

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 357 784

(51) Int. Cl.:

G01N 33/574 (2006.01) C12Q 1/68 (2006.01) C12N 15/12 (2006.01)

(1	2)	
4	כ	

TRADUCCIÓN DE PATENTE EUROPEA

Т3

- 96 Número de solicitud europea: 07788578 .8
- 96 Fecha de presentación : **05.06.2007**
- 97 Número de publicación de la solicitud: 2138848 97 Fecha de publicación de la solicitud: 30.12.2009
- 54 Título: Procedimiento de diagnóstico y/o pronóstico de cáncer vesical.
- (30) Prioridad: **20.03.2007 ES 200700727**
- (73) Titular/es: FINA BIOTECH. S.L.U. Camino de las Huertas, nº 2 - Edificio 1 28223 Pozuelo de Alarcón, Madrid, ES
- (45) Fecha de publicación de la mención BOPI: 29.04.2011
- (72) Inventor/es: Alcaraz Asensio, Antonio; Mengual Brichs, Lourdes; Burset Albareda, Moises; Ribal Caparrós, María José y Ars Criach, Elisabet
- (45) Fecha de la publicación del folleto de la patente: 29.04.2011
- (74) Agente: Carpintero López, Mario

ES 2 357 784 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimiento de diagnóstico y/o pronóstico de cáncer vesical.

Campo de la invención

El campo de aplicación de la presente invención está dentro del sector sanitario, principalmente en los campos de la "Urología Oncológica" y "Biología Molecular". En concreto, la presente invención está dirigida a procedimientos de diagnóstico y pronóstico del cáncer vesical.

Antecedentes de la invención

El cáncer de vejiga, o cáncer vesical, es el segundo tumor más frecuente del tracto genitourinario, después del cáncer de próstata [Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin 2002; 52:23-47]. En un contexto global representa aproximadamente el 3 y el 1%, en hombres y mujeres respectivamente, de todas las muertes por cáncer. En valores absolutos, esto significa que aproximadamente 95.000 hombres y unas 35.000 mujeres mueren cada año debido a esta patología. La proporción entre incidencia y muerte es distinta dependiendo del grado de desarrollo de cada país. Como ejemplos extremos, se podría mencionar que en la zona de América del norte esta proporción se encontraría próxima a 0,2, mientras que en las regiones subsaharianas aumentaría hasta 0,6 [Edwards BK, Brown ML, Wingo PA et al. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 2005; 97:1407-27; Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 1999; 83:18-29].

A diferencia de otros tumores, por el momento no se han detectado prácticamente factores genéticos familiares de predisposición. En cambio, se han detectado diversos factores ambientales fuertemente relacionados con los tumores de vejiga. Uno de los factores más importantes, no solo por su relación con la enfermedad sino también por su incidencia en la población, es el tabaquismo. Se ha observado que los fumadores tienen un riesgo tres veces superior a los no fumadores de desarrollar un tumor de vejiga. De hecho, un tercio de los tumores de vejiga se encuentran asociados al consumo de tabaco. Desgraciadamente, los agentes carcinógenos presentes en el tabaco aún no han sido claramente identificados [Burch JD, Rohan TE, Howe GR et al. Risk of bladder cancer by source and type of tobacco exposure: a case-control study. Int J Cancer 1989; 44:622-28; Zeegers MP, Kellen E, Buntinx F, van den Brandt PA. The association between smoking, beverage consumption, diet and bladder cancer: a systematic literature review. World J Urol 2004; 21:392-401].

A nivel celular podemos encontrar distintos tipos de alteraciones en la vejiga. Existen cambios benignos como las hiperplasias epiteliales, las metaplasias uroteliales y los nidos de Von Brunn, entre otras. Las displasias, en cambio, corresponderían a alteraciones más o menos intermedias entre el epitelio normal y el carcinoma. Finalmente, en la vejiga se encuentran distintos tipos de carcinomas uroteliales, que se pueden dividir en adenocarcinomas, tumores escamosos y carcinomas de células transicionales (CCT).

Más del 90% de los tumores de vejiga son CCT. En el momento de su diagnóstico, aproximadamente el 75% son tumores superficiales, el 20% están invadiendo las capas musculares (CCT infiltrantes o invasivos) y un 5% ya son metastáticos. De los casos superficiales, aproximadamente un 20% se curan mediante una única intervención quirúrgica, mientras que entre un 50 y un 70% recurren tras la cirugía una o más veces, pero nunça se transforman en infiltrantes. Entre un 10 y un 30% de estos tumores superficiales se transforman en infiltrantes. Éstos son tumores agresivos, de mal pronóstico, con una mortalidad a los 5 años del 50% y en aquellos casos metastatizados la mortalidad a dos años es del 100% [Sanchez-Carbayo M, Socci ND, Charytonowicz E et al. Molecular profiling of bladder cancer using cADN microarrays: defining histogenesis and biological phenotypes. Cancer Res 2002; 62:6973-80; Adshead JM, Kessling AM, Ogden CW. Genetic initiation, progression and prognostic markers in transitional cell carcinoma of the bladder: a summary of the structural and transcriptional changes, and the role of developmental genes. Br J Urol 1998; 82:503-12; Babaian RJ, Johnson DE, Llamas L, Ayala AG. Metastases from transitional cell carcinoma of urinary bladder. Urology 1980; 16:142-44].

Las vías genéticas de los CCT superficiales e invasivos, aunque relacionadas, parecen ser bastante distintas. La progresión más habitual en los tumores superficiales parece ser la hiperplasia, la atipia y, finalmente, los CCT papilares de bajo grado. En los tumores invasivos lo más habitual es progresar desde una atipia a una displasia, para luego pasar a un tumor in situ (Tis) y terminar en un tumor infiltrante [Knowles MA. What we could do now: molecular pathology of bladder cancer. Mol Pathol 2001; 54:215-21].

Los sistemas de diagnóstico actuales se basan en una combinación de la citología urinaria (a partir de células escamosas en la orina) y de la observación directa de la vejiga mediante cistoscopia. Esta última es, de hecho, la principal técnica diagnóstica y de seguimiento de los tumores. Se realiza vía transuretral, por lo que es una técnica invasiva y bastante molesta para los pacientes. Se creía que la sensibilidad y la especificidad de esta técnica eran bastante elevadas, aunque mejoras en la propia técnica (cistoscopia fluorescente) indican que probablemente no sea así y que parte de la recurrencia observada en los tumores superficiales podría deberse a la falta de resección total de partes no visibles de los mismos [Jones JS. ADN-based molecular cytology for bladder cancer surveillance. Urology 2006; 67:35-45]. La citología urinaria, por su parte, es una técnica diagnóstica no invasiva y con una alta sensibilidad y especificidad para los tumores de alto grado. Sin embargo, esta técnica muestra limitaciones para la detección de tumores de bajo grado [Bastacky S, Ibrahim S, Wilczynski SP, Murphy WM. The accuracy of urinary cytology in daily

practice. Cancer 1999; 87:118-28]. Además, la interpretación de la citología depende mucho del observador, con lo que pueden existir diferencias entre observadores, especialmente en los tumores de bajo grado.

Todas estas limitaciones han llevado a la búsqueda de marcadores de cáncer de vejiga no invasivos más fiables. Encontrar un marcador no invasivo con sensibilidad y especificidad elevadas para el CCT de vejiga sería de gran ayuda a la práctica clínica. De hecho, en varios estudios se describen nuevos marcadores tumorales en orina, como el ensayo para el antígeno de tumor de vejiga NMP22 [Wiener HG, Mian C, Haitel A, Pycha A, Schatzl G, Marberger M. Can urine bound diagnostic tests replace cystoscopy in the management of bladder cancer? J Urol 1998; 159:1876-80; Soloway MS, Briggman V, Carpinito GA et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J Urol 1996; 156:363-67], productos de degradación de la fibrina [Schmetter BS, Habicht KK, Lamm DL et al. A multicenter trial evaluation of the fibrin/fibrinogen degradation products test for detection and monitoring of bladder cancer. J Urol 1997; 158:801-5.], telomerasa [Takihana Y, Tsuchida T, Fukasawa M, Araki I, Tanabe N, Takeda M. Realtime quantitative analysis for human telomerase reverse transcriptase mARNand human telomerase ARNcomponent mARNexpressions as markers for clinicopathologic parameters in urinary bladder cancer. Int J Urol 2006; 13:401-8], ensayos basados en hibridación in situ fluorescente [Halling KC, King W, Sokolova IA et al. A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J Urol 2002; 167:2001-6] o citometría de flujo [Takahashi C, Miyagawa I, Kumano S, Oshimura M. Detection of telomerase activity in prostate cancer by needle biopsy. Eur Urol 1997; 32:494-98; Trott PA, Edwards L. Comparison of bladder washings and urine cytology in the diagnosis of bladder cancer. J Urol 1973; 110:664-66], pero aunque la mayoría de ellos tienen una mayor sensibilidad que la citología urinaria, ésta sigue siendo la más específica [Bassi P, De M, V, De Lisa A et al. Non-invasive diagnostic tests for bladder cancer: a review of the literature. Urol Int 2005; 75:193-200].

Se sabe que en los tumores uroteliales se encuentran muchas alteraciones genéticas y muy variadas, por ello, la tendencia actual es la búsqueda de marcadores genéticos (ya sea a nivel de ADN, ARN o proteínas) que puedan indicar la presencia de carcinomas en la muestra analizada. Además, sería muy interesante poder discriminar con estos mismos marcadores la agresividad del tumor que presenta un paciente, ya que esto podría permitir un tratamiento mucho más personalizado y efectivo. Finalmente, algunos de estos marcadores podrían ser posibles dianas terapéuticas para desarrollar nuevos fármacos para combatir el cáncer.

25

30

Hasta hace poco tiempo, la capacidad de análisis de los patrones de expresión génica se encontraba limitada a pocos genes por experimento. Nuevas tecnologías, como los microarrays de ADN, han cambiado completamente el panorama. Actualmente, se pueden analizar miles de genes en un único ensayo [Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cADN microarrays. Nat Genet 1999; 21:10-14; Granjeaud S, Bertucci F, Jordan BR. Expression profiling: ADN arrays in many guises. Bioessays 1999; 21:781-90]. Por tanto, han empezado a aparecer en la literatura resultados de expresión masivos de todos los tipos tumorales, entre los que se encuentran los tumores de vejiga [Sanchez-Carbayo M, Socci ND, Charytonowicz E et al. Molecular profiling of bladder cancer using cADN microarrays: defining histogenesis and biological phenotypes. Cancer Res 2002; 62:6973-80; Ramaswamy S, Tamayo P, Rifkin R et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 2001. 98:15149-54; Sanchez-Carbayo M, Socci ND, Lozano JJ et al. Gene discovery in bladder cancer progression using cADN microarrays. Am J Pathol 2003; 163:505-16; Sanchez-Carbayo M, Capodieci P, Cordon-Cardo C. Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. Am J Pathol 2003; 162:609-17; Dyrskjot L, Thykjaer T, Kruhoffer M et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 2003; 33:90-96], aunque la gran mayoría de resultados no se han hecho públicos en su totalidad. Sin embargo, hasta el momento, los estudios que se han realizado con marcadores específicos de cáncer de vejiga se han centrado en uno o en muy pocos genes [Olsburgh J, Harnden P, Weeks R et al. Uroplakin gene expression in normal human tissues and locally advanced bladder cancer. J Pathol 2003; 199:41-49; Fichera E, Liang S, Xu Z, Guo N, Mineo R, Fujita-Yamaguchi Y. A quantitative reverse transcription and polymerase chain reaction assay for human IGF-II allows direct comparison of IGF-II mARNlevels in cancerous breast, bladder, and prostate tissues. Growth Horm IGF Res 2000; 10:61-70; Simoneau M, Aboulkassim TO, LaRue H, Rousseau F, Fradet Y. Four tumor suppressor loci on chromosome 9q in bladder cancer: evidence for two novel candidate regions at 9q22.3 and 9q31. Oncogene 1999; 18:157-63].

Dado que la naturaleza de estos tumores es muy heterogénea, parece poco probable poder identificar todos o la gran mayoría de carcinomas con un único marcador. Así, para poder caracterizar la mayoría de los tumores parece imprescindible combinar varios de los mejores marcadores en algún tipo de medida.

Además, aunque el análisis directo de tejido urotelial sea la alternativa más cómoda para desarrollar un procedimiento diagnóstico rutinario, sería de gran interés, como se ha comentado anteriormente, que dicho procedimiento no fuera invasivo, ya que éstos disminuyen la calidad de vida de los pacientes y representan una carga económica para la sanidad mucho mayor.

Los fluidos vesicales (orina o lavado vesical) que están en contacto con todo el epitelio vesical y, por lo tanto, con la masa tumoral, parecen una buena alternativa para la detección de marcadores tumorales, dado que representan una manera fácil y no invasiva de obtención de la muestra a analizar. Así, un gran número de trabajos se ha centrado en el estudio de marcadores tumorales en orina en busca de un procedimiento diagnóstico no invasivo para el CCT de vejiga. De hecho, se han comercializado diferentes ensayos con este objetivo (NMP22, UroVysion, ImmunoCyt, Accu-Dx, etc.).

Una alternativa, que aún no ha sido comercializada, es la detección del CCT de vejiga en muestras de orina mediante la determinación de la expresión génica de marcadores de cáncer vesical. De hecho, hay algunos estudios que sugieren la utilidad de esta metodología, aunque se han realizado con uno o pocos genes marcadores [Parekattil SJ, Fisher HA, Kogan BA. Neural network using combined urine nuclear matrix protein-22, monocyte chemoattractant protein-1 and urinary intercellular adhesion molecule-1 to detect bladder cancer. J Urol 2003; 169:917-20; Eissa S, Kenawy G, Swellam M, El Fadle AA, Abd El-Aal AA, El Ahmady O. Comparison of cytokeratin 20 ARNand angiogenin in voided urine samples as diagnostic tools for bladder carcinoma. Clin Biochem 2004;37:803-10; Larsson PC, Beheshti B, Sampson HA, Jewett MA, Shipman R. Allelic deletion fingerprinting of urine cell sediments in bladder cancer. Mol Diagn 2001; 6:181-88].

En respuesta a estas necesidades, los autores de la invención, tras una importante labor de investigación, han identificado 14 genes marcadores del tumor vesical, a partir de los cuales han desarrollado un procedimiento diagnóstico y pronóstico de cáncer vesical basado en la detección y cuantificación de la expresión génica de estos genes mediante PCR cuantitativa a tiempo real, en ARN extraído de fluidos vesicales, y su posterior combinación informática mediante un "sistema de alarmas".

Breve descripción de las figuras

- Figura 1 (A-J): Electroferogramas obtenidos con el Bioanalyzer Agilent 2100 de las muestras de ARN intacto (LV0) (Figura 1.A) y parcialmente degradado (LV1, LV2, LV3) (figuras 1.B, 1.C, 1.D) de lavado vesical, tumor de vejiga (T0, T1, T2, T3) (figuras 1.E, 1.F, 1.G, 1.H) y combinación de muestras control (C) (figura 1.I) y gel con las bandas de los ARN ribosómicos (28S y 18S) de cada una de las muestras analizadas (figura 1.J). Los números 0, 1, 2 y 3 se asignan a las muestras en orden creciente de degradación y para las muestras con ARN de calidad comparable.
- Figura 2: (a) Semi-matriz de comparación entre parejas de arrays de los 100 genes más diferencialmente expresados en cada array. La parte superior e inferior sombreada en gris de la semi-matriz muestra el porcentaje de genes diferencialmente expresados en común entre las parejas de arrays de lavado vesical (LV) y entre las parejas de arrays de tumores (T), hibridados con ARN de diferente grado de degradación. La parte no sombreada de la semi-matriz corresponde al porcentaje de genes expresados diferencialmente en común entre las parejas de arrays de lavado vesical y tumor. (b) Cluster no supervisado de todos los clones contenidos en el microarray, incluyendo los duplicados con intercambio de fluorocromos (*dye swap*) (DS).
 - Figura 3: Validación mediante RT-PCR cuantitativa a tiempo real (qRT-PCR) de 4 genes (KRT20, GSN, IGF2 y CCL2) expresados diferencialmente en los microarrays de ADNc y relacionados con cáncer de vejiga, en 36 muestras adicionales de lavado vesical tumoral. Los valores positivos indican sobre-expresión en los lavados vesicales tumorales respecto a los controles. Las muestras están agrupadas en el gráfico en función del log2ratio según estadio y grado tumoral: tumores superficiales de bajo grado (8 pTa y 3 pT1), tumores superficiales de alto grado (5 pTa, 5 pT1 y 4 pTis) y tumores invasivos (9 pT2 y 2 pT4).
- Figura 4: Clasificación de las muestras mediante cluster global no supervisado (distancia euclidiana y UPGMA). pT2_1, pT2_2 y pT2_3 (tumores infiltrantes); pT1 AG_1, pT1 AG_2 y pT1 AG_3 (tumores superficiales de alto grado); pT1 BG_1, pT1 BG_2, pT1 BG_3 (tumores superficiales de bajo grado).
- Figura 5: Resultados de PCR cuantitativa a tiempo real (qRT-PCR) de los pooles y las muestras individuales contenidos en los mismos. La tabla se encuentra dividida en combinaciones (parte izquierda) y en muestras individuales (derecha). Las columnas de los combinaciones indican el número de combinación (N°), los niveles de expresión observados en los microarrays (μarrays) y los niveles cuantificados mediante qRT-PCR (qRT-PCR). La primera columna de las muestras individuales corresponde a la media aritmética de las expresiones de las muestras individuales contenidas en el *pool* (*media*), las cuales se indican en las columnas siguientes (1-5). Cada fila corresponde a un gen (TCN1, SORBS1, MYH11, SRPX, CRH, KRT14, RRM2, FOSB, CEACAM6, CES1), con los diferentes niveles de expresión para cada combinación.
 - Figura 6: Clasificación de las 60 muestras individuales de fluidos vesicales mediante un cluster global no supervisado de 384 genes (distancia euclidiana y UPGMA). La nomenclatura de las muestras sigue la siguientes normas: si la muestra empieza con la letra "B", se refiere a una muestra de fluido vesical tumoral; si empieza por "CB", se refiere a una muestra de fluido vesical control; si después del número de muestra aparecen las iniciales "RV", se refiere a una muestra de lavado vesical; si por el contrario aparece la inicial "O", se refiere a una muestra de orina y después del guión bajo se indica el grado tumoral y el estadio patológico de la muestra tumoral. Las flechas indican una mala clasificación de la muestra que señalan en relación a las categorías establecidas: T_AG (tumores de alto grado); T_BG (tumores de bajo grado), y C (controles).
 - Figura 7 (A y B): Clasificación de las 140 muestras individuales de fluidos vesicales mediante un cluster global no supervisado de 96 genes (distancia euclidiana y UPGMA). Las flechas indican una mala clasificación de la muestra que señalan en relación a las categorías establecidas (C, controles; figura 7.A y T, muestras tumorales; figura 7.B). La nomenclatura de las muestras sigue la siguiente norma: si la muestra empieza con la letra "B", se refiere a una muestra de fluido vesical tumoral; si empieza por "CB", se refiere a una muestra de fluido vesical control; si después del número de muestra aparece la inicial "R", se refiere a una muestra de lavado vesical; si por el contrario aparece la inicial "O", se refiere a una muestra de orina.

Figura 8 (A-T): Listado de 384 genes de diagnóstico, pronóstico y controles endógenos para cáncer vesical. Este listado se ha obtenido del análisis mediante microarrays de Affymetrix de combinaciones de muestras de tejido tumoral de vejiga de diferentes estadios y grados tumorales y de muestras de mucosa vesical control.

- Figura 9 (A-D): Listado de 96 genes de diagnóstico, pronóstico y controles endógenos para cáncer vesical. Este listado se ha obtenido mediante el análisis de 60 muestras de fluidos vesicales en tarjetas microfluídicas que contienen los 384 genes de la figura 8. Se indica el símbolo del gen y el nombre del TaqMan Gene Expression Assay seleccionado para la tarjeta microfluídica TaqMan Low Density Array.
- Figura 10 (A y B): Listado de 48 genes de diagnóstico, pronóstico y controles endógenos para cáncer vesical. Este listado se ha obtenido mediante el análisis de 140 muestras de fluidos vesicales en tarjetas microfluídicas que contienen los 96 genes de la figura 9. Se indica el símbolo del gen y el nombre del TaqMan Gene Expression Assay seleccionado para la tarjeta microfluídica TaqMan Low Density Array.

15 Objeto de la invención

El objeto de la presente invención se refiere a un método *in vitro* no invasivo de diagnóstico y/o pronóstico de cáncer vesical basado en la detección y cuantificación en fluidos vesicales de la expresión génica de determinados genes y/o sus combinaciones que actúan como marcadores genéticos de dicha enfermedad.

Asimismo, es objeto de la presente invención el empleo de dichos genes como marcadores genéticos de diagnóstico y/o pronóstico de cáncer vesical.

Finalmente, otro objeto de la invención se refiere a un kit de diagnóstico y/o pronóstico del cáncer vesical basado en el empleo de dichos genes como marcadores genéticos de la enfermedad.

Descripción de la invención

La presente invención tiene como principal objetivo el desarrollo de un procedimiento *in vitro* no invasivo para diagnosticar y/o pronosticar cáncer vesical basado en la detección y cuantificación de determinados genes que actúan como marcadores genéticos de la enfermedad.

Para la realización del procedimiento se parte de una muestra de fluido vesical obtenida de un sujeto sobre la que se lleva a cabo un análisis para la detección y cuantificación del patrón de expresión de determinados genes y/o sus combinaciones. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales para así establecer el diagnóstico y/o pronóstico.

El término "sujeto" empleado en la presente invención se refiere a un ser humano.

La muestra de fluido vesical obtenida del sujeto puede ser una muestra de orina o de lavado vesical y puede ser obtenida mediante cualquier procedimiento convencional.

En la presente invención, se entiende como procedimiento de diagnóstico de cáncer vesical a aquel que permite detectar y cuantificar genes diferencialmente expresados entre tumores y muestras control (de individuos sanos) (genes de diagnóstico).

El procedimiento de pronóstico se refiere a aquellos que permiten detectar genes diferencialmente expresados en los diferentes tipos de tumores (genes de pronóstico), lo que permite clasificar los tumores según agresividad y personalizar el tratamiento en cada caso.

La clasificación tumoral de los diferentes tipos de carcinomas de células transicionales (CCT) se basa actualmente en la observación macroscópica y microscópica en el laboratorio de anatomía patológica. Mediante unas observaciones más o menos estandarizadas, basadas en la profundidad del tumor y en el aspecto microscópico de las células, se decide su clasificación. Estudios moleculares recientes parecen indicar que en realidad hay dos perfiles genéticos diferenciales que mayoritariamente separan los tumores de tipo superficial y los tumores infiltrantes.

Así, los carcinomas superficiales de vejiga se denominan como Ta, Tis y T1. El carcinoma Ta es un carcinoma exofítico no invasivo o confinado al epitelio. Tis es un carcinoma *in situ* (tumor superficial plano) y T1 es un tumor que invade el tejido conectivo subepitelial o que invade la lámina propia.

En la presente invención se emplea las siglas AG para determinar tumores de Alto Grado y BG para aquellos de Bajo Grado.

Los carcinomas Ta y T1 se pueden extirpar mediante resección transuretral (RTU). Los Tis y T1 de Alto Grado (AG), aunque son carcinomas superficiales confinados a la mucosa, por ser tumores de Alto Grado se ha demostrado con técnicas de biología molecular y por la experiencia clínica, que tienen gran potencial de malignidad y de invasión.

5

50

45

Por otra parte, los carcinomas infiltrantes de vejiga se clasifican en T2, T3 y T4. Así, T2 se refiere a un tumor que invade la capa muscular vesical. A su vez, este tipo se divide en T2a, que invade la capa muscular superficial o la mitad interna y T2b, que invade la capa muscular profunda o la mitad externa. T3 se refiere a un tumor que invade más allá de la capa muscular o que invade la grasa perivesical. A su vez, este tipo se divide en T3a, de invasión microscópica y T3b, de invasión macroscópica. Finalmente T4 se refiere a un tumor que invade estructuras adyacentes a la vejiga urinaria y que se divide a su vez en T4a, con invasión de la próstata, útero o vagina y T4b, con invasión de la pared pélvica o pared abdominal.

La detección y cuantificación de la expresión génica de los genes se puede llevar a cabo mediante cualquier técnica de Biología molecular no invasiva adecuada a los fines de la invención, como por ejemplo microarrays de expresión, PCR cuantitativa a tiempo real, transferencia de tipo *northern*, PCR convencional, etc.

Concretamente, el empleo de arrays de ADN permite obtener resultados de expresión de un número de genes muy elevado, permitiendo testar miles de genes en cada experimento. El empleo de esta técnica requiere grandes cantidades de ARN y de buena calidad (no degradado).

15

55

60

De forma preferida, en la presente invención se emplea la técnica de PCR cuantitativa a tiempo real (qRT-PCR) para detectar y cuantificar los genes de diagnóstico y/o pronóstico. Esta técnica es más precisa, además de permitir la utilización de ARN con importante grado de degradación, sin que esto afecte al resultado final. Asimismo, permite cuantificar el ARN específico de los genes de interés. En realizaciones particulares, las sondas de hibridación empleadas son sondas Tagman.

Los resultados obtenidos en la detección y cuantificación de la expresión de los genes en la muestra de fluido vesical, se comparan con los valores normales, de referencia, para dichos genes en muestras procedentes de sujetos sanos. En general, el incremento o la disminución en los niveles de los genes marcadores se estiman mediante la comparación de los resultados obtenidos de los análisis de las muestras correspondientes a los sujetos del ensayo con los resultados de las muestras controles, que se analizan en paralelo. La decisión final de clasificación de cada muestra se lleva a cabo mediante un "sistema de alarmas" basado en los valores de expresión de los genes marcadores, de forma que si alguno de los valores observados muestra una desviación muy significativa respecto a lo esperado en una muestra control, aumenta mucho la probabilidad de que la clasificación final sea tumoral, independientemente del gen que haya "dado al alarma".

De forma más específica, en un aspecto principal de la invención, el método de diagnóstico y/o pronóstico, no invasivo, de cáncer vesical descrito comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación en dicha muestra del patrón de expresión de la combinación de genes ANXA10, C14orf78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6, TERT, ASAM y MCM10. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales.

De forma preferida, la muestra de fluido vesical es orina, dado que su obtención es mucho más sencilla. No obstante, el lavado vesical, en ocasiones, se hace de manera rutinaria y se obtiene un ARN de mejor calidad.

El gen ANXA 10 (anexina A10) (también denominado ANX14), localizado en 4q32.3, participa en la regulación de la división celular y en diferentes vías de transducción de señales, pero su función exacta todavía no ha sido determinada.

El gen C14orf78 (marco de lectura abierto 78 del cromosoma 14) (también denominado AHNAK2 o KIAA2019), está localizado en 14q32.33. Su función aún no ha sido determinada.

El gen CTSE (catepsina E) (también denominado CATE), localizado en 1q31, codifica para una proteasa intracelular.

El gen CRH (hormona liberadora de corticotropina) (también denominado CRF), localizado en 8q13, codifica para la hormona de liberación de la corticotropina, segregada en el hipotálamo en respuesta al estrés.

El gen IGF2 (factor de crecimiento 2 similar a la insulina (somatomedina A)) (también denominado 11orf43, FLJ22066, FLJ44734, INSIGF), localizado en 11p15.5, codifica para el factor de crecimiento similar a la insulina.

El gen KLF9 (factor 9 similar a Kruppel) (también denominado BTEB1), codifica para un factor de transcripción.

El gen KRT20 (queratina 20) (también denominado K20; CK20; KRT21; MGC35423), localizado en 17q21.2, codifica para una proteína que forma parte de los filamentos intermedios responsables de dar la estructura e integridad a las células epiteliales.

El gen MAGEA3 (familia A del antígeno del melanoma, 3) (también denominado HIP8; HYPD; MAGE3; MAGEA6; MGC14613), está localizado en Xq28. Su función es desconocida.

El gen POSTN (periostina, factor específico de osteoblastos) (también denominado PN; OSF-2; PDLPOSTN; MGC119510; MGC119511; periostin; RP11-412K4.1), está localizado en 13q13.3, y tiene una función relacionada con la movilidad celular.

El gen PPP1R14D (proteína fosfatasa 1, subunidad reguladora (inhibidora) 14D) (también denominado GBPI-1; FLJ20251; MGC119014; MGC119016; CPI17-like), está localizado en 15q15.1 y codifica para una fosfatasa.

El gen SLC1A6 (familia de transportador de solutos 1 (transportador de aspartato/glutamato de alta afinidad), miembro 6) (también denominado EAAT4; MGC33092; MGC43671), localizado en 19p13.12, participa en el transporte intracelular.

El gen TERT (telomerase reverse transcriptase) (también denominado TP2; TRT; EST2; TCS1; hEST2), localizado en 5p15.33, codifica para una polimerasa de los telómeros con actividad transcriptasa reversa.

El gen ASAM (molécula de adhesión específica de adipocitos) (también denominado ASAM; ACAM; CLMP; FLJ22415), localizado en 11q24.1, participa en la adhesión celular.

15

45

Finalmente, el gen MCM10 (deficiente de mantenimiento de minicromosoma 10 (*S. cerevisiae*)) (también denominado CNA43; PRO2249; MGC126776), localizado en 10p13, codifica para una proteína implicada en el inicio de la replicación genómica.

También se divulga el procedimiento *in vitro* no invasivo para diagnosticar y/o pronosticar cáncer vesical comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación en dicha muestra del patrón de expresión de la combinación de genes ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6, TERT, y MCM10. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales.

También se divulga el procedimiento *in vitro* no invasivo de diagnóstico y/o pronóstico del cáncer vesical comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación en dicha muestra de fluido vesical de la expresión de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D, ASAM y sus combinaciones. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales.

También se divulga el procedimiento diagnóstico y/o pronóstico basado en la detección y cuantificación individual de la expresión del gen C14orf78.

También se divulga dicho procedimiento diagnóstico y/o pronóstico basado en la detección y cuantificación individual de la expresión del gen KLF9.

También se divulga dicho procedimiento de diagnóstico y/o pronóstico basado en la detección y cuantificación individual de la expresión del gen POSTN.

También se divulga dicho procedimiento de diagnóstico y/o pronóstico basado en la detección y cuantificación individual de la expresión del gen PPPIR14D.

También se divulga dicho procedimiento de diagnóstico y/o pronóstico basado en la detección y cuantificación individual de la expresión del gen ASAM.

También se divulga un procedimiento *in vitro* no invasivo para diagnosticar y/o pronosticar cáncer vesical basa-50 do en la detección y cuantificación de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D, ASAM y sus combinaciones y, adicionalmente, al menos un gen seleccionado entre ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6, TERT y MCM10.

Se contempla un método *in vitro* no invasivo centrado en el diagnóstico de cáncer vesical que comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación del patrón de expresión de la combinación de genes ANXA10, C14orf78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6 y TERT, según el procedimiento descrito anteriormente. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales.

El procedimiento *in vitro* no invasivo de diagnóstico de cáncer vesical comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación del patrón de expresión de la combinación de genes ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6 y TERT. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales.

El procedimiento *in vitro* no invasivo de diagnóstico de cáncer vesical comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación de la expresión de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D y sus combinaciones. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales.

También se proporciona un procedimiento diagnóstico basado en la detección y cuantificación del gen C14orf78.

También se proporciona un procedimiento diagnóstico basado en la detección y cuantificación del gen KLF9.

También se proporciona un procedimiento diagnóstico basado en la detección y cuantificación del gen POSTN.

También se proporciona un procedimiento diagnóstico basado en la detección y cuantificación del gen PPPIR14D.

También se proporciona un procedimiento diagnóstico basado en la detección y cuantificación de la expresión de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D y sus combinaciones y, adicionalmente, al menos, un gen seleccionado entre ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6 y TERT.

Se contempla un procedimiento *in vitro* no invasivo para pronosticar cáncer vesical que comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación del patrón de expresión de la combinación de genes ASAM y MCM10. Los resultados obtenidos se comparan con los valores normales de referencia para dichos genes en fluidos vesicales.

También se proporciona un procedimiento *in vitro* no invasivo para pronosticar cáncer vesical que comprende recoger una muestra de fluido vesical de un sujeto para llevar a cabo la detección y cuantificación de la expresión del gen ASAM. Los resultados obtenidos se comparan con los valores normales de referencia para dicho gen en fluidos vesicales.

En otro aspecto de la invención, se contempla el uso de la combinación de genes ANXA10, C14orf78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6, TERT, ASAM y MCM10 como marcadores de diagnóstico y/o pronóstico del cáncer vesical.

También se proporciona el uso de la combinación de genes ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6, TERT, y MCM10 como marcadores de diagnóstico y/o pronóstico del cáncer vesical.

Se contempla el uso de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D, ASAM y sus combinaciones, como marcadores de diagnóstico y/o pronóstico del cáncer vesical.

Se contempla el uso del gen C14orf78 como marcador de diagnóstico y/o pronóstico del cáncer vesical.

Se contempla el uso del gen KLF9 como marcador de diagnóstico y/o pronóstico del cáncer vesical.

25

35

45

50

55

60

Se contempla el usp del gen POSTN como marcador de diagnóstico y/o pronóstico del cáncer vesical.

Se contempla el empleo del gen PPP1R14D como marcadores de diagnóstico y/o pronóstico del cáncer vesical.

Se contempla el empleo del gen ASAM como marcador de diagnóstico y/o pronóstico del cáncer vesical.

Otro aspecto se centra en el uso de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D, ASAM y sus combinaciones, en combinación con al menos un gen seleccionado entre ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6, TERT y MCM10, como marcadores de diagnóstico y/o pronóstico del cáncer vesical.

Otro aspecto de la invención se refiere al uso de la combinación de genes ANXA10, C14orf78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6 y TERT como marcadores de diagnóstico de cáncer vesical.

Otro aspecto de la invención se centra en el uso de la combinación de genes ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6 y TERT como marcadores de diagnóstico del cáncer vesical.

Otro aspecto de la invención se refiere al uso de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D y sus combinaciones como marcadores de diagnóstico del cáncer vesical.

Se contempla el uso del gen C14orf78 como marcador de diagnóstico del cáncer vesical.

Asimismo, se contempla el empleo del gen KLF9 como marcador de diagnóstico del cáncer vesical.

Se contempla el uso del gen POSTN como marcador de diagnóstico del cáncer vesical.

Se contempla el uso del gen PPP1R14D como marcadores de diagnóstico del cáncer vesical.

Se contempla el uso de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D y sus combinaciones, en combinación con al menos un gen seleccionado entre ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6 y TERT, como marcadores de diagnóstico de cáncer vesical.

Se contempla el uso de la combinación de genes ASAM y MCM10 como marcadores de pronóstico del cáncer vesical.

Se contempla el uso del gen ASAM como marcador de pronóstico del cáncer vesical.

Otro aspecto de la invención se refiere a un kit de diagnóstico y/o pronóstico del cáncer vesical que comprende un set de sondas adecuado para la detección y cuantificación del patrón de expresión de la combinación de genes ANXA10, C14orf78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6, TERT, ASAM y MCM10.

En otro aspecto de la invención, el kit de diagnóstico y/o pronóstico del cáncer vesical comprende un set de sondas adecuado para la detección y cuantificación del patrón de expresión de la combinación de genes ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6, TERT y MCM10.

En otro aspecto de la invención se contempla un kit de diagnóstico y/o pronóstico del cáncer vesical basado en un set de sondas adecuado para la detección y cuantificación de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D, ASAM y sus combinaciones.

15

El kit de diagnóstico y/o pronóstico del cáncer vesical, basado en el set de sondas para la detección y cuantificación de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D, ASAM y sus combinaciones, comprende adicionalmente un set de sondas adecuado para la detección y cuantificación de un gen seleccionado entre ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6, TERT y MCM10.

20

30

En otro aspecto de la invención, se contempla un kit de diagnóstico del cáncer vesical, basado en un set de sondas adecuado para la detección y cuantificación del patrón de expresión de la combinación de genes ANXA10, C14orf78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6 y TERT.

En otro aspecto de la invención, el kit de diagnóstico del cáncer vesical, comprende un set de sondas adecuado para la detección y cuantificación del patrón de expresión de la combinación de genes ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6 y TERT.

En otro aspecto se contempla el kit de diagnóstico del cáncer basado en un set de sondas adecuado para la detección y cuantificación de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D y sus combinaciones.

En otro aspecto, dicho kit, basado en el set de sondas adecuado para la detección y cuantificación de un gen seleccionado entre C14orf78, KLF9, POSTN, PPP1R14D y sus combinaciones, comprende, adicionalmente, sondas adecuadas para la detección y cuantificación de al menos un gen seleccionado entre ANXA10, CTSE, CRH, IGF2, KRT20, MAGEA3, SLC1A6 y TERT.

En otro aspecto se contempla un kit de pronóstico del cáncer vesical, basado en un set de sondas adecuado para la detección y cuantificación del patrón de expresión de la combinación de genes ASAM y MCM10.

En otro aspecto, el kit de pronóstico se basa en una sonda adecuada para la detección y cuantificación del gen ASAM.

En la tabla 1 se muestran los 14 genes identificados como marcadores genéticos de diagnóstico y/o pronóstico de cáncer vesical. Los genes ASAM y MCM10 son los 2 genes específicos para pronóstico.

45

50

A continuación se presentan algunos ejemplos que sirven para ilustrar pero no limitar la presente invención.

Ejemplos

Ejemplo 1

Determinación de la importancia de la degradación en las muestras de fluido vesical

Para llevar a cabo el objetivo final de la invención, en primer lugar fue necesario conocer el impacto que tenían diferentes niveles de degradación del ARN en los perfiles de expresión génica, dado que la calidad del ARN obtenido de los fluidos vesicales (orina y/o lavado vesical) es generalmente baja. También debía determinarse si los perfiles de expresión génica obtenidos de los fluidos vesicales se correspondían con los obtenidos en los correspondientes tumores.

60

1. Selección de muestras y preparación del ARN

Se seleccionó una muestra de tejido tumoral (T) y de lavado vesical (LV) de un mismo paciente diagnosticado como pT2 alto grado (G3) [según los métodos descritos en Lopez-Beltran A, Sauter G, Gasser T, Hartmann A, Schmitz-Dräger BJ, Helpap B, Ayala AG, Tamboni P, Knowles MA, Sidransky D, Cordon-Cardo C, Jones PA, Cairns P, Simon R, Amin MB, Tyczynsky JE. Tumours of the Urinary System. In: Eble JN, Sauter G, Epstein JI, Sesterhenn IA (eds.), Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. World Health Organi-

zation Classification of Tumours. Lyon: IARC Press; 2004: 89-157; Sobin LH, Wittekind CH. TNM Classification of Malignant Tumours. International Union Against Cancer., 6th ed. New York: John Wiley & Sons; 2002]. Se extrajo el ARN de ambas muestras (T0 y LV0) con TRIzol (Invitrogen, Carlsbad, CA, USA) siguiendo las instrucciones del proveedor. Seguidamente, se degradaron alícuotas de ambos ARN (T0 y LV0) incubándolos a 80°C durante 15 (T1 y LV1), 30 (T2 y LV2) y 60 (T3 y LV3) minutos, obteniendo tres niveles de degradación, tal y como se describe en Xiang CC, Chen M, Ma L et al. A new strategy to amplify degraded RNA from small tissue samples for microarray studies. Nucleic Acids Res 2003; 31:53, con la excepción de que se utilizó agua en vez de un tampón básico.

También se recolectaron muestras de mucosa vesical sana de 4 pacientes sin evidencia de patología vesical (muestras control), se obtuvo ARN de la misma manera que se procedió con las muestras anteriores y se mezclaron los 4 ARN en proporciones equimolares (C0).

Un μ l de cada uno de los ARN, intactos y degradados, se analizaron en el Bioanalyzer Agilent 2100 Bioanalyzer para determinar la calidad de cada ARN (según el método descrito en *Imbeaud S, Graudens E, Boulanger V et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 2005; 33:e56)* (figuras 1.A-H). En la figura 1 (J) se muestra el gel con las bandas de los ARN ribosómicos (28S y 18S) de cada una de las muestras analizadas donde se observa la degradación progresiva de estas bandas.

Además, se recolectaron 36 lavados vesicales tumorales (8 pTa bajo grado (BG), 5 pTa alto grado (AG), 3 pT1 BG, 5 pT1 AG, 4 pTis, 9 pT2 AG and 2 pT4 AG) y 14 lavados vesicales controles de pacientes sin patología vesical y se extrajo el ARN de la misma manera que en los casos anteriores.

25 2. Amplificación in vitro del ARN y marcaje

Se amplificaron 5 μ g de ARN intacto (T0 y LV0) y degradado (T1, T2, T3, LV1, LV2 y LV3) mediante la utilización de cebadores de secuencia al azar de 9 nucleótidos (random nonamer primers) modificados por la adición en 3' de la secuencia promotora del T3 (T3N9) (según Xiang CC, Chen M, Ma L et al. A new strategy to amplify degraded RNA from small tissue samples for microarray studies. Nucleic Acids Res 2003; 31:e53). Las sondas se sintetizaron mediante un método de marcaje directo (según Richter A, Schwager C, Hentze S, Ansorge W, Hentze MW, Muckenthaler M. Comparison of fluorescent tag ADN labeling methods used for expression analysis by ADN microarrays. Biotechniques 2002; 33:620-8, 630).

3. Procesamiento de la matriz y análisis de datos

Se utilizaron los *Oncochip-v2 glass human ADNc microarrays* (http://grupos.cnio.es/genomica/arrays/reports/ochip_v2.xls) para co-hibridar cada una de las cuatro alícuotas de ARN progresivamente degradadas, tanto de tumor como de lavado vesical (T0, T1, T2, T3, LV0, LV1, LV2 y LV3), con el *pool* de los ARN provenientes de las muestras de mucosa vesical sana (C0). Las imágenes fluorescentes se obtuvieron con el G2565BA Microarray Scanner System (Agilent, Technologies, Waldbronn, Germany) y las imágenes TIFF fueron cuantificadas utilizando el programa Spot (http://experimental.act.cmis.csiro.au/Spot) bajo el entorno estadístico R (http://www.r-project.org). La medida final de intensidad de cada punto del microarray fue calculada tal y como se había sugerido previamente (http://www.stat.berkeley.edu/users/terry/zarray/Html/image.htmlv) (datos accesibles públicamente en la base de datos GEO; GSE3192). Finalmente se obtuvieron 1111 clones válidos que cumplían todos los criterios de calidad y se escogieron los 100 más diferencialmente expresados de cada array para comparar entre arrays y calcular los porcentajes de genes en común entre ellos. Se detectó un elevado porcentaje de genes en común diferencialmente expresados entre los arrays de tejido tumoral (85 al 91%) y entre los arrays de lavado vesical (78 al 93%) (Figura 2a), lo que indicaba que degradación del ARN prácticamente no afectaba los perfiles de expresión génica.

También se realizó un cluster no supervisado de todos los clones contenidos en el microarray utilizando UPGMA (Unweighted Pair-Group Meted with Arithmetic Mean) y la correlación de Pearson. Este cluster indicaba que el porcentaje de genes en común identificados entre 2 arrays hibridados con ARN de diferente nivel de degradación (por ejemplo, LV0 y LV1), era en ocasiones más alto que el porcentaje entre duplicados *dye swap* (DS) del mismo array (por ejemplo, LV0 vs LV0-DS) (Figura 2b), lo que reforzaba la conclusión de que los perfiles de expresión génica no quedaban prácticamente alterados al trabajar con ARN parcialmente degradado.

Para determinar si los perfiles de expresión génica obtenidos de las muestras de lavado vesical se correspondían con los obtenidos en el correspondiente tumor, se comparó el porcentaje de genes en común diferencialmente expresados entre los arrays de tejido tumoral y los de lavado vesical. Se obtuvo una elevada similaridad entre el tumor y el lavado vesical (52 al 60%) y esta similaridad resultó ser independiente del estado de degradación del ARN.

En conclusión, estos datos sugirieron que el ARN parcialmente degradado de lavado vesical podía ser utilizado para estudios de expresión génica utilizando microarrays y que este ARN es un reflejo de la expresión génica del tumor.

4. RT-PCR cuantitativa a tiempo real (qRT-PCR)

Para validar que los resultados obtenidos en los microarrays de un paciente particular eran extrapolables a una cohorte más larga, se analizaron mediante qRT-PCR 4 genes diferencialmente expresados en los arrays y que estaban relacionados con el proceso de carcinogénesis vesical según la literatura (*KRT20*, *IGF2*, *GSN* y *CCL2*). Para esta validación se utilizaron 36 lavados vesicales tumorales adicionales y 14 lavados vesicales controles.

El ADNc se sintetizó a partir de 1 ug de ARN utilizando el High-Capacity ADNc Archive Kit (Applied Biosystems, Foster City, USA) siguiendo las instrucciones del proveedor, excepto que se disminuyó el volumen final de la reacción a $50 \,\mu$ l. El gen GUSB se utilizó como control endógeno. Las PCRs se realizaron utilizando Assays-on-DemandTM Gene Expression Products en un ABI PRISM 7000 SDS (Applied Biosystems, Foster City, USA) siguiendo las instrucciones del proveedor, excepto que el volumen de la reacción se disminuyó a $20 \,\mu$ l.

El método del ΔΔCt (ABI PRISM 7700 Sequence Detection System User Bulletin #2: Relative Quantification of Gene Expression P/N 4303859) se utilizó para calcular la cantidad relativa de expresión de cada gen en relación a un promedio de la expresión de las 14 muestras controles. Para establecer el valor de referencia en los controles se obtuvo la media aritmética de los valores de expresión de los 14 lavados vesicales controles provenientes de pacientes sin patología vesical.

Los resultados de este análisis, expresados como log2ratio, definido como la proporción o división (ratio) entre las 2 condiciones comparadas (en este caso el control endógeno contra cada gen indicado) expresado como logaritmo en base 2, confirmaron los resultados de los microarrays en un 81% de las muestras para *KRT20*, en un 89% para *GNS*, en un 64% para *IGF2* y en un 89% para *CCL2* (Figura 3). La elevada concordancia entre los datos de microarrays obtenidos del análisis de un solo paciente y los de qRT-PCR obtenidos del análisis de una cohorte de 36 pacientes adicionales confirmaban que los perfiles de expresión génica obtenidos en los microarrays no eran debidos al análisis de un solo paciente.

5. Conclusión del Ejemplo 1

Es posible la utilización de ARN de lavado vesical para inferir los perfiles de expresión génica de los correspondientes tumores vesicales, tanto mediante microarrays de ADNc como de qRT-PCR.

35 Ejemplo 2

30

Determinación inicial de genes candidatos para el modelo predictivo

Una vez conocido que era posible determinar los perfiles de expresión génica en las muestras de fluido vesical, el siguiente objetivo era obtener datos propios de expresión génica lo más extensos posibles. La estrategia que nos propusimos seguir fue empezar analizando la mayor cantidad posible de genes en un numero reducido de muestras, para en fases sucesivas ir analizando progresivamente cada vez una cantidad menor y más seleccionada de genes en una serie más extensa de muestras.

El protocolo a su vez pasaba por el establecimiento de unos controles de calidad muy estrictos en todos los pasos críticos del proceso. Esto incluía la obtención de las muestras biológicas con las características deseadas en el quirófano, por parte de los cirujanos del equipo de la Fundació Puigvert, el almacenaje y conservación de las muestras en las condiciones adecuadas, el análisis anatomo-patológico de las muestras y el procesado molecular por el equipo de laboratorio.

1. Obtención y selección de las muestras biológicas

Las muestras de tejido fueron obtenidas en quirófano utilizando un resector de pinza fría (muestras tumorales) o directamente con tijeras (muestras control). Parte del tejido obtenido fue inmediatamente congelado a -80°C hasta ser procesados posteriormente para la extracción de ARN y la parte restante fue enviado al departamento de Anatomía Patológica para su análisis anatomo-patológico. Para la extracción de ARN los tejidos fueron homogeneizados mecánicamente y los ARN fueron extraídos siguiendo el protocolo del TRIzol (Invitrogen, Calsbad, CA, USA). Finalmente, los ARN se cuantificaron midiendo espectrofotométricamente la absorbancia a 260 nm.

2. Grupos de muestras a estudiar

Dado que los tumores superficiales y los invasivos parecen tener perfiles genéticos distintos, se decidió comparar los grupos tumorales más extremos (superficiales de bajo grado versus infiltrantes). Además también decidimos averiguar el perfil molecular de un tipo de tumor de comportamiento clínico poco claro, ya que son superficiales pero con un alto grado de aberraciones celulares (clasificados como T1 de alto grado, pT1 AG) y en muchos casos (alrededor del 50%) acaban siendo infiltrantes. Así se definieron cuatro grupos de estudio:

11

50

0

- Grupo 1: muestras de tumores superficiales de bajo grado (BG) y que invadiesen solamente la mucosa vesical (patológicamente clasificadas como pTa BG).
- Grupo 2: muestras de tumores superficiales de alto grado (AG) y que invadiesen el tejido conectivo subepitelial (patológicamente clasificadas como pT1 AG).
- Grupo 3: muestras de tumores infiltrantes (patológicamente como mínimo pT2) y alto grado.
- Grupo 4: muestras de mucosa vesical sana (control).

Con la intención de reducir la varianza biológica, que era bastante elevada, se realizaron *pooles* de muestras de un mismo tipo tumoral, es decir, con una misma clasificación anatomo-patológica. Así se realizaron 3 *pooles* de 4-5 muestras tumorales para cada uno de los grupos; pTa BG, pT1 AG, pT2 AG y controles.

3. Microarrays de Affymetrix

10

15

30

Aunque anteriormente se había trabajado con una plataforma de microarrays basados en ADNc, era conocido por la bibliografía que existían otras plataformas comerciales basadas en oligonucleotidos que permitirían obtener resultados de expresión de un número de genes más elevado. Finalmente, se decidió utilizar la plataforma de Affymetrix (http://www.affymetrix.com/index.affx), dado que eran muchos los datos de los que se disponía en las bases de datos públicas para esta plataforma, prácticamente todas las referencias comentaban su alta calidad de resultados y acababa de salir al mercado un nuevo microarray (U133 plus 2.0) que permitía determinar la expresión génica de la gran mayoría de los genes humanos.

Los microarrays de Affymetrix fueron hibridados y escaneados por una compañía especializada (Progenika) y los datos crudos de expresión (o ficheros cel) fueron directamente analizados por nosotros bajo el entorno estadístico R utilizando el algoritmo RMA (Robust Multi array Analysis).

4. Análisis de los microarrays de Affymetrix

Una vez obtenidos los datos normalizados de expresión para cada clon se decidió estudiar como se agrupaban las distintas muestras que habíamos seleccionado realizando un cluster no supervisado (Figura 4). En éste se podía observar que todos los controles agrupaban juntos y claramente diferenciados de los tumores, lo que indicaba que existen muchos genes diferencialmente expresados entre tumores y controles (genes de diagnóstico). Por otro lado, también se observa que los 3 *pooles* de tumores infiltrantes (pT2_1, pT2_2 y pT2_3) y tumores superficiales de alto grado (pT1 AG_1, pT1 AG_2 y pT1 AG_3) agrupan juntos y diferenciados de los 3 *pooles* de tumores superficiales de bajo grado (pT1 BG_1, pT1 BG_2, pT1 BG_3), lo que debería permitir localizar genes marcadores de una u otra vía (genes de pronóstico).

Como sistema de clasificación para comparar los distintos grupos y obtener los mejores genes diferencialmente expresados se decidió utilizar la proporción entre el valor de intensidad máximo del grupo con la menor media y el valor de intensidad mínimo del grupo con la mayor media, en escala logarítmica. Esta medida es equivalente al menor nivel de cambio (*minimum fold change*) que podríamos obtener comparando cualquier réplica de un grupo contra cualquier réplica del otro grupo. El resultado final que obtuvimos fueron literalmente miles de genes con diferencias de expresión entre tumores y controles suficientemente significativas.

5. Validación de los resultados de microarrays mediante PCR cuantitativa a tiempo real

Una vez ordenados los genes, de más a menos diferencialmente expresados, se decidió verificar los resultados obtenidos con una técnica completamente independiente y, según la literatura, mucho más precisa, la PCR cuantitativa a tiempo real (qRT-PCR). Se seleccionaron 10 de los genes más diferencialmente expresados para realizar esta verificación técnica y se cuantificó su expresión génica mediante qRT-PCR tanto usando exactamente los mismos *pooles* hibridados en los microarrays (para poder comparar los resultados de ambas técnicas), como utilizando las muestras individuales de cada *pool* (para poder estudiar la replicabilidad de la propia técnica de qRT-PCR) (Figura 5). En la comparación entre microarrays y qRT-PCR obtuvimos un coeficiente de regresión de 0.978, lo que nos indicaba una muy buena replicabilidad entre las 2 técnicas. Cuando comparamos las medias aritméticas de las muestras individuales obtenidas mediante qRT-PCR y su expresión en los *pooles* mediante la misma técnica el coeficiente de regresión fue de 0.995, lo que confirmaba los datos bibliográficos de que la cuantificación mediante qRT-PCR tiene una calidad técnica excelente.

__

6. Conclusión del Ejemplo 2

Teniendo en cuenta los resultados observados mediante la cuantificación de la expresión génica utilizando dos técnicas completamente independientes en un pequeño grupo de genes, podemos extrapolar que las expresiones observadas mediante microarrays parecen ser suficientemente fiables como para ser utilizadas para definir un grupo de genes candidatos robusto para un análisis posterior más extenso y específico.

Paralelamente, se concluyó que aunque los microarrays eran adecuados para cuantificar las expresiones génicas, la qRT-PCR era aún más precisa, además de permitir unos niveles de degradación del ARN mayores en la muestra sin que esto perjudicara el resultado final.

Ejemplo 3

5 Primera selección de genes candidatos

El objetivo final de este estudio era seleccionar un conjunto reducido de genes relacionados con CCT de vejiga y que al cuantificar su expresión se obtuviera información diagnóstica y pronóstica del tumor. Para ello, se ha comprobado que se pueden utilizar dos técnicas; los microarrays de ADN y la PCR cuantitativa a tiempo real. Mediante la tecnología de microarrays se testan miles de genes en cada experimento y se necesita mayor cantidad de ARN y de mejor calidad para realizar los experimentos que con la metodología de la qRT-PCR. Además, ésta última es una tecnología más precisa y se puede cuantificar el número exacto de genes de interés. Por ello se decidió utilizar en las siguientes fases del estudio la tecnología TaqMan Low Density Arrays (TLDA), basada en qRT-PCR.

25

1. Selección de 384 genes para las tarjetas TaqMan Low Density Arrays (TLDA)

Las TLDA son tarjetas microfluídicas que contienen liofilizados los *primers* y la sonda TaqMan para un máximo de 384 genes (existen diferentes configuraciones de TLDA que permiten analizar en una misma tarjeta desde 384 genes y una sola muestra hasta 48 genes y 8 muestras). Por lo tanto, de los experimentos realizados previamente mediante microarrays de Affymetrix hibridados con ARN de tejido se tenía que seleccionar un sub-conjunto de 384 genes. Se seleccionaron los genes más diferencialmente expresados entre tumores y controles (genes de diagnóstico) y también aquellos genes diferencialmente expresados entre los tres grupos tumorales: pTa BG, pT1 AG y pT2 AG (genes de pronóstico).

35

Por otro lado, dado que uno de los objetivos del proyecto era trabajar con fluidos vesicales, en esta fase del proyecto se pretendía poder estudiar estos 384 genes no con ARN de tejido, como se había estado haciendo hasta ahora, sino directamente con fluidos vesicales (orina o lavados vesicales).

40

2. Recogida y procesamiento de los lavados vesicales y orinas

Las muestras de lavado vesical fueron recogidas por barbotaje intraoperatoriamente, antes de la resección del tumor vesical o antes de la cistectomía. Las muestras de orina fueron recogidas por micción espontánea antes de que el paciente entrase en la cirugía. Tanto las muestras de lavado vesical como las de orina eran transportadas al laboratorio en hielo inmediatamente después de ser recogidas. Las muestras se mezclaban con 1/25 volúmenes de EDTA 0,5M, pH8.0 y se centrifugaban a 1000 Xg durante 10 minutos. Los pellets celulares se resuspendían en 1 ml de TRIzol (Invitrogen, Calsbad, CA, USA) y se congelaban a -80°C hasta la extracción del ARN.

Se recogieron y almacenaron 425 muestras de lavado vesical tumoral, 30 muestras de lavado vesical control, 43 muestras de orinas tumorales y 158 muestras de orinas controles.

3. Extracción del ARN y síntesis del ADNc

55

60

Los ARN se extrajeron siguiendo el protocolo del TRIzol (Invitrogen, Calsbad, CA, USA) y se cuantificaron midiendo espectrofotométricamente la absorbancia a 260 nm.

El ADNc se sintetizó a partir de 1 ug de ARN utilizando el High-Capacity ADNc Archive Kit (Applied Biosystems, Foster City, USA) siguiendo las instrucciones del proveedor, excepto que se disminuyó el volumen final de la reacción a 50 µl.

4. Selección de "productos de expresión génica TaqMan" y RT-PCR cuantitativa a tiempo real (qRT-PCR).

65

Una vez conocidos los genes de interés, se seleccionaron los *primers* y sonda fluorescente (TaqMan Assays-on-DemandTM Gene Expression Products) para la cuantificación de la expresión génica mediante qRT-PCR en la web de Applied Biosystems (http://www.appliedbiosystems.com/).

Se configuró una tarjeta multifluídica (TaqMan Low Density Array, TLDA) que contenía 384 ensayos que correspondían tanto a genes de diagnóstico, como a genes de pronóstico, como a los genes controles endógeno (figura 8). Esta configuración de TLDA permite analizar una sola muestra por tarjeta. En la tabla de la figura 8 se indica el nombre y símbolo del gen, así como el clon de Affymetrix en el que se encontró la expresión diferencial del gen. También se define el nombre del TaqMan Gene Expression Assay (http://www.appliedbiosystems.com/) seleccionado para la tarjeta microfluídica TaqMan Low Density Array. Este nombre de ensayo a su vez está indicando la región génica que se amplificará en la qRT-PCR. Finalmente, se indica uno de los transcritos mayoritarios que se amplificará con este ensayo (Ref Seq o Gene Bank mRNA).

Las PCR se realizaron en un ABI PRISM 9700 HD SDS (Applied Biosystems, Foster City, USA) siguiendo las instrucciones del proveedor.

Se analizaron mediante TLDA de 384 genes un total de 60 muestras:

- 39 muestras de lavado vesical tumoral
- 15 muestras de lavado vesical control
- 3 muestras orina tumoral

20

2.5

15

- 3 muestras de sangre periférica; esto se realizó dado que en el análisis anterior, basado en microarrays de Affymetrix, habíamos observado contaminación de tejido muscular en las supuestamente muestras puras de mucosa vesical y teníamos indicios para sospechar que en las muestras de fluidos vesicales pudiese haber contaminación debida al sistema inmune. Por ello se decidió analizar 3 muestras de linfocitos para poder eliminar por comparación aquellos genes que se expresasen mucho en sangre (dado que la sangre sería un contaminante constante en las muestras de fluido vesical procedente de pacientes con tumor vesical).

30 5. Análisis de las TLDA de 384 genes

Una vez realizadas todas las PCRs se establecieron los niveles de corte (*thresholds*) y niveles basales (*baseline*) más apropiados para cada gen y se calcularon los Ct (*cicle threshold*) o datos de expresión crudos mediante el programa SDS 2.1 (Applied Biosystems).

15

Posteriormente, se calculó la medida de expresión relativa de cada gen o delta Ct (Ct del gen diana - Ct del control endógeno, *GUSB* en nuestro caso) y se estudió como se agrupaban las muestras individuales mediante un cluster no supervisado (usando distancias euclidianas y UPGMA) (Figura 6). El primer nivel de clasificación que se observa en este cluster es la diferenciación entre las 3 muestras provenientes de sangre periférica y las muestras de los fluidos vesicales (lavados vesicales y orinas). Por otro lado, los fluidos vesicales se sub-agrupan en un conjunto de muestras que agrupan en parte superior del cluster (desde la muestra B155-RV_T2alto hasta la B288-RV1_TaG2alto) y que está formado sólo por muestras de fluidos vesicales tumorales, y otro conjunto de muestras en la parte inferior del cluster (a partir de la muestra B71-RV_TaG2bajoCIS hasta la B109-RV_T2alto) que está formado por una mezcla de fluidos vesicales tumorales y controles. A su vez, dentro del cluster superior podemos diferenciar entre tumores de alto grado y bajo grado, mientras que en el inferior aparece una agrupación con casi sólo muestras controles y otra con mezcla de controles y tumores. Se ha de tener en cuenta que se ha pasado de analizar tejido en *pooles* a fluidos vesicales en muestras individuales, por lo que era relativamente previsible esta pérdida de potencia de discriminación mediante cluster

El objetivo de este análisis era reducir el número de genes a estudiar en la siguiente fase, con un número mayor de muestras, de 384 a 96. Para el proceso de selección de los mejores genes se tuvieron en cuenta distintos parámetros, entre ellos el estadístico descrito anteriormente (*minimum fold change*), pero también la proporción en escala logarítmica de las medianas de los 2 grupos comparados (*median fold change*) y un análisis manual individualizado por genes de los distintos valores de intensidad. Esto nos permitió reducir el grupo inicial de 384 genes a los 96 genes que requeríamos para la siguiente fase de experimentos (Figura 9).

Ejemplo 4

60 Segunda selección de genes para incrementar la potencia diagnóstica/pronóstica

En esta fase del trabajo el objetivo era conseguir aumentar la potencia de discriminación entre muestras tumorales y controles. Para ello, se pretendía analizar un número mayor de muestras de fluido vesical y reducir, si era posible, al menos a la mitad el número de genes en los que se debería basar el prototipo inicial del sistema de diagnóstico y pronóstico.

Muestras a analizar y TLDA de 96 genes

Las tarjetas multifluídicas (TaqMan Low Density Arrays) que contenían 96 ensayos (figura 9) se configuraron y procesaron de la misma manera que se hizo con las de 384 genes, con la diferencia que esta configuración de TLDA permite analizar 4 muestras por tarjeta.

Se analizaron mediante TLDA de 96 genes un total de 80 muestras:

- 42 muestras de lavado vesical tumoral
- 8 muestras de lavado vesical control
- 15 muestras orina tumoral
- 15 muestras orina control

2. Análisis de las TLDA de 96 genes

Dado que la tecnología utilizada en la fase anterior de experimentos (ejemplo 3) era exactamente la misma que en este ejemplo y los genes analizados en esta fase estaban ya incluidos en las TLDA de 384 genes analizadas previamente, se decidió extraer y sumar las 60 muestras del ejemplo 3, con los datos de las nuevas 80 muestras (Total= 140 muestras).

Se realizó un primer análisis mediante cluster no supervisado de las 140 muestras con las expresiones de los 96 genes y pudimos observar 2 grandes grupos claramente diferenciados (Figura 7). En el primer grupo (Figura 7.B) todas las muestras son tumorales sin excepción. En cambio, en el segundo grupo (Figura 7.A) la mayor parte de muestras son controles, pero hay algunas muestras tumorales, con un perfil genético no distinguible de las muestras normales. La conclusión que se podía extraer de este resultado era que la mayor parte de tumores presentaban unos perfiles genéticos característicos y diferenciados de las muestras control, aunque había algunos casos en los que el perfil general no se distinguía de una muestra normal y, por tanto, no podrían ser detectados. Estábamos observando otra vez el mismo efecto que para el ejemplo 3, aunque ahora nuestra capacidad de discriminación en las muestras era superior.

Basándonos en los datos que se habían observado de los clusters y en análisis exploratorios propios intentando utilizar otros algoritmos de clasificación (como análisis lineal discriminante, k-nearest neighbor (KNN), etc.) se pudo observar que el problema de la discriminación de algunos tumores respecto a las muestras control persistía. La nueva hipótesis de trabajo fue que cualquier sistema de cálculo global de una medida discriminatoria utilizando un grupo de genes concreto tendría el mismo problema. Este consistía en que, debido a la elevada heterogeneidad de los tumores, resultaba relativamente fácil reconocer los perfiles de la mayoría, que tendrían alteraciones mayoritariamente parecidas, aunque siempre habría una minoría de casos para los que el comportamiento global de los genes seleccionados para su análisis no se distinguiría de las muestras controles, ya que tendrían alteradas vías minoritarias.

Para detectar tanto los tumores mayoritarios como los minoritarios, se estableció un "sistema de alarmas" mediante el establecimiento de un rango de valores entre los que oscilaban las muestras control y añadiendo un intervalo de confianza de manera que se pudiera determinar un punto a partir del cual una expresión que estuviera por encima (o por debajo en caso de los genes infraexpresados) fuera indicativa de tumor, independientemente de los valores de expresión observados en los otros genes. La ventaja de este sistema es que, aunque el tumor presente perfiles generales de expresión parecidos a muestras sanas, si uno de los genes alarma se dispara, permite afirmar que nos encontramos frente a una muestra tumoral.

La primera etapa en el desarrollo de dicho sistema fue la estimación de los rangos de expresión de los controles y sus intervalos de confianza. Ya que ahora era muy importante que en los valores controles no hubiera errores técnicos, que alterarían falsamente los rangos, se decidió eliminar aquellos controles que no presentaran un nivel de calidad mínimo. Para calcular esta medida de calidad se utilizaron 3 genes (GUSB, 18S y PPIA) que además sirvieron como controles endógenos (calculando su media geométrica) para la cuantificación relativa de todos los genes. Analizando el comportamiento individual de la distribución de cada gen no se pudo verificar que se cumpliera un ajuste suficiente a una distribución normal, por lo que no se pudo establecer unos intervalos de confianza basados en su varianza. Como alternativa, se decidió establecer unos intervalos de confianza arbitrarios y fijos con distintos niveles de rigurosidad (como punto umbral se decidió utilizar el doble, 4 veces u 8 veces el valor del control con valores de expresión más parecidos a los tumores).

Una vez determinado el punto umbral para cada gen, se resumió toda esta información en una matriz con los 96 genes contra las muestras tumorales. Se marcaron con 0 los valores que no superaron el nivel de corte y con 1 los que si lo superaron (para cada nivel de estringencia). Para seleccionar los mejores genes (con los que se pretendía reducir el perfil al menos a 48) se tuvieron en cuenta dos propiedades: 1) que el gen pudiera detectar un gran número de tumores (buscando los que tuvieran una mayor suma de valores 1) y 2) que esta detección fuera el máximo de independiente de otros genes alarma (para poder detectar el máximo de vías minoritarias).

50

10

15

20

Como resultado, se hubiera podido reducir el número de genes interesantes a menos de 48, aunque por razones técnicas y siendo conservadores se decidió mantener este número para su análisis en fases posteriores, ya que algunos intervalos en los controles podrían no ser completamente correctos (debido al bajo número de muestras control analizadas hasta el momento).

Para automatizar el proceso de análisis de nuevas muestras a partir del perfil genético de los 48 genes seleccionados (figura 10) se creó un programa informático que partiendo de los resultados de Cts obtenidos de la qRT-PCR es capaz de realizar una predicción diagnóstica. Este programa es capaz de utilizar distintos ficheros de parámetros (dependiendo de la estringencia en los intervalos), con lo que los valores de sensibilidad (SN) y especificidad (SP) varían. Utilizando el fichero de parámetros menos estringente (punto de corte al doble del control más cercano a los tumores) se obtuvo SN=100% y SP=100%. En el caso del segundo fichero de parámetros (punto de corte 4 veces del control más cercano a los tumores) se obtuvo SN=98,96% y SP=100%. En el último caso (punto de corte 8 veces el peor control) se obtuvo SN=97,93% y SP=100%. Es importante señalar que estos resultados se han obtenido sobre las mismas muestras utilizadas para generar los ficheros de parámetros, por lo que probablemente se esta produciendo una sobreestimación (*overfitting*) que seria necesario estimar en experimentos posteriores con muestras nuevas.

Ejemplo 5

55

20 Desarrollo de un modelo final de diagnóstico

Los objetivos en esta fase del proyecto eran probar y mejorar el modelo de predicción de tumores así como reducir al mínimo el número de genes utilizados para realizar la predicción.

Para esta fase fue necesario ampliar mucho más el conjunto de muestras tanto tumorales como normales. Se analizaron 440 nuevas muestras mediante tarjetas microfluídicas de 48 genes, que se han añadido a los datos del ejemplo 3 (60 muestras) y del ejemplo 4 (80 muestras).

Una vez realizados los controles de calidad mínimos en las muestras, se procedió a analizarlas mediante el modelo cualitativo de alarmas descrito previamente. El resultado que obtuvimos (SN=0.81 y SP=0.81) difería bastante del obtenido con el modelo final del ejemplo 4, por lo que se decidió intentar mejorarlo, ya que probablemente tenía bastante sobreentrenamiento.

A partir de la observación de los histogramas de frecuencias discretizadas de cada uno de los genes, se pudo observar como se distribuían las muestras tanto tumorales como controles. Debido al hecho de haber aumentado mucho el muestreo, el límite de solapamiento entre las distribuciones se había reducido de forma importante. También se pudo observar que, aunque en muy baja frecuencia, algunos casos controles tenían unos niveles de expresión muy parecidos a los tumores.

Aunque, a nivel conceptual, el sistema cualitativo de alarmas desarrollado se seguía considerando una buena aproximación al comportamiento celular de las expresiones génicas, el no poder cuantificar la importancia de cada uno de los genes representaba una seria limitación al poder predictivo del mismo.

En base al mismo concepto de alarmas se decidió intentar desarrollar un modelo cuantitativo, lo cual fue posible utilizando el teorema de las probabilidades condicionadas de Bayes.

Ya que el número de muestras analizadas es suficientemente elevado, se puede estimar a partir de las frecuencias de expresión observadas las probabilidades de que dado un valor de expresión la muestra sea o un tumor o un control.

Una de las ventajas de un modelo basado en el teorema de Bayes es que se puede aplicar a cada gen sensor de forma independiente. La expresión génica observada modificará la probabilidad que se tenía *a priori* de ser un tumor dando una probabilidad *a posteriori*, la cual podrá ser usada de nuevo como probabilidad *a priori* para el siguiente gen. De hecho, implicitamente se está asumiendo independencia entre los distintos genes.

El número final de muestras sobre las que se ha podido aplicar el modelo fue de 308 tumores y 156 controles.

Cuando se aplicó nuestro modelo iterativamente sobre los 48 genes se obtuvo una mejora significativa en el poder de predicción del modelo cualitativo anterior (SN=0.86 y SP=0.92), aunque estudiando los histogramas de frecuencias pudimos observar que muchos genes parecían no aportar información significativa al modelo final. Por tanto, se propuso seleccionar el subconjunto de genes suficiente y necesario para capturar el máximo de información diagnóstica de las muestras.

Utilizando el modelo cuantitativo no se tenía una forma clara de realizar la selección de genes más interesantes. El antiguo modelo cualitativo si que permitía seleccionar los genes más informativos y, a la vez, con una mayor independencia entre ellos. El resultado de utilizar los mejores genes detectados con el modelo cualitativo (CTSE, MAGEA3, CRH, SLC1A6, PPP1R14D, IGF2, C14orf78 y KLF9) sobre el nuevo modelo cuantitativo mostró una mejora importante en los resultados (SN=0,89 y SP=0,96).

De todas formas, se decidió intentar otras aproximaciones. A partir del análisis visual de los histogramas de frecuencias de los 48 genes, se seleccionó el subconjunto aparentemente más informativo (ANXA10, CRH, IGF2, KRT20, MAGEA3, POSTN, SLC1A6 y TERT) y con histogramas más variados entre si (esperando que este hecho indicara una mayor independencia entre ellos). El resultado obtenido también mostraba una mejora significativa respeto al análisis de los 48 genes (SN=0,90 y SP=0,96).

Finalmente, ya que tanto el subconjunto de genes obtenidos mediante el modelo cualitativo como los genes seleccionados visualmente mostraban mejoras respecto al modelo cuantitativo inicial, se decidió combinar los genes de las 2 aproximaciones (ANXA10, C14orf78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6 y TERT). El resultado del modelo combinado fue ligeramente mejor que cualquiera de ellos (SN=0,91 y SP=0,96).

Una vez obtenido el modelo, se decidió estudiar si existía algún patrón común tanto en los tumores como en los controles mal clasificados. En el caso de los controles, se pudo detectar una presencia significativa de muestras con tumores en contacto con el sistema urinario (tumores de próstata, de riñón y de pene principalmente). Probablemente, este tipo de muestras tienen patrones de expresión comunes con los tumores de vejiga, con lo que pueden confundir al método de predicción. Por tanto, se decidió eliminar de las muestras control todos aquellos casos con tumores que pudieran encontrarse en contacto con el sistema urinario.

El número de muestras control descendió de 156 a 126, quedando igualmente 308 muestras tumorales. Utilizando el modelo cuantitativo con los 48 genes sobre esta nueva población se observó una mejora importante (SN=0,90 y SP=0,93). En el caso de los 8 genes más independientes se obtuvo: SN=0,91 y SP=0,97. En el subconjunto con los histogramas más interesantes se obtuvo: SN=0,91 y SP=0,97. Finalmente, en el subconjunto combinado de genes se obtuvo: SN=0,93 y SP=0,97. Volviendo a calcular los datos con cada subconjunto seleccionado previamente podemos ver que en general se había conseguido aumentar la potencia del modelo eliminando este tipo de controles.

En lo referente al estudio de los tumores mal clasificados, se detectó un incremento significativo en el número de cistectomias presentes en este grupo. Se cree que la previa resección transuretral (RTU) que frecuentemente se realiza muy cercana en el tiempo a la cirugía radical podría estar alterando el perfil molecular que se observó, ya que las masas tumorales han sido retiradas físicamente de forma parcial o total de las paredes epiteliales de la vejiga. Aunque en este estudio no se han eliminado los casos de cistectomia por no ser los datos concluyentes, es recomendable no incluir este tipo de muestras en el análisis de nuevas poblaciones.

5 Ejemplo 6

Desarrollo de un modelo final de pronóstico

Aunque la preocupación más importante era la predicción tumoral (predicción de diagnóstico) también se estaba interesado en clasificar los distintos tipos de tumores (predicción de pronóstico), lo cual constituye el objetivo principal de este apartado. Esta clasificación podría permitir personalizar más el tratamiento en cada caso.

La clasificación tumoral se basa actualmente en la observación macroscópica y microscópica en el laboratorio de anatomía patológica. Mediante unas observaciones más o menos estandarizadas basadas en la profundidad del tumor y en el aspecto microscópico de las células se decide su clasificación. Estudios moleculares recientes parecen indicar que en realidad hay dos perfiles genéticos diferenciales que mayoritariamente separan los tumores de tipo superficial y los tumores infiltrantes.

Para poder realizar un modelo de clasificación de pronóstico se necesitaría tener los distintos grupos tumorales correctamente separados. Las observaciones anatomo-patológicas no garantizan la correspondencia con el comportamiento a nivel molecular de las muestras, por lo que no parecía buena idea derivar un modelo pronóstico únicamente a partir de esta clasificación. Se optó por utilizar un sistema de clasificación mediante cluster no supervisado (que mayoritariamente separaba las muestras en 2 grandes grupos) además de tener en cuenta la gradación anatomo-patológica (AP).

Como grupo de muestras tumorales superficiales válidas era necesario que agruparan según el cluster en el conjunto que les correspondía y según AP debían ser tumores Ta, T1 grado bajo y sin carcinoma *in situ* (cis) asociado. Los tumores infiltrantes debían pertenecer al grupo correspondiente del cluster y según AP debían ser tumores tipo T1 alto grado, T2, T3 o T4 y cualquier tumor con presencia de CIS.

En el grupo de muestras definido como superficiales se clasificaron 129 de los 308 tumores. En el grupo definido como infiltrantes se clasificaron 100 de los 308. Finalmente, 79 muestras tumorales o presentaban discordancias entre su clasificación por anatomo-patológica y su perfil molecular o no quedaban claramente definidas dentro de los dos grupos mayoritarios del cluster.

La metodología utilizada para crear un modelo que discriminara entre tumores superficiales e infiltrantes es exactamente la misma que la utilizada en el ejemplo 5 para obtener un modelo diagnóstico.

Cuando se aplicó el teorema de Bayes utilizando los 48 genes se obtuvo una buena clasificación (SN=0,97 y SP=0,96).

Analizando los histogramas de frecuencias se pudo observar que los genes interesantes para diagnóstico coincidían en gran medida con los genes de pronóstico. Sin embargo, había algunos genes (MCM10 y ASAM) que no eran adecuados para diagnóstico y sí para pronóstico, por lo que estos dos fueron añadidos a los 12 genes previamente seleccionados. El modelo de 14 genes resultante demostró funcionar casi a la perfección (SN=0,99 y SP=1,00).

En la tabla 1 se incluyen los 14 genes, indicando el símbolo del gen y el nombre del ensayo de expresión génica TaqMan seleccionado para la tarjeta microfluídica TaqMan Low Density Array.

TABLA 1

15	Símbolo del gen	TaqMan Gene Ensayo de expresión
	ANXA10	Hs00200464 m1
20	C14orf78	Hs00746838 s1
	CTSE	Hs00157213 m1
25	CRH	Hs00174941 m1
23	IGF2	Hs00171254 m1
	KLF9	Hs00230918 m1
30	KRT20	Hs00300643 m1
30	MAGEA3	Hs00366532 m1
	POSTN	Hs00170815 m1
35	PPP1R14D	Hs00214613_m1
	SLC1A6	Hs00192604_m1
	TERT	<u>Hs00162669_m1</u>
40	ASAM	<u>Hs00293345_m1</u>
	MCM10	<u>Hs00218560_m1</u>

45

50

55

60

REIVINDICACIONES

- 1. Un procedimiento in vitro no invasivo para diagnosticar y/o pronosticar cáncer vesical que comprende:
 - a. detectar y cuantificar en una muestra de fluido vesical obtenida de un sujeto el patrón de expresión de la combinación de los genes de anezina A10 (ANXA10); marco de lectura abierto 78 del cromosoma 14 (C14orf78); catepsina E (CTSE); hormona liberadora de corticotropina (CRH); factor 2 similar a la insulina (IGF2); factor 9 similar a Kruppel (KLF9); queratina 20 (KRT20); antígeno del melanoma, familia A, 3 (MAGEA3); periostina, factor específico de osteoblastos (POSTN); proteína fosfatasa 1, sububidad 14D reguladora (inhibidora) (PPP1R14D); familia 1 de transportadores de soluto (transportador de aspartatp/glutamato de alta afinidad), miembro 6 (SLC1A6); telomerasa transcriptasa inversa (TERT); molécula de adhesión específica de adipocitos (ASAM) y deficiente 10 de mantenimiento de minicromosomas (S. cerevisiae) (MCM10); y

b. comparar los resultados obtenidos en la etapa a) con los valores normales de referencia para dichos genes en fluidos vesicales.

- 2. El procedimiento in vitro no invasivo según la reivindicación 1, caracterizado porque la muestra de fluido vesical es orina.
 - 3. El procedimiento de acuerdo con las reivindicaciones 1 ó 2, **caracterizado** porque la cuantificación de la expresión de los genes en la etapa a) se lleva a cabo por medio de PCR cuantitativa en tiempo real.
 - 4. Uso *in vitro* de la combinación de los genes ANXA10, C14orF78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6, TERT, ASAM y MCM10 como marcadores de diagnóstico y/o pronóstico del cáncer vesical.
- 5. Un kit de diagnóstico y/o pronóstico del cáncer vesical para llevar a cabo el procedimiento de la reivindicación 1, que consisten en un grupo de sondas adecuadas para la detección y cuantificación del patrón de expresión de la combinación de los genes ANXA10, C14orF78, CTSE, CRH, IGF2, KLF9, KRT20, MAGEA3, POSTN, PPP1R14D, SLC1A6, TERT, ASAM y MCM10.

19

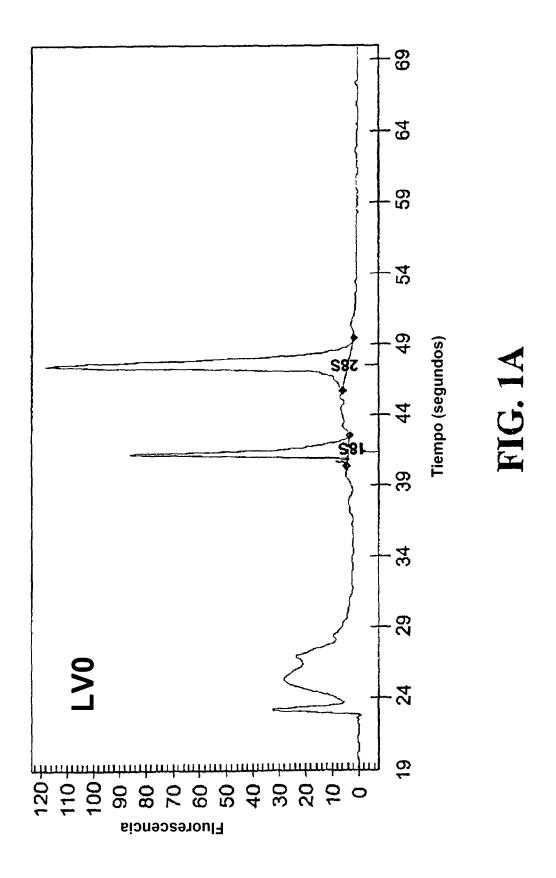
15

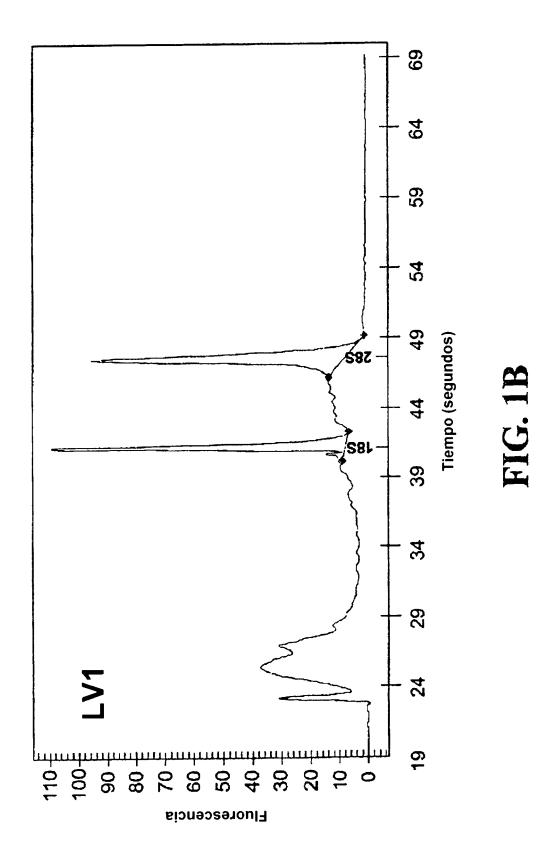
5

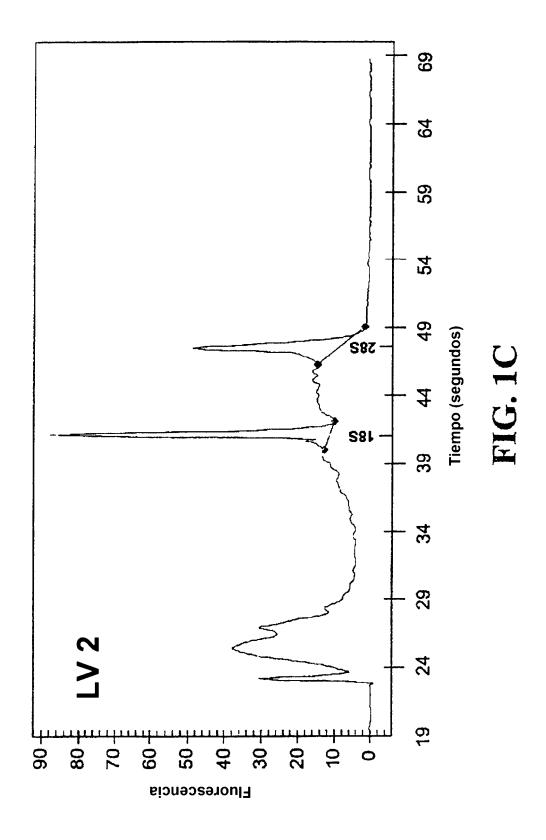
10

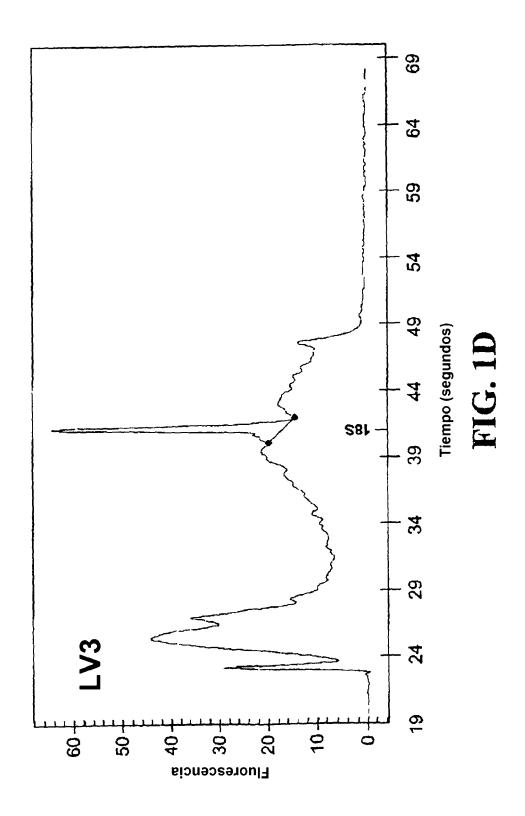
25

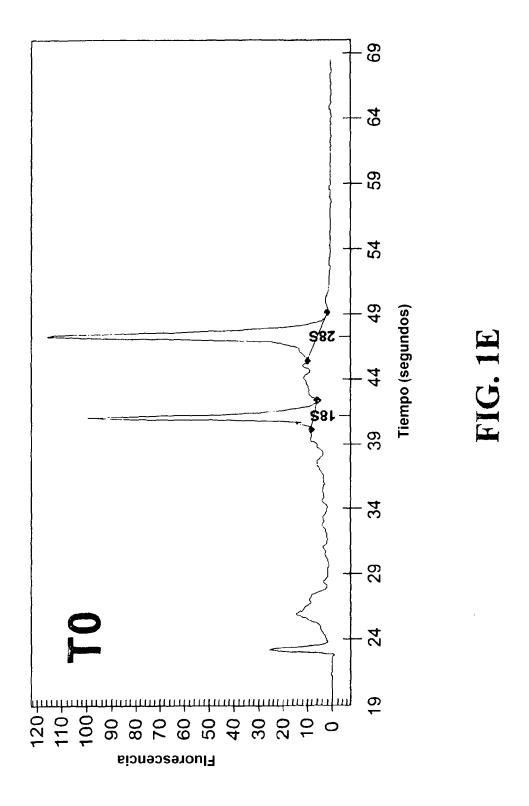
35

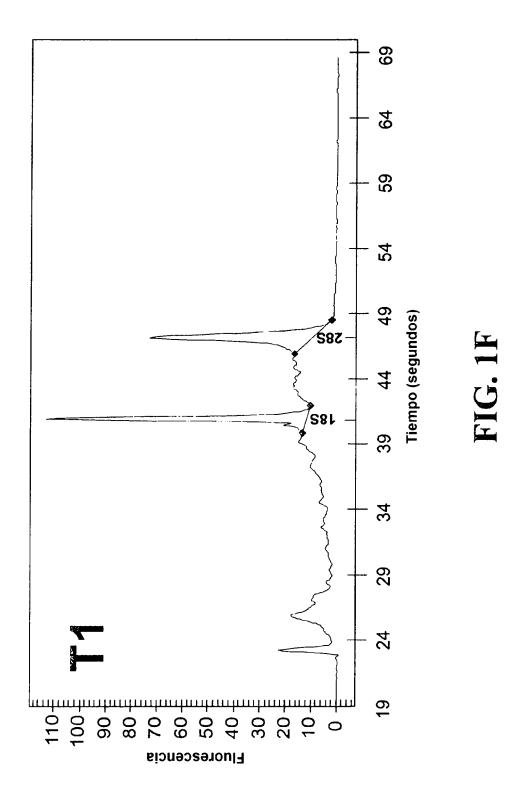

40

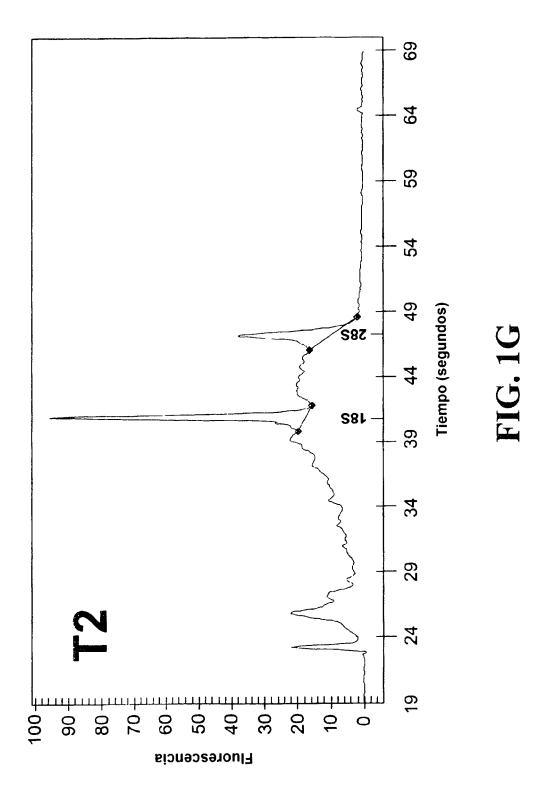

45

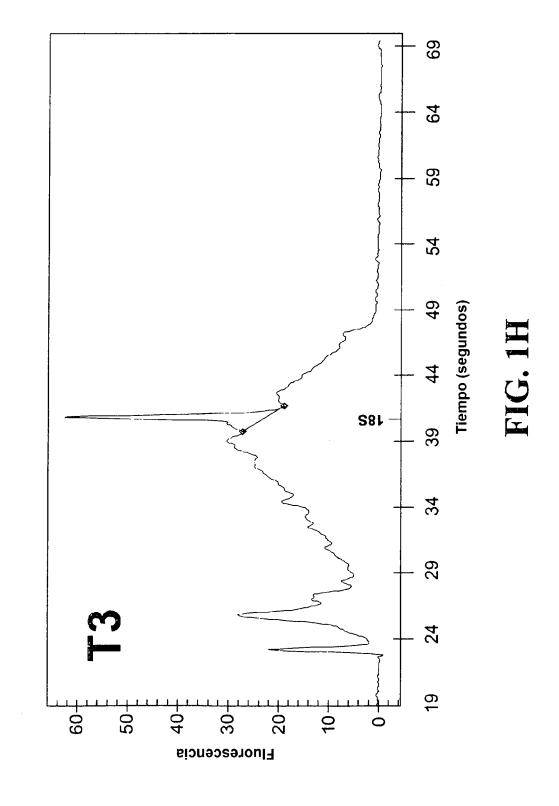

50

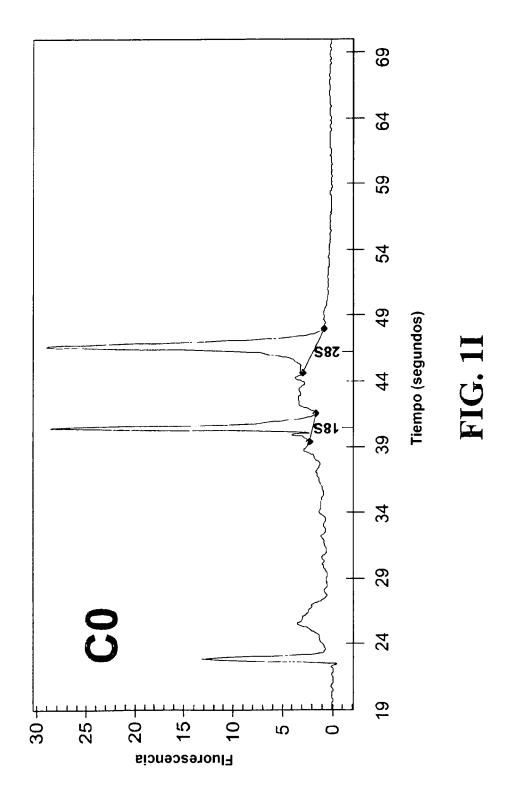

55

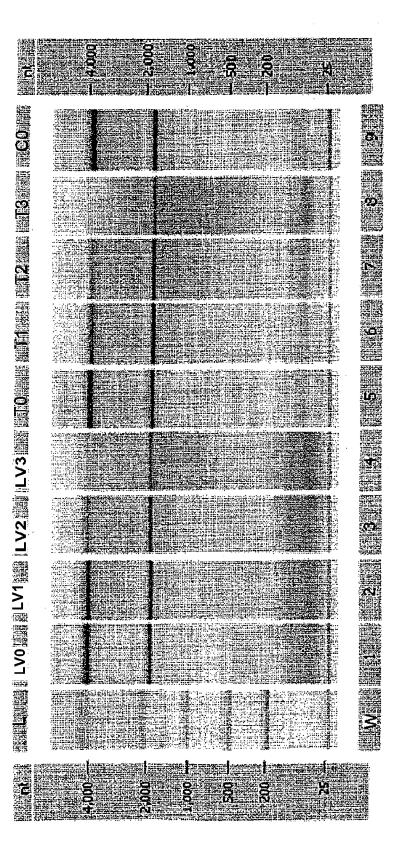

60











FIC

a)

	TO	T1	T2	T3	LV0	LV1	LV2
T1	89						
T2	85	91					
T3	86	87	90				
LV0	59	59	56	54			
LV1	60	59	56	54	93		
LV2	58	56	53	52	89	91	
LV3	56	56	53	52	79	82	78

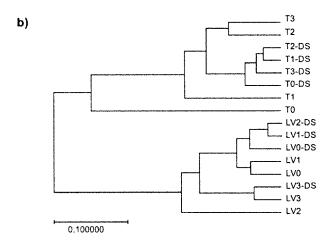


FIG. 2

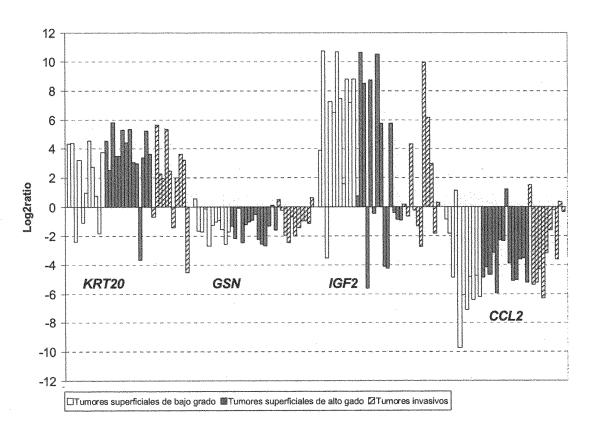


FIG. 3

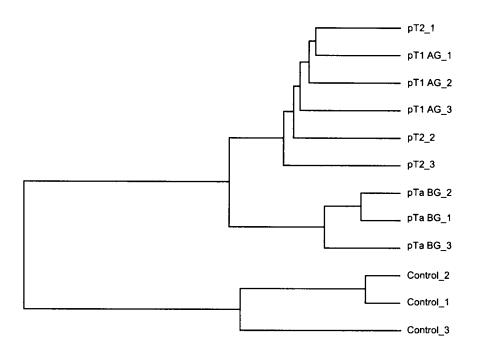


FIG. 4

	Combinaciones			Muestras individuales					
	No.	µarrays	qRT-PCR	Media	1	2	3	4	5
TCN1	1	6,55	8,82	8,01	1,23	-0,29	6,99	8,12	9,78
	2	6,71	9,42	8,15	6,80	7,47	-0,59	3,97	10,12
	3	5,10	8,34	6,48	7,50	6,73	5,89	5,28	5,93
L. Territoria	1	-5,47	-4,40	-5,24	-8,44	-7,04	-4,82	-6,42	-3,75
SORBS1	2	-3,88	-3,08	-3,19	-6,10	-1,30	-7,30	-6,45	MAX PROPERTY.
	3	-5,60	-4,09	-5,21	-6,42	-6,59	-3,75	-6,38	-
	1	-6,03	-7,60	-6,70	-11,53	-9,47	-6,03	-9,57	-5,06
MYH11	2	-3,52	-4,40	-4,11	-6,89	-2,19	-9,32	-8,71	200 100 100
	3	-6,93	-7,69	-8,36	-7,99	-9,95	-7,59	-8,91	49.9240
	1	-4,97	-6,36	-5,45	-12,15	-8,56	-3,93	-6,09	-5,01
SRPX	2	-5,59	-5,62	-5,58	-5,60	-4,26	-8,56	-6,95	****
	3	-5,90	-6,43	-6,45	-7,01	-8,13	-5,03	-8,04	-
	1	3,53	5,44	3,68	-5,82	0,11	-2,12	5,36	4,44
CRH	2	7,25	10,56	7,95	3,18	8,67	9,14	2,64	distribution
	3	6,11	8,22	5,95	7,83	4,29	-2,12	-1,71	Open State State
	1	8,53	8,15	7,46	1,13	9,77	-1,09	1,47	0,27
KRT14	2	3,89	3,58	2,78	4,04	3,24	-1,26	-1,07	2,91
	3	2,55	2,25	1,82	3,37	2,70	-2,98	-2,17	-1,18
	1	5,47	4,97	3,81	1,83	4,27	3,16	4,91	3,09
RRM2	2	6,02	5,41	4,38	4,04	4,95	3,16	3,65	5,13
	3	4,98	4,46	3,68	4,01	4,44	2,46	2,97	3,67
FOSB	1	-5,79	-10,39	-10,25	-12,36	-11,10	-10,68	-10,63	-8,83
	2	-4,94	-6,72	-6,87	-9,86	-7,08	-11,82	-9,83	-4,93
	3	-5,33	-8,09	-8,28	-10,05	-8,68	-10,41	-11,59	-6,42
CEACAM6	1	6,42	8,02	8,23	4,50	2,21	10,53	-0,19	-0,17
	2	3,00	4,72	4,29	6,34	3,92	-2,81	0,40	-0,87
	3	6,35	8,04	8,17	4,13	7,83	10,13	5,85	3,62
CES1	1	-5,94	-8,43	-8,13	-8,74	-9,04	-8,39	-7,12	-8,21
	2	-6,12	-8,47	-8,18	-9,34	-7,98	-9,05	-7,40	-7,99
	3	-6,04	-8,66	-7,76	-9,67	-7,71	-7,99	-8,54	-6,59

FIG. 5

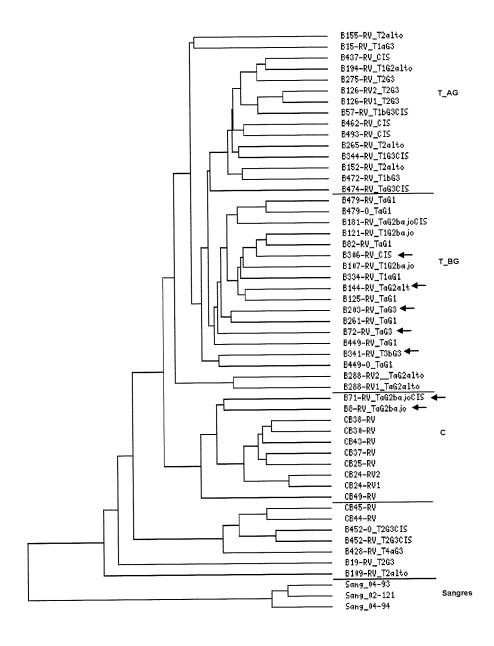


FIG. 6

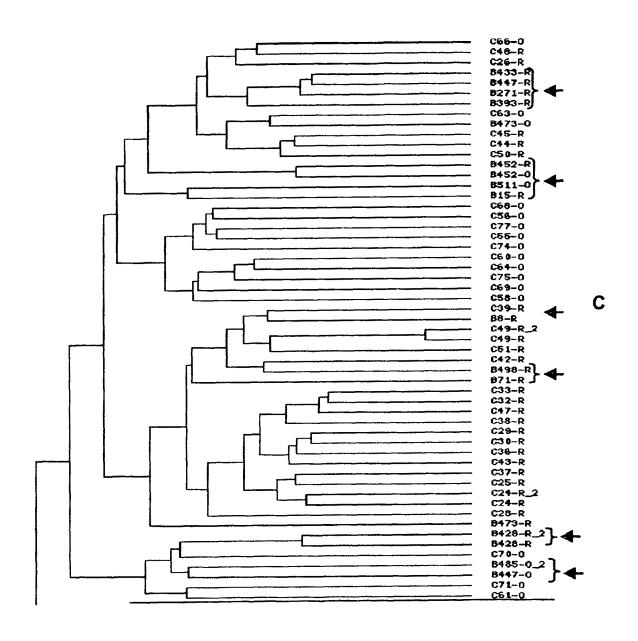


FIG. 7A

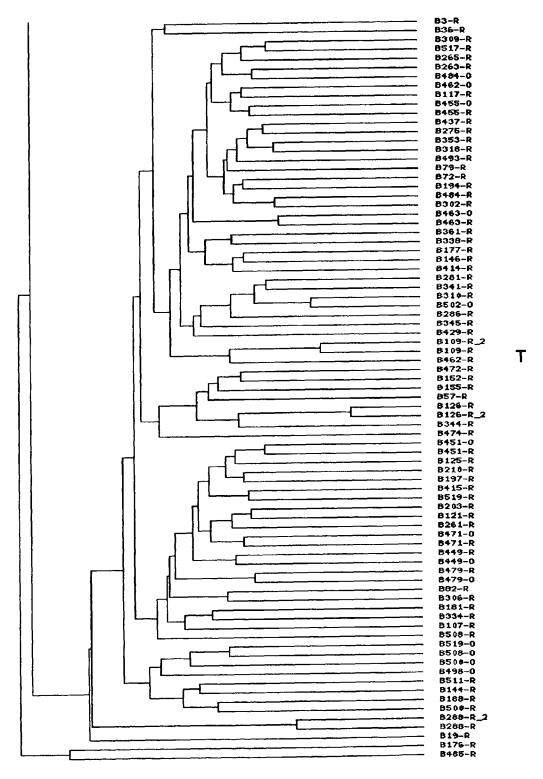


FIG. 7B

Símbolo	Clon de	TaqMan Gene	RefSeq o Gene	
del gen	Affymetrix	Ensayo de expresión	Banco de ARNm	Nomice del gen
ABCA8	204719_at	Hs00200350_m1	NM 007168	ABC1 Miembro 8 de la subfamilia A de casete de unión a ATP
ABL1		Hs00245445_m1	2 RefSegs	Homólogo 1 del oncogen de la leucemia viral murina v-abl Abelson
ADAM19	209765_at	Hs00224960_m1	2 RefSeqs	Dominio de desintegrina y metaloproteinasa 19 meltrin-beta.
ADAMTS1	222162_s_at	Hs00199608 m1	NM 006988	Tipo similar a la desintegrina y reprolisina de metaloproteasa con motivo 1 de tipo trombospondina.
AEBP1	201792_at	Hs00371239_m1	NM 001129	Proteina 1 de unión a AE
AIM2	206513_at	Hs00175457_m1	NM 004833	Ausente en melanoma 2
AKR1B10	206561_s_at	Hs00252524 m1	NM 020299	Miembro B10 de la familia 1 de la aldo-eto reductasa, aldosa reductasa.
AL137566	228554_at	Hs00612017_s1	AL 137566	
ANK2	202920_at	Hs00153998 m1		Anquirina 2 neuronal.
ANLN	222608_s_at	Hs00218803 m1	NM 018685	Homólogo de la proteína de unión a anilina actina de Drosophila
ANXA1	233011_at	Hs00167549_m1	NM 000700	Anexina A1.
ANXA10	210143_at	Hs00200464_m1	NM 007193	Anexina A10.
AOC3	204894_s_at	Hs00186647_m1	NM 003734	Amina oxidasa de cobre que contiene 2 proteínas de adhesión vascular 1.
APOBEC3B	206632_s_at	Hs00358981_m1	NM 004900	ARNm de apolipoproteína B que edita 3B similar al polipéptido catalítico enzmático.
AREG	205239_at	Hs00155832_m1	NM 001657	Factor de crecimiento derivado del schwanoma de anfiregulina
ARGBP2	225728_at	Hs00221428 m1	NM 021069	Proteína ArgBP2 de interacción con Abl
ASAM	226834_at	Hs00293345_m1	NM 024769	Molécula de adhesión específica de adipocitos.
ASPM	219918_s_at	Hs00411505 m1	NM 018136	Asp anormal microcefalia similar a huso asociada con Drosophila

ATF3	202672_s_at	202672_s_at <u>Hs00231069_m1</u>		Factor 2 activador de la transcripción.
ATP5B		Hs00266077_m1	NM_001686	
ATP8B2	226771_at	Hs00393111_m1	NM_020452	Miembro 2 de ATPasa de clase I tipo 8B
C2orf32	226751_at	Hs00384403_m1	NM_015463	DKFZP566K1924. Marco de lectura abierto 32 del cromosoma 2.
OLFML1	217525_at	Hs00416948 m1	NM 198474	MVAL564 UNQ564. OLFML1 similar a olfactomedina 1
BAG2	209406_at	Hs00188716_m1	NM 004282	Proteína Bcl-2 reguladora de la apoptosis.
MGC16635	236285_at	Hs00536653_s1	NM 138433	Hypothetical protein BC009980. LOC113730. Kelch repeat.
LOC387882	225105_at	Hs00329098_m1	NM 207376	
BMP5	205431_s_at	Hs00234930_m1	NM 021073	Proteína 5 morfogenética ósea.
KLF9	203542_s_at	Hs00230918_m1	NM 001206	Proteína 1 de unión al elemento básico de la transcripción.
BUB1B	203755_at	Hs00176169_m1	NM 001211	Gemación de BUB1 no inhibida por bencimidazoles homólogo 1 beta de levaduras
C100rf3	218542_at	Hs00216688_m1	NM 0181	Marco de lectura abierto 3 del cromosoma 10.
C10orf87	1552566_at	Hs00332436_m1	NM 144587	Marco de lectura abierto 87 del cromosoma 10.
C14orf78	212992_at	Hs00746838_s1		Marco de lectura abierto 78 del cromosoma 14.
C2orf23	204364_s_at	Hs00224761_m1	NM 022912	Marco de lectura abierto 23 del cromosoma 2. TB2/DP1 y proteína relacionada con HVA22.
C60r1109	218883_s_at	Hs00209864_m1	NM 015388	Proteína 1 de interacción con el antígeno nuclear latente KSHV. KLIP1.
C7	202992_at	Hs00175109_m1	NM 000587	Componente 7 del complemento.
CA2	209301_at	Hs00163869_m1	NM 000067	Anhidrasa carbónica II.
CALD1	205525_at	Hs00189021 m1		Caldesmon 1.
CAPNS2	223832_s_at	Hs00260517_s1	NM_032330	Subunidad 2 pequeña de calpaína. FIGURA 8B

CAV1	212097_at	Hs00184697_m1	NM 001753	Proteína caveolina 1 caveolae de 22 kDa.
CBFA2T1	228827_at	Hs00231702_m1	4 RefSegs	Dominio runt del factor de unión al núcleo, subunidad 2; translocado a 1; relacionado con la ciclina D.
CCL11	210133_at	Hs00237013_m1	NM 002986	Ligando 11 del motivo C-C de quimioquina.
CCL18	209924_at	Hs00268113_m1	NM 002988	Ligando 18 del motivo C-C de quimioquina pulmonar y regulado por activación.
CCL2	216598_s_at	Hs00234140_m1	NM 002982	Ligando 2 del motivo C-C de quimioquina.
CCNA2	203418_at	Hs00153138_m1	NM 001237	Ciclina A2.
CCNB1	214710_s_at	Hs00259126_m1	NM 031966	Ciclina B1.
CCNB2	202705_at	Hs00270424_m1	NM 004701	Ciclina B2.
CCND1		Hs00277039_m1	NM 053056	PRAD1 ciclina D1. Adenomatosis paratiroidea 1.
CCND2	200953_s_at	Hs00277041_m1	NM 001759	Ciclina D2. Regulación del ciclo celular Citocinesis.
CCNE1		Hs00233356_m1	2 RefSegs	Ciclina E1.
CDC2	210559_s_at	Hs00364293 m1	NM 001786	Ciclo 2 G1 a S y G2 a M de la división celular.
CDC20	202870_s_at	Hs00415851_g1	NM 001255	CDC20 Homólogo 20 del ciclo de división celular S. cerevisiae.
9DC9	203967_at	Hs00154374_m1	NM 001254	CDC6 Homólogo 6 del ciclo de división celular S. cerevisiae.
CDCA1	223381_at	Hs00230097_m1	2 RefSegs	Ciclo de división celular 1 asociado.
CDCA3	223307_at	Hs00229905_m1	NM 031299	Ciclo de división celular 3 asociado.
CDH1		Hs00170423_m1	NM 004360	Caderina 1 Caderina E epitelial de tipo 1.
CDH11	207173_x_at	Hs00156438_m1	2 RefSegs	Caderina 11 Caderina OB de osteoblastos de tipo 2.
CDH19	206898_at	Hs00253534_m1	NM 021153	Caderina 19 de tipo 2.
CDKN2A		Hs00233365_m1	3 RefSegs	Inhibidor quinasa 2A del melanoma p16 dependiente de ciclina inhibe CDK4.
CDKN2B	236313_at	Hs00365249 m1	NM 078487	Inhibidor quinasa 2B del melanoma p15 dependiente de ciclina inhibe CDK4.

FIGURA 8 C

CDKN3	209714_s_at	209714_s_at <u>Hs00193192_m1</u>	NM_005192	Inhibidor quinasa 3 dependiente de ciclina fosfatasa de especificidad dobla asociada con CDK2.
CEACAM6	211657_at	Hs00366002_m1	NM 002483	Molécula 6 de adhesión celular asociada con el antígeno carcinomebrionario (antígeno inespecífico de reaction cruzada).
CEACAM7	206199_at	Hs00185152_m1	NM_006890	Molécula 7 de adhesión celular 7 asociado on el antígeno carcinoembrionario.
CENPA	204962_s_at	Hs00156455_m1	NM 001809	Proteína A del centrómero 17 kDa.
CENPF	207828_s_at	Hs00193201_m1	NM 016343	Proteína F del centrómero de 350/400 kDa mitosina
CFL2	224663_s_at	Hs00368395_g1		Cofilina 2 del músculo.
ChGn	219049_at	Hs00218054_m1	NM 018371	Condroitín beta 4-N-acetilgalactosaminitransferasa.
CHI3L1	209395_at	Hs00609691_m1	NM_001276	Glicoproteína-39 del cartílago 1 similar a la quitinasa 3.
CKS2	204170_s_at	Hs00854958_g1	NM 001827	Subunidad 2 reguladora de la CDC28 proteína quinasa.
CLCA2	206165_s_at	Hs00197957_m1	NM_006536	Miembro 2 de la familia de los canales de cloruro activados por calcio.
CLCN3	201733_at	Hs00156527_m1	NM 001829	Canal 3 de cloruro.
CLIC3	219529_at	Hs00362166_g1	NM_004669	Canal 3 de cloruro intracelular.
CLIC4	201560_at	Hs00749895_s1	NM 013943	Canal 4 de cloruro intracelular.
COL14A1	212865_s_at	Hs00385388_m1		Alfa 2 undulina de colágeno tipo XIV.
COL15A1	203477_at	Hs00266332_m1	NM 001855	Alfa 1 de colágeno tipo XV.
COL1A2	202403_s_at	Hs00164099 m1	000089 NM	Alfa 2 de colágeno tipo I.
COL3A1	215076_s_at	Hs00164103_m1	060000 MN	Colágeno tipo III alfa 1, síndrome de Ehlers-Danlos tipo IV autosómico dominante.
COL5A2	221730_at	Hs00169768_m1	NM 000393	Colágeno tipo V alfa 2. Crecimiento celular y/o mantenimiento.
COL6A1	213428_s_at	Hs00242448_m1	NM 001848	Colágeno tipo VI alfa 1. Adhesión celular.
COL6A2	209156_s_at	Hs00242484_m1	NM 001849	Colágeno tipo VI alfa 2. Adhesión célula-célula.

FIGURA 8D

Miembro 12 de la subfamilia de colectina.	Carboxipeptidasa A3, mastocitos.	Carboxipeptidasa E.	Hormona liberadora de corticotropina.	Proteína 1 ácida de cartílago.	Factor de crecimiento del tejido conjuntivo.	Catepsina E	Cortactina.	Receptor X de timocitos corticales. Similar a CTZ de laevis.	Proteína 2 de unión al ARN, repetición triplete CUG.	Ligando 12 del motivo C-X-C de quimioquina, factor 1 derivado de células estromales.	Receptor 4 del motivo C-X-C de quimioquinas.	Citocromo b reductasa 1. Transporte de electrones.	Citocromo p450, familia 24, subfamilia A, polipéptido 1.	Inductor 61 angiogénico rico en cisteína. Regulación del crecimiento celular.	Segmento de ADN en el cromosoma 4, secuencia 234 de expresión única.	Delecionado en el cáncer vesical 1.	Decorina. Organogénesis.	Componente D de la adipsina del complemento.	Proteína DKFZp434B044 hipotética. FIGURA 8E
2 RefSegs	NM 001870	NM 001873	NM 000756	NM 018058	NM 001901		2 RefSeqs	NM 014312	NM 006561		NM 003467	NM 024843	NM 000782	NM 001554	NM 014392	NM 014618		NM 001928	NM_031476
Hs00560477_m1	Hs00157019_m1	Hs00175676_m1	Hs00174941_m1	Hs00216208_m1	Hs00170014_m1	Hs00157213_m1	Hs00193322_m1	Hs00204823_m1	Hs00272516_m1	Hs00171022_m1	Hs00237052_m1	Hs00227411_m1	Hs00167999 m1	Hs00155479_m1	Hs00205189_m1	Hs00180893_m1	Hs00266491_m1	Hs00157263_m1	Hs00230322_m1
221019_s_at	205624_at	201116_s_at	205630_at	221204_s_at	209101_at	205927_s_at		228232_s_at	202157_s_at	209687_at	217028_at	222453_at		201289_at	209569_x_at		209335_at	205382_s_at	/ 221541_at
COLEC12	CPA3	CPE	CRH	CRTAC1	CTGF	CTSE	CTTN	VSIG2	CUGBP2	CXCL12	CXCR4	CYBRD1	CYP24A1	CYR61	D4S234E	DBC1	DCN	DF	<i>DKFZp434B044</i> 221541_at

DKF7n56400823225809 at	23.225809 at	Hs00209875 m1	NM 015393	Proteina DKEZP56400823
27/17/18/06/1949	200000	1.0040001	000	
DKFZp586H2123 21 3661_at	23 21 3661_at	HS0040583/ m1	NM 015430	Proteina DKFZP586H2123
DKK1	204602_at	Hs00183740_m1	NM 012242	Homólogo 1 de Dickkopf de Xenopus laevis.
DFG7	203764_at	Hs00207323_m1	NM 014750	Homólogo 7 de discos grandes, Drosophila.
DOC1	1554966_a_at	1554966_a_at <u>Hs00706279_s1</u>		Regulado por disminución en el cáncer de ovarios 1.
DPT	213068_at	Hs00170030_m1	NM 001937	Dermatopontina. Adhesión celular.
DPYSL3	201431_s_at	Hs00181665_m1	NM 001387	Similar a dihidropirimidinasa 3.
DSCR1L1	203498_at	Hs00195165_m1	NM_005822	Gen 1 de la región crítica en el síndrome de Down, similar a 1
DTR	203821_at	Hs00181813_m1	NM 001945	Receptor de la toxina diftérica, factor de crecimiento similar al factor de crecimiento epidérmico de unión a heparina.
DUSP1	201041_s_at	Hs00610256_g1	NM 004417	Fosfatasa 2 de especificidad doble.
E2F3		Hs00605457_m1	NM 001949	Factor 3 activador de la transcripción E2F.
EBF	227646_at	Hs00395513_m1	NM 024007	Factor temprano de células B.
ECRG4	223623_at	Hs00260897_m1	NM 032411	Proteína del gen 4 relacionado con el cáncer esofágico.
ECT2	219787_s_at	Hs00216455_m1	NM 018098	Secuencia 2 del factor transformante de células epiteliales, oncogen.
EDNRA	204464_s_at	Hs00609865_m1	NM 001957	Receptor de tipo A de endotelina.
EGR1	201694_s_at	Hs00152928_m1	NM 001964	Respuesta temprana de crecimiento 1.
ENTPD3	206191_at	Hs00154325_m1	NM 001248	Ectonucleósido trifosfato difosfohidrolasa 3.
EPHA3	206070_s_at	Hs00178327_m1	NM 005233	EphA3.
EPHA7	229288_at	Hs00177891_m1	NM_004440	EphA7.
ERBB2		Hs00170433_m1	2 RefSeqs	Homólogo 2 del oncogen de la leucemia viral eritroblástica V-erb-b2, neuro/glioblastoma derived oncogene homolog avian.

Factor tisular de tromboplastina del factor III de coagulación.	Proteína 4 de unión a ácidos grasos, adipocitos.	Proteína 6 de unión a ácidos grasos,gastrotropina ileal.	Proteína alfa de activación de fibroblastos.	Fibulina 1.	Fibulina 5.	Fibrilina 1, síndrome de Marfan.	Fibrilina 2, aracnodactilia contractural congénita.	Proteína 32 única de la caja F.	Endonucleasa 1 específica de la estructura en alerón.	Sitio v-int-2 de integración en el virus de tumor mamario murino del factor 3 de crecimiento de fibroblastos, oncogen homólogo	Tirosina quinasa 2 relacionada con el receptor 1 del factor de crecimiento de fibroblastos, Síndrome de Pfeiffer.	Receptor 3 del factor de crecimiento de fibroblastos, enanismo tanatofórico acondroplasia.		Proteína hipotética FLJ10159	Proteína hipotética FLJ10719	Proteína hipotética FLJ11029	Proteína hipotética FLJ13710.	Proteína hipotética FLJ20607	Proteína hipotética FLJ20701
NM_001993 Fa	NM_001442_Pr	<u>NM_001445</u> Pr	<u>NM_004460</u> Pr	4 RefSegs Fi	NM_006329_Fi	NM_000138_Fi	NM_001999_Fi	ŗ	NM 004111 Er	Si <u>NM_005247</u> or	9 RefSeqs Pf	2 RefSegs Re	NM_006682	<u>NM_018013</u> Pr	NM_018193 P	NM 018304 Pr	<u>NM_024817</u> Pr	NM_017899_Pr	ģ
Hs00175225_m1	Hs00609791_m1	Hs00155029_m1	Hs00189476_m1	Hs00242545_m1	Hs00197064_m1	Hs00171191_m1	Hs00417208_m1	Hs00369714_m1	Hs00748727_s1	Hs00173742_m1	Hs00241111_m1	Hs00179829_m1	Hs00173847_m1	Hs00215979_m1	Hs00289551_m1	Hs00383634_m1	Hs00388227_m1	Hs00215487_m1	Hs00374054_g1
204363_at	203980_at	210445_at	209955_s_at	202994_s_at	203088_at	202766_s_at	203184_at	225328_at	204768_s_at			204380_s_at	227265_at	218974_at	213007_at	228273_at	222835_at	218872_at	219093_at
F3	FABP4	FABP6	FAP	FBLN1	FBLN5	FBN1	FBN2	FBXO32	FEN1	FGF3	FGFR1	FGFR3	FGL2	FLJ10159	FLJ10719	FLJ11029	FLJ13710	TSC	FLJ20701

Proteína hipotética FLJ21986 Proteína hipotética FLJ23191	Proteína hipotética FLJ2234. Región central S-II del factor de elongación de la transcripción.	Proteína hipotética FLJ31052	Proteólisis y peptidólisis.	Proteína hipotética FLJ138736.	Fibronectina 1.	Proteína 1 de unión a formina.	Homólogo del oncogen del sarcoma viral murino V-fos FBJ.	Homólogo B del oncogen del osteosarcoma viral murino FBJ.	Caja F1 Forkhead.	Caja M1 Forkhead.	Oncogen FYN relacionado con SRC FGR YES.	Homólogo 7 Frizzled, Drosophila.	Proteína 6 de unión a GATA.	Proteína de unión a GTP sobreexpresada en el músculo esquelético.	Gammaglutamil hidrolasa conjugada con folilpoligammaglutamil hidrolasa.	Receptor de la hormona de crecimiento.	Proteína beta 2 de unión tipo PAG de 26 kDa, conexina 26. Señalización célula-célula.	Proteína beta 6 de unión tipo GAP, conexina 30. FIG. 8H
NM 024913 NM 024574	NM 144569	NM 152378	NM 152491	NM_182758	7 RefSegs	NM_015033	NM 005252	NM 006732	NM 001451	2 RefSegs	3 RefSegs	NM 003507	NM 005257	NM 005261	NM 003878	NM 000163	NM 004004	NM 006783
Hs00227735 m1 Hs00375503 m1	Hs00375905_m1	Hs00708284_s1	Hs00611179_m1	Hs00419054_m1	Hs00365058_m1	Hs00390705_m1	Hs00170630_m1	Hs00171851_m1	Hs00230962_m1	Hs00153543_m1	Hs00176628_m1	Hs00275833_s1	Hs00232018_m1	Hs00170633_m1	Hs00608257_m1	Hs00174872_m1	Hs00269615_s1	Hs00272726_s1
228728_at 219747_at	_ 235417_at	238452_at	239929_at	227174_at	211719_x_at	212288_at	209189_at	202768_at	205935_at	202580_x_at	210105_s_at	203706_s_at	210002_at	204472_at	203560_at	205498_at	223278_at	231771_at
FLJ21986 FLJ23191	SPOCD1	FLJ31052	FLJ32569	FLJ38736	FN1	FNBP1	FOS	FOSB	FOXF1	FOXM1	FYN	FZD7	GATA6	GEM	НЭЭ	GHR	GJB2	GJB6

Gastroquina 1.	Inhibidor de la replicación de ADN geminina.	Glypican 6. Crecimiento y/o mantenimiento celular.	Glicoproteína M6B.	Receptor 124 acoplado a proteína G.	Homólogo Kremlin 1, superfamilia nudo de cisteínas, Xenopus laevis.	Amiloidosis gelsolina, tipo finlandés.	Dominio PTB adaptador de GULP que contiene 1.		ARNm no traducido de expresión materna con huella H19.	Hefastina.	Factor H del complemento 1.	Histona 1 H1c.	Histona 1 H2bd.	Histona 1 H2bg.	Histona 2 H2aa.	Histona 2 H2be.	Caja 2 del grupo de alta movilidad.	Deciclado 1, hemooxigenasa.	1 de expresión hematológica y neurológica.
NM 019617	NM 015895	NM 005708	4 RefSegs	NM_032777	NM_013372	2 RefSegs	NM_016315	NM 000181			NM_000186	NM_005319	NM_138720	NM_003518	NM_003516	NM_003528	NM 002129	NM_002133	3 RefSegs
Hs00219734_m1	Hs00210707_m1	Hs00170677_m1	Hs00383529 m1	Hs00262150_m1	Hs00171951_m1	Hs00609276_m1	Hs00169604 m1	Hs9999908_m1	Hs00399294 g1	Hs00207710_m1	Hs00164830_m1	Hs00271185_s1	Hs00371070_m1	Hs00374317_s1	Hs00358508_s1	Hs00269023_s1	Hs00357789_g1	Hs00157965_m1	Hs00602957_m1
220191_at	218350_s_at	227059_at	209167_at	221814_at	218469_at		204235_s_at		224646_x_at	203903_s_at	213800_at	209398_at	209911_x_at	210387_at	214290_s_at	202708_s_at	208808_s_at	203665_at	217755_at
GKN1	GMNN	GPC6	GPM6B	GPR124	GREM1	GSN	GULP1	GUSB	H19	НЕРН	CFH	HIST1H1C	HIST1H2BD	HIST1H2BG	HIST2H2AA	HIST2H2BE	HMGB2	HMOX1	HN1

FIG. 81

НОР	211597_s_at	Hs00261238_m1	3 RefSegs	Proteína de únicamente homeodominio.
НОХВ6	205366_s_at	Hs00255831_s1	3 RefSegs	Homeo box B6.
HOXD4	205522_at	Hs00429605_m1	NM 014621	Homeo box D4.
HPRT		Hs99999909 m1	NM 000194	
HRAS		Hs00610483_m1	NM_005343	
HSPC150	223229_at	Hs00204359_m1	NM 014176	Proteína HSPC150 similar a la enzima de conjugación de ubiquitina.
HSPCB		Hs00607336_gH	NM_007355	
HTR1F		Hs00265296_s1	NM 000866	Receptor 1F DE 5-hidroxitriptamina serotonina.
IER3	201631_s_at	Hs00174674_m1	NM 003897	Respuesta temprana inmediata 3.
IGF1	209541_at	Hs00153126_m1	NM 000618	Factor de crecimiento 1 similar a la insulina, somatomedina C.
IGF2	210881_s_at	Hs00171254_m1	NM 000612	Factor de crecimiento 2 similar a la insulina, somatomedina A.
IGFBP3	210095_s_at	Hs00181211_m1	NM 000598	Proteína 3 de unión del factor de crecimiento 3 similar a la insulina.
IGFBP5	211959_at	Hs00181213_m1	NM 000599	Proteína 5 de unión del factor de crecimiento 3 similar a la insulina.
IGHM	216491_x_at	Hs00378512_m1		Región mu constante de cadena pesada de inmunoglobulinas.
97/	205207_at	Hs00174131_m1	NM 000600	Interleucina 6 interferón beta 2.
INA	204465_s_at	Hs00190771_m1	NM 032727	Proteína alfa del filamento intermedio neuronal internexina.
INHBA	210511_s_at	Hs00170103_m1	NM 002192	Inhibina beta A activina A activita AB polipéptido alfa.
IQGAP3	229490_s_at	Hs00603642_m1	NM 178229	Motivo IQ que contiene proteína 3 de activación de GTPasa. Proteína de activación de GTPasa Ras.
ITGA8	AA903473	Hs00233321_m1	NM_003638	
ITM2A	202746_at	Hs00191609_m1	NM 004867	Proteína 2A de membrana integral.

les de potasio dependientes de voltaie	Receptor 3 de retención, proteína del retículo endoplásmico KDEL Lys-Asp-Glu-Leu Producto génico de KIAA0101			٠					tina alfa 1.	mple de Dowling-Meara Koebner.			AF4.
Molécula 2 de adhesión de unión Molécula 3 de adhesión de unión Protooncogen Jun B.	Receptor 3 de retención, proteína del retí Producto génico de KIAA0101	Producto génico de KIAA0186 Paladina.	Miembro 11 de la familia de Quinesinas. Miembro 14 de la familia de Quinesinas.	Miembro 20A de la familia de Quinesinas.	Miembro 2C de la familia de Quinesinas.	Miembro 4A de la familia de Quinesinas.	Supresor KiSS-1 de metástasis.	Homólogo 7 similar a Klech, Drosophila.	Cohorte RAG de carioferina alfa 2, importina alfa 1.	Queratina 12, epidermólisis ampollosa simple de Dowling-Meara Koebner.	Queratina 20	Queratina 7	Proteína nuclear linfoide relacionada con AF4. FIG. 8K
NM 032801 NM 002229 NM 002237	2 RefSeqs NM 014736	NM 021067 NM 016081	NM 004523 NM 014875	NM 005733	NM 006845	NM_012310	NM 002256	NM 018846	NM 002266	NM_000526	NM 019010	NM 005556	NM_002285
Hs00221894 m1 Hs00230289 m1 Hs00357891 s1 Hs00158410 m1	Hs00207134 m1	Hs00221421_m1 Hs00363101_m1	Hs00189698_m1 Hs00208408_m1	Hs00194882_m1	Hs00199232_m1	Hs00602211_g1	Hs00158486_m1	Hs00375239_m1	Hs00818252_g1	Hs00265033_m1	Hs00300643_m1	Hs00818825_m1	Hs00171448_m1
229127_at 212813_at 214595_at	204017_at 202503_s_at	206102_at 200897_s_at	204444_at 206364_at	218755_at	209408_at	218355_at		220239_at	201088_at	209351_at	213953_at	209016_s_at	227198_at
JAM2 JAM3 JUNB KCNG1	KDELR3 KIAA0101	KIAA0186 KIAA0992	KIF11 KIF14	KIF20A	KIF2C	KIF4A	KISS1	KLHL7	KPNA2	KRT14	KRT20	KRT7	LAF4

Receptor leptina.	Galectina 1 soluble de unión a lectina galactósido.	Receptor del factor inhibidor de leuemia.	Glicosiltransferasa.	Lisil oxidasa.	Gen 1 relacionado con plasticidad.	Lumicán.	Locus D, complejo 6 del antígeno linfocitario.	Levadura 1 similar a deficiente en parad de la mitosis MAD2.	Familia A3 del antígeno del melanoma.	Familia A9 del antígeno del melanoma.	Dominio MAM que contiene 2.	Miembro 1 de la alfa manosidasa de clase 1C.	Proteína 1B asociada con microtúbulos.	10S deficiente en mantenimiento del minicromosoma.	Mitotina S deficiente en mantenimiento del minicromosoma 2 MCM2.	Célula 3T3 transformada con Mdm2, minuto doble 2, proteína de ratón de unión a p53.	Cinasa de cremallera de leucina embrionaria materna.	Proteína 1 asociada con las microfibrillas.	Proteína 4 asociada con las microfibrillas. FIG. 8L
NM_002303	NM 002305	NM_002310	NM 031302	NM 002317	NM 014839	NM 002345	NM 003695	NM_002358	NM_005362	NM 005365	NM 153267	NM 020379	2 RefSeqs	2 RefSeqs	NM 004526	3 RefSegs	NM 014791	2 RefSeqs	NM_002404
Hs00174497_m1	Hs00169327_m1	Hs00158730_m1	Hs00229917_m1	Hs00184700 m1	Hs00322721_m1	Hs00158940_m1	Hs00170353_m1	Hs00829154 g1	Hs00366532_m1	Hs00245619_s1	Hs00299196_m1	Hs00220595_m1	Hs00195487_m1	Hs00218560_m1	Hs00170472_m1	Hs00242813_m1	Hs00207681_m1	Hs00250064_m1	Hs00412974_m1
209894_at	201105_at	225575_at	227070_at	215446_s_at	213496_at	229554_at	206276_at	203362_s_at	209942_x_at	210437_at	228885_at	214180_at	226084_at	220651_s_at	202107_s_at		204825_at	203417_at	212713_at
LEPR	LGALS1	LIFR	LOC83468	XO7	LPPR4	TOM	TA6D	MAD2L1	MAGEA3	MAGEA9	MAMDC2	MAN1C1	MAP1B	MCM10	MCM2	MDM2	MELK	MFAP2	MFAP4

Tubulina beta MGC4083.	Proteína hipotética.	Similar al gen RIKEN cDNA 2700049P18.	Proteína Gla de la matriz	Antígeno identificado mediante el anticuerpo monoclonal Ki-67.	Asociado con la diferenciación de monocitos a macrófagos.	Matriz metaloproteinasa 1 colagenasa intersticial.	Matriz metaloproteinasa 12 elastasa de macrófagos.	Factor de homeostasis de magnesio similar a MRS2, S. cerevisiae.	Homólogo 1 sitio de integración del retrovirus murino.	Metionina sulfóxido reductasa B3	Tirosina quinasa relacionada con c-met del receptor 1 de estimulación de macrófagos.	Meteniltetrahidrofolato ciclohidrolasa dependiente de NAD+ metileno tetrahidrofolato deshidrogenasa	Mucina 7 salival.	Marcador de diferenciación asociada con mieloides.	Proteína C de unión a la miosina de tipo lento.	Homólogo aviar del oncogen de la mielocitomatosis viral V-mic.	Quinasa 2 relacionada con el gen a de nunca en la mitosis NIMA	Proteína de unión a la actina, Nexilina F		FIG. 8M
NM 032525	NM 173833	NM 207418	006000 MN	NM 002417	NM 012329	NM 002421	NM 002426	NM 020662		NM 198080	NM 002447	NM_006636	NM 152291	NM 138373		NM 002467	NM 002497	NM 144573	NM 005595	
Hs00603164_m1	Hs00382351_m1	Hs00822131_m1	Hs00179899 m1	Hs00606991_m1	Hs00202450_m1	Hs00233958_m1	Hs00159178_m1	Hs00252895_m1	Hs00180652_m1	Hs00827017_m1	Hs00234013_m1	Hs00759197_s1	Hs00379529_m1	Hs00414763_m1	Hs00159451_m1	Hs00153408_m1	Hs00601227_mH	1552309_a_at Hs00332124_m1	226806_s_at <u>Hs00325656_m1</u>	
209191_at	229839_at	225834_at	202291_s_at	212021_s_at	203414_at	204475_at	204580_at	218538_s_at	226047_at	225782_at	205455_at	201761_at		225673_at	214087_s_at		204641_at	1552309_a_at	226806_s_at	
TUBB6	MGC45780	MGC57827	MGP	MKI67	MMD	MMP1	MMP12	MRS2L	MRV11	MSRB3	MST1R	MTHFD2	MUC7	MYADM	MYBPC1	MYC	NEK2	NEXN	NFIA	

Factor nuclear I/B.	Factor nuclear regulado por la interleucina 3.	Proteína hipotética FLJ122595	Mucosa normal del específico 1 de esófago. Núcleo.	Nicotinamida-N-metiltransferasa.	Ortólogo probable del vecino de ratón de Punc E11.	NADPH deshidrogenasa quinona 1.	Miembro 1 del grupo F, subfamilia 2, del receptor nuclear.	Miembro 1 del grupo A, subfamilia 4, del receptor nuclear.	Miembro 2 del grupo A, subfamilia 4, del receptor nuclear.	Miembro 3 del grupo A, subfamilia 4, del receptor nuclear.	Netrina G2.	Proteína 1 asociada con el nucleolo y el huso.	2' 5'-oligoadenilato sintetasa 1 40/46kDa.	3 similar a olfatomedina.	Proteína 2A relacionada con Odd-skipped.		Alfa polipéptido del receptor del factor de crecimiento derivado de plaquetas.	Dominio 3 de PDZ y LIM.	Dominio PDZ que contiene el dedo RING 3. FIG. 8N
NM_005596	NM 005384	NM 025047		NM 006169	NM 020962	NM 000903	NM_005654	NM 173157	4 RefSegs		NM 032536	NM 016359	2 RefSegs	NM 020190	NM 053001	NM 016205	NM 006206	NM_014476	
Hs00232149_m1	Hs00356605_g1	Hs00540047_s1	Hs00260902_m1	Hs00196287_m1	Hs00326335_m1	Hs00168547_m1	Hs00818842_m1	Hs00172437_m1	Hs00428691_m1	Hs00175077_m1	Hs00287286_m1	Hs00153533_m1	Hs00242943_m1	Hs00220180_m1	Hs00369588 m1	Hs00211916_m1	Hs00183486_m1	Hs00205533_m1	Hs00392900_m1
213029_at	203574_at	220468_at	223484_at	202237_at	227870_at	201468_s_at	209505_at	202340_x_at	204621_s_at	209959_at		218039_at	202869_at	218162_at	213568_at		203131_at	209621_s_at	212915_at
NFIB	NF/L3	FLJ22595	NMES1	NNMT	NOPE	NQ01	NR2F1	NR4A1	NR4A2	NR4A3	NTNG2	NUSAP1	OAS1	OLFML3	OSR2	PDGFC	PDGFRA	РОЦІМЗ	PDZRN3

PEG10	212094_at	Hs00248288_s1	NM_015068	10 de expresión paterna.
PFKFB3	202464_s_at	Hs00190079_m1	NM 004566	6-fosfofructo-2-quinasa/fructosa-2 6-bifosfatasa 3.
Pfs2	221521_s_at	Hs00211479_m1	NM 016095	Proteína PSF2 del complejo GINS de replicación de ADN. Replicación de ADN.
PGM5	226303_at	Hs00222671_m1	NM 021965	Fosfoglucomutasa 5. Unión de adherencia célula-célula.
PLA2G2A	203649_s_at	Hs00179898_m1	NM 000300	Fosfolipasa A2, plaquetas grupo IIA, líquido sinovial. Catabolismo de los lípidos
PLAGL1	209318_x_at	Hs00243030_m1	NM 002656	1 similar al gen de adenoma peliomórfico.
PLCB4	203895_at	Hs00168656_m1		Fosfolipasa C beta 4.
PLEKHC1	209209_s_at	Hs00235033_m1	NM 006832	Familia C que contiene dominio de homología con pleckstrina con miembro 1 del dominio FERM.
PLN	204939_s_at	Hs00160179_m1	NM 002667	Fosfolambano.
PLSCR4	218901_at	Hs00220482_m1	NM 020353	Escramblasa de fosfolípidos 4.
PMP22	210139_s_at	Hs00165556_m1		Proteína 22 de mielina periférica.
POLQ	219510_at	Hs00198196_m1	2 RefSegs	Teta dirigida a la ADN polimerasa.
POSTN	1555778_a_at	1555778_a_at <u>Hs00170815_m1</u>	NM 006475	Factor específico de periostina de osteoblastos.
POU1F1		Hs00230821_m1	NM 000306	Dominio POU, factor 1 de transcripción de clase 1, factor 1 de la hormona de crecimiento Pit1.
PPIA o CYC		Hs9999904_m1	3 RefSegs	
PPP1R12B	201957_at	Hs00364078_m1		Subunidad 12B inhibidora reguladora de la proteína fosfatasa 1.
PPP1R14D	220082_at	Hs00214613_m1	NM 017726	Subunidad 14D inhibidora reguladora de la proteína fosfatasa 1.
PRC1	218009_s_at	Hs00187740_m1		Proteína reguladora de la citocinesis 1.
PRKAR2B	203680_at	Hs00176966_m1	NM_002736	Proteína cinasa reguladora de tipo II beta dependiente de AMPc.
PRL		Hs00168730_m1	NM 000948	Prolactina.

PSAT1	223062_s_at	223062_s_at <u>Hs00795278_mH</u>	2 RefSeqs	Fosfoserina aminotransferasa 1.
РТСН		Hs00181117_m1	NM 000264	Homólogo parcheado de Drosophila.
PTEN		Hs00829813_s1	NM 000314	Homólogo de fosfatasa y tensina mutado en múltiples cánceres avanzados 1.
PTGS2	1554997_a_at	1554997_a_at <u>Hs00153133_m1</u>	NM 000963	Prostaglandina-endoperóxido sintasa 2 prostagalndina G/H sintasa y ciclooxigenasa.
PTN	211737_x_at	211737_x_at <u>Hs00383235_m1</u>	NM 002825	Factor de crecimiento de unión a pleiotrofina heparina y factor estimulador del crecimiento de neuritas 1.
PTPRC		Hs00236304_m1	3 RefSegs	
PTRF	1557938_s_at	Hs00396859_m1	NM_012232	Polimerasa I y factor de liberación del tránscrito abans AL545542.
RAB23	229504_at	Hs00212407_m1		Miembro RAB23 de la familia del oncogen RAS.
RACGAP1	222077_s_at	Hs00374747 m1	NM 013277	Proteína 1 activadora de Rac GTPasa.
RA12	219440_at	Hs00253960_s1	NM 021785	Inducido por ácido retinoico.
RAMP	218585_s_at	Hs00212788_m1	NM 016448	Proteína asociada con la matriz nuclear regulada por RA.
RASL12	219167_at	Hs00275429_m1	NM 016563	Familia similar a RAS 12.
RB1		Hs00153108_m1	NM 000321	Retinoblastoma 1 incluyendo osteosarcoma.
RBM24	235004_at	Hs00290607_m1	NM 153020	Proteína con motivode unión a ARN 24.
RECK	205407_at	Hs00221638_m1	NM 021111	Proteína rica en cisteína inductora de inversión con motivos kazal.
RFC3	204127_at	Hs00161357_m1	2 RefSegs	Activador C del factor de replicación 1 3 de 38 kDa. Replicación de ADN.
RGS1	216834_at	Hs00175260_m1	NM 002922	Regulator of G-protein signalling 1. Immune response.
RNASE4	213397_x_at	Hs00377763_m1		Familia 4 de la ribonucleasa ARNasa.
RODH	205700_at	Hs00366258_m1	NM 003725	3-hidroxiesteroide epimerasa.

RPESP	235210_s_at	Hs00541931_m1	NM 153225	RPE-espondina.
RRM2	209773_s_at	Hs00357247_g1	NM 001034	Polipéptido M2 de ribonucleótido reductasa.
S100A10	238909_at	Hs00741221_m1	NM_002966	Proteína S100 de unión a calcido, ligando II de la anexina A10 polipéptido p11 de la cadena ligera de calpactina I.
SBLF	213413_at	Hs00538997_m1		Factor similar a Stoned B.
SCN7A	228504_at	Hs00161546_m1	NM 002976	Alfa tipo VII de canales de sodio dependientes de voltaje.
SELL	204563_at	Hs00174151_m1	NM 000655	Molécula 1 de adhesión linfocitaria a selectina L.
SELM	226051_at	Hs00369741_m1	NM 080430	Selenoproteína M.
SERPINB3	209719_x_at	Hs00199468_m1	NM_006919	Miembro 3 de ovoalbúmina grupo B, inhibidor de serina o cisteína proteinasa.
SETBP1	205933_at	Hs00210209_m1	NM_015559	Proteína 1 de unión a SET.
SFRP1	202037_s_at	Hs00610060_m1	NM 003012	Proteína 1 secretada relacionada con frizzled.
SLC1A6	1554593_s_at	1554593_s_at_Hs00192604_m1	NM_005071	Miembro 6 de la familia 1 de transportadores de solutos, transportador de aspartato/glutamato de alta afinidad.
SLIT2	209897_s_at	Hs00191193_m1	NM 004787	Homólogo 2 slit (Drosophila).
SMAD6		Hs00178579_m1	NM 005585	Madres SMAD contra el homólogo DPP 6 de Drosophila.
SMOC2	223235_s_at	Hs00405777_m1	NM 022138	Unión 2 de calcio modular relacionada con SPARC.
SNX10	218404_at	Hs00203362_m1	NM 013322	Clasificación nexina 10.
socs3	227697_at	Hs00269575_s1	NM 003955	Supresor de la señalización 3 de citocinas.
SOX4	213668_s_at	Hs00268388_s1	NM 003107	Región determinante del sexo SRY, caja Y 4.
6XOS	202935_s_at	Hs00165814_m1	NM 000346	Región determinante del sexo SRY, caja Y 9, displasia campomélica, autosómica de inversión por sexo.
SPARCL1	200795_at	Hs00190740_m1	NM_004684	Hevina mast9 similar a SPARC.
SPON1	209436_at	Hs00323883_m1		Proteína 1 de matriz extracelular, espondina.

FIG. 8Q

SPP1	209875_s_at	209875_s_at <u>Hs00167093_m1</u>	NM 000582	Sialoproteína ósea osteopontina 1 de fosfoproteína secretada, activación temprana 1 de linfocitos 1
SPRR3	218990_s_at	Hs00271304_m1	NM 005416	Proteína 3 pequeña rica en prolina. Actividad de molécula estructura.
SRPX	204955_at	Hs00196867_m1	NM 006307	Proteína que contiene repeticiones de Sushi, ligada a X.
STC1	230746_s_at	Hs00174970_m1	NM 003155	Estaniocalcina 1.
STK6	208079_s_at	Hs00269212_m1	NM 003600	Serina/treonina quinasa 6.
STN2	235852_at	Hs00263833_m1	NM 033104	Estonina 2.
SULF1	212354_at	Hs00290918_m1	NM_015170	Sulfatasa 1.
SULT1E1	219934_s_at	Hs00193690_m1	NM 005420	Miembro 1 de preferencia de estrógenos, familia 1E de sulfotransferasas.
TCF21	204931_at	Hs00162646_m1		Factor 21 de transcripción.
TCF8	212764_at	Hs00611018_m1	NM 030751	El factor 8 de transcripción reprime la expresión de la interleucina 2.
TCN1	205513_at	Hs00169055_m1	NM_001062	transcobalamina I (proteína de union a vitamina B12, familia de unión R).
TEAD2	226408_at	Hs00366217_m1	NM 003598	Miembro 2 de la familia del dominio TEA.
TEGT		Hs00162661_m1	NM 003217	
TERT		Hs00162669_m1	2 RefSegs	Telomerasa Transcriptasa inversa.
TGFB111	209651_at	Hs00210887_m1	NM 015927	Tránscrito 1 inducido por el factor transformante de crecimiento beta 1.
TIMP2	224560_at	Hs00234278_m1	NM 003255	Inhibidor tisular de la metaloproteinasa 2.
TK1	1554408_a_at	554408_a_at	NM 003258	Timidina cinasa 1 soluble.
TMPO	203432_at	Hs00162842_m1	NM_003276	Timipoetina. Unión a ADN.
TNA	205200_at	Hs00162844_m1	NM_003278	Tetranectina.
TNC	201645_at	Hs00233648_m1	NM_002160	Tenascina C.

TNRC9	216623_x_at	216623_x_at <u>Hs00300355_m1</u>		Repetición de trinucleótidos que contienen 9.
TOP2A	201291_s_at	201291_s_at <u>Hs00172214_m1</u>	NM 001067	Topoisomerasa ADN alfa II 170 kDa.
ТОРК	219148_at	Hs00218544 m1	NM 018492	Proteína cinasa originada en células T-LAK.
7P53		Hs00153349_m1	NM 000546	Proteína Tumoral p53, síndrome de ILi-Fraumeni.
TPX2	210052_s_at	Hs00201616_m1	NM 012112	Homólogo de la proteína asociada a microtúbulos TPX2 de Xenopus laevis.
TRIP13	204033_at	Hs00188500_m1	NM 004237	Interaccionador 12 del receptor de hormonas tiroideas.
TSPAN-2	227236_at	Hs00194836_m1	NM 005725	Tetraspan 2. Motilidad celular.
7TK	204822_at	Hs00177412_m1	NM_003318	Proteína cinasa TTK.
TU3A	209074_s_at	Hs00200376_m1	NM 007177	Proteína TU3A.
	202589_at	Hs00426591_m1	NM 001071	Timidilato sintetasa.
UBD	205890_s_at <u>H</u>	Hs00197374_m1	NM 006398	Ubiquitina D.
	202954_at	Hs00738962_m1	NM 181799	Enzima de conjugación con ubiquitina E2C.
UHRF1	225655_at	Hs00273589_m1	NM_013282	Similar a ubiquitina que contiene dominios digitales 1 PHD y RING.
URB	225242 s at	225242 s at Hs00736722 m1		Gen 1 sensible a esteroides.

WISP1 ZAK ZBTB16	229802_at 225665_at 228854_at	Hs00365573_m1 Hs00370447_m1 Hs00232313_m1	2 RefSeqs 2 RefSeqs NM_006006	Proteína 1 de la vía de señalización inducible por WNT1. Motivo alfa estéril y cremallera de leucina que contiene cinasa AZK. Dedo de cinc t dominio BTB que contiene 16.
ZFP36	201531_at	Hs00185658_m1	NM 003407	Proteína 36 del dedo de cinc, homólogo de tipo C3H de ratón.
ZNF217		Hs00232417_m1	NM_006526	Proteína 217 del dedo de cinc.
ZWINT	204026_s_at	Hs00199952_m1		Factor de interacción ZW10.
ZYX		Hs00170299 m1	NM 003461	Zixina. Adhesión celular.
18S		Hs99999901 s1		ARNr eucariótico de 18s.

NM 021197 Dominio 1 WAP de núcleo de cuatro disulfuros.

Hs00221849 m1

219478_at

WFDC1

FIG. 8T

Hs9999901 s1

Símbolo del gen	TaqMan Gene
	Ensayo de expresión
ANK2	Hs00153998_m1
ANLN	Hs00218803_m1
ANXA10	Hs00200464_m1
APOBEC3B	Hs00358981_m1
ASAM	Hs00293345_m1
ASPM	Hs00411505_m1
BUB1B	Hs00176169_m1
C10orf3	Hs00216688 m1
C14orf78	Hs00746838_s1
CCNA2	Hs00153138_m1
CCNB1	Hs00259126_m1
CDC2	Hs00364293_m1
CDC20	Hs00415851 g1
CDCA1	Hs00230097_m1
CDCA3	Hs00229905_m1
CDKN3	Hs00193192 m1
CENPA	Hs00156455_m1
CENPF	Hs00193201_m1
CFH	Hs00164830_m1
ChGn	Hs00218054_m1
COL1A2	Hs00164099 m1
CRH	Hs00174941_m1
CTSE	Hs00157213_m1
CYP24A1	Hs00167999_m1 FIG. 9A

DLG7	Hs00207323_m1
EBF	Hs00395513_m1
F3	<u>Hs00175225_m1</u>
FABP6	Hs00155029_m1
FGFR3	Hs00179829_m1
FLJ11029	Hs00383634_m1
FLJ21986	<u>Hs00227735_m1</u>
FLJ31052	<u>Hs00708284_s1</u>
FN1	Hs00365058_m1
FOXM1	Hs00153543_m1
GJB2	Hs00269615_s1
GJB6	Hs00272726_s1
GUSB	<u>Hs9999908_m1</u>
HPRT	<u>Hs99999909_m1</u>
IGF2	Hs00171254_m1
INA	<u>Hs00190771_m1</u>
IQGAP3	Hs00603642_m1
KIAA0101	Hs00207134_m1
KIAA0186	Hs00221421_m1
KIAA0992	Hs00363101_m1
KIF11	Hs00189698_m1
KIF20A	Hs00194882_m1
KIF2C	Hs00199232_m1
KIF4A	Hs00602211_g1
	FIG. 9B

Símbolo del gen	TaqMan Gene Expression Assay
KISS1	Hs00158486_m1
KLF9	Hs00230918 m1
KRT14	Hs00265033_m1
KRT20	Hs00300643_m1
KRT7	Hs00818825_m1
MAGEA3	Hs00366532_m1
MAGEA9	Hs00245619_s1
MAN1C1	Hs00220595_m1
MCM10	Hs00218560_m1
MELK	Hs00207681_m1
MK167	Hs00606991 m1
MMP1	Hs00233958_m1
MMP12	Hs00159178_m1
NEK2	Hs00601227_mH
NFIA	Hs00325656_m1
NQO1	Hs00168547_m1
NR2F1	Hs00818842_m1
PDGFC	Hs00211916_m1
PDZRN3	Hs00392900_m1
PLAGL1	Hs00243030_m1
PLSCR4	Hs00220482_m1
POLQ	Hs00198196_m1
POSTN	Hs00170815 m1 FIG. 9C

DD(4 - 0)/0	Hs9999904 m1
PPIA o CYC	
PPP1R12B	<u>Hs00364078_m1</u>
PPP1R14D	<u>Hs00214613_m1</u>
PRC1	<u>Hs00187740_m1</u>
PRKAR2B	<u>Hs00176966_m1</u>
PTPRC	<u>Hs00236304_m1</u>
RAMP	Hs00212788_m1
RNASE4	<u>Hs00377763_m1</u>
SBLF	<u>Hs00538997_m1</u>
SERPINB3	<u>Hs00199468_m1</u>
SLC1A6	<u>Hs00192604_m1</u>
SPON1	<u>Hs00323883_m1</u>
SPP1	<u>Hs00167093_m1</u>
STN2	<u>Hs00263833_m1</u>
TERT	<u>Hs00162669_m1</u>
TNRC9	<u>Hs00300355_m1</u>
TOP2A	<u>Hs00172214_m1</u>
TOPK	<u>Hs00218544_m1</u>
TPX2	<u>Hs00201616_m1</u>
TRIP13	Hs00188500_m1
TTK	Hs00177412_m1
UHRF1	<u>Hs00273589_m1</u>
ZBTB16	Hs00232313_m1
ZWINT	<u>Hs00199952_m1</u>
18S	Hs99999901_s1
	EIG OD

FIG. 9D

Simbolo del gen	TaqMan Gene Expression Assay
ANLN	Hs00218803 m1
ANXA10	Hs00200464_m1
ASAM	Hs00293345 m1
ASPM	Hs00411505_m1
C14orf78	Hs00746838_s1
CCNA2	Hs00153138_m1
CDC2	Hs00364293_m1
CDC20	Hs00415851_g1
CDCA1	Hs00230097_m1
CENPF	Hs00193201_m1
CFH	Hs00164830 m1
CRH	Hs00174941_m1
CTSE	Hs00157213_m1
CYP24A1	Hs00167999 m1
EBF	Hs00395513_m1
FGFR3	Hs00179829_m1
FOXM1	Hs00153543_m1
GJB2	Hs00269615_s1
GUSB	Hs99999908_m1
IGF2	Hs00171254_m1
IQGAP3	Hs00603642_m1
KIF20A	Hs00194882_m1
KIF2C	Hs00199232_m1
KIF4A	Hs00602211_g1
KLF9	Hs00230918 m1 FIG. 10A

KRT14	Hs00265033_m1
KRT20	Hs00300643_m1
MAGEA3	Hs00366532_m1
MAGEA9	Hs00245619_s1
MCM10	Hs00218560_m1
MELK	Hs00207681_m1
MMP1	Hs00233958_m1
MMP12	Hs00159178_m1
NEK2	Hs00601227_mH
NR2F1	Hs00818842_m1
PDZRN3	Hs00392900_m1
POLQ	<u>Hs00198196_m1</u>
POSTN	Hs00170815_m1
PPIA	Hs99999904_m1
PPP1R14D	Hs00214613_m1
PTPRC	Hs00236304_m1
SLC1A6	Hs00192604_m1
TERT	Hs00162669_m1
TOP2A	Hs00172214_m1
TPX2	<u>Hs00201616_m1</u>
TRIP13	<u>Hs00188500_m1</u>
18S	Hs99999901_s1

FIG. 10B