glucosa se calculó como DX. Los resultados se muestran en las tablas 2 y 3.

TABLA 2
Sólidos secos solubles como porcentaje de sustancia seca total a una dosis de endo-amilasa de 100 KNU/kg de DS

Enzima	24 horas	48 horas	73 horas	94 horas
Endo-amilasa	83,7	87	89,7	90,3
Endo- amilasa+CBM	87,2	89,7	91,5	92,3

TABLA 3

El DX del hidrolizado soluble a una dosis de de endo-amilasa de 100 KNU/kg de DS

Enzima	24 horas	48 horas	73 horas	94 horas
Endo-amilasa	72,0	82,0	83,8	83,8
Endo-amilasa +CBM	76,7	87,0	87,5	87,5

65

35

40

45

50

55

Ejemplo 5

Dosificación eficaz

La "dosis efectiva" de la amilasa en cuestión se define como la dosis dando como resultado una reducción en la solidez superior a un 10%, por ejemplo, de entre un 10 y un 20%, en comparación con la solidez de un pan sin enzimas (el control). La reducción en la solidez se mide después del almacenamiento durante 14 días en atmósfera inerte a temperatura ambiente.

La tolerancia a la sobredosificación se mide usando la Proporción de pérdida de elasticidad = ELR. ELR se mide el día 1 después la cocción o más tarde, tal como el día 5, día 10 o como en el ejemplo de debajo después de 14 días de almacenamiento y se define entonces de la siguiente manera:

En combinación con 450 MANU/kg de harina Novamyl® la tolerancia a la sobredosificación se mide:

$$ELR_{N}~\% = (Elasticidad_{Novamyl~dia~14}~-~Elasticidad_{Novamyl+amilasa~dia~14}~x~100)/Elasticidad_{Novamyl~dia~14}$$

Si la amilasa se sobredosifica el ELR y/o ELR_N será > 5%.

25 Proceso de cocción

El pan se hornea según el método de esponja & masa.

Esponja, ingredientes en % en base de harina

30	Aceite de soja	2,5
	SSL	0,38
35	Levadura	5
	Harina de trigo	60
	Agua	62

40

50

55

60

15

20

Masa, ingredientes en % en base de harina

Acido ascórbico	a optimizarse para	cada harina

45 ADA 20 ppm

Sal 2

Almíbar 7 (sustancia seca)

Agua a optimizarse para cada harina

Harina de trigo 40

Calcio propionato+ enzimas 0,25

Los ingredientes de esponja levadura, agua, harina, SSL y aceite se mezclan a 90 r.p.m. durante 1 minuto, 150 r.p.m. durante 4 minutos.

La esponja se fija para fermentación durante 3 horas a 27°C y un 86% de RH.

La esponja se añade a los ingredientes de masa y se mezclan hasta obtener una masa a 90 r.p.m. durante 1 minuto y a 150 r.p.m. durante 14 minutos. La masa se corta en pedazos de 340 g cada uno y se deja reposar durante 10 minutos.

Las porciones de masa se colocan en láminas y se moldean seguidamente de una fermentación durante 55 minutos a 42°C y un 86% de RH. las masas se hornean a 225°C durante 15 minutos. El pan horneado se enfría y almacena hasta el análisis.

El pan se hornea con el enzima CBM-híbrida y con la enzima correspondiente sin un CBM. La dosis efectiva se determina con y sin adición de Novamyl[®] a 450 MANU/kg de harina. La solidez y la elasticidad de un pan se miden con el analizador de textura TA.XT2 según el método AACC 74-09.

Se determina la dosificación eficaz de la enzima CBM-híbrida y un conjunto nuevo de pan se hornea con 3 y 5 veces la dosificación eficaz con y sin adición de Novamyl[®] a 450 MANU/kg de harina.

El ELR se mide después de 14 días de almacenamiento, y se ha descubierto que el ELR al igual que el ELRN es inferior al 5% para la amilasa con CBM dosificado 5 veces la dosificación eficaz mientras que es más del 5% para las enzimas correspondientes sin la adición del CBM dosificado 3 veces la dosis efectiva.

Ejemplo 6

Determinación de ELR para las variantes seleccionadas

El ejemplo 6 se realizó como se describe en el ejemplo 5 excepto porque se usó una dosificación de 500 MANU/kg de harina.

Se usaron dos variantes de un híbrido comprendiendo la endo-amilasa de la especie AA560 alcalina de Bacillus 20 (SEX ID NO: 40) y el CBM20 de la amilasa de B. flavotermus (residuos 485 a 586 en la SEC ID NO: 2): La variante BE1 comprendiendo las alteraciones siguientes en la secuencia de amilasa: R118K, D183*, G184*, N195F, R320K, R458K, N33S, D36N, K37L, E391I, Q394R, K395D, T452Y y N484P, y la variante BE2 comprendiendo las siguientes alteraciones en la secuencia de amilasa: R118K, D183*, G184*, N195F, R320K, R458K y N484P.

,	5	,	

30

35

Tabla 1. Apli	cación de amilasa h	íbrida (1 mg/kg de harina) sin Nova	amyl	
Tratamiento	Firmeza el día 15 (g)	% de reducción en firmeza del día de control 15	Elasticidad g/g	ELR %
Control	794		39,9	
BE1	382	51	47,0	-17,0
BE2	313	61	46,6	-16,8

40

45	
50	

60

Tabla 2. Aplicación de am	ilasa híbrida en coml	oinación con Novamyl		
Tratamiento	Firmeza el día 15 (g)	% de reducción en firmeza del día de control 15	Elasticidad g/g	ELR%
Control	706		40,8	
BE1 0,5mg/kg de harina	316	55	46,9	- 4,5
BE1 1mg/kg de harina	239	66	47,0	- 4,9
BE2 0,5mg/kg de harina	315	55	47,0	- 4,9
BE2 1mg/kg de harina	225	68	47,5	- 6,0
Sólo Novamyl® 500 MANU/kg de harina	452		44,8	

Ejemplo 7

Pastel

La masa del pastel se preparó con los híbridos BE1, BE2, la amilasa de Bacillus mostrada en la SEC ID NO: 40 (homólogo donante CD) y las amilasas de Bacillus de la SEC ID NO: 2 (CBM donante).

La masa se hizo a partir de una mezcla para pastel comercial "Tegral Allegro" de Puratos consistiendo en harina de trigo, azúcar, levadura, emulsionante (mono- y diglicéridos de ácidos grasos). La mezcla de pastel, la enzima (4 mg/kg de harina) y el agua se colocaron en un bol y se removieron con una espátula, Bear AR 5 A-Vari-mixer, a la tercera velocidad hasta que se obtuvo una mezcla homogenea (aproximadamente 2 minutos). Se llenaron moldes con 300g de masa y se horneó a 180°C durante 45 minutos. Los pasteles horneados se enfriaron a temperatura ambiente durante 30 minutos y se embalaron en nitrógeno antes del almacenamiento a temperatura ambiente hasta el análisis.

La movilidad de agua libre se determinó usando un campo bajo de RMN como se describe por P.L. Chen, Z. Long, R. Ruan y T.P. Labuza, Nuclear Magnetic Resonance Studies of water Mobility in bread during Storage. Lebensmittel Wissenschaft und Technologie 30, 178-183 (1997).

La dureza y la firmeza se midieron según el método descrito en Food Texture and viscosity, 2nd edition, Malcolm Bourne, Food Science and Technology, International Series, Academic Press, páginas 182-186.

Todos los datos se midieron después de 14 días. Se obtuvieron los siguientes resultados:

Tratamiento	Unidades de dureza	Unidades de firmeza	Unidades de movilidad
Referencia	1485	34	4148
BE1 9,5 KNU/kg de harina	1482	35	4655
Amyl1 9,5 KNU/kg de harina	1702	35	4811
BE3 9,5 KNU/kg de harina	1217	34	4797
BAN (SEQ ID NO:37) 9,5 KNU/kg de harina	1456	32	4423

En base a los datos anteriores se calcularon los siguientes parámetros (I) - (III):

(I): Reducción de firmeza % = (Firmeza_{Referencia} - Firmeza_{amilasa})x100% / Firmeza_{Referencia}

(II): $dHardness = HardnesS_{Referencia} - HardnesS_{Amilasa}$

40 (III): $dMobility = Mobility_{Amilasa} - Mobility_{Referencia}$

Tratamiento	Reducción en firmeza %	Unidades dHardness	Unidades dMobility
Referencia			
BE1 9,5 KNU/kg de harina	-3	3	507
Amyl1 9,5 KNU/kg de harina	-3	-217	663
BE3 9,5 KNU/kg de harina	0	268	649
BAN (SEQ ID NO:37) 9,5 KNU/kg de harina	5,8	20	275

Amyl1 es idéntica a la amilasa de la SEC ID n°: 40 con las siguientes sustituciones: R118K, D183*, G184*, N195F, R320K, R458K, N33S, D36N, K37L, E391I, Q394R, K395D, T452i y N484P, usando la numeración de la SEC ID n°: 40.

65

15

20

25

30

35

45

50

Ejemplo 8

15

Esponja y masa

Los panes se hornearon según la método de esponja & masa. Los panes se almacenaron a temperatura ambiente durante 14 días hasta el análisis. La dureza y la firmeza se midieron según el método descrito en Food Texture and viscosity, 2 edition, Malcolm Bourne, Food Science and Technology, International Series, Academic Press, página 182-186, y la movilidad de agua libre se determinó usando un campo bajo de RMN como se describe por P.L. Chen, Z. Long, R. Ruan y T.P. Labuza, Nuclear Magnetic Resonance Studies of water Mobility in bread during Storage. Lebensmittel Wissenschaft und Technologie 30, 178-183 (1997). Se usaron tres amilasas; las variantes BE1 y BE3 y la amilasa de Bacillus de la SEC ID NO: 2 (CBM donante). La variante BE3 tiene el dominio catalítico teniendo la secuencia de aminoácidos como se muestra en la SEC ID: 37 y comprende uno o más, por ejemplo tal como todas las siguientes alteraciones: S31A, D32N, I33L, E178*, G179*, N190F, K3891; K392R, E393D, V508A y un CBM teniendo la secuencia de aminoácidos mostrada como los residuos de aminoácidos 485 a 586 en la SEC ID NO: 2.

Todos los datos se midieron después de 14 días. Se obtuvieron los siguientes resultados:

20	Tratamiento	Unidades de dureza	Unidades de firmeza	Unidades de movilidad
	Referencia	400	38	6435
25	Novamyl 300MANU/kg de harina	272	48	6234
20	BE3 0.05mg/kg de harina + Novamyl 300 MANU/kg de harina	256	48	7365
30	BAN (SEQ ID NO:37) 0,05mg/kg de harina + Novamyl 300 MANU/kg de harina	207	45	7354
35	BE3 0.15mg/kg flour	223	48	6886
55	BE1 0.5mg/kg flour	311	41	7152

En base a los datos anteriores se calcularon los siguientes parámetros (I) - (VI):

Para tratamientos sin Novamyl®

- (I): Reducción de firmeza % = (Firmeza_{Referencia} Firmeza_{amilasa})x100% / Firmeza_{Referencia}
- (II): $dHardness = HardneSS_{Referencia} Hardness_{Amilasa}$
- (III): $dMobility = Mobility_{Amilasa} Mobility_{Referencia}$

Para tratamientos con Novamyl®

- (I): Reducción de firmeza % = (Firmeza_{Novamyl} Firmeza_{amilasa+Novamyl})x100%/ Firmeza_{Novamyl}
- (V): $dHardness = Hardness_{Novamvl} Hardness_{Amilasa+Novamvl}$
 - $(VI): \quad dMobility = Mobility_{Amilasa+Novamyl} Mobility_{Novamyl}$

60 Ejemplo 9

45

50

55

Determinación de la termoestabilidad

La termoestabilidad se determinó a 60, 65 o 70°C durante 30 minutos en un tampón de 50 mM de NaOAc y 1 mM de CaCl₂ a pH 5.7. Las muestras se enfriaron y la actividad residual se midió usando el método de Phadebas como se describe en la sección Materiales y Métodos excepto que la determinación tuvo lugar a 50°C. La actividad residual (R.A.) se puede calcular según la siguiente ecuación: R.A.. (%) = [ABS (tratado con calor)- ABS (en blanco)] / [ABS (tratado con calor a 60°C) - ABS (en blanco)]*100%.

Se obtuvieron los siguientes resultados:

Actividad residual para Fungamyl, una amilasa de cocción fúngica de *A. oryzae* bien conocida, y para enzimas híbridas de la invención.

Enzima	60°C	65°C	70°C
Fungamil	100	4	2
BE1	100	78	67
BE3	100	80	27

Referencias citadas en la descripción

5

10

15

Esta lista de referencias citada por el solicitante ha sido recopilada exclusivamente para la información del lector. No forma parte del documento de patente europea. La misma ha sido confeccionada con la mayor diligencia; la OEP sin embargo no asume responsabilidad alguna por eventuales errores u omisiones.

Documentos de patente citados en la descripción

	2 ocumentos de parente citados en la	uoser-peron
25	• WO 9000609 A [0015]	• US 6162628 A [0100] [0154]
25	• WO 9424158 A [0015]	• WO 2003010923 A [0101]
	• WO 9516782 A [0015]	• WO 2001066711 A [0101]
30	• US 2004023031 W [0025]	• WO 2000039289 A [0101]
	• WO 2002068589 A [0025]	• WO 9632472 A [0101]
35	• WO 2002010355 A [0028]	• WO 9953769 A [0101] [0102]
33	• WO 9526397 A [0028]	• WO 0032758 A [0101] [0102]
	• WO 9700324 A, KAO [0028]	• WO 0200852 A [0101] [0102]
40	• EP 1022334 A, KAO [0028]	• WO 2002066622 A [0101] [0102]
	• WO 0210356 A, Henkel [0028]	• US 5231017 A [0111]
45	• WO 0060058 A [0028]	• DK PA200301568 [0112]
43	• DK 0100133 W [0028]	• WO 2004081193 A [0112]
	• US 4683202 A [0059]	• US 3912590 A [0113]
50	• US 4760025 A [0064]	• EP 252730 A [0113]
	• WO 9114772 A [0076]	• EP 63909 A [0113]
55	• US 4160848 A [0097]	• US RE32153 E [0126]
33	• US 6667065 B [0098]	• US 4587215 A [0126]
	• US 20040043109 A [0098]	• WO 9928448 A [0126]
60	• WO 2003084331 A [0098]	• US 60650612 B [0127] [0128]
	• WO 9950399 A2 [0099] [0104]	• WO 0060060 A2 [0172]
65	• WO 2004111217 A [0099]	• WO 9211357 A [0179]
05	• EP 494233 B1 [0100]	• WO 9510603 A [0179]

Bibliografía fuera de la patente citada en la descripción

5

10

20

25

35

50

60

- Greenwood et al. Biotechnology and Bioengineering, 1994, vol. 44, 1295-1305 [0015]
- Needleman, S.B. Wunsch, C.D. Journal of Molecular Biology, 1970, vol. 48, 443-453 [0016]
 - Joergensen et al. Biotechnol. Lett., 1997, vol. 19, 1027-1031 [0021]
 - Coutinho, P.M. Henrissat, B. CAZy Carbohydrate-Active Enzymes, 1999, [0021]

• The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach **Coutinho**, P.M. **Henrissat**, B. *Genetics*, *Biochemistry and Ecology of Cellulose Degradation Uni Publishers Co.* 1999. 15-23 [0021]

- **Bourne**, Y. **Henrissat**, B. Glycoside hydrolases and glycosyltransferases: families and functional modules *Current Opinion in Structural Biology*, 2001, vol. 11, 593-600 [0021]
 - Tsukamoto et al. Biochemical and Biophysical Research Communications, 1988, vol. 151, 25-31 [0028]
 - Innis et al. PCR: A Guide to Methods and Application Academic Press 1990. [0055]
 - S.L. Beaucage M.H. Caruthers *Tetrahedron Letters*, <u>1981</u>, vol. 22, 1859-1869 [0058]
 - Matthes et al. EMBO J., 1984, vol. 3, 801-805 [0058]
 - R.K. Saiki et al. Science, <u>1988</u>, vol. 239, 487-491 [0059]
 - Morinaga et al. Biotechnology, 1984, vol. 2, 646-639 [0064]
- **Nelson** Long *Analytical Biochemistry*, 1989, vol. 180, 147-151 [0065]
 - Tague et al. Plant, Phys., 1988, vol. 86, 506- [0075]
 - Franck et al. Cell, 1980, vol. 21, 285-294 [0076]
 - Christensen AH Sharrock RA Quail Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation *Plant Mo. Biol.*, 1992, vol. 18, 675-689 [0076]
- **Zhang** W **McElroy** D. **Wu** R Analysis of rice Act1 5' region activity in transgenic rice plants *Plant Cell*, 1991, vol. 3, 1155-1165 [0076]
 - Edwards **Coruzzi** *Annu. Rev. Genet.*, <u>1990</u>, vol. 24, 275-303 [0076]
- **Ito** et al. Plant Mol. Biol., <u>1994</u>, vol. 24, 863-878 [0076]
 - Wu et al. Plant and Cell Physiology, 1998, vol. 39, no. 8. 885-889 [0076]
 - **Conrad** U. *Journal of Plant Physiology*, <u>1998</u>, vol. 152, no. 6. 708-711 [0076]
 - Chen et al. Plant and cell physiology, 1998, vol. 39, no. 9. 935-941 [0076]
 - **Kyozuka** et al. Plant Physiology, 1993, vol. 102, no. 3. 991-1000 [0076]
- Mitra, A. Higgins, DW Plant Molecular Biology, 1994, vol. 26, no. 1. 85-93 [0076]
 - Kagaya et al. Molecular and General Genetics, 1995, vol. 248, no. 6. 668-674 [0076]
 - **Xu** et al. Plant Molecular Biology, 1993, vol. 22, no. 4, 573-588 [0076]
 - Gasser et al. Science, vol. 244, 1293- [0079]
 - Potrykus Bio/Techn., 1990, vol. 8, 535- [0079]
- **Shimamoto** *et al. Nature*, <u>1989</u>, vol. 338, 274- [0079]
 - Hooykas Schilperoort Plant Mol. Biol., 1992, vol. 19, 15-38 [0080]

• Christou Plant J., 1992, vol. 2, 275-281 [0080] • Shimamoto Curr. Opin. Biotechnol., <u>1994</u>, vol. 5, 158-162 [0080] • Vasil et al. Bio/Technology, 1992, vol. 10, 667-674 [0080] 5 • Omirulleh S et al. Plant Molecular biology, 1993, vol. 21, no. 3. 415-428 [0080] • Gorinstein. S. Lii. C. Starch/Stärke, 1992, vol. 44, no. 12. 461-466 [0140] 10 • Sambrook et al. Molecular cloning: A laboratory manual Cold Spring Harbor lab. 1989. [0155] • Current protocols in Molecular Biology John Wiley and Sons 1995. [0155] • P.L. Chen Z. Long R. Ruan T.P. Labuza Nuclear Magnetic Resonance Studies of water Mobility in bread during 15 Storage Lebensmittel Wissenschaft und Technologie, 1997, vol. 30, 178-183 [0206] [0211] • Food Science and Technology, International Series Malcolm Bourne Food Texture and viscosity Academic Press 182-186 [0211] 20 25 30 35 40 45 50 55 60 65

REIVINDICACIONES

- 1. Polipéptido el cual es un híbrido comprendiendo;
 - a) una primera secuencia de aminoácidos teniendo actividad endo-amilasa y teniendo al menos un 60% de identidad con la secuencia de aminoácidos mostrada en la SEC ID NO: 35 y
- b) una segunda secuencia de aminoácidos comprendiendo un módulo de unión a carbohidratos y teniendo al menos un 60% de identidad con la secuencia de aminoácidos mostrada como los residuos de aminoácidos del 485 al 586 en la SEC ID NO: 2,

donde dicha primera secuencia de aminoácidos y/o dicha segunda secuencia de aminoácidos se deriva de una bacteria.

15

25

30

5

10

- 2. Polipéptido según la reivindicación 1, teniendo al menos un 60% de identidad, al menos un 70% de identidad, al menos un 80% de identidad, o incluso al menos un 90% de identidad con la secuencia de aminoácidos mostrada en la SEC ID NO: 4.
- 3. Proceso para preparar una masa o un producto comestible hecho a partir de una masa, cuyo proceso comprende añadir el polipéptido según la reivindicación 1 a la masa.
 - 4. Proceso según la reivindicación 3 comprendiendo además añadir una actividad de exo-amilasa, preferiblemente una actividad de alfa-amilasa maltogénica, preferiblemente Novamyl.
 - 5. Proceso comprendiendo;
 - a) poner en contacto un almidón con un polipéptido según cualquiera de las reivindicaciones 1 ó 2,
 - b) incubar dicho almidón con dicho polipéptido durante un tiempo y a una temperatura suficientes para conseguir la conversión de al menos un 90% p/p de dicho sustrato de almidón en azúcares fermentables,
 - c) fermentar para producir un producto de fermentación,

35

- d) opcionalmente recuperar el producto de fermentación.
- 6. Aditivo de mejora de pan o de masa en forma de un granulado o polvo aglomerado comprendiendo el polipéptido según cualquiera de las reivindicaciones 1 ó 2.
 - 7. Secuencia de ADN codificando un polipéptido según cualquiera de las reivindicaciones 1 ó 2.
 - 8. Constructo de ADN comprendiendo la secuencia de ADN según la reivindicación 7.

9. Vector de expresión recombinante el cual porta el constructo de ADN según la reivindicación 8.

10. Célula huésped la cual se transforma con el constructo de ADN según la reivindicación 8 o el vector según la reivindicación 9.

50

55

60

LISTA DE SECUENCIAS

	<110>	NO	vozyn	ies A	13													
5	<120>	híb	ridos	СВМ	-amila	asa pa	ra coc	ción										
	<130>	107	53.20)4-W()													
10	<160>	42																
	<170>	Ver	rsión c	le pat	entIn	3.3												
15	<210><211><211><212><213>	175 AD	N	flavot	ormu	c.												
20	<220>	Бис	ıııus	μανοι	ermus	•												
25	<221> <222>	(1).		8)														
30	<400> gg G	ga	agt S e r	gtg Val	ccg Pro	gta Val S	aat Asn	ggc Gly	aca Thr	atg Met	atg Met 10	caa Gln	tat Tyr	ttc Phe	gaa Glu	tgg Trp 15	tac Tyr	48
	C1 Le	tt eu	cca Pro	gac Asp	gat Asp 20	gga Gly	aca Thr	cta Leu	tgg Trp	acg Thr 25	aaa Lys	gta Val	gca Ala	aat Asn	aac Asn 30	gct Ala	caa Gîn	96
35	te Se	ct er	tta Leu	gcg Ala 35	aat Asn	ctt Leu	ggc Gly	att Ile	act Thr 40	gcc Ala	ctt Leu	tgg Trp	ctt Leu	ccc Pro 45	cct Pro	gcc Ala	tat Tyr	144
40	a: L:	aa ys	gga Gly 50	aca Thr	agc Ser	agc Ser	agt Ser	gac Asp 55	gtt Val	gga Gly	tat Tyr	ggc Gly	gtt Val 60	tat Tyr	gat Asp	tta Leu	tat Tyr	192
	g: A: 6:	sp	Ctt L e u	gga Gly	gag Glu	ttt Phe	aat Asn 70	caa Gln	aaa Lys	gga Gly	act Thr	gtc Val 75	cga Arg	aca Thr	aaa Lys	tac Tyr	ggg Gly 80	240
45	ae Ti	ca hr	aaa Lys	aca Thr	caa Gln	tat Tyr 85	atc Ile	caa Gln	gca Ala	atc Ile	caa Gln 90	gcg Ala	gcg Ala	cat His	aca Thr	gca Ala 95	ggg Gly	288
50	a1 Mo	tg et	caa Gln	gta Val	tat Tyr 100	gca Ala	gat Asp	gtc val	gtc Val	ttt Phe 105	aac Asn	cat His	aaa Lys	gcc Ala	ggt Gly 110	gca Ala	gat Asp	336
55	g	ga ly	aca Thr	gaa Glu 115	cta Leu	gtc Val	gat Asp	gca Ala	gta Val 120	gaa Glu	gta Val	aat Asn	cct Pro	tct Ser 125	gac Asp	cgc Arg	aat Asn	384
33	G G	aa ln	gaa Glu 130	ata Ile	tca Ser	gga Gly	aca Thr	tat Tyr 135	caa Gln	atc Ile	caa Gln	gcg Ala	tgg Trp 140	aca Thr	aaa Lys	ttt Phe	gat Asp	432
60	Pl						aac Asn 150											480
65	H:	at is	ttc Phe	gat Asp	gga Gly	acg Thr 165	gac Asp	tgg Trp	gat Asp	gag Glu	agt ser 170	aga Arg	aaa Lys	cta L e u	aat Asn	cgt Arg 175	att Ile	528
	+:	a.c	aza	ttc	cac	aac	aco	002	222	nca	tna	nat	toe	uss	ot2	nat	262	576

	туг	Lys	Phe	Arg 180	Gly	Thr	Gly	Lys	A]a 185	Trp	Asp	Trp	Glu	val 190	Asp	Thr	
5	gaa Glu	aac Asn	ggg Gly 195	aat Asn	tat Tyr	gac Asp	tat Tyr	ctc Leu 200	atg Met	tat Tyr	gca Ala	gat Asp	tta Leu 205	gat Asp	atg Met	gat Asp	624
10	cat His	cca Pro 210	gag Glu	gtt val	gta Val	tcc Ser	gaa Glu 215	cta Leu	aaa Lys	aat Asn	tgg Trp	gga Gly 220	aag Lys	tgg Trp	tat Tyr	gta Val	672
	acc Thr 225	aca Thr	acc Thr	aat Asn	atc Ile	gac Asp 230	gga Gly	ttc Phe	cgt Arg	ctg Leu	gat Asp 235	gca Ala	gtg val	aag Lys	cat His	att Ile 240	720
15							gac Asp										768
20	caa Gln	aag Lys	cct Pro	ctt Leu 260	ttt Phe	gcc Ala	gtt Val	9 99 Gly	gaa Glu 265	ttt Phe	tgg Trp	agc Ser	tat Tyr	gac Asp 270	att Ile	agc ser	816
25	aag Lys	ttg L e u	cac His 275	aac Asn	tat Tyr	att Ile	aca Thr	aag Lys 280	acg Thr	aac Asn	ggc Gly	tct Ser	atg Met 285	tcc Ser	cta Leu	ttc Phe	864
							aat Asn 295										912
30							tta Leu										960
35	cct Pro	aca Thr	tta Leu	gca Ala	gtc Val 325	aca Thr	tta Leu	gtg Val	gat Asp	aat Asn 330	cac His	gat Asp	act Thr	gag Glu	cca Pro 335	ggg Gly	1008
40	caa Gln	tct Ser	ctg Leu	cag G1n 340	tca Ser	tgg Trp	gtc Val	g ag Glu	cca Pro 345	tgg Trp	ttt Phe	aaa Lys	ccg Pro	tta Leu 350	gct Ala	tac Tyr	1056
40	gca Ala	ttt Phe	atc Ile 355	ttg Leu	acc Thr	cgc Arg	caa Gln	gaa Glu 360	ggt Gly	tat Tyr	cct Pro	tgc Cys	gtc Val 365	ttt Phe	tat Tyr	gga Gly	1104
45	gat Asp	tac Tyr 370	tat Tyr	ggt Gly	att Ile	cca Pro	aaa Lys 375	tac Tyr	aac Asn	att Ile	cct Pro	gcg Ala 380	ctg Leu	aaa Lys	agc Ser	aaa Lys	1152
50	ctt Leu 385	gat Asp	ccg Pro	ctg Leu	tta Leu	att Ile 390	gcc Ala	aga Arg	aga Arg	gat Asp	tat Tyr 395	gcc Ala	tat Tyr	gga Gly	aca Thr	cag Gln 400	1200
							gcg Ala										1248
55	gtg Val	gct Ala	gaa Glu	aaa Lys 420	gca Ala	aat Asn	tca Ser	g ga Gly	ctg Leu 425	gct Ala	gca Ala	ctc Leu	att Ile	acc Thr 430	gac Asp	ggg Gly	1296
60	cct Pro	ggc Gly	gga Gly 435	agc Ser	aaa Lys	tgg Trp	atg Met	tat Tyr 440	gtt val	gga Gly	aaa Lys	caa Gln	cac His 445	gct Ala	ggc Gly	aaa Lys	1344
	acg	ttt	tat	gat	tta	acc	ggc	aat	cga	agt	gat	aca	gtg	aca	atc	aat	1392

	Thr	Phe 450	Туг	Asp	Leu	Thr	Gly 455	Asn	Arg	Ser	Asp	Thr 460	val	Thr	Ile	Asn	
5	gct Ala 465	gat Asp	gga Gly	tgg Trp	gga Gly	gaa Glu 470	ttt Phe	aaa Lys	gtc Val	aat Asn	gga Gly 475	ggg Gly	tct Ser	gta Val	tcc Ser	ata I]e 480	1440
10	tgg Trp	gtt val	cca Pro	aaa Lys	ata 11e 485	agt Ser	act Thr	act Thr	tcc Ser	caa G1n 490	ata Ile	aca Thr	ttt Phe	act Thr	gta Val 495	aat Asn	1488
	aac Asn	gcc Ala	aca Thr	acc Thr 500	gtt Val	tgg Trp	gga Gly	caa Gln	aat Asn 505	gta Val	tac Tyr	gtt val	gtc Val	ggg Gly 510	aat Asn	att Ile	1536
15	tcg Ser	cag Gln	ctg Leu 515	ggg Gly	aac Asn	tgg Trp	gat Asp	cca Pro 520	gtc Val	cac His	gca Ala	gtt val	caa G1n 525	atg Met	acg Thr	ccg Pro	1584
20	tct Ser	tct Ser 530	tat Tyr	cca Pro	aca Thr	tgg Trp	act Thr 535	gta Val	aca Thr	atc Ile	cct Pro	ctt Leu 540	ctt Leu	caa Gln	ggg Gly	caa Gln	1632
25	aac Asn 545	ata Ile	caa Gln	ttt Phe	aaa Lys	ttt Phe 550	atc Ile	aaa Lys	aaa Lys	gat Asp	tca Ser 555	gct Ala	gga Gly	aat Asn	gtc Val	att Ile 560	1680
	tgg Trp	gaa Glu	gat Asp	ata Ile	tcg Ser 565	aat Asn	cga Arg	aca Thr	tac Tyr	acc Thr 570	gtc Val	cca Pro	act Thr	gct Ala	gca Ala 575	tcc Ser	1728
30									gtg Val 585								1758

<210>2

<211> 586

<212> PRT

<213> Bacillus flavotermus

<400> 2

40

Gly Ser Val Pro Val Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr

Leu Pro Asp Asp Gly Thr Leu Trp Thr Lys Val Ala Asn Asn Ala Gln

Ser Leu Ala Asn Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala Tyr

Lys Gly Thr Ser Ser Ser Asp Val Gly Tyr Gly Val Tyr Asp Leu Tyr

Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly

Thr Lys Thr Gln Tyr Ile Gln Ala Ile Gln Ala Ala His Thr Ala Gly

Met Gln Val Tyr Ala Asp Val Val Phe Asn His Lys Ala Gly Ala Asp

				100					105					110		
5	Gly	Thr	Glu 115	Leu	val	Asp	Ala	val 120	G1u	val	Asn	Pro	Ser 125	ASp	Arg	Asn
10	Gln	Glu 130	Ile	Ser	Gly	Thr	Tyr 135	Gln	Ile	Gln	Ala	Trp 140	Thr	Lys	Phe	Asp
	Phe 145	Pro	Gly	Arg	G1y	Asn 150	Thr	Tyr	Ser	ser	Phe 155	Lys	Trp	Arg	ТГР	Tyr 160
15	His	Phe	Asp	GТу	Thr 165	ASP	Тгр	Asp	Glu	Ser 170	Arg	Lys	Leu	Asn	Arg 175	Ile
20	Tyr	Lys	Phe	Arg 180	GТу	Thr	Gly	Lys	Ala 185	Trp	ASP	тгр	Glu	val 190	ASP	Thr
25	Glu	Asn	Gly 195	Asn	Туг	Asp	Tyr	Leu 200	Met	Туг	ΑΊ a	Asp	L eu 205	Asp	Met	Asp
	His	Pro 210	Glu	Val	val	ser	G]u 215	Leu	Lys	Asn	Trp	Gly 220	Lys	Тгр	ТУГ	val
30	Thr 225	Thr	Thr	Asn	Ile	Asp 230	Gly	Phe	Arg	Leu	Asp 235	Ala	val	Lys	His	11e 240
35	Lys	Tyr	Ser	Phe	Phe 245	Pro	Asp	Trp	Leu	Ser 250	Tyr	val	Arg	Thr	G1n 255	Thr
40	Gln	Lys	Pro	Leu 260	Phe	Ala	Val	Gly	Glu 265	Phe	Trp	Ser	Туг	Asp 270	Ile	Ser
40	Lys	Leu	His 275	Asn	Туг	Ile	Thr	Lys 280	Thr	Asn	Gly	Ser	Met 285	Ser	Leu	Phe
45	Asp	A7a 290	Pro	Leu	His	Asn	Asn 295	Phe	туг	Ile	Ala	ser 300	Lys	Ser	GТy	Gly
50	Tyr 305	Phe	Asp	Met	Arg	Thr 310	Leu	Leu	ASN	Asn	Thr 315	Leu	Met	Lys	ASP	G]n 320
	Pro	Thr	Leu	Ala	Va1 325	Thr	Leu	Val	Asp	Asn 330	His	ASP	Thr	Glu	Pro 335	Gly
55	Gìn	Ser	Leu	G1n 340	Ser	Trp	val	Glu	Pro 345	тгр	Phe	Lys	Pro	Leu 350	Ala	Tyr
60	Ala	Phe	11e 355	Leu	Thr	Arg	Gln	G] u 360	GТу	Туг	Pro	Cys	va1 365	Phe	туг	GТу
	Asp	Tyr	Туг	Gly	Ile	Pro	Lys	Туг	Asn	Ile	Pro	Ala	Leu	Lys	ser	Lys

		370					375					380				
5	Leu 385	Asp	Pro	Leu	Leu	11e 390	Ala	Arg	Arg	Asp	Tyr 3 95	Ala	туг	Gly	Thr	G]r 400
10	His	Asp	Tyr	Ile	Asp 405	Ser	Ala	Asp	Ile	Ile 410	Gly	Trp	Thr	Arg	Glu 415	Gly
15	Va1	Ala	Glu	Lys 420	Ala	ASN	Ser	Gly	Leu 425	Ala	Ala	Leu	Ile	Thr 430	Asp	Gly
	Pro	Gly	Gly 435	Ser	Lys	Trp	Met	Tyr 440	val	Gly	Lys	Gln	His 445	Ala	Gly	Lys
20	Thr	Phe 450	Tyr	Asp	Leu	Thr	G7y 455	Asn	Arg	Ser	Asp	Thr 460	val	Thr	Ile	Asr
25	Ala 465	Asp	Gly	Trp	GТу	Glu 470	Phe	Lys	val	Asn	Gly 475	GJy	Ser	val	Ser	17e
30	Trp	val	Pro	Lys	Ile 485	ser	Thr	Thr	ser	G]n 490	Ile	Thr	Phe	Thr	Va7 495	Asr
35	Asn	Ala	Thr	Thr 500	val	Тгр	Gly	G1n	Asn 505	val	Туг	val	val	Gly 510	Asn	Ile
40	Ser	Gln	Leu 515	Gly	Asn	тгр	Asp	Pro 520	val	His	Ala	va1	G]n 525	Met	Thr	Pro
40	Ser	Ser 530	Туг	Pro	Thr	Trp	Thr 535	val	Thr	Ile	Pro	Leu 540	Leu	Gln	Gly	G٦r
45	Asn 545	Ile	Gln	Phe	Lys	Phe 550	Ile	Lys	Lys	Asp	Ser 555	Ala	GТу	Asn	val	11e 560
50	Trp	Glu	Asp	Ile	Ser 565	ASn	Arg	Thr	Tyr	Thr 570	val	Pro	Thr	Ala	Ala 575	Ser
55	Gly	Ala	Tyr	Thr 580	Ala	Ser	Trp	Asn	va1 585	Pro						

<210> 3 <211> 1755 ⁶⁰ <212> ADN

<213> BLA-CBM híbrido

<220> <221> CDS <222> (1)..(1755)

<400> 3

5	gca Ala 1	aat Asn	ctt Leu	aat Asn	ggg Gly S	acg Thr	ctg Leu	atg Met	cag Gln	tat Tyr 10	ttt Phe	gaa Glu	tgg Trp	tac Tyr	atg Met 15	CCC Pro	48
									ttg Leu 25								96
10	gct Ala	gaa Glu	cac His 35	ggt Gly	att Ile	act Thr	gcc Ala	gtc Val 40	tgg Trp	att Ile	ccc Pro	ccg Pro	gca Ala 45	tat Tyr	aag Lys	gga Gly	144
15	acg Thr	agc Ser 50	caa Gln	gcg Ala	gat Asp	gtg Val	ggc Gly 55	tac Tyr	ggt Gly	gct Ala	tac Tyr	gac Asp 60	ctt L e u	tat Tyr	gat Asp	tta Leu	192
20	999 Gly 65	gag Glu	ttt Phe	cat His	caa Gln	aaa Lys 70	ggg Gly	acg Thr	gtt Val	cgg Arg	aca Thr 75	aag Lys	tac Tyr	ggc Gly	aca Thr	aaa Lys 80	240
									agt Ser								285
25	gtt Val	tac Tyr	ggg Gly	gat Asp 100	gtg Val	gtc Val	atc Ile	aac Asn	cac His 105	aaa Lys	ggc Gly	ggc Gly	gct Ala	gat Asp 110	gcg Ala	acc Thr	336
30									gat Asp								384
35	att Il e	tca Ser 130	gga Gly	gaa Glu	cac His	cta Leu	att Ile 135	aaa Lys	gcc Ala	tgg Trp	aca Thr	cat His 140	ttt Phe	cat His	ttt Phe	ccg Pro	432
									ttt Phe								480
40	Āsp	ĞΊy	Thr	Āsp	Trp 165	ĀSP	ĞÌű	ser	cga Arg	Lys 170	Leu	Asn	Arg	Ile	Tyr 175	Lys	528
45	ttt Ph e	caa Gln	gga Gly	aag Lys 180	Ala	tgg Trp	gat Asp	tgg Trp	gaa Glu 185	gtt Val	tcc Ser	aat Asn	gaa Glu	aac Asn 190	ggc Gly	aac Asn	576
50									atc Ile								624
30	gca Ala	gca Ala 210	gaa Glu	att Ile	aag Lys	aga Arg	tgg Trp 215	ggc Gly	act Thr	tgg Trp	tat Tyr	gcc Ala 220	aat Asn	gaa Glu	ctg Leu	c aa Gln	672
55							Asp		gtc Val								720
60	ttg Leu	cgg Arg	gat Asp	tgg Trp	gtt Val 245	aat Asn	cat His	gtc Val	agg Arg	gaa Glu 250	aaa Lys	acg Thr	ggg Gly	aag Lys	gaa Glu 255	atg Met	768
									aat Asn 265								816
65	tat Tyr	ttg L e u	aac Asn	aaa Lys	aca Thr	aat Asn	ttt Phe	aat Asn	cat His	tca Ser	gtg Val	ttt Ph e	gac A sp	gtg Val	ccg Pro	ctt L e u	864

			275					280					285				
5	cat His	tat Tyr 290	cag Gln	ttc Phe	cat His	gct Ala	gca Ala 295	tcg Ser	aca Thr	cag Gln	gga Gly	ggc Gly 300	ggc Gly	tat Tyr	gat Asp	atg Met	912
10	agg Arg 305	aaa Lys	ttg Leu	ctg Leu	aac Asn	ggt Gly 310	acg Thr	gtc Val	gtt val	tcc Ser	aag Lys 315	cat His	ccg Pro	ttg Leu	aaa Lys	tcg Ser 320	960
10	gtt Val	aca Thr	ttt Phe	gtc Val	gat Asp 325	aac Asn	cat His	gat Asp	aca Thr	cag G1n 330	ccg Pro	ggg Gly	caa Gln	tcg Ser	ctt Leu 335	gag Glu	1008
15	tcg Ser	act Thr	gtc Val	caa Gln 340	aca Thr	tgg Trp	ttt Phe	aag Lys	ccg Pro 345	ctt Leu	gct Ala	tac Tyr	gct Ala	ttt Phe 350	att Ile	ctc Leu	1056
20														atg Met			1104
														cac His			1152
25	gaa Glu 385	ccg Pro	atc Ile	tta Leu	aaa Lys	gcg Ala 390	aga Arg	aaa Lys	cag Gln	tat Tyr	gcg A1a 395	tac Tyr	gga Gly	gca Ala	cag Gln	cat His 400	1200
30														gaa Glu			1248
35														gac Asp 430			1296
	ggt Gly	99 <u>9</u> Gly	gca Ala 435	aag Lys	cga Arg	atg Met	tat Tyr	gtc Val 440	ggc Gly	cgg Arg	caa Gln	aac Asn	gcc Ala 445	ggt Gly	gag Glu	aca Thr	1344
40														atc Ile			1392
45	gaa Glu 465	ggc Gly	tgg Trp	gga Gly	gag Glu	ttt Phe 470	cac His	gta Val	aac Asn	ggc Gly	ggg Gly 475	tcg Ser	gtt Val	tca Ser	att Ile	tat Tyr 480	1440
														gta Val			1488
50	gcc Ala	aca Thr	acc Thr	gtt Val 500	tgg Trp	gga Gly	caa Gln	aat Asn	gta val 505	tac Tyr	gtt Val	gtc val	ggg Gly	aat Asn 510	att Ile	tcg Ser	1536
55	cag Gln	ctg L e u	ggg Gly 515	aac Asn	tgg Trp	gat Asp	cca Pro	gtc Val 520	cac His	gca Ala	gtt Val	caa Gln	atg Met 525	acg Thr	ccg Pro	tct Ser	1584
60	tct Ser	tat Tyr 530	cca Pro	aca Thr	tgg Trp	act Thr	gta Val 535	aca Thr	atc Ile	cct Pro	ctt L e u	ctt Leu 540	caa Gln	ggg Gly	caa Gln	aac Asn	1632
	ata Ile	caa Gln	ttt Phe	aaa Lys	ttt Phe	atc Il e	aaa Lys	aaa Lys	gat Asp	tca Ser	gct Ala	gga Gly	aat Asn	gtc Val	att Ile	tgg Trp	1680

	545				550)				555				560)	
5	gaa g Glu A	at a	ata t (le S	cg aa er As 56	n Arg	aca Thr	tac Tyr	acc Thr	gtc val 570	cca a Pro	act g Thr A	ct go la A	ca to la se 57	r Gly	1 /	1728
10			Thr A	cc ag la se 80				ccc Pro 585								1755
15	<210> 4 <211> 585 <212> PRT <213> BLA		M híbr	ido												
20	<400> 4	Asn	. Leu	ı A s n	G] v	The	i.cu	Met	Gln	Tvr	Phe	ចាំរ	Tro	Tvr	Met	Pro
20	ĩ	7.51		, ,,,,,,,	5	••••				10		0.0	ρ		15	
25	Asn	Asp	Gly	61n 20	His	Тгр	Arg	Arg	Leu 25	Gln	Asn	Asp	Ser	Ala 30	Tyr	Leu
	Ala	Glu	ніs 35	Gly	Ile	Thr	Ala	Va1 40	Trp	Ile	Pro	Pro	Ala 45	Туг	Lys	Gly
30	Thr	Ser 50	· G]r	а АЛа	Asp	val	G]у 55	Tyr	Gly	Ala	Туг	Asp 60	Leu	Туг	Asp	Leu
35	Gly 65	G٦ι	i Phe	e His	Gln	Lys 70	Gly	Thr	۷al	Arg	Thr 75	Lys	Туг	Glу	Thr	Lys 80
40	Gly	Glu	ı Lei	ı G1n	Ser 85	Ala	Ile	Lys	Ser	Leu 90	His	Ser	Arg	Asp	11e 95	Asn
	Val	Туг	• G1y	/ Asp 100	Val	val	Ile	Asn	Нis 105	Lys	Gly	Gly	ΑΊα	Asp 110	Ala	Thr
45	Glu	Asp	val 115	Thr	Ala	Val	Glu	Val 120	Asp	Pro	Ala	Asp	Arg 125	Asn	Arg	val
50	Ile	Ser 13(/ Glu	His	Leu	Ile 135	Lys	Ala	Trp	Thr	His 140	Phe	His	Phe	Pro
55	Gly 145	Arg	g Gly	/ Ser	Thr	Tyr 150	Ser	Asp	Phe	Lys	Trp 155	His	Trp	Туг	нis	Phe 160
60	Asp	Gly	/ Thr	- Asp	Trp 165	Asp	Glu	Ser	Arg	Lys 170		Asn	Arg	Ile	Tyr 175	Lys
J.J	Phe	G٦r	ı Gly	/ Lys 180	Ala	Trp	ASp	Тгр	G]u 185	٧a٦	Ser	Asn	Glu	Asn 190	G]y	Asn
65	Tyr	Ası	7 Tyr 199	- Leu	Met	Туг	Ala	Asp 200	Ile	Asp	туг	Asp	His 205	Pro	Asp	val

	Ala	Ala 210	Glu	Ile	Lys	Arg	Trp 215	Gly	Thr	Trp	Туг	Ala 220	Asn	Glu	Leu	GÌn
5	Leu 225	Asp	GТу	Phe	Arg	Leu 230	Asp	Ala	val	Lys	Ніs 235	Ile	Lys	Phe	Ser	Phe 240
10	Leu	Arg	Asp	тгр	va1 245	Asn	His	val	Arg	G1u 250	Lys	Thr	Gly	Lys	Glu 255	Met
15	Phe	Thr	val	Ala 260	Glu	Tyr	Тгр	Gln	Asn 265	Asp	Leu	Gly	Ala	Leu 270	Glu	Asn
	Tyr	Leu	Asii 275	Lys	Thr	Asn	Phe	Asii 280	ніѕ	Ser	Val	Phe	Asp 285	va1	Pro	Leu
20	His	Tyr 290	Gln	Phe	His	Ala	Ala 295	Ser	Thr	Gln	Gly	Gly 300	Gly	Туг	Asp	Met
25	Arg 305	Lys	Leu	Leu	ASN	Gly 310	Thr	val	∨al	Ser	Lys 315	His	Pro	Leu	Lys	Ser 320
30	val	Thr	Phe	val	Asp 325	Asn	His	Asp	Thr	G]n 330	Pro	Gly	Gln	ser	Leu 335	Glu
	Ser	Thr	Val	G]n 340	Thr	Trp	Phe	Lys	Pro 345	Leu	Ala	Туг	Ala	Phe 350	Ile	Leu
35	Thr	Arg	G]u 355	Ser	Gly	Tyr	Pro	G1n 360	val	Phe	Tyr	Gly	Asp 365	Met	Tyr	Gly
40	Thr	Lys 370	Gly	Asp	Ser	Gln	Arg 375	Glu	Ile	Pro	Ala	Leu 380	Lys	His	Lys	Ile
45	Glu 385	Pro	Ile	Leu	Lys	Ala 390	Arg	Lys	Gln	Туг	Ala 395	Tyr	G1y	Ala	Gln	His 400
	Asp	Tyr	Phe	Asp	ніs 405	His	Asp	Ile	val	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asp
50	Ser	Ser	va1	Ala 420	Asn	ser	GТу	Leu	A7a 425	Ala	Leu	Ile	Thr	ASP 430	Gly	Pro
55	Gly	Gly	Ala 435	Lys	Arg	Met	Туг	va1 440	Gly	Arg	Gln	Asn	Ala 445	Gly	Glu	Thr
60	Trp	His 450	Asp	Ile	Thr	Glу	Asn 455	Arg	Ser	Glu	Pro	Va1 460	va1	Ile	Asn	Ser
	G]u 465	GJy	Trp	Gly	Glu	Phe 470	His	Val	Asn	Gly	G1y 475	Ser	٧a٦	ser	IJе	Tyr 480

	Va	1 G	ln	Arg	Ile	Ser 485	Thr	Thr	Ser	Gln	11e 490		r Pł	ne T	hr	Val	Asn 495	Asn
5	ΓA	ат	hr	Thr	va7 500	Trp	Gly	Gln	Asn	va1 505	Туг	· va	1 va	al G		Asn 510	Ile	Ser
10	G]	n L	eu	Gly 515	Asn	Trp	Asp	Pro	va1 520	His	Ala	va	1 G1		et 25	Thr	Pro	Ser
15	Se		уг 30	Pro	Thr	Trp	Thr	va1 535	Thr	IJе	Pro	Le	u Le 54		∃n (Gly	Gln	Asn
15	17 54	e G 5	ln	Phe	Lys	Phe	17e 550	Lys	Lys	Asp	Ser	55	a 61 5	ly A	sn '	Val	Ile	7rp 560
20	G1	u A	sp	Ile	Ser	Asn 565	Arg	Thr	туг	Thr	Va1 570		o Th	nr A	la .	Ala	Ser 575	Gly
25	ΓA	аТ	yr '	Thr	Ala 580	Ser	Trp	Asn	val	Pro 585								
30	<210> 5 <211> 174 <212> AD <213> lich	N	ormis	-CBM	1 de ba	acillus												
35	<220> <221> CD <222> (1).		·9)															
40	<400> 5																	
	gta Val 1	aat Asn	gg	c ac y Th	g cte r Lei 5	g atg u Met	g cag Gln	tat Tyr	ttt Phe	gaa Glu 10	tgg Trp	tat Tyr	acg Thr	ccg Pro	aad Asr 15	c ga n As	c p	48
45					p Ly:	a cga s Arg												96
50				e Th		c gto a Val												144
55	caa Gln	gcg Ala 50	ga As	t gt p Va	g gg i Gly	c tac y Tyr	ggt Gly 55	gct	tac Tyr	gac Asp	ctt L eu	tat Tyr 60	gat Asp	tta Leu	999 G1y	g ga ⁄ Gl	g u	192
						g acg y Thr 70											ŭ	240
60	C tg Leu	caa Gln	tc Se	t gc r Al	g ate a Ile 85	c aaa e Lys	agt Ser	ctt	cat His	tcc Ser 90	cgc Arg	gac Asp	att Ile	aac Asn	gt1 Va 95	t ta l Ty	c r	288
65	999 G1y	gat Asp	gt Va	g gt I Va 10) II	c aac e Asr	cac His	aaa Lys	ggc Gly 105	ggc Gly	gct Ala	gat Asp	gcg Ala	acc Thr 110	gaa Glu	a ga J As	t p	336

	gta Val	acc Thr	gcg Ala 115	gtt Val	gaa Glu	gtc Val	gat ASP	ccc Pro 120	gct Ala	gac Asp	cgc Arg	aac Asn	cgc Arg 125	gta val	att Ile	tca Ser	384
5															ggg Gly		432
10															gac Asp		480
15															ttt Phe 175		528
															tat Tyr		576
20															gta Val		624
25															ttg Leu		672
															ttg Leu		720
30	gat Asp	tgg Trp	gtt Val	aat Asn	cat His 245	gtc Val	agg Arg	gaa Glu	aaa Lys	acg Thr 250	ggg Gly	aag Lys	gaa Glu	atg Met	ttt Phe 255	acg Thr	768
35	gta Val	gct Ala	gag Glu	tac Tyr 260	tgg Trp	tcg Ser	aat Asn	gac Asp	ttg Leu 265	ggc Gly	gcg Ala	ctg L e u	gaa Glu	aac Asn 270	tat Tyr	ttg Leu	816
40															cat His		864
	cag Gìn	ttc Phe 290	cat His	gct Ala	gca Ala	tcg Ser	aca Thr 295	cag Gln	gga Gly	ggc Gly	ggc Gly	tat Tyr 300	gat Asp	atg Met	agg Arg	aaa Lys	912
45	ttg Leu 305	ctg Leu	aac Asn	ggt Gly	acg Thr	gtc Val 310	gtt Val	tcc Ser	aag Lys	cat His	ccg Pro 315	ttg L e u	aaa Lys	tcg Ser	gtt val	aca Thr 320	960
50															tcg ser 335		1008
	gtc Val	caa Gln	aca Thr	tgg Trp 340	ttt Phe	aag Lys	ccg Pro	ctt Leu	gct Ala 345	tac Tyr	gct Ala	ttt Phe	att Ile	ctc Leu 350	aca Thr	agg Arg	1056
55	gaa Glu	tct Ser	gga Gly 355	tac Tyr	cct Pro	cag Gln	gtt val	ttc Phe 360	tac Tyr	ggg Gly	gat Asp	atg Met	tac Tyr 365	ggg Gly	acg Thr	aaa Lys	1104
60	gga Gly	gac Asp 370	tcc Ser	cag Gln	cgc Arg	gaa Glu	att Ile 375	cct Pro	gcc Ala	ttg L e u	aaa Lys	cac His 380	aaa Lys	att Ile	gaa Glu	ccg Pro	1152

	atc Ile 385	tta Leu	aaa Lys	gcg Ala	aga Arg	aaa Lys 390	cag Gln	tat Tyr	gcg Ala	tac Tyr	gga G1y 395	gca Ala	cag Gln	cat His	gat Asp	tat Tyr 400	1200
5	ttc Phe	gac Asp	cac His	cat His	gac Asp 405	att Ile	gtc val	ggc Gly	tgg Trp	aca Thr 410	agg Arg	gaa Glu	ggc Gly	gac Asp	agc Ser 415	tcg Ser	1248
10	gtt val	gca Ala	aat Asn	tca Ser 420	ggt Gly	ttg Leu	gcg Ala	gca Ala	tta Leu 425	ata Ile	aca Thr	gac Asp	gga Gly	ccc Pro 430	ggt Gly	g gg G1y	1296
15	gca Ala	aag Lys	cga Arg 435	atg Met	tat Tyr	gtc Val	ggc Gly	cgg Arg 440	caa Gln	aac Asn	gcc Ala	ggt Gly	gag Glu 445	aca Thr	tgg Trp	cat His	1344
	gac Asp	att Ile 450	acc Thr	gga Gly	aac Asn	cgt Arg	tcg Ser 455	gag Glu	ccg Pro	gtt Val	gtc val	atc 11e 460	aat Asn	tcg Ser	gaa Glu	ggc Gly	1392
20	tgg Trp 465	gga Gly	gag Glu	ttt Phe	cac His	gta Val 470	aac Asn	ggc Gly	ggg Gly	tcg Ser	gtt val 475	tca Ser	att Ile	tat Tyr	gtt val	cca Pro 480	1440
25		ata Ile															1488
30	acc Thr	gtt Val	tgg Trp	gga Gly 500	caa Gln	aat Asn	gta Val	tac Tyr	gtt val 505	gtc Val	ggg Gly	aat Asn	att Ile	tcg ser 510	cag Gln	ctg Leu	1536
	ggg Gly	aac Asn	tgg Trp 515	gat Asp	cca Pro	gtc Val	cac His	gca Ala 520	gtt Val	caa Gln	atg Met	acg Thr	ccg Pro 525	tct Ser	tct Ser	tat Tyr	1584
35	cca Pro	aca Thr 530	tgg Trp	act Thr	gta Val	aca Thr	atc Ile 535	cct Pro	ctt Leu	ctt L e u	caa Gln	999 Gly 540	caa Gln	aac Asn	ata Ile	caa Gln	1632
40	ttt Phe 545	aaa Lys	ttt Phe	atc Ile	aaa Lys	aaa Lys 550	gat Asp	tca Ser	gct Ala	gga Gly	aat Asn 555	gtc val	att Ile	tgg Trp	gaa Glu	gat Asp 560	1680
	ata Ile	tcg Ser	aat Asn	cga Arg	aca Thr 565	tac Tyr	acc Thr	gtc Val	cca Pro	act Thr 570	gct Ala	gca Ala	tcc Ser	gga Gly	gca Ala 575	tat Tyr	1728
45	aca Thr	gcc Ala	agc Ser	tgg Trp 580	aac Asn	gtg Val	ccc Pro										1749

50
<210> 6
<211> 583
<212> PRT

55
<213> licheniformis-CBM de bacillus
<400> 6

60

65

Val Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp 15

Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp 20

	Ile	Gly	1]e 35	Thr	Ala	Va1	Trp	17e 40	Pro	Pro	Ala	Tyr	Lys 45	Gly	Thr	Ser
5	Gln	Ala 50	Asp	Va1	Gly	Tyr	Gly 55	Ala	Туг	Asp	Leu	Туг 60	Asp	Leu	Gly	Glu
10	Phe 65	His	Gln	Lys	Gly	Thr 70	٧al	Arg	Thr	Lys	Tyr 75	Gly	Thr	Lys	Gly	G]u 80
15	Leu	Gln	Ser	Ala	1]e 85	Lys	Ser	Leu	His	Ser 90	Arg	Asp	IJe	ASN	Va1 95	Tyr
	Gly	Asp	Va1	Val 100	Ile	Asn	His	Lys	Gly 105	Gly	Ala	Asp	Ala	Thr 110	Glu	Asp
20	Va1	Thr	Ala 115	Val	Glu	val	Asp	Pro 120	Ala	Asp	Arg	Asn	Arg 125	Val	Ile	ser
25	Gly	Glu 130	His	Leu	Ile	Lys	Ala 135	Тгр	Thr	His	Phe	Нis 140	Phe	Pro	Gly	Arg
30	Gly 145	Ser	Thr	Tyr	Ser	Asp 150	Phe	Lys	Тгр	Tyr	Trp 155	Tyr	His	Phe	Asp	Gly 160
	Thr	Asp	Trp	Asp	Glu 165	Ser	Arg	Lys	Leu	Asn 170	Arg	Ile	Туг	Lys	Phe 175	Gln
35	Gly	Lys	Thr	Trp 180	Asp	Trp	Glu	val	Ser 185	Asn	Glu	Phe	G]y	Asn 190	Tyr	Asp
40	Туг	Leu	Met 195	Туг	Ala	Asp	Phe	ASP 200	Tyr	Asp	His	Pro	Asp 205	val	Val	Ala
45	Glu	11e 210	Lys	Arg	Тгр	Gly	Thr 215	Trp	Tyr	Ala	Asn	G]u 220	Leu	Gln	Leu	Asp
	Gly 225	Phe	Arg	Leu	Asp	Ala 230	val	Lys	His	Ile	Lys 235	Phe	Ser	Phe	Leu	Arg 240
50	Asp	Trp	Val	Asn	His 245	val	Arg	Glu	Lys	Thr 250	GТу	Lys	Glu	Met	Phe 255	Thr
55	Va]	Ala	Glu	Tyr 260	Тгр	Ser	Asn	Asp	Leu 265	Gly	Ala	Leu	Glu	Asn 270	Tyr	Leu
60	Asn	Lys	Thr 275	Asn	Phe	Asn	His	Ser 280	Val	Phe	Asp	val	Pro 285	Leu	His	Tyr
	Gln	Phe 290	His	Ala	Ala	Ser	Thr 295	Gln	Gly	Gly	Gly	Tyr 300	Asp	Met	Arg	Lys

	160 305	Leu	Asn	Gly	Thr	Va 7 310	val	Ser	Lys	His	Pro 315	Leu	Lys	Ser	Val	Thr 320
5	Phe	۷al	Asp	Asn	ніs 325	Asp	Thr	Gln	Pro	Gly 330	Gln	Ser	Leu	Glu	Ser 335	Thr
10	Val	Gln	Thr	Trp 340	Phe	Lys	Pro	Leu	Ala 345	туг	Ala	Phe	Ile	L eu 350	Thr	Arg
15	Glu	Ser	Gly 355	Туг	Pro	Gln	Val	Phe 360	Tyr	Gly	Asp	Met	Tyr 365	Gly	Thr	Lys
	Gly	Asp 370	Ser	Gln	Arg	Glu	11e 375	Pro	Ala	Leu	Lys	His 360	Lys	Ile	G1u	Pro
20	17e 385	Leu	Lys	Ala	Arg	Lys 390	Gln	Туг	Ala	туг	Gly 395	Ala	Gln	нis	Asp	Tyr 400
25	Phe	Asp	His	His	ASP 405	Ile	Va]	Gly	Trp	Thr 410	Arg	Glu	Gly	ASP	Ser 415	Ser
30	Val	Ala	Asn	Ser 420	Gly	Leu	Ala	Ala	Leu 425	Ile	Thr	Asp	Gly	Pro 430	GТу	Gly
	Ala	Lys	Arg 435	Met	Tyr	Va1	Gly	Arg 440	Gln	Asn	Ala	Gly	Glu 445	Thr	Trp	His
35	Asp	1]e- 450	Thr	Gly	Asn	Arg	Ser 455	Glu	Pro	val	Val	11e 460	Asn	ser	Glu	Gly
40	Trp 465	Gly	Glu	Phe	нis	va1 470	Asn	Gly	Gly	Ser	Val 475	Ser	Ile	Tyr	Va1	Pro 480
45	Lys	Ile	Ser	Thr	Thr 485	Ser	Gln	Ile	Thr	Phe 490	Thr	Val	Asn	Asn	Ala 495	Thr
	Thr	٧a٦	Trp	G]y 500	Gln	Asn	Va]	Tyr	va1 505	val	Gly	Asn	Ile	ser 510	Gln	Leu
50	Gly	Asn	Trp 515	Asp	Pro	val	His	Ala 520	Va1	G1n	Met	Thr	Pro 525	Ser	Ser	Tyr
55	Pro	Thr 530	Тгр	Thr	val	Thr	11e 535	Pro	Leu	Leu	Gln	Gly 540	Gln	Asn	Ile	Gln
60	Phe 545	Lys	Phe	Ile	Lys	Lys 550	Asp	Ser	Ala	Gly	Asn 555	Val	Ile	Тгр	Glu	Asp 560
	Ile	Ser	Asn	Arg	Thr 565	Tyr	Thr	Val	Pro	Thr 570	Ala	Ala	ser	Gly	Ala 575	Tyr
65	Thr	Ala	Ser	Trp 580	Asn	val	РГО									

	<210> 7																
	<211> 17:	55															
	<212> AI	ON															
5	<213> ste	aroth	ermop	hilus-	CBM	de bac	cillus										
	<220>																
	<221> CD	OS															
10	<222> (1)	(175	55)														
	<400> 7																
15														ttt Phe			48
20														aat Asn 30			96
25	aac Asn	aac Asn	tta Leu 35	tcc Ser	agc Ser	ctt Leu	ggc Gly	atc Ile 40	acc Thr	gct Ala	ctt Leu	tgg Trp	ctg Leu 45	ccg Pro	ccc Pro	gct Ala	144
	t ac Tyr	aaa Lys 50	gga Gly	aca Thr	agc Ser	cgc Arg	agc Ser 55	gac Asp	gta val	ggg Gly	tac Tyr	gga Gly 60.	gta Val	tac Tyr	gac Asp	ttg Leu	192
30	tat Tyr 65	gac Asp	ctc Leu	ggc Gly	gaa Glu	ttc Phe 70	aat Asn	caa Gln	aaa Lys	ggg Gly	acc Thr 75	gtc val	cgc Arg	aca Thr	aaa Lys	tac Tyr 80	240
35	gga Gly	aca Thr	aaa Lys	gct Ala	caa Gln 85	tat Tyr	ctt Leu	caa Gln	gcc Ala	att Ile 90	caa Gln	gcc Ala	gcc Ala	cac His	gcc Ala 95	gct Ala	288
40														ggc Gly 110			336
	gac Asp	ggc Gly	acg Thr 115	gaa Glu	tgg Trp	gtg Val	gac Asp	gcc Ala 120	gtc val	gaa Glu	gtc Val	aat Asn	ccg Pro 125	tcc Ser	gac Asp	cgc Arg	384
45	aac Asn	ca a Gln 130	gaa Glu	atc Ile	tcg Ser	ggc Gly	acc Thr 135	tat Tyr	caa Gln	atc Ile	caa Gln	gca A1a 140	tgg Trp	acg Thr	aaa Lys	ttt Phe	432
50	gat Asp 145	ttt Phe	CCC Pro	ggg Gly	cgg Arg	ggc Gly 150	aac Asn	acc Thr	tac Tyr	tcc S er	agc Ser 155	ttt Phe	aag Lys	tgg Trp	cgc Arg	tgg Trp 160	480
55	tac Tyr	cat His	ttt Phe	gac Asp	ggc Gly 165	gtt Val	gat A s p	tgg Trp	gac Asp	gaa Glu 170	agc Ser	cga Arg	aaa Lys	ttg Leu	agc Ser 175	cgc Arg	528
	att Ile	tac Tyr	aaa Lys	ttc Phe 180	cgt Arg	ggc Gly	aag Lys	gct Ala	tgg Trp 185	gat Asp	tgg Trp	gaa Glu	gta Val	gac Asp 190	acg Thr	ga a Glu	576
60	ttc Phe	gga Gly	aac Asn 195	tat Tyr	gac Asp	tac Tyr	tta Leu	atg Met 200	tat Tyr	gcc Ala	gac Asp	ctt Leu	gat Asp 205	atg Met	gat Asp	cat His	624

£	ccc Pro	gaa Glu 210	gtc Val	gtg Val	acc Thr	gag Glu	ctg Leu 215	aaa Lys	aac Asn	tgg Trp	ggg Gly	aaa Lys 220	tgg Trp	tat Tyr	gtc val	aac Asn	672
5	aca Thr 225	acg Thr	aac Asn	att Ile	gat Asp	ggg Gly 230	ttc Phe	cgg Arg	ctt Leu	gat Asp	gcc Ala 235	gtc Val	aag Lys	cat His	att Ile	aag Lys 240	720
10	ttc Phe	agt Ser	ttt Phe	ttt Phe	cct Pro 245	gat Asp	tgg Trp	ttg L e u	tcg Ser	tat Tyr 250	gtg Val	cgt Arg	tct Ser	cag Gln	act Thr 255	ggc Gly	768
15	aag Lys	ccg Pro	cta Leu	ttt Phe 260	acc Thr	gtc val	ggg Gly	gaa Glu	tat Tyr 265	tgg Trp	agc Ser	tat Tyr	gac Asp	atc Ile 270	aac Asn	aag Lys	816
								aca Thr 280									864
20	gcc Ala	ccg Pro 290	tta Leu	cac His	aac Asn	aaa Lys	ttt Phe 295	tat Tyr	acc Thr	gct Ala	tcc Ser	aaa Lys 300	tca Ser	ggg Gly	ggc Gly	gca Ala	912
25								acc Thr									960
30								gat Asp									1008
								cca Pro									1056
35	ttt Phe	att Ile	cta Leu 355	act Thr	cgg Arg	cag Gln	gaa Glu	gga Gly 360	tac Tyr	ccg Pro	tgc Cys	gtc Val	ttt Phe 365	tat Tyr	ggt Gly	gac Asp	1104
40								aac Asn									1152
45	gat Asp 385	ccg Pro	ctc Leu	ctc Leu	atc Ile	gcg A1a 390	cgc Arg	agg Arg	gat Asp	tat Tyr	gct Ala 395	tac Tyr	gga Gly	acg Thr	caa Gln	cat His 400	1200
43	gat Asp	tat Tyr	ctt Leu	gat Asp	cac His 405	tcc Ser	gac Asp	atc Ile	atc Ile	ggg Gly 410	tgg Trp	aca Thr	agg Arg	gaa Glu	999 Gly 415	ggc Gly	1248
50	act Thr	gaa Glu	aaa Lys	cca Pro 420	gga Gly	tcc Ser	gga Gly	ctg L eu	gcc Ala 425	gca Ala	ctg L e u	atc Ile	acc Thr	gat Asp 430	ggg Gly	ccg Pro	1296
55	gga Gly	gga Gly	agc Ser 435	aaa Lys	tgg Trp	atg Met	tac Tyr	gtt Val 440	ggc Gly	aaa Lys	caa Gln	cac His	gct Ala 445	gga Gly	aaa Lys	gtg Val	1344
	ttc Phe	tat Tyr 450	gac Asp	ctt Leu	acc Thr	ggc Gly	aac Asn 455	cgg Arg	agt Ser	gac Asp	acc Thr	gtc Val 460	acc Thr	atc Ile	aac Asn	agt Ser	1392
60	gat Asp 465	gga Gly	tgg Trp	999 Gly	gaa Glu	ttc Phe 470	aaa Lys	gtc val	aat Asn	ggc Gly	ggt Gly 475	tcg Ser	gtt Val	tcg S e r	gtt Val	tgg Trp 480	1440

_								tcc Ser									1488
5	gcc Ala	aca Thr	acc Thr	gtt val 500	tgg Trp	gga Gly	caa Gln	aat Asn	gta val 505	tac Tyr	gtt val	gtc val	999 Gly	aat Asn 510	att Ile	tcg Ser	1536
10	cag Gln	ctg Leu	999 Gly 515	aac Asn	tgg Trp	gat Asp	cca Pro	gtc val 520	cac His	gca Ala	gtt Val	caa Gln	atg Met 525	acg Thr	ccg Pro	tct Ser	1584
15	tct Ser	tat Tyr 530	cca Pro	aca Thr	tgg Trp	act Thr	gta Val 535	aca Thr	atc Ile	cct Pro	ctt Leu	ctt Leu 540	caa Gln	ggg Gly	caa Gln	aac Asn	1632
	ata Ile 545	caa Gln	ttt Ph e	aaa Lys	ttt Phe	atc Ile 550	aaa Lys	aaa Lys	gat Asp	tca Ser	gct Ala 555	gga Gly	aat Asn	gtc Val	att Ile	tgg Trp 560	1680
20	gaa Glu	gat Asp	ata Ile	tcg Ser	aat Asn 565	cga Arg	aca Thr	tac Tyr	acc Thr	gtc Val 570	cca Pro	act Thr	gct Ala	gca Ala	tcc Ser 575	gga Gly	1728
25							aac Asn	gtg Val	ccc Pro 585								1755

<210> 8

30 <211> 585

<212> PRT

<213> stearothermophilus-CBM de bacillus

35 < 400 > 8

Ala Pro Phe Asn Gly Phe Asn Gly Thr Met Met Gln Tyr Phe Glu Trp

Tyr Leu Pro Asp Asp Gly Thr Leu Trp Thr Lys Val Ala Asn Glu Ala

Asn Asn Leu Ser Ser Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala

Tyr Lys Gly Thr Ser Arg Ser Asp Val Gly Tyr Gly Val Tyr Asp Leu

Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr

65 Gly Thr Lys Ala Gln Tyr Leu Gln Ala Ile Gln Ala Ala His Ala Ala

Gly Met Gln Val Tyr Ala Asp Val Val Phe Asp His Lys Gly Gly Ala

Asp Gly Thr Glu Trp Val Asp Ala Val Glu Val Asn Pro Ser Asp Arg

	Asn	G]n 130	Glu	Ile	Ser	Gly	Thr 135	Туг	Gln	Ile	Gln	Ala 140	Тгр	Thr	Lys	Phe
5	Asp 145	Phe	Pro	G1y	Arg	Gly 150	Asn	Thr	Tyr	Ser	Ser 155	Phe	Lys	Тгр	Arg	Trp 160
10	Tyr	His	Phe	Asp	Gly 165	val	Asp	Trp	Asp	Glu 170	Ser	Arg	Lys	Leu	Ser 175	Arg
15	Ile	Туг	Lys	Phe 180	Arg	Gly	Lys	Ala	Trp 185	Asp	тгр	Glu	val	Asp 190	Thr	Glu
20	Phe	Gly	Asn 195	Tyr	ASp	Tyr	Leu	Met 200	туг	Ala	Asp	Leu	Asp 205	Met	Asp	His
20	Pro	Glu 210	val	val	Thr	Glu	Leu 215	Lys	Asn	Trp	Gly	Lys 220	Тгр	Туг	val	Asn
25	Thr 225	Thr	ASN	Ile	Asp	G]y 230	Phe	Arg	Leu	Asp	A1a 235	val	Lys	His	Ile	Lys 240
30	Phe	Ser	Phe	Phe	Pro 245	Asp	Trp	Leu	Ser	Tyr 250	Val	Arg	Ser	Gln	Thr 255	Gly
25	Lys	Pro	Leu	Phe 260	Thr	val	Gly	Glu	Tyr 265	Trp	Ser	Туг	Asp	Ile 270	Asn	Lys
35	Leu	His	Asn 275	Tyr	Ile	Thr	Lys	Thr 280	Asp	Gly	Thr	Met	Ser 285	Leu	Phe	Asp
40	Ala	Pro 290	Leu	His	Asn	Lys	Phe 295	Туг	Thr	Ala	Ser	Lys 300	Ser	Gly	Gly	Ala
45	Phe 305	Asp	Met	Arg	Thr	Leu 310	Met	Thr	Asn	Thr	Leu 315	Met	Lys	Asp	Gln	Pro 320
50	Thr	Leu	Ala	۷al	Thr 325	Phe	Val	Asp	Asn	ніs 330	Asp	Thr	Glu	Pro	G1y 335	Gln
50	Ala	Leu	Gln	Ser 340	Тгр	val	Asp	Pro	Trp 345	Phe	Lys	Pro	Leu	A7a 350	туг	Ala
55	Phe	Ile	Leu 355	Thr	Arg	Gln	Glu	Gly 360	туг	Pro	Cys	val	Phe 365	Туг	G1y	Asp
60	Туг	Tyr 370	Gly	Ile	Pro	Gln	Tyr 375	Asn	Ile	Pro	ser	Leu 380	Lys	Ser	Lys	IJе
	Asp 385	Pro	Leu	Leu	Ile	A]a 390	Arg	Arg	Asp	Tyr	A1a 395	Туг	Gly	Thr	G]n	His 400

	Asp	ту	r Le	eu A		11 s 105	Ser	Asp	Ile	Ile	Gly 410	тгр	Thr	Arg	g Glu	Gly 415	Gly	
5	Thr	G]	u Ly		ro (20	āly	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	· Asj 430	o Gly	Pro	
10	Gly	G]	y Se 43		ys 1	Ггр	Met	Туг	Val 440	Gly	Lys	Gln	His	Ala 445		y Lys	Val	
15	Phe	15 45		sp L	eu 1	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	va1 460		· Ile	2 Asn	Ser	
	Asp 465		y Tı	rp G	ly (31u	Phe 470	Lys	٧a٦	Asn	GΊy	Gly 475	Ser	val	Sei	r Val	Trp 480	
20	Val	Pr	o Ly	/S I		Ser 185	Thr	Thr	Ser	Gln	11e 490	Thr	Phe	Thr	' Va	l Asn 495	Asn	
25	Ala	Th	r Th		al 1 00	Ггр	Gly	Gln	Asn	Val 505	Туг	٧a٦	val	Gly	' ASI 510	ılle D	Ser	
30	Gln	Le		ly A 15	sn 1	Ггр	Asp	Pro	Val 520	His	Ala	val	Gln	Met 525		r Pro	Ser	
	Ser	Ty 53	r Pi O	ro T	hr 1	Ггр	Thr	Val 535	Thr	Ile	Pro	Leu	Leu 540		GTy	y Gln	Asn	
35	Ile 545	GT	n Pi	ne L	ys I	Phe	Ile 550	Lys	Lys	Asp	Ser	A1a 555	Gly	Asr	va ⁻	lle	Trp 560	
40	Glu	AS.	p I	le S		Asn 565	Arg	Thr	Tyr	Thr	va1 570	Pro	Thr	ΑÏA	Ala	ser 575	Gly	
	Ala	Ту	r Ti	nr A 5	la 9 80	ser	Тгр	Asn	Val	Pro 585								
45	<210> 9 <211> 175 <212> AD																	
50	<213> JE1	-CBN	Л															
55	<220> <221> CDS <222> (1)		5)															
	<400> 9											•••			***	536		48
60	Cat (His (cat His	aat Asn	ggg Gly	aca Thr 5	A5	r ggg n Gly	Thr	Met	Met 10	Gln	Tyr	Phe	gaa Glu	Trp 15	His		40
65	ttg (Leu (cct Pro	aat Asn	gat Asp 20	ggg Gly	aa Asi	t cac n His	tgg Trp	aat Asn 25	aga Arg	tta Leu	aga Arg	gat Asp	gat A s p 30	gct Ala	agt Ser		96
	33*	c+2	20-	22+	202		r 3+-	300	act	2++	tac	2++	cca	cco	acc	taa	1	44

	Asn	Leu	Arg 35	Asn	Arg	Gly	Ile	Thr 40	Ala	Ile	Trp	Ile	Pro 45	Pro	Ala	Trp	
5	aaa Lys	ggg G1y 50	act Thr	tcg Ser	caa Gln	aat Asn	gat Asp 55	gtg Val	ggg Gly	tat Tyr	gga Gly	gcc Ala 60	tat Tyr	gat Asp	ctt Leu	tat Tyr	192
10	gat Asp 65	tta Leu	999 Gly	gaa Glu	ttt Phe	aat Asn 70	caa Gln	aag Lys	999 G1y	acg Thr	gtt val 75	cgt Arg	act Thr	aag Lys	tat Tyr	999 G1y 80	240
	aca Thr	cgt Arg	agt Ser	caa Gln	ttg Leu 85	gag Glu	tct Ser	gcc Ala	atc Ile	cat His 90	gct Ala	tta Leu	aag Lys	aat Asn	aat Asn 95	ggc Gly	288
15															gct Ala		336
20	gct Ala	aca Thr	gaa Glu 115	aac Asn	gtt val	ctt Leu	gct Ala	gtc val 120	gag Glu	gtg val	aat Asn	cca Pro	aat Asn 125	aac Asn	cgg Arg	aat Asn	384
25	caa Gln	gaa Glu 130	ata Ile	tct Ser	ggg Gly	gac Asp	tac Tyr 135	aca Thr	att Ile	gag Glu	gct Ala	tgg Trp 140	act Thr	aag Lys	ttt Phe	gat Asp	432
															tgg Trp		480
30															aat Asn 175		528
35	atc Ile	tac Tyr	aaa Lys	ttc Phe 180	cga Arg	ggt Gly	aaa Lys	gct Ala	tgg Trp 185	gat Asp	tgg Trp	gaa Glu	gta Val	gat Asp 190	tcg Ser	gaa Glu	576
															gat Asp		624
40	ccg Pro	gag Glu 210	gta Val	gta Val	aat Asn	gag Glu	ctt Leu 215	aga Arg	aga Arg	tgg Trp	gga Gly	gaa Glu 220	tgg Trp	tat Tyr	aca Thr	aat Asn	672
45	aca Thr 225	tta Leu	aat Asn	ctt Leu	gat Asp	gga Gly 230	ttt Phe	agg Arg	atc Ile	gat Asp	gcg Ala 235	gtg Val	aag Lys	cat His	att Ile	aaa Lys 240	720
50															acg Thr 255		768
	aaa Lys	gaa Glu	atg Met	ttt Phe 260	gct Ala	gtt Val	gct Ala	gaa Glu	ttt Phe 265	tgg Trp	aaa Lys	aat Asn	gat Asp	tta Leu 270	ggt Gly	gcc Ala	816
55															ttt Phe		864
60			Leu												ggc Gly		912
	tat	gac	atg	gca	aaa	ctt	ctt	aat	gga	acg	gtt	gtt	caa	aag	cat	cca	960

	Tyr 305	ASP	Met	Ala	Lys	Leu 310	Leu	Asn	Gly	Thr	Val 315	val	Gln	Lys	His	Pro 320	
5	atg Met	cat His	gcc Ala	gta Val	act Thr 325	ttt Phe	gtg Val	gat Asp	aat Asn	cac His 330	gat Asp	tct Ser	caa Gln	cct Pro	ggg Gly 335	gaa Glu	1008
10								gaa Glu									1056
								ggc Gly 360									1104
15								agt Ser									1152
20	gat Asp 385	cca Pro	atc Ile	tta Leu	gag Glu	gcg A1a 390	cgt Arg	caa Gln	aat Asn	ttt Phe	gca Ala 395	tat Tyr	gga Gly	aca Thr	caa Gln	cat His 400	1200
25	gat Asp	tat Tyr	ttt Phe	gac Asp	cat His 405	cat His	aat Asn	ata Ile	atc Ile	gga Gly 410	tgg Trp	aca Thr	cgt Arg	gaa Glu	gga Gly 415	aat Asn	1248
								ctt Leu									1296
30	ggg Gly	gga Gly	gag Glu 435	aaa Lys	tgg Trp	atg Met	tac Tyr	gta Val 440	ggg Gly	caa Gln	gat Asp	aaa Lys	gca Ala 445	ggt Gly	caa Gln	gtt Val	1344
35								aaa Lys									1392
	gat Asp 465	gga Gly	tgg Trp	gcc Ala	aat Asn	ttt Phe 470	tca Ser	gta Val	aat Asn	gga Gly	gga Gly 475	tct Ser	gtt val	tcc Ser	att Ile	tgg Trp 480	1440
40	gtg Val	cca Pro	aaa Lys	ata Ile	agt Ser 485	act Thr	act Thr	tcc Ser	caa Gln	ata Ile 490	aca Thr	ttt Phe	act Thr	gta Val	aat Asn 495	aac Asn	1488
45	gcc Ala	aca Thr	acc Thṛ	gtt Val 500	tgg Trp	gga Gly	caa Gln	aat Asn	gta Val 505	tac Tyr	gtt Val	gtc Val	ggg Gly	aat Asn 510	att Ile	tcg Ser	1536
50								gtc Val 520									1584
	tct Ser	tat Tyr 530	cca Pro	aca Thr	tgg Trp	act Thr	gta Val 535	aca Thr	atc Ile	cct Pro	ctt Leu	ctt Leu 540	caa Gln	ggg Gly	caa Gln	aac Asn	1632
55	ata Ile 545	caa Gln	ttt Phe	aaa Lys	ttt Phe	atc Ile 550	aaa Lys	aaa Lys	gat Asp	tca Ser	gct Ala 555	gga Gly	aat Asn	gtc Val	att Ile	tgg Trp 560	1680
60								tac Tyr									1728
				_	-			gtg									1755
	Ala	Tyr	Thr	Ala 580	Ser	Trp	ASN	val	Pro 585								
65				200													

	<210> 10
	<211> 585
	<212> PRT
5	<213> JE1-CBM
	<400> 10
0	His His 1

is Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp His
5 10 15 Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ser 15 Asn Leu Arg Asn Arg Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Trp 35 40 45 20 Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr 50 60 25 Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly 65 70 75 80 Thr Arg Ser Gln Leu Glu Ser Ala Ile His Ala Leu Lys Asn Asn Gly 85 90 95 Val Gln Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp 100 105 110 Ala Thr Glu Asn Val Leu Ala Val Glu Val Asn Pro Asn Asn Arg Asn 115 120 125 40 Gln Glu Ile Ser Gly Asp Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp 130 140 45 Phe Pro Gly Arg Gly Asn Thr Tyr Ser Asp Phe Lys Trp Arg Trp Tyr 145 150 155 160 50 His Phe Asp Gly Val Asp Trp Asp Gln Ser Arg Gln Phe Gln Asn Arg 165 170 175 Ile Tyr Lys Phe Arg Gly Lys Ala Trp Asp Trp Glu Val Asp Ser Glu 180 185 190 55 Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Met Asp His 200 205 60 Pro Glu Val Val Asn Glu Leu Arg Arg Trp Gly Glu Trp Tyr Thr Asn 210 215 220 65 Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His Ile Lys

	225					230					235					240
5	Туг	Ser	Phe	Thr	Arg 245	Asp	Тгр	Leu	Thr	ніs 250	٧a٦	Arg	Asn	Αla	Thr 255	σΊу
10	Lys	Glu	Met	Phe 260	Ala	٧a٦	Ala	Glu	Phe 265	Тгр	Lys	Asn	Asp	Leu 270	Gly	Ala
	Leu	Glu	Asn 275	Tyr	Leu	Asn	Lys	Thr 280	Asn	Тгр	ASN	His	Ser 285	val	Phe	Asp
15	va1	Pro 290	Leu	His	Туг	Asn	Leu 295	Tyr	Asn	Ala	Ser	Asn 300	Ser	Gly	Gly	Asn
20	Tyr 305	Asp	Met	Ala	Lys	Leu 310	Leu	Asn	Gly	Thr	val 315	val	Gln	Lys	нis	Pro 320
25	Met	His	Ala	val	Thr 325	Phe	val	Asp	Asn	ніs 330	Asp	ser	Gln	Pro	G7y 335	Glu
20	Ser	Leu	Glu	Ser 340	Phe	val	Gln	Glu	Trp 345	Phe	Lys	Pro	Leu	A1a 350	туг	Ala
30	Leu	Ile	Leu 355	Thr	Arg	Glu	Gln	Gly 360	Туг	Pro	Ser	val	Phe 365	туг	Gly	Asp
35	Туг	Tyr 370	Gly	Ile	Pro	Thr	His 375	Ser	val	Pro	Ala	Met 380	Lys	Ala	Lys	Ile
40	Asp 385	Pro	Ile	Leu	Glu	Ala 390	Arg	Gln	Asn	Phe	A1a 395	Туг	Gly	Thr	Gln	ніs 400
40	Asp	Туг	Phe	Asp	His 405	His	Asn	Ile	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asn
45	Thr	Thr	His	Pro 420	Asn	Ser	Gly	Leu	Ala 425	Thr	Ile	Met	Ser	Asp 430	Gly	Pro
50	Gly	Gly	Glu 435	Lys	Trp	Met	Tyr	Val 440	Gly	Gln	Asp	Lys	Ala 445	Gly	Gln	val
	Trp	His 450	Asp	Ile	Thr	Gly	Asn 455	Lys	Pro	Gly	Thr	va1 460	Thr	Ile	Asn	Ala
55	Asp 465	Gly	Trp	Ala	Asn	Phe 470	Ser	Val	Asn	Gly	Gly 475	Ser	val	ser	Ile	Trp 480
60	Val	Pro	Lys	Ile	Ser 485	Thr	Thr	Ser	Gln	11e 490	Thr	Phe	Thr	٧a٦	Asn 495	Asn
65	Ala	Thr	Thr	val	Trp	Gly	Gln	Asn	val	туг	val	Val	Gly	Asn	Ile	Ser

5	G	iln I	Leu	Gly 515	Asn	Trp	Asp	Pro	Va1 520		s A	la v	al (Gln	Met 525	Thr	Pro	Ser
10	S		Tyr 530	Pro	Thr	Trp	Thr	Va1 535		· Il	e Pi	o L		Leu 540	Gln	Gly	Gln	Asn
10		le (31n i	Phe	Lys	Phe	11e 550	Lys	Lys	AS	p Se		1a (Gly	Asn	Val	Ile	Trp 560
15	G	ilu /	Asp	Ile	Ser	Asn 565	Arg	Thr	Туг	Th	r Va 57		ro '	Thr	Ala	Ala	Ser 575	Gly
20	A	la i	Γyr '	Thr	Ala 580	Ser	Trp	Asn	Val	Pro								
25	<210> 11 <211> 173 <212> AΓ <213> AX	Ν	СВМ															
30	<220> <221> CD <222> (1)		55)															
35	<400> 11																	
	cac His 1	cat His	aat Asn	ggt Gly	acg Thr 5	aac Asn	ggc Gly	aca Thr	atg Met	atg Met 10	cag Gln	tac Tyr	ttt Phe	gaa Glu	tgg Trp 15	tat Tyr		48
40																agt Ser		96
45	aac Asn	cta Leu	aaa Lys 35	gat Asp	aaa Lys	ggg Gly	Ile	tca Ser 40	gcg Ala	gtt Val	tgg Trp	Ile	CCT Pro 45	cct Pro	gca Ala	tgg Trp		144
50	aag Lys	ggt Gly 50	gcc Ala	tct Ser	caa Gln	aat Asn	gat Asp 55	gtg Val	ggg Gly	tat Tyr	ggt Gly	gct Ala 60	tat Tyr	ga1 Asp	cto Lei	tat Tyr		192
	gat Asp 65	tta Leu	gga Gly	gaa Glu	ttc Phe	aat Asn 70	caa Gln	aaa Lys	gga Gly	acc Thr	att Ile 75	cgt Arg	aca Thr	a aaa Lys	a tat 5 Tyr	gga Gly 80		240
55	acg Thr	cgc Arg	aat Asn	cag Gln	tta Leu 85	caa Gln	gct Ala	gcg Ala	gtt Val	aac Asn 90	gcc Ala	ttg Leu	aaa Lys	a agt s Sei	aat Asr 95	gga Gly		288
60	att Ile	caa Gln	gtg Val	tat Tyr 100	Gly	gat Asp	gtt Val	gta Val	atg Met 105	aat Asn	cat His	aaa Lys	ggg Gly	g gga / Gly 110	(Ala	gac S Asp		336
65	gct Ala	acc Thr	gaa Glu 115	Met	gtt Val	aaa Lys	gca Ala	gtc Val 120	gaa Glu	gta Val	aac Asn	ccg Pro	aat Asr 125) Asr	t aga n Arg	aat JAsn		384
33	caa Gln	gaa Glu	gtg Val	tcc Ser	ggt Gly	gaa Glu	tat Tyr	aca Thr	att Ile	gag Glu	gct Ala	tgg Trp	aca Thr	a aag	tti S Phe	gac Asp		432

		130					135					140					
5	ttt Phe 145	cca Pro	gga Gly	cga Arg	ggt Gly	aat Asn 150	act Thr	cat His	tca Ser	aac Asn	ttc Phe 155	aaa Lys	tgg Trp	aga Arg	tgg Trp	tat Tyr 160	480
10	cac His	ttt Phe	gat Asp	gga Gly	gta Val 165	gat Asp	tgg Trp	gat Asp	cag Gln	tca Ser 170	cgt Arg	aag Lys	ctg Leu	aac Asn	aat Asn 175	cga Arg	528
	att Ile	tat Tyr	aaa Lys	ttc Phe 180	cgc Arg	ggt Gly	aaa Lys	ggg Gly	tgg Trp 185	gat Asp	tgg Trp	gaa Glu	gtc Val	gat Asp 190	aca Thr	gaa Glu	576
15		ggt Gly															624
20		gag Glu 210															672
		tta Leu															720
25		agc Ser															768
30	aaa Lys	aat Asn	atg Met	ttt Phe 260	gcg Ala	gtt val	gcg Ala	gaa Glu	ttt Phe 265	tgg Trp	aaa Lys	aat Asn	gat Asp	tta Leu 270	ggt Gly	gct Ala	816
35		gaa Glu															864
		ccg Pro 290															912
40	tat Tyr 305	gat Asp	atg Met	agg Arg	caa Gln	ata Ile 310	ttt Phe	aat Asn	ggt Gly	aca Thr	gtc val 315	gtg Val	caa Gln	aag Lys	cat His	cca Pro 320	960
45	atg Met	cat His	gct Ala	gtt Val	aca Thr 325	ttt Phe	gtt Val	gat Asp	aat Asn	cat His 330	gat Asp	tcg Ser	caa Gln	cct Pro	gaa Glu 335	gaa Glu	1008
50	gct Ala	tta Leu	gag Glu	tct Ser 340	ttt Phe	gtt val	gaa Glu	gaa Glu	tgg Trp 345	ttc Phe	aaa Lys	cca Pro	tta Leu	gcg Ala 350	tat Tyr	gct Ala	1056
30		aca Thr															1104
55		tat Tyr 370															1152
60	gac Asp 385	ccg Pro	att Ile	cta Leu	gaa Glu	gcg Ala 390	cgt Arg	caa Gln	aag Lys	tat Tyr	gca Ala 395	tat Tyr	gga Gly	aga Arg	caa Gln	aat Asn 400	1200
	gac Asp	tac Tyr	tta Leu	gac Asp	cat His	cat His	aat Asn	atc Ile	atc Ile	ggt Gly	tgg Trp	aca Thr	cgt Arg	gaa Glu	999 G1y	aat Asn	1248

					405					410					415			
5	aca Thr	gca Ala	cac His	ccc Pro 420	aac Asn	tcc Ser	ggt Gly	tta Leu	gct Ala 425	act Thr	atc Ile	atg Met	tcc Ser	gat Asp 430	999 Gly	gca Ala	12	96
10	gga Gly	gga Gly	aat Asn 435	aag Lys	tgg Trp	atg Met	ttt Phe	gtt Val 440	ggg Gly	cgt Arg	aat Asn	aaa Lys	gct Ala 445	ggt Gly	caa Gln	gtt Val	13	44
10	tgg Trp	acc Thr 450	gat Asp	atc Ile	act Thr	gga Gly	aat Asn 455	aaa Lys	gcc Ala	ggt Gly	act Thr	gtt Val 460	acg Thr	att Ile	aat Asn	gct Ala	13	192
15	gat Asp 465	gga Gly	tgg Trp	ggt Gly	aat Asn	ttt Phe 470	tct Ser	gta Val	aat Asn	gga Gly	gga Gly 475	tca Ser	gtt Val	tct Ser	att Ile	tgg Trp 480	14	40
20	gta Val	aac Asn	aaa Lys	ata Ile	agi Ser 485	act Thr	act Thr	tcc Ser	caa Gln	ata Ile 490	aca Thr	ttt Phe	act Thr	gta Val	aat Asn 495	aac Asn	14	88
25	gcc Ala	aca Thr	acc Thr	gtt Val 500	tgg Trp	gga Gly	caa Gln	aat Asn	gta val 505	tac Tyr	gtt Val	gtc Val	999 G1y	aat Asn 510	att Ile	tcg Ser	1.5	36
25	cag Gln	ctg Leu	999 Gly 515	aac Asn	tgg Trp	gat Asp	cca Pro	gtc val 520	cac His	gca Ala	gtt Val	caa Gln	atg Met 525	acg Thr	ccg Pro	tct Ser	15	84
30	tct Ser	tat Tyr 530	cca Pro	aca Thr	tgg Trp	act Thr	gta Val 535	aca Thr	atc Ile	cct Pro	ctt Leu	ctt Leu 540	caa Gln	ggg Gly	caa Gln	aac Asn	16	32
35	ata Ile 545	caa Gln	ttt Phe	aaa Lys	ttt Phe	atc Ile 550	aaa Lys	aaa Lys	gat ASP	tca Ser	gct Ala 555	gga Gly	aat Asn	gtc Val	att Ile	tgg Trp 560	16	80
							aca Thr										17	'28
40							aac Asn										17	'55
45	<210> 12 <211> 585 <212> PR'	Γ																
50	<213> AX	379-C	BM															

His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr
Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Ser Asp Ala Ser
Asn Leu Lys Asp Lys Gly Ile Ser Ala Val Trp Ile Pro Pro Ala Trp
45
Lys Gly Ala Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr
56

	Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	11e 75	Arg	Thr	Lys	Tyr	G]y 80
5	Thr	Arg	Asn	Gln	Leu 85	Gln	Ala	Ala	val	Asn 90	Ala	Leu	Lys	Ser	Asn 95	GЈУ
10	Ile	Gln	٧al	Туг 100	Gly	Asp	Val	۷al	Met 105	Asn	His	Lys	Gly	Gly 110	Аla	Asp
15	Ala	Thr	G]u 115	Met	val	Lys	Ala	Val 120	Glu	Val	ASN	Pro	Asn 125	Asn	Arg	Asn
	Gln	Glu 130	Val	Ser	бไу	Glu	Tyr 135	Thr	Ile	Ğlu	ΑĨα	Trp 140	Thr	Lys	Phe	ASP
20	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Thr	His	Ser	Asn	Phe 155	Lys	Тгр	Arg	Trp	Tyr 160
25	His	Phe	Asp	Gly	Va? 165	Asp	Тгр	Asp	Gln	5er 170	Arg	Lys	Leu	Asn	Asn 175	Arg
30	Ile	Tyr	Lys	Phe 180	Arg	Gly	Lys	Gly	7rp 185	Asp	Trp	Glu	va7	Asp 190	Thr	Glu
	Phe	Gly	Asn 195	Туг	Asp	Туг	Leu	Met 200	Tyr	Ala	ASP	Ile	Asp 205	Met	Asp	His
35	Pro	G]u 210	Val	۷al	Asn	Glu	Leu 215	Arg	Asn	Trp	G1y	va1 220	Trp	Туг	Thr	Asn
40	Thr 225	Leu	Gly	Leu	Asp	G1y 230	Phe	Arg	Ile	Asp	А1а 235	val	Lys	His	Ile	Lys 240
45	Tyr	Ser	Phe	Thr	Arg 245	Asp	Trp	Ile	Asn	His 250	val	Arg	Ser	Ala	Thr 255	Gly
70	Lys	Asn	Met	Phe 2 6 0	Ala	٧a٦	Ala	Glu	Phe 265	Trp	Lys	Asn	Asp	Leu 270	GТу	Ala
50	Ile	Glu	Asn 275	Tyr	Leu	Asn	Lys	Thr 280	Asn	Trp	Asn	ніѕ	Ser 285	val	Phe	Asp
55	٧a٦	Pro 290	Leu	His	Tyr	Asn	Leu 295	Tyr	Asn	Ala	ser	Lys 300	Ser	Gly	Gly	Asn
60	Tyr 305	Asp	Met	Arg	Gln	Ile 310	Phe	Asn	Gly	Thr	va7 315	va1	Gln	Lys	ніѕ	Pro 320
	Met	His	ΑΊа	val	Thr 325	Phe	Val	Asp	Asn	His 330	Asp	Ser	Gln	Pro	G]u 335	Glu

=	Ala	Leu	Glu	Ser 340	Phe	Val	Glu	Glu	Trp 345	Phe	Lys	Pro	Leu	Ala 350	Tyr	Ala
5	Leu	Thr	Leu 355	Thr	Arg	Glu	Gln	G]y 360	Tyr	Pro	Ser	val	Phe 365	Tyr	Gly	Asp
10	Туг	Tyr 370	Gly	Ile	Pro	Thr	His 375	Gly	Va1	Pro	Ala	Met 380	Lys	Ser	Lys	Ile
15	Asp 385	Pro	Ile	Leu	Glu	Ala 390	Arg	Gln	Lys	туг	Ala 395	Туг	Gly	Arg	Gln	Asn 400
20	Asp	Tyr	Leu	Λsp	អវន 405	His	Asn	Ile	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	ÀSN
25	Thr	Ala	His	Pro 420	Asn	Ser	Gly	Leu	Ala 425	Thr	Ile	меt	ser	Asp 430	Gly	Ala
23	Gly	Gly	Asn 435	Lys	Тгр	Met	Phe	Val 440	Gly	Arg	Asn	Lys	Ala 445	Gly	Gln	val
30	Trp	Thr 450	Asp.	Ile	Thr	Gly	Asn 455	Lys	Ala	Gly	Thr	va1 460	Thr	Ile	Asn	Ala
35	Asp 465	Gly	Trp	Gly	Asn	Phe 470	Ser	val	Asn	Gly	G1y 475	Ser	val	Ser	Ile	Trp 480
40	val	Asn	Lys	Ile	Ser 485	Thr	Thr	Ser	Gln	Ile 490	Thr	Phe	Thr	val	Asn 495	Asn
45	Ala	Thr	Thr	Va 1 500	Trp	Gly	Gln	Asn	va1 505	Tyr	val	val	G]y	Asn 510	Ile	Ser
	Gln	Leu	Gly 515	Asn	Trp	Asp	Pro	Val 520	His	Ala	va1	Gln	Met 525	Thr	Pro	Ser
50	Ser	Tyr 530	Pro	Thr	Trp	Thr	va1 535	Thr	Ile	Pro	Leu	Leu 540	Gln	GΊy	Gln	Asn
55	Ile 545	Gln	Phe	Lys	Phe	11e 550	Lys	Lys	Asp	ser	Ala 555	Gly	Asn	val	Ile	Trp 560
60	Glu	Asp	Ile	Ser	Asn 565	Arg	Thr	Туг	Thr	val 570	Pro	Thr	Ala	Ala	Ser 575	Gly
65	Ala	Tyr	Thr	Ala 580	Ser	Trp	Asn	val	Pro 585							

5	<210> 13 <211> 17 <212> AI <213> BA	ON	sM														
10	<220> <221> CI <222> (1)		5)														
	<400> 13																
15		aat Asn															48
20		cag Gln															96
25	ato Ile	gga Giy	atc Ile 35	act Thr	gcc Ala	gtc vai	tgg Trp	att Iie 40	cct Pro	CCC Pro	gca Ala	tac Tyr	aaa Lys 45	gga Giy	ttg Leu	agc Ser	144
		tcc Ser 50															192
30	tto Phe 65	cag Gln	caa Gln	aaa Lys	ggg Gly	acg Thr 70	gtc val	aga Arg	acg Thr	aaa Lys	tac Tyr 75	ggc Gly	aca Thr	aaa Lys	tca Ser	gag Glu 80	240
35	Ct1 Lei	caa Gln	gat Asp	gcg Ala	atc Ile 85	ggc Gly	tca Ser	ctg Leu	cat His	tcc Ser 90	cgg Arg	aac Asn	gtc Val	caa Gln	gta Val 95	tac Tyr	288
	gga Gly	gat Asp	gtg Val	gtt Val 100	ttg Leu	aat Asn	cat His	aag Lys	gct Ala 105	ggt Gly	gct Ala	gat Asp	gca Ala	aca Thr 110	gaa Glu	gat Asp	336
40	gta Val	act Thr	gcc Ala 115	gtc Val	gaa Glu	gtc Val	aat Asn	ccg Pro 120	gcc Ala	aat Asn	aga Arg	aat Asn	cag Gln 125	gaa Glu	act Thr	tcg Ser	384
45	gaç G1	gaa Glu 130	Tyr	caa Gln	atc Ile	aaa Lys	gcg Ala 135	tgg Trp	acg Thr	gat Asp	ttt Phe	cgt Arg 140	ttt Phe	ccg Pro	ggc Gly	cgt Arg	432
50		aac Asn															480
30		gac Asp															528
55	ggg Gly	gaa Glu	gga Gly	aaa Lys 180	gcg Ala	tgg Trp	gat Asp	tgg Trp	gaa Glu 185	gta Val	tca Ser	agt Ser	gaa Glu	aac Asn 190	ggc Gly	aac Asn	57€
60		gac Asp															624
	gto Val	gca Ala 210	gag Glu	aca Thr	aaa Lys	aaa Lys	tgg Trp 215	ggt Gly	atc Ile	tgg Trp	tat Tyr	gcg Ala 220	aat Asn	gaa Glu	ctg Leu	tca Ser	672
65	tta Lei 225	gac Asp	ggc Gly	ttc Phe	cgt Arg	att Ile 230	gat Asp	gcc Ala	gcc Ala	aaa Lys	cat His 235	att Ile	aaa Lys	ttt Phe	tca Ser	ttt Phe 240	720

	ctg Leu	cgt Arg	gat Asp	tgg Trp	gtt Val 245	cag Gln	gcg Ala	gtc val	aga Arg	cag G1n 250	gcg Ala	acg Thr	gga Gly	aaa Lys	gaa Glu 255	atg Met	768
5	ttt Phe	acg Thr	gtt val	gcg Ala 260	gag Glu	tat Tyr	tgg Trp	cag Gln	aat Asn 265	aat Asn	gcc Al a	ggg Gly	aaa Lys	ctc Leu 270	gaa Glu	aac Asn	816
10	tac Tyr	ttg Leu	aat Asn 275	aaa Lys	aca Thr	agc Ser	ttt Phe	aat Asn 280	caa Gln	tcc Ser	gtg Val	ttt Phe	gat Asp 285	gtt Val	ccg Pro	ctt Leu	864
15	cat His	ttc Phe 290	aat Asn	tta Leu	cag Gln	gcg Ala	gct Ala 295	tcc Ser	tca Ser	caa Gln	gga Gly	ggc Gly 300	gga Gly	tat Tyr	gat Asp	atg Met	912
	agg Arg 305	cgt Arg	ttg Leu	ctg Leu	gac Asp	ggt Gly 310	acc Thr	gtt val	gtg Vai	tcc Ser	agg Arg 315	cat His	ccg Pro	gaa Giu	aag Lys	gcg Ala 320	960
20	gtt Val	aca Thr	ttt Phe	gtt Val	gaa Glu 325	aat Asn	cat His	gac Asp	aca Thr	cag Gln 330	ccg Pro	gga Gly	cag Gln	tca Ser	ttg Leu 335	gaa Glu	1008
25						tgg Trp											1056
20	aca Thr	aga Arg	gaa Glu 355	tcc Ser	ggt Gly	tat Tyr	cct Pro	cag Gln 360	gtg Val	ttc Phe	tat Tyr	ggg Gly	gat Asp 365	atg Met	tac Tyr	ggg Gly	1104
30						cca Pro											1152
35	gag Glu 385	ccg Pro	att Ile	tta Leu	aaa Lys	gcg Ala 390	cgt Arg	aag Lys	gag Glu	tac Tyr	gca Ala 395	tac Tyr	ggg Gly	ccc Pro	cag Gln	сас ніs 400	1200
40						ccg Pro											1248
	agc Ser	tcc Ser	gcc Ala	gcc Ala 420	aaa Lys	tca Ser	ggt Gly	ttg Leu	gcc Ala 425	gct Ala	tta Leu	atc Ile	acg Thr	gac Asp 430	gga Gly	CCC Pro	1296
45	ggc Gly	gga Gly	tca Ser 435	aag Lys	cgg Arg	atg Met	tat Tyr	gcc Ala 440	ggc Gly	ctg Leu	aaa Lys	aat Asn	gcc Ala 445	ggc Gly	gag Glu	aca Thr	1344
50	tgg Trp	tat Tyr 450	gac Asp	ata Ile	acg Thr	ggc Gly	aac Asn 455	cgt Arg	tca Ser	gat Asp	act Thr	gta Val 460	aaa Lys	atc Ile	gga Gly	tct Ser	1392
	gac Asp 465	ggc Gly	tgg Trp	gga Gly	gag Glu	ttt Phe 470	cat His	gta val	aac Asn	gat Asp	ggg Gly 475	tcc Ser	gtc val	tcc Ser	att Ile	tat Tyr 480	1440
55	gtt Val	cca Pro	aaa Lys	ata Ile	agt Ser 485	act Thr	act Thr	tcc Ser	caa Gln	ata 11e 490	aca Thr	ttt Phe	act Thr	gta Val	aat Asn 495	aac Asn	1488
60	gcc Ala	aca Thr	acc Thr	gtt Val 500	tgg Trp	gga Gly	caa Gln	aat Asn	gta Val 505	tac Tyr	gtt Val	gtc val	ggg Gly	aat Asn 510	att Ile	tcg Ser	1536

		cag Gln	ctg Leu	999 Gly 515	aac Asn	tgg Trp	gat Asp	cca Pro	gtc val 520	cac His	gca Ala	gtt Val	caa Gln	atg Met 525	acg Thr	ccg Pro	tct Ser	1584
5		tct Ser	tat Tyr 530	cca Pro	aca Thr	tgg Trp	act Thr	gta val 535	aca Thr	atc Ile	cct Pro	ctt Leu	ctt Leu 540	caa Gîn	ggg Gly	caa Gln	aac Asn	1632
10		ata Ile 545	caa Gln	ttt Phe	aaa Lys	ttt Phe	atc Ile 550	aaa Lys	aaa Lys	gat Asp	tca Ser	gct Ala 555	gga Gly	aat Asn	gtc val	att Ile	tgg Trp 560	1680
		ga a Glu	gat Asp	ata Ile	tcg Ser	aat Asn 565	cga Arg	aca Thr	tac Tyr	acc Thr	gtc Val 570	cca Pro	act Thr	gct Ala	gca Ala	tcc Ser 575	gga Gly	1728
15		gca Ala	tat Tyr	aca Thr	gcc Ala 580	agc Ser	tgg Trp	aac Asn	gtg va1	CCC Pro 585								1755
	<210>	14																
		- 0-																

20 <211> 585

<212> PRT

<213> BAN-CBM

25 <400> 14

Val Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp 1 10 15 30 Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp 20 25 30 Ile Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu 50 60 40 Phe Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu 65 70 75 80 45 Leu Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr 85 90 95 50 Gly Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp 100 105 110 55 Val Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser 115 120 125 Glu Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg 130 135 140 60 Gly Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly 155 150 160 65

	ΑΊа	Asp	Trp	Asp	G]u 165	Ser	Arg	Lys	Ile	ser 170	Arg	Ile	Phe	Lys	Phe 175	Arg
5	Gly	Glu	Gly	Lys 180	Ala	Trp	Asp	Trp	Glu 185	val	Ser	Ser	Glu	Asn 190	Gly	Asn
10	Туг	Asp	Tyr 195	Leu	Met	Tyr	Ala	Asp 200	val	Asp	Tyr	Asp	His 205	Pro	Asp	val
15	val	Ala 210	Glu	Thr	Lys	Lys	Trp 215	Gly	Ile	тгр	Туг	Ala 220	Asn	Glu	Leu	ser
20	Leu 225	Asp	Gly	Phe	Arg	11e 230	Asp	Ala	Ala	Lys	His 235	Ile	Lys	Phe	Ser	Phe 240
20	Leu	Arg	Asp	Тгр	Val 245	G]n	Ala	val	Arg	G1n 250	Ala	Thr	GJy	Lys	G1u 255	Met
25	Phe	Thr	٧a٦	Ala 260	Glu	Tyr	Тгр	Gln	Asn 265	Asn	Ala	Gly	Lys	Leu 270	Glu	Asn
30	Tyr	Leu	Asn 275	Lys	Thr	Ser	Phe	Asn 280	Gln	Ser	val	Phe	Asp 285	val	Pro	Leu
35	His	Phe 290	Asn	Leu	Gln	Ala	Ala 295	Ser	Ser	Gln	Gly	300 300	Gly	Туг	ASP	Met
33	Arg 305	Arg	Leu	Leu	Asp	Gly 310	Thr	Va]	val	Ser	Arg 315	His	Pro	Glu	Lys	д1а 320
40	val	Thr	Phe	val	G]u 325	Asn	His	Asp	Thr	G1n 330	Pro	Gly	Gln	Ser	Leu 335	G1 u
45	Ser	Thr	٧a٦	G]n 340	Thr	тгр	Phe	Lys	Pro 345	Leu	Ala	Туг	Ala	Phe 350	Ile	Leu
50	Thr	Arg	Glu 3S5	Ser	Gly	Туг	Pro	G]n 360	val	Phe	туг	Gly	Asp 365	Met	Tyr	G1y
30	Thr	Lys 370	Gly	Thr	Ser	Pro	Lys 375	Glu	Ile	Pro	Ser	Leu 380	Lys	Asp	Asn	Ile
55	G] u 385	Pro	Ile	Leu	Lys	Ala 390	Arg	Lys	Glu	туг	Ala 395	туг	GТу	Pro	Gln	ніs 400
60	Asp	Туг	Ile	Asp	ніs 405	Pro	Asp	٧a٦	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	ASP
	Ser	Ser	Аlа	Ala 420	Lys	Ser	Gly	Leu	Ala 425	Аlа	Leu	Ile	Thr	Asp 430	σΊу	Pro

		Gly	Gly	Ser 435	Lys	Arg	Met	Tyr	Ala 440	Gly	Leu	Lys	Asn	A1a 445	Gly	Glu	Thr	
5		Тгр	Tyr 450	Asp	Ile	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	val 460	Lys	Ile	Gly	Ser	
10		Asp 465	Gly	Trp	Gly	Glu	Phe 470	His	val	Asn	Asp	Gly 475	ser	val	Ser	Ile	Tyr 480	
15		val	Pro	Lys	Ile	Ser 485	Thr	Thr	Ser	Gln	11e 490	Thr	Phe	Thr	val	Asn 495	Asn	
20		Ala	Thr	Thr	va l 500	Trp	Gly	Gln	Asn	va1 505	Tyr	Val	val	Gly	Asn 510	Ile	Ser	
20		Gln	Leu	Gly 515	Asn	Trp	Asp	Pro	va1 520	His	Ala	val	Gln	Met 525	Thr	Pro	Ser	
25		Ser	Tyr 530	Pro	Thr	Trp	Thr	va1 535	Thr	Ile	Pro	Leu	Leu 540	Gln	Gly	Gln	Asn	
30		11e 545	Gln	Phe	Lys	Phe	11e 550	Lys	Lys	Asp	Ser	Ala 555	Gly	Asn	Val	Ile	Trp 560	
35		Glu	Asp	Ile	Ser	Asn 565	Arg	Thr	Tyr	Thr	va1 570	Pro	Thr	Ala	Ala	Ser 575	Gly	
		Ala	Tyr	Thr	Ala 580	Ser	Trp	ASn	val	Pro 585								
40	<210> 1: <211> 8' <212> A	7																
45	<213> B		s liche	eniforn	nis													
	<220>	D.C.																
50	<221> C <222> (1		')															
	<400> 1:	5																
55	atg Met 1	aaa Lys	a caa s Glr	a caa n Glr	a aaa 1 Lys 5	cgg Arg	ctt Leu	tac Tyr	gcc Ala	cga Arg 10	ttg Leu	ctg Leu	acg Thr	ctg L eu	tta Leu 15	ttt Phe		48
60	gcg Ala	cto Lei	ato Ile	tto Phe 20	ttg Leu	ctg Leu	cct Pro	cat His	tct Ser 25	gca Ala	gcc Ala	gcg Ala	gca Ala					87
	<210> 10	6																
	<211> 29	9																
65	<212> P	RT																
	<213> B	acillu	s liche	eniforn	nis													

<400> 16

Met Lys Gln Gln Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe $1 \hspace{1cm} 15$

5

Ala Leu Ile Phe Leu Leu Pro His Ser Ala Ala Ala 20 25

				_	•												
10	<210> 17																
	<211> 175	8															
	<211> 173																
	<213> BS0		CPA	Æ													
15	<213> D30	J(AD)-CBN	/1													
	<220>																
	<221> CD	S															
20	<222> CD <222> (1).		57														
20	<222 <i>></i> (1).	.(1750))														
	<400> 17																
																	40
25								ggc Gly									48
	1				5			_		10	_				15		
	tac	tta	cca	gat	gat	aac	aca	tta	taa	acc	aaa	ata	acc	aat	gaa	acc	96
	Tyr	Leu	Pro	Asp	Asp	ĞÎÿ	Thr	Leu	Trp	Thr	Lys	val	Ala	Asn	ĞÎu	Ala	
30				20					25					30			
	aac	aac	tta	tcc	agc	ctt	ggc	atc	acc	gct	ctt	tgg	ctg	ccg	ccc	gct	144
	ASN	ASN	Leu 35	Ser	Ser	Leu	GIY	Ile 40	inr	AIA	Leu	Trp	Leu 45	Pro	Pro	Ala	
			_					. •									
35	tac	aaa	gga	aca	agc	CGC	agc	gac Asp	gta	999	tac	gga	gta	tac	gac	ttg	192
	, ,,,	50	41,	,,,,	361	עיי	55	-3b	νω,	3.,	,,,	60	74.	, ,,	73b	CCU	
	tat	gar	ctc	anc	oaa	ttc	aat	caa	aaa	aaa	acc	atc	cac	aca	222	tac	240
	Tyr	Asp	Leu	Gly	Ğโน	Phe	Asn	Gln	Lys	ĞÎÿ	Thr	val	Arg	Thr	Lys	Tyr	210
40	65					70					75					80	
	gga	aca	aaa	gct	caa	tat	ctt	caa	gcc	att	caa	gcc	gcc	cac	gcc	gct	288
	Gly	Thr	Lys	Ala	GIn 85	Tyr	Leu	Gln	Ala	90	GIN	Ala	Ala	HIS	95	Ala	
45										_		_					226
43	gga Glv	atg	caa Gln	gtg	tac	gcc	gat	gtc Val	gtg Val	Phe	gac	cat	aaa	ggc	ggc	gct Ala	336
	4.,		•	100	.,.	,,,,,,	756	٠	105	,	756		-,,	110	0.,	7,4	
	nac	ממר	aca	naa	tan	nta	nac	gcc	ntc	022	otc	22 †	cca	tcc	usc.	cac	384
50	Asp	Gly	Thr	Ğlü	Trp	val	Asp	Ala	val	Glu	val	Asn	Pro	Ser	ASP	Arg	204
			115					120					125			_	
	aac	caa	gaa	atc	tcg	ggc	acc	tat	caa	atc	caa	gca	tgg	acg	aaa	ttt	432
	Asn	GIn 130	Glu	Ile	Ser	Gly	Thr 135	Tyr	Gin	Ile	GIn	Ala 140	Trp	Thr	Lys	Phe	
55		-50										170					
	gat	ttt	CCC	999	cgg	ggc	aac	acc Thr	tac	tcc	agc	ttt	aag	tgg	cgc	tgg	480
	145	rne	PIU	Giy	AI 9	150	ASII		ıyı	261	155	FIIC	Lys	ıιρ	A) y	160	
	tac	cat	ttt	gac	aac	att	gat	tgg	gac	паа	age	caa	aaa	tta	anc	cac	528
60					Gly			Trp									720
					165			-		170					175	-	
	att	tac	aaa	ttc	cgt	ggc	aag	gct	tgg	gat	tgg	gaa	gta	gac	acg	gaa	576
65	116	туr	Lys	Phe 180	arg	Gly	Lys	Āla	Trp 185	ASP	Trp	Glu	va I	Asp 190	Thr	Glu	
65	**							ē				, -	_				
	ttc	gga	aac	tat	gac	tac	tta	atg	tat	gcc	gac	ctt	gat	atg	gat	cat	624

	Phe	Gly	Asn 195	Tyr	Asp	туг	Leu	Met 200	Tyr	Ala	Asp	Leu	Asp 205	Met	Asp	His	
5	CCC Pro	gaa Glu 210	gtc Val	gtg Val	acc Thr	gag Glu	ctg Leu 215	aaa Lys	aac Asn	tgg Trp	ggg Gly	aaa Lys 220	tgg Trp	tat Tyr	gtc Val	aac Asn	672
10	aca Thr 225	acg Thr	aac Asn	att Ile	gat Asp	9 9 9 G1y 230	ttc Phe	cgg Arg	ctt Leu	gat Asp	gcc Ala 235	gtc Val	aag Lys	cat His	att Ile	aag Lys 240	720
	ttc Phe	agt Ser	ttt Phe	ttt Phe	cct Pro 245	gat Asp	tgg Trp	ttg Leu	tcg Ser	tat Tyr 250	gtg val	cgt Arg	tct Ser	cag Gln	act Thr 255	ggc Gly	768
15	aag Lys	ccg Pro	cta L e u	ttt Phe 260	acc Thr	gtc val	ggg Gly	gaa Glu	tat Tyr 265	tgg Trp	agc Ser	tat Tyr	gac Asp	atc Ile 270	aac Asn	aag Lys	816
20			aat Asn 275														864
25	gcc Ala	ccg Pro 290	tta Leu	cac His	aac Asn	aaa Lys	ttt Phe 295	tat Tyr	acc Thr	gct Ala	tcc Ser	aaa Lys 300	tca Ser	ggg Gly	ggc Gly	gca Ala	912
	ttt Phe 305	gat Asp	atg Met	cgc Arg	acg Thr	tta Leu 310	atg Met	acc Thr	aat Asn	act Thr	ctc Leu 315	atg Met	aaa Lys	gat Asp	caa Gln	ccg Pro 320	960
30			gcc Ala														1008
35			caa Gln														1056
	ttt Phe	att Ile	cta Leu 355	act Thr	cgg Arg	cag Gln	gaa Glu	gga Gly 360	tac Tyr	ccg Pro	tgc Cys	gtc Val	ttt Phe 365	tat Tyr	ggt Gly	gac Asp	1104
40	tat Tyr	tat Tyr 370	ggc Gly	att Ile	cca Pro	caa Gln	tat Tyr 375	aac Asn	att Ile	cct Pro	tcg Ser	ctg Leu 380	aaa Lys	agc Ser	aaa Lys	atc Ile	1152
45	gat Asp 385	ccg Pro	ctc Leu	ctc L e u	atc Ile	gcg Ala 390	cgc Arg	agg Arg	gat Asp	tat Tyr	gct Ala 395	tac Tyr	gga Gly	aca Thr	cag Gln	cac His 400	1200
50	gac Asp	tat Tyr	att Ile	gac Asp	agt ser 405	gcg Ala	gat Asp	att Ile	atc Ile	ggt Gly 410	tgg Trp	acg Thr	cgg Arg	gaa Glu	gga Gly 415	gtg Val	1248
			aaa Lys														1296
55	ggc Gly	gga Gly	agc Ser 435	aaa Lys	tgg Trp	atg Met	tat Tyr	gtt Val 440	gga Gly	aaa Lys	caa Gln	cac His	gct Ala 445	ggc Gly	aaa Lys	acg Thr	1344
60			gat Asp														1392
	gat	gga	tgg	gga	gaa	ttt	aaa	gtc	aat	gga	99 9	tct	gta	tcc	ata	tgg	1440

	Asp 465	Gly	Trp	Gly	Glu	Phe 470	Lys	val	Asn	Gly	G1y 475	ser	Val	Ser	Ile	480		
5	gtt Val	cca Pro	aaa Lys	ata Ile	agt Ser 485	act Thr	act Thr	tcc Ser	caa Gln	ata Ile 490	aca Thr	ttt Phe	act Thr	gta Val	aat Asn 495	Asr	: i	1488
10	gcc Ala	aca Thr	acc Thr	gtt Val 500	tgg Trp	gga Gly	caa Gln	aat Asn	gta Val 505	tac Tyr	gtt val	gtc Val	ggg Gly	aat Asn 510	Ile	tcg Ser		1536
	cag Gln	ctg Leu	999 Gly 515	aac Asn	tgg Trp	gat Asp	cca Pro	gtc Val 520	cac His	gca Ala	gtt Val	caa Gln	atg Met 525	acg Thr	CCG Pro	tct Ser	•	1584
15	tct Ser	tat Tyr 530	cca Pro	aca Thr	tgg Trp	act Thr	gta Val 535	aca Thr	atc Ile	cct Pro	ctt Leu	ctt Leu 540	caa Gln	ggg Gly	caa Gln	aac Asn	:	1632
20	ata Ile 545	caa Gln	ttt Phe	aaa Lys	ttt Phe	atc Ile 550	aaa Lys	aaa Lys	gat Asp	tca Ser	gct Ala 555	gga Gly	aat Asn	gtc Val	att Ile	tgg Trp 560	•	1680
25	gaa Glu	gat Asp	ata Ile	tcg Ser	aat Asn 565	cga Arg	aca Thr	tac Tyr	acc Thr	gtc val 570	cca Pro	act Thr	gct Ala	gca Ala	tcc Ser 575	ĠĨy	,	1728
							aac Asn			tag								1758
30	<210> 18 <211> 585	_																
35	<212> PR' <213> BS)-CBN	Л														
40	<400> 18	a Pr	o Pł	ne A	.sn (aly 5	Phe	Asn	GЛу	Thr	Me ¹	t Me	t G	ln ⊺	Tyr	Phe	G]u 15	Trp
45	Ту	r Le	u Pr		sp /	Asp	GТу	Thr	Leu	Trp 25	Th	r Ly	'S V	al /	Ala	Asn 30	Glu	Ala
	Ası	n As	n Le 35		er s	Ser	Leu	Gly	Ile 40	Thr	· Ala	a Le	u T		Leu 45	Pro	Pro	Ala
50	Ту	r Ly 50		Іу т	hr s	Ser	Arg	Ser 55	Asp	Val	l G1	у Ту	r G	~ ·	√a1	туг	Asp	Leu
55	Ту 65	r As	p Le	eu G	ly (G7 u	Phe 70	Asn	Gln	Lys	G)	у Th 75		al /	Arg	Thr	Lys	туг 80
60	Gl	y Th	ır Ly	/5 A		31n 35	туг	Leu	Gln	sΓA	1] 90	e G1	n A	la /	Αla	His	Ala 95	Ala
65	G	y Me	t G		al - .00	Гуr	Ala	Asp	val	Va] 105		e As	р Н	is I	Lys	Gly 110	Gly	Ala
	As	p G1	y Th	ır G	lu -	Ггр	val	Asp	Ala	va1	l Gli	u Va	A F	sn I	Pro	ser	Asp	Arg

			115					120					125			
5	Asn	G]n 130	GJu	Ile	Ser	Gly	Thr 135	Tyr	Gln	Ile	Gln	Ala 140	Тгр	Thr	Lys	Phe
10	Asp 145	Phe	Pro	Gly	Arg	Gly 150	ASn	Thr	Туг	Ser	Ser 155	Phe	Lys	Тгр	Arg	Trp 160
	туг	His	Phe	Asp	Gly 165	Val	Asp	тгр	Asp	Glu 170	Ser	Arg	Lys	Leu	Ser 175	Arg
15	Ile	Tyr	Lys	Phe 180	Arg	Gly	Lys	Ala	Trp 185	Asp	тгр	Glu	val	Asp 190	Thr	Glu
20	Phe	GТу	Asn 195	Tyr	Asp	Туг	Leu	Met 200	Tyr	Ala	Asp	Leu	Asp 205	Met	Asp	His
25	Pro	Glu 210	Val	val	Thr	Glu	Leu 215	Lys	Asn	Trp	Gly	Lys 220	Trp	туг	Val	Asn
	Thr 225	Thr	Asn	Ile	Asp	Gly 230	Phe	Arg	Leu	ASP	Ala 235	vai	Lys	His	Ile	Lys 240
30	Phe	Ser	Phe	Phe	Pro 245	Asp	Trp	Leu	Ser	Tyr 250	Val	Arg	Ser	Gln	Thr 255	Gly
35	Lys	Pro	Leu	Phe 260	Thr	val	Gly	Glu	Tyr 265	Тгр	Ser	Туг	Asp	11e 270	Asn	Lys
40	Leu	His	Asn 275	Туг	Ile	Thr	Lys	Thr 280	Asp	Gly	Thr	Met	Ser 285	Leu	Phe	Asp
40	Ala	Pro 290	Leu	His	Asn	Lys	Phe 295	Tyr	Thr	Ala	Ser	Lys 300	Ser	Gly	Gly	АÌа
45	Phe 305	Asp	Met	Arg	Thr	Leu 310	Met	Thr	Asn	Thr	L e u 315	Met	Lys	Asp	Gln	Pro 320
50	Thr	Leu	Ala	٧a٦	Thr 325	Phe	٧a٦	ASP	Asn	ніs 330	Asp	Thr	Glu	Pro	G]y 335	Gln
	Ala	Leu	Gln	Ser 340	Trp	Va1	Asp	Pro	Trp 345	Phe	Lys	Pro	Leu	Ala 350	Tyr	Ala
55	Phe	Ile	Leu 355	Thr	Arg	Gln	Glu	Gly 360	Туг	Pro	Cys	va1	Phe 365	Туг	Gly	Asp
60	туr	Tyr 370	Gly	Ile	Pro	Gln	Tyr 375	Asn	Ile	Pro	Ser	L eu 380	Lys	ser	Lys	Ile
	Asp	Pro	Leu	Leu	Ile	Ala	Arg	Arg	Asp	туг	Ala	Tyr	Gly	Thr	Gln	His

	385					390					395					400
5	ASP	Tyr	Ile	Asp	Ser 405	Ala	Asp	Ile	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Val
10	Ala	Glu	Lys	Ala 420	Asn	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
15	GJY	Gly	Ser 435	Lys	Trp	Met	Туг	Val 440	GТу	Lys	Gln	ніѕ	Ala 445	Gly	Lys	Thr
20	Phe	Tyr 450	Asp	Leu	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	val 460	Thr	Ile	Asn	Ala
20	Asp 465	Gly	Тгр	Gly	Glu	Phe 470	Lys	٧a٦	Asn	Gly	Gly 475	Ser	val	Ser	Ile	Trp 480
25	va?	Pro	Lys	Ile	Ser 485	Thr	Thr	Ser	Gln	Ile 490	Thr	Phe	Thr	Val	Asn 495	Asn
30	Ala	Thr	Thr	Va1 500	Trp	Gly	Gln	Asn	va1 505	Tyr	Val	val	Gly	Asn 510	Ile	Ser
35	Gln	Leu	Gly 515	Asn	Trp	Asp	Pro	Val 520	His	Ala	val	Gln	Met 525	Thr	Pro	Ser
40	Ser	Tyr 530	Pro	Thr	Тгр	Thr	Val 535	Thr	Ile	Pro	Leu	Leu 540	Gln	Gly	Gln	Asn
	11e 545	Gln	Phe	Lys	Phe	Ile 550	Lys	Lys	Asp	Ser	Ala 555	Gly	Asn	Val	Ile	Trp 560
45	Glu	Asp	Ile	Ser	Asn 565	Arg	Thr	Tyr	Thr	Va1 570	Pro	Thr	Ala	Ala	Ser 575	Gly
50	Ala	Туг	Thr	A1a 580	ser	Trp	Asn	٧a٦	Pro 585							

<210> 19

55 <211> 40

<212> ADN

<213> artificial

60 <220>

<223> cebador

<220>

65 <221> misc feature

<222> (1)..(40)

	<400> 19	
	ctcattctgc gcaaatctta agccgcggca atgggacgct	40
5	<210> 20	
	<211> 40	
	<212> ADN	
10	<213> artificial	
	<220>	
	<223> cebador	
15	<220>	
	<221> misc feature	
	<222> (1)(40)	
20		
	<400> 20	
25	atttgggaag tagtacttat taaattgaaa tetttgaaca	40
23	<210> 21	
	<211> 40	
	<212> ADN	
30	<213> artificial	
	<220>	
35	<223> cebador	
	<220>	
	<221> mise feature	
40	<222> (1)(40)	
	<400> 21	
45	ctcattctgc cgctgatgca gtaaatggca agccgcggca	40
TJ	<210> 22	
	<211> 40	
~ 0	<212> ADN	
50	<213> artificial	
	<220>	
55	<223> cebador	
	<220>	
	<221> misc feature	
60	<222> (1)(40)	
	<400> 22	
65	atttgggaag tagtacttat taaattgaaa ttttggaaca	40

<210> 23

```
<211>40
    <212> ADN
    <213> artificial
    <220>
    <223> cebador
10 <220>
    <221> misc feature
    <222> (1)..(40)
15
   <400> 23
                                                                                                           40
           ctcattctgc acggctttaa gcaccgttta agccgcggca
   <210> 24
    <211>40
    <212> ADN
    <213> artificial
    <220>
    <223> cebador
    <220>
    <221> misc feature
    <222> (1)..(40)
35
    <400> 24
                                                                                                           40
           atttgggaag tagtacttat tttaggaacc caaaccgaaa
40
    <210> 25
    <211> 40
    <212> ADN
    <213> artificial
    <220>
    <223> cebador
50
    <220>
    <221> misc feature
    <222> (1)..(40)
55
    <400> 25
                                                                                                           40
          ctcattctgc agccgcggca catcataatg ggacaaatgg
60
    <210> 26
    <211> 40
    <212> ADN
  <213> artificial
    <220>
```

```
<223> cebador
    <220>
    <221> misc feature
    <222> (1)..(40)
    <400> 26
10
           atttgggaag tagtacttat ccatttgtcc cattatgatg
                                                                                                             40
    <210> 27
    <211>40
    <212> ADN
    <213> artificial
   <220>
    <223> cebador
    <220>
25
    <221> misc feature
    <222> (1)..(40)
    <400> 27
30
                                                                                                             40
           ctcattctgc agccgcggca caccataatg gtacgaacgg
    <210> 28
35
    <211>40
    <212> ADN
    <213> artificial
    <220>
    <223> cebador
    <220>
45
    <221> misc feature
    <222> (1)..(40)
    <400> 28
50
                                                                                                             40
           atttgggaag tagtacttat tttgtttacc caaatagaaa
    <210> 29
    <211>40
    <212> ADN
    <213> artificial
60
    <220>
    <223> cebador
    <220>
    <221> misc feature
    <222> (1)..(40)
```

<400> 29 40 ctcattctgc cgctgatgca gtaaatggca agccgcggca <210> 30 <211> 40 <212> ADN <213> artificial <220> <223> cebador 15 <220> <221> misc feature <222> (1)..(40) 20 <400> 30 atttgggaag tagtacttat taaatggaga ttttggaaca 40 25 <210> 31 <211> 40 <212> ADN <213> artificial <220> <223> cebador 35 <220> <221> misc feature <222> (1)..(40) <400> 31 ctcattctgc acggctttaa gcaccgttta agccgcggca 40 45 <210> 32 <211> 40 <212> ADN 50 <213> artificial <220> <223> cebador <220> <221> misc feature <222> (1)..(40) <400> 32 40 atatagtcgt gctgtgttcc gtaagcataa tccctgcgcg 65

<210> 33

```
<211> 22
   <212> ADN
   <213> artificial
    <220>
    <223> cebador
10 <220>
    <221> misc feature
    <222> (1)..(22)
   <400> 33
                                                                                                22
          ctgcatcagg gctgcggcat cc
   <210> 34
   <211> 22
    <212> ADN
    <213> artificial
    <220>
   <223> cebador
   <220>
    <221> misc feature
    <222> (1)..(22)
   <400> 34
                                                                                                22
          ctgcatcagg gctgcggcat cc
   <210> 35
    <211> 483
    <212> PRT
    <213> BLA it B. licheniformis
    <220>
    <221> mat peptide
   <222> (1)..(483)
    <400> 35
         Ala Asn Leu Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Met Pro 10 15
55
         Asn Asp Gly Gln His Trp Arg Arg Leu Gln Asn Asp Ser Ala Tyr Leu
60
```

65

20	45	30

5	Ala	Glu	His 35	Gly	Ile	Thr	Ala	Va 1 40	Trp	Ile	Pro	Pro	Ala 45	Tyr	Lys	Gly
10	Thr	Ser 50	Gln	Ala	Asp	Val	G]y 55	Туг	Gly	Ala	Туг	Asp 60	Leu	Туг	Asp	Leu
	Gly 65	Glu	Phe	нis	Gln	Lys 70	Gly	Thr	Val	Arg	Thr 75	Lys	Tyr	GJA	Thr	Lys 80
15	Gly	Glu	Leu	Gln	Ser 85	Ala	Ile	Lys	Ser	Leu 90	His	Ser	Arg	Asp	11e 95	Asn
20	Val	Tyr	Gly	Asp 100	Val	val	Ile	Asn	His 105	Lys	Gly	Gly	Ala	Asp 110	Ala	Thr
25	Glu	Asp	Val 115	Thr	Ala	val	Glu	va1 120	Asp	Pro	Ala	Asp	Arg 125	Asn	Arg	Va1
	Ile	Ser 130	Gly	Glu	His	Leu	Ile 135	Lys	Ala	Trp	Thr	Ніs 140	Phe	His	Phe	Pro
30	Gly 145	Arg	GJY	Ser	⊤hr	Tyr 150	Ser	Asp	Phe	Lys	Trp 155	His	Тгр	Tyr	нis	Phe 160
35	Asp	Gly	Thr	Asp	Trp 165	Asp	Glu	Ser	Arg	Lys 170	Leu	Asn	Arg	Ile	Туг 175	Lys
40	Phe	Gln	Gly	Lys 180	Ala	Тгр	Asp	Trp	Gไน 185	٧a٦	Ser	Asn	Glu	Asn 190	GТу	Asn
	Туг	Asp	Tyr 195	Leu	Met	Туг	Ala	Asp 200	Ile	Asp	Туг	Asp	His 205	Pro	Asp	Val
45	Ala	Ala 210	Glu	Ile	Lys	Arg	Trp 215	Gly	Thr	Trp	Туг	Ala 220	Asn	Glu	Leu	Gln
50	Leu 225	Asp	Gly	Phe	Arg	L e u 230	Asp	Ala	Val	Lys	His 235	Ile	Lys	Phe	Ser	Phe 240
55	Leu	Arg	Asp	Trp	va1 245	Asn	His	Val	Arg	Glu 250	Lys	Thr	Gly	Lys	G1u 255	Met
55	Phe	Thr	val	A1a 260	Glu	Туг	Trp	Gln	Asn 265	Asp	Leu	Gly	Ala	Leu 270	Glu	Asn
60	Tyr	Leu	Asn 275	Lys	Thr	Asn	Phe	A s n 280	His	Ser	Val	Phe	ASP 285	val	Pro	Leu
	His	Tyr	Gln	Phe	His	Ala	Ala	Ser	Thr	Gln	Gly	Gly	ςΊу	Tyr	Asp	Met

65	Ala 1	ΑΊa	Pro	Phe	Asn 5	Gly	Thr	Met	Met	Gln 10	Туг	Phe	Glu	Тгр	Tyr 15	Leu
60	<400> 36															
	<220> <221> malt <222> (1)(e													
55		D. siel	ai oiiiei	торш	ıus											
	<211> 514 <212> PRT <213> BSG	B. stei	arothe	rmonhi	ilus											
50	<210> 36															
	٧a٦	Gln	Arg													
45	Glu 465	Gly	Тгр	Gly	Glu	Phe 470	нis	٧al	Asn	Gly	Gly 475	ser	val	Ser	Ile	Tyr 480
40	Trp	His 450	Asp	Ile	Thr	Gly	Asn 455	Arg	Ser	Glu	Pro	Val 460	val	Ile	Asn	Ser
35	Gly	Gly	Ala 435	Lys	Arg	Met	Туг	va1 440	Gly	Arg	Gln	Asn	Ala 445	Gly	Glu	Thr
	Ser	Ser	val	Ala 420	Asn	Ser	G1y	Leu	A7a 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
30	Asp	Tyr	Phe	Asp	His 405	His	Asp	Ile	Val	Gly 410	Trp	Thr	Arg	Glu	G]y 415	Asp
25	Glu 385	Pro	Ile	Leu	Lys	А1а 390	Arg	Lys	G]n	Туг	A1a 395	Туг	GΊy	Ala	Gln	ніs 400
20	Thr	Lys 370	Gly	Asp	Ser	Gln	Arg 375	Glu	Ile	Pro	Ala	Leu 380	Lys	His	Lys	Ile
15	Thr	Arg	Glu 355	Ser	Gly	Туг	Pro	G]n 3 60	val	Phe	Туг	Gly	Asp 365	Met	Туг	Gly
15	Ser	Thr	val	G]n 340	Thr	Тгр	Phe	Lys	Pro 345	Leu	Ala	Туг	Ala	Phe 350	Ile	Leu
10	Val	Thr	Phe	Val	Asp 325	Asn	His	Asp	Thr	G]n 330	Pro	Gly	Gln	Ser	Leu 335	Glu
5	Arg 305	Lys	Leu	Leu	Asn	Gly 310	Thr	val	٧a٦	Ser	Lys 315	His	Pro	Leu	Lys	Ser 320
		290					295					300				

Pro Asp Asp Gly Thr Leu Trp Thr Lys Val Ala Asn Glu Ala Asn Asn

20	25	30

5	Leu	Ser	Ser 35	Leu	Gly	Ile	Thr	Ala 40	Leu	Trp	Leu	Pro	Pro 45	Ala	туг	Lys
10	Gly	Thr 50	Ser	Arg	Ser	Asp	val 55	Gly	Туг	Gly	val	Tyr 60	Asp	Leu	Tyr	Asp
	Leu 65	Gly	Glu	Phe	Asn	G]n 70	Lys	Gly	Thr	val	Arg 75	Thr	Lys	туг	Gly	Thr 80
15	Lys	Ala	Gln	Tyr	Leu 85	Gln	Ala	Ile	Gln	Ala 90	Ala	His	Ala	Ala	G]y 95	Met
20	Gln	val	Tyr	A]a 100	Asp	val	Val	Phe	Asp 105	His	Lys	Gly	Gly	Ala 110	Asp	Gly
	Thr	Glu	Trp 115	Va1	Asp	Ala	va1	Glu 120	val	Asn	Pro	Ser	Asp 125	Arg	Asn	Gln
25	Glu	Ile 130	Ser	Gly	Thr	Tyr	G]n 135	Ile	Gln	Ala	Trp	Thr 140	Lys	Phe	Asp	Phe
30	Pro 145	Gly	Arg	Gly	Asn	Thr 150	Туг	Ser	Ser	Phe	Lys 155	Trp	Arg	Trp	туг	ніs 160
35	Phe	Asp	Gly	Val	Asp 165	Trp	Asp	Glu	Ser	Arg 170	Lys	Leu	Ser	Arg	Ile 175	Туг
	Lys	Phe	Arg	Gly 180	Ile	Gly	Lys	Ala	Trp 185	Asp	Trp	Glu	٧a٦	Asp 190	Thr	Glu
40	Asn	Gly	Asn 195	Туг	Asp	Tyr	Leu	Met 200	Туг	Ala	Asp	Leu	Asp 205	Met	Asp	His
45	Pro	G]u 210	Val	val	Thr	Glu	L eu 215	Lys	Asn	Тгр	Gly	Lys 220	Trp	туг	val	Asn
50	Thr 225	Thr	Asn	Ile	Asp	G1y 230	Phe	Arg	Leu	Asp	Ala 235	٧a٦	Lys	His	Ile	Lys 240
	Phe	Ser	Phe	Phe	Pro 245	Asp	Тгр	Leu	Ser	туг 250	val	Arg	Ser	Gln	Thr 255	Gly
55	Lys	Pro	Leu	Phe 260	Thr	val	Gly	Glu	Tyr 265	Trp	ser	туг	Asp	Ile 270	Asn	Lys
60	Leu	His	Asn 275	Туг	Ile	Thr	Lys	Thr 280	Asp	Gly	Thr	Met	Ser 285	Leu	Phe	Asp
	Ala	Pro	Leu	His	Asn	Lys	Phe	Туг	Thr	Ala	Ser	Lys	Ser	Gly	G ly	Ala

		290					49)					300				
5	Phe 305	Asp	Met	Arg	Thr	Leu 310	Met	Thr	Asn	Thr	L eu 315	Met	Lys	Asp	Gln	Pro 320
10	Thr	Leu	Ala	٧a٦	Thr 325	Phe	val	Asp	Asn	ніs 330	Asp	Thr	Glu	Pro	G]y 335	Glr
15	Ala	Leu	Gln	Ser 340	Тгр	Val	Asp	Pro	Trp 345	Phe	Lys	Pro	Leu	Ala 350	Tyr	Ala
20	Phe	Ile	Leu 355	Thr	Arg	Gln	Glu	Gly 360	Tyr	Pro	Cys	val	Phe 365	Tyr	Gly	Asp
20	Tyr	Tyr 370	Gly	Ile	Pro	Gln	Tyr 375	Asn	Ile	Pro	Ser	Leu 380	Lys	Ser	Lys	Ile
25	Asp 385	Pro	Leu	Leu	Ile	Ala 390	Arg	Arg	Asp	Tyr	Ala 395	туг	Gly	Thr	GÌn	ніs 400
30	Asp	туг	Leu	Asp	His 405	Ser	Asp	Ile	Ile	Gly 410	Тгр	Thr	Arg	Glu	Gly 415	Gly
35	Thr	Glu	Lys	Pro 420	Gly	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
40	Gly	Gly	Ser 435	Lys	Trp	Met	Туг	val 440	Gly	Lys	Gln	His	Ala 445	Gly	Lys	va1
	Phe	Tyr 450	Asp	Leu	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	va] 460	Thr	Ile	Asn	ser
45	Asp 465	Gly	Trp	Gly	Glu	Phe 470	Lys	Val	Asn	Gly	Gly 475	Ser	val	ser	Val	Trp 480
50	Val	Pro	Arg	Lys	Thr 485	Thr	val	Ser	Thr	Ile 490	Ala	Arg	Pro	Ile	Thr 495	Thr
55	Arg	Pro	Тгр	Thr 500	Gly	Glu	Phe	Val	Arg 505	Тгр	Thr	Glu	Pro	Arg 510	Leu	∨al
60	Ala	Тгр														
	<210> 37															
	<211> 482															
65	<212> PRT															
	<213>BAN	<i>B.</i> an	iiloliqi	ıefacie	ence											

<220>
<221> mat peptid
<222> (1)(482)
<400> 37

5

val Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp 10 15 10 Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp 20 25 30 15 Ile Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser 35 40 45 Gln Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu
50 60 20 Phe Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu 65 70 75 80 25 Leu Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr 85 90 95 Gly Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp 100 105 Val Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser 115 120 125 35 Glu Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg 40 Gly Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly
145 150 155 45 Ala Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg 165 170 175 Gly Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn 180 185 190 50 Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val 195 200 205 55 Val Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser 210 215 220 Leu Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe 225 230 235 240 Leu Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met 245 250 255 65 Phe Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn

				260					265					270		
5	Туг	Leu	Asn 275	Lys	Thr	ser	Phe	Asn 280	Gln	Ser	val	Phe	Asp 285	val	Pro	Lei
10	His	Phe 290	Asn	Leu	Gln	Аlа	Ala 295	Ser	ser	Gln	Gly	G]y 300	Gly	Туг	Asp	Met
	Arg 305	Arg	Leu	Leu	Asp	G7y 310	Thr	val	val	Ser	Arg 315	ніѕ	Pro	Glu	Lys	A]a 320
15	Val	Thr	Phe	val	Glu 325	Asn	His	Asp	Thr	G]n 330	Pro	Gly	Gln	Ser	Leu 335	Glu
20	Ser	Thr	val	Gln 340	Thr	Trp	Phe	Lys	Pro 345	Leu	Ala	Туг	Ala	Phe 350	Ile	Leu
25	Thr	Arg	Glu 355	Ser	Gly	Tyr	Pro	G]n 360	va1	Phe	Tyr	Gly	Asp 365	Met	Tyr	G1 y
30	Thr	Lys 370	Gly	Thr	Ser	Pro	Lys 375	Glu	Ile	Pro	Ser	Leu 380	Lys	Asp	Asn	ΙÌε
	Glu 385	Pro	Ile	Leu	Lys	Ala 390	Arg	Lys	Glu	туг	A1a 395	Туг	Gly	Pro	Gln	His 400
35	Asp	Туг	Ile	Asp	His 405	Pro	Asp	val	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asp
40	Ser	Ser	Ala	Ala 420	Lys	ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
45	Gly	Gly	Ser 435	Lys	Arg	Met	Tyr	Ala 440	Gly	Leu	Lys	ASN	A7a 445	Gly	Glu	Thr
50	Trp	Tyr 450	Asp	Ile	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	Va1 460	Lys	Ile	Gly	Ser
30	Asp 465	Gly	Trp	Gly	Glu	Phe 470	His	Val	Asn	Asp	Gly 475	Ser	Val	Ser	Ile	Tyr 480
55	Val	Gln														
60	<210> 38 <211> 485 <212> PRT <213> SP7		villus sį	o.												
65	<220> <221> mat	peptid	e													

<222> (1)..(485)

< 40	3	

5	H15	HIS	ASII	GIY	1 nr 5	ASN	GIY	Inr	тэм	мет 10	GIN	ıyr	Pne	GIU	15 15	HIS
	Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ser
10	Asn	Leu	Arg 35	Asn	Arg	Gly	Ile	Thr 40	Ala	Ile	Тгр	Ile	Pro 45	Pro	Ala	Trp
15	Lys	G]y 50	Thr	Ser	Gln	Asn	Asp 55	val	Gly	Tyr	G1y	Ala 60	Туг	Asp	Leu	туг
20	Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	va1 75	Arg	Thr	Lys	Tyr	G]y 80
25	Thr	Arg	Ser	Gln	Leu 85	GJu	Ser	Ala	Ile	ніs 90	Ala	Leu	Lys	Asn	Asn 95	Gly
25	Val	Gln	Val	Tyr 100	Gly	Asp	val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
30	Ala	Thr	G]u 115	Asn	val	Leu	Ala	val 120	Glu	val	Asn	Pro	Asn 125	Asn	Arg	Asn
35	Gln	G]u 130	Ile	Ser	Gly	Asp	Tyr 135	Thr	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
40	Phe 145	Pro	Gly	Arg	G1y	Asn 150	Thr	Туг	Ser	Asp	Phe 155	Lys	Тгр	Arg	Trp	Туг 160
40	His	Phe	Asp	Gly	Val 165	Asp	Тгр	Asp	Gln	Ser 170	Arg	Gln	Phe	Gln	Asn 175	Arg
45	Ile	Tyr	Lys	Phe 180	Arg	Gly	Asp	Gly	Lys 185	Ala	Trp	Asp	Тгр	Glu 190	val	Asp
50	Ser	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Туг	Ala	Asp 205	val	ASP	Met
55	Asp	His 210	Pro	Glu	val	Val	Asn 215	Glu	Leu	Arg	Arg	Trp 220	Gly	Glu	Trp	Tyr
	Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	11e 235	Asp	Ala	va1	Lys	ніs 240
60	Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250	Thr	His	val	Arg	Asn 255	Ala
65	Thr	Gly	Lys	Glu	Met	Phe	Ala	٧a٦	Аlа	Glu	Phe	Trp	Lys	Asn	Asp	Leu

				260					265					270		
5	G1y	Ala	Leu 2 7 5	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Asn	Тгр	Asn 285	His	Ser	val
10	Phe	Asp 290	val	Pro	Leu	His	Tyr 2 9 5	Asn	Leu	Туг	Asn	Ala 300	Ser	Asn	Ser	Gly
	G7y 305	Asn	Tyr	Asp	Met	Ala 310	Lys	Leu	Leu	Asn	Gly 315	Thr	va1	val	Gln	Lys 320
15	His	Pro	Met	His	Ala 325	٧a٦	Thr	Phe	val	Asp 330	Asn	His	Asp	Ser	G]n 335	Pro
20	Gly	Glu	Ser	Leu 340	Glu	Ser	Phe	val	G1n 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala
25	Туг	Ala	Leu 355	Ile	Leu	Thr	Arg	G]u 360	Gln	Gly	Tyr	Pro	ser 365	٧a٦	Phe	Tyr
30	Gly	Asp 370	Tyr	Туг	Gly	Ile	Pro 375	Thr	His	Ser	val	Pro 380	Ala	Met	Lys	Ala
	Lys 385	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Asn 395	Phe	Ala	Туг	GТу	Thr 400
35	Gln	His	Asp	Туг	Phe 405	Asp	His	His	Asn	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
40	Gly	Asn	Thr	Thr 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
45	Gly	Pro	Gly 435	Gly	Glu	Lys	Trp	Met 440	Туг	val	Gly	Gln	Asn 445	Lys	Ala	Gly
	Gln	Va1 450	Trp	His	Asp	Ile	Thr 455	Gly	Asn	Lys	Pro	G] <i>y</i> 460	Thr	va7	Thr	Ile
50	Asn 465	Ala	Asp	Gly	Тгр	Ala 470	Asn	Phe	Ser	val	Asn 475	Gly	Gly	Ser	val	Ser 480
55		Trp	Val	Lys	Arg 485											
60	<210> 39 <211> 485 <212> PRT <213> SP69	90 baci	<i>llus</i> sp													
65	<220> <221> mat j	peptide														

<222> (1)..(485)

<400>	39

5	His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Tyr
	Leu	Pro	Asn	Asp 20	Gly	Asn	His	Тгр	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ala
10	Asn	Leu	Lys 35	Ser	Lys	GJy	Ile	Thr 40	Ala	Val	Trp	Ile	Pro 45	Pro	Ala	Тгр
15	Lys	Gly 50	Thr	Ser	Gln	Asn	Asp 55	val	Gly	туг	Glу	Ala 60	Tyr	Asp	Leu	Tyr
20	Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	val 75	Arg	Thr	Lys	Tyr	Gly 80
25	Thr	Arg	Asn	G]n	Leu 85	Gln	Ala	Ala	val	Thr 90	Ser	Leu	Lys	Asn	Asn 95	Gly
23	Ile	Gln	۷a٦	Tyr 100	Gly	Asp	val	val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
30	Gly	Thr	Glu 115	Ile	٧a٦	Asn	Ala	val 120	Glu	val	Asn	Arg	Ser 125	Asn	Arg	Asn
35	GÌn	Glu 130	Thr	ser	Gly	Glu	Tyr 135	Ala	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
40	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Asn	His	Ser	Ser	Phe 155	Lys	Trp	Arg	Тгр	Tyr 160
	His	Phe	Asp	Gly	Thr 165	Asp	Trp	Asp	G1n	Ser 170	Arg	Gln	Leu	Gln	Asn 175	Lys
45	Ile	Туг	Lys	Phe 180	Arg	Gly	Thr	Gly	Lys 185	Ala	Trp	Asp	Trp	G]u 190	val	Asp
50	Thr	Glu	A s n 195	Gly	Asn	Туг	Asp	Tyr 200	Leu	Met	Туг	Ala	Asp 205	val	Asp	Met
55	Asp	His 210	Pro	Glu	val	Ile	His 215	Glu	Leu	Arg	Asn	Trp 220	Gly	val	Тгр	Tyr
	Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	val	Lys	нis 240
60	Ile	Lys	туг	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250	Thr	His	val	Arg	Asn 255	Thr
	The	Glv	Lve	Dro	Mat	Phe	Λla	Val	4 T =	6Tu	Dhe	Trn	LVE	Acn	Acn	1.00

260 265 270 Gly Ala Ile Glu Asn Tyr Leu Asn Lys Thr Ser Trp Asn His Ser Ala 275 280 285 5 Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly 290 295 300 10 Gly Tyr Tyr Asp Met Arg Asn Ile Leu Asn Gly Ser Val Val Gln Lys 305 310 315 320 15 His Pro Thr His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro 325 330 335 Gly Glu Ala Leu Glu Ser Phe Val Gln Gln Trp Phe Lys Pro Leu Ala 340 345 350 20 Tyr Ala Leu Val Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr 355 360 365 25 Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ala Met Lys Ser 370 375 380 30 Lys Ile Asp Pro Leu Leu Gln Ala Arg Gln Thr Phe Ala Tyr Gly Thr 385 390 395 400 35 Gln His Asp Tyr Phe Asp His His Asp Ile Ile Gly Trp Thr Arg Glu 405 410 415 Gly Asn Ser Ser His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp
420 425 430 40 Gly Pro Gly Gly Asn Lys Trp Met Tyr Val Gly Lys Asn Lys Ala Gly
435 440 445 45 Gln Val Trp Arg Asp Ile Thr Gly Asn Arg Thr Gly Thr Val Thr Ile 450 455 460 50 Asn Ala Asp Gly Trp Gly Asn Phe Ser Val Asn Gly Gly Ser Val Ser 465 470 475 480 Val Trp Val Lys Gln 55 <210> 40 <211> 485

65 <221> mat peptide <222> (1)..(485)

<213> AA560 bacillus sp.

<212> PRT

<220>

<40	>00	40

5	His 1	His	ASI	Gly	Thr 5	ASN	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Туг
	Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Ser	Asp 30	Ala	Ser
10	Asn	Leu	Lys 35	Asp	Lys	Gly	Ile	ser 40	Ala	val	Trp	Ile	Pro 45	Pro	Ala	Trp
15	Lys	G]y 50	Ala	Ser	Gln	Asn	Asp 55	val	Glу	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
20	Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	GТу	Thr	11e 75	Arg	Thr	Lys	Туг	G]y 80
25	Thr	Arg	Asn	Gln	Leu 85	Gln	Ala	Ala	val	Asn 90	Ala	Leu	Lys	Ser	Asn 95	Gly
23	Ile	Gln	Val	Туг 100	Gly	Asp	val	val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
30	Ala	Thr	Glu 115	Met	٧a٦	Arg	Ala	va1 120	Glu	٧a٦	Asn	Pro	Asn 125	ASN	Arg	Asn
35	Gln	Glu 130	Val	Ser	Gly	Glu	Tyr 135	Thr	IJe	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
40	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Thr	His	Ser	Asn	Phe 155	Lys	Trp	Arg	Trp	Туг 160
	His	Phe	Asp	Gly	va1 165	Asp	Тгр	ASP	Gln	Ser 170	Arg	Lys	Leu	Asn	Asn 175	Arg
45	Ile	Туг	Lys	Phe 180	Arg	Gly	Asp	Gly	Lys 185	Gly	Тгр	Asp	Тгр	Glu 190	Val	Asp
50	Thr	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Ile	Asp	Met
55	Asp	His 210	Pro	Glu	val	٧a٦	Asn 215	Glu	Leu	Arg	Asn	Trp 220	Gly	val	Trp	Туг
	Thr 225	Asn	Thr	Leu	Gly	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	val	Lys	ні <i>s</i> 240
60	Ile	Lys	Туг	ser	Phe 245	Thr	Arg	ASP	Trp	Ile 250	Asn	His	٧a٦	Arg	Ser 255	Ala
65	Thr	Gly	Lys	Asn	Met	Phe	Ala	٧a٦	Ala	Glu	Phe	Trp	Lys	Asn	Asp	Leu

					260					205					270		
5		Gly	Ala	Ile 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Asn	Trp	Asn 285	His	Ser	Val
10		Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Lys	Ser	Gly
		G7y 305	Asn	Tyr	Asp	Met	Arg 310	Gln	Ile	Phe	Asn	G7y 315	Thr	٧a٦	va7	Gln	Arg 320
15		His	Pro	Met	His	Ala 325	val	Thr	Phe	val	Asp 330	Asn	His	Asp	Ser	G]n 335	Pro
20		Glu	Glu	Ala	Leu 340	Glu	Ser	Phe	Val	Glu 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala
25		Туг	Ala	Leu 355	Thr	Leu	Thr	Arg	G1u 360	Gln	Gly	Tyr	Pro	ser 365	val	Phe	Tyr
		Gly	Asp 370	Туг	Туг	Gly	Ile	Pro 375	Thr	His	Gly	Val	Pro 380	Ala	Met	Lys	Ser
30		Lys 385	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Lys 395	туг	Ala	Туг	Gly	Arg 400
35		G]n	Asn	Asp	Tyr	Leu 405	Asp	His	His	Asn	Ile 410	Ile	g1y	тгр	Thr	Arg 415	Glu
40		Gly	Asn	Thr	Ala 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
45		Gly	Ala	Gly 435	Gly	Asn	Lys	Тгр	Met 440	Phe	val	Gly	Arg	Asn 445	Lys	Ala	Gly
43		Gln	va1 450	Trp	Thr	Asp	Ile	Thr 455	Gly	Asn	Arg	Ala	Gly 460	Thr	val	Thr	Ile
50		Asn 465	Ala	Asp	Gly	Тгр	Gly 470	Asn	Phe	Ser	va1	Asn 475	Gly	G1y	Ser	val	Ser 480
55	210		Trp	Va1	Asn	Lys 485											
60	<210><211><211><212><213>	481 PRT	9 <i>B. li</i> d	ch. var	iante												
65	<220><221><222>	-	-														

<40	$\cap \setminus$	41
<40	い>	41

5	Val 1	Asn	Gly	Thr	L eu 5	Met	Gln	Tyr	Phe	Glu 10	Trp	Tyr	Thr	Pro	Asn 15	Asp
	Gly	Gln	His	Trp 20	Lys	Arg	Leu	Gln	Asn 25	Asp	Ala	Glu	His	Leu 30	Ser	Asp
10	Ile	Gly	Ile 35	Thr	Ala	Val	Тгр	Ile 40	Pro	Pro	Ala	Туг	Lys 45	Gly	Thr	Ser
15	Gln	А1а 50	Asp	val	Gly	Туг	G1y 55	Ala	Tyr	Asp	Leu	Туг 60	Asp	Leu	Gly	Glu
20	Phe 65	His	Gln	Lys	Gly	Thr 70	va1	Arg	Thr	Lys	Tyr 75	Gly	Thr	Lys	Gly	Glu 80
	Leu	Gln	Ser	Ala	Ile 85	Lys	ser	Leu	His	5er 90	Arg	Asp	Ile	Asn	va1 95	Tyr
25	Gly	Asp	val	val 100	Ile	Asn	His	Lys	Gly 105	Gly	Ala	Asp	Ala	Thr 110	Glu	Asp
30	Val	Thr	Ala 115	Val	Glu	val	Asp	Pro 120	Ala	Asp	Arg	ASN	Arg 125	Val	Ile	Ser
35	Gly	G]u 130	His	Leu	Ile	Lys	А7а 135	Trp	Thr	His	Phe	ніs 140	Phe	Pro	Gly	Arg
40	Gly 145	Ser	Thr	Туг	ser	Asp 150	Phe	Lys	Trp	Tyr	Trp 155	туг	His	Phe	ASP	Gly 160
40	Thr	Asp	Тгр	Asp	G]u 165	Ser	Arg	Lys	Leu	Asn 170	Arg	Ile	туг	Lys	Phe 175	Gln
45	Gly	Lys	Thr	Trp 180	Asp	Trp	Glu	val	Ser 185	Asn	Glu	Phe	Gly	Asn 190	туг	Asp
50	Туг	Leu	Met 195	Туг	Ala	Asp	Phe	ASP 200	Туг	Asp	His	Pro	Asp 205	val	Val	Ala
55	Glu	11e 210	Lys	Arg	Trp	Gly	Thr 215	Trp	Tyr	Ala	Asn	G1u 220	Leu	Gln	Leu	Asp
33	G1y 225	Phe	Arg	Leu	ASP	Ala 230	val	Lys	His	Ile	Lys 235	Phe	ser	Phe	Leu	Arg 240
60	Asp	Trp	٧a٦	Asn	His 245	val	Arg	Glu	Lys	Thr 250	Gly	Lys	Glu	Met	Phe 255	Thr
65	Val	Ala	Glu	туг	Trp	ser	Asn	Asp	Leu	Gly	Ala	Leu	Glu	Asn	туг	Leu

				260					265					270		
5	Asr	Lys	Thr 275	Asn	Phe	Asn	His	Ser 280	val	Phe	ASP	val	Pro 285	Leu	His	Туг
10	Glr	290	His	Ala	Ala	Ser	Thr 295	Gln	Gly	σΊу	Gly	Tyr 300	Asp	Met	Arg	Lys
	Leu 305	Leu	Asn	Gly	Thr	Val 310	val	Ser	Lys	His	Pro 315	Leu	Lys	Ser	Val	Thr 320
15	Phe	val	Asp	Asn	His 325	Asp	Thr	Gln	Pro	Gly 330	Gln	Ser	Leu	Glu	Ser 335	Thr
20	Val	Gln	Thr	Trp 340	Phe	Lys	Pro	Leu	Ala 345	Туг	Ala	Phe	Ile	Leu 350	Thr	Arg
25	Glu	Ser	G]y 355	Tyr	Pro	Gln	Va1	Phe 360	Tyr	Gly	Asp	Met	Tyr 365	Gly	Thr	Lys
30	Gly	4sp 370	Ser	Gln	Arg	Glu	Ile 375	Pro	Ala	Leu	Lys	His 380	Lys	Ile	Glu	Pro
	11e 385	Leu	Lys	Ala	Arg	Lys 390	GÌn	Туг	Ala	Tyr	Gly 395	Ala	Gln	His	Asp	туг 400
35	Phe	. Asp	His	His	Asp 405	Ile	Val	Gly	Тгр	Thr 410	Arg	Glu	Gly	Asp	Ser 415	ser
40	Val	Ala	Asn	Ser 420	Gly	Leu	Ala	Ala	Leu 425	Ile	Thr	Asp	GÌу	Pro 430	Gly	Gly
45	Ala	Lys	Arg 435	Met	Tyr	val	Gly	Arg 440	Gln	Asn	Ala	Gly	Glu 445	Thr	Тгр	His
50	Asp	1]e 450	Thr	Gly	Asn	Arg	Ser 455	Glu	Pro	val	val	11e 460	Asn	ser	Glu	Gly
	Trp 465	Gly	Glu	Phe	His	va1 470	Asn	Gly	Gly	Ser	va1 475	Ser	Ile	Туг	val	Gln 480
55	Arg	1														
60	<210> 42 <211> 417 <212> PR' <213> Pse	Γ	nas sa	ccharo	fila											
65	<220> <221> mat <222> (1).		e													

-10	Λ.	42
<40	い>	42

5	Asp 1	GIN	Ala	GIY	Lys 5	Ser	Pro	АІА	GIY	10	Arg	Tyr	HIS	GIY	15	ASP
	Glu	Ile	Ile	Leu 20	Gln	Gly	Phe	His	Trp 25	Asn	val	val	Arg	G1u 30	Ala	Pro
10	Asn	Asp	Trp 35	Туг	Asn	Ile	Leu	Arg 40	GÌn	Gln	Ala	ser	Thr 45	Ile	Ala	Αla
15	Asp	Gly 50	Phe	Ser	Ala	Ile	Trp 55	Met	Pro	val	Pro	Trp 60	Arg	Asp	Phe	Ser
20	Ser 65	Trp	Thr	Asp	Gly	Gly 70	Lys	Ser	Gly	Gly	G]y 75	Glu	Gly	Туг	Phe	Trp 80
25	His	Asp	Phe	Asn	Lys 85	Asn	Gly	Arg	Tyr	Gly 90	Ser	Asp	Ala	Gln	Leu 95	Arg
25	Gln	Ala	Ala	Gly 100	Ala	Leu	Gly	Gly	A7a 105	Gly	val	Lys	val	Leu 110	Туг	Asp
30	۷a۱	۷a٦	Pro 115	Asn	His	Met	Asn	Arg 120	Gly	Туг	Pro	Asp	Lys 125	Glu	Ile	Asn
35	Leu	Pro 130	Ala	Gly	G]n	GJy	Phe 135	Trp	Arg	Asn	Asp	Cys 140	Ala	Asp	Pro	Gly
40	Asn 145	Туг	Pro	Asn	Asp	Cys 150	Asp	A5p	Gly	Asp	Arg 155	Phe	Ile	Gly	Gly	Glu 160
	Ser	Asp	Leu	Asn	Thr 165	Gly	His	Pro	Gln	Ile 170	туг	Gly	Met	Phe	Arg 175	Asp
45	Glu	Leu	Ala	Asn 180	Leu	Arg	Ser	Gly	Tyr 185	Gly	Ala	Gly	Gly	Phe 190	Arg	Phe
50	Asp	Phe	Va1 195	Arg	Gly	Туг	Ala	Pro 200	Glu	Arg	va1	Asp	ser 205	Trp	Met	ser
55	Asp	Ser 210	Ala	Asp	Ser	Ser	Phe 215	Cys	val	Gly	Glu	Leu 220	Trp	Lys	Gly	Pro
(0	Ser 225	Glu	Tyr	Pro	Ser	Trp 230	Asp	Trp	Arg	Asn	Thr 235	Ala	Ser	Trp	GIn	G]n 240
60	Ile	Ile	Lys	Asp	Trp 245	Ser	Asp	Arg	Αla	Lys 250	Cys	Pro	val	Phe	Asp 255	Phe
65	αla	1 611	IVS	6To	Ara	Met	Gln	Δcn	Glv	Ser	Va1	εſΔ	Acn	Tro	Lve	ui e

				260					265					270		
5	Gly	Leu	Asn 275	Gly	Asn	Pro	Asp	Pro 280	Arg	Trp	Arg	Glu	va1 285	Ala	val	Thr
10	Phe	Va1 290	Asp	Asn	His	Asp	Thr 295	Gly	Tyr	Ser	Pro	Gly 300	Gln	Asn	Gly	Gly
15	G]n 305	His	His	Тгр	Ala	Leu 310	Gln	Asp	GЈУ	Leu	17e 315	Arg	Gln	Ala	Туг	A1a 320
10	Tyr	Ile	Leu	Thr	Ser 325	Pro	Gly	Thr	Pro	Va1 330	val	Tyr	Тгр	Ser	His 335	Met
20	туг	Asp	Тгр	Gly 340	Туг	G1y	Asp	Phe	11e 345	Arg	Gln	Leu	Ile	G]n 350	∨al	Arg
25	Arg	Thr	Ala 355	Gly	val	Arg	Ala	Asp 360	Ser	Ala	Ile	Ser	Phe 365	His	Ser	Gly
30	Tyr	Ser 370	Gly	Leu	Val	Ala	Thr 375	Val	Ser	GΊy	Ser	Gln 380	Gln	Thr	Leu	۷a٦
35	va1 385	Ala	Leu	Asn	Ser	Asp 390	Leu	Ala	Asn	Pro	Gly 395	Gln	٧a٦	Ala	Ser	G] y 400
	Ser	Phe	Ser	Glu	Ala 405	val	Asn	Ala	Ser	Asn 410	Gly	Gln	val	Arg	va1 415	Тгр
40	Arg															
45																
50																
55																
60																
65																