

T3

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 357 458

(51) Int. Cl.: **C12Q 1/68** (2006.01)

TRADUCCIÓN DE PATENTE EUROPEA

6 Número de solicitud europea: 08716509.8

96 Fecha de presentación : 11.03.2008

118316 Número de publicación de la solicitud: 2118316

Fecha de publicación de la solicitud: 18.11.2009

⁽⁵⁴⁾ Título: Utilización de sondas oligonucleotídicas y procedimiento para la tipificación genómica de los sistemas eritrocitarios.

30 Prioridad: 13.03.2007 IT MI07A0504	Titular/es: Fondazione IRCCS "Ca' Granda - Ospedale Maggiore Policlinico" Via Francesco Sforza, 28 20122 Milan, IT
 Fecha de publicación de la mención BOPI: 26.04.2011 	 Inventor/es: Drago, Francesca; Karpasitou, Katerina y Poli, Francesca
 Fecha de la publicación del folleto de la patente: 26.04.2011 	(14) Agente: Curell Aguilá, Marcelino

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

Venta de fascículos: Oficina Española de Patentes y Marcas. Pº de la Castellana, 75 - 28071 Madrid

DESCRIPCIÓN

La presente invención se refiere a un procedimiento para la tipificación genómica de sistemas eritrocitarios, y a la utilización de sondas oligonucleotídicas. Se dan asimismo a conocer kits de diagnóstico relacionados.

La tipificación del grupo sanguíneo se ha realizado tradicionalmente con técnicas de aglutinación utilizando diversos procedimientos tales como tecnología de microplacas de fase sólida/líquida, columnas, tubos y portaobjetos con antisueros comerciales tanto policionales como monocionales.

Las diversas técnicas de aglutinación que pueden aplicarse en todos los laboratorios competentes presentan una sensibilidad y especificidad apropiada en la utilización clínica para la mayoría de los casos.

Sin embargo, debido a las limitaciones en la hemaglutinación, resulta habitual en la actualidad en los laboratorios de referencia complementar y apoyar la tipificación serológica del grupo sanguíneo con técnicas moleculares y en muchos casos constituyen el único procedimiento alternativo que puede solucionar los problemas complejos.

Existen diversas aplicaciones en la práctica de la medicina de transfusión.

La mayoría de las aplicaciones clínicas responden apropiadamente a la exigencia de realizar una tipificación correcta del grupo sanguíneo del paciente en un corto periodo de tiempo y en relación con sujetos inmunizados de manera múltiple con patologías autoinmunitarias, con pacientes transfundidos inmediatamente antes de la prueba del grupo sanguíneo y/o pacientes dependientes de transfusión tales como pacientes talasémicos (ref.1 Castilho L. *et al.* 2002; ref.2 Montalvo L. *et al.* 2004). En estos casos, la tipificación con procedimientos clásicos podría resultar de difícil aplicación. Para la primera categoría de pacientes, surgen dificultades debido a la presencia de anticuerpos que se adhieren a los eritrocitos que requieren análisis adicionales y diferentes procedimientos de tipificación en la parte del laboratorio para análisis inmunohematológicos, prolongando considerablemente el tiempo de análisis que resulta valioso en situaciones de urgencia. En la segunda categoría de pacientes transfundidos inmediatamente antes de la prueba del grupo sanguíneo, el problema se debe a la presencia de cantidades masivas de eritrocitos transfundidos del donante en la circulación del paciente, imposibilitando la aplicación de los procedimientos clásicos. Por tanto, en este

- caso, una tipificación correcta del fenotipo de RH del paciente y de otros antígenos de glóbulos rojos comunes (por ejemplo, K/k; Fya/Fyb; Jka/Jkb; S/s) frente a los que el desarrollo de anticuerpos puede presentar un significado clínico relevante, es extremadamente útil para confirmar la naturaleza de los anticuerpos identificados tanto en el suero como adheridos a los eritrocitos y en consecuencia para proporcionar el mejor apoyo a la transfusión posible para el paciente.
- Existen otras aplicaciones interesantes de la tipificación molecular de sistema eritrocitarios. Estas incluyen la confirmación y a veces la única fuente de resolución en casos de antígenos con expresión débil tales como el antígeno D (sistema RH) o el antígeno FyX (sistema Duffy); la caracterización de formas nulas; la determinación de D-cigosidad no posible de otra forma y la resolución en casos de variantes de ABO.

Otra aplicación importante se refiere asimismo a la posibilidad de confirmar, con técnicas moleculares, la tipificación de eritrocitos raros de pacientes o donantes de sangre que son negativos para los antígenos de alta incidencia. Una persona que presenta un fenotipo raro puede inmunizarse frente al antígeno restante tras la transfusión, el embarazo y en un menor grado el trasplante de órganos. La inmunización frente a un antígeno de alta incidencia también puede complicar considerablemente la detección de anticuerpos del grupo sanguíneo adicionales. La presencia de anticuerpos que presentan diferentes especificidades hace que el proceso de identificación resulte laborioso y complicado y que el hallazgo de unidades sanguíneas compatibles resulte extremadamente problemático.

40 La posibilidad de congelar unidades de sangre tipificadas en el momento en el que se necesitan facilita considerablemente el tratamiento del paciente, sin tener que recurrir a la tipificación al azar de un alto número de donantes en condiciones de urgencia, también con el riesgo de no encontrar la unidad compatible. Podrían congelarse y aislarse unidades de sangre poco comunes para pacientes en riesgo. Además, también debe considerarse que las diferencias étnicas entre donante y paciente podrían crear problemas mayores, especialmente si el paciente requiere un régimen de transfusión a largo plazo.

Para este fin, la utilización de técnicas moleculares solucionará el problema del alto coste de los antisueros poco comunes y a veces, para algunas especificidades, también resuelve el problema tanto de falta de como de reactividad débil de estos antisueros fácilmente perecederos tales como los antisueros específicos para el sistema Dombrock (ref. 3 Reid *et al.* 2002).

- 50 Una importante ventaja de los métodos de ADN consiste en la posibilidad de obtener una cantidad de ADN útil a partir tanto de sangre periférica, incluso a partir de cantidades mínimas, como de otras fuentes biológicas. Además, si las muestras de ADN se conservan apropiadamente, son estables a lo largo de un periodo de tiempo largo. El trabajo con ADN en medicina de transfusión presenta también la considerable ventaja de no estar limitado porque la muestra deba procesarse inmediatamente tal como requiere la serología clásica.
- 55 Se han desarrollado diversas técnicas aplicadas en el campo de la medicina de transfusión para todas estas aplicaciones posibles. En particular, para la genotipificación del grupo sanguíneo, las técnicas más comunes utilizadas en laboratorios de inmunohematología son PCR-RFLP (polimorfismo de longitud de fragmentos de restricción) y PCR-

SSP (cebadores específicos de secuencia).

5

10

20

25

40

55

Se han desarrollado recientemente nuevos procedimientos tales como PCR-ELISA, PCR en tiempo real, análisis de minisecuenciación de SNP (ref.4 Ferri EG et al., 2006) y tecnología de micromatrices (ref. 5 Denomme G. et al., 2005). Esta última tecnología en particular surge de la necesidad de tipificar un mayor número de muestras con respecto a otras técnicas disponibles que presentaban un bajo rendimiento.

Desde luego, el principio de esta técnica no es totalmente nuevo. Las técnicas de transferencia de tipo Southern, por ejemplo, proporcionan el análisis de un gran número de muestras mediante hibridación de fragmentos de ADN pero por medio de electroforesis. La principal diferencia subyace en el tipo de material utilizado como soporte de hibridación; se han reemplazado las membranas de hibridación porosas por un soporte de vidrio o silicio no poroso o microesferas marcadas con fluorescencia (ref. 6 Petrik J. 2001). Estos cambios han permitido que los volúmenes de reactivos se reduzcan considerablemente, mejorando la cinética de hibridación, miniaturizando el proceso completo, aumentando el

- rendimiento y permitiendo la posibilidad de someter a prueba varios analitos al mismo tiempo en una única reacción. Todos estos cambios revolucionarios reducen considerablemente el tiempo del operario, la laboriosidad y el coste.
- En los últimos años se ha desarrollado una variedad de aplicaciones de la tecnología de micromatrices. Esta tecnología 15 se aplica tanto en análisis genéticos como en serología.

La tecnología de micromatrices, tal como se aplica en este caso, se caracteriza por una fase de amplificación de la región de ADN diana, seguida por desnaturalización, hibridación con sondas específicas complementarias al polimorfismo diana y detección de fluorescencia y análisis de datos por medio de citometría de flujo tras el marcaje adecuado con ficoeritrina-estreptavidina. Con la tecnología de micromatrices utilizando un soporte de hibridación sólido, es posible tipificar antígenos de los sistemas ABO y RH así como también antígenos de alta incidencia y clínicamente significativos. Esta tecnología también se ha aplicado a la tipificación genómica de antígenos plaquetarios (ref. 7 Beiboer S. et al., 2005). Además, la utilización de técnicas de aglutinación implica alto coste en el caso de examen en masa para antígenos de eritrocitos de alta incidencia con el fin de obtener donantes negativos, ya que la disponibilidad de reactivos de tipificación comerciales es muy limitada, y también la realización de la tipificación con antisueros resulta problemática debido a una escasa fiabilidad.

Una de las principales ventaias de las técnicas basadas en ADN es la sustitución de sueros de tipificación por oligonucleótidos sintetizados a bajo coste.

Las nuevas tecnologías parecen dirigirse actualmente a la automatización y simplificación y los nuevos instrumentos se modifican para acelerar el proceso. Este último concepto es descriptivo de dosificaciones de citometría de flujo múltiple 30 basada en microesferas. Mediante el acoplamiento de diversos anticuerpos purificados o sondas oligonucleotídicas con distintos conjuntos de microesferas fluorescentes, es posible obtener sistemas de análisis muy eficaces que permiten la captura de numerosos analitos a partir de una muestra única. La cuantificación aprovecha el potencial resolutivo multiparamétrico de la citometría de flujo y la capacidad de los sistemas de procesamiento de las señales digitales que procesan los miles de señales fluorescentes generadas por las microesferas (ref. 8 Kellar KL et al., 2003; ref. 9 Kettman JR et al., 1998).

35

Más específicamente, las microesferas están constituidas con polímeros sintéticos y cada conjunto de microesferas se caracteriza por una intensidad de fluorescencia específica. Resultan disponibles diversas fuentes comerciales de microesferas fluorescentes tales como Bangs Laboratories (Fishers, IN), Duke Scientific (Palo Alto, CA), Luminex Corporation (Austin, TX), Polysciences (Warrington, PA), Seradyn (Indianapolis, IN) y Sperotech (Libertyville, IL) que ofrecen microesferas con diferentes dimensiones y características de fluorescencia. Luminex Corporation, por ejemplo, produce 100 microesferas que difieren en la intensidad de fluorescencia creada por la incorporación de diferentes razones de dos fluorocromos que emiten a diferentes longitudes de onda (ref. 10 Fulton RF et al., 1997). Se utiliza un

- citómetro de flujo compacto (Luminex 100) con dos fuentes de láser proyectado para la detección de las microesferas y la cuantificación de la fluorescencia. Se ha producido una matriz de 100 microesferas con colorantes que emiten a 658 45 y 712 nm tras la estimulación con un láser de diodo rojo a 635 nm para complementar el sistema de láser del citómetro (ref. 11 Earley MC et al. 2002). Este sistema de perfilado de analitos múltiple (Lab-MAP™) se utilizó para el análisis múltiple de diversos polimorfismos de nucleótidos simples (SNP) (ref. 12 Colinas et al., 2000; ref. 13 Dunbar SA et al., 2000). Los SNP son la fuente de variabilidad más abundante en el genoma humano, lo que es importante para la identificación de patologías particulares o para dilucidar la predisposición a desarrollar una enfermedad particular o 50 responder a una cierta terapia farmacológica (ref. 8 Kellar KL, 2003). Los SNP representan también la base molecular
- de los polimorfismos de numerosos sistemas de antígenos.

El documento WO 2006/079925 A (3 de agosto de 2006) da a conocer un conjunto de sondas oligonu cleotídicas Jka y Jkb y una sonda de control negativo NS (p. 16) que presenta la misma secuencia que las sondas Jka y Jkb de la presente solicitud. Dicho conjunto de sondas se utiliza para la identificación y tipificación de un SNP correspondiente al par alélico Jka/Jkb (pág. 5, pág. 10 l. 15-19, pág. 11-12). Este documento da a conocer asimismo microesferas marcadas con por lo menos una sustancia fluorescente que presenta grupos carboxílicos en la superficie y acopladas con el conjunto de sondas (perlas de Luminex: especialmente pág. 14 l. 15 a pág. 15, pág. 17).

Se ha establecido un procedimiento de tipificación del grupo sanguíneo molecular que utiliza sondas oligonucleotídicas específicas que, cuando se modifican adecuadamente, se acoplan a una matriz de microesferas fluorescentes, lo que

no presenta las desventajas de las técnicas de tipificación conocidas.

Utilizando el procedimiento según la invención, se produce una reducción considerable en el coste de reactivos y el tiempo del operario.

Desde el punto de vista de su aplicación, el procedimiento es particularmente ventajoso para la tipificación a gran escala de muestras de sangre y puede facilitar la identificación de un fenotipo poco común para pacientes aloinmunizados y sujetos que pertenecen a minorías étnicas. Más específicamente, en la presente invención, tras identificar el polimorfismo Xa y Xb en relación con cada uno de los sistemas objeto del estudio, se diseñaron sondas oligonucleotídicas que podían hibridar, a una cierta temperatura, de una manera sumamente específica, en el sitio polimórfico de interés. Estas sondas han proporcionado excelentes resultados en cuanto a especificidad y eficacia del proceso de hibridación (temperatura de hibridación/polimorfismo/longitud de sonda seleccionados).

Las características y ventajas del procedimiento y las fases experimentales establecidas en el contexto de la presente invención y utilizadas en el presente procedimiento de tipificación son las siguientes:

- Aplicación del procedimiento de matrices en suspensión de Luminex a la genotipificación de sistemas de grupo sanguíneo.
- 15 Identificación de pares de cebadores específicos para amplificar la región genómica que contiene el polimorfismo de un solo nucleótido de interés (véase la tabla 1).
 - Identificación de condiciones de PCR: misma cantidad y razones de concentración tanto para los cebadores como los tampones utilizados y ciclos de amplificación iguales para todos los sistemas estudiados.
- Diseño de las sondas oligonucleotídicas: diseñadas complementarias a la secuencia amplificada por el cebador biotinilado, con localización del polimorfismo de interés en o en la proximidad al centro de la sonda (la posición polimórfica está marcada en negrita en la tabla 2). Los cambios con respecto a la posición central se determinan mediante la adición y/o eliminación de nucleótidos del extremo 5' y/o 3' de la sonda para aumentar la eficacia de hibridación y obtener un mejor apareamiento de sonda-diana o para aumentar la especificidad (ref. 14 Dunbar SA et al., 2005; ref. 15 Dunbar SA. et al., 2006).
- Hibridación directa de las sondas diseñadas con el producto de PCR, que contiene el polimorfismo objeto del estudio, a una temperatura de hibridación específica definida para cada sistema estudiado, en la que la temperatura de hibridación específica está representada entre paréntesis (véase la tabla 2).

Sistema	Alelos diana	Nombre del cebador	Secuencia (5'-3')	
KELL	K/k	K5F ref.16	TTTAgTCCTCACTCCCATgCTTCC (SEC ID nº:1)	
	PCR1	K6R ref 16	TATCACACAggTgTCCTCTCTCC (SEC ID nº:2)	
	Kpa/Kpb	KpF	TgAggCCAggAgAAAAgCA (SEC ID nº:3)	
	PCR2	KpR	TgACCATCTggAAgAgCTTgC (SEC ID nº:4)	
	Jsa/Jsb	JsF	AACTTTgCCATgCTCCTgg (SEC ID nº:5)	
	PCR2	JsR	GCCTTgACACTTgCATACCT (SEC ID nº:6)	
LUTHERAN	Lua/Lub	Lu91mF	CTgAggAgCgCTgggACACCCgg (SEC ID nº:7)	
	PCR3	Lu92R ref.18	CCCCgggTgTCgTgCATT (SEC ID nº:8)	
MNS	S/s <u>PCR4</u>	SsF ref.17	AAgACTgACACATTACCTCA (SEC ID nº:9)	
		SsR	AACATACCTggTACAgTgAA (SEC ID nº:10)	
COLTON	Coa/Cob	CoF3	TATAAATAggCCCAgCCCAg (SEC ID nº:11)	
	PCR5	CoR3	CCAgCgACACCTTCACgTT (SEC ID nº:12)	
DUFFY	Fya/Fyb	Duffy-F2	CTTCCggTgTAACTCTgATgg (SEC ID nº:13)	
	PCR6	Duffy-R3	CATCCAgCAggTTACAggAgT (SEC ID nº:14)	
KIDD	Jka/Jkb	JK-781 F3 ref.19	CATgCTgCCATAggATCATTgC (SEC ID nº:15)	
	PCR7	JK-943 R3 ref.19	gAgCCAggAggTgggTTTgC (SEC ID n⁰:16)	
ref. 16 Lee, 1997 ref. 17 Hashmi, 2005 ref. 18 El Nemer, 1997 ref. 19 Irshaid, 1998.				

Alelos diana	Sonda AmC12-5'	INTER. DE T _{HIB.}	Especificidad de microesferas/región N.
K/k	TTAACCgAACgCTgAgAC (SEQ ID NO 17)	45-50⁰C	K-088
	TTAACCgAATgCTgAgAC (SEQ ID NO 18)	(45°C)	k-089
	CTATCCCAAAgCTAAggC (SEQ ID NO 19)		NC-086
Kpa/Kpb	ATCACTTCACggCTGTTCCA (SEQ ID NO 20)	52-56°C	Kpa-072
	TCACTTCATggCTgTTCCAg (SEQ ID NO 21)	(54°C)	Kpb-073
	AACTCTACAgggCTCTTCgA (SEQ ID NO 22)		NC-051
Jsa/Jsb	GgCTgCCTCgCCTgTgACAA (SEQ ID NO 23)	52-56°C	Jsa-053
	GgCTgCCCCgCCTgTgACAA (SEQ ID NO 24)	(54°C)	Jsb-055
	GCCAgCCACgCgTgTCACTA (SEQ ID NO 25)		NC-064
Lua/Lub	TCgCCCCCgCCTAgCCTC (SEQ ID NO 26)	43-47°C	Lua-063
	TCgCCCCCACCTAgCCTC (SEQ ID NO 27)	(45°C)	Lub-065
	TAgCCTCCTCCAAgACTA (SEQ ID NO 28)		NC-064
S/s	TAggAgAAACgggACAACTT (SEQ ID NO 29)	50-54°C	S-084
	AggAgAAATgggACAACTTg (SEQ ID NO 30)	(54°C)	s-085
	TCggATAAAAgAgACCACTg (SEQ ID NO 31)		NC-087
Coa/Cob	AACCAgACggCggTCCAggA (SEQ ID NO 32)	62-66°C	Coa-074
	CAACCAgACggTggTCCAgg (SEQ ID NO 33)	(64°C)	Cob-078
	AgCCACACTggggACCTggA (SEQ ID NO 34)		NC-080
Fya/Fyb	GAgACTATggTgCCAACCTg (SEQ ID NO 35)	52-56°C	Fya-066
	TggAgACTATgATgCCAACC (SEQ ID NO 36)	(54°C)	Fyb-067
	GAggCTATCCTgACAAgCTT (SEQ ID NO 37)		NC-069
Jka/Jkb	AgTAgATgTCCTCAAATg (SEQ ID NO 38)	37º-40ºC	Jka-064
	AgTAgATgTTCTCAAATg (SEQ ID NO 39)	(37°C)	Jkb-076
	CgTggATTTCTTCAgAgg (SEQ ID NO 40)		NC-073

Los sistemas eritrocitarios y los alelos relativos que codifican para antígenos comunes, poco comunes y de alta incidencia, analizados en el contexto de la presente invención, se indican en la tabla 1.

- 5 Se aplicó entonces la tecnología Xmap de Luminex utilizando una matriz de microesferas en suspensión para determinar los polimorfismos relacionados con antígenos eritrocitarios con el fin de aplicar, en este campo de investigación, las potencialidades de un procedimiento versátil que proporciona un instrumento rápido, preciso y eficaz especialmente para la gestión de examen en masa. Este procedimiento se aprovecha el proceso de hibridación entre sondas de captura oligonucleotídicas sintéticas acopladas a microesferas fluorescentes y el ADN diana amplificado por PCR, utilizando cebadores específicos que permiten la ampliación del locus genómico que contiene el polimorfismo de
- nucleótidos de interés.

El procedimiento según la presente invención se estableció y sometió a prueba con muestras de ADN de fenotipo y/o genotipo conocido (homocigotas o heterocigotas para los antígenos eritrocitarios de interés); la tipificación de los antígenos de baja incidencia (tales como Kpa, Jsa, Lua y Cob) llevada a cabo con técnicas de aglutinación serológicas y/o técnicas moleculares, tales como PCR-SSP, no se conocía para todas las muestras sometidas a prueba. El

- 15 y/o técnicas moleculares, tales como PCR-SSP, no se conocía para todas las muestras sometidas a prueba. El procedimiento es robusto en su capacidad de identificación con precisión, en un nivel genómico, del polimorfismo para los sistemas eritrocitarios sometidos a prueba y es tolerante con respecto a la cantidad, calidad y fuente del material que va a tipificarse. Las tablas 3-10 indican los valores de las razones alélicas para cada sistema estudiado de todas las muestras sometidas a prueba.
- 20 Tras la extracción del ADN, no es necesario determinar la concentración de ADN en el espectrofotómetro, reduciéndose así considerablemente el tiempo del operario.

A diferencia de otros procedimientos con micromatrices aplicados a la tipificación de sistemas plaquetarios o eritrocitarios, el proceso de hibridación específica tiene lugar en suspensión.

- A partir de un estudio de la bibliografía reciente, se ha revelado que el procedimiento específico en cuestión se aplica en diversos campos de investigación tales como genotipificación en el campo de la microbiología y virología (ref. 20 Deregt D. *et al.* 2006; ref. 21 Schmitt *et al.*, 2006; ref. 22 Diaz M. *et al.*, 2005). Con respecto al formato de micromatrices que utiliza un soporte sólido, la ventaja de la tecnología de matrices en suspensión se refiere a la rapidez de la adquisición de datos, la buena sensibilidad y especificidad y la posibilidad de multiplexación.
- Un objeto de la presente descripción se refiere por tanto a conjuntos de sondas oligonucleotídicas modificadas con amino en el extremo 5', caracterizadas porque presentan una longitud de secuencia comprendida entre 18 y 20 nucleótidos y que contienen el SNP específico para cada uno de los alelos diana que pertenecen al locus genómico X, seleccionados de entre K/k, Kpa/Kpb, Jsa/Jsb, Lua/Lub, S/s, Coa/Cob, Fya/Fyb y Jka/Jkb en o en la proximidad al

centro de dicha sonda, que pueden hibridar específicamente con cada uno de dichos alelos; estando caracterizadas dichas sondas porque están acopladas a una micropartícula marcada con por lo menos una sustancia fluorescente y porque comprenden o están constituidas por lo menos un conjunto de secuencias oligonucleotídicas indicadas en la tabla siguiente:

Sonda	Conjunto de sondas	Número de conjunto de sondas
k K NC	TTAACCgAACgCTgAgAC (SEC ID nº:17) TTAACCgAATgCTgAgAC (SEC ID nº:18) <i>CTATCCCAAAgCTAAggC</i> (SEC ID nº:19)	1
Kpb Kpa NC	ATCACTTCACggCTgTTCCA (SEC ID nº:20) TCACTTCATggCTgTTCCAg (SEC ID nº:21) AACTCTACAgggCTCTTCgA (SEC ID nº:22)	2
Jsb Jsa NC	ggCTgCCTCgCCTgTgACAA (SEC ID nº:23) ggCTgCCCCgCCTgTgACAA (SEC ID nº:24) gCCAgCCACgCgTgTCACTA (SEC ID nº:25)	3
Lua Lub NC	TCgCCCCCgCCTAgCCTC (SEC ID nº:26) TCgCCCCCACCTAgCCTC (SEC ID nº:27) <i>TAgCCTCCTCCAAgACTA</i> (SEC ID nº:28)	4
s S NC	TAggAgAAACgggACAACTT (SEC ID nº:29) AggAgAAATgggACAACTTg (SEC ID nº:30) <i>TCggATAAAAgAgACCACTg</i> (SEC ID nº:31)	5
Coa Cob NC	AACCAgACggCggTCCAggA (SEC ID nº:32) CAACCAgACggTggTCCAgg (SEC ID nº:33) AgCCACACTggggACCTggA (SEC ID nº:34)	6
Fya Fyb NC	GAgACTATggTgCCAACCTg (SEC ID nº:35) TggAgACTATgATgCCAACC (SEC ID nº:36) gAggCTATCCTgACAAgCTT (SEC ID nº:37)	7
Jka Jkb NC	AGTAGATGTCCTCAAATG (SEC ID nº:38) AGTAGATGTTCTCAAATG (SEC ID nº:39) CGTGGATTTCTTCAGAGG (SEC ID nº:40)	8

5

Dichas sondas están conjugadas preferentemente con una modificación de C12 de ligador de amino en el extremo 5'.

La invención se refiere a la utilización de por lo menos un conjunto de sondas oligonucleotídicas tal como se definen en la tabla anterior, para la identificación y tipificación de por lo menos un SNP del par alélico siguiente X seleccionado de entre K/k, Kpa/Kpb, Jsa/Jsb, Lua/Lub, S/s, Coa/Cob, Fya/Fyb, Jka/Jkb.

10 Según otras formas de realización de la invención, es posible utilizar uno o más de los conjuntos de sondas oligonucleotídicas según la invención en la misma mezcla de hibridación (por ejemplo los conjuntos de sondas oligonucleotídicas para los alelos Kpa/Kpb y Jsa/Jsb o todos los conjuntos de sondas juntos).

En la presente forma de realización, la utilización de los conjuntos de sondas oligonucleotídicas se realiza a intervalos de temperatura de hibridación específicos indicados en la tabla siguiente:

Número de conjunto	INTERVALO DE T _{HIBRIDACIÓN}
1	45-50°C, preferentemente 45°C
2	52-56°C, preferentemente 54°C
3	62-56°C, preferentemente 54°C
4	43-47°C, preferentemente 45°C
5	50-54°C, preferentemente 54°C
6	62-66°C, preferentemente 64°C
7	52-56°C, preferentemente 54°C
8	37-40°C, preferentemente 37°C

15

La invención se refiere asimismo a micropartículas marcadas con por lo menos una sustancia fluorescente que presenta grupos carboxílicos en la superficie, caracterizadas porque están acopladas con por lo menos un conjunto de sondas tal como se definió anteriormente.

- Otro objetivo de la presente invención consiste en un procedimiento para la identificación y tipificación de por lo menos un polimorfismo de un solo nucleótido (SNP) del sistema eritrocitario X en individuos heterocigotos y homocigotos, que comprende las siguientes fases:
 - a) extraer ADN de una muestra biológica;

b) amplificar por PCR el locus genómico que comprende el SNP del sistema eritrocitario de interés, por medio de por lo menos un par de cebadores específico para un alelo seleccionado de entre:

Alelos diana	Secuencia del cebador (5'-3')		
K/k	Directo: TTTAgTCCTCACTCC.CATgCTTCC (SEC ID nº:1)		
	Inverso: TATCACACAggTgTCCTCTCTCC (SEC ID nº:2)		
Kpa/Kpb	Directo: TgAggCCAggAgAAAAgCA (SEC ID nº:3)		
	Inverso: TgACCATCTggAAgAgCTTgC (SEC ID nº:4)		
Jsa/Jsb	Directo: AACTTTgCCATgCTCCTgg (SEC ID nº:5)		
	Inverso: gCCCTTgACACTTgCATACCT (SEC ID nº:6)		
Lua/Lub	Directo: CTgAggAgCgCTgggACACCCgg (SEC ID nº:7)		
	Inverso: CCCCgggTgTCgTgCATT (SEC ID nº:8)		
S/s	Directo: AAgACTgACACATTACCTCA (SEC ID nº:9)		
	Inverso: AACATACCTggTACAgTgAA (SEC ID nº:10)		
Coa/Cob	Directo: TATAAATAggCCCAgCCCAg (SEC ID nº:11)		
	Inverso: CCAgCgACACCTTCACgTT (SEO ID NO:12)		
Fya/Fyb	Directo: CTTCCggTgTAACTCTgATgg (SEC ID nº:13)		
	Inverso: CATCCAgCAggTTACAggAgT (SEC ID nº:14)		
Jka/Jkb	Directo: CATgCTgCCATAggATCATTgC (SEC ID nº:15)		
	Inverso: gAgCCAggAggTgggTTTgC (SEC ID nº:16)		

en el que por lo menos un cebador (directo o inverso) está marcado en el extremo 5' con biotina para obtener productos de PCR biotinilados; las sondas oligonucleotídicas son complementarias a la secuencia de ADN amplificada por el cebador biotinilado;

 hibridar los productos de PCR biotinilados obtenidos en la fase b) con por lo menos un conjunto de sondas oligonucleotídicas tal como se describió anteriormente y marcar con estreptavidina-ficoeritrina a la temperatura de hibridación específica para cada sistema tal como se ilustra a continuación:

Sonda	Conjunto de sondas	Intervalo de T _{HIBRIDACIÓN}
k	TTAACCgAACgCTgAgAC (SEC ID nº:17)	
K	TTAACCgAATgCTgAgAC (SEC ID nº:18)	45-50°C
NC	CTATCCCAAAgCTAAggC (SEC ID nº:19)	preferentemente 45°C
Kpb	ATCACTTCACggCTgTTCCA (SEC ID nº:20)	
Кра	TCACTTCATggCTgTTCCAg (SEC ID nº:21)	52-56°C
NC	AACTCTACGgggCTCTTCgA (SEC ID nº:22)	preferentemente 54°C
Jsb	ggCTgCCTCgCCTgTgACAA (SEC ID nº:23)	
Jsa	ggCTgCCCCgCCTgTgACAA (SEC ID nº:24)	52-56°C
NC	gCCAgCCACgCgTgTCACTA (SEC ID nº:25)	preferentemente 54°C
Lua	TCgCCCCCgCCTAgCCTC (SEC ID nº:26)	
Lub	TCgCCCCCACCTAgCCTC (SEC ID nº:27)	43-47°C
NC	TAgCCTCCTCCAAgACTA (SEC ID nº:28)	preferentemente 45°C
S	TAggAgAAACgggACAACTT (SEC ID nº:29)	
S	AggAgAAATgggACAACTTg (SEC ID nº:30)	50-54°C
NC	TCggATAAAAgAgACCACTg (SEC ID nº:31)	preferentemente 54°C
Coa	AACCAgACggCggTCCAggA (SEC ID nº:32)	
Cob	CAACCAgACggTggTCCAgg (SEC ID nº:33)	62-66°C
INC	AgCCACACTggggACCTggA (SEC ID nº:34)	preferentemente 64°C
Fya	GAgACTATggTgCCAACCTg (SEC ID nº:35)	
Fyb	TggAgACTATgATgCCAACC (SEC ID nº:36)	52-56°C
NC	gAggCTATCCTgACAAgCTT (SEC ID nº:37)	preferentemente 54°C
Jka	AgTAgATgTCCTCAAATg (SEC ID nº:38)	
Jkb	AgTAgATgTTCTCAAATg (SEC ID nº:39)	37-40°C
NC	CgTggATTTCTTCAgAgg (SEC ID nº:40)	preferentemente 37°C

10

- d) detectar la fluorescencia con un instrumento basado en citometría de flujo, detectando la fluorescencia emitida por las microesferas específicas utilizando preferentemente un instrumento Luminex 100. La figura 1 representa un ejemplo del software del instrumento tras el análisis de la fluorescencia de las muestras.
- El procedimiento adoptado aprovecha el sistema Xmap[™] de Luminex puesto que utiliza una matriz de microesferas fluorescentes acopladas covalentemente en el laboratorio con las sondas complementarias específicas para el análisis de los polimorfismos de los sistemas eritrocitarios anteriores y el citómetro de flujo Luminex 100 (Luminex Corporation). La amplificación de la fase b) en el caso de polimorfismos de los alelos Kpa/Kpb y Jsa/Jsb del sistema KELL se lleva a cabo preferentemente mediante PCR múltiple.

La descripción se refiere a un kit de diagnóstico para la identificación y tipificación de por lo menos un SNP de los sistemas eritrocitarios, objeto del estudio, para identificar el carácter heterocigoto y homocigoto de las muestras, que comprende los componentes siguientes:

5

 a) uno o más pares de cebadores para la amplificación por PCR del locus genómico que comprende el SNP del par X seleccionado de entre K/k, Kpa/Kpb, Jsa/Jsb, Lua/Lub, S/s, Coa/Cob, Fya/Fyb, Jka/Jkb, seleccionándose dicho par de cebadores de:

Secuencia del cebador (5'-3')
Directo: TTTAgTCCTCACTCCCATgCTTCC (SEC ID nº:1)
Inverso: TATCACACAggTgTCCTCTCTCC (SEC ID nº:2)
Directo: TgAggCCAggAgAAAAgCA (SEC ID nº:3)
Inverso: TgACCATCTggAAgAgCTTgC (SEC ID nº:4)
Directo: AACTTTgCCATgCTCCTgg (SEC ID nº:5)
Inverso: gCCCTTgACACTTgCATACCT (SEC ID nº:6)
Directo: CTgAggAgCgCTgggACACCCgg (SEC ID nº:7)
Inverso: CCCCgggTgTCgTgCATT (SEC ID nº:8)
Directo: AAgACTgACACATTACCTCA (SEC ID nº:9)
Inverso: AACATACCTggTACAgTgAA (SEC ID nº:10)
Directo: TATAAATAggCCCAgCCCAg (SEC ID nº:11)
Inverso: CCAgCgACACCTTCACgTT (SEC ID nº:12)
Directo: CTTCCggTgTAACTCTgATgg (SEC ID nº:13)
Inverso: CATCCAgCAGGTTACAggAgT (SEC ID nº:14)
Directo: CATgCTgCCATAggATCATTgC (SEC ID nº:15)
Inverso: gAgCCAggAggTgggTTTgC (SEC ID nº:16)

- b) al menos un conjunto de sondas oligonucleotídicas tal como se definió anteriormente, pudiendo hibridar dichas sondas con dicho SNP.
- 10 Preferentemente, el conjunto de cebadores tal como se definió anteriormente utilizado en las reacciones de PCR múltiple según la presente descripción son:
 - K5F/K6R, SsF/SsR, Duffy-F2/Duffy-R3 y JK-781-F3/JK-943-R3;
 - KpF/KpR, JsF/JsR, Lu91mF/Lu92R y CoF3/CoR3.

La presente invención se describirá a continuación a título ilustrativo y no limitativo según sus formas de realización preferidas, haciendo referencia particular a las tablas y la figura adjunta en la que:

la figura 1 representa el análisis del sistema Colton en el que se analiza la fluorescencia de las tres microesferas de interés (microesferas 74, 78, 80); se muestran los códigos de identificación de las muestras (columna "muestra"); el valor obtenido para cada microesfera es el valor de fluorescencia emitida a partir de la microesfera acoplada a su vez con las sondas relativas según la invención; la columna "acontecimientos" se refiere al número de microesferas totales de modo que se analizan por lo menos 100 acontecimientos (microesferas) para cada clasificación de microesferas.

<u>EJEMPLO:</u> Tipificación genómica del sistema eritrocitario X por medio del sistema de micromatrices en suspensión que utiliza sondas oligonucleotídicas complementarias al SNP específico acopladas a una matriz de microesferas marcadas con fluorescencia.

25 MATERIALES Y PROCEDIMIENTOS

<u>Muestras</u>

20

30

Se recogieron 7 ml de sangre periférica de la muestra que iba a analizarse en tubos de ensayo que contenían la disolución de EDTA como anticoagulante. Se conservaron las muestras a -20°C hasta el momento de la prueba. Se utilizaron alícuotas de 200 µl de sangre completa para la extracción del ADN con un kit comercial (QIAamp, Qiagen, Mississauga, Ontario, Canadá), según las instrucciones del productor.

Las muestras sometidas a prueba se indican en las tablas relacionadas (tablas 3-10).

Reactivos

Se adquirieron las microesferas COOH xMAP Multi-Analyte de Luminex Corporation (microesferas carboxiladas, L100-C1XX-O1-Austin, TX, EE.UU.).

35 Las microesferas (5,6 µm de diámetro) presentan grupos de superficie funcionales carboxílicos para la unión covalente

con diferentes analitos que, en el contexto de la presente invención, son sondas oligodesoxirribonucleotídicas modificadas con amino (AmC12) en el extremo 5'. El productor clasificó las microesferas de poliestireno (comercializadas) por medio de citometría de flujo teniendo en cuenta el perfil de emisión en la longitud de onda del rojo/infrarrojo de cada clasificación de microesferas.

5 Resultan disponibles 100 microesferas puesto que cada región específica incorpora dos fluoróforos en una razón de intensidad precisa entre sí que emiten a diferentes longitudes de onda (rojo e infrarrojo), lo que permite su distinción. De hecho, cada clasificación de microesferas distinta presenta características espectrales únicas y su propia distribución de intensidad de fluorescencia que puede analizarse mediante el instrumento de análisis. Se utilizaron diversas regiones en este estudio: véase la tabla 2. Todas las regiones diferentes de microesferas numeradas desde 1 hasta 100 proceden del mismo material de partida y difieren sólo en cuanto a las cantidades de colorantes rojos/infrarrojos.

Se obtuvieron ácido 2-N-morfolinoetanosulfónico (MES), clorhidrato de 1-etil-3-(3-dimetilaminopropil)carbodiimida (EDC), SAPE (100X disolución madre de estreptavidina-ficoeritrina 0,5 mg/ml) de Sigma, Pierce y One Lambda, Inc. respectivamente. Los siguientes tampones de One Lambda Inc, tampón de lavado LABType y tampón con SAPE LABType, se utilizaron respectivamente para la etapa de lavado tras la fase de hibridación y para diluir la disolución madre de SAPE.

Diseño de las sondas

15

20

Todos los oligonucleótidos utilizados para el acoplamiento covalente con las microesferas se modificaron en el extremo 5' durante la síntesis, por medio del modificador de amino (AmC12). El polimorfismo de los diversos sistemas estudiados en el diseño de las sondas se localizó preferentemente en o en la proximidad al centro de la sonda (posición de polimorfismo específica - tabla 2).

La longitud de la sonda está comprendida entre 18 y 20 nucleótidos y se seleccionan complementarios a la secuencia amplificada por el cebador biotinilado, basándose en las secuencias genómicas depositadas.

- Se utiliza un conjunto de sondas para cada sistema que va a analizarse, que comprende: dos sondas específicas para los alelos del sistema objeto del estudio; una sonda no específica utilizada como control negativo (NC), puesto que se ha diseñado específicamente cambiando, con respecto a la secuencia de la sonda específica, seis nucleótidos de modo que no presenta la posibilidad de aparearse con el ADN diana. Esta sonda se utiliza sólo para evaluar la señal de fluorescencia de fondo, controlar que todas las etapas de lavado se han llevado a cabo correctamente y confirmar indirectamente la señal positiva o negativa de las sondas específicas:
- 30 Sonda Xa y sonda Xb: de desde 18 hasta 20 nucleótidos con modificación por AmC12 en el extremo 5': éstas son las sondas específicas para el polimorfismo implicado; el polimorfismo de los diversos sistemas estudiados se localizaba preferentemente en o en la proximidad al centro de la sonda (posición de polimorfismo específica tabla 2).
- Sonda de control negativo (NC): de desde 18 hasta 20 nt con modificación por AmC12 en el extremo 5' que difiere de la sonda específica de alelo en modificaciones de seis nucleótidos de modo que se obtiene una sonda que no puede hibridar con el polimorfismo específico (ref. 13 Dunbar *et al.*, 2000).

Surgen diversos problemas durante la identificación de estas sondas, que no todas las combinaciones de temperatura de hibridación/producto de PCR/longitud de sonda y posiciones de polimorfismos pudieron superar.

Basándose en el polimorfismo específico de los alelos K/k, Kpa/Kpb, Jsa/Jsb del sistema Kell, cada uno caracterizado por un cambio de un único nucleótido y por la secuencia genómica relativa depositada, en experimentos preliminares, fue posible identificar las sondas complementarias de 18 nt con el polimorfismo específico en una posición central y acoplarlas a las microesferas fluorescentes desarrolladas (L100-CDEV1-01 (Luminex)). La temperatura de hibridación utilizada para los experimentos prelimitares fue de 45°C.

Se obtuvieron los siguientes resultados:

- 45 K/ k: las sondas de 18 nt, el polimorfismo central y el producto de PCR obtenido a partir de un par de cebadores descritos en la bibliografía (Lee, 1997) proporcionaron resultados con buena especificidad en la tipificación de las muestras sometidas a prueba con tipificación serológica conocida, efectuada a una temperatura de 45°C.
- 50 Kpa/ Kpb: las sondas de 18 nt, el polimorfismo central y el producto de PCR obtenido a partir de un par de cebadores descritos en la bibliografía (ref. 16 Lee, 1997) no proporcionaron señal de hibridación a una temperatura de 45°C.

Se efectuaron entonces experimentos de hibridación adicionales variando sólo la temperatura de hibridación (entre 50°C y 54°C) y manteniendo las mismas sondas y el mismo producto de PCR. Incluso la temperatura de 37°C no permitió distinguir los alelos específicos.

En este punto, se modificó el producto de PCR diseñando, con los programas disponibles (Primer Express, Applied Biosystems; OligoAnalyzer 3.0, Integrated DNA Technologies), nuevos pares de cebadores para acortar el producto amplificado final, favoreciendo así la fase de hibridación (ref. 14 Dunbar *et al.*, 2005). Se utilizaron sondas de 20 nt con la posición del polimorfismo ajustada, es decir, ya no ubicada sólo en el centro de la secuencia de la sonda.

5 Los resultados muestran una señal específica que puede obtenerse cambiando tanto el producto de PCR como la longitud de las sondas a una cierta temperatura (54ºC).

Una vez que se había encontrado la combinación adecuada para obtener una alta especificidad, se acoplaron las sondas con las microesferas xMAP[®] Multi-Analyte microesferas (L100-C1XX01 COOH). Sistema Duffy (Fya/Fyb) y sistema Colton (Coa/Cob): las sondas de 20 nt, el polimorfismo no sólo en una posición central y el producto de PCR obtenido a partir de un par de cebadores diseñados directamente con programas informatizados no proporcionaron buenos resultados en cuanto a la especificidad en la fase de hibridación llevada a cabo a temperaturas comprendidas entre 45°C y 54°C.

En este caso, se amplificó el producto de PCR utilizando los pares de cebadores según la invención, es decir, se diseñaron diferentes cebadores.

15 Con el fin de distinguir el alelo Coa, se utilizaron dos sondas de 20 nt con el polimorfismo de interés situado en una posición diferente. Tras diversas pruebas a diferentes temperaturas, se obtuvieron resultados específicos con la secuencia indicada en la tabla 2.

Sistema MNS (S/s): del par de cebadores para la amplificación, sólo la secuencia específica del cebador directo (SsF) se obtuvo de la bibliografía (ref. 17 Hashmi *et al.*, 2005). El cebador inverso se diseñó *ex novo* con la ayuda de programas informatizados, tal como se describió anteriormente. Se obtuvieron sondas de 20 nt, con el polimorfismo en el centro de las sondas específicas; además, para el alelo s, también se sometieron a prueba sondas de 18 nt, 19 nt y 21 nt a diversas temperaturas.

Se obtuvo una señal distintiva específica en la fase de hibridación con la sonda de 20 nt a una temperatura de 54ºC.

Sistema Lutheran (Lua/Lub): se utilizó sólo la secuencia del cebador inverso descrita en la bibliografía para la fase de amplificación específica (Elnemer *et al.*, 1997). El cebador directo se decidió *ex novo*. Se utilizaron sondas de 18 nt y 20 nt con el polimorfismo en el centro.

Se obtuvo una señal específica en la fase de hibridación a una temperatura de 45°C con sondas de 18 nt.

Con el fin de obtener una hibridación específica a una temperatura de 54ºC, también se intentó utilizar sondas de 20 nt pero sin ningún resultado.

30 Acoplamiento de las sondas oligonucleotídicas con las microesferas marcadas con fluorescencia

Las diversas sondas oligonucleotídicas modificadas en el extremo 5' se conjugaron, en reacciones separadas, con diferentes clasificaciones de microesferas carboxiladas, según el protocolo de acoplamiento sugerido por Luminex Corporation (Oligonucleotide Coupling Protocol).

Se microcentrifugó una alícuota de cada región específica que contenía 5x10⁶ microesferas a 10.000 rpm durante 2 minutos, se eliminó el sobrenadante y se resuspendió el sedimento en 50 µl de tampón MES 0,1 M, a pH 4,5. Entonces se añadieron a la mezcla 0,2 nanomoles de sondas oligonucleotídicas modificadas con amino.

Entonces se añadió una disolución acuosa de 1-metil-3-(3-dimetilaminopropil-carbodiimida HCI (EDC; 10 mg/ml) a la mezcla de microesferas/oligonucleótidos y se incubó la mezcla resultante a temperatura ambiente durante 30 minutos en la oscuridad. Se repitió una vez más la adición de EDC y la incubación. Tras una incubación total de 1 hora, se lavaron las microesferas con 1 ml de Tween-20 al 0,02%. Se eliminó la disolución de lavado por centrifugación, se repitió la etapa de lavado con 1 ml de SDS al 0,1% y se resuspendió la mezcla final en 100 µl de TE (tampón de elución-QIAGEN), a pH 8 y se conservó en la oscuridad a 4°C. Antes de su utilización, las microesferas se llevaron hasta temperatura ambiente durante 5 minutos. Las microesferas acopladas, así obtenidas, presentan una concentración teórica esperada de 50.000 microesferas/µl.

45 <u>Amplificación del ADN diana</u>

40

50

10

En la tabla 1 se describen los cebadores utilizados para la amplificación de todos los sistemas en cuestión. Los cebadores se utilizaron para la amplificación del locus específico en examen.

Se sintetizó por lo menos un cebador de cada par de cebadores con modificación con Biotina TEG en el extremo 5', para marcar la hebra diana del amplicón y detectar la hibridación de la sonda específica con el ADN diana, según las indicaciones de Luminex Corporation (síntesis y purificación y modificación de cebadores y sondas mediante Primm).

Se llevó a cabo la PCR con 0,5 µM de cebador, 2-0,5 µl de ADN genómico (25-100 ng), 0,2 mM de dNTP, 1 mM de MgCl₂ (a partir de 25 mM de Applied Biosystem), 1X tampón de PCR (a partir de 10X de Applied Biosystem) y 0,5 U de Taq (GoTaq Promega). El volumen de reacción final es igual a 20 µl.

Se utilizó un termociclador Mastercycler epgradient S (Eppendorf) para los ciclos térmicos utilizando los parámetros siguientes: 2 minutos de desnaturalización de ADN inicial a 94°C, seguido por 35 ciclos a 94°C durante 20 segundos, 60°C durante 20 segundos, 72°C durante 30 segundos, con una fase de elongación final a 72°C durante 5 minutos. Los productos de amplificación obtenidos pueden visualizarse mediante electroforesis en gel de agarosa al 2%.

5 <u>Reacciones de PCR múltiple</u>

Se establecieron 2 reacciones de PCR múltiple, con el fin de minimizar la laboriosidad y el tiempo de manipulación. Las PCR se dividieron en dos reacciones múltiples separadas: PCR (I) y PCR (II) (véase la tabla a continuación) partiendo de la base de la frecuencia de utilización en el laboratorio y, por tanto, de la utilidad de las reacciones, es decir PCR (I) amplifica los sistemas para los que se someten a prueba las muestras de manera rutinaria; PCR (II) amplifica los sistemas que se someten a prueba con menos frecuencia.

10 sistemas que se someten a prueba con menos frecuencia.

Ilelos diana K/k PCR (I) Kpa/Kpb PCR (II) Jsa/Jsb PCR (II) Lua/Lub PCR (II) S/s PCR (I)	Secuencia del cebador (5'-3') Directo: TTTAgTCCTCACTCCCATgCTTCC Inverso: TATCACACAggTgTCCTCTCTTCC Directo: TgAggCCAggAgAAAAgCA Inverso: TgACCATCTggAAgAgCTTgC Directo: AACTTTgCCATgCTCCTgg Inverso: gCCCTTgACACTTgCATACCT Directo: CTgAggAgCgCTgggACACCCgg Inverso: CCCCgggTgTCgTgCATT Directo: AAgACTgACACATTACCTCA Inverso: AACATACCTggTACAgTgAA
Jsa/Jsb	Directo: AACTTTgCCATgCTCCTgg
PCR (II)	Inverso: gCCCTTgACACTTgCATACCT
Lua/Lub	Directo: CTgAggAgCgCTgggACACCCgg
PCR (II)	Inverso: CCCCgggTgTCgTgCATT
S/s	Directo: AAgACTgACACATTACCTCA
PCR (I)	Inverso: AACATACCTggTACAgTgAA
Coa/Cob	Directo: TATAAATAggCCCAgCCCAg
PCR (II)	Inverso: CCAgCgACACCTTCACgTT
Fya/Fyb	Directo: CTTCCggTgTAACTCTgATgg
PCR (I)	Inverso: CATCCAgCAggTTACAggAgT
Jka/Jkb	Directo: CATgCTgCCATAggATCATTgC
PCR (I)	Inverso: gAgCCAggAggTgggTTTgC
. ,	

La PCR se lleva a cabo con 0,3 µM de cada cebador, 4 µL de ADN genómico (100-400 ng), 0,2 mM de dNTP, 1,5 mM de MgCl₂ (a partir de 25 mM de Applied Biosystem), 1,5 X tampón de PCR (a partir de 10X de Applied Biosystem) y 4 U de Taq (GoTaq Promega). El volumen de reacción final es igual a 50 µL. Los parámetros de la PCR siguen siendo los mismos que para las reacciones de PCR individuales.

Hibridación

15

Tras la amplificación del ADN, se transfirieron 4 µl de cada reacción de amplificación a microplacas de 96 pocillos y se diluyeron con 13 µl de tampón TE. Se sellaron entonces con película adhesiva y se calentaron hasta la desnaturalización a 99°C durante 10 minutos con la utilización de un termociclador precalentado.

- 20 La hibridación de los productos de PCR con las tres sondas para cada sistema objeto del estudio (dos sondas específicas y un control negativo) se efectúa diluyendo las sondas individuales, en el tampón de hibridación suministrado por One Lambda, Inc. (tampón de hibridación LABType), a una concentración final de 150 microesferas por microlitro. Las microesferas acopladas, tal como se describió anteriormente, presentan una recuperación teórica de 50.000 microesferas por microlitro.
- 25 Tras la desnaturalización de los productos de PCR, se añadieron a cada muestra 33 µl de microesferas diluidas en disolución de hibridación.

Se mezclaron las muestras y se transfirió rápidamente la microplaca al termociclador precalentado hasta la temperatura de hibridación óptima específica para cada sistema tal como se indica en la tabla 2.

La hibridación se lleva a cabo durante 15 minutos e inmediatamente después se añaden 100 µl de tampón de lavado 30 (tampón de lavado LABType - One lambda Inc.).

Se llevaron a cabo las etapas de lavado a temperatura ambiente mediante centrifugación (2.800 rpm durante 5 minutos) con eliminación del sobrenadante mediante inversión manual de la placa. Se lavan las muestras un total de tres veces.

Se incuban a continuación las muestras durante 5 minutos, a la misma temperatura de hibridación, con 50 μl de una disolución recién preparada de IX SAPE (0,5 mg/l de estreptavidina-R-ficoeritrina) en un tampón de dilución suministrado por One Lambda Inc. (tampón con SAPE LABType).

Al final de la incubación, se añadieron rápidamente 100 µl de tampón de lavado LABType a cada pocillo (One Lambda, Inc). Volvieron a sedimentarse las microesferas mediante centrifugación y se retiró el sobrenadante mediante inversión. Entonces se resuspendió cada muestra en 80 µl de tampón Sheath Fluid suministrado por Luminex. La placa estaba

preparada para analizarse en el instrumento basado en citómetro de flujo.

Si no es posible analizar las muestras inmediatamente, puede conservarse la placa de análisis a +4°C en la oscuridad, hasta un máximo de 24 horas.

Adquisición y análisis de los datos

5 Se analizaron las muestras utilizando un dispositivo LAB Scan™100 (Luminex Corporation, Austin, TX).

El Instrumento está provisto de dos fuentes de láser de las que una es un láser de diodo rojo a 635 nm que excita los fluorocromos rojos e infrarrojos y la otra es un láser a 532 nm que excita el fluorocromo indicador ficoeritrina (PE).

Cada microesfera presenta una dirección espectral única que el instrumento puede identificar.

Para cada adquisición de datos se monitorizan dos parámetros, el recuento y la intensidad de fluorescencia media 10 (MFI).

El recuento para cada microesfera (región específica individual) debe ser de por lo menos 100. La intensidad de fluorescencia media (MFI) representa la fluorescencia de indicador promedio para las esferas contadas, tal como se describió anteriormente.

Determinación de la razón alélica:

15 La intensidad de fluorescencia, generada por el software Luminex representa la MFI de cada microesfera (o sonda acoplada con la microesfera) para cada muestra.

Para cada sistema estudiado, se calculó la razón alélica con el fin de obtener un valor numérico que, cuando se analiza partiendo de la base del valor umbral de referencia, permite distinguir entre muestras homocigotas para cada alelo o muestras heterocigotas, tal como se indica en las tablas 3-10 (ref. 7 Beiboer *et al.* 2005).

20 Con el fin de definir la razón alélica para cada sistema, se sometieron a prueba muestras con una tipificación conocida obtenida con hemaglutinación y/o PCR-SSP.

Se obtiene el valor de la razón para cada sistema a partir de la razón entre la intensidad de fluorescencia media (MFI) de la sonda Xa, que se prevé que es el alelo más frecuente en la populación caucásica, y la suma de MFI de ambos alelos (Xa y Xb) del sistema implicado, tal como se indica en la fórmula siguiente:

25

Los valores de MFI específica de alelo menos el valor de MFI generado por la sonda de control negativo (NC) se utilizan en la fórmula para cada muestra. Partiendo de la base de las muestras sometidas a prueba, fue posible definir una razón alélica para cada sistema. Los datos obtenidos se indican en las tablas 3-10 y en la tabla 11 acumulativa a continuación en la presente memoria.

30 Entonces se procesan los datos de fluorescencia sin procesar registrados por el instrumento. En este caso, en el programa de análisis creado en Excel, se establecieron las fórmulas matemáticas necesarias para obtener automáticamente, para cada sonda específica (alelo Xa y alelo Xb), los valores de fluorescencia menos el valor del control negativo (por ejemplo, MFI de sonda Xa - MFI de sonda NC). Entonces se utiliza este valor de MFI corregido para calcular la razón alélica de cada muestra individual tal como se describió anteriormente. A continuación en la presente memoria se proporciona un ejemplo de forma de hoja de cálculo preparada en Excel para el análisis de los datos.

Hoja	de cálculo:				Fecha:			
	ID	MFI		MFI _{Alelo} -MFI _{NC}		Razón alélica	Genotipificación	
		S	S	NC	S	S	s/(S+s)	
		084	085	087				
1A	144597							
1B	144596							
1C	144595							
1D	144594							
1E	144591							
1F	144590							
1G	144589							
1H	144588							

En la formulación de la tabla, la conclusión automática de la tipificación se basó en las razones alélicas de referencia. La tipificación no puede concluirse automáticamente si la razón alélica obtenida no está dentro de los intervalos de punto de corte establecidos. En este caso, aparece un mensaje de advertencia automático.

40

Los resultados obtenidos para cada muestra también se confirman sólo si la fluorescencia producida por la sonda de control negativo no supera el valor de 100 y si la suma de los valores de fluorescencia de las sondas específicas es superior a cuatro veces el valor del control negativo de la muestra ($MFI_a+MFI_b > 4xMFI_{NC}$). Estas fórmulas también se incluyeron en Excel.

5 El análisis de los datos es fácil, rápido y no requiere software de aplicación complicado.

A continuación se proporciona una lista de las tablas (3-10) de las razones alélicas obtenidas a partir de las muestras individuales sometidas a prueba, mientras que la tabla 11 indica los valores de razón alélica utilizados como intervalo de referencia (punto de corte), obtenidos del promedio de las razones de las muestras individuales más y/o menos dos desviaciones estándar

10 Las razones alélicas de las muestras individuales:

Tabla	a 3
-------	-----

N.º	Razón alélica	Genotipo	
	a/(a+b)		
1	1,000	Coa/Coa	Coa/Coa > 0,941
2	1,000	Coa/Coa	
3	0,995	Coa/Coa	
4	0,992	Coa/Coa	
5	0,990	Coa/Coa	
6	0,989	Coa/Coa	
7	0,984	Coa/Coa	
8	0,984	Coa/Coa	
9	0,984	Coa/Coa	
10	0,984	Coa/Coa	
11	0,984	Coa/Coa	
12	0,980	Coa/Coa	
13	0,980	Coa/Coa	
14	0,979	Coa/Coa	
15	0,978	Coa/Coa	
16	0,976	Coa/Coa	
17	0,976	Coa/Coa	
18	0,976	Coa/Coa	
19	0,975	Coa/Coa	
20	0,973	Coa/Coa	
21	0,973	Coa/Coa	
22	0,972	Coa/Coa	
23	0,971	Coa/Coa	
24	0,971	Coa/Coa	
25	0,970	Coa/Coa	
26	0,970	Coa/Coa	
27	0,969	Coa/Coa	
28	0,968	Coa/Coa	
29	0,968	Coa/Coa	
30	0,967	Coa/Coa	
31	0,967	Coa/Coa	
32	0,966	Coa/Coa	
33	0,966	Coa/Coa	
34	0,966	Coa/Coa	
35	0,965	Coa/Coa	
36	0,965	<u>Coa/Coa</u>	
37	0,965	Coa/Coa	
38	0,964	<u>Coa/Coa</u>	
39	0,964	Coa/Coa	
40	0,963		
41	0,963	Coa/Coa	
42	0,963		
43	0,962		
44	0,962		
45	0,962		
46	0,961		
1 4/	0.961	Coa/Coa	

48	0,960	Coa/Coa	
49	0,960	Coa/Coa	
50	0,959	Coa/Coa	
51	0,958	Coa/Coa	
52	0,958	Coa/Coa	
53	0,958	Coa/Coa	
54	0,958	Coa/Coa	
55	0,958	Coa/Coa	
56	0,956	Coa/Coa	
57	0,954	Coa/Coa	
58	0,954	Coa/Coa	
59	0,950	Coa/Coa	
60	0,948	Coa/Coa	
61	0,946	Coa/Coa	
62	0,944	Coa/Coa	
63	0,923	Coa/Coa	
64	0,747	Coa/Cob	0,652 < Coa/Cob < 0,754
65	0,723	Coa/Cob	
66	0,717	Coa/Cob	
67	0,712	Coa/Cob	
68	0,704	Coa/Cob	
69	0,701	Coa/Cob	
70	0,690	Coa/Cob	
71	0,675	Coa/Cob	
72	0,663	Coa/Cob	
73	0,106	Cob/Cob	Cob/Cob < 0,116
74	0,009	Cob/Cob	
75	0,007	Cob/Cob	
76	0,002	Cob/Cob	
77	0,002	Cob/Cob	

N.º	Razón alélica	Genotipo	
	b/(a+b)		
1	0,996	Fyb/Fyb	Fyb/Fyb > 0,931
2	0,996	Fyb/Fyb	
3	0,996	Fyb/Fyb	
4	0,994	Fyb/Fyb	
5	0,993	Fyb/Fyb	
6	0,992	Fyb/Fyb	
7	0,992	Fyb/Fyb	
8	0,991	Fyb/Fyb	
9	0,990	Fyb/Fyb	
10	0,986	Fyb/Fyb	
11	0,985	Fyb/Fyb	
12	0,984	Fyb/Fyb	
13	0,984	Fyb/Fyb	
14	0,983	Fyb/Fyb	
15	0,981	Fyb/Fyb	
16	0,981	Fyb/Fyb	
17	0,981	Fyb/Fyb	
18	0,980	Fyb/Fyb	
19	0,978	Fyb/Fyb	
20	0,976	Fyb/Fyb	
21	0,975	Fyb/Fyb	
22	0,974	Fyb/Fyb	
23	0,974	Fyb/Fyb	
24	0,974	Fyb/Fyb	
25	0,972	Fyb/Fyb	
26	0,971	Fyb/Fyb	
27	0,971	Fyb/Fyb	
28	0,970	Fyb/Fyb	

29	0,969	Fyb/Fyb	
30	0,968	Fyb/Fyb	
31	0,968	Fyb/Fyb	
32	0,967	Fyb/Fyb	
33	0,966	Fyb/Fyb	
34	0,965	Fyb/Fyb	
35	0,965	Fyb/Fyb	
36	0,965	Fyb/Fyb	
37	0,963	Fyb/Fyb	
38	0,960	Fyb/Fyb	
39	0,959	Fyb/Fyb	
40	0,958	Fyb/Fyb	
41	0,958	Fyb/Fyb	
42	0.956	Fvb/Fvb	
43	0.953	Fvb/Fvb	
44	0.949	Fvb/Fvb	
45	0.948	Fvb/Fvb	
46	0.946	Fvb/Fvb	
47	0.945	Fvb/Fvb	
48	0.944	Fyb/Fyb	
49	0.939	Fyb/Fyb	
50	0.935	Fyb/Fyb	
51	0,930	Fvb/Fvb	
52	0.929	Fyb/Fyb	
53	0.920	Fvb/Fvb	
54	0.888	Eva/Evb	0.752 < Fva/Fvb < 0.902
55	0.888	Eva/Evb	
56	0.871	Eva/Evb	
57	0.868	Eva/Evb	
58	0.862	Eva/Evb	
59	0.862	Eva/Evb	
60	0.860	Fva/Fvb	
61	0.854	Eva/Evb	
62	0.851	Eva/Evb	
63	0.841	Eva/Evb	
64	0.831	Eva/Evb	
65	0.819	Eva/Evb	
66	0.817	Fva/Fvb	
67	0.816	Fva/Fvb	
68	0.812	Eva/Evb	
69	0.808	Fva/Fvb	
70	0.792	Eva/Evb	
71	0.788	Eva/Evb	
72	0.787	Fva/Fvb	
73	0.787	Eva/Evb	
74	0,779	Fya/Fvb	
75	0,772	Fva/Fvb	
76	0,772	Fya/Fvb	
77	0,070	Fva/Fva	Fya/Fva < 0.050
78	0,049	Fva/Fva	
79	0,041	Fva/Fva	
80	0.040	Fva/Fva	
81	0.034	Eva/Eva	
82	0,032	Fva/Fva	
83	0.029	Fva/Fva	
84	0,025	Fva/Fva	
85	0.025	Fva/Fva	
86	0,024	Fva/Fva	
87	0,024	Fva/Fva	
88	0,018	Fya/Fva	
89	0,017	Fva/Fva	
90	0,016	Fya/Fva	
91	0,016	Fva/Fva	
92	0,016	Fya/Fva	
		, <u>,</u> ,	

93	0,016	Fya/Fya	
94	0,015	Fya/Fya	
95	0,014	Fya/Fya	
96	0,013	Fya/Fya	
97	0,012	Fya/Fya	
98	0,010	Fya/Fya	
99	0,009	Fya/Fya	
100	0,007	Fya/Fya	
101	0,007	Fya/Fya	
102	0,006	Fya/Fya	
103	0,006	Fya/Fya	
104	0,002	Fya/Fya	
105	0,002	Fya/Fya	
106	0,000	Fya/Fya	
107	0,000	Fya/Fya	
108	0,000	Fya/Fya	

N.º	Razón alélica	Genotipo	
	a/(a+b)		
1	1,000	Jka/Jka	Jka/Jka > 0,870
2	1,000	Jka/Jka	
3	1,000	Jka/Jka	
4	0,988	Jka/Jka	
5	0,975	Jka/Jka	
6	0,974	Jka/Jka	
7	0,960	Jka/Jka	
8	0,954	Jka/Jka	
9	0,942	Jka/Jka	
10	0,942	Jka/Jka	
11	0,939	Jka/Jka	
12	0,938	Jka/Jka	
13	0,934	Jka/Jka	
14	0,934	Jka/Jka	
15	0,930	Jka/Jka	
16	0,930	Jka/Jka	
17	0,924	Jka/Jka	
18	0,924	Jka/Jka	
19	0,923	Jka/Jka	
20	0,921	Jka/Jka	
21	0,921	Jka/Jka	
22	0,920	Jka/Jka	
23	0,920	Jka/Jka	
24	0,919	Jka/Jka	
25	0,917	Jka/Jka	
26	0,913	Jka/Jka	
27	0,913	Jka/Jka	
28	0,911	Jka/Jka	
29	0,910	Jka/Jka	
30	0,910	Jka/Jka	
31	0,909	Jka/Jka	
32	0,909	Jka/Jka	
33	0,907	Jka/Jka	
34	0,907	Jka/Jka	
35	0,906	Jka/Jka	
36	0,906	Jka/Jka	
37	0,902	Jka/Jka	
38	0,895	Jka/Jka	
39	0,873	Jka/Jka	
40	0,269	Jka/Jkb	0,175 < Jka/Jkb < 0,260
41	0,256	Jka/Jkb	
42	0 243	.lka/.lkb	

43	0,240	Jka/Jkb	
44	0,239	Jka/Jkb	
45	0,233	Jka/Jkb	
46	0,221	Jka/Jkb	
47	0,221	Jka/Jkb	
48	0.218	Jka/Jkb	
49	0,215	Jka/Jkb	
50	0.212	Jka/Jkb	
51	0,212	Jka/Jkb	
52	0.210	Jka/Jkb	
53	0,209	Jka/Jkb	
54	0,206	Jka/Jkb	
55	0,204	Jka/Jkb	
56	0,203	Jka/Jkb	
57	0,203	Jka/Jkb	
58	0,200	Jka/Jkb	
59	0,197	Jka/Jkb	
60	0,193	Jka/Jkb	
61	0,184	Jka/Jkb	
62	0,016	Jkb/Jkb	Jkb/Jkb < 0,016
63	0,014	Jkb/Jkb	
64	0,014	Jkb/Jkb	
65	0,014	Jkb/Jkb	
66	0,013	Jkb/Jkb	
67	0,011	Jkb/Jkb	
68	0,010	Jkb/Jkb	
69	0,009	Jkb/Jkb	
70	0,009	Jkb/Jkb	
71	0,009	Jkb/Jkb	
72	0,009	Jkb/Jkb	
73	0,009	Jkb/Jkb	
74	0,008	Jkb/Jkb	
75	0,008	Jkb/Jkb	
76	0,007	Jkb/Jkb	
77	0,007	Jkb/Jkb	
78	0,004	Jkb/Jkb	
79	0,004	Jkb/Jkb	
80	0,001	Jkb/Jkb	
81	0,001	Jkb/Jkb	
82	0,001	Jkb/Jkb	
83	0,000	Jkb/Jkb	
84	0,000	Jkb/Jkb	
85	0,000	Jkb/Jkb	
86	0,000	Jkb/Jkb	
87	0,000	Jkb/Jkb	
88	0,000	Jkb/Jkb	
89	0,000	Jkb/Jkb	
90	0,000	Jkb/Jkb	
91	0,000	Jkb/Jkb	
92	0,000	Jkb/Jkb	
93	0,000	Jkb/Jkb	
94	0.000	Jkb/Jkb	

N.º	Razón alélica	Genotipo	
	b/(a+b)		
1	1,000	Jsb/Jsb	Jsb/Jsb > 0,831
2	1,000	Jsb/Jsb	
3	1,000	Jsb/Jsb	
4	1,000	Jsb/Jsb	
5	1,000	Jsb/Jsb	
6	1,000	Jsb/Jsb	

7	1,000	Jsb/Jsb	
8	1,000	Jsb/Jsb	
9	1,000	Jsb/Jsb	
10	1,000	Jsb/Jsb	
11	1,000	Jsb/Jsb	
12	0,993	Jsb/Jsb	
13	0,993	Jsb/Jsb	
14	0,991	Jsb/Jsb	
15	0,990	Jsb/Jsb	
16	0,988	Jsb/Jsb	
17	0,987	Jsb/Jsb	
18	0,986	Jsb/Jsb	
19	0,984	Jsb/Jsb	
20	0,983	Jsb/Jsb	
21	0,983	Jsb/Jsb	
22	0,979	Jsb/Jsb	
23	0,979	Jsb/Jsb	
24	0,978	Jsb/Jsb	
25	0,973	Jsb/Jsb	
26	0,973	Jsb/Jsb	
27	0,972	Jsb/Jsb	
28	0,972	Jsb/Jsb	
29	0,971	Jsb/Jsb	
30	0,967	Jsb/Jsb	
31	0,966	Jsb/Jsb	
32	0,964	Jsb/Jsb	
33	0,962	Jsb/Jsb	
34	0,960	Jsb/Jsb	
35	0,955	Jsb/Jsb	
36	0,953	Jsb/Jsb	
37	0,953	Jsb/Jsb	
38	0,949	Jsb/Jsb	
39	0,949	Jsb/Jsb	
40	0,949	Jsb/Jsb	
41	0,948	Jsb/Jsb	
42	0,946	Jsb/Jsb	
43	0,944	Jsb/Jsb	
44	0,940	Jsb/Jsb	
45	0,932	Jsb/Jsb	
46	0,931	JSD/JSD	
47	0,930		
48	0,929		
49	0,929	JSD/JSD	
50	0,923		
51	0,916		
52	0,900		
53	0,900	150/J50 leh/leh	
54	0,033	leh/leh	
56	0.897	leh/leh	
57	0.896	leh/leh	
58	0,030	lsh/lsh	
59	0,004	lsh/lsh	
60	0,893	Jsb/Jsb	
61	0.893	lsh/lsh	
62	0.891	.lsh/.lsh	
63	0.891	Jsb/Jsb	
64	0.887	.lsh/.lsh	
65	0.886	.lsh/.lsh	
66	0.885	Jsb/Jsb	
67	0.879	.lsh/.lsh	
68	0.877	Jsb/Jsb	
69	0.877	.lsh/.lsh	
70	0.875	Jsb/Jsb	
10	3,010	000/000	

7	'1	0,868	Jsb/Jsb	
7	2	0,857	Jsb/Jsb	
7	3	0,853	Jsb/Jsb	
7	4	0,852	Jsb/Jsb	
7	5	0,852	Jsb/Jsb	
7	6	0,845	Jsb/Jsb	
7	7	0,838	Jsb/Jsb	
7	'8	0,835	Jsb/Jsb	
7	'9	0,830	Jsb/Jsb	
8	0	0,828	Jsb/Jsb	
8	51	0,545	Jsa/Jsb	0,509 < Jsa/Jsb < 0,562
8	2	0,526	Jsa/Jsb	

N.º	Razón alélica	Genotipo	
	k/(K+k)	•	
1	0,830	kk	
2	0,828	kk	
3	0,807	kk	
4	0,807	kk	
5	0,792	kk	
6	0,790	kk	
7	0,787	kk	
8	0,783	kk	
9	0,775	kk	
10	0,773	kk	
11	0,772	kk	
12	0,772	kk	
13	0,771	kk	
14	0,770	kk	
15	0,769	kk	
16	0,767	kk	
17	0,764	kk	
18	0,763	kk	
19	0,763	kk	
20	0,759	kk	
21	0,759	kk	
22	0,759	kk	
23	0,757	kk	
24	0,756	kk	
25	0,754	kk	
26	0,754	kk	
27	0,752	kk	
28	0,748	КК	
29	0,748	<u>KK</u>	
30	0,748	КК	
31	0,744	KK	
32	0,743	KK	
33	0,742	KK	
34	0,741	KK KK	
30	0,735	KK K	
30	0,735	KK	
29	0,732		
30	0,731		
40	0,729	kk	
<u> </u>	0.726	kk	
<u>4</u> 2	0.726	kk	
43	0.726	kk	
44	0 724	kk	
45	0.723	kk	
46	0 722	kk	

47	0,721	kk	
48	0,710	kk	
49	0,710	kk	
50	0,710	kk	
51	0,709	kk	
52	0,709	kk	
53	0,708	kk	
54	0,708	kk	
55	0,706	kk	
56	0,704	kk	
57	0,699	kk	
58	0,697	kk	
59	0,697	kk	
60	0,696	kk	
61	0,695	kk	
62	0,695	kk	
63	0,692	kk	
64	0,692	kk	
65	0,691	kk	
66	0,690	kk	
67	0,683	kk	
68	0,681	kk	
69	0,680	kk	
70	0,679	kk	
71	0,673	kk	
72	0,673	kk	
73	0,672	kk	
74	0,669	kk	
75	0,668	kk	
76	0,665	kk	
77	0,664	kk	
78	0,656	kk	
79	0,653	kk	
80	0,549	kk	0,502 < K/k < 0,550
81	0,537	kk	
82	0,535	kk	
83	0,531	kk	
84	0,531	kk	
85	0,527	kk	
86	0,521	kk	
87	0,520	kk	
88	0,518	kk	
89	0,517	kk	
90	0,504	kk	
91	0,025	KK	K/K < 0,036
92	0,022	KK	
93	0,006	KK	
94	0,004	KK	

N.º	Razón alélica	Genotipo	
	b/(b+a)		
1	0,953	Kpb/Kpb	Kpb/Kpb > 0,867
2	0,951	Kpb/Kpb	
3	0,950	Kpb/Kpb	
4	0,947	Kpb/Kpb	
5	0,946	Kpb/Kpb	
6	0,945	Kpb/Kpb	
7	0,943	Kpb/Kpb	
8	0,943	Kpb/Kpb	
9	0,942	Kpb/Kpb	
10	0,942	Kpb/Kpb	

11	0,940	Kpb/Kpb	
12	0,939	Kpb/Kpb	
13	0,937	Kpb/Kpb	
14	0,934	Kpb/Kpb	
15	0,933	Kpb/Kpb	
16	0,932	Kpb/Kpb	
17	0,930	Kpb/Kpb	
18	0,929	Kpb/Kpb	
19	0,928	Kpb/Kpb	
20	0,928	Kpb/Kpb	
21	0,927	Kpb/Kpb	
22	0,926	Kpb/Kpb	
23	0,925	Kpb/Kpb	
24	0,925	Kpb/Kpb	
25	0,924	Kpb/Kpb	
26	0,923	Kpb/Kpb	
27	0,921	Kpb/Kpb	
28	0,921	Kpb/Kpb	
29	0,921	Kpb/Kpb	
30	0,919	Kpb/Kpb	
31	0,918	Kpb/Kpb	
32	0,916	Kpb/Kpb	
33	0,915	Kpb/Kpb	
34	0,915	Kpb/Kpb	
35	0,915	Kpb/Kpb	
36	0,914	Kpb/Kpb	
37	0,912	Kpb/Kpb	
38	0,912	Kpb/Kpb	
39	0,912	Kpb/Kpb	
40	0,911	Kpb/Kpb	
41	0,911	Kpb/Kpb	
42	0,911	Kpb/Kpb	
43	0,909	Kpb/Kpb	
44	0,909	Kpb/Kpb	
45	0,908	Kpb/Kpb	
46	0,908	Kpb/Kpb	
47	0,908	Kpb/Kpb	
48	0,905	KpD/KpD	
49	0,905	Kpb/Kpb	
50	0,905	Kpb/Kpb	
51	0,900	Kpb/Kpb	
52	0,097	Kpb/Kpb	
53	0,093	Kpb/Kpb	
54	0,093	Kpb/Kpb	
55	0,030	Kpb/Kpb	
57	0.889	Knh/Knh	
58	0.888	Kpb/Kpb	
59	0.888	Knb/Knb	
60	0.888	Kpb/Kpb	
61	0.86	Kpb/Kpb	
62	0.882	Kpb/Kpb	
63	0.882	Kpb/Kpb	
64	0.882	Kpb/Kpb	
65	0,880	Kpb/Kpb	
66	0,872	Kpb/Kpb	
67	0,862	Kpb/Kpb	
68	0,862	Kpb/Kpb	
69	0,853	Kpb/Kpb	
70	0,357	Kpa/Kpb	0,342 < Kpa/Kpb < 0,364
71	0,349	Kpa/Kpb	· · ·
72	0,025	Kpa/Kpa	Kpa/Kpa < 0,031
73	0,005	Kpa/Kpa	
74	0,004	Kpa/Kpa	

75

0,003

Kpa/Kpa

NI 0	Pazón alólica	Conotino	
IN. ²		Genotipo	
1	5/(5+5)		0/0 - 0.860
1	1,000	SS	\$/\$ > 0,860
2	0,992	SS	
3	0,990	SS	
4	0,989	SS	
5	0,981	SS	
6	0,979	SS	
/	0,979	SS	
8	0,978	SS	
9	0,977	SS	
10	0,976	SS	
11	0,972	SS	
12	0,967	SS	
13	0,964	SS	
14	0,961	SS	
15	0,958	SS	
16	0,956	SS	
17	0,955	SS	
18	0,954	SS	
19	0,951	SS	
20	0,948	SS	
21	0,947	SS	
22	0,946	SS	
23	0,945	SS	
24	0,944	SS	
25	0,944	SS	
26	0,943	SS	
27	0,942	SS	
28	0,941	SS	
29	0,939	SS	
30	0,938	SS	
31	0,936	SS	
32	0,936	SS	
33	0,932	SS	
34	0,929	SS	
35	0,928	SS	
36	0,925	SS	
37	0,922	SS	
38	0,920	SS	
39	0,918	SS	
40	0,909	SS	
41	0,909	55	
42	0,906	55	
43	0,095	55	
44	0,007	55	
40	0,000	55	
40	0,003	55	
47	0,879	55	
/0	0.878		
49 50	0.878		
50	0.880		
52	0.073		0.014 < S/s < 0.059
53	0.052	 	0,011 < 0/0 < 0,000
54	0.050		
55	0.047	 	
56	0.045		
57	0.038	ss	

58	0,036	SS	
59	0,035	SS	
60	0,034	SS	
61	0,034	SS	
62	0,034	SS	
63	0,033	SS	
64	0,033	SS	
65	0,032	SS	
66	0,032	SS	
67	0,032	SS	
68	0,032	SS	
69	0,032	SS	
70	0,031	SS	
71	0,030	SS	
72	0,030	SS	
73	0,029	SS	
74	0,016	SS	
75	0,009	SS	S/S < 0,009
76	0,008	SS	
77	0,007	SS	
78	0,007	SS	
79	0,006	SS	
80	0,006	SS	
81	0,005	SS	
82	0,005	SS	
83	0,004	SS	
84	0,004	SS	
85	0,004	SS	
86	0,004	SS	
87	0,003	SS	
88	0,003	SS	
89	0,002	SS	
90	0,002	SS	
91	0,002	SS	
92	0,002	SS	
93	0,002	SS	
94	0,001	SS	
95	0,001	SS	
96	0,001	SS	
97	0,000	SS	

N.º	Razón alélica	Genotipo	
	b/(a+b)		
1	1,000	Lub/Lub	Lub/Lub < 0,880
2	1,000	Lub/Lub	
3	1,000	Lub/Lub	
4	1,000	Lub/Lub	
5	1,000	Lub/Lub	
6	1,000	Lub/Lub	
7	1,000	Lub/Lub	
8	0,998	Lub/Lub	
9	0,986	Lub/Lub	
10	0,985	Lub/Lub	
11	0,980	Lub/Lub	
12	0,970	Lub/Lub	
13	0,969	Lub/Lub	
14	0,958	Lub/Lub	
15	0,957	Lub/Lub	
16	0,956	Lub/Lub	
17	0,956	Lub/Lub	
18	0,950	Lub/Lub	

19	0,949	Lub/Lub	
20	0,947	Lub/Lub	
21	0,947	Lub/Lub	
22	0,947	Lub/Lub	
23	0,947	Lub/Lub	
24	0,946	Lub/Lub	
25	0,945	Lub/Lub	
26	0,944	Lub/Lub	
27	0,942	Lub/Lub	
28	0,941	Lub/Lub	
29	0,940	Lub/Lub	
30	0,940	Lub/Lub	
31	0,939	Lub/Lub	
32	0,938	Lub/Lub	
33	0,936	Lub/Lub	
34	0,933	Lub/Lub	
35	0,932	Lub/Lub	
36	0,930	Lub/Lub	
37	0,928	Lub/Lub	
38	0,927	Lub/Lub	
39	0,925	Lub/Lub	
40	0,922	Lub/Lub	
41	0,912	Lub/Lub	
42	0,910	Lub/Lub	
43	0,907	Lub/Lub	
44	0,907	Lub/Lub	
45	0,901	Lub/Lub	
46	0,901	Lub/Lub	
47	0,899	Lub/Lub	
48	0,898	Lub/Lub	
49	0,892	Lub/Lub	
50	0,872	Lub/Lub	
51	0,651	Lua/Lub	0,540 < Lua/Lub < 0,695
52	0,627	Lua/Lub	
53	0,575	Lua/Lub	
54	0,301	Lua/Lua	Lua/Lua < 0,307
55	0,291	Lua/Lua	
56	0,289	Lua/Lua	

Sistema	Razón	alélica para la determinación del genoti	00*
MNS	s/s > 0,860	0,059 > S/s > 0,014	S/S < 0,009
Duffy	Fy [⊳] / Fy [⊳] > 0,931	0,902 > Fy ^a / Fy ^b > 0,752	Fy ^a / Fy ^a > 0,050
Kell	Кр ^ь /Кр ^ь > 0,867	0,364 > Kp ^a /Kp ^b > 0,342	Kp ^a /Kp ^a < 0,031
	Js [⊳] /Js [⊳] > 0,831 0,562	0,562 > Js ^ª /Js [▷] > 0,509	Js ^a /Js ^a < N D **
	k/k > 0,647	0,550 > K/k > 0,502	K/K < 0,036
Lu	Lu ^b /Lu ^b > 0,880	0,695 > Lu ^ª /Lu [▷] > 0,540	Lu ^a /Lu ^a < 0,307
Co	Co ^a /Co ^a > 0,941	0,754 > Co ^a /Co ^b > 0,652	Co ^b /Co ^b < 0,116
Jk	Jk ^a /Jk ^a > 0,870	0,260 > Jk ^ª /Jk [▷] > 0,175	Jk [⊳] /Jk [⊳] < 0,016
* intervalos	de referencia obtenidos a	partir del promedio de las razones a	lélicas de las muestras
individuales	más y/o menos dos desviacior	nes estándar	

** muestras de Jsa/Jsa no disponibles

BIBLIOGRAFÍA

- 1) Castilho L. et al. Transfusion 2002; 42(2):232-240
- 2) Montalvo L. et al. Transfusion 2004; 44(5):694-702
- 3) Reid ME. Vox Sanguinis 2002; 83(1): 91-93
- 4) Ferri G. et al. Journal of Forensic Sciences 2006; 51:357-360

	5) Denomme G. <i>et al</i> . Transfusion 2005; 45: 660-666
	6) Petrik J. Vox Sanguinis 2001; 80: 1-11
	7) Beiboer S. <i>et al</i> . Transfusion 2005; 45:667-679
	8) Kellar KL. et al., J. Immunol. Methods 2003; 279(1-2): 277-285
5	9) Kettman JR <i>et al</i> . Cytometry 1998; 33(2): 234-243
	10) Fulton RF <i>et al.</i> Clinical Chemistry 1997; 43(9): 1749-1756
	11) Earley MC et al. Cytometry 2002; 50(5): 239-242
	12) Colinas RF <i>et al.</i> Clinical Chemistry 2000; 46 (7): 996-998
	13) Dunbar SA <i>et al</i> . Clinical chemistry 2000; 46 1498-1500
10	14) Dunbar SA <i>et al</i> . 2005; Methods Mol Med 114: 147-71
	15) Dunbar SA <i>et al.</i> 2006; Clinica Chimica Acta (363) 71-82
	16) Lee <i>et al</i> . 1997; Vox Sanguinis 73 (1): 1-11
	17) Hashmi <i>et al.</i> 2005; Transfusion 45: 680-688
	18) El Nemer W. <i>et al</i> . 1997; Blood 89 (12): 4608-4616
15	19) Irshaid et al. 1998; British Journal of Haematology 102: 1010-1014
	20) Deregt D. et al. 2006; Journal of virological Methods 136:7-23
	21) Schmitt M. <i>et al.</i> 2006; J. Clin Microbiol (44) 2: 504-512
	22) Diaz M. JCM Agosto de 2005; (43) 3662-3672
20	LISTADO DE SECUENCIAS
20	<110> Fondazione IRCSS Ospedale Maggiore Policlinico Mangiagalli e Regina Elena
25	<120> PROCEDIMIENTO PARA LA TIPIFICACIÓN GENÓMICA DE SISTEMAS ERITROCITARIOS, SONDAS OLIGONUCLEOTÍDICAS Y KITS DE DIAGNÓSTICO RELACIONADOS
20	<130> PCT 93967
30	<150> MI2007A000504 <151> 13-03-2007
00	<160> 40
	<170> PatentIn versión 3.2
35	<210> 1
	<211> 24 <212> ADN
	<213> Artificial
40	<220> <223> Cebador directo K5F
	<400> 1
45	tttagtcctc actcccatgc ttcc 24
	<210> 2 <211> 24 <212> ADN
50	<213> Artificial
	<220>

	<223> Cebador inverso K6R	
	<400> 2	
5	tatcacacag gtgtcctctc ttcc 24	
10	<210> 3 <211> 19 <212> ADN <213> Artificial	
	<220> <223> Cebador directo KpF	
15	<400> 3	
	tgaggccagg agaaaagca 19	
20	<210> 4 <211> 21 <212> ADN <213> Artificial	
25	<220> <223> Cebador inverso KpR	
	<400> 4	
30	tgaccatctg gaagagcttg c 21	
25	<210> 5 <211> 19 <212> ADN <213> Artificial	
30	<220> <223> Cebador directo JSF	
40	<400> 5	
40	aactttgcca tgctcctgg	19
45	<210> 6 <211> 20 <212> ADN <213> Artificial	
50	<220> <223> Cebador inverso JSR	
00	<400> 6	
	gccttgacac ttgcatacct	20
55	<210> 7 <211> 23 <212> ADN <213> Artificial	
60	<220> <223> Cebador directo LU91mF	
	<400> 7	
65	ctgaggagcg ctgggacacc cgg23	
	<210> 8	

	<211> 18 <212> ADN <213> Artificial	
5	<220> <223> Cebador inverso Lu92R	
	<400> 8	
10	ccccgggtgt cgtgcatt	18
15	<210> 9 <211> 20 <212> ADN <213> Artificial	
	<220> <223> Cebador directo SsF	
20	<400> 9	
	aagactgaca cattacctca	20
25	<210> 10 <211> 20 <212> ADN <213> Artificial	
30	<220> <223> Cebador inverso SsR	
	<400> 10	
35	aacatacctg gtacagtgaa	20
40	<210> 11 <211> 20 <212> ADN <213> Artificial	
	<220> <223> Cebador directo coF3	
45	<400> 11	
10	tataaatagg cccagcccag	20
50	<210> 12 <211> 19 <212> ADN <213> Artificial	
55	<220> <223> Cebador inverso CoR3	
55	<400> 12	
	ccagcgacac cttcacgtt	19
60	<210> 13 <211> 21 <212> ADN <213> Artificial	
65	<220> <223> Cebador directo Duffy-F2	

	<400> 13	
	cttccggtgt aactctgatg g	21
5	<210> 14 <211> 21 <212> ADN <213> Artificial	
10	<220> <223> Cebador inverso Duffy R3	
	<400> 14	
15	catccagcag gttacaggag t 21	
20	<210> 15 <211> 22 <212> ADN <213> Artificial	
	<220> <223> Cebador directo JK-78-F3	
25	<400> 15	
	catgctgcca taggatcatt gc 22	
30	<210> 16 <211> 20 <212> ADN <213> Artificial	
35	<220> <223> Cebador inverso JK-943-R3	
	<400> 16	
40	gagccaggag gtgggtttgc	20
	<210> 17 <211> 18 <212> ADN <213> Artificial	
45	<220> <223> Secuencia de sonda k	
50	<400> 17	
50	ttaaccgaac gctgagac	18
55	<210> 18 <211> 18 <212> ADN <213> Artificial	
60	<220> <223> Secuencia de sonda K	
00	<400> 18	
	ttaaccgaat gctgagac	18
65	<210> 19 <211> 18 <212> ADN	

	<213> Artificial	
5	<220> <223> Sonda de control negativo	
	<400> 19	
	ctatcccaaa gctaaggc	18
10	<210> 20 <211> 20 <212> ADN <213> Artificial	
15	<220> <223> Secuencia de sonda Kpb	
	<400> 20	
20	atcacttcac ggctgttcca	20
25	<210> 21 <211> 20 <212> ADN <213> Artificial	
	<220> <223> Secuencia de sonda Kpa	
30	<400> 21	
	tcacttcatg gctgttccag	20
35	<210> 22 <211> 20 <212> ADN <213> Artificial	
40	<220> <223> Sonda de control negativo	
	<400> 22	
45	aactctacgg ggctcttcga	20
10	<210> 23 <211> 20 <212> ADN	
50	<213> Artificial	
	<220> <223> Secuencia de sonda Jsb	
	<400> 23	
55	ggctgcctcg cctgtgacaa	20
60	<210> 24 <211> 20 <212> ADN <213> Artificial	
05	<220> <223> Secuencia de sonda Jsa	
00	<400> 24	

	ggctgccccg cctgtgacaa	20
5	<210> 25 <211> 20 <212> ADN <213> Artificial	
4.0	<220> <223> Sonda de control negativo	
10	<400> 25	
	gccagccacg cgtgtcacta	20
15	<210> 26 <211> 18 <212> ADN <213> Artificial	
20	<220> <223> Secuencia de sonda Lua	
	<400> 26	
25	tcgcccccgc ctagcctc	18
30	<210> 27 <211> 18 <212> ADN <213> Artificial	
	<220> <223> Secuencia de sonda Lub	
35	<400> 27	
	tcgcccccac ctagcctc	18
40	<210> 28 <211> 18 <212> ADN <213> Artificial	
45	<220> <223> Sonda de control negativo	
	<400> 28	
50	tagcctcctc caagacta	18
55	<210> 29 <211> 20 <212> ADN <213> Artificial	
55	<220> <223> Secuencia de sonda s	
00	<400> 29	
00	taggagaaac gggacaactt	20
65	<210> 30 <211> 20 <212> ADN <213> Artificial	

	<220> <223> Secuencia de sonda S	
5	<400> 30	
	aggagaaatg ggacaacttg 20	
10	<210> 31 <211> 20 <212> ADN <213> Artificial	
15	<220> <223> Sonda de control negativo	
	<400> 31	
	tcggataaaa gagaccactg	20
20	<210> 32 <211> 20 <212> ADN <213> Artificial	
25	<220> <223> Secuencia de sonda Coa	
	<400> 32	
30	aaccagacgg cggtccagga 20	
35	<210> 33 <211> 20 <212> ADN <213> Artificial	
	<220> <223> Secuencia de sonda Cob	
40	<400> 33	
	caaccagacg gtggtccagg 20	
45	<210> 34 <211> 20 <212> ADN <213> Artificial	
50	<220> <223> Sonda de control negativo	
	<400> 34	
55	agccacactg gggacctgga 20	
60	<210> 35 <211> 20 <212> ADN <213> Artificial	
00	<220> <223> Secuencia de sonda Fya	
65	<400> 35	
	gagactatgg tgccaacctg	20

5	<210> 36 <211> 20 <212> ADN <213> Artificial	
	<220> <223> Secuencia de sonda Fyb	
10	<400> 36	
10	tggagactat gatgccaacc	20
15	<210> 37 <211> 20 <212> ADN <213> Artificial	
20	<220> <223> Sonda de control negativo	
20	<400> 37	
	gaggctatcc tgacaagctt	20
25	<210> 38 <211> 18 <212> ADN <213> Artificial	
30	<220> <223> Secuencia de sonda Jka	
	<400> 38	
35	agtagatgtc ctcaaatg	18
40	<210> 39 <211> 21 <212> ADN <213> Artificial	
	<220> <223> Secuencia de sonda Jkb	
45	<400> 39	
	aggtaggatg gttctcaaat g 21	
50	<210> 40 <211> 18 <212> ADN <213> Artificial	
55	<220> <223> Sonda de control negativo	
	<400> 40	
	cgtggatttc ttcagagg	18

REIVINDICACIONES

1. Utilización de por lo menos un conjunto de sondas oligonucleotídicas modificadas con amino en el extremo 5', caracterizada porque presentan una longitud de secuencia comprendida entre 18 y 20 nucleótidos que contienen en o en la proximidad al centro de la secuencia de la sonda el SNP específico para cada uno de los alelos diana que pertenecen al locus genómico X, seleccionados de entre K/k, Kpa/Kpb, Jsa/Jsb, Lua/Lub, S/s, Coa/Cob, Fya/Fyb, Jka/Jkb que pueden hibridar específicamente con cada uno de dichos alelos; estando dichas sondas caracterizadas porque están acopladas a una microesfera marcada con por lo menos una sustancia fluorescente y porque comprenden o están constituidas por lo menos por un conjunto de secuencias de oligonucleótidos indicadas en la siguiente tabla:

Sonda	Conjunto de sondas	Número de conjunto
k	TTAACCgAACgCTgAgAC (SEC ID nº:17)	
K	TTAACCgAATgCTgAgAC (SEC ID nº: 18)	1
NC	CTATCCCAAAgCTAAggC (SEC ID nº:19)	
Kpb	ATCACTTCACggCTgTTCCA (SEC ID nº:20)	
Kpa	TCACTTCATggCTgTTCCAg (SEC ID nº:21)	2
NC	AACTCTACAgggCTCTTCgA (SEC ID nº:221	
Jsb	ggCTgCCTCgCCTgTgACAA (SEC ID nº:23)	
Jsa	ggCTgCCCCgCCTgTgACAA (SEC ID nº:24)	3
NC	gCCAgCCACgCgTgTCACTA (SEC ID nº:25)	
Lua	TCgCCCCCgCCTAgCCTC (SEC ID nº:26)	
Lub	TCgCCCCCACCTAgCCTC (SEC ID nº:27)	4
NC	TAgCCTCCTCCAAgACTA (SEC ID nº:28)	
S	TAggAgAAACgggACAACTT (SEC ID nº:29)	
S	AggAgAAATgggACAACTTg (SEC ID nº:30)	5
NC	TCggATAAAAgAgACCACTg (SEC ID nº:31)	
Coa	AACCAgACggCggTCCAggA (SEC ID nº:32)	
Cob	CAACCAgACggTggTCCAgg (SEC ID nº:33)	6
NC	AgCCACACTggggACCTggA (SEC ID nº:34)	
Fya	GAgACTATggTgCCAACCTg (SEC ID nº:35)	
Fyb NC	TggAgACTATgATgCCAACC (SEC ID nº:36)	7
-	GAggCTATCCTgACAAgCTT (SEC ID nº:37)	
Jka Jkb	AgTAgATgTCCTCAAATg (SEC ID nº:38)	
NC	AgTAgATgTTCTCAAATg (SEC ID nº:39)	8
	CgTgggATTTCTTCAgAgg (SEC ID nº:40)	

10

5

en la que dichos conjuntos de sondas oligonucleotídicas se utilizan a las temperaturas de hibridación específicas indicadas en la tabla siguiente:

Número de conjunto	THIBRIDACIÓN	
1	45°C	
2	54°C	
3	54°C	
4	45°C	
5	54°C	
6	64°C	
7	54°C	
8	37⁰C	

para la identificación y tipificación de por lo menos un SNP del par alélico X siguiente seleccionado de entre K/k, Kpa/Kpb, Jsa/Jsb, Lua/Lub, S/s, Coa/Cob, Fya/Fyb, Jka/Jkb.

2. Procedimiento para la identificación y tipificación de por lo menos un polimorfismo de un solo nucleótido (SNP) del sistema eritrocitario X en individual heterocigotos y homocigotos, que comprende las fases siguientes:

- a) extraer ADN de una muestra biológica;
- amplificar por PCR el locus genómico que comprende el SNP del sistema eritrocitario de interés, por medio de por lo menos un par de cebadores específico para un alelo diana seleccionado de entre:

20

Alelos diana	Secuencia del cebador (5'-3')
K/k	Directo: TTTAgTCCTCACTCCCATgCTTCC (SEC ID nº:1)
	Inverso: TATCACACAggTgTCCTCTCTCC (SEC ID nº:2)
Kpa/Kpb	Directo: TgAggCCAggAgAAAAgCA (SEC ID nº:3)
	Inverso: TgACCATCTggAAgAgCTTgC (SEC ID nº:4)
Jsa/Jsb	Directo: AACTTTgCCATgCTCCTgg (SEC ID nº:5)
	Inverso: gCCCTTgACACTTgCATACCT (SEC ID nº:6)
Lua/Lub	Directo: CTgAggAgCgCTgggACACCCgg (SEC ID nº:7)
	Inverso: CCCCgggTgTCgTgCATT (SEC ID nº:8)
S/s	Directo: AAgACTgACACATTACCTCA (SEC ID nº:9)
	Inverso: AACATACCTggTACAgTgAA (SEC ID nº:10)
Coa/Cob	Directo: TATAAATAggCCCAgCCCAg (SEQ ID NO.11)
	Inverso: CCAgCgACACCTTCACgTT (SEC ID nº: 12)
Fya/Fyb	Directo: CTTCCggTgTAACTCTgATgg (SEC ID nº:13)
	Inverso: CATCCAgCAggTTACAggAgT (SEC ID nº:14)
Jka/Jkb	Directo: CATgCTgCCATAggATCATTgC (SEC ID nº: 15)
	Inverso: gAgCCAggAggTgggTTTgC (SEC ID nº:16)

en el que por lo menos un cebador está marcado en el extremo 5' con biotina para obtener los productos de PCR biotinilados;

 hibridar los productos de PCR biotinilados obtenidos en la fase b) utilizando por lo menos un conjunto de sondas oligonucleotídicas según la reivindicación 1 y marcando con estreptavidina-ficoeritrina a la temperatura específica para cada sistema tal como se indica en la tabla siguiente:

Sonda	Conjunto de sondas	T _{HIBRIDACIÓN}
k	TTAACCgAACgCTgAgAC	
K	TTAACCgAATgCTgAgAC	45°C
NC	CTATCCCAAAgCTAAggC	
Kpb	ATCACTTCACggCTgTTCCA	
Кра	TCACTTCATggCTgTTCCAg	54°C
NC	AACTCTACggggCTCTTCgA	
Jsb	ggCTgCCTCgCCTgTgACAA	
Jsa	ggCTgCCCCgCCTgTgACAA	54°C
NC	gCCAgCCACgCgTgTCACTA	
Lua	TCgCCCCgCCTAgCCTC	
Lub	TCgCCCCCACCTAgCCTC	45⁰C
NC	TAgCCTCCTCCAAgACTA	
S	TAggAgAAACgggACAACTT	
S	AggAgAAATgggACAACTTg	54ºC
NC	TCggATAAAAgAgACCACTg	
Coa	AACCAgACggCggTCCAggA	
Cob	CAACCAgACggTggTCCAgg	64ºC
NC	AgCCACACTggggACCTggA	
Fya	gAgACTATggTgCCAACCTg	
Fyb	TggAgACTATgATgCCAACC	54ºC
NC	gAggCTATCCTgACAAgCTT	
Jka	AgTAgATgTCCTCAAATg	
Jkb	AgTAgATgTTCTCAAATg	37ºC
NC	CgTggATTTCTTCAgAgg	

e) revelar la fluorescencia con un instrumento basado en un citómetro de flujo.

