

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

 \bigcirc Número de publicación: $2 \ 358 \ 092$

(51) Int. Cl.:

C12N 9/52 (2006.01) C12N 15/57 (2006.01) A23J 3/34 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA Т3

- 96 Número de solicitud europea: 04762907 .6
- 96 Fecha de presentación : **08.10.2004**
- 97 Número de publicación de la solicitud: **1673451** 97) Fecha de publicación de la solicitud: 28.06.2006
- (54) Título: Variantes de proteasa.
- (30) Prioridad: 10.10.2003 DK 2003 01494 01.03.2004 DK 2004 00333
- 73 Titular/es: NOVOZYMES A/S Krogshojvej 36 2880 Bagsværd, DK
- Fecha de publicación de la mención BOPI: 05.05.2011
- (72) Inventor/es: **De Maria**, **Leonardo**; Andersen, Carsten; Christensen, Lars, Lehmann, Hylling; Lassen, Søren, Flensted y Østergaard, Peter Rahbek
- 45) Fecha de la publicación del folleto de la patente: 05.05.2011
- 74) Agente: Tomás Gil, Tesifonte Enrique

ES 2 358 092 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Variantes de proteasa.

5 Campo de la invención

La presente invención se refiere a una estructura tridimensional de la proteasa nueva, al igual que variantes de una proteasa progenitora, en particular, variantes de propiedades enmendadas, tales como termoestabilidad mejorada y/o perfil de actividad de temperatura enmendada. La invención también se refiere a secuencias de ADN que codifican tales variantes, su producción en una célula huésped recombinante, al igual que métodos de uso de las variantes, en particular, en el campo de pienso para animales y detergentes. La invención además se refiere a métodos de generación y preparación de variantes de proteasa de propiedades enmendadas. Las proteasas progenitoras preferidas son proteasas de Nocardiopsis, tales como proteasas que comprenden las partes de péptido maduro de SEC ID n.ºs: 2, 4, 6, 8, 10 y 21.

Antecedentes de la invención

15

20

2.5

50

Las secuencias de proteasa derivadas de cepas de Nocardiopsis se describen en WO 88/03947, WO 01/58276 y DK 1996 00013 ("Proteasa 10", SEC ID n.ºs: 1-2).

JP 2003284571-A describe, como las SEC ID n.ºs: 2 y 1, la secuencia de aminoácidos y la secuencia de ADN correspondiente, respectivamente, de una proteasa derivada de *Nocardiopsis* sp. TOA-1 (FERM P-18676). Las secuencias han sido introducidas en la base de datos GENESEQ como GENESEQP n.º ADF43564 y GENESEQN n.º ADF43563, respectivamente.

JP 2-255081-A describe una proteasa derivada de la cepa *Nocardiopsis* sp. OPC-210 (FERM P-10508), no obstante, sin información de secuencia. La cepa ya no está disponible, puesto que el depósito fue retirado.

DD 200432 8 describe una preparación proteolítica derivada de la cepa *Nocardiopsis dassonvillei* ZIMET 43647, no obstante, sin información de secuencia. La cepa parece ya no estar no disponible.

Se describen secuencias de proteasa de Nocardiopsis adicionales en PCT/DK04/000433 ("Proteasa 08" SEC ID $n.^{os}$ 9-10 en el presente documento); PCT/DK04/000434 ("Proteasa 11", SEC ID $n.^{os}$: 5-6 en el presente documento); PCT/DK04/000432 ("Proteasa 18", SEC ID $n.^{os}$ 3-4 en el presente documento); y PCT/DK04/000435 ("Proteasa 35", SEC ID $n.^{os}$ 7-8 en el presente documento).

Es un objeto de la presente invención proporcionar proteasas alternativas, en particular, para el uso en pienso para animales y/o detergentes, en particular, variantes de proteasa mejoradas y nuevas, preferiblemente de propiedades enmendadas, tales como termoestabilidad mejorada y/o una temperatura óptima más alta o inferior.

Resumen de la invención

La presente invención se refiere a una variante de una proteasa progenitora, que comprende una sustitución en al menos una posición de al menos una región seleccionada del grupo de regiones que consisten en: 6-18, 22-28, 32-39, 42-58, 62-63, 66-76, 78-100, 103-106, 111-114, 118-131, 134-136, 139-141, 144-151, 155-156, 160-176, 179-181 y 184-188 donde

- (a) la variante tiene actividad de la proteasa; y
- (b) cada posición corresponde a una posición de aminoácidos 1 a 188 de SEC ID n.º 2 y
 - (c) la variante tiene un porcentaje de identidad con los aminoácidos 1 a 188 de SEC ID n.º 2 de al menos 60%.
- La presente invención también se refiere a secuencias de ácidos nucleicos aisladas que codifican la variante de proteasa y a constructos de ácidos nucleicos, vectores y células huéspedes que comprenden las secuencias de ácidos nucleicos al igual que métodos para producir y usar las variantes de la proteasa.

Breve descripción de las figuras

La figura 1 es una alineación múltiple de la proteasa 10, la proteasa 18, la proteasa 11, la proteasa 35 y la proteasa 08 (las partes de péptido maduro de SEC ID n.ºs 2, 4, 6, 8 y 10, respectivamente), que también incluye una variante de la proteasa de la invención, es decir, la proteasa 22 (aminoácidos 1-188 de SEC ID n.º 21);

La figura 2 proporciona las coordenadas de la estructura tridimensional nueva de la proteasa 10 (aminoácidos 1 a 188 de SEC ID n.º 2) derivada de *Nocardiopsis* sp. NRRL 18262.

Descripción detallada de la invención

Estructura tridimensional de la proteasa 10

La estructura de la proteasa 10 fue resuelta conforme a los principios para los métodos cristalográficos de rayos X según se ofrecen, por ejemplo, en X-Ray Structure Determination, Stout, G.K. y Jensen, L.H., John Wiley & Sons, Inc. NY, 1989. Las coordenadas estructurales para la estructura cristalina con una resolución de 2.2 A usando el método de sustitución isomorfa se presentan en la figura 2 en formato de PDB estándar (Protein Data Bank, Brookhaven National Laboratory, Brookhaven, CT). El archivo PDB de la figura 2 se refiere a la parte de péptido maduro de la proteasa 10 correspondiente a los residuos 1-188 de SEC ID n.º 2.

Dinámica Molecular (DM)

15

45

50

Las simulaciones de la Dinámica Molecular (DM) son una indicación de la movilidad de los aminoácidos en una estructura de proteína (véase McCammon, JA y Harvey, SC., (1987), "Dynamics of proteins and nucleic acids", Cambridge University Press). Tal dinámica de las proteínas es frecuentemente comparada con los factores B cristalográficos (véase Stout, GH y Jensen, LH, (1989), "X-ray structure determination", Wiley). Al ejecutar la simulación de DM a, por ejemplo, temperaturas diferentes, se simula la movilidad relacionada con la temperatura de los residuos. Las regiones que tienen la movilidad o la flexibilidad máxima (en este caso, fluctuaciones isotrópicas) se pueden sugerir para mutagénesis aleatoria. Se entiende aquí que la alta movilidad encontrada en áreas determinadas de la proteína puede ser térmicamente mejorada substituyendo estos residuos.

Usando los programas CHARMM (Accelrys) y NAMD (Universidad de Ilinois en Urbana-Champaign), la estructura de la proteasa 10 anteriormente descrita fue sometida a DM a 300 y 400 K. Empezando a partir de las coordenadas de la figura 2, se construyó hidrógeno y átomos pesados faltantes usando los procedimientos de CHARMM HBUILD e IC BUILD, respectivamente. Luego, la estructura fue minimizada usando el procedimiento de minimización de Gradientes conjugados CHARMM (CONJ) para un total de 200 pasos. La proteína luego fue colocada en una caja de 70 X 70 X 70 Angstrom y disuelta con moléculas de agua TIP3. Se agregó un total de 11124 moléculas de agua y luego fueron minimizadas, manteniendo fijas las coordenadas de proteína, usando el procedimiento de minimización Adopted Basis Newton Raphson (ABNR) de CHARMM para 20000 pasos. El sistema luego fue calentado a la temperatura deseada a razón de 1 K cada 100 pasos usando el software NAMD. Después de un equilibrado de 50 picosegundos, se realizó una DM de conjunto NVE durante 1 nanosegundo. Ambos pasos se realizaron con el software NAMD. Se utilizó un corte de 12 Angstrom para las interacciones no ligadas. Las condiciones límites periódicas se utilizaron después del paso de disolución y para todos los posteriores. La fluctuaciones isotrópicas de valor medio cuadrado (VMC) se calcularon con el procedimiento COOR DYNA de CHARMM.

Las siguientes regiones para mutagénesis sugeridas surgen de simulaciones de DM: del residuo 160 al 170, del residuo 78 al 90, del residuo 43 al 50, del residuo 66 al 75, y del residuo 22 al 28.

Estrategia para preparar variantes

Las regiones de residuos de aminoácidos, al igual que las sustituciones de aminoácido individuales, fueron sugeridas para mutagénesis sobre la base de la estructura tridimensional de la figura 2 y la alineación de las cinco proteasas conocidas (las cinco filas superiores de la figura 1), principalmente, con el propósito de mejorar la termoestabilidad.

Las siguientes regiones fueron sugeridas, cf. reivindicación 1: 6-18, 22-28, 32-39, 42-58, 62-63, 66-76, 78-100, 103-106, 111-114, 118-131, 134-136, 139-141, 144-151, 155-156, 160-176, 179-181 y 184-188.

Al menos una de las siguientes posiciones de las regiones anteriores son preferiblemente sometidas a mutagénesis, cf. reivindicación 3, 6, 7, 8, 9, 10, 12, 13, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 32, 33, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 105, 106, 111, 113, 114, 118, 120, 122, 124, 125, 127, 129, 130, 131, 134, 135, 136, 139, 140, 141, 144, 145, 146, 147, 148, 149, 150, 151, 155, 156, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 179, 180, 181, 184, 185, 186, 187 y/o 188.

Las variantes específicas contempladas se presentan en las reivindicaciones, es decir, las variantes de la proteasa 10, la proteasa 18, la proteasa 11, la proteasa 35, al igual que la proteasa 08 en las reivindicaciones 4 y 15; las variantes de la proteasa 10 en la reivindicación 16; las variantes de la proteasa 18 en la reivindicación 17; las variantes de la proteasa 11 en la reivindicación 18; la variantes de la proteasa 35 en la reivindicación 19 y las variantes de la proteasa 08 en la reivindicación 20.

Los diferentes conceptos subyacentes de la invención también se reflejan en las reivindicaciones de la siguiente manera: La estabilización por puentes de disulfuro en las reivindicaciones 5 y 6, la estabilización de prolina en las reivindicaciones 7-8, la sustitución de residuos neutros expuestos con residuos negativamente cargados en las reivindicaciones 9-10; la sustitución de residuos neutros expuestos con residuos cargados positivamente en las reivindicaciones 11-12; la sustitución de residuos pequeños con residuos más voluminosos en el interior de la proteína en la reivindicación 13; y las regiones propuestas para mutagénesis siguiendo las simulaciones de DM en la reivindicación 14.

El término "al menos uno" significa "uno o más", es decir, por ejemplo en el contexto de las regiones: uno, dos, tres, cuatro, cinco, seis, siete, ocho nueve, diez, once, doce, trece, catorce, quince, dieciséis o diecisiete; o, en el contexto de posiciones o sustituciones: uno, dos, tres, cuatro, cinco, etcétera, hasta, por ejemplo, noventa.

En una forma de realización particular, el número de regiones propuesto y/o sometido a mutagénesis es al menos uno, dos, tres, cuatro, cinco, seis, siete, ocho nueve, diez, once, doce, trece, catorce, quince, dieciséis, o, al menos, diecisiete.

En otra forma de realización particular, el número de regiones propuesto y/o sometido a mutagénesis es no más de uno, dos, tres, cuatro, cinco, seis, siete, ocho nueve, diez, once, doce, trece, catorce, quince, dieciséis, o no más de diecisiete.

Polipéptidos que tienen actividad de la proteasa

Los polipéptidos que tienen actividad de la proteasa, o las proteasas, a veces también son llamados peptidasas, proteasas, hidrolasas peptídicas o enzimas proteolíticas. Las proteasas pueden ser del tipo exo que hidrolizan péptidos comenzando en cualquier extremo de las mismas, o del tipo endo que actúa internamente en cadenas de polipéptido (endopeptidasas). Las endopeptidasas muestran actividad en sustratos de péptido bloqueado N- y C-terminalmente que son pertinentes para la especificidad de la proteasa en cuestión.

El término "proteasa" se define en la presente como una enzima que hidroliza enlaces peptídicos. Esta definición de la proteasa también se aplica a la parte de proteasa de los términos "proteasa progenitora" y "variante de proteasa" según se utiliza en el presente documento. El término "proteasa" incluye cualquier enzima del grupo enzimático EC 3.4 (incluidas cada una de las trece subclases del mismo). El número EC se refiere a nomenclatura enzimática 1992 de NC-IUBBM, Academic Press, San Diego, California, incluidos los suplementos 1-5 publicados en Eur. J. Bio-chem. 1994, 223, 1-5; Eur. J. Biochem. 1995, 232, 1-6; Eur. J. Biochem. 1996, 237, 1-5; Eur. J. Biochem. 1997, 250, 1-6; y Eur. J. Biochem. 1999, 264, 610-650; respectivamente. La nomenclatura habitualmente es suplementada y actualizada; véase, por ejemplo, la página web http://www.chem.qmw.ac.uk/iubmb/enzyme/index.html.

Las proteasas son clasificadas basándose en su mecanismo catalítico en los siguientes grupos: serina proteasas (S), cisteína proteasas (C), proteasas aspárticas (A), metaloproteasas (M), y proteasas (U) desconocidas o aún sin clasificar; véase Handbook of Proteolytic Enzymes, A. J. Barrett, N. D. Rawlings, J. F. Woessner (eds), Academic Press (1998), en particular, la parte de la introducción general.

En formas de realización particulares, las proteasas progenitoras y/o las variantes de proteasa de la invención y para el uso según la invención son seleccionadas del grupo que consiste en:

- (a) proteasas del grupo enzimático EC 3.4;
- 40 (b) serina proteasas del grupo S del manual anterior;
 - (c1) serina proteasas de la familia de peptidasa S2A; y
- (c2) serina proteasas de la familia de peptidasa S1E como se describe en Biochem. J. 290:205-218 (1993 y en la base de datos de proteasa MEROPS, publicación 6.20, 24 de marzo de 2003, (www.merops.ac.uk). La base de datos es descrita en Rawlings, N. D., O'Brien, E. A. & Barrett, A. J. (2002) MEROPS: the protease database. Nucleic Acids Res. 30, 343-346.

Para determinar si una proteasa determinada es una serina proteasa, y una proteasa de la familia S2A, se hace referencia al manual anterior y a los principios indicados en el mismo. Tal determinación puede llevarse a cabo para todos los tipos de proteasas, ya sean de origen natural o proteasas de tipo salvaje; o proteasas sintéticas o creadas genéticamente.

La actividad de la proteasa puede medirse usando cualquier ensayo en el que se emplee un sustrato, que incluya enlaces peptídicos pertinentes para la especificidad de la proteasa en cuestión. El pH del ensayo y la temperatura del ensayo igualmente deben ser adaptados a la proteasa en cuestión. Ejemplos de valores de pH del ensayo son 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 o 12. Ejemplos de temperaturas de ensayo son 30, 35, 37, 40, 45, 50, 55, 60, 65, 70, 80, 90 o 95°C. Ejemplos de ensayos de proteasa adecuados se describen en la parte experimental.

60 Proteasa progenitora

La proteasa progenitora es una proteasa de la cual la variante de proteasa es, o, puede ser derivada. Para los objetivos presentes, cualquier proteasa se puede usar como la proteasa progenitora, siempre que la variante de proteasa resultante sea homóloga a la proteasa 10, es decir, la proteasa derivada de *Nocardiopsis* sp. NRRL 18262 y que comprenda los aminoácidos 1-188 de SEC ID n.º 2.

En una forma de realización particular, la proteasa progenitora también es homóloga a la proteasa 10.

En el presente contexto, homólogo significa que tiene una de al menos 60% con SEC ID n.º 2, es decir, aminoácidos 1-188 de la parte de péptido maduro de la proteasa 10. La homología se determina como se describe generalmente a continuación en la sección titulada Homología de aminoácidos.

La proteasa progenitora puede ser un polipéptido de tipo salvaje o de origen natural, o una variante alélica del mismo, o un fragmento del mismo que tiene actividad de la proteasa, en particular, una parte madura del mismo. También ser una variante del mismo y/o un polipéptido sintético o creado genéticamente.

En una forma de realización particular, la proteasa progenitora de tipo salvaje es i) una proteasa bacteriana; ii) una proteasa del filo Actinobacteria; iii) de la clase Actinobacteria; iv) del orden Actinomycetales; v) de la familia Nocardiopsaceae; vi) del género Nocardiopsis; y/o una proteasa derivada de vii) la especie Nocardiopsis, tal como Nocardiopsis alba, Nocardiopsis antarctica, Nocardiopsis composta, Nocardiopsis dassonvillei, Nocardiopsis exhalans, Nocardiopsis halophila, Nocardiopsis halotolerans, Nocardiopsis kunsanensis, Nocardiopsis listeri, Nocardiopsis lucentensis, Nocardiopsis metallicus, Nocardiopsis prasina, Nocardiopsis sp., Nocardiopsis synnemataformans, Nocardiopsis trehalosi, Nocardiopsis tropica, Nocardiopsis umidischolae o Nocardiopsis xinjiangensis.

Ejemplos de tales cepas son: *Nocardiopsis alba* DSM 15647 (productor de tipo salvaje de la proteasa 08), *Nocardiopsis dassonvillei* NRRL 18133 (productor de tipo salvaje de la proteasa M58-1 descrito en WO 88/03947), *Nocardiopsis dassonvillei subesp. dassonvillei* DSM 43235 (productor de tipo salvaje de la proteasa 18), *Nocardiopsis prasina* DSM 15648 (productor de tipo salvaje de la proteasa 11), *Nocardiopsis prasina* DSM 15649 (productor de tipo salvaje de la proteasa 35), *Nocardiopsis* sp. NRRL 18262 (productor de tipo salvaje de la proteasa 10), *Nocardiopsis* sp. FERM P-18676 (descrito en JP 2003284571-A).

Las cepas de estas especies son accesibles al público en un número de colecciones de cultivos, tal como American Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Centraalbureau Voor Schimmelcultures (CBS) y Agricultural Research Service Patent Culture Collection, Northern Regional Research Center (NRRL), por ejemplo, la *Nocardiopsis dassonvillei subesp. dassonvillei* DSM 43235 está disponible públicamente en DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Alemania).

25

30

50

Además, tales polipéptidos se pueden identificar y obtener de otras fuentes incluidos los microorganismos o ADN aislado de al naturaleza (p. ej., tierra, abonos, agua, etc.) usando sondas adecuadas. Las técnicas para aislar microorganismos o ADN de hábitats naturales se conocen en la técnica. La secuencia de ácidos nucleicos puede entonces ser derivada seleccionando de manera similar una genoteca de ADNc o genómico de otro microorganismo. Una vez que una secuencia de ácidos nucleicos que codifica un polipéptido ha sido detectada con la/s sonda/s, la secuencia puede ser aislada o clonada utilizando técnicas conocidas por los expertos en la materia (véase, por ejemplo, Sambrook *et al.*, 1989, *supra*).

La proteasa progenitora puede ser una parte madura de cualquiera de las secuencias de aminoácidos mencionadas anteriormente. Una parte madura significa una secuencia de aminoácidos madura y se refiere a esa parte de una secuencia de aminoácidos que permanece después de que una parte del péptido señal potencial y/o parte del propéptido ha sido cortada. Las partes maduras de cada una de las proteasas 08, 10, 11, 18, 22 y 35 se especifican en el listado de secuencias anexo.

La proteasa progenitora también puede ser un fragmento de una secuencia de aminoácidos específica, es decir, un polipéptido que tiene uno o más aminoácidos delecionados del término amino y/o carboxilo de esta secuencia de aminoácidos. En una forma de realización, un fragmento contiene al menos 80, o al menos 90, o al menos 100, o al menos 110, o al menos 120, o al menos 130, o al menos 140, o al menos 150, o al menos 160, o al menos 170, o al menos 180, o al menos 185 residuos de aminoácidos.

La proteasa progenitora también puede ser una variante alélica, alélica refiriéndose a la existencia de dos o más formas alternativas de un gen que ocupa la misma localización cromosómica. La variación alélica surge naturalmente a través de mutación, y puede resultar en polimorfismo dentro de poblaciones. Las mutaciones de genes pueden ser silenciosas (ningún cambio en el polipéptido codificado) o pueden codificar polipéptidos que tienen secuencias de aminoácidos alteradas. Una variante alélica de un polipéptido es un polipéptido codificado por una variante alélica de un gen.

En otra forma de realización, la proteasa progenitora puede ser una proteasa creada genéticamente, por ejemplo, una variante del tipo salvaje o proteasas progenitoras naturales mencionadas anteriormente comprendiendo una sustitución, deleción y/o inserción de uno o más aminoácidos. En otras palabras: la proteasa progenitora puede en si misma ser una variante de proteasa, tal como la proteasa 22. La secuencia de aminoácidos de tal proteasa progenitora puede diferir de la secuencia de aminoácidos específica por una inserción o deleción de uno o más residuos de aminoácidos y/o la sustitución de uno o más residuos de aminoácidos por residuos de aminoácidos diferentes. Los cambios de aminoácidos pueden ser de una naturaleza menor o más importante. Los cambios de aminoácidos de una naturaleza más importante son, por ejemplo, aquellos que dan como resultado una proteasa variante de la presente invención con propiedades enmendadas. En otra forma de realización particular, los cambios de aminoácidos son de una naturaleza menor, es decir, sustituciones conservadoras de aminoácidos que no afectan significativamente el pliegue y/o la actividad de la proteína; deleciones pequeñas, típicamente de uno a aproximadamente 30 aminoácidos; extensiones de carboxilo o amino terminal pequeñas, tales como un residuo de metionina amino terminal; un pequeño péptido de

enlace de hasta 20-25 residuos aproximadamente; o una pequeña extensión que facilita la purificación cambiando la carga neta u otra función, tal como un tracto de polihistidina, un epítopo antigénico o un dominio de enlace.

Ejemplos de sustituciones conservadoras están en el grupo de aminoácidos básicos (arginina, lisina e histidina), aminoácidos acídicos (ácido glutámico y ácido aspártico), aminoácidos polares (glutamina y asparagina), aminoácidos hidrofóbicos (leucina, isoleucina y valina), aminoácidos aromáticos (fenilalanina, triptófano y tirosina), y aminoácidos pequeños (glicina, alanina, serina, treonina y metionina). Las sustituciones de aminoácido que generalmente no alteran la actividad específica se conocen en la técnica y son descritas, por ejemplo, por H. Neurath y R.L. Hill, 1979, en The Proteins, Academic Press, New York. Los intercambios que ocurren con mayor frecuencia son Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu y Asp/Gly, al igual que estos de forma inversa.

Otros ejemplos de proteasas progenitoras creadas genéticamente son proteasas sintéticas, diseñadas por el hombre, cuya existencia en la naturaleza es imprevista. EP 897985 describe un proceso de preparación de una proteína de consenso. Las proteasas redistribuidas son otros ejemplos de proteasas progenitoras sintéticas o creadas genéticamente, que se pueden preparar como se conoce generalmente en la técnica, por ejemplo por mutagénesis dirigida, por PCR (usando un fragmento de PCR con la mutación deseada como uno de los cebadores en las reacciones de la PCR), o por mutagénesis aleatoria. Incluido en el concepto de una proteasa sintética también está cualquier proteasa quimérica o híbrida, es decir, una proteasa que comprende una combinación de secuencias de aminoácidos parciales derivadas de al menos dos proteasas. La transposición de genes es descrita generalmente en, por ejemplo, WO 95/22625 y WO 96/00343. La recombinación de genes de proteasa puede realizarse independientemente de la secuencia específica de los progenitores por redistribución sintética como se describe en Ness, J.E. et al, en Nature Biotechnology, Vol. 20 (12), pág. 1251-1255, 2002. Los oligonucleótidos sintéticos se degeneraron en su secuencia de ADN para proporcionar la posibilidad de que todos los aminoácidos encontrados en el conjunto de proteasas progenitoras estén diseñados y los genes ensamblados según la referencia. La redistribución puede llevarse a cabo para la secuencia de longitud total o sólo para parte de la secuencia y luego combinada más tarde con el resto del gen para dar una secuencia de longitud total. Dos, tres, cuatro, cinco o los seis de las proteasas designadas proteasa 10, 18, 11, 35, 08 y 22 (SEC ID n. ° 2, 4, 6, 8, 10 y 21, en particular, las partes maduras de las mismas) son ejemplos particulares de tales proteasas progenitoras que se pueden someter a redistribución como se ha descrito anteriormente, para proporcionar proteasas adicionales de la invención.

En otras formas de realización particulares, la proteasa progenitora comprende, o consiste en, respectivamente, la secuencia de aminoácidos específica, o una variante alélica de la misma; o un fragmento de la misma que tiene actividad de la proteasa.

En otras formas de realización particulares, la variante de proteasa de la invención no es idéntica a: (i) los aminoácidos 1-188 de SEC ID n.º 2, los aminoácidos 1-188 de SEC ID n.º 4, los aminoácidos 1-188 de SEC ID n.º 6, los aminoácidos 1-188 de SEC ID n.º 8, y los aminoácidos 1-188 de SEC ID n.º 10 (ii) los aminoácidos 1-188 de SEC ID n.º 2 (iii) los aminoácidos 1-188 de SEC ID n.º 2 con la sustitución T87A; (iv) los aminoácidos 1-188 de SEC ID n.º 4 (v) los aminoácidos 1-188 de SEC ID n.º 6 (vi) los aminoácidos 1-188 de SEC ID n.º 8 (vii) los aminoácidos 1-188 de SEC ID n.º 10 (viii) la proteasa derivada de *Nocardiopsis dassonvillei* NRRL 18133; (ix) la proteasa que tiene los aminoácidos 1 a 188 de SEC ID n.º 2 como se describe en JP 2003284571-A; (x) la proteasa que tiene la secuencia introducida en GENESEQP con n.º ADF43564; (xi) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 4, en particular, la parte madura de la misma; (xii) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 6, en particular, la parte madura de la misma; (xiv) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 6, en particular, la parte madura de la misma; (xiv) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 10, en particular, la parte madura de la misma; (xv) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 10, en particular, la parte madura de la misma; (xvi) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 12, en particular, la parte madura de la misma; (xvi) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 12, en particular, la parte madura de la misma; (xvi) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 12, en particular, la parte madura de la misma; (xvi) la proteasa descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 2 de al menos 60%.

Taxonomía de los microorganismos

Las preguntas acerca de la taxonomía pueden ser resueltas consultando una base de datos de taxonomía, tal como el explorador de taxonomías NCBI que está disponible en el siguiente sitio de Internet: http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/, y/o consultando manuales de taxonomía. Para los objetivos presentes, la taxonomía es preferiblemente según el capítulo: The road map to the Manual de G.M. Garrity & J. G. Holt en Bergey's Manual of Systematic Bacteriology, 2001, segunda edición, volumen 1, David R. Bone, Richard W. Castenholz.

Homología de los aminoácidos

La presente invención se refiere a proteasas, es decir, proteasas progenitoras, y/o variantes de proteasa, con un cierto grado de identidad con los aminoácidos 1 a 188 de SEC ID n.º 2, tales proteasas variantes y/o progenitoras son designadas en adelante "proteasas homólogas".

Para objetivos de la presente invención, el grado de identidad entre dos secuencias de aminoácidos, al igual que el grado de identidad entre dos secuencias de nucleótidos, se determina por el programa "align" que es una alineación

de Needleman-Wunsch (es decir, una alineación global). El programa se usa para la alineación de polipéptido, al igual que secuencias de nucleótidos. La matriz de puntuación predeterminada BLOSUM50 se usa para alineamientos de polipéptidos, y la matriz predeterminada se usa para alineamientos de nucleótidos. La penalización para el primer residuo de un espacio es -12 para polipéptidos y -16 para nucleótidos. Las penalizaciones para otros residuos de un espacio son -2 para polipéptidos, y -4 para nucleótidos.

"Align" es parte de la versión v20u6 del paquete de FASTA (véase W. R. Pearson and D. J. Lipman (1988), "Improved Tools for Biological Sequence Analysis", PNAS 85:2444-2448 y W. R. Pearson (1990) "Rapid and Sensitive Sequence Comparison with FASTP and FASTA", Methods in Enzymology 183:63-98). Los alineamientos de proteínas de FASTA usan el algoritmo de Smith-Waterman sin ninguna limitación en tamaño de espacio (véase "Smith-Waterman algorithm", T. F. Smith y M. S. Waterman (1981) J. Mol. Biol. 147:195-197).

Los alineamientos múltiples de secuencias proteícas pueden realizarse usando "ClustalW" (Tompson, J.D., Higgins, D.G. y Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680). Los alineamientos múltiples de secuencias proteicas pueden realizarse usando la alineación de proteínas como un molde, sustituyendo los aminoácidos con el codón correspondiente de la secuencia de ADN.

En formas de realización particulares, la proteasa homóloga tiene una secuencia de aminoácidos que tiene un grado de identidad con los aminoácidos 1 a 188 de SEC ID n.º 2 de al menos 60%, 62%, 64%, 66%, 68%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o de al menos 99% aproximadamente.

En formas de realización alternativas, la proteasa homóloga tiene una secuencia de aminoácidos que tiene un grado de identidad con SEC ID n.º 2 de al menos 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58% o al menos 59%.

En otra forma de realización particular, la proteasa progenitora, y/o la variante de proteasa, comprende una secuencia de aminoácidos madura que difiere de no más de setenta y cinco, setenta y cuatro, setenta y tres, setenta y dos, setenta y uno, setenta, sesenta y nueve, sesenta y ocho, sesenta y siete, sesenta y seis, sesenta y cinco, sesenta y cuatro, sesenta y tres, sesenta y dos, sesenta y uno, sesenta, cincuenta y nueve, cincuenta y ocho, cincuenta y siete, cincuenta y seis, cincuenta y cinco, cincuenta y cuatro, cincuenta y tres, cincuenta y dos, cincuenta y uno, cincuenta, cuarenta y nueve, cuarenta y ocho, cuarenta y siete, cuarenta y seis, cuarenta y cinco, cuarenta y cuatro, cuarenta y tres, cuarenta y dos, cuarenta y uno, cuarenta, treinta y nueve, treinta y siete, treinta y seis, treinta y cinco, treinta y cuatro, treinta y tres, treinta y dos, treinta y uno, treinta, veintinueve, veintiocho, veintisiete, veintiséis, veinticinco, veinticuatro, veintitrés, veintidós, veintiuno, diecinueve, dieciocho, diecisiete, dieciséis, quince, catorce, trece, doce, once, diez, nueve, ocho, siete, seis, cinco, cuatro, tres, de no más de dos aminoácidos, o sólo por un aminoácido de la secuencia de aminoácidos específica, por ejemplo, los aminoácidos 1 a 188 de SEC ID n.º 2.

En otra forma de realización particular, la proteasa progenitora, y/o la variante de proteasa, comprende una secuencia de aminoácidos madura que difiere de al menos setenta y cinco, setenta y cuatro, setenta y tres, setenta y dos, setenta y uno, setenta, sesenta y nueve, sesenta y ocho, sesenta y siete, sesenta y seis, sesenta y cinco, sesenta y cuatro, sesenta y tres, sesenta y cinco, cincuenta y uno, sesenta, cincuenta y nueve, cincuenta y ocho, cincuenta y siete, cincuenta y seis, cincuenta y cinco, cincuenta y cuatro, cincuenta y tres, cincuenta y dos, cincuenta y uno, cincuenta, cuarenta y nueve, cuarenta y ocho, cuarenta y siete, cuarenta y seis, cuarenta y cinco, cuarenta y cuatro, cuarenta y tres, cuarenta y dos, cuarenta y uno, cuarenta, treinta y nueve, treinta y ocho, treinta y siete, treinta y seis, treinta y cinco, treinta y cuatro, treinta y tres, treinta y dos, treinta y uno, treinta, veintinueve, veintiocho, veintisiete, veintiséis, veinticinco, veinticuatro, veintitrés, veintidós, veintiuno, diecinueve, dieciocho, diecisiete, dieciséis, quince, catorce, trece, doce, once, diez, nueve, ocho, siete, seis, cinco, cuatro, tres, por al menos dos aminoácidos, o por un aminoácido de la secuencia de aminoácidos específica, por ejemplo, los aminoácidos 1 a 188 de SEC ID n.º 2.

Hibridación de ácido nucleicos

50

En la alternativa, las proteasas homólogas progenitoras, al igual que las proteasas variantes, pueden definirse como codificadas por una secuencia de ácidos nucleicos que se hibrida bajo condiciones de astringencia muy baja, preferiblemente, condiciones de astringencia baja, más preferiblemente, condiciones de astringencia media-alta, incluso más preferiblemente, condiciones de astringencia alta, y de forma más preferible, condiciones de astringencia muy alta con los nucleótidos 900 1466, o 900-1463, de SEC ID n.º 1 o una subsecuencia o una cadena complementaria de la misma (J. Sambrook, E.F. Fritsch y T. Maniatus, 1989, Molecular Cloning, A Laboratory Manual, 2ª Edición, Cold Spring Harbor, New York). Una subsecuencia puede ser de al menos 100 nucleótidos, o al menos 200, 300, 400, o al menos 500 nucleótidos. Por otra parte, la subsecuencia puede codificar un fragmento de polipéptido que tiene la actividad enzimática pertinente.

Para sondas largas de al menos 100 nucleótidos de longitud, se definen condiciones de astringencia muy baja a muy alta como prehibridación e hibridación a 42°C en 5X SSPE, SDS al 0,3%, 200 μ g/ml de ADN de esperma de salmón desnaturalizado y cortado y bien formamida al 25% para astringencias muy bajas y bajas, formamida al 35% para astringencias medias y media-altas, o formamida al 50% para astringencias altas o muy altas, siguiendo procedimientos de transferencia de Southern estándares.

Para sondas largas de al menos 100 nucleótidos de longitud, el material portador es finalmente lavado tres veces durante 15 minutos cada vez usando 2 x SSC, SDS al 0,2% preferiblemente al menos a 45°C (astringencia muy baja), más preferiblemente al menos a 50°C (astringencia baja), más preferiblemente al menos a 50°C (astringencia media), más preferiblemente al menos a 60°C (astringencia medio alta), incluso más preferiblemente al menos a 65°C (astringencia alta) y de la forma más preferible, al menos a 70°C (astringencia muy alta).

Para sondas cortas que son de aproximadamente 15 nucleótidos a aproximadamente 70 nucleótidos de longitud, las condiciones de astringencia se definen como prehibridación, hibridación y lavado post-hibridación a 5°C a 10°C por debajo de la T_m calculada usando el cálculo según Bolton y McCarthy (1962, Proceedings of the National Academy of Sciences USA 48:1390) en 0,9 M NaCl, 0,09 M Tris-HCl pH 7,6, 6 mM EDTA, 0,5% NP-40, 1X solución de Denhardt, 1 mM pirofosfato de sodio, 1 mM fosfato monobásico de sodio, 0,1 mM ATP y 0,2 mg de ARN de levadura por ml siguiendo procedimientos de transferencia de Southern estándar.

Para sondas cortas que son de aproximadamente 15 nucleótidos a aproximadamente 70 nucleótidos de longitud, el material de portador se lava una vez en 6X SCC más SDS al 0,1% durante 15 minutos y dos veces cada una durante 15 minutos usando 6X SSC a 5°C a 10°C por debajo de la T_m calculada.

Numeración de posición

50

En el presente contexto, la base para numerar las posiciones es aminoácidos 1 a 188 de SEC ID n.º 2, proteasa 10, partiendo con A1 y finalizando con T188, véase la figura 1. Una proteasa progenitora, al igual que una proteasa variante, puede comprender extensiones en comparación con SEC ID n.º 2, es decir, en el N-terminal, y/o las extremidades de C-terminales de las mismas. Los aminoácidos de tales extensiones, si los hay, se deben numerar como es usual en la técnica, es decir, para una extensión C-terminal: 189, 190, 191 etcétera, y para una extensión N-terminal: -1; -2; -3, etcétera.

Alteraciones, tales como sustituciones, deleciones, inserciones

En el presente contexto, los siguientes son ejemplos de varias maneras en las que una variante de proteasa puede ser diseñada o derivada de una secuencia de aminoácidos progenitora: un aminoácido se pueden sustituir por otro aminoácido; un aminoácido pueden ser delecionado; un aminoácido puede ser insertado; al igual que cualquier combinación de cualquier número de tales alteraciones.

Para los objetivos presentes, el término sustitución tiene por objeto incluir cualquier número de cualquier tipo de tales alteraciones. Ésta es una definición razonable, porque, por ejemplo, una deleción se puede considerar una sustitución de un aminoácido, AA, en una posición determinada, nn, con nada, (). Tal sustitución puede ser designada: AAnn(). Asimismo, una inserción de sólo un aminoácido, BB, debajo de un aminoácido, AA, en una posición, nn, puede ser designada: ()nnaBB. Y si dos aminoácidos, BB y CC, son insertados abajo del aminoácido AA en la posición nn, esta sustitución (combinación de dos sustituciones) puede ser designada: ()nnaBB+()nnbCC. Los espacios creados de este modo entre los aminoácidos nn y nn+1 en la secuencia madre tienen letra minúscula o de subíndice asignadas a, b, c etc. al número de posición anterior, en este caso, nn. Se sigue un procedimiento de numeración similar cuando se alinea una nueva secuencia a la alineación múltiple de la figura 1, en caso de que se cree un espacio por la alineación entre los aminoácidos nn y nn+1: se asigna un número a cada posición del espacio: nna, nnb etc. Una coma (,) entre sustituyentes, como, por ejemplo, en la sustitución T129E, D,Y,Q significa "bien, o", es decir que T129 se sustituye con E, o D, o Y, o Q. Un signo de más (+) entre las sustituciones, por ejemplo 129D+135P significa "y", es decir, que estas dos únicas sustituciones se combinan en una y la misma variante de proteasa.

En el presente contexto, el término "una sustitución" significa al menos una sustitución. Al menos una significa uno o más, por ejemplo uno, o dos, o tres, o cuatro, o cinco, o seis, o siete, u ocho, o nueve, o diez, o doce, o catorce, o quince, o dieciséis, o dieciocho, o veinte, o veintidós o veinticuatro, o veinticinco, o veinticoho, o treinta, etcétera, para incluir, en principio, cualquier número de sustituciones. Las variantes de la invención, no obstante, todavía deben ser, por ejemplo, al menos 60% idénticas a SEC ID n.º 2. Este porcentaje se determina por el programa mencionado arriba. Las sustituciones se pueden aplicar a cualquier posición comprendida por cualquier región mencionada en la reivindicación 1, y también están incluidas las variantes que comprenden combinaciones de cualquier número y tipo de tales sustituciones. El término sustitución, según se utiliza en este caso, también incluye deleciones, al igual que extensiones, o inserciones, que pueden contribuir a la longitud de la secuencia correspondiente los aminoácidos 1 a 188 de SEC ID n.º 2.

Además, el término "una sustitución" incluye una sustitución en cualquiera de los otros diecinueve aminoácidos naturales, o en otros aminoácidos, tales como aminoácidos no naturales. Por ejemplo, una sustitución del aminoácido T en la posición 22 incluye cada una de las siguientes sustituciones: 22A, 22C, 22D, 22E, 22F, 22G, 22H, 22I, 22K, 22L, 22M, 22N, 22P, 22Q, 22R, 22S, 22V, 22W y 22Y. Esto es, a propósito, equivalente a la designación 22X, donde X designa cualquier aminoácido. Estas sustituciones también pueden ser designadas T22A, T22C, T22X, etc. Lo mismo se aplica por analogía a todas y cada una de las posiciones mencionadas en la presente, para incluir específicamente, en este caso, cualquiera de tales sustituciones.

Números de identificación de posición correspondientes

Para cada residuo de aminoácido en cada proteasa progenitora o variante de la invención, y/o para el uso según la invención, es posible asignar directamente y sin ambigüedad un residuo de aminoácido en la secuencia de los aminoácidos 1 a 188 de SEC ID n.º 2 a la cual corresponde. Se asigna el mismo número a los residuos correspondientes, por referencia a la secuencia de la proteasa 10.

Como aparece según la numeración de la figura 1, conjuntamente con la numeración del listado de secuencias, para cada residuo de aminoácido de cada una de la proteasas proteasa 10, proteasa 18, proteasa 11, proteasa 35, proteasa 08 y proteasa 22, el residuo de aminoácido correspondiente en SEC ID n.º 2 tiene el mismo número. Este número puede derivarse fácilmente de la figura 1. Al menos en el caso de estas seis proteasas, el número es el mismo que el número asignado a este residuo de aminoácido en el listado de secuencias para la parte madura de la proteasa respectiva.

Para una posición dada en otra proteasa - sea ésta una proteasa progenitora o una variante - siempre puede encontrarse una posición correspondiente de SEC ID n.º 2, de la siguiente manera: 15

La secuencia de aminoácidos de otra proteasa progenitora, o, a su vez, de una secuencia de aminoácidos de proteasa variante, es designada SEQ-X. Una posición correspondiente a la posición N de SEC ID n.º 2 se encuentra de la siguiente manera: la secuencia de aminoácidos de proteasa variante o progenitora SEQ-X se alinea con SEC ID n.º 2 como se especificó más arriba en la sección titulada Homología de los aminoácidos. De la alineación, la posición en la secuencia SEQ-X correspondiente a la posición N de SEC ID n.º 2 puede ser derivada de manera clara y sin ambigüedad, usando los principios descritos a continuación.

La SEQ-X es la parte madura de la proteasa en cuestión. En la alternativa, también puede incluir una parte de péptido señal, y/o una parte de propéptido, o puede ser un fragmento de la proteasa madura que tiene actividad de la proteasa, por ejemplo, un fragmento de la misma longitud que SEC ID n.º 2, y/o puede ser el fragmento que se extiende desde A1 a T188 cuando está alineado con SEC ID n.º 2 como se describe en este caso.

Región y posición

30

En el presente contexto, el término región significa al menos una posición de una secuencia de aminoácidos de proteasa progenitora. El término posición designa un residuo de aminoácido de tal secuencia de aminoácidos. En una forma de realización, región significa una o más posiciones sucesivas de la secuencia de aminoácidos de proteasa progenitora, por ejemplo, uno, dos, tres, cuatro, cinco, seis, siete, ocho, etc., hasta cualquier número de posiciones consecutivas de la secuencia. Por consiguiente, una región puede consistir en una posición solamente, o puede consistir en cualquier número de posiciones consecutivas, tales como, por ejemplo, la posición n.º 62 y 63 o la posición n.º. 111, 112, 113 y 114. Para los objetivos presentes, estas dos regiones son designadas 62-63, y 111-114, respectivamente. Los límites de estas regiones o gamas están incluidos en la región.

Una región comprende específicamente todas y cada una de las posiciones que abarca. Por ejemplo, la región 111-114 específicamente comprende todas y cada una de las posiciones 111, 112, 113 y 114. Lo mismo se aplica por analogía a las otras regiones mencionadas en este caso.

Termoestabilidad

45

25

Para los objetivos presentes, el término termoestable según se aplica en el contexto de un polipéptido determinado, se refiere a la temperatura de fusión, Tm, de tal polipéptido, según se determina usando calorimetría por análisis diferencial (DSC por sus siglas en inglés) en 10 mM fosfato sódico, 50 mM cloruro sódico, pH 7, 0, usando una tasa de barrido constante de 1,5°C/min.

50

Las siguientes Tm fueron determinadas bajo las condiciones anteriores: 76,5°C (proteasa 10), 83,0°C (proteasa 18), 78,3°C (proteasa 08), 76,6°C (proteasa 35), 73,7°C (proteasa 11) y 83,5°C (proteasa 22).

Para un polipéptido termoestable, la Tm es al menos 83,1°C. En formas de realización particulares, la Tm es al menos 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 o al menos 100°C.

En la alternativa, el término termoestable se refiere a una temperatura de fusión de al menos 73,8, o al menos 76,7°C, o al menos 78,4°C, preferiblemente al menos 74, 75, 76, 77, 78, 79, 80, 81, 82 o al menos 83°C, aún como se determina usando calorimetría por análisis diferencial con un pH de 7,0.

Para la determinación de la Tm, puede usarse una muestra del polipéptido con una pureza de al menos 90% (o 91, 92, 93, 94, 95, 96, 97 o 98%) como se determina por SDS-PAGE. Aun más, la muestra enzimática puede tener una concentración de entre 0,5 y 2,5 mg/ml de proteína (o entre 0,6 y 2,4, o entre 0,7 y 2,2, o entre 0,8 y 2,0 mg/ml de proteína), como se determina a partir de la absorbencia a 280 nm y sobre la base de un coeficiente de extinción calculado a partir de la secuencia de aminoácidos de la enzima en cuestión.

La calorimetría por análisis diferencial se desarrolla al pH deseado (p. ej. pH 5,5; 7,0; 3,0 o 2,5) y con un índice de calentamiento constante, por ejemplo de 1; 1,5; 2, 3, 4, 5, 6, 7, 8, 9 o 10°C/min.

En una forma de realización particular, la variante de proteasa de la invención es termoestable, preferiblemente más termoestable que la proteasa progenitora. En este contexto, las proteasas progenitoras preferidas son la proteasa 18, o la proteasa 10.

En otra forma de realización particular, un sobrenadante del cultivo de la variante de proteasa de la invención, apropiadamente diluido, muestra una actividad residual tras la incubación durante cuatro horas a 65°C en un tampón de 0,2M Na₂HPO₄, titulado con 0,1 M ácido cítrico a i) pH 6,0, o ii) pH 4,0, de al menos 20%, en relación con un control (congelado) no incubado. La actividad se mide usando el ensayo de Protazyme AK a pH 8, 5 y 37°C, como se describe en el ejemplo 2. En otras formas de realización particulares, la actividad residual es al menos 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, o al menos 77%.

Perfil de actividad de la temperatura

En una forma de realización particular, la variante de proteasa de la invención muestra un perfil de actividad de la temperatura enmendada en comparación con, por ejemplo, la proteasa 10 (o la proteasa 18, la proteasa 11, la proteasa 35 o la proteasa 08). Por ejemplo, la variante de proteasa de la invención puede mostrar una actividad relativa con pH 9 y 80°C de al menos 0,40, preferiblemente al menos 0,45; 0,50, 0,55; 0,60; 0,65; 0,70; 0,75; 0,80; 0,85; 0,90, o al menos 0,95. El término "relativa" se refiere a la actividad máxima medida para la proteasa en cuestión. Para la proteasa 22, la actividad es relativa a la actividad a 80°C que se fija en 1,000 (100%), y para la proteasa 10, la actividad a 70°C se fija en 1,000 (100%); véase el ejemplo 3. Como otro ejemplo, la variante de la proteasa de la invención muestra una actividad relativa con pH 9 y 90°C de al menos 0,10, preferiblemente al menos 0,15, 0,20; 0,25; 0,30 o de al menos 0,35. En una forma de realización particular, la actividad de la proteasa se mide usando el ensayo de Protazyme AK del ejemplo 1.

25 Variantes poco alergénicas

En una forma de realización específica, las variantes de proteasa de la presente invención son (también) variantes poco alergénicas, diseñadas para invocar una respuesta inmunológica reducida al ser expuestas a animales, incluido el hombre. El término respuesta inmunológica debe ser entendido como cualquier reacción por el sistema inmunológico de un animal expuesto a la variante de proteasa. Un tipo de respuesta inmunológica es una respuesta alérgica que conduce a niveles aumentados de IgE en el animal expuesto. Las variantes poco alergénicas pueden ser preparadas usando técnicas conocidas en la técnica. Por ejemplo, la variante de proteasa se puede conjugar con partes de protección de fracciones de polímero o epítopos de la variante de proteasa implicados en una respuesta inmunológica. La conjugación con polímeros pueden implicar acoplamiento químico in vitro de polímero a la variante de proteasa, por ejemplo, como se describe en WO 96/17929, WO 98/30682, WO 98/35026 y/o WO 99/00489. La conjugación además o alternativamente puede implicar acoplamiento in vivo de polímeros a la variante de proteasa. Tal conjugación puede lograrse por creación genética de la secuencia de nucleótidos que codifica la variante de la proteasa, insertando secuencias de consenso que codifican sitios de glicosilación adicional en la variante de proteasa y expresando la variante de proteasa en un huésped capaz de glicosilar la variante de proteasa; véase, por ejemplo, WO 00/26354. Otro modo de conseguir variantes poco alergénicas es creando genéticamente la secuencia de nucleótidos que codifica la variante de proteasa para causar que las variantes de proteasa se auto-oligomericen, ocasionando que los monómeros de la variante de proteasa puedan proteger los epítopos de otros monómeros de la variante de proteasa y así reducir la antigenicidad de los oligómeros. Tales productos y su preparación se describen, por ejemplo, en WO 96/16177. Los epítopos implicados en una respuesta inmunológica pueden identificarse por varios métodos, tales como el método de exposición en fago descrito en WO 00/26230 y WO 01/83559, o el enfoque aleatorio descrito en EP 561907. Una vez que un epítopo ha sido identificado, su secuencia de aminoácidos se puede alterar para producir propiedades alteradas inmunológicas de la variante de proteasa por técnicas de manipulación génica conocidas tales como mutagénesis dirigida (véase, por ejemplo WO 00/26230, WO 00/26354 y/o WO 00/22103) y/o puede realizarse la conjugación de un polímero en proximidad suficiente al epítopo para que el polímero proteja al epítopo.

Constructos y secuencias de ácidos nucleicos

50

55

La presente invención también se refiere a secuencias de ácidos nucleicos que comprenden una secuencia de ácidos nucleicos que codifica una variante de proteasa de la invención.

El término "secuencia de ácidos nucleicos aislada" se refiere a una secuencia de ácidos nucleicos que es esencialmente libre de otra secuencia de ácidos nucleicos, por ejemplo, al menos aproximadamente 20% pura, preferiblemente al menos aproximadamente 40% pura, más preferiblemente al menos aproximadamente 60%, pura, incluso más preferiblemente al menos aproximadamente 80% pura, y de forma más preferible, al menos aproximadamente 90% pura como se determina por electroforesis de agarosa. Por ejemplo, una secuencia de ácidos nucleicos aislada se puede obtener por procedimientos de clonación estándares usados en ingeniería genética para recolocar la secuencia de ácidos nucleicos de su ubicación natural a un sitio diferente donde será reproducida. Los procedimientos de clonación pueden implicar escisión y aislamiento de un fragmento de ácido nucleico deseado que comprende la secuencia de ácidos nucleicos que codifica el polipéptido, inserción del fragmento en una molécula de vector, e incorporación del vector recombinante en una célula huésped donde se replicarán copias múltiples o clones de la secuencia de ácidos nucleicos. La secuencia de ácidos nucleicos puede ser de origen de ADN genómico, ADNc, ARN, semisintético, sintético, o cualquier combinación de los mismos.

Las secuencias de ácidos nucleicos de la invención se pueden preparar por introducción de al menos una mutación en la secuencia codificante de proteasa progenitora o una subsecuencia de la misma, donde la secuencia de ácidos nucleicos mutante codifica una proteasa variante. La introducción de una mutación en la secuencia de ácidos nucleicos para intercambiar un nucleótido por otro nucleótido se puede realizar por mutagénesis dirigida usando cualquiera de los métodos conocidos en la técnica, por ejemplo, por mutagénesis dirigida, por mutagénesis aleatoria, o por mutagénesis aleatoria localizada, adicionada o dopada.

La mutagénesis aleatoria es adecuadamente realizada bien como mutagénesis aleatoria específica de la región o localizada en al menos tres partes del gen que se traducen en la secuencia de aminoácidos mostradas en cuestión, o en el gen entero. Cuando la mutagénesis se realiza por el uso de un oligonucleótido, el oligonucleótido puede ser dopado o adicionado con los tres nucleótidos no progenitores durante la síntesis del oligonucleótido en las posiciones que se van a cambiar. El dopaje o el adicionado se puede realizar de modo que se eviten los codones para aminoácidos indeseados. El oligonucleótido adicionado o dopado se puede incorporar en el ADN que codifica la enzima de proteasa por cualquier técnica, usando, por ejemplo, PCR, LCR o cualquier ADN polimerasa y ligasa según se considere apropiado.

Preferiblemente, el dopaje se realiza usando "dopaje aleatorio constante", en el cual se define previamente el porcentaje de mutación y el tipo salvaje en cada posición. Además, el dopaje puede ser dirigido hacia una preferencia para la introducción de nucleótidos determinados, y así una preferencia para la introducción de uno o más residuos de aminoácidos específicos. El dopaje puede realizarse, por ejemplo, para permitir la introducción de 90% de tipo salvaje y 10% de mutaciones en cada posición. Una consideración adicional en la elección de un esquema de dopaje se basa en limitaciones estructurales de proteínas y genéticas.

La mutagénesis aleatoria puede ser localizada ventajosamente en una parte de la proteasa progenitora en cuestión.

Esto puede ser ventajoso, por ejemplo, cuando las regiones determinadas de la enzima han sido identificadas para ser de importancia particular para una propiedad determinada de la enzima.

Los métodos alternativos para conseguir variantes de la invención incluyen transposición de genes, por ejemplo, como se describe en WO 95/22625 o en WO 96/00343, y el proceso de derivación de consenso como se describe en EP 897985 (véase la sección "Proteasa progenitora" para más detalles).

En formas de realización particulares, la secuencia de ácidos nucleicos de la invención no es idéntica a: (i) los nucleótidos 900 1466, o 900-1463, de SEC ID n.º 1, los nucleótidos 499-1062 de SEC ID n.º 3, los nucleótidos 496-1059 de SEC ID n.º 5, los nucleótidos 496-1059 de SEC ID n.º 7, y los nucleótidos 502-1065 de SEC ID n.º 9; (ii) los nucleótidos 900-1466 de SEC ID n.º 1; (iii) los nucleótidos 900-1463 de SEC ID n.º 1; (iv) los nucleótidos 900-1463 de SEC ID n.º 1 como se describen en DK 1996 00013; (v) los nucleótidos 499-1062 de SEC ID n.º 3 (vi) los nucleótidos 496-1059 de SEC ID n.º 5; (vii) los nucleótidos 496-1059 de la SEC ID n.º 7; (viii) los nucleótidos 502-1065 de SEC ID n.º 9; (xi) la secuencia de ácidos nucleicos que codifica la parte de péptido maduro de la proteasa derivada de Nocardiopsis dassonvillei NRRL 18133; (x) la secuencia de ácidos nucleicos que tiene SEC ID n.º 1 como se describe en JP 2003284571-A; (xi) la secuencia de ácidos nucleicos GENESEQN n.º ADF43563; (xii) la secuencia de ácidos nucleicos descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 1, en particular, la parte de codificación de péptido maduro de la misma; (xiii) la secuencia de ácido nucleico descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID nº: 3, en particular, la parte de codificación de péptido maduro de la misma; (xiv) la secuencia de ácido nucleico descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID nº: 5, en particular, la parte de codificación de péptido maduro de la misma; (xv) la secuencia de ácido nucleico descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 7, en particular, la parte de codificación de péptido maduro de la misma; (xvi) la secuencia de ácidos nucleicos descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID n.º 9, en particular, la parte de codificación de péptido maduro de la misma; (xvii) la secuencia de ácido nucleico descrita en la solicitud de patente DK n.º 2004 00969 como SEC ID nº: 11, en particular, la parte de codificación de péptido maduro de la misma; y/o (xviii) secuencias de ácidos nucleicos que codifican cualquier proteasa de la técnica anterior de al menos 60% de identidad con los aminoácidos 1 a 188 de SEC ID n.º 2.

Constructos de ácidos nucleicos

Un constructo de ácidos nucleicos comprende una secuencia de ácidos nucleicos de la presente invención operativamente vinculado a una o más secuencias de control que dirigen la expresión de la secuencia codificante en una célula huésped adecuada bajo condiciones compatibles con las secuencias de control. Se entenderá que la expresión incluye cualquier paso relacionado con la producción del polipéptido incluidos, entre otros, transcripción, modificación postranscripcional, traducción, modificación postraduccional y secreción.

Vector de expresión

60

Una secuencia de ácidos nucleicos que codifica una variante de proteasa de la invención puede ser expresada usando un vector de expresión que incluye típicamente secuencias de control que codifican un promotor, operador, sitio de unión al ribosoma, señal de iniciación de traducción, y, opcionalmente, un gen represor o varios genes activadores.

El vector de expresión recombinante que lleva la secuencia de ADN que codifica una variante de proteasa de la invención puede ser cualquier vector que pueda convenientemente ser sometido a procedimientos de ADN recombi-

nante, y la elección del vector dependerá frecuentemente de la célula huésped en la cual será introducido. El vector puede ser uno que, al ser introducido en una célula huésped, se integre en el genoma de la célula huésped y se replique con el/los cromosoma/s en que ha sido integrado.

La variante de proteasa también puede ser coexpresada junto con al menos otra enzima de interés de pienso para animales, tal como una alfa-amilasa, una fitasa, una galactanasa, una xilanasa, una endoglucanasa, una endo-1,3(4)-beta- glucanasa, una alfa-galactosidasa y/o una proteasa. Las enzimas se pueden coexpresar a partir de distintos vectores, de un vector o usando una mezcla de ambas técnicas. Cuando se usan vectores diferentes, los vectores pueden tener marcadores seleccionables diferentes, y orígenes de replicación diferentes. Cuando se usa sólo un vector, los genes se pueden expresar a partir de uno o más promotores. Si se clona bajo la regulación de un promotor (di o multicistrónico), el orden en el cual se clonan los genes puede afectar los niveles de expresión de las proteínas. La variante de proteasa también puede ser expresada como una proteína de fusión, es decir, que el gen que codifica la variante de proteasa ha sido fusionada en marco al gen que codifica otra proteína. Esta proteína puede ser otra enzima o un dominio funcional de otra enzima.

Células huéspedes

15

25

La presente invención también se refiere a células huéspedes recombinantes, que comprenden una secuencia de ácidos nucleicos de la invención, lo cual se usa ventajosamente en la producción recombinante de los polipéptidos. Un vector que comprende una secuencia de ácidos nucleicos de la presente invención se introduce en una célula huésped de modo que el vector se mantiene como un integrante cromosómico o como un vector extracromosómico que se autoduplica. El término "célula huésped" comprende cualquier progenie de una célula madre que no es idéntica a la célula madre debido a mutaciones que ocurren durante la replicación. La elección de una célula huésped en gran parte depende del gen que codifica el polipéptido y su fuente.

La célula huésped puede ser un microorganismo unicelular, por ejemplo, una procariota, o un microorganismo no unicelular, por ejemplo, una célula eucariota, tal como una célula de animal, mamífero, insecto, planta o fúngica. Las células de animal preferidas son células de animal no humano.

En una forma de realización preferida, la célula huésped es una célula fúngica, o una célula de levadura, tal como una cálula de Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces o Yarrowia. La célula huésped fúngica puede ser una célula fúngica filamentosa, tal como una célula de una especie de Acremonium, Aspergillus, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Thielavia, Tolypocladium o Trichoderma, entre otras. Son células unicelulares útiles las células bacterianas tales como bacterias gram positivas incluidas, entre otras, una célula de Bacillus, por ejemplo, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus stearothermophilus, Bacillus subtilis y Bacillus thuringiensis, o una célula de Streptomyces, tal como Streptomyces lividans o Streptomyces murinus, o una célula de Nocardiopsis, o células de bacterias de ácido lático; o bacterias gram negativas tales como E. coli y Pseudomonas sp. Las bacterias del ácido lático incluyen, entre otras, especies de los géneros Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, Pediococcus y Enterococcus.

Métodos de producción

La presente invención también se refiere a métodos para producir una variante de proteasa de la presente invención que comprenden (a) cultivo de una célula huésped bajo condiciones propicias para la producción de la variante de proteasa; y (b) recuperación de la variante de proteasa.

En los métodos de producción de la presente invención, las células se cultivan en un medio nutritivo adecuado para la producción del polipéptido usando métodos conocidos en la técnica. Por ejemplo, la célula se puede cultivar por cultivo en matraz de agitación, fermentación a gran escala o pequeña escala (incluyendo fermentaciones por lote alimentado, discontinua, continua o en estado sólido) en fermentadores de laboratorio o industriales realizadas en un medio adecuado y bajo condiciones que permitan al polipéptido ser expresado y/o aislado. El cultivo se desarrolla en un medio nutritivo adecuado que comprende fuentes de nitrógeno y carbono y sales inorgánicas, usando procedimientos conocidos en la técnica. Se encuentran disponibles medios adecuados de proveedores comerciales o se pueden preparar según composiciones publicadas (p. ej., en catálogos de la American Type Culture Collection). Si la proteasa se segrega en el medio nutritivo, puede recuperarse directamente del medio. Si no es segregada, puede recuperarse de lisatos celulares.

La proteasa resultante se puede recuperar por métodos conocidos en la técnica. Por ejemplo, puede ser recuperarse del medio nutritivo por procedimientos convencionales incluidos, entre otros, centrifugado, filtración, extracción, secado por pulverización, evaporación o precipitación.

Las proteasas de la presente invención pueden purificarse mediante una variedad de procedimientos conocidos en la técnica incluidos, entre otros, cromatografía (p. ej., de intercambio iónico, de afinidad, hidrofóbica, de cromatoenfoque y de exclusión de tamaño), procedimientos electroforéticos (p. ej., isoelectroenfoque preparatorio), solubilidad diferencial (p. ej., precipitación de sulfato amónico), SDS-PAGE o extracción (véase, por ejemplo, Protein Purification, J.-C. Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).

Plantas

15

25

35

45

50

La presente invención también se refiere a una planta transgénica, parte de planta, o célula vegetal que ha sido transformada con una secuencia de ácidos nucleicos que codifica un polipéptido que tiene actividad de la proteasa de la presente invención para expresar y producir el polipéptido en cantidades recuperables. El polipéptido puede recuperarse de la planta o parte de planta. De manera alternativa, la planta o parte de planta con el polipéptido recombinante se puede utilizar como tal para mejorar calidad de un alimento o pienso, por ejemplo, mejorando el valor nutritivo, la apetencia y las propiedades reológicas, o para destruir un factor antinutritivo.

En una forma de realización particular, el polipéptido es dirigido a las vacuolas de almacenamiento de endospermo en semillas. Este se puede obtener sintetizándolo como un precursor con un péptido señal adecuado; véase Horvath *et al* en PNAS, 15 de feb. de 2000, vol. 97, n.º 4, pág. 1914-1919.

La planta transgénica puede ser dicotiledónea o monocotiledónea o variantes de las mismas creadas genéticamente. Ejemplos de plantas monocotiledóneas son hierbas, tales como poa de prados (poa pratense, Poa), hierba forrajera tal como Festuca, Lolium, césped templado, tal como Agrostis, y cereales, por ejemplo, trigo, avena, centeno, cebada, arroz, sorgo, triticale (híbrido estabilizado de trigo (Triticum) y centeno (Secale) y mazorca (maíz). Ejemplos de plantas dicotiledóneas son tabaco, leguminosas, tales como girasol (helianto), algodón (Gossipium), altramuces, patata, remolacha azucarera, guisante, moldura y semilla de soja y plantas de crucífero (familia Brassicaceae), tal como coliflor, semilla de colza y el organismo modelo estrechamente relacionado, la *Arabidopsis thaliana*. Las plantas de bajo fitato según se describe, por ejemplo, en la patente estadounidense n.º 5.689.054 y la patente estadounidense n.º 6.111.168, son ejemplos de plantas creadas genéticemnte.

Ejemplos de plantas de dicotiledóneas son tabaco, leguminosas, tales como altramuces, patata, remolacha azucarera, guisante, moldura y semilla de soja, y plantas crucíferas (familia Brassicaceae), tales como coliflor, semilla de colza y el organismo modelo estrechamente relacionado, la *Arabidopsis thaliana*. Las plantas de bajo fitato según se describe, por ejemplo, en la patente estadounidense n.º 5.689.054 y la patente estadounidense n.º 6.111.168, son ejemplos de plantas creadas genéticemnte. Ejemplos de partes de planta son tallo, callo, hojas, raíz, frutas, semilla y tubérculos, al igual que los tejidos individuales que compren estas partes, por ejemplo epidermis, mesófilo, parénquima, tejidos vasculares, meristemas. Los compartimentos de célula vegetal específicos, tales como cloroplasto, apoplasto, mitocondria, vacuola, peroxisomas y citoplasma también se consideran parte de la planta. Además, cualquier célula vegetal, cualquiera que sea el origen del tejido, se considera una parte de la planta. Asimismo, las partes de la planta tales como tejidos específicos y células aisladas para facilitar la utilización de la invención también se consideran partes de la planta, por ejemplo, embriones, endospermas, aleurona y revestimientos de semilla.

También se incluye dentro del campo de la presente invención la progenie de tales plantas, partes de la planta y células vegetales.

La planta transgénica o célula vegetal que expresa un polipéptido de la presente invención se puede construir conforme a métodos conocidos en la técnica. En resumen, la planta o célula vegetal se construye incorporando uno o más constructos de expresión que codifican un polipéptido de la presente invención en el genoma huésped de la planta y propagando la planta o célula vegetal modificada resultante en una planta o célula vegetal transgénica.

Convenientemente, el constructo de expresión es un constructo de ácidos nucleicos que comprende una secuencia de ácidos nucleicos que codifica un polipéptido de la presente invención operativamente enlazado con secuencias reguladoras apropiadas requeridas para la expresión de la secuencia de ácidos nucleicos en la planta o parte de la planta de elección. Además, el constructo de expresión puede comprender un marcador seleccionable útil para identificar células huéspedes en la cuales se ha integrado el constructo de expresión y las secuencias de ADN necesarias para la introducción del constructo en la planta en cuestión (esto último depende del método de introducción de ADN que se debe utilizar).

La elección de secuencias reguladoras, tales como secuencias promotoras y terminadoras y opcionalmente secuencias de tránsito o señal se determina, por ejemplo, basándose en cuándo, dónde y cómo desea expresarse el polipéptido. Por ejemplo, la expresión del gen que codifica un polipéptido de la presente invención puede ser constitutiva o inducible, o puede ser desarrollable, específica de fase o tejido, y el producto genético puede ser dirigido a un tejido o parte de planta específica tal como semillas u hojas. Las secuencias reguladoras son descritas, por ejemplo, por Tague *et al.*, 1988, Plant Physiology 86: 506.

Para la expresión constitutiva, pueden utilizarse los siguientes promotores: el promotor 35S-CaMV (Franck *et al.*, 1980, Cell 21: 285-294), la ubiquitina de maíz 1 (Christensen AH, Sharrock RA and Quail 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation), o el promotor de la actina 1 de arroz (Plant Mo. Biol. 18, 675-689.; Zhang W, McElroy D. and Wu R 1991, Analysis of rice Act1 5' region activity in transgenic rice plants. Plant Cell 3, 1155-1165). Promotores específicos de un órgano pueden ser, por ejemplo, un promotor de tejidos sumideros de almacenamiento tales como semillas, tubérculos de patata y frutas (Edwards & Coruzzi, 1990, Ann. Rev. Genet. 24: 275-303), de tejidos sumidero metabólicos tales como meristemas (Ito *et al.*, 1994, Plant Mol. Biol. 24: 863-878), un promotor específico de semilla tal como el promotor de glutelina, prolamina, globulina, o albúmina del arroz (Wu *et al.*, 1998, Plant and Cell Physiology 39: 885-889), un promotor de Vicia faba de la legúmina B4 y el gen de proteína de semilla

desconocido de Vicia faba (Conrad *et al.*, 1998, Journal of Plant Physiology 152: 708-711), un promotor de una proteína estructural de aceite de semilla (Chen *et al.*, 1998, Plant and Cell Physiology 39: 935-941), el promotor napA de una proteína de almacenamiento de *Brassica napus*, u otro promotor cualquiera específico de semillas conocido en la técnica, p. ej., como se describe en WO 91/14772. Además, el promotor puede ser un promotor específico de la hoja, tal como el promotor de rbcs de arroz o tomate (Kyozuka *et al.*, 1993, Plant Physiology 102: 991-1000, the chlorella virus adenine methyltransferase gene promoter (Mitra and Higgins, 1994, Plant Molecular Biology 26: 85-93), o el promotor aldP del gen del arroz (Kagaya *et al.*, 1995, Molecular and General Genetics 248: 668-674), un promotor inducible por herida tal como el promotor pin2 de patata (Xu *et al.*, 1993, Plant Molecular Biology 22: 573-588). Asimismo, el promotor puede ser inducible por tratamientos abióticos tales como temperatura, sequía o alteraciones en la salinidad o inducibles por sustancias aplicadas exógenamente que activan el promotor, por ejemplo, etanol, estrógenos, hormonas de planta como etileno, ácido abscísico, ácido giberélico y/o metales pesados.

Un elemento intensificador del promotor también puede usarse para conseguir una expresión más alta de la enzima en la planta. Por ejemplo, el elemento intensificador del promotor puede ser un intrón que se coloca entre el promotor y la secuencia de nucleótidos que codifica un polipéptido de la presente invención. Por ejemplo, Xu *et al.*, 1993, *supra*, revelan el uso del primer intrón del gen de actina 1 de arroz para mejorar la expresión.

Aun más, el uso de codón se puede optimizar para las especies de planta en cuestión para mejorar la expresión (véase Horvat *et al* mencionado anteriormente).

El gen de marcador seleccionable y cualquier otra parte del constructo de expresión se puede elegir a partir de los disponibles en la técnica.

El constructo de ácidos nucleicos se incorpora en el genoma de la planta según técnicas convencionales conocidas en la técnica, incluidas transformación mediada por Agrobacterium, transformación mediada por virus, microinyección, bombardeo de partículas, transformación biolística y electroporación (Gasser *et al.*, 1990, Science 244: 1293; Potrykus, 1990, Bio/Technology 8: 535; Shimamoto *et al.*, 1989, Nature 338: 274).

Actualmente, la transferencia de genes mediada por *Agrobacterium tumefaciens* es el método de elección para generar dicotiledóneas transgénicas (para una revisión, véase Hooykas and Schilperoort, 1992, Plant Molecular Biology 19: 15-38), y también puede utilizarse para la transfomación de monocotiledóneas, aunque generalmente se prefieren otros métodos de transformación para estas plantas. Actualmente, el método de elección para generar monocotiledóneas transgénicas, complementando el enfoque del Agrobacterium, es el bombardeo de partículas (oro microscópico o partículas de tungsteno revestido con ADN transformante) de callos embrionarios o embriones en desarrollo (Christou, 1992, Plant Journal 2: 275-281; Shimamoto, 1994, Current Opinion Biotechnology 5: 158-162; Vasil *et al.*, 1992, Bio/Technology 10: 667-674). Un método alternativo para la transformación de monocotiledóneas se basa en la transformación de protoplasto como describen Omirulleh *et al.*, 1993, Plant Molecular Biology 21: 415-428.

Después de la transformación, se seleccionan los transformantes que tienen incorporado el constructo de expresión y se regeneran en plantas enteras según métodos bien conocidos en la técnica.

La presente invención también se refiere a métodos para producir un polipéptido de la presente invención que comprende (a) cultivar una planta transgénica o una célula vegetal que comprende una secuencia de ácidos nucleicos que codifica una variante de proteasa de la presente invención bajo condiciones propicias para la producción de la variante de proteasa; y (b) recuperar la variante de proteasa.

Animales como huéspedes de expresión

20

60

La presente invención también se refiere a un animal transgénico no humano y productos o elementos de los mismos, ejemplos de los cuales son fluidos biológicos tales como leche y sangre, órganos, carne y células animales. Las técnicas para expresar proteínas, por ejemplo en células mamíferas, se conocen en la técnica; véase por ejemplo el manual Protein Expression: A Practical Approach, Higgins and Hames (eds), Oxford University Press (1999) y los otros tres manuales en esta serie acerca de la transcripción de genes, la maduración del ARN y el tratamiento postraduccional. En términos generales, para preparar un animal transgénico, las células seleccionadas de un animal seleccionado se transforman con una secuencia de ácidos nucleicos que codifica una variante de proteasa de la presente invención para expresar y producir la variante de proteasa. La variante de proteasa puede ser recuperada del animal, por ejemplo, de la leche de animales hembra, o puede expresarse para beneficio del animal mismo, por ejemplo, para ayudar a la digestión del animal. A continuación se mencionan ejemplos de animales en la sección titulada Pienso para animales y aditivos para pienso.

Para producir un animal transgénico con el propósito de recuperar la variante de proteasa de la leche del animal, se puede insertar un gen que codifica la variante de proteasa en los ovarios fertilizados de un animal en cuestión, por ejemplo, usando un vector de expresión de transgenes que comprende un promotor de proteínas de la leche adecuado y el gen que codifica la variante de proteasa. El vector de expresión de transgenes se microinyecta en ovarios fertilizados y, preferiblemente, se integra permanentemente en el cromosoma. Una vez que el ovario comienza a crecer y dividirse, el embrión potencial se implanta en una madre sustituta y se identifica a los animales que llevan el transgen. El animal resultante puede después ser multiplicado por reproducción convencional. La variante de proteasa puede purificarse de la leche del animal; véase, por ejemplo, Meade, H.M. *et al* (1999): Expression of recombinant proteins in the milk of

transgenic animals, Gene expression systems: Using nature for the art of expression. J. M. Fernandez and J. P. Hoeffler (eds.), Academic Press.

En la alternativa, para producir un animal no humano transgénico que lleva en el genoma de sus células somáticas y/o germinales una secuencia de ácidos nucleicos incluido un constructo de transgen heterólogo que incluye un transgen que codifica la variante de proteasa, el transgen puede ser operativamente vinculado a una primera secuencia reguladora para la expresión específica de la glándula salival de la variante de proteasa, como se describe en WO 2000064247.

10 Pienso para animales y aditivos para pienso

20

35

45

Para los objetivos presentes, el término animal incluye todos los animales, incluidos los seres humanos. En una forma de realización particular, las variantes de proteasa y las composiciones de la invención se pueden usar como un aditivo de pienso para animales no humanos. Ejemplos de animales son no rumiantes y rumiantes, tales como oveja, cabras, caballos y ganado, por ejemplo, ganado bovino para carne, vacas y terneros jóvenes. En una forma de realización particular, el animal es un animal no rumiante. Los animales no rumiantes incluyen animales monogástricos, por ejemplo, cerdos o puercos (incluidos, entre otros, lechones, cerdos en crecimiento y puercas); aves tales como pavos, patos y pollo (incluidos, entre otros, pollos para asar, ponedoras); terneros jóvenes; y peces (incluidos, entre otros, salmón, trucha, tilapia, siluro y carpas; y crustáceos (incluidos, entre otros, gambas y cigalas).

El término pienso o composición de pienso significa cualquier compuesto, preparación, mezcla, o composición destinada o adecuada para la ingestión por parte de un animal. El pienso se puede administrar al animal antes, después, o simultáneamente con la dieta. Se prefiere la última opción.

La composición de la invención, cuando está destinada a la adición al pienso para animales, se puede designar un aditivo para pienso. Tal aditivo siempre comprende la variante de proteasa en cuestión, preferiblemente, en forma de líquido estabilizado o composiciones secas. El aditivo puede comprender otros componentes o ingredientes de pienso para animales. Las denominadas premezclas para pienso para animales son ejemplos particulares de tales aditivos para pienso. Las premezclas pueden contener la/s enzima/s en cuestión, y en adición al menos una vitamina y/o al menos un mineral.

Por consiguiente, en una forma de realización particular, además de los polipéptidos componentes, la composición de la invención puede comprender o contener al menos una vitamina liposoluble y/o al menos una vitamina hidrosoluble, y/o al menos un oligoelemento. También puede incluirse al menos un macromineral.

Ejemplos de vitaminas liposolubles son vitamina A, vitamina D3, vitamina E, y vitamina K, por ejemplo, vitamina K3.

Ejemplos de vitaminas hidrosolubles son vitamina B12, biotina y colina, vitamina B1, vitamina B2, vitamina B6, niacina, ácido fólico y pantotenato, por ejemplo, Ca-D-pantotenato.

Ejemplos de oligoelementos son manganeso, zinc, hierro, cobre, yodo, selenio, y cobalto.

Ejemplos de macrominerales son calcio, fósforo y sodio.

Además, ingredientes aditivos para pienso opcionales son los agentes colorantes, por ejemplo, carotenoides tales como betacaroteno, astaxantina, y luteína; compuestos de aroma; estabilizadores; ácidos grasos poliinsaturados; especies generadoras de oxígeno reactivo; péptidos antimicrobianos y/o al menos una enzima adicional.

Componentes enzimáticos adicionales de la invención incluyen, por lo menos, un polipéptido que tiene amilasa, preferiblemente actividad de alfa-amilasa, y/o al menos un polipéptido que tiene actividad de xilanasa; y/o al menos un polipéptido que tiene actividad de endo-1,3 (4)-beta-glucanasa; y/o al menos un polipéptido que tiene actividad de fitasa; y/o al menos un polipéptido que tiene actividad de galactanasa; y/o al menos un polipéptido que tiene actividad de alfa-galactosidasa; y/o como mínimo otro polipéptido que tiene actividad de la proteasa (EC 3,4.-.-); y/o al menos un polipéptido que tiene actividad de fosfolipasa A1 (EC 3,1,1,32), fosfolipasa A2 (EC 3,1,1,4), lisofosfolipasa (EC 3.1.1.5), fosfolipasa C (EC 3.1.4.3) y/o fosfolipasa D (EC 3.1.4.4).

La actividad de alfa-amilasa puede ser medida como se conoce en la técnica, por ejemplo, usando un sustrato basado en almidón.

La actividad de xilanasa puede medirse usando cualquier ensayo, en el cual se emplee un sustrato, que incluye endoenlaces 1,4-beta-D-xilosídicos en xilanos. Están disponibles diferentes tipos de sustratos para la determinación de la actividad de xilanasa, por ejemplo, comprimidos de arabinoxilano de Xylazyme reticulados (de MegaZyme), o dispersiones de polvo insolubles y soluciones de arabinoxilano coloreado con azo.

La actividad de endoglucanasa puede determinarse usando cualquier ensayo de endoglucanasa conocido en la técnica. Por ejemplo, pueden aplicarse diferentes sustratos con betaglucano o de celulosa. Un ensayo de endoglucanasa

puede usar beta-glucano de AZCL-cebada o, preferiblemente (1) AZCL-HE-celulosa, o (2) Azo-CM-celulosa como un sustrato. En ambos casos, la degradación del sustrato es seguida espectrofotométricamente a OD_{595} (véase el método Megazyme para AZCL-polisacáridos para el ensayo de endohidrolasas en http://www.megazyme.com/booklets/AZCLPOL.pdf.

5

La actividad de endo-1,3(4)-beta-glucanasa puede determinarse usando cualquier ensayo de endo-1,3(4)-beta-glucanasa conocido la técnica. Un sustrato preferido para las mediciones de actividad de endo-1,3(4)-beta-glucanasa es un sustrato de cebada de betaglucano reticulado azo-coloreado, donde las mediciones se basan en principios de determinación espectrofotométricos.

10

La actividad de la fitasa puede medirse usando cualquier ensayo adecuado, por ejemplo, el ensayo FYT descrito en el ejemplo 4 de WO 98/28408.

15 e

La galactanasa se puede evaluar, por ejemplo, con galactano de AZCL de Megazyme, y alfagalactosidasa se puede evaluar, por ejemplo, con pNP-alfa-galactósido.

cu de

Para evaluar estas actividades enzimáticas, deben adaptarse el pH y la temperatura del ensayo a la enzima en cuestión (preferiblemente, un pH cercano al pH óptimo y una temperatura cercana a la temperatura óptima). Un pH de ensayo preferido está en la gama de 2-10, preferiblemente 3-9, más preferiblemente pH 3 o 4 o 5 o 6 o 7 u 8, por ejemplo, pH 3 o pH 7. Una temperatura de ensayo preferida está en la gama de 20-90°C, preferiblemente 30-90°C, más preferiblemente 40-80°C, incluso más preferiblemente 40-70°C, preferiblemente 40 o 45 o 50°C. La actividad enzimática se define por referencia a ciegos apropiados, por ejemplo, un tampón ciego.

25

Ejemplos de péptidos antimicrobianos (AMP) son CAP18, leucocina A, tritrpticina, protegrina1, tanatina, defensina, lactoferrina, lactoferricina y ovispirina tal como novispirina (Robert Lehren, 2000), plectasinas y estatinas, incluidos los compuestos y polipéptidos descritos en WO 03/044049 y WO 03/048148, al igual que variantes o fragmentos de los anteriores que retienen actividad antimicrobiana.

30 ig

Ejemplos de polipéptidos antifungicidas (AFP) son los péptidos de *Aspergillus giganteus* y *Aspergillus niger*, al igual que variantes y fragmentos de los mismos que retienen actividad antifúngica, según se describen en WO 94/01459 y WO 02/090384.

Ejemplos de ácidos grasos poliinsaturados son ácidos grasos poliinsaturado C18; C20 y C22, tales como ácido araquidónico, ácido docosohexaenoico, ácido eicosapentanoico y ácido gamma-linolénico.

35

Ejemplos de especies generadoras de oxígeno reactivo son los productos químicos tales como perborato, persulfato o percarbonato; y enzimas tales como una oxidasa, una oxigenasa o una sintetasa.

Usualmente, las vitaminas liposolubles e hidrosolubles, al igual que los oligoelementos, forman parte de una denominada premezcla destinada a la adición al pienso, mientras que los macrominerales normalmente se adicionan de manera separada al pienso. Una premezcla enriquecida con una proteasa de la invención es un ejemplo de un aditivo de pienso de la invención.

45

En una forma de realización particular, el aditivo de pienso de la invención está destinado a ser incluido (o se prescribe que tiene que ser incluido) en pienso o dietas para animales a niveles de 0,01 a 10,0%; más particularmente 0,05 a 5,0%; o 0,2 a 1,0% (% significa g de aditivo por 100 g de pienso). Esto es así en particular para premezclas.

50

Los requisitos nutritivos de estos componentes (ejemplificados con aves y lechones/cerdos) se presentan en la tabla A de WO 01/58275. Requisito nutritivo significa que estos componentes deberían ser proporcionados en la dieta en las concentraciones indicadas.

En la alternativa, el aditivo de pienso de la invención comprende al menos uno de los componentes individuales especificados en la tabla A de WO 01/58275. Al menos uno significa uno o más de uno, o dos, o tres, o cuatro, etcétera hasta trece, o hasta quince componentes individuales. Más específicamente, este al menos un componente individual se incluye en el aditivo de la invención en cantidad tal como para proporcionar una concentración en pienso en la gama indicada en la columna cuatro, o la columna cinco, o la columna seis de la tabla A.

di

La presente invención también se refiere a composiciones de pienso para animales. Las composiciones de pienso o dietas para animales tienen un contenido relativamente alto de proteína. Las dietas de ave y cerdo se pueden caracterizar según se indica en la tabla B de WO 01/58275, columnas 2-3. Las dietas de peces se pueden caracterizar según se indica en la columna 4 de esta tabla B. Además, tales dietas de peces normalmente tienen un contenido de grasa cruda de 200-310 g/kg. WO 01/58275 corresponde a US 09/779334 que se incorpora a la presente a modo de referencia.

55

Una composición de pienso para animales según la invención tiene un contenido de proteína bruta de 50-800 g/kg, y, además, comprende al menos una variante de proteasa como se reivindica aquí.

Además, o en la alternativa (al contenido bruto de proteína indicado más arriba), la composición de pienso para animales de la invención tiene un contenido de energía metabolizable de 10-30 MJ/kg; y/o un contenido de calcio de

0,1-200 g/kg; y/o un contenido de fósforo disponible de 0,1-200 g/kg; y/o un contenido de metionina de 0,1-100 g/kg; y/o un contenido de metionina más cisteína de 0,1-150 g/kg; y/o un contenido de lisina de 0,5-50 g/kg.

En formas de realización particulares, el contenido de energía metabolizable, proteína cruda, calcio, fósforo, metionina, metionina más cisteína y/o lisina está dentro de cualquiera de las gamas 2, 3, 4 o 5 en la tabla B de WO 01/58275 (R. 2-5).

La proteína cruda se calcula como nitrógeno (N) multiplicado por un factor 6,25, es decir, proteína cruda (g/kg)= N (g/kg) x 6,25. El contenido de nitrógeno se determina por el método Kjeldahl (Official Methods of Analysis 14th ed., Association of Official Analytical Chemists, Washington DC).

La energía metabolizable puede calcularse basándose en la publicación de NRC Nutrient requirements in swine, novena edición corregida 1988, subcomisión para la nutrición de puercos, comité sobre nutrición animal, junta de agricultura, consejo de investigación nacional. National Academy Press, Washington, D.C., pág. 2-6, y la tabla europea de valores de energía para ingredientes de pienso de ave, centro Spelderholt para investigación y extensión de aves, 7361 DA Beekbergen, Países Bajos. Grafisch bedrijf Ponsen & looijen by, Wageningen. ISBN 90-71463-12-5.

El contenido dietético de calcio, fósforo y aminoácidos disponibles en dietas para animales completas es calculado basándose en tablas de pienso tales como Veevoedertabel 1997, gegevens over chemische samenstelling, verteerbaarheid en voederwaarde van voedermiddelen, Central Veevoederbureau, Runderweg 6, 8219 pk Lelystad. ISBN 90-72839-13-7.

En una forma de realización particular, la composición de pienso para animales de la invención contiene al menos una proteína. La proteína puede ser una proteína animal, tal como harina de carne y hueso, y/o harina de pescado; o, en una forma de realización particular, puede ser una proteína vegetal. El término proteínas vegetales según se utilizan en este caso se refiere a cualquier compuesto, composición, preparación o mezcla que incluye, al menos, una proteína derivada de u originada en un vegetal, incluidas las proteínas modificadas y derivados de proteína. En formas de realización particulares, el contenido de proteína de las proteínas vegetales es al menos 10, 20, 30, 40, 50, o 60% (p/p).

Las proteínas vegetales se pueden derivar de fuentes de proteína vegetal, tal como leguminosas y cereales, por ejemplo, materiales de plantas de las familias Fabaceae (Leguminosae), Cruciferaceae, Chenopodiaceae y Poaceae, tal como harina de soja, harina de lupino y harina de semilla de colza.

En una forma de realización particular, la fuente de proteína vegetal es material de una o más plantas de la familia Fabaceae, por ejemplo, la semilla de soja, altramuz, guisante o judía.

En otra forma de realización particular, la fuente de proteína vegetal es material de una o más plantas de la familia Chenopodiaceae, por ejemplo, remolacha, remolacha azucarera, espinaca o quinoa.

Otros ejemplos de fuentes de proteína vegetal son semilla de colza, semilla de girasol, semilla de algodón y repollo.

La semilla de soja es una fuente de proteína vegetal preferida.

Otros ejemplos de fuentes de proteína vegetal son cereales tales como cebada, trigo, centeno, avena, maíz (mazor-45 ca), arroz, triticale y sorgo.

En otras formas de realización particulares, la composición de pienso para animales de la invención contiene 0-80% maíz; y/o 0-80% sorgo; y/o 0-70% trigo; y/o 0-70% cebada; y/o 0-30% avena; y/o 0-40% harina de soja; y/o 0-25%, preferiblemente 0-10%, harina de pescado; 0-25% harina de carne y hueso; y/o 0-20% lactosuero.

Las dietas para animales pueden, por ejemplo, ser fabricadas como pienso triturado (no granulado) o pienso granulado. Típicamente, los ingredientes de pienso molidos y cantidades suficientes y de vitaminas y minerales esenciales se mezclan y se agregan según las especificaciones para las especies en cuestión. Las enzimas se pueden adicionar como formulaciones de enzima sólidas o líquidas. Por ejemplo, una formulación de enzima sólida típicamente es adicionada antes o durante el paso de mezcla; y una preparación enzimática líquida típicamente es adicionada después del paso de granulación. La enzima también puede ser incorporada en un aditivo o premezcla de pienso.

La concentración de enzima final en la dieta está en la gama de 0,01-200 mg de proteína enzimática por kg de dieta, por ejemplo, en la gama de 0,5-25 mg de proteína enzimática por kg de dieta animal.

La variante de proteasa debería, por supuesto, ser aplicada en una cantidad eficaz, es decir, en una cantidad adecuada para mejorar la solubilización y/o mejorar el valor nutritivo de pienso. Actualmente se contempla que la enzima se administre en una o más de las siguientes cantidades (gamas de dosificación): 0,01-200, 0,01-100, 0,5-100, 1-50, 5-100, 10-100, 0,05-50 o 0,10-10. Todas estas gamas son en mg de proteína de enzima proteásica por kg (ppm) de pienso.

Para determinar los mg de proteína enzimática por kg de pienso, la proteasa se purifica de la composición de pienso, y la actividad específica de la proteasa purificada es determinada usando un ensayo pertinente (véase debajo

17

50

60

40

de actividad de la proteasa, sustratos y ensayos). La actividad de la proteasa de la composición de pienso como tal también es determinada usando el mismo ensayo, y basándose en estas dos determinaciones, se calcula la dosificación en mg de proteína enzimática por kg de pienso.

Los mismos principios se aplican para determinan los mg de proteína enzimática en aditivos de pienso. Por supuesto, si se encuentra disponible una muestra de la proteasa usada para preparar el aditivo de pienso o el pienso, la actividad específica se determina a partir de esta muestra (sin necesidad de purificar la proteasa de la composición de pienso ni el aditivo).

Composiciones de detergentes

La variante de proteasa de la invención se puede adicionar a, y así convertirse en, un componente de una composición de detergente.

La composición de detergente de la invención puede, por ejemplo, ser formulada como una composición de detergente a mano o a máquina de lavandería incluida una composición de aditivo de lavandería adecuada para pretratamiento de tejidos manchados y una composición de suavizante adicionado de enjuague, o ser formulado como una composición de detergente para el uso en operaciones de limpieza de superficies duras del hogar en general, o ser formulado para operaciones de lavado de la vajilla a mano o a máquina.

En un aspecto específico, la invención proporciona un aditivo de detergente que comprende la variante de proteasa de la invención. El aditivo de detergente, al igual que la composición de detergente, puede comprender una o más enzimas adicionales tal como otra proteasa, tal como proteasas alcalinas de Bacillus, una lipasa, una cutinasa, una amilasa, una carbohidrasa, una celulasa, una pectinasa, una mananasa, una arabinasa, una galactanasa, una xilanasa, una oxidasa, por ejemplo, una lacasa, y/o una peroxidasa.

En general, las propiedades de la/s enzima/s elegidas debería ser compatible con el detergente seleccionado, (es decir, pH óptimo, compatibilidad con otros ingredientes no enzimáticos y enzimáticos, etc.), y la/s enzima/s deberían estar presentes en cantidades eficaces.

Las lipasas adecuadas incluyen aquellas de origen fúngico o bacteriano. Los mutantes químicamente modificados o creados genéticamente de proteína están incluidos. Ejemplos de lipasas útiles incluyen lipasas de Humicola (sinónimo Thermomyces), por ejemplo de H. lanuginosa (*T. Lanuginosus*) como se describe en EP 258068 y EP 305216 o de *H. insolens* como se describe en WO 96/13580, una lipasa de pseudomonas, por ejemplo de *P. alcaligenes* o *P. pseudoalcaligenes* (EP 218272), *P. cepacia* (EP 331376), *P. stutzeri* (GB 1,372,034), *P. fluorescens, Pseudomonas* sp. cepa SD 705 (WO 95/06720 y WO 96/27002), *P. wisconsinensis* (WO 96/12012), una lipasa de Bacillus, por ejemplo, de *B. subtilis* (Dartois *et al.* (1993), Biochemica et Biophysica Acta, 1131, 253-360), *B. stearothermophilus* (JP 64/744992) o *B. pumilus* (WO 91/16422). Otros ejemplos son variantes de lipasa tales como las descritas en WO 92/05249, WO 94/01541, EP 407225, EP 260105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 y WO 97/07202. Las enzimas de lipasa preferidas disponibles comercialmente incluyen Lipolase UltraTM (Novozymes A/S).

Las amilasas adecuadas (beta y/o alfa) incluyen aquellas de origen fúngico o bacteriano. Los mutantes químicamente modificados o creados genéticamente de proteína están incluidos. Las amilasas incluyen, por ejemplo, alfa-amilasas obtenidas de Bacillus, por ejemplo, una cepa especial de *B. licheniformis*, descrita en más detalle en GB 1.296.839. Ejemplos de amilasas útiles son las variantes descritas en WO 94/02597, WO 94/18314, WO 95/26397, WO 96/23873, WO 97/43424, WO 00/60060 y WO 01/66712, especialmente, las variantes con sustituciones en una o más de las siguientes posiciones: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, y 444. Ailasas disponibles comercialmente son NatalaseTM, SupramylTM, StainzymeTM, DuramylTM, TermamylTM, FungamylTM y BANTM (Novozymes A/S), RapidaseTM y PurastarTM (de Genencor International Inc.).

Las celulasas adecuadas incluyen aquellas de origen fúngico o bacteriano. Los mutantes químicamente modificados o creados genéticamente de proteína están incluidos. Las celulasas adecuadas incluyen celulasas de los géneros Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, por ejemplo, las celulasas fúngicas producidas de *Humicola insolens, Myceliophthora thermonhila y Fusarium oxysporum* descritos en US 4.435.307, US 5.648.263, US 5.691.178, US 5.776.757 y WO 89/09259. Celulasas especialmente adecuadas son las celulasas neutras o alcalinas que tienen beneficios de cuidados del color. Ejemplos de tales celulasas son las celulasas descritas en EP 0 495257, EP 531372, WO 96/11262, WO 96/29397, WO 98/08940. Otros ejemplos son variantes de celulasa tales como las descritas en WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471, WO 98/12307 y WO 99/01544. Ls celulasas disponibles comercialmente incluyen CelluzymeTM y CarezimeTM (Novozymes A/S), ClazinaseTM y Puradax HATM (Genencor International Inc.), y KAC-500(B)TM (Kao Corporation).

Peroxidasas/oxidasas adecuadas incluyen aquellas origen fúngico, bacteriano o de planta. Los mutantes químicamente modificados o creados genéticamente de proteína están incluidos. Ejemplos de peroxidasas útiles incluyen peroxidasas de Coprinus, por ejemplo, de *C. cinereus*, y variantes de las mismas como las descritas en WO 93/24618, WO 95/10602 y WO 98/15257. Peroxidasas disponibles comercialmente incluyen GuardzymeTM (Novozymes).

La/s enzima/s detergente/s se puede/n incluir en una composición de detergente añadiendo aditivos separados que contengan una o más enzimas, o añadiendo un aditivo combinado que comprenda todas estas enzimas. Un aditivo de detergente de la invención, es decir, un aditivo separado o un aditivo combinado, se puede formular, por ejemplo, como un granulado, un líquido, un compuesto acuoso, etc. Las formulaciones de aditivo de detergente preferidas son granulados, en particular, granulados no polvorientos, líquidos, en particular, líquidos estabilizados o mezclas.

Los granulados no polvorientos pueden producirse, por ejemplo, como se describe en US 4.106.991 y 4.661.452 y opcionalmente pueden ser revestidos por métodos conocidos en la técnica. Ejemplos de materiales de recubrimiento cerosos son productos de poli(etileno óxido) (polietilenglicol; PEG) con pesos molares medios de 1000 a 20000, nonilfenoles etoxilados que tienen de 16 a 50 unidades de óxido de etileno; alcoholes grasos etoxilados en los cuales el alcohol contiene de 12 a 20 átomos de carbono y en el cual hay 15 a 80 unidades de óxido de etileno; alcoholes grasos; ácidos grasos; y mono- y di- y triglicéridos de ácidos grasos. Ejemplos de materiales de recubrimiento que forman películas adecuados para la aplicación por técnicas de lecho fluidificado se dan en GB 1483591. Las preparaciones enzimáticas líquidas pueden, por ejemplo, ser estabilizadas añadiendo un poliol tal como propilenglicol, un azúcar o alcohol de azúcar, ácido láctico o ácido bórico según métodos establecidos. Las enzimas protegidas se pueden preparar según el método descrito en EP 238216.

La composición de detergente de la invención puede estar en cualquier forma conveniente, por ejemplo, una barra, una pastilla, un polvo, un gránulo, una pasta o un líquido. Un detergente líquido puede ser acuoso, y típicamente contiene hasta 70% de agua y 0-30% de solvente orgánico, o no acuoso.

La composición de detergente comprende uno o más tensioactivos, que pueden ser no iónicos incluidos zwitteriónico y/o catiónico y/o aniónico y/o semipolar. Los tensioactivos típicamente están presentes a un nivel de 0,1% a 60% en peso.

Cuando está incluido, el detergente normalmente contiene de aproximadamente 1% a aproximadamente 40% de un tensioactivo aniónico tal como alquilbencenosulfonato lineal, alfa-olefinsulfonato, alquil sulfato (sulfato de alcohol graso), alcohol etoxisulfato, alcanosulfonato secundario, éster metílico de ácido graso alfa-sulfo, ácido alquenilsuccínico o de alquilo o jabón.

Cuando está incluido, el detergente normalmente contiene de aproximadamente 0,2% a aproximadamente 40% de un tensioactivo no iónico tal como alcohol etoxilato, nonilfenol, etoxilato alquilpoliglicósido, óxido de alquildimetilamina, monoetanolamida de ácido graso etoxilado, monoetanolamida de ácido graso, polihidroxi alquil amida de ácido graso, o derivados N-acilo N-alquilo de glucosamina ("glucamidas").

El detergente puede contener 0-65% de un constructor de detergente o agente complejante tal como zeolita, difosfato, trifosfato, fosfonato, carbonato, citrato, ácido nitrilotriacético, ácido etilenodiaminatetraacético, ácido dietilenotriaminopentaacético, ácido alquenilsuccínico o de alquilo, silicatos solubles o silicatos estratificados (p. ej. SKS-6 de Hoechst).

El detergente puede comprender uno o más polímeros. Ejemplos son carboximetilcelulosa, poli(vinilpirrolidona), poli (etilenglicol), alcohol polivinílico, poli(vinilpiridina-N-óxido), poli(vinilimidazol), policarboxilatos tales como poliacrilatos, copolímeros de ácido maléico/acrílico y copolímeros de lauril metacrilato/ácido acrílico.

El detergente puede contener un sistema blanqueante que puede comprender una fuente de H_2O_2 tal como perborato o percarbonato que se puede combinar con un activador blanqueante de formación de perácido tal como tetraacetiletilenodiamina o nonanoiloxibencenosulfonato. Alternativamente, el sistema blanqueante puede comprender peroxiácidos de, por ejemplo, el tipo amida, imida o sulfona.

La/s enzima/s de la composición de detergente de la invención puede/n ser estabilizada/s usando agentes estabilizantes convencionales, por ejemplo, un poliol tal como propilenglicol o glicerol, un azúcar o alcohol de azúcar, ácido láctico, ácido bórico, o un derivado de ácido bórico, por ejemplo, un éster de borato aromático, o un derivado de ácido fenil borónico tal como ácido 4-formilfenil borónico y la composición se puede formular como se describe en, por ejemplo, WO 92/19709 y WO 92/19708.

El detergente también puede contener otros ingredientes de detergentes convencionales tales como, por ejemplo, acondicionadores de tejido incluidas arcillas, reforzadores de espuma, supresores de espuma, agentes anticorrosivos, agentes de supensión de suciedad, agentes de reposición antisuciedad, tintes, bactericidas, blanqueadores ópticos, hidrotropos, inhibidores de decoloración o perfumes.

Se contempla actualmente que en las composiciones detergentes cualquier enzima, en particular la enzima de la invención, se pueda adicionar en una cantidad correspondiente a 0,01-100 mg de proteína enzimática por litro de solución de lavado, preferiblemente 0,05-5 mg de proteína enzimática por litro de solución de lavado, en particular 0,1-1 mg de proteína enzimática por litro de solución de lavado.

La enzima de la invención puede adicionalmente ser incorporada en las formulaciones de detergente descritas en WO 97/07202.

19

50

20

25

30

35

40

45

55

60

Método para generar variantes de proteasa

20

2.5

30

35

45

La invención también se refiere a un método para generar una variante de proteasa de una propiedad mejorada. El método comprende los siguientes pasos:

- (a) seleccionar una proteasa progenitora de al menos 60% de identidad con los aminoácidos 1 a 188 de SEC ID n.º 2;
- (b) establecer una estructura tridimensional de la proteasa progenitora por modelado por homología usando la estructura de la figura 2 como un modelo; y/o alineando la proteasa progenitora según la alineación de la figura 1:
 - (c) proponiendo al menos una sustitución de aminoácido, por ejemplo:
- sometiendo la estructura tridimensional de (b) a simulaciones de DM a temperaturas aumentadas e identificando regiones en la secuencia de aminoácidos de la proteasa progenitora de alta movilidad (fluctuaciones isotrópicas);
 - (ii) introduciendo puentes disulfuros a modo de sustituciones de cisteína (C-C);
 - (iii) introduciendo sustituciones de prolina (P);
 - (iv) sustituyendo residuos de aminoácidos neutros expuestos con residuos de aminoácidos cargados negativamente (E,D);
 - (v) sustituyendo residuos de aminoácidos neutros expuestos con residuos de aminoácidos cargados positivamente (R,K);
 - (vi) sustituyendo residuos de aminoácidos pequeños dentro de la proteína con residuos de aminoácidos más voluminosos (W);
 - (vii) comparando por alineación por homología y/o modelado por homología según el paso (c)(i) al menos dos proteasas progenitoras relacionadas y transfiriendo las diferencias de residuo de aminoácido entre estas estructuras de proteasa, preferiblemente, de una estructura que tenga la propiedad mejorada a una estructura que no tenga esta propiedad mejorada;
 - (d) preparando una secuencia de ADN que codifica la proteasa progenitora excepto la inclusión de un codón de ADN de al menos una sustitución de aminoácido propuesta en los pasos (c)(ii)-(c)(vii), o sometiendo a la secuencia de ADN progenitora a mutagénesis aleatoria, dirigiendo al menos a una de las regiones identificadas en el paso (c)(i);
 - (e) expresando la secuencia de ADN obtenida en el paso (d) en una célula huésped, y
 - (h) seleccionando una célula huésped que exprese una variante de proteasa con una propiedad mejorada.

La invención además se refiere a un método para la producción de una variante de proteasa obtenible u obtenida por el método de generación de variantes de proteasa anteriormente descrito, que comprende (a) cultivar la célula huésped para producir un sobrenadante que comprenda la variante; y (b) recuperar la variante.

La invención también se refiere a secuencias de ácidos nucleicos aisladas que comprenden una secuencia de ácidos nucleicos que codifica la variante de proteasa obtenible según este método, al igual que métodos para producirla (a) cultivando la célula huésped para producir un sobrenadante que comprenda la variante; y (b) recuperando la variante; una planta transgénica, o parte de planta, capaz de expresarla, animales transgénicos no humanos, o productos, o elementos de los mismos, capaces de expresarla; piensos para animales, al igual que aditivos para pienso, que la comprendan; métodos para mejorar el valor nutritivo de un pienso para animales por uso de la misma; métodos para el tratamiento de proteínas, tales como proteínas vegetales, por uso de la misma; así como el uso de la misma (i) en pienso para animales; (ii) en la preparación de pienso para animales; (iii) para mejorar el valor nutritivo de pienso para animales; y/o (iv) para el tratamiento de proteínas; y/o en detergentes.

60 Forma de realización alternativa

En una forma de realización alternativa, se usa el término "alteración" en vez de "sustitución" como el término general para enmiendas en la molécula de proteasa. Esta forma de realización alternativa incluye cada una de las reivindicaciones formuladas como se ejemplifica a continuación para la reivindicación 1, y también específicamente incluye todo lo que se expresa en la presente, por ejemplo, las definiciones (aparte de la definición de sustitución), es decir, los diferentes aspectos, formas de realización particulares, etc.

Una variante de una proteasa progenitora, que comprende una alteración en al menos una posición de al menos una región seleccionada del grupo de regiones que consisten en:

6-18; 22-28; 32-39; 42-58; 62-63; 66-76; 78-100; 103-106; 111-114; 118-131; 134-136; 139-141; 144-151; 155- 156; 160-176; 179-181; y 184-188; donde

- (a) la o las alteraciones son independientemente
 - (i) una inserción de un aminoácido inmediatamente debajo de la posición,
 - (ii) una deleción del aminoácido que ocupa la posición, y/o
 - (iii) una sustitución del aminoácido que ocupa la posición;
- (b) la variante tiene actividad de la proteasa; y
- (c) cada posición corresponde a una posición de SEC ID n.º 2, preferiblemente, los aminoácidos 1 a 188 de las mismas; y
- 20 (d) la variante tiene un porcentaje de identidad con SEC ID n.º 2, preferiblemente con los aminoácidos 1 a 188 de la misma, de al menos 60%.

El término, "variante de polipéptido", "variante de proteína", "variante de enzima" "variante de proteasa" o simplemente "variante" se refiere a un polipéptido de la invención que comprende una o más alteraciones, tales como sustitución(es), inserción(es), deleción(es) y/o truncamientos de uno o más residuos de aminoácido específico en una o más posiciones específicas en el polipéptido.

El término, "polipéptido progenitor", "proteína progenitora", "enzima progenitora", "enzima estándar", "proteína progenitora" o simplemente "progenitora" se refiere al polipéptido sobre el que se basó la variante. Este término también se refiere al polipéptido con el cual se compara y se alinea una variante.

El término, "biblioteca aleatorizada", "biblioteca variante", o simplemente "biblioteca" se refiere a una biblioteca de polipéptidos variantes. La diversidad en la biblioteca variante puede generarse por medio de mutagénesis de los genes que codifican las variantes en el nivel de tripletes de ADN, de manera que los codones individuales se diversifiquen, por ejemplo, usando cebadores de secuencia parcialmente aleatorizados en una reacción de PCR. Se han descrito diferentes técnicas mediante las cuales se puede crear una biblioteca combinatoria diversa diversificando diferentes posiciones de nucleótido en un gen y recombinándolos, por ejemplo donde estas posiciones están demasiado separadas para ser cubiertas por un único cebador oligonucleótido (dopado o adicionado). Estas técnicas incluyen el uso de recombinación *in vivo* de los segmentos de gen individuales diversificados como se describe en WO 97/07205 en la página 3, líneas 8 a 29 (Novozymes A/S). También incluyen el uso de técnicas de redistribución de ADN para crear una librería de genes de longitud total, donde se combinan diferentes segmentos de gen, y donde cada segmento se puede diversificar, por ejemplo, por mutagénesis adicionada, (Stemmer, Nature 370, pág. 389-391, 1994 y US 5.811.238; US 5.605.793; y US 5.830.721). Se puede usar un gen que codifica una "estructura" de proteína (polipéptido progenitor de tipo salvaje) como un polinucleótido modelo, y combinarlo con uno o más oligonucleótidos monocatenarios o bicatenarios como se describe en WO 98/41623 y en WO 98/41622 (Novozymes A/S). Los oligonucleótidos monocatenarios podrían ser parcialmente aleatorizados durante la síntesis. Los oligonucleótidos bicatenarios podrían ser productos de PCR que incorporan diversidad en una zona específica. En ambos casos, se puede diluir la diversidad con los segmentos correspondientes que codifican la secuencia de la proteína de esqueleto para limitar el número medio de cambios que se introducen.

50

10

15

25

Los métodos también han sido establecidos para diseñar de las proporciones de mezclas de nucleótido (A; C; T; G) para ser insertadas en posiciones de codón específicas durante la síntesis de polinucleótidos o de olgonucleótidos, para introducir un sesgo para aproximar una distribución de frecuencias deseada hacia un conjunto de uno o más aminoácidos deseados que serán codificados por los codones particulares. Puede ser de interés producir una biblioteca variante que comprenda permutaciones de varias modificaciones de aminoácido conocidas en diferentes lugares en la secuencia primaria del polipéptido. Éstas podrían introducirse post traduccionalmente o por sitios de modificación químicos, o podrían introducirse a través de mutaciones en los genes de codificación. Las modificaciones solas pueden deben haber demostrado ser provechosas previamente por una razón u otra (p. ej. disminución de la antigenicidad, o mejora de la actividad específica, el rendimiento, la estabilidad u otras características). En tales ejemplos, puede ser conveniente primero crear una biblioteca de combinaciones diversas de secuencias conocidas. Por ejemplo, si doce mutaciones individuales son conocidas, una podría combinar (como mínimo) doce segmentos del gen codificante de la proteína progenitora, donde cada segmento está presente en dos formas: una con, y una sin, la mutación deseada. Al variar las cantidades relativas de esos segmentos, podría diseñarse una biblioteca (de tamaño 212) para la cual el número medio de mutaciones por gen puede ser predicho. Esta puede ser una manera útil de combinar mutaciones, que en sí mismas dan algún efecto, pero no suficiente, sin recurrir a bibliotecas muy grandes, como es frecuentemente el caso cuando se usa "mutagénesis adicionada". Otro modo de combinar estas "mutaciones conocidas" podría ser usando redistribución de familias de ADN oligomérico que codifican las mutaciones conocidas con fragmentos de la secuencia de tipo salvaje de longitud total.

Al describir las diferentes variantes contempladas o producidas según la invención, se utilizan varias nomeclaturas y convenios que están descritos en detalle más abajo. Un marco de referencia se define primero alineando el polipéptido variante con una enzima progenitora. Una enzima progenitora preferida es la proteasa 10 (aminoácidos 1 a 188 de SEC ID n.º 2). De ese modo, varias alteraciones serán definidas en relación a la secuencia de aminoácidos de los aminoácidos 1 a 188 de SEC ID n.º 2.

Una sustitución en una variante es indicada como:

Aminoácido original - posición - aminoácido sustituido;

10

Se utilizan los códigos de tres o una letra, incluidos los códigos Xaa y X para indicar cualquier residuo de aminoácido. Por consiguiente, la notación "T82S" o "Thr82Ser" significa que la variante comprende una sustitución de treonina con serina en la posición de aminoácido variante correspondiente al aminoácido en la posición 82 en la enzima progenitora, cuando los dos se alinean como se ha indicado anteriormente.

15

Donde el residuo de aminoácido original puede ser cualquier residuo de aminoácido, una notación rápida puede usarse a veces indicando sólo la posición y el aminoácido sustituido, por ejemplo:

Posición - aminoácido sustinuido; o "82S".

20

25

Tal notación es particularmente pertinente en relación con las modificaciones en una serie de polipéptidos homólogos.

De forma similar, cuando la identidad del residuo o los residuos de aminoácido de substitución es irrelevante:

Aminoácido original - posición; o "T82"

Cuando el/los aminoácido/s originales y el/los aminoácido/s sustituidos puede/n ser cualquier aminoácido, sólo se indica la posición, por ejemplo: "82".

30

Cuando el/los aminoácido/s originales y/o aminoácido/s sustituidos pueden comprender más de uno, pero no todos, los aminoácido/s, los aminoácidos son catalogados separados por comillas:

Aminoácidos originales - n.º de posición - aminoácidos sustituidos; o "T10E,D,Y".

35

A continuación se presentan varios ejemplos de esta nomenclatura:

La sustitución de treonina para histidina en la posición 91 es designada: "His91Thr" o "H91T"; o la sustitución de cualquier ácido de residuo de aminoácido para histidina en la posición 91 es designada: "His91Xaa" o "H91X" o "His91" o "H91".

Para una modificación donde el/los aminoácido/s originales y/o aminoácido/s sustituidos puede comprender más de uno, pero no todos los aminoácido/s, la sustitución de ácido glutámico, ácido aspártico o tirosina para treonina en la posición 10:

45

"Thr10Glu, Asp, Tyr" o "T10E, D, Y"; que indica las variantes específicas: "T10E", "T10D" y "T10Y".

Una deleción de glicina en la posición 26 estará indicada por: "Gly26*" o "G26*".

50

De manera correspondiente, la deleción de uno o más residuos de aminoácido, tal como la deleción de glicina y glutamina en las posiciones 26 y 27 será designada "Gly26*+Gln27*" o "G26*+Q27*".

La inserción de un residuo de aminoácido adicional tal como, por ejemplo, una lisina después de G26 es indicada por: "Gly26GlyLys" o "G26GK"; o, cuando más de un residuo de aminoácido es insertado, tal como, por ejemplo, Lys y Ala después de G26, esto se indicará como: "Gly26GlyLysAla" o "G26GKA".

En tales casos, el/los residuo/s de aminoácido insertado/s se numeran por medio de la adición de letras minúsculas al número de posición del residuo de aminoácido que precede el/los residuo/s de aminoácido insertado/s. En el ejemplo anterior, las secuencias serían entonces:

60

Progenitor:		Variant	e:
26	26	26a	26b
G	G	K	Α

65

En casos en los cuales se inserta un residuo de aminoácido idéntico al residuo de aminoácido existente, es claro que surge la degeneración en la nomenclatura. Si, por ejemplo, va a insertarse una glicina después de la glicina en el ejemplo anterior, esto sería indicado por medio de "G26GG".

Suponiendo que una alanina estuviera presente en la posición 25, el mismo cambio real bien podría indicarse también como "A25AG":

		Progenitor:		Variante:			
10	Numeración I:	25	26	25	26	26a	
	Secuencia:	Α	G	Α	G	G	
	Numeración II:			25	25a	26	

15

30

Tales ejemplos serán claros para el experto en la materia, y la indicación "G26GG" y las indicaciones correspondientes para este tipo de inserciones están de este modo destinadas a comprender tales indicaciones de degeneración equivalentes.

20 Por analogía, si los segmentos de secuencia de aminoácidos se repiten en el polipéptido progenitor y/o en la variante, será claro para el experto en la materia que están comprendidas las indicaciones de degeneración equivalentes, también cuando otras alteraciones aparte de las inserciones sean catalogadas tales como deleciones y/o sustituciones. Por ejemplo, la deleción de dos aminoácidos consecutivos "AG" en la secuencia "AGAG" de la posición 194-197, puede escribirse como "A196*+G197*" o "A194*+G1956*":

		Variar	ite:			
Numeración I:	194	195	196	197	194	195
Secuencia:	Α	G	Α	G	Α	G
Numeración II:					196	197

Las variantes que comprenden modificaciones múltiples se separan por signos de suma, por ejemplo: "Arg170Tyr+ Gly195Glu" o "R170Y+G195E", que representan modificaciones en las posiciones 170 y 195 que sustituyen tirosina y ácido glutámico para arginina y glicina, respectivamente. Por tanto, "Tyr167Gly, Ala, Ser, Thr+Arg170Gly, Ala, Ser, Thr designa las siguientes variantes: "Tyr167Gly+Arg170Gly", "Tyr167Gly+Arg170Ala", "Tyr167Gly+Arg170Ser", "Tyr167Gly+Arg170Thr", "Tyr167Ala+Arg170Gly", "Tyr167Ala+Arg170Ala", "Tyr167Ala+Arg170Ser", "Tyr167Ala+Arg170Thr", "Tyr167Ser+Arg170Gly", "Tyr167Ser+Arg170Ala", "Tyr167Ser+Arg170Ser", "Tyr167Ser+Arg170Thr", "Tyr167Thr+Arg170Gly", "Tyr167Thr+Arg170Ser" y "Tyr167Thr+Arg170Ser" y "Tyr167Thr+Arg170Thr".

Esta nomenclatura es particularmente pertinente en relación a modificaciones destinadas a substitución, inserción o deleción de residuos de aminoácidos que tienen propiedades específicas comunes. Tales modificaciones se denominan modificación o modificaciones de aminoácido conservadora/s.

Distintas formas de realización

Estas son distintas formas de realización adicionales de la invención:

50 La variante de cualquiera de las reivindicaciones 1-16 y 18-20 que comprende al menos una de las siguientes sustituciones: T10Y, A24S, V51T, E53Q, T82S, A86Q, T87S, I96A, G118N, S122R, N130S, L186I.

La variante de cualquiera de las reivindicaciones 1-16 y 18-19 que comprende al menos una de las siguientes sustituciones: R38T; Q42G,P; R49T,Q; Q54N,R; A89S,T; H91S,T; N92S; S99A,Q; A120T; E125Q; T129Y,Q; M131L; T135N; Y147F; N151S; R165S; T166V,F; F171Y; V179I,L; preferiblemente, al menos una de las siguientes sustituciones: R38T; N92S; A120T; E125Q; M131 L; T135N; Y147F; N151S; R165S y/o F171Y.

La variante de cualquiera de las reivindicaciones 1-19 que comprende al menos una de las siguientes sustituciones: A25S, T44S, A62S, P95A, V100I, I114V, T176N, N180S, V184L, R185T.

La variante de cualquiera de las reivindicaciones 1-20 que tiene propiedades enmendadas, tal como una termostabilidad mejorada y/o una temperatura óptima más alta o más baja, tal como una Tm de al menos 83,1°C según se mide por calorimetría por análisis diferencial en 10 mM fosfato sódico, 50 mM cloruro sódico, pH 7,0.

La variante de cualquiera de las reivindicaciones 1-20 que deriva de una cepa del género Nocardiopsis, tal como Nocardiopsis alba, Nocardiopsis antarctica, Nocardiopsis prasina, Nocardiopsis composta, Nocardiopsis dassonvillei, Nocardiopsis exhalans, Nocardiopsis halophila, Nocardiopsis halotolerans, Nocardiopsis kunsanensis, Nocardiopsis

listeri, Nocardiopsis lucentensis, Nocardiopsis metallicus, Nocardiopsis sp., Nocardiopsis synnemataformans, Nocardiopsis trehalosi, Nocardiopsis tropica, Nocardiopsis umidischolae o Nocardiopsis xinjiangensis, preferiblemente Nocardiopsis alha DSM 15647, Nocardiopsis dassonvillei NRRL 18133, Nocardiopsis dassonvillei subsp. dassonvillei DSM 43235, Nocardiopsis prasina DSM 15648, Nocardiopsis prasina DSM 15649, Nocardiopsis sp. NRRL 18262, de forma más preferible, Nocardiopsis sp. FERM P-18676.

Una composición, tal como un aditivo para pienso, que comprende al menos una variante de proteasa de cualquiera de las reivindicaciones 1-20 y

- (a) al menos una vitamina liposoluble;
 - (b) al menos una vitamina hidrosoluble y/o
 - (c) al menos un oligoelemento,

que además comprende, opcionalmente, al menos una enzima seleccionada del siguiente grupo de enzimas: amilasas, galactanasas, alfa-galactosidasas, xilanasas, endoglucanasas, endo-1,3(4)-beta-glucanases, fitasas, fosfolipasas y otras proteasas; si se desea, que también comprenden al menos una amilasa y/o fosfolipasa.

La presente invención es descrita, además, por los siguientes ejemplos los cuales no deberían interpretarse como limitadores del ámbito de la invención.

Ejemplos

25 Ejemplo 1

10

15

30

Ensayos de proteasas

Ensayo de pNA

Ensayo ac pin

Sustrato de pNA: Suc-AAPF-pNA (Bachem L-1400).

Temperatura: Temperatura ambiente (25°C)

Tampones de ensayo: 100 mM ácido succínico, 100 mM HEPES, 100 mM colinesterasas, 100 mM CABS, 1 mM CaCl₂, 150 mM KCl, 0,01% Tritón X-100 ajustado a valores de pH 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0; 11,0 y 12,0 con HCl o NaOH.

Se mezclan 20 μ l de proteasa (diluida en Triton 100-X al 0,01%) con 100 μ l de tampón de ensayo. El ensayo se comienza añadiendo 100 μ l de sustrato de pNA (50 mg disueltos en 1,0 ml DMSO y además diluido 45x con Triton 100-X al 0,01%). El aumento en OD₄₀₅ se controla como una medida de la actividad de la proteasa.

Ensayo de Protazyme AK

45 Sustrato: tableta de Protazyme AK (caseína reticulada y coloreada; de Megazyme).

Temperatura: controlada (temperatura de ensayo).

Tampones de ensayo: 100 mM ácido succínico, 100 mM HEPES, 100 mM colinesterasas, 100 mM CABS, 1 mM CaCl₂, 150 mM KCl, Triton 100-X al 0,01% ajustados a valores de pH 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0 y 11,0 con HCl o NaOH.

Una tableta de Protazyme AK se suspende en 2,0 ml de Triton 100-X al 0,01% por agitación suave. Se mezclan $500 \,\mu$ l de esta suspensión y $500 \,\mu$ l de tampón de ensayo en un tubo de Eppendorf y se coloca en hielo. Se añaden 20 μ l de muestra de proteasa (diluido en Triton 100-X al 0,01%). El ensayo se inicia transfiriendo el tubo de Eppendorf a un termomezclador Eppendorf, que se fija a la temperatura de ensayo. El tubo se incuba durante 15 minutos en el termomezclador Eppendorf a su velocidad de agitación máxima (1400 r.p.m.). La incubación se detiene transfiriendo el tubo de nuevo al baño de hielo. Luego, el tubo se centrifuga en un centrifugador congelado durante unos minutos y se transfieren $200 \,\mu$ l de sobrenadante a una placa de microtitulación. OD_{650} se lee como una medida de actividad de la proteasa. Un tampón ciego se incluye en el ensayo (en vez de enzima).

Ejemplo 2

Preparación y prueba de variantes de proteasa

65

Cuatro variantes de proteasa que comprenden la secuencia de aminoácidos de los aminoácidos 1 a 188 de SEC ID n.º 2 (proteasa 10) con las únicas sustituciones N47D, T127R, N92K y Q54R, respectivamente, fueron preparadas como se describe más abajo para la variante N47D.

La mutagénesis dirigida se efectuó usando el método "Mega-cebador" como describen Sarkar y Sommen, 1990 (BioTechniques 8: 404-407).

La variante N47D se construyó usando los siguientes cebadores, de los cuales el cebador R10WT-CL29 (SEC ID n.º 11) es específico del gen, y el cebador RSWT126 (SEC ID n.º 12) es mutagénico:

R10WT-CL29: 5' CCGATTATGGAGCGGATTGAACATGCG 3' (SEC ID n.º 11)

RSWT126: 5' GTGACCATCGGCGACGGCAGGGGGCGTCTTCG 3' (SEC ID n.º 12),

para amplificar por PCR un fragmento de ADN de aproximadamente 469 pb del constructo descrito más abajo.

El constructo de ADN de proteasa 10 usado para la amplificación anterior fue un cassette de expresión (SEC ID n.º 13) para incorporación en el genoma de *Bacillus subtilis*. El constructo contiene una fusión de ADN que codifica la secuencia señal y el gen que codifica la proteína madura y pro de la proteasa 10 (SEC ID n.º 14), una construcción promotora y también el gen cat que confiere resistencia al cloranfenicol. Para facilitar la integración en el genoma por recombinación homóloga, las regiones flanqueantes de alrededor de 3 kb de genes endógenos de *Bacillus subtilis* fueron incorporados arriba y abajo de la secuencia de codificación de la proteasa 10.

El fragmento de 469 pb resultante fue purificado de un gel de agarosa (Sigma Aldrich cat. n.º A6877) y usado como un Mega-cebador junto con el cebador R10WT-CL39N (SEC ID n.º 15) en una segunda PCR realizada en el mismo molde.

R10WT-CL39N: 5' GGAGCTCTGAAAAAAAGGAGGAGAAAAAAAGAATGAA 3' (SEC ID n.º 15).

25

30

10

La construcción completa de aproximadamente 10 kb se hace *in vitro* por PCR de largo rango, usando los oligonucleótidos R10WT-CL28N (SEC ID n.º 16), R10WT-CL28C (SEC ID n.º 17), y el Sistema Expand Long Template PCR de Roche Applied Science (cat. n.º11759060), según el manual del proveedor.

R10WT-CL28N: 5' GCGTTCCGATAATCGCGGTGACAATGCCG 3' (SEC ID n.º 16)

R10WT-CL28C: 5' TTCATGAGTCTGCGCCCTGAGATCCTCTG 3' (SEC ID n.º 17)

El fragmento de 1,2 kb aproximadamente resultante fue purificado y combinado en una reacción de PCR nueva usando el Expand Long Template PCR System con los fragmentos flanqueantes de la construcción hecha por dos reacciones de la PCR usando R10WT-2C-rev (SEC ID n.º 18) y R10WT-CL28C (SEC ID n.º 17); y RSWT001 (SEC ID n.º 19) y R10WT-CL28N (SEC ID n.º 16) como conjuntos de cebador. El fragmento de 10 kb resultante puede ser amplificado usando los cebadores R10WT-CL28N (SEC ID n.º 16) y R10WT-CL28C (SEC ID n.º 17), para aumentar el número de transformantes.

el número de transforma 40

R10WT-2C-rev: 5' TAATCGCATGTTCAATCCGCTCCATAATCG 3' (SEC ID n.º 18)

RSWT001: 5' CCCAACGGTTTCTTCATTCTTTATCCTCTCTTTTTTCAGAGC 3' (SEC ID n.º 19)

Las células competentes de una cepa de proteasa y de amilasa baja de *Bacillus subtilis* (tal como cepa SHA273 descrita en WO92/11357 y WO95/10603) fueron transformadas con los fragmentos de la PCR resultantes respectivos, y se seleccionaron transformantes resistentes al cloranfenicol y se controlaron por secuenciación del ADN para verificar la presencia de la mutación correcta en el genoma.

Las células de constructos que albergan *Bacillus subtilis* que codifican la proteasa 10 y cada una de las cuatro variantes de las mismas fueron usadas para incubar matraces de agitación con contenido de medios ricos (PS-1: 100 g/L de sacarosa (Danisco cat.n.º 109-0429), 40 de g/L soja de corteza, 10 g/L Na₂HPO₄·12H₂O (Merck cat.n.º 6579), 0,1 ml/L de plurónico PE 6100 (BASF 102-3098)), y el cultivo se realizó durante cinco días a 30°C bajo agitación vigorosa.

55

Después del cultivo, los sobrenadantes fueron diluidos cuatro veces en un tampón Na₂HPO₄ 0,2M, titulados con 0,1M de ácido cítrico con pH 4,0 o pH 6,0, y fueron divididos en dos. Una mitad fue incubada durante cuatro horas a 65°C con el pH respectivo, después de lo cual fue congelada. La otra mitad fue congelada inmediatamente y sirvió como el control

60

Antes de medir la actividad de la proteasa residual, las muestras fueron diluidas diez veces en 50 mM de tampón CHES-HEPES, pH 8,5. La actividad fue determinada usando una versión modificada del ensayo Protazyme AK del ejemplo 1, solubilizando una tableta del sustrato en 4 ml de tampón CHES-HEPES, pH 8,5, mezclando bajo agitación continua un ml de esta solución de sustrato con 20 ul de muestra de proteasa diluida, que fue luego incubada a 37°C. El sustrato debería tener la temperatura correcta antes de añadir la proteasa. Después de 15 minutos, la reacción fue detenida añadiendo 100 ul de NaOH 1 M y el sustrato insoluble fue precipitado por centrifugado a 15000 r.p.m. durante 3 minutos después de lo cual se midió la absorbencia a 650 nm. Los valores deberían estar por debajo de OD 3,0; alternativamente, la muestra de proteasa debería ser diluida más de diez veces antes de la medición de actividad.

La actividad residual relativa (%) se calcula dividiendo la actividad tras la incubación a 65°C con la actividad del control correspondiente. Los resultados de la tabla 1 a continuación muestra que las cuatro variantes son de una termoestabilidad mejorada en comparación con la proteasa 10.

TABLA 1

Actividad residual tras la incubación durante cuatro horas a 65°C

Proteasa	% actividad residual pH 6	% actividad residual pH 4
Proteasa 10 + N47D	44	68
Proteasa 10 + T127R	-	77
Proteasa 10 + N92K		55
Proteasa 10 + Q54R	52	67
Proteasa 10	19	41

Ejemplo 3

5

10

15

20

40

45

50

55

60

Variante de proteasa 22

Se diseñó una variante de proteasa designada "Proteasa 22" y que comprendía un número de sustituciones en trece de las diecisiete regiones especificadas en la reivindicación 1. Esta variante comprende las siguientes sustituciones en comparación con la parte madura de la proteasa 10 (aminoácidos 1-188 de SEC ID n.º 2): T10Y, A25S, R38T, Q42P, T44S, R49K, Q54R, V56I, A62S, T82S, S99A, G118Ns, S120T, S122R, E125Q, T129Y, N130S, M131L, R165S, T166A, F171Y, T176N, V179L, N180S, V184L y R185T.

La parte madura de la proteasa 22 son los aminoácidos 1-196 de SEC ID n.º 21. La secuencia de ADN correspondiente a SEC ID n.º 21 es SEC ID n.º 20.

La secuencia de ADN de SEC ID n.º 20 fue construida e introducida en un huésped de Bacillus para la expresión. La proteasa expresada fue purificada y caracterizada como una proteasa alfa-lítica (familia de peptidasa S1E y/o S2A).

Se midió la relación de actividad-temperatura de la proteasa 22 a pH 9, usando el ensayo Protazyme AK del ejemplo 1. La proteasa 10 se incluye con fines comparativos. Los resultados se muestran en la tabla 2 a continuación.

TABLA 2

Perfil de la temperatura con pH 9 de la proteasa 22 y la proteasa 10

	Actividad relativa con pH 9					
Temperatura (°C)	Proteasa 22	Proteasa 10	_			
15	0.016	0.015				
25	0.010	0.024				
37	0.028	0.068				
50	0.069	0.199	_			
60	0.138	0.510	_			
70	0.474	1.000				
80	1.000	0,394				
90	0,375					

A partir de estos resultados, resulta que la proteasa 22 tiene una temperatura óptima más alta a pH 9 que la proteasa 10, es decir, alrededor de 80°C en comparación con alrededor de 70°C.

Se utilizó la calorimetría por análisis diferencial (DSC) para determinar la estabilidad de la temperatura con pH 7,0 de la proteasa 22 y la proteasa 10. Las proteasas purificadas fueron dializadas durante la noche a 4°C contra 10 mM de

fosfato sódico, 50 mM de cloruro sódico, pH 7,0 y se analizaron en un instrumento VP-DSC (Micro Cal) con una tasa de barrido constante de 1,5°C/min de 20 a 100°C. La manipulación de datos se realizó usando el software MicroCal Origin.

La desnaturalización resultante o temperaturas de fusión, las Tm, fueron: para la proteasa 22: 83.5°C; para la proteasa 10: 76,5°C.

La invención descrita y reivindicada en la presente no debe estar limitada en su alcance por las formas de realización específicas descritas en la presente, ya que estas formas de realización están destinadas a ser ilustraciones de diferentes aspectos de la invención. De hecho, varias modificaciones de la invención además de las descritas y mostradas en la presente serán evidentes para los expertos en la técnica de la descripción precedente.

REIVINDICACIONES

1. Proteasa con un porcentaje de identidad de los aminoácidos 1 a 188 de una proteasa progenitora que consiste en SEC ID n.º 2 de al menos 60%, que exhibe una termoestabilidad mejorada en comparación con la proteasa progenitora por determinación de actividad residual tras la incubación durante cuatro horas a 65°C con pH 6 o pH 4 en un tampón Na₂HPO₄ 0,2M y que comprende al menos una de las siguientes sustituciones: N47D, Q54R, N92K, y/o T127R, donde cada posición corresponde a una posición de aminoácidos 1 a 188 de SEC ID n.º 2;

con la condición de que la proteasa no sea:

10

35

40

60

los aminoácidos 1-188 de SEC ID n.º 2, los aminoácidos 1-188 de SEC ID n.º 2 con la sustitución T87A, los aminoácidos 1-188 de SEC ID n.º 4, los aminoácidos 1-188 de SEC ID n.º 6, los aminoácidos 1-188 de SEC ID n.º 8, los aminoácidos 1-188 de SEC ID n.º 10, los aminoácidos 1-188 de SEC ID n.º 22, y no las partes maduras de las proteasas que tienen las secuencias de SEC ID n.º 23, SEC ID n.º 24, SEC ID n.º 25, SEC ID n.º 26, SEC ID n.º 27 y SEC ID n.º 28 y donde el grado de identidad entre secuencias se determina por el programa "align" usando la matriz de puntuación BLOSUM50, la penalización para el primer residuo de un espacio es -12 y las penalizaciones para otros residuos de un espacio son -2.

- 2. Proteasa según la reivindicación 1 que tiene la secuencia de aminoácidos 1 a 188 de SEC ID n.º 2 salvo al menos una sustitución seleccionada de los siguientes: N47D, Q54R, N92K y/o T127R.
 - 3. Proteasa según la reivindicación 1 que tiene la secuencia de aminoácidos 1 a 188 de SEC ID n.º 4 salvo al menos una sustitución seleccionada de los siguientes: N47D, N54R, S92K y/o T127R.
- 4. Proteasa según la reivindicación 1 que tiene la secuencia de aminoácidos 1 a 188 de SEC ID n.º 6 salvo al menos una sustitución seleccionada de los siguientes: N47D, Q54R, N92K y/o T127R.
- 5. Proteasa según la reivindicación 1 que tiene la secuencia de aminoácidos 1 a 188 de SEC ID n.º 8 salvo al menos una sustitución seleccionada de los siguientes: N47D, Q54R, N92K y/o T127R.
 - 6. Proteasa según la reivindicación 1 que tiene la secuencia de aminoácidos 1 a 188 de SEC ID n.º 10 salvo al menos una sustitución seleccionada de los siguientes: N47D, S92K y/o T127R.
 - 7. Proteasa según la reivindicación 2 que se selecciona de los siguientes:

N47D de SEC ID n.º 2.

T127R de SEC ID n.º 2,

N92K de SEC ID n.º 2 y

Q54R de SEC ID n.º 2.

- 8. Secuencia de ácidos nucleicos aislada que comprende una secuencia de ácidos nucleicos que codifica la proteasa de cualquiera de las reivindicaciones 1-7.
- 9. Constructo de ácidos nucleicos que comprende la secuencia de ácidos nucleicos según la reivindicación 8 operativamente enlazada a una o más secuencias de control que dirigen la producción de la variante de proteasa en un huésped de expresión adecuado.
 - 10. Vector de expresión recombinante que comprende el constructo de ácidos nucleicos según la reivindicación 9.
- 55 11. Célula huésped recombinante que comprende el constructo de ácidos nucleicos según la reivindicación 9 y/o el vector de expresión según la reivindicación 10.
 - 12. Método para la producción de la proteasa según cualquiera de las reivindicaciones 1-7, el método comprendiendo:
 - (a) cultivar la célula huésped según la reivindicación 11 para producir un sobrenadante que comprende la proteasa; y
 - (b) recuperar la proteasa.
- 13. Planta transgénica, o parte de la planta, capaz de expresar una proteasa según cualquiera de las reivindicaciones 1-7.

	14. Animal transgénico no humano, o productos, o elementos de los mismos, que sean capaces de expresar una proteasa según cualquiera de las reivindicaciones 1-7.
	15. Aditivo de pienso que comprende al menos una proteasa según cualquiera de las reivindicaciones 1-7, y
5	(a) al menos una vitamina liposoluble;
	(b) al menos una vitamina hidrosoluble y/o
10	(c) al menos un oligoelemento.
	16. Composición de pienso para animales con un contenido de proteína bruta de 50 a 800 g/kg y que comprende la proteasa según cualquiera de las reivindicaciones 1-7.
15	17. Método para mejorar el valor nutritivo de un pienso para animales, donde la proteasa según cualquiera de las reivindicaciones 1-7, y/o la composición según cualquiera de las reivindicaciones 15 o 16 se añade al pienso.
20	18. Método para el tratamiento de proteínas, que comprende el paso de añadir la proteasa según cualquiera de las reivindicaciones 1-7 y/o la composición según cualquiera de las reivindicaciones 15-16 a al menos una proteína o fuente de proteína.
	19. Uso de la proteasa según cualquiera de las reivindicaciones 1-7 y/o la composición según cualquiera de las reivindicaciones 15-16 (i) en pienso para animales; (ii) en la preparación de pienso para animales; (iii) para mejorar el valor nutritivo de pienso para animales; y/o (iv) para el tratamiento de proteínas.
25	20. Uso de la proteasa según cualquiera de las reivindicaciones 1-7 en detergentes.
30	
35	
40	
45	
50	
55	
60	
65	

	1 50	
roteasa 10	ADIIGGLAYTMOGRCSVGFAATNAAGQPGFVTAGHCGRVGTQVTIGNGRG	
roteasa 18	adi igglayymggrcevgfaatnbagqpdfvtadhcdtvgtgvtigngtg	
roteasa 11	adiigglaytmggrcsvgfaatnaagqpgfvTaghcgrvgtqveigngog	
roteasa 35	ADIIGGLAYTMGGRCSVGFAATNAAGQPGFVTAGHCGRVGTQVTIGNGRG	
roteasa 08	adiigglaytmggrcsvgfaatnasggpgfvtaghcgfvgtpvsignggg	
roteasa 22	adiigglayymggrcsvgraatnabgqpgfvtaghogtvgtfvsigngkg	
	51 100	
Proteasa 10	vfeqsvfpgndaafvrgtsmftltnlvsryntggyatvaghnqapigssv	
Proteasa 18	TPONSVFPGNDAAFVRGT8NFTLTNLVSRYNSGGYQSVTGTSQAPAGSAV	
Proteasa 11	vfeqsifpgndaafvrgtsnftltmlvsryntggyatvaghnqapigssv	
Proteasa 35	vfeqsifpgndaafvrgtsnftltnlvsryntggyatvaghnqapigssv	
Proteasa 08	vfersvfpgndsafvrgtenftltnlvsryntggyatvsgsbgaa1gsq1	
Proteasa 22	vfersifpgndsafvrgtsnftltnlvsrynsggyatvaghnqapigsav	
	101	
Proteasa 10	CRSGSTTGWHCGTIQARGQSVSYPEGTVTNMTRTTVCAEPGD5GGSYISG	
Proteasa 18	Cregsitgwacgtiqarnqtvrypqgtvysltrtnvcaepgdsggsfisg	
Proteasa 11	Cregettenhcgti <u>o</u> argoevsypegtvtnmtrttvcaepgdeggeyieg	
Proteasa 35	CRSGSTTGWHCGTIQARGQSVSYPEGTVTNMTRTTVCAEPGDSGG6Y18G	
Proteasa 08	Crsgsttgwhcgtvqarqqtvsypqgtvqnltrtnvcaepgdsggsfisg	
Proteasa 22	Cragsitgwhcotiqarnqtvrypqgtvysl/trttvcaepqdsggsyleg	
	151 188	
Proteasa 10	tqaqovtsggsgncrtggttfyqevtpmvnswgvrlrt	
Proteasa 18	8Qaqqvt9ggsgnc9vggTtyy qb vtpmin9mgvR1RT	
Proteasa 11	nqaqovtsggsgncrtggttfyqbvtpmvnswgvrlrt	
Proteasa 35	nqaqcvisggbgncrtggtifyqevtpmvnbhgvrlrt	
Proteasa 08	sqaqqvtaqqsqncsfggttyyqevnpmlsswgltlrt	
Proteasa 22	TQAQGVT&GG&GNC&AGGTTYYQ&VNPML&&WGLTLRT	

Fig. 1

MOTA	1		ALA	1	-18.517	32.531	28,661	1.00	8.90
ATOM	2		ALA	1	-18.802	30.741	30.290		12.24
aton	3		ALA	1	~19.308	31.313	28.965		10.86
ATOM	4		Ala	1	-20.783	31.666	29.080		12.18
atom	5		ALA	1	-21.113	32.695	29.712		12.73
MOTA	5		asp	2	-31.722	30.930	26.510	1.00	12.01
ATON	7		asp	2	-23.176	31.225	28.612		12.07
ATOM	8		asp	2	-23.667	30.604	29.929		10.24
MOTA	9		asp	2	-23.359	29.410	30.109		11.30
MOTA	10		asp	2	-23.995	30.629	27.422		12.43
atom	11		abp	2	-23.545	31.314	26.129		16.23
ATOM	12		ASP	2	-23.300	30.668	25.134		21.68
MOTA	13			2	-23,346	32.527	26.168		17.54
MOTA	14		ILB	3	~24.387	31.321	30.757	1.00	9.80
MOTA	15		ILE	3	-24.850	30.687	32.027	1.00	8-80
ATON	16		ILE	3	-26.252	30.135	31.768	1.00	7.97
MOTA	17		ILE	3	-27.160	30.953	31.648	1.00	8.91
MOTA	18		ILE	3	-24.789	31.723	33.207	1.00	7.85
MOTA	19		ILE	3	-23.378	32.342	33,312	1.00	5.63
MOTA	30		ILE	3	-25.264	31.096	34.549	1.00	4.75
MOTA	21		ITE	3	-22.321	31.320	33.579	1.00	5.82
MOTA	22		ILE	4	-26.319	28.814	31.963	1.00	7.21
MOTA	23		ILE	4	-26.57B	27.854	27.424	1.00	8.61
MOTA	24			4	-27.102	28.463	28.794	1.00	8.70
MOTA	25		ILE	4	-27.272	27.363	29.868	1,00	7.20
ATOM	26	ÇG2	ILE	4	~28,446	26.419	29.544	1.00	6.35
MOTA	27		ILE	4	-27.569	28.083	31.259	1.00	7.04
MOTA	28		ILE	4	-27.799	27.046	32.350	1.00	7.12
MOTA	2.9		ILE	4	-26.841	26.414	32.764	1.00	5.80
atom	30		GLY	5	-29.017	26.894	32.834	1.00	8.40
MOTA	31		GLY	5	-29.415	25.958	E38.EE	1.00	5.51
MOTA	32		GLY	5	-29.031	24.550	33.483	1.00	6.74
MOTA	33		GLA	5	-29,222	24.181	32.306	1.00	8.02
ATOM	34		GLY	6	-28.492	23.787	34.436	1.00	5.32
MOTA	35		GTA	б	-28.113	22.385	34.125	1.00	6.51
nota	3€		GLY	6	-26.597	22.143	33.678	1.00	7.67
MOTA	37	0	GLY	6	-26.264	20.957	33.687	1.00	8.08
aton	3.5		Leu	7	-25.941	23.127	33.235	1.00	7.02
ATOM	3.9		LEU	7	-25.075	23.250	29.859	1.00	15.01
ATON	40		Ten	7	-24.009	25.544	29.892		12.10
mota	47		Leu	7	-24.823	24.494			11.57
MOTA	42		LEU	7	-24.100	24.149	31.987	1.00	7.81
ATOM	43		LEU	7	-24.543	22.889	32.774	7-00	7.23
ATON	44		TEO	7	-23.543	22.624	33.891	1.00	8.17
aton	45		LEU	7	-23.779	23.055	35.054	1.00	8.83
ATON	46		ALA	8	-22.450	21.931	33.560	1.00	7.85
MOTA	47		ALA	8	-20.568	20.517	33.998	1.00	7.20
ATOM	48		ALA	8	-21.436	21.658	34.583	1.00	6,67
Atom	45		ALA	8	-20.554	22.867	34.656	I.00	8,14
atom	50		ALA	8	-20.241	23.793	34.058	1.00	7.62
MOTA	51		TYR	9	-20.078	22,906	36.110	1.00	6.90
ATOM	52		TYR	9	-19.074	23.854	36.502	1.00	7.03
ATOM	53		TYR	9	-18,136	22.950	37.480	1.00	8.21
MOTA	54	0	TYR	9	-18.560	21.945	38.048	1.00	7.61

Fig. 2

Cont. Fig	2							
ATOM	55	CB	TYR	9	-19.474	25.108	37.320	1.00 7.45
ATOM	56	CG	TYR	9	-20.138	24.925	38.664	1.00 9.14
ATON	57		TYR	9	-19.401	24.898	39.853	1.00 8.86
MOTA	58	-	TYR	5	-21.559	24.B18	38.673	1.00 8.56
ATOM	59		TYR	9	-20.044	24.756	41,062	1.00 7.11
ATON	60	CE2	TYR	9	-22.214	24.696	39.930	1.00 8.78
ATOM	61	CZ	TYR	9	-21.438	24.673	41.072	1.00 7.41
ATOM	62	OH	TYR	9	-22.115	24.537	42.348	1.00 8.28
MOTA	63	N	TER	10	-15.867	23.367	37.552	1.00 8.23
ATOM	64	CG2		10	-15.380	21.144	36,171	1.00 21.51
ATOM	65	0G1		10	-14.022	22.954	36.816	1.00 17.27
ATOM	55	CB	THR	10	-14.816	21.869	37.398	1.00 15.54
ATOM	67	CA	THR	10	-15,881	22.592	38.334	1.00 12,22
ATOM	68	Ċ	THR	10	-15.190	23.495	39.381	1.00 12.59
MOTA	69	0	THR	10	-15.040	24.724	39.295	1.00 11.83
ATOM	70	N	MBT	11	-14.719	22.854	40.422	1.00 13.86
MOTA	71	CE	MET	11	-18.117	21.521	42.992	0.70 10.20
MOTA	72	SD	MET	11	-16.364	21.817	43.260	0.70 13.92
ATOM	73	ÇĢ	MET	11	-16.351	23.607	42.742	0.70 8.87
ATOM	74	¢B	MET	11	-14.945	24.074	42.557	0.70 13.60
ATOM	79	CA	MET	11	-14.003	23.423	41.576	1.00 14.74
ATOM	80	C	MET	11	-13.204	22.219	&2.14 1	1.00 16.84
ATOM	81	٥	Met	11	-13.132	22.126	43.360	1.00 18.29
ATOM	62	N	GLY	12	-12.650	21.380	41.252	1.00 17.41
atom	83	CA	GLY	12	-11.531	20.160	41.721	1.00 20.30
ATOM	84	C	GLY	1.2	-12.961	19.034	41.377	1.00 22.00
MOTA	85	٥	GLY	12	-12.730	18.252	40.444	1.00 25.04
MOTA	86	n	GLY	13	-14.079	19.064	42.126	1.00 17.68
MOTA	87	CA	GTA	13	-15.219	18.171	41.900	1.00 15.21
atom	88	C	GLY	13	-16.127	18.873	40.846	1.00 15.26
atom	89	٥	GLY	13	-15.6B1	19.862	40.228	1.00 14.51
aton	90	N	ARG	14	-17.370	18.410	40.657	1.00 12.77
MOTA	91		ARG	14	-20.479	14.276	37.036	1.00 17.15
MOTA	92		ARG	14	-21.587	16.075	35.340	1.00 13.21
MOTA	93	CZ	ARG	14	-20.415	15.529	36.584	1.00 16.51
MOTA	94	NE	ARG	14	-19.265	16.236	36.423	1.00 15.10
ATOM	95	CD	ARG	14	-19.240	17.643	36.031	1.00 15.25
MOTA	96	CG	ARG	14	-19.255	18.317	37.291	1.00 14.76
MOTA	97	CB CB	ARG	14	-18.333		38.435	
MOTA	99	CA	ARG	14	-18.269		39.659	1.00 11.00
MOTA	99	C	ARG	14	-19.665			1.00 9.52
ATOM ATOM	100 101	M	arg Cys	14	-20.027		41.091	1.00 8.13
ATOM	102	CA	CYS	15	-20.358		39.853	1.00 8.85
				15 15	-21.762	20.417	40.285	1.00 6.14
mota Mota	203	C	CXS	15	-22.455	21.027	39.084	1.00 6.53
MOTA	104 105	O CB	CYS	15 15	-21.754		38.036	1.00 8.10
MOTA	105	SG	CYS	15 15	-21.897		41.568	1.00 7.27
ATOM	107	n	SER	16	-21.795		43.088 39.154	1.00 8.70
ATOM	109	CA	ser Ser	16	-23.745		37.575	1.00 5.13
ATOM	109	CA	ser Ser	16	-24.402 -24.659			
MOTA	110	0	Ser	16	-26.303 -25.331	23.294 23.536		
MOTA	111	CB	Ser	16	-25.540		37,602	1.00 7.15 1.00 5.02
MOTA			Ser					1.00 5.02

Fig. 2

-25.031 19.670 37.228 1.00 7.01

16

112 OG SER

MOTA

Cont. Fig 2

ATON	113	N	VAL	17	-25.177	24.129	37.276	1.00	5.71
MOTA	114	CA	VAL	17	-25.780	25.469	37.450	1.00	6.30
atom	115	Ċ	VAL	17	-27.274	25.365	37.742	1.00	6.27
ATOM	116	0	VAL	17	-27.904	24.514	37.084	1.00	5.87
MOTA	117	CB	VAL	17	-25.589	26.211	36.113	1.00	4.80
aton	118	CGI	VAL	17	-26.252	27.572	36.079	1.00	2.00
aton	119	CG2	VAL	17	-24.108	26.435	35.892	1.00	5.56
ATON	120	N	GLY	18	-27.836	26.136	38.522	1.00	5.84
atom	121	CA	GLY	16	-29.277	26.067	38.899	1,00	4.89
aton	122	Ç	GLY	18	-29.898	27.072	37.958	1.00	7.79
NOTA	123	a	GLY	18	-30.578	25.683	36.960	1.00	8.56
ATON	124	N	PHE	19	-29.783	28.366	38,175	1.00	6.84
aton	125	CA	PHE	19	-30.368	29.391	37,291	1.00	8.35
ATOM	126	C	PHE	19	-29.457	30.625	37.254	1.00	8.67
ATOM	127	0	PHE	19	-28.889	30.984	38.285	1.00	7.20
ATOM	128	CB	PHE	19	-31.761	29.873	37.827	1,00	6.74
ATOM	129	CG	PHE	19	-32.786	28.779	38.033	1.00	8.40
NOTA	130	CD1	PHE	19	+33.490	28.300	36.918	1.00	9.81
ATON	131	CD2	PHE	19	-32.921	28.194	39.301	1.00	8.27
ATON	132	CEI	PHE	19	-34.414	27.241	37.060	1,00	7.45
ATOM	133	CE2	PHE	19	-33.804	27.129	39.460	1.00	7.36
ATOM	134	CZ	PHE	19	-34.541	26.662	38.347	1.00	8.66
ATON	135	N	ALA	20	-29.375	31.284	36.114	1.00	8.32
ATOM	136	CB	ALA	20	-28.552	32.954	34.501	1.00	7.08
MOTA	137	ÇA	ALA	20	-28,577	32.514	35.976	1.00	6.99
ATON	138	c	ALA	20	-29.347	33.558	36.793	1.00	8.39
ATOM	139	ō	ALA	20	-30.614	33.548	36.744	1.00	6.62
ATON	140	N	ALA	31	-28.653	34.461	37.453	1.00	6.45
ATOM	141	CB	ALA	21	-29.774	34.943	39.600	1.00	6.04
MOTA	142	CA	ALA	21	-29.305	35.514	38.244	1.00	9.09
ATOM	143	C	ALA	21	-28.267	36.598	38.599	1.00	10.25
ATON	144	ō	ALA	21	-27.048	36.412	38.434	1.00	10.39
ATON	145	N	THR	22	-28.734	37.704	39.154	1.00	10.87
ATOM	146	CA	THR	22	-27.795	38.747	39,633	1.00	9.81
ATOM	147	2	THR	22	-28.044	38.773	41.139		12.70
ATOM	148	ō	THR	23	-29.153	38.378	41.607	1.00	13.28
ATOM	149	CB	THE	22	-28.009	40.191	39.000	1.00	12.32
ATON	150	061	THR	23	-29.443	40.520	39.201		17.96
ATOM	151	CG2	THR	22	-27.730	40.314	37.512	1.00	10.22
ATOM	152	N	ASN	23	-27.067	39.261	41.919	1.00	12.56
MOTA	153		ASN	33	-23.651	39.789	44.187	1.00	14.15
ATOM	154		ASN	33	-25.034	41.090	43.152		11.99
ATOM	155	CG.	ASN	23	-34.917	40.044	43.825		13.60
ATON	156	CE	ASN	23	-26.025	39.065	44.153		12.41
ATON	157	CA	AEN	23	-27.308	39.367	43.381		14.31
MOTA	158	c	ASN	23	-27.947	40.754	43.500		15.71
ATOM	159	ō	NEA	23	-28.252	41.558	42.564		13.58
ATON	160	N	ALA	24	-28.043	41.088	44.883		16.68
MOTA	161	CB	ALA	24	-28.893	42.370	46.862		19.20
MOTA	162	CA	ALA	24	*28.635	42.344	45.371		30.05
ATOM	163	C	ALA	24	-27.831	43.543	44.936		22.43
ATOM	164	Ö	ALA	24	-28.408	44.658	44.795		24.93
ATOM	165	N	ALA	25	-26.556	43.412			
ATOM	166	CA	ALA	25	-25.727		44.548		23.59
~ 3 ~ W(1)	** ~ E	-	A Charles II.	<i>a</i> = -	-60.72/	44.513	44.128	1.00	20.79

Fig. 2

Cont. Fig 2 ATOM 167 C ALA 1.00 21.34 25 -25.765 44.542 42,613 MOTA 168 O ALA 25 -25.018 45.388 42.040 1.00 24.26 MOTA ALA 169 CB 25 -24.278 44.379 44.584 1.00 24.28 MOTA 170 GLY 26 -25.508 1.00 16.97 N 43.687 41.910 MOTA CA GLY 26 177 -25.453 43.763 40.456 1.00 15.31 MOTA 172 C GLY 36 -25.320 43.024 39.803 1.00 13.98 MOTA GLY 26 173 -25.158 43.168 38.560 1.00 15.90 MOTA 174 N GLN 27 -24.594 40.523 1.00 13.26 42.196 MOTA. MEZ GLN 173 27 -19.588 42.607 42.319 1.00 23.84 NOTA 176 OE1 GLN 27 -21.305 41.674 43.669 1.00 19.08 HOTA GLN 177 CD 27 -20.952 42.234 42.525 1.00 20.42 MOTA 42.487 178 CG GLN 27 -21.934 41.519 1.00 16.87 MOTA 179 GLN CB 27 -22.364 41.130 40.909 1.00 13.66 MOTA 180 CA GLN 27 -23.498 41.430 39.904 1.00 11.98 MOTA C GLN -24.023 181 27 60.113 39.345 1.00 11.57 ATOM 182 0 GLN 27 -24.829 39.428 39.949 1.00 11.63 MOTA 183 N PRO 28 -23.539 39.714 38.197 1.00 10.36 ATON 184 CG PRO 28 -22.111 39.444 36.367 1.00 11.95 MOTA 165 0 PRO 28 -22.544 40.519 37.403 1.00 10.61 MOTA CB PRO 186 28 -23.429 38.692 36.116 1.00 11.06 MOTA CA PRO 187 28 -23.977 38.497 37.537 1.00 9.08 MOTA 188 C PRO 28 -23.418 37.248 38.194 1.00 9.80 MOTA 189 0 PRO 28 -22.278 37.282 38.749 1.00 9.50 MOTA 190 N GLY 29 -24.245 36.179 38.101 1.00 6.29 MOTA CA 191 GLY 29 -23.721 34.885 38.671 1.00 4.48 MOTA GLY 192 C 29 -24.827 33.875 38.440 1.00 6.36 ATOM 193 GLY 0 29 -25.604 34.036 37.454 1.00 7.58 ATOM 194 N PHE 30 -24.889 32.917 39.339 1.00 7.28 ATOM 195 CA PHE 30 -25.971 31.691 39.292 1.00 7.77 MOTA 196 31.306 C PHE 30 -26.232 40.703 1.00 6.83 MOTA 197 0 PHE 30 ~25.281 31.334 41.532 1.00 8.49 MOTA 198 CB PHE 30 -25.653 30.741 38.312 1.00 3.78 ATOM PHE 199 CG 30 -24.384 29.955 38.483 1.00 5.51 CD1 PHR MOTA 200 30 -24.299 28.836 39.311 1.00 6.54 MOTA 201 CD2 PHE 30 -23.251 30.336 1.00 37.752 8.26 ATOM 202 CE1 PHE 30 -23.126 28.108 39.451 1.00 6.21 MOTA 203 CE2 PHE 30 -21,996 29.661 37.898 1.00 6.20 MOTA 204 CZ PHE 30 -21,971 28.509 38.739 1.00 7.61 ATOM VAL 205 N 31 -27.413 30.739 40,862 1.00 4.85 MOTA 206 CA VAL -27.751 31 30.017 42,118 1.00 6.25 ATOM 207 C VAL 31 -27.445 28.530 1.00 41.828 6.68 ATOM 208 0 VAL 31 -27.515 28.036 40.680 1.00 4.79 ATOM 209 CB VAL 30.296 31 -29.141 42.666 1.00 7.03 ATOM CGI VAL 210 31 -29.230 31.765 43.136 1.00 11.46 CG2 VAL ATOM 211 31 -30.190 29.902 41.646 1.00 ATON 212 N THR -27.150 32 27.786 42.910 1.00 5.51 ATON 213 CA THR 32 -26.762 26.373 42,892 1.00 7.30 ATOM THR 214 C 32 -26.833 25.866 44.356 1.00 8.85 MOTA 215 O THR 32 -27.382 25.568 45.240 1,00 6.58 ATOM 216 CB THR 32 -25.318 26.271 42.249 1.00 6.85 MOTA OG1 THR

Fig. 2

24.904

26.895

24.676

42.030

43.109

44.619

24.007 45.928 1.00

1.00

1.00

1.00

6.22

4.90

8.92

9.53

-24.927

-Z4.141

-26.318

-26.313

32

32

33

33

217

218

219

220

CG2

N

CA

THR

ALA

ALA

MOTA

MOTA

MOTA

Cont. Fig 2

MOTA	221	C	ALA	33	-25.158	24.465	46.827	1.00	9.16
ATOM	222	0	ALA	33	-24.007	24.503	45.369	1.00	8,53
atom	223	CB	ALA	33	-26.294	22.473	45.773	1.00	7.77
ATOM	224	N	GLY	34	-25.408	24.724	48.076	1.00	7.16
MOTA	225	CA	GLY	34	-24.348	25.143	49.024	1.00	8.05
ATOM	225	C	GLY	34	-23.390	24.043	49.347	1.00	7.35
MOTA	227	0	GLY	34	-22.194	24.315	49.598	1.00	8.30
MOTA	228	N	HIS	35	-23.788	22.780	49.271	1.00	7.52
MOTA	229	CA	HIS	35	-22.821	21.714	49.636	1.00	6.58
MOTA	230	C	HIS	35	-21.744	21.601	48.550	1.00	8.95
MOTA	231	٥	HIS	35	-20.702	20.945	48.747	1.00	8.96
ATOM	232	CB	HIS	35	-23.497	20.364	49.883	1.00	8.85
ATOM	233	CG	HIS	35	-23.991	19.599	49.686	1.00	6.87
MOTA	234	ND1	HIS	35	~25.305	19.481	48.321	1.00	8.56
MOTA	235		HIS	35	-23.326	18.672	47.769	1.00	5.55
MOTA	236	CEL	HIS	35	-25,414	18.744	47-226	1.00	7.54
ATOM	237	NE2	HIS	35	-24.217	18.313	46.906	1.00	8.64
MOTA	238	N	CYS	36	-21.930	22.183	47.376	1.00	8.15
ATOM	239	CA	CYS	36	-20,940	22.145	46.312	1.00	8.05
ATOM	240	C	CX8	36	-19.746	23.062	46.679	1.00	11.13
MOTA	241	ō	CXS	36	-18.715	22.841	45.999	1.00	10.34
ATOM	242	CB	CYS	36	~21.518	22.598	44.977	1.00	5.97
ATOM	243	SG	CY8	36	-22.774	21.389	44.403	1.00	9.16
ATOM	244	N	GLY	37	-19.855	24.012	47.601	1.00	9.60
MOTA	245	CA	GTA	37	-18.632	24.821	47.862	1.00	8.52
MOTA	246	Ç	GL¥	37	-18.853	25.793	48.998	1.00	11.72
MOTA	247	ō	GLX	37	-19.923	26.350	49.253		12.57
ATOM	248	Ñ	ARG	38	-17.807	26.044	49.767	1.00	9.44
ATOM	249	NH2	ARG	38	-13.066	27.478	54.730	0.00	41.69
ATOM	250	NH1		38	-14.258	25.862	55.765	0.00	42.03
MOTA	251	CZ	ARG	38	-13.968	36.494	54.619	0.00	41.38
MOTA	252	NE	ARG	38	-14.559	26.142	53.467	0.00	39.87
ATOM	253	CD	ARG	38	-15.763	25.165	53.320	0.00	37.50
ATOM	254	CG	ARG	38	-17.064	25.666	52.814	1.00	23.13
MOTA	255	CB	ARG	36	-16.602	25.727	51.799	1.00	14.90
MOTA	256	CA	ARG	38	-17.812	27.040	50.845	1.00	12.65
ATOM	257	C.	ARG	38	-17.566	28.415	50.239	1.00	11.84
ATOM	259	ō	ARG	38	-16.987	28.562	49.137	1.00	10.80
MOTA	259	N	VAL	39	-17.953	29,488	50.953	1.00	12.22
MOTA	260	ČA	VAL	39	-17.723	30,881	50.483	1.00	11.55
ATOM	261	c	VAL	39	-16.224	31.002	50.149	1.00	11,46
ATOM	262	Ö	VAL	39	-15.406	30.540	50.944		12.65
ATOM	263	CB	VAL	39	-18.195	31.902	51.513		14.37
ATOM	264		VAL	39	-17.541	33.262	51.282		18.26
MOTA	265		VAL	39	-19.720	32,035	51.617		19.01
ATOM	266	N	GLY	40	-15.853	31.595	49.017		10.59
ATOM	267	CA	GLY	40	-14.467	31.715	48.658	1.00	9.21
ATOM	268	C	GLY	40	-13.962	30.690	47.689		11.61
MOTA	269	0	GLY	40	-12.904	30.954	47.066		13.99
ATOM	270	N	THR	41	-14.603	29.592	47.441		10.26
ATOM	271	CGZ		41	-14.886	26.180	45.550	1.00	8.90
ATOM	272	OGI		41	-15.058	26.792	47.930		14.49
ATOM	273	CB	THR	41	-15.123	27.285	46.571	1.00	12.41
ATOM	274	CA	THR	41	-14.199	28.566	46.525	1.00	9.98

Fig. 2

Cant. Flg 2

MOTA	275	C	THR	41	-14.360	29.148	45,121	1.00 11.13
MOTA	276	0	THR	41	-15.404	29.657	44.713	1.00 10.17
MOTA	277	N	GLM	43	-13.297	28.983	44.365	1.00 12.36
MOTA	278	NE2	GLN	42	-11.317	32.840	43.178	0.70 32.68
ATOM	279	021	GIM	42	-9.407	31.714	42.552	0.70 35.48
atom	280	CD	gin	42	-10.512	31.791	43.080	0.70 30.29
MOTA	281	CG	GLN	42	-11.132	30.558	43.680	0.70 24.69
ATOM	282	CB	GLN	42	-11.801	29.729	42.592	0.70 18.80
MOTA	288	CA,	GLN	42	-13.263	29.456	42.977	1.00 11.77
MOTA	289	C	GLN	42	-13.852	28.392	42.063	1.00 13.86
MOTA	290	0	GLN	42	-13.615	27.187	42.330	1.00 12.07
MOTA	291	N	VAL	43	-14.544	28.817	41.002	1.00 13.96
MOTA	292	CG3	VAL	43	-17.397	28.751	39.309	1.00 15.91
MOTA	293	CG1	VAL	43	-17.192	27.656	41.542	1.00 10.29
MOTA	294	CB	VAL	43	-16.657	27.731	40.117	1.00 14.08
ATOM	295	CA	VAL	43	-19,132	27.885	40.018	1.00 11.05
MOTA	296	C	VAL	4.3	-14.717	28.297	38.584	1.00 10.70
ATON	297	0	VAL	43	-14.393	29.467	38.214	1.00 8.75
MOTA	298	K	THR	44	-14.726	27.266	37.757	1.00 8.19
ATOM	299	CG2	THR	44	-13.085	25.655	34.277	1.00 16.80
MOTA	300	OG1	THR	44	-12.054	27.080	36.423	1.00 14.72
MOTA	301	CB	THR	44	-13.232	26.536	35.773	1.00 7.96
atom	302	CA	THR	44	-14.459	27,387	36.328	1.00 8.95
MOTA	303	Ç	THR	44	-15.708	26.877	35.588	1.00 10.78
MOTA	304	Ö	THR	44	-16.155	25.743	35.947	1.00 9.00
ATOM	305	N	ILE	45	-16.219	27.660	34.626	1.00 10.77
ATOM	306	CA	ILE	45	-17.352	27.175	33.850	1.00 11.78
ATOM	307	C	ILE	45	-16.950	27.476	32.396	1.00 10.56
ATOM	308	0	ILE	45	-16.976	28.673	32.030	1.00 10.62
MOTA	309	CB	ILE	45	-18.743	27.767	34.312	1.00 B.73
ATOM	310	CGI	ILE	45	-19.767	27.359	33.217	1.00 14.25
MOTA	311	CG2	ILE	45	-18.535	29.300	34.483	1.00 14.91
MOTA	312	CD1	ILB	45	-21.239	27.351	33.717	1.00 17.74
MOTA	313	N	GLY	46	-16.588	26.493	31.623	1.00 11.49
ATOM	314	CA	GLY	46	-16.162	26.796	30.214	1.00 13.72
ATOM	315	C	GLY	46	-15.009	27.812	30.282	1.00 12.34
MOTA	316	Ö	GLY	46	-14.011	37.661	31.002	1.00 14.15
MOTA	317	N	ASN	47	-15.134	28.895	29.512	1.00 13.14
MOTA	318	ND2	asn	47	-15-075	31.342	26.221	1.00 26.89
ATOM	319	OD1	ABN	47	-16.257	31.266	28.086	1.00 18.12
ATOM	320	CG	ASN	47	-15.180	31.045	27.520	1.00 19.67
ATOM	321	CB	asn	47	-13.914	30.476	28.081	1.00 17.20
ATOM	322	ÇA	ASN	47	-14.106	29.967	29.522	1.00 14.86
NOTA	323	C	ASM	47	~14.409	31.129	30.484	1.00 14.20
MOTA	324	0	asn	47	-13.929	32.264	30.367	1.00 16.69
ATOM	325	N	GLY	48	-15.234	30.900	31.475	1,00 11.79
MOTA	326	ÇA	GLY	48	-15.629	31.860	32.487	2.00 10.€0
ATOM	327	Ċ	GLY	48	-15.114	31.350	33.840	1.00 8.68
ATOM	328	ŏ	GLY	48	-14.741	30.180	34.021	1.00 8.85
MOTA	329	N	ARG	49	-15.067	32.286	34.782	1.00 8.71
MOTA	330	NH2	ARG	49	-10.753	29.584	38.714	0.00 43.61
ATON	331	NHI	ARG	49	-9.430	30.717	37.086	0,00 39.51
MOTA	332	CZ	ARG	49	-10.647	30.223	37.466	0.00 42.12
ATOM	333	NE	ARG	49	-11.803	30.174	36.714	0.00 38.98
era war	ب ب ب	تنز د	and the same of the same of	786 607		30.274	30:124	ALEA REFER

Fig. 2

Conf. Fig 2

MOTA	334	CD	ARG	49	-11.625	30.774	35.625	1.00 24.44
MOTA	335	CG	arg	49	-12.079	32.161	35.395	1.00 20.17
MOTA	336	CB	ARG	49	-13.190	32.537	36.355	1.00 13.15
atom	337	CA.	arg	49	-14.600	31.985	36.143	1.00 8.87
MOTA	338	C	arg	49	-15.485	32.746	37.136	1.00 9.56
aton	339	0	ARG	49	-16,025	33.81 4	36.747	1.00 10.73
MOTA	340	P 2	GLY	50	-15.644	32.236	38.337	1.00 10.04
ATOM	341	CA	GLY	50	-16.416	32,933	39.372	1.00 6.68
MOTA	342	C	GLY	50	-15.985	32.438	40.758	1.00 7.46
ATOM	343	0	GLY	50	-15,035	31.654	40.838	1.00 8.57
ATOM	344	N	VAL	51	-16.755	32,885	41.756	1.00 9.13
aton	345	CG2	VAL	51	-15.047	33.181	45.219	1.00 9.31
ATOM	346	CG1	VAL	51	-15.061	34.936	43.760	1.00 9.54
atom	347	CB	VAL	51	-15.469	33,510	43.758	1.00 10.40
KOTA	348	CA	VAL	51	-16.439	32.474	43.145	1.00 8.97
ATOM	349	C	VAL	51	-17.739	32.363	43.951	1.00 8.46
MOTA	350	0	VAL	51	-18.657	33.166	43.726	1.00 8.01
MOTA	351	N	PHE	52	-17.778	31.394	44.846	1.00 7.71
MOTA	352	CD2	Phe	52	-20.510	28.196	46.287	1.00 7.34
MOTA	353	CE2	PHE	52	-20.952	27.038	45.514	1.00 12.48
MOTA	354	CZ	PHE	52	-20.103	26.415	44.672	1.00 11.92
MOTA	355	CE1	PHE	52	-18.857	26.983	44.355	1.00 8.56
atom	356	CD1	PHE	52	-18.454	28.151	45.012	1.00 7.30
MOTA	357	CG	PHE	52	-19.259	29.765	45.964	1.00 10.46
MOTA	358	CB	PHE	52	-18.620	30.015	46.703	1.00 9.22
ATOM	359	CA.	PHE	52	-18.916	31.237	45,766	1.00 9.28
ATOM	350	C	PHB	52	-18.928	32.498	46.637	1.00 10.41
ATOM	361	0	PHE	53	-17.979	32.752	47.403	1.00 10.33
MOTA	362	N	GLU	53	-20.038	33.239	46.481	1.00 8.81
MOTA	353	083	GLU	53	-22.012	37.756	45.426	1.00 27.05
ATON	364	OH1	GLU	53	-21.229	39.265	46.722	1.00 33.78
ATOM	365	CD	GLU	53	-21.336	38.087	46.413	1.00 28.63
MOTA	366	CG	GLU	53	-20.701	36.961	47.162	1.00 15.08
ATOM	367	CB	GLU	53	-20.818	35.512	46.441	1.00 10.91
ATOM	368	CA	GLU	53	-20.172	34.475	47.239	1.00 10.55
ATOM	369	C	GLU	53	-21,035	34.208	48.485	1.00 13.01
ATOM	370	O.	GLU	53	-20.554	34.743	49.558	1.00 11.89
ATOM	371	N	GLM	54	-22,095	33.444	48.352	1.00 9.12
ATOM	372	NE2	GLN	54	-26.256	36.329	49.251	1.00 43.84
ATOM	373	OE1	GLN	54	-25.933	35.594	51.419	1.00 46.53
ATOM	374	CD	GLM	54	-25.586	35.741	50.241	1.00 40.72
atom	375	CG	GLN	54	-24.256	35.205	49.756	1.00 29.81
MOTA	375	CB	GLN	54	-24.346	33.707	49.555	1.00 17.82
ATOM	377	CA	GLN	54	-22.955	33.105	49.508	1.00 10.81
ATOM	378	C	GLN	54	~23.164	31.600	49.527	1.00 12.82
MOTA	379	٥	GLN	54	-23.418	31.101	48.410	1.00 13.75
ATON	380	N	SER	55	-23.074	30.926	50.665	1.00 10.86
ATOM	381	OG	SER	55	-22.169	27.372	50.204	1.00 14.02
ATOM	382	CB	SER	55	-21.995	28.781	50.22B	1.00 9.88
ATOM	383	CA	SER	55	-23.280	39.470	50.637	1.00 11.20
ATOM	364	C	SER	5\$	-23.730	28.998	52.014	1.00 12.70
ATOM	385	ō	SER	55	-23.084	29.298	53.011	1.00 11.84
ATOM	386	N	VAL	5 <i>6</i>	-24.824	28.274	52.086	1.0D 11.38
ATOM	387	CA	VAL	56	-25.345	27.735	53.342	1.00 9.56
				- •				

Fig. 2

ATOM	388	Č	VAL	56	-25.516	25.223	53.218	1.00 11.4	7
ATOM	389	0	VAL	56	-26.250	25.756	52.302	1.00 10.8	O
ATOM	390	CB	VAL	56	-26.691	28.365	53.715	1.00 12.5	
ATOM	391	CGI		56	-27.250	27.561	54.095	1.00 13.6	
ATOM	392	CG2	VAL	56	-26.542	29.809	54.111	1.00 14.6	
ATOM	393	N	PHE	57	-24.903	25.475	54.116	1.00 9.4	
MOTA	394	CA	PHE	57	-25.035	24.030	54.173	1.00 10.8	-
ATOM	395	c	PHE	57	-24.351	23.597	55.503	1.00 12.6	
ATOM	396	ō	PHB	57	-23.200	24.057	55.632	1.00 14.3	
ATOM	397	СВ	PRE	57	-24.383	23.289	52.962	1.00 9.2	
MOTA	398	CG	PRE	57	-24.530	21.797	53.071	1.00 7.4	
ATOM	399	CD1	PHE	57	-23.489	20.999	53.547	1.00 10.8	
ATOM	400	CD2	PHE	57	-25.748	21.211	52.762	1.00 10.7	
MOTA	401		PHE	57	-23.654	19.621	53.690	1.00 16.7	
ATOM	402	CE3	PHE	57	-25.948	19.851	52.869	1.00 9.8	
ATOM	403	CZ	PHE	57	-24.897	19.033	53.326	1.00 17.0	
ATOM	404	N	PRO	58	-24.888	22.759	56.355	1.00 11.7	
MOTA	405	CA	PRO	58	-26.182	22.082	56.294	1.00 11.3	
MOTA	406	C	PRO	58	-27.302	22.967	56.755	1.00 9.6	
ATOM	407	Ö	PRO	50	-27.072	24.207	56.657	1.00 10.6	
MOTA	408	CB	PRO	58	-25.955	20.768	57.043	1.00 10.0	
ATOM	409	CG	PRO	58	-24.947	21.178	58.078	1.00 12.7	
ATOM	410	CD	PRO	58	-24.125	22.322	57.531	1.00 12.7	
ATOM	411	M	GLY	50 59	-28.455	22.432	57.531 57.103		
ATOM	412	CA	GLY	5 <i>9</i>		23.338	57.495	1.00 10.5	
	413	C			-29.594	-		1.00 11.2	-
ATOM ATOM			GLY	5 9	-30.330	23.680	56.200	1.00 10.9	
	414	Ö	GLY	59	-31.477	23.240	56.091	1.00 11.3	
ATOM	415 416	N	asn	60	-29.767	24.452	55.291	1.00 10.6	
MOTA		CA	asn	60	-30.400	24.729	53.962	1.00 8.1	
ATOM	417	0	asn	60	-29.377	24.099	52.981	1.00 9.5	
ATOM	418		asn	60	-28.346	23.532	53.474	1.00 8.7	
MOTA	419 420	CB	asn	60	-30.598	26.175	53.595	1.00 9.5	-
ATOM		CG	ASN	60	-31.369	26.934	54.664	1.00 12.3	
MOTA	421		asn	60	-30,872	27.984	55.082	1.00 16.8	
ATOM	422	ND2	asn	60	-32.478	26.340	55.060	1.00 15.3	
MOTA	423	N	ASP	61	-29.582	24.193	51.661	1.00 7.1	
ATOM	424	CA	ASP	61	-28.544	23.661	50.701	1.00 7.8	
MOTA	425	C	ASP	61	-28.598	24.692	49.547	1.00 8.6	
ATOM	426	0	asp	61	-29.213	24.393	48.519	1.00 7.7	
MOTA	427	CB	ASP	61	-28.618	22.216	50.313	1.00 4.4	
MOTA	428	CG	abp	61	-27.637	21.575	49.640	1.00 6.3	
ATOM	429		ASP	61	-27.591	20.419	49.245	1.00 6.8	
ATOM	430		asp	61	-26.622	22.316	49.431	1.00 B.2	
ATOM	431	N	ALA	62	-28.041	25.868	49.751	1.00 7.7	
ATOM	432	CB	ALA	62	-29.258	27.857	49.385	1.00 8.6	
ATOM	433	CA	ALA	62	-28.134	26.967	48.775	1.00 8.5	
ATOM	434	¢	ALA	62	-25.880	27.802	48.518	1.00 9.3	
ATOM	435	0	ALA	62	-26.114	27.939	49.618	1.00 10.2	
MOTA	436	N	ALA	63	-26.667	28.360	47.434	1.00 7.6	
ATOM	437	CA	ALA	63	-25.476	29.189	47,173	1.00 7.5	
ATOM	438	C	ALA	63	-25.660	30.110	49.987	1.00 7.3	
MOTA	439	0	ALA	63	-26.526	29.843	45.116	1.00 6.3	
MOTA	440	CB	ALA	63	-24.247	28.253	46.886	1.00 4.5	
atom	441	K	PHE	54	-24.889	31.172	45.985	1.00 8.2	3

Fig. 2

Cont. Flg 2

ATON	442	CD2	PHE	64	-24.221	35.364	43.942	1.00 6.73
nota	443	CE2	PHE	54	-24.051	36.237	42.841	1.00 7.23
atom	444	CZ	PHE	64	-25.063	36.205	41.842	1.00 6.08
MOTA	445	CEl	PRE	64	-25.165	35.352	41.959	1.00 10.30
MOTA	448	CDI	PHE	54	-25.263	34.453	43.038	1.00 10.04
MOTA	447	CG	PHE	64	-25.287	34.477	44.027	1.00 6.59
ATON	448	CB	PHE	64	~25.415	33.537	45.240	1.00 6.42
MOTA	449	CA	PHE	64	-24.840	32,152	44.922	1.00 7.87
atom	450	C	PHE	64	-23.351	32:196	44.518	1.00 10.06
MOTA	451	٥	PHE	64	-22.454	32.478	45.362	1.00 10.39
atom	452	N	VAL	65	-23.080	31.952	43.234	1.00 8.61
MOTA	453	CA	VAL	65	-21.722	32.028	42.652	1.00 8.52
MOTA	454	C	VAL	65	-21.686	33.327	41.831	1.00 8.89
MOTA	455	0	VAL	65	-22.514	33.548	40.948	1.00 7.44
ATOM	456	CB	VAL	65	-21.338	30.840	41.722	1.00 11.34
MOTA	457	CGI	VAL	65	-20.018	31.055	40.967	1.00 10.37
aton	458	CG2	VAL	65	~21.333	29.530	42.493	1.00 9.94
ATOM	459	n	ARG	66	-20.744	34.213	42.094	1.00 6.55
atom	460	NH2	arg	66	-16.111	39.098	43.470	1.00 18.29
atom	461	NH1	arg	66	-17.309	39.979	41.747	1.00 18.67
atom	462	CZ	ARG	66	-17.271	39.260	42.832	1.00 18.74
MOTA	463	NB	ARG	66	-18.309	38.673	43.409	1.00 22.97
ATOM	464	CD	ARG	66	-19.672	38.751	42.950	1.00 23.13
MOTA	465	CG	arg	66	-19.916	37.827	41.797	1.00 18.33
MOTA	466	CB	arg	66	-19.949	36.464	42.422	1.00 12.11
ATOM	467	CA	ARG	бб	-30.545	35.475	41,416	1.00 8.00
MOTA	468	C	ARG	66	-19.501	35.310	40.305	1.00 7.85
MOTA	469	0	ARG	66	-18.447	34.738	40.557	1.00 8.51
MOTA	470	n	GLY	67	-19.828	35.857	39.132	1.00 8.23
MOTA	471	CA	GLY	67	-18.921	35.779	37.962	1.00 3.28
MOTA	472	C	GTÄ	67	-17.838	36.834	38.114	1.00 7.11
ATOM	473	0	GLY	67	-18.123	38.019	38.332	1.00 9.23
ATOM	474	N	THR	68	-16.585	36.418	37.933	1.00 5.19
ATOM	475	CA	THR	68	-15.407	37.292	37.994	1.00 6.13
MOTA	476	C	THR	68	-14.784	37.468	36.611	1.00 10.55
MOTA	477	0	THR	68	-13.939	38.358	36.375	1.00 9.20
ATOM	478	CB	THR	68	-14.366	36.832	39.071	1.00 13.02
atom	479	OG1	THR	68	-13.865	35,569	38.579	1.00 9.29
MOTA	480	CG2	THR	68	-14.870	36.773	40.522	1.00 11.87
MOTA	481	N	SER	69	-15.205	36.672	35.618	1.00 12.02
ATOM	482	CA	SER	69	-14.736	36.796	34.233	1.00 11.62
ATOM	483	C	SER	69	-15.660	36.069	33.264	1.00 12.37
ATOM	484	0	SER	69	-15.911	34.865	33.480	1.00 11.23
ATOM	485	CB	SER	69	-13.337	36.184	34.027	1.00 12.32
MOTA	486	OG	SER	69	-12.823	35.389	32.763	1.00 15.07
MOTA	487	N	aen	70	-16.100	36.767	32.236	1.00 12.58
MOTA	488	MD2	agn	70	-16.685	36.201	28.330	1.00 20.03
ATOM	489	OD1		70	-15.425	34.370	28.194	1.00 19.07
ATOM	490	CG	aen	70	-15.954	35.243	28.878	1.00 14.54
MOTA	491	CB	asn	70	-15.848	35.335	30.379	1.00 8.27
MOTA	492	CA	asn	70	-16.894	36.195	31.131	1.00 11.17
MOTA	493	C	asn	70	-18.166	35.424	31.400	1.00 10.53
ATOM	494	0	asn	70	-18.343	34.319	30.817	1.00 14.17
atom	495	N	PHE	71	-19.048	35.946	32.209	1.00 8.99

Fig. 2

MOTA	496	CD3	PHE	71	-21,139	34.054	36.002	1.00	5.72
Mota	497	CE2	PHE	71	-20.735	33.063	36.900	1.00	7.44
MOTA	498	CZ	PHE	71	-19.483	32.395	36.669	1.00	10.35
MOTA	499	CEL	PHE	71	-18.713	32.681	35.550	1.00	10.41
ATOM	500	CD1	PHE	71	-19.159	33.681	34.652	1.00	9.67
MOTA	501	CO	PHE	71	-20.350	34.372	34.873	1.00	5.76
MOTA	502	CB	PHE	71	-20.839	35.417	33.897	1.00	7.11
MOTA	503	ÇA	PHE	71	-20.346	35.257	32.435	1.00	10.26
ATOM	50 4	C	PHE	71	-21.337	35.958	31.503	1.00	11.61
MOTA	505	0	PHE	71	-21.429	37.207	31.537	1.00	14.68
ATOM	506	N	THR	72	-22.071	35.275	30.691	1.00	11.03
ATOM	507	CA	THR	72	-23.133	35.902	29.860	1.00	9.25
MOTA	508	C	THR	72	-24.405	35.261	30,425	1.00	9.51
ATON	509	0	THR	72	-24,562	34.027	30.269	1.00	11.35
ATOM	510	¢₿	THR	72	-23.036	35.596	28.328	2.00	25.61
MOTA	511	QG1	THR	72	-21.768	36.189	27.928	1.00	15.86
MOTA	512	CG2	THR	72	-24.177	36.178	27,494	1.00	14.54
MOTA	513	N	LEU	73	-25.282	36.028	31.020	1.00	11.12
MOTA	514	CA	LEU	73	~26.502	35.479	31,608	1.00	9.31
MOTA	515	¢	LEU	73	-27.504	35.184	30.484	1.00	9.04
MOTA	516	٥	LEU	73	-27,563	35.896	29.460	1.00	8.44
MOTA	517	CB	LEU	73	-27.046	36.412	32,687	1.00	8,84
ATOM	518	Œ	LEU	73	-26.215	36.869	33.883	1.00	13.85
MOTA	519	CDl	LBU	73	-27.074	37.521	34.968	1.00	12.85
MOTA	520	CD2	LEU	73	-25.471	35.702	34.530	1.00	9.85
ATOM	921	N	THR	74	-28.295	34.161	30.737	1.00	7.42
MOTA	522	C32	THR	74	-27.696	32.554	28.200	1.00	3.40
ATOM	523	OGI	THR	74	-29.174	31.283	29.642	1.00	9.42
ATOM	524	ÇŒ	THR	74	-29.063	32.532	28.922	1.00	7.73
ATOM	525	CA	THR	74	-29.389	33.735	29.859	1.00	7.40
ATOM	526	Č	THR	74	-30,600	33.347	30.732		10.05
MOTA	527	ō	THR	74	-30.473	33.184	31.959	1.00	7.44
ATOM	528	N	ASN	75	-31.775	33.201	30.069	1.00	8.53
MOTA	529	ND2	ASN	75	-36.D21	33.747	28.974	1.00	14.07
ATOM	530	001		7.5	-33.929	33.279	28.252	1.00	14.16
ATOM	531	ÇG	ABN	75	-34.723	33.526	29.157	1.00	15.69
ATOM	532	CB	asn	75	-34.178	33.518	30.570		11.17
ATOM	533	CA	asn	75	-32.924	32.729	30.849	1.00	9.39
MOTA	534	C	asn	75	-33.156	31.252	30.465	1.00	10.95
MOTA	535	ō	ABN	75	-34,322	30.835	30.620	1.00	13.03
MOTA	536	N	LEU	76	-32,177	30.516	29.993	1.00	7.99
MOTA	537		LEU	76	-32.993	29.592	26.412		11.04
ATOM	538		LEU	76	-30.530	29.917	26.112		13.41
ATOM	539	ÇŒ	ĻĒŲ	76	-31.687	29.587	27.042		11.12
ATOM	540	ÇB.	LEU	76	-31.416	29.013	28.250		10.63
ATOM	541	CA	LBU	76	-32.315	29.158	29.530	1.00	8.79
ATOM	542	C	TEO	76	-31.876	28.059	30.512	1.00	8.97
MOTA	543	õ	LEU	76	-31,038	28.290	31.385	1.00	6.01
ATOM	544	N	VAL	77	-32.529	26.936	30.323	1.00	8.54
MOTA	545	CA	VAL	77	-32.265	25.589	31.062	1.00	8.05
ATOM	546	C	VAL	77	-32.125	24.578	29.973	1.00	9.00
ATOM	547	ò	VAL	77	-32,125	24.380	29.178	1.00	5.78
ATOM	548	CB	VAL	77	-33.120	25.290	32.052	1.00	8.09
MOTA	549	CG1		77	-33.049	23.911	32.715	1.00	5.84
ma ve		~~*	ALTE		-33.VZ7	a	20.713	*****	3 . 54

Fig. 2

m								
ATOM	550	CG3	VAL	77	-33.575	26.350	33.142	1.00 10.07
MOTA	551	N	SER	78	-31.017	23.871	29.974	1.00 8.67
ATOM	552	OG	SER	78	-29.161	21.344	27.B99	1.00 9.85
ATOM	553	CB	SER	78	-29.355	22.409	28.857	1.00 12.29
MOTA	554	CA	SER	78	-30.831	22.814	28.929	1.00 B.23
nota	555	C	SER	78	-31.710	21,583	29.189	1.00 9.82
atom	556	D	SER	78	-31 <i>.759</i>	21.055	30.305	1.00 7.59
mota	557	Ŋ	arg	79	-32.337	21.082	2\$.116	1.00 9.80
MOTA	558	NH2	arg	79	-37.443	22.028	24.212	1.00 31.34
MOTA	559	NH1	arg	79	-38.500	22.780	26.184	1.00 27.56
ATOM	560	CZ	arg	7 9	-37.501	21.991	25.554	1.00 28.07
MOTA	561	NE	ARG	79	-36.785	21.131	26.161	1.00 21.89
MOTA	562	CD	ARG	79	-36.718	20.936	27.589	1.00 18.78
MOTA	563	CG	ARG	79	-35.2 <i>65</i>	21.116	27.992	1.00 9.14
nota	564	CB	arg	79	-34,499	19.957	27.396	1.00 7.07
MOTA	565	CA	ARG	79	-33.163	19.879	28.156	1.00 10.01
Mota	566	C	ARG	79	-32.272	18.740	27.659	1.00 11.09
ATOM	567	0	ARG	79	-32.799	17.622	27.476	1.00 11.76
MOTA	568	N	TYR	80	-30.980	18.901	27.456	1.00 10.89
MOTA	569	OH	TYR	80	-25.669	19.608	31.411	1.00 13.70
atom	570	CD2	TYR	80	-28.969	18.626	30.175	1.00 8.55
ATOM	571	CE2	TYR	80	-29.016	19.277	30.962	1.00 9.07
MOTA	572	CZ	TYR	80	-25.667	19.006	30.683	1.00 13.15
ATOM	573	CEL	TYR	80	-26.290	18.103	29.673	1.00 13.12
ATOM	574	CD1	TYR	80	-27.305	17.481	28.921	1.00 12.00
MOTA	575	CG	TYR	80	-28.546	17.742	29.153	1.00 10.87
ATOM	576	CB	TYR	80	-29.686	17.010	28.331	1.00 11.71
ATOM	577	CA	TYR	80	-30.100	17.809	27.036	1.00 13.19
MOTA	57B	c	TYR	80	-30.669	16.889	25.939	1.00 15.57
ATOM	579	ō	TYR	80	-31.074	17.414	24.848	1.00 16.53
MOTA	580	N	ASN	91	-30.732	15.583	26.157	1.00 15.67
MOTA	581		ASN	81	-30,251	12.075	23.672	0.50 23.42
ATOM	582		ASN	81	-31,553	10.851	24.930	0.50 22.68
ATOM	583	CG	ASN	81	-31.01Z	11.924	24.769	0.50 24.69
MOTA	584	CB	asn	81	-30.915	13.117	25.699	0.50 20.33
MOTA	589	CA	ASN	81	-31,169	14.536	25.163	1.00 17.67
MOTA	590	C	ASN	81	-32.611	14.689	24.807	1.00 18.70
ATOM	591	ō	ASN	81		14.207		1.00 20.41
MOTA	592	N	THR	82	-33.067 -33.405		23.731	
ATOM	593	CG2	THR	82	,	15.385	25.621	
		QG1	THR	82	-36.933	16.845	26.136	1.00 15.50
ATOM	594			82	-35.944	14.838	27.235	1.00 15.80
RIOM	595	CS	THR		-35,663	16.070	26.495	1.00 13.76
ATOM	596	CA	THR	62	-34.787	15.661	25.275	1.00 16.61
MOTA	597	Č	THR	82	-34.775	16.712	24.128	1.00 19.57
MOTA	598	0	THR	82	-35,725	16.765	23.314	1,00 20.18
MOTA	599	N	GTA	83	-33.765	17.555	23.973	1.00 17.44
ATOM	600	CA	GLY	83	-33,611	18.551	22.941	1.00 16.21
ATOM	601	Ç	GTA	83	-34.082	19.964	23.286	1.00 12,64
ATOM	602	0	GLY	83	-35.127	20.225	23.908	1.00 12.83
ATOM	603	M	GLY	84	-33.281	20.926	22.859	1.00 11.84
ATOM	504	CA	GLY	84	-33,504	22.331	23.082	1.00 11.09
ATOM	605	C	GLY	84	-33.492	22.741	24.541	1.00 9.78
atom	605	0	CLY	64	~32.796	22.177	25.384	1.00 10.83
atom	607	N	TYR	85	-34.104	23.875	24.625	1.00 10.88

Fig. 2

atom	608	OH	TYR	85	-28.004	24.555	24.203	1.00 18.98
ATOM	609	CD2	TYR	85	-31.561	25.395	24.068	1.00 12.07
ATOM	610	CE2	TYR	85	-30.266	25.023	23.693	1.00 13.73
Mota	611	CZ	TYR	8 5	-29,263	24.890	24.644	1.00 15.05
MOTA	612	CE1	TYR	85	-29,519	25.081	26.012	1.00 12.94
atom	613	CD1	TYR	85	-30.826	25.421	26.395	1.00 12.96
MOTA	614	ÇĢ	TYR	85	-31.850	25.570	25.445	1.00 11.64
ATOM	615	CB	TYR	85	-33.264	25.866	25.882	1.00 10.50
MOTA	616	CA	TYR	85	-34.079	24.539	26.116	1.00 10.86
ATOM	617	C	TYR	85	-35.418	35,002	26.674	1.00 13.82
ATOM	618	O	TYR	\$5	-36.268	25.491	25.854	1.00 14.41
ATOM	619	N	ALA	\$6	-35.569	24.891	27.969	1.00 9.86
ATOM	620	CB	ALA	86	-37.046	24.630	29.971	1.00 9.75
MOTA	621	CA	ALA	85	-36.735	25.425	28.695	1.00 11.67
ATOM	622	C	ALA	86	-36.361	26.918	28.958	1.00 11.87
ATOM	623	0	ALA	86	-35,188	27.341	28.972	1.00 9.92
ATOM	624	N	THR	87	-37.345	27.829	29.131	1.00 10.43
ATOM	625	CG2	THR	87	-36.841	29.875	26.861	1.00 17.11
ATOM	626	001	THR	87	~38.959	29.934	28.083	1.00 17.19
ATON	627	CB	THR	87	-37.539	30.174	28.200	1.00 17.24
MOTA	628	CA	THR	87	-37.057	29.241	29.379	1.00 10.64
MOTA	629	C	THR	87	-37.640	29.593	30.724	1.00 11.34
MOTA	630	ō	THR	87	-38.696	29.055	31.041	1.00 13.09
MOTA	631	N	VAL	88	-37.001	30.448	31.521	1.00 10.66
ATOM	632	CA	VAL	28	-37.441	30.863	32,856	1.00 9.45
ATOM	633	C	VAL	88	+30.255	32.155	32.696	1.00 11.88
ATOM	634	ŏ	VAL	88	-37.698	33.094	32.136	1.00 10.63
MOTA	635	CB	VAL	88	-36.246	31.053	33.821	1.00 7.00
MOTA	635	CG1	VAL	88	-36.652	31.636	35.192	1.00 5.32
MOTA	637	CGS	VAL	68	-35.47B	29.746	33.985	
MOTA	638	N	ALA	89				1.00 9.05
MOTA	639	CB	ALA	89	~3 <i>9.</i> 467 ~41.539	32.233 33.201	33.201	1.00 10.89
ATOM	640	CA	ALA	89			32.260	1.00 9.11
ATOM	641	C	ALA	89	-40.325	33.440	33.132	1.00 11.01
MOTA	642	0	ALA	89	-40.690	33.918	34.548	1.00 11.13
	643	N	GLY		-41.242	35.028	34.655	1.00 13.90
ATOM				90	-40.351	33.181	35.617	1.00 9.54
MOTA	644	CA	GLY	90	-40.632	33.592	36.976	1.00 8.75
MOTA	645	C	GLY	90	-40.322	32.409	37.921	1.00 10.19
ATOM	646	0	GLY	90	-39.660	31.477	37.500	1.00 9.62
MOTA	647	N	HIS	91	-40.857	32.540	39.135	1.00 11.81
ATOM	64B	CD2		91	-40.073	33.404	43.018	1.00 18.32
ATOM	649	NE2		91	-40.052	34.763	43.177	1.00 17.97
MOTA	650		HIS	91	-39,622	35.366	42.127	1.00 17.17
ATOM	651		HIS	91	-39,350	34,411	41.259	1.00 16.07
MOTA	652	CG	HIS	91	-39.605	33.184	41.765	1.00 16.04
MOTA	653	CB	HIS	91	-39.411	31.883	41.060	1.00 11.82
MOTA	654	CA	HIS	91	-40.637	31.530	40.180	1.00 10.58
ATOM	655	C	HIS	91	-41.854	31.239	41.025	1.00 12.38
MOTA	656	0	HIS	91	-61.723	31.032	42.248	1.00 13.11
MOTA	657	N	asn	92	-43.013	31.126	40.369	1.00 12.16
ATOM	658		asn	92	~45.608	32.750	41.350	1.00 44.37
ATOM	559	QD1	asn	92	-45.564	33.225	39.385	1.00 40,52
ATOM	660	CG	asn	92	-45.903	32.418	40.259	1.00 35,33
ATOM	551	CB	ASN	92	-45.524	30.938	40.252	1.00 23.82

Fig. 2

Cont. Ftg 2

ATOM	662	CA	Mea	92	-44.251	30.746	41.119	1.00 13.35
ATOM	663	C	asn	92	-44.154	29.268	41.493	1.00 12.66
MOTA	664	0	Mea	92	-43.930	28.437	40.562	1.00 11,76
ATOM	665	N	gln	93	-44.364	28.935	42.749	1.00 11.08
ATOM	666	NE2	CILIN	93	-42.340	27.432	47.693	1.00 21,50
ATOM	667	OE1	GLN	93	-44.559	27.501	47.458	1.00 31.26
ATOM	668	CD	GLN	93	-43.422	27.632	46.972	1.00 27.63
ATOM	669	CG	GLN	93	-43.291	28.002	45.511	1.00 20.72
MOTA	670	CB	GLN	93	-44.409	27.379	44.700	1.00 15.24
ATOM	671	CA	GLN	93	-44.262	27.516	43.171	1.00 12.74
ATOM	672	C	GLN	93	-45.394	26.705	42.566	1.00 13.82
ATOM	673	0	GLN	93	-46.572	27.162	42.672	1.00 15.94
ATON	674	ZAT	ALA	94	-45.166	25.549	42.048	1.00 11.74
ATOM	675	CA	ALA	94	-46.178	24.676	41.461	1.00 11.41
ATOM	676	C	ALA	94	-46.815	23.934	42.549	1.00 14.20
ATON	677	ō	ALA	94	-46.120	23.507	43.637	1.00 14.08
ATOM	678	CB	ALA	94	-45.495	23.704	40.529	1.00 6.58
ATON	679	N	PRO	95	-48.112	23.645	42.551	1.00 14.96
ATON	680	CĢ	PRO	95	-50.259	23.275	41.661	1.00 15.96
ATON	681	CD	PRO	95	-48.954	24.020	41.412	1.00 15.38
ATON	682	CB	PRO	95	-50.261	22.810	43.087	1.00 13.99
MOTA	683	CA	PRO	95	-48.815	22.843	43.571	1.00 13.77
aton	684	Ċ	PRO	95	-48.308	21.414	43.571	
ATOM	685	ō	PRO	95	-47.789			
ATOM	686	N				20.722	42.764	1.00 13.21
			ILE	96	-48.439	20.860	44.892	1.00 9.64
ATON	687	CD1	ILB	96	-45.305	19.598	47.937	1.00 20.39
ATOM	688	CG1	ILE	96	-47.765	19.940	47.690	1.00 17.20
ATON	689	CB	ILE	96	-48.425	19.023	46.634	1.00 13.72
ATOM	690	CG2	ITR	96	-48,131	17.530	46.952	1.00 17.91
MOTA	691	CA	ILE	96	-48.058	19.444	45.141	1.00 11.51
MOTA	592	C	ILE	96	-48.841	18.527	44.138	1.00 13.14
ATOM	693	0	ILB	96	-50,052	18.979	43.580	1.00 15.21
ATON	594	X	GLY	97	-48,332	17.575	43.528	1.00 10.18
MOTA	595	CA	GLY	97	-49.020	16.783	42.537	1.00 9.00
MOTA	596	C	GLY	97	-48.645	17.200	41.126	1.00 11.33
MOTA	697	Q	GLY	97	-48.867	15.374	40.221	1,00 12.32
MOTA	598	N	Ser	98	-48.108	18,393	40.935	1.00 10.97
atom	699	OG.	9BR	98	-48.132	21.262	40.073	0.70 15.95
MOTA	700	CB	8er	98	-47.149	20.355	39.734	0.70 13.01
NOTA	703	CA	Ser	98	-47.643	18.918	39.637	1.00 11.70
ATOM	704	C	Ser	98	-46.376	18.198	39.140	1.00 11.01
ATOM	705	0	ser	₽8	-45.567	17.708	39.905	1.00 12.53
MOTA	706	n	eer	99	-46.203	18.149	37.825	1.00 8.54
MOTA	707	O G	Ser	99	-45.372	19.423	34.957	1.00 13.93
MOTA	708	CB	SER	99	-45.157	17.258	35.747	1.00 7.78
MOTA	709	CA	SER	99	-45.010	17.562	37.226	1.00 8.54
ATOM	710	C	SER	99	-43.921	18.659	37.391	1.00 7.90
ATOM	711	0	SER	99	-44.195	19.884	37.534	1.00 10.31
ATOM	712	M	VAL	100	-42.675	18.231	37.384	1.00 9.21
ATOM	713	CA	VAL	100	-41.468	19.082	37.505	1.00 5.59
ATOM	714	c	VAL	100	-40.375	18.343	36.773	1.00 5.35
ATOM	715	ō	VAL	100	-40.380	17.108	35.785	1.00 9.03
ATOM	726	ÇВ	VAL	100	-41,112	19.395	38.979	1.00 5.88
ATOM	717		VAL	100	-40.630	18.114	39.670	1.00 8.61
w	,	-w.w.	7 7 70-001		******	***************************************	22.44.7V	anti syrsyr inte betada

Fig. 2

Cont. Flg 2 CG2 VAL ATOM 718 100 -40,142 20,579 39,127 1.00 5.24 ATOM 719 N CYB 101 -39.423 19.055 35.168 1.00 5.24 MOTA 720 CA CYB 101 -38.304 18.494 35,437 1.00 4.35 C CYS 36,086 ATOM 721 101 -36,989 18.996 1.00 5.37 ATOM 722 ٥ CYB 101 -35.984 20.152 36,529 1.00 8.17 CB 33.935 MOTA 723 CYS 101 -38.312 18.824 1.00 5.99 ATOM SG CAR 101 -39.723 18.001 33.063 1.00 724 8.35 ARG ATOM 725 Ň 102 -35.982 18.175 36.084 1.00 6.08 18.527 ATON 726 CA ARG 102 ~34.649 36.587 1.00 7.57 ATOM ARG 102 8.71 727 C -33.605 18.534 35,462 1.00 MOTA ARG 102 728 O -33.604 17.547 34.598 1.00 8.00 MOTA ARG 729 CB 102 -34.261 17.489 37.655 1.00 4.69 NOTA ARG 730 102 CG -32.859 17.784 38.286 1.00 3.27 MOTA (1) ARG 102 731 -32.303 16.653 39.077 1.00 6.25 15.402 1.00 ATON 732 ME ARG 102 -32.250 38.343 7.04 ATON ARG 733 CZ 102 -31.471 15.083 37.294 1.00 9.62 ATOM 734 NH1 ARG 102 -31.692 13.864 36.773 1.00 9.55 MOTA NH2 ARG 36.805 735 103 -30.608 15.953 1.00 5.91 MOTA BER. 19.454 735 N 103 -32.662 35.404 1.00 7.27 ATON SER 103 -31.567 19.475 34.435 1.00 737 CA 4.96 ATOM 738 ÉRR 103 -30,259 19.365 35.228 1.00 6.42 MOTA 739 ٥ SER 103 -30.059 20.177 36.162 1.00 5.49 MOTA 740 CE SER. 103 -31.571 20.781 33.624 1.00 MOTA 741 OG SER 103 -30.581 20.673 32.575 1.00 7.71 742 GLY ATON N -29.359 34.965 104 18.411 1.00 7.52 MOTA 743 CA GLY -28.071 104 18.282 35.661 1.00 5.92 -27.031 ATON 744 GLY 17.745 C 104 34.686 1.00 5.41 ATON 745 0 GLY 104 -27.354 17.083 33.665 1.00 7.09 ATOM 746 SER 105 N -25.757 18.002 34.912 1.00 7.88 ATON 747 OG BER 105 -22.953 18.433 35.504 1.00 11.75 ATON 748 CB SER 105 -23.430 18.504 34.179 1.00 7.00 MOTA 749 SER CA 105 -24.638 17.559 34.049 1.00 10.37 105 MOTA 750 C 16.085 SER -24.255 34.102 1.00 10.06 MOTA 751 O SER 105 -23.505 15.679 1.00 10.75 33.176 MOTA THR 106 752 N -24.719 15.248 35.018 1.00 9.74 MOTA 753 CA THR 106 -24.403 35.029 1.00 9.92 13,611 ATON 754 C THR 105 -25.458 13.046 34.238 1.00 8.56 MOTA 755 THR -25.079 ٥ 106 12.174 33.464 1.00 10.42 NOTA 756 CB THR 106 -24.322 13.103 36.435 1.00 10.71 MOTA 757 OG1 THR 106 -23.436 13.978 37.167 1.00 10.45 MOTA 758 CG2 THR 106 -23.782 11.671 36.508 1.00 6.76 ATON 107 -26.723 13.319 759 N THR 34.467 1.00

Fig. 2

-27.804

-28.634

-29.531

-28.695

-29.241

-27.869

-28.523

-29.341

-30.668

-30.722

-31.691

-35.413

12.599

13.349

12.664

11.935

13.086

11.012

14.609

15.323

15.756

16.175

15.642

18.684

33.831

32.838

32.266

34.969

35.695

35.858

32.643

31.611

32.223

33.436

31.408

30.968

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00 10.50

5.96

7.88

8.67

8.85

7.24

8.14

7.16

6.94

8.98

5.52

5.39

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

ATOM

760

761

762

763

764

765

766

767

768

769

770

771

CA

C

0

N

CA

C

٥

N

CB

THR

THR

THR

THR

GLY

GLY

GLY

GLY

TRP

OG1 THR

CG2 THR

CD2 TRP

107

107

107

107

107

107

108

108

108

108

109

```
ATOM
        772
             CB3 TRP
                        109
                                 -34.790
                                           19.728
                                                   31,656
                                                            1.00 5.67
MOTA
        773
              CZ3 TRP
                        109
                                 -35.588
                                           2D.854
                                                   31.900
                                                            1.00 10.11
        774
MOTA
              CH2 TRP
                        109
                                 -36,931
                                          20,950
                                                   31.533
                                                            1.00
MOTA
        775
              CZ2 TRP
                                 -37.555
                                                            1.00
                        109
                                           19.9L2
                                                   30.B64
                                                                  5.36
        776
ATOM
              CES TRP
                                           18.789
                                                            1.00
                        109
                                 -36,762
                                                   30.603
                                                                  6.40
ATOM
        777
              NEI TRP
                                 -37.097
                                                            1.00 11.33
                        109
                                           17.619
                                                   29.964
MOTA
        778
              CD1 TRP
                        109
                                 -35.996
                                           16.771
                                                   29.909
                                                            1.00
                                                                  8.89
ATOM
        779
              CG
                  TRP
                        109
                                 -34.928
                                           17.409
                                                   30.506
                                                            1.00
                                                                   7.87
ATOM
        780
              CB
                  TRP
                         109
                                 -33.55B
                                           16.856
                                                   30.594
                                                            1.00
                                                                   4.08
ATOM
        781
              CA
                  TRP
                         109
                                 -33.070
                                           16.105
                                                   31.803
                                                            1.00
                                                                   6.13
MOTA
        782
              C
                  TRP
                        109
                                 -34.031
                                           15.013
                                                   32.176
                                                            1.00
                                                                   7.55
MOTA
        783
              O
                  TRP
                        109
                                 -34.244
                                           14.017
                                                   31.372
                                                            1.00
                                                                   8,26
MOTA
        784
              N
                  HIS
                        110
                                 -34.566
                                           15.040
                                                   33.380
                                                            1.00
                                                                  6.29
MOTA
        785
              CD2 HIS
                                 -32.409
                        110
                                           12.573
                                                   33.819
                                                            1.00 8.99
MOTA
        786
              NE2 HIS
                        110
                                 -31.845
                                           11.558
                                                   33.121
                                                            1.00 10.03
MOTA
        787
              CE1 HIS
                        110
                                 -32.751
                                           10.595
                                                   32.981
                                                            1.00 12.94
              ND1 HIS
MOTA
        788
                                 -33.856
                        110
                                           11.027
                                                   33.562
                                                            1.00 12.68
ATOM
        789
              CG
                  HIS
                        110
                                 -33.678
                                           12.246
                                                   34.128
                                                            1.00
                                                                  9.92
MOTA
        790
              CB
                  HIS
                         110
                                           13.004
                                 -34.76I
                                                   34.840
                                                            1.00
                                                                   8.94
              CA
MOTA
        791
                  HIS
                         110
                                 -35,487
                                           13.971
                                                   33.961
                                                            1.00
                                                                   7.82
MOTA
        792
              C
                         110
                  HIB
                                 -36.548
                                           14.537
                                                   34.584
                                                            1.00
                                                                   7.74
MOTA
        793
              0
                  HIS
                        110
                                 -35.444
                                           15.708
                                                   35.190
                                                            1.00
                                                                   8.03
MOTA
        794
             N
                  CYS
                        111
                                 -37.532
                                           13.990
                                                   34.506
                                                            1.00
                                                                   7.77
MOTA
        795
              CA
                  CYB
                         111
                                 -39.052
                                           14.589
                                                   35.065
                                                            1.00
                                                                  7.64
              C
MOTA
        796
                  CX8
                         111
                                 -39,864
                                           13.660
                                                   35.952
                                                            1.00
                                                                  9.31
MOTA
        797
                  CYS
              O
                         111
                                 -39.559
                                           12.451
                                                   35.928
                                                            1.00 11.03
MOTA
        798
             CB
                                           15.100
                 CYB
                         111
                                 -39,988
                                                   33.925
                                                            1,00 9.61
MOTA
        799
              SG
                 CYS
                                 -39.150
                                                                  9.12
                         111
                                           16.153
                                                   32.711
                                                            1.00
MOTA
        800
              N
                  GLY
                         112
                                 -40.828
                                           14.245
                                                   36.638
                                                            1.00
                                                                  8.81
MOTA
        801
              CA
                  GLY
                         112
                                 -41,525
                                           13.408
                                                   37.597
                                                            1.00
                                                                  8.51
ATOM
        802
              C
                  GLY
                         112
                                 -42,521
                                           14.315
                                                   38.399
                                                            1.00 10.25
MOTA
        803
                  GLY
              0
                         112
                                 -42.794
                                           15.437
                                                   37.941
                                                            1.00 12.04
ATOM
        804
                  THR
                         113
                                 -42.979
                                                   39.595
                                                            1.00 10.08
              N
                                           13.969
ATOM
        805
              CA
                  THR
                         113
                                 -43.870
                                           14.809
                                                   40.372
                                                            1.00
                                                                  8.62
ATON
        806
              C
                  THR
                         113
                                 -43.359
                                                            1.00 9.71
                                           15.387
                                                   41.585
ATOM
        807
                                           14.786
              0
                  THR
                         113
                                 -42.441
                                                   42.268
                                                            1.00 10.48
MOTA
        808
              CB
                  TER
                         113
                                 -45.240
                                           13.996
                                                   40.648
                                                            1.00 17.08
ATOM
              OG1 THR
        809
                         113
                                 -44.930
                                           12.755
                                                   41.340
                                                            1.00 19.10
MOTA
        810
              CG2 THR
                        113
                                 -46.004
                                                            1.00 15.24
                                           13.705
                                                   39,362
MOTA
        811
             N
                  ILE
                         114
                                 -43.963
                                           16.488
                                                   42.073
                                                            1.00 8.35
MOTA
        812
              CA
                  ILB
                         114
                                 -43.662
                                           17.108
                                                   43.365
                                                            1.00 9.73
MOTA
        813
              C
                  ILR
                         114
                                 -44.554
                                           16.338
                                                   44.383
                                                            1.00 13.59
MOTA
        814
              0
                  ILE
                         114
                                 -45.816
                                           16.336
                                                   44,196
                                                            1.00 12.54
MOTA
        815
              CB
                  ILE
                                 -44.008
                                                            1.00 10.58
                         114
                                           18.621
                                                   43.384
MOTA
             CG1 ILB
                                                            1.00 12.00
        815
                         114
                                 -43.089
                                           19.319
                                                   42.34I
                                                            1.00 12.84
MOTA
        817
              CG2 ILB
                         114
                                 -43.864
                                           19.215
                                                   44.814
MOTA
        818
              CD1 ILE
                         114
                                 -43.555
                                           20.750
                                                   42.065
                                                            1.00 10.62
MOTA
        819
                  GLM
                                 -43.977
                                                   45.379
                                                            1.00 12.39
              N
                         115
                                           15.658
              NE2 GLN
ATOM
        830
                         115
                                 -43.951
                                           10.378
                                                   45,759
                                                            1.00 33.00
              OE1 GLN
MOTA
        821
                         115
                                 -42.098
                                           11.415
                                                   46.407
                                                            1.00 34.76
ATOM
              CD
                  GIN
        822
                         115
                                 -43.243
                                           11.496
                                                   45.943
                                                            1.00 30.30
MOTA
        823
              ÇG
                  GLN
                         115
                                 -43.993
                                           12.758
                                                            1.00 18.83
                                                   45.524
MOTA
        824
              CB
                  GLN
                         115
                                 -44.077
                                           13.605
                                                   46.811
                                                            1.00 11.43
MOTA
                  GLN
        825
              CA
                         115
                                 -44.732
                                           14.935 46.396
                                                            1.00 11.59
```

Fig. 2

Cont. Flg 2 MOTA \$26 C GLN 115 -44.956 15.640 47.693 1.00 11.61 MOTA 1.00 14.96 827 0 GLM 115 -46.105 15.494 48.195 MOTA 1.00 12.17 828 N ALA 116 -44.037 48.292 16.355 16.976 MOTA 829 CA ALA 49.618 1.00 10.65 116 -44.291 MOTA ALA 1.00 830 C 116 -43.263 18.055 49.863 MOTA 831 0 ALA 116 17.978 49.326 1.00 13.41 -42.162 MOTA ALA 832 CB 116 -44.101 15.894 50.689 1.00 10.10 MOTA 833 N ARG 117 19.020 50.636 1.00 9.81 -43.386 ATOM MH2 ARG 834 117 -43.870 23.560 45.115 1.00 13.10 MOTA 835 NH1 ARG 23.020 46.568 1.00 17.40 117 -45.496 MOTA ARG 836 CZ 117 -44.191 23.340 46.386 1,00 16.37 MOTA 837 NE ARG 47.330 1.00 14.91 117 -43.258 23.465 MOTA ARG 828 α 117 -43,450 23.251 48.783 1.00 13.89 ARG ATOM CG 49.092 839 117 -43.323 21.801 1.DD 10.78 ATOM ARG 50.596 1.00 10.30 840 CB 117 -43.392 21.470 50.983 ATOM 841 CA ARG 117 -42.725 20.137 1.00 10.62 MOTA ARG 842 C 117 -42.465 20.023 52.496 1.00 12.42 ATOM 843 0 ARG 117 -43.122 53.201 1.00 14.35 19,229 ATOM 844 N GLY 118 -41.56620.803 52.999 1.00 10.94 ATOM 845 CA GLY 54.430 118 -41.246 20.891 1.00 14.45 MOTA 846 C GLY 118 -40.590 19.675 55.005 1.00 13.77 MOTA 847 0 GLY 118 -40.761 19.531 56.229 1.00 14.95 ATOM 848 N GLM 119 -39.874 18.886 54.215 1.00 11.83 NE2 GLN MOTA 849 119 -42.518 16.522 54.159 1.00 27.14 OEI GLN MOTA 850 119 -41.331 14.597 53.939 1.00 29.04 MOTA GLN \Box 15.779 851 119 -41.505 53.683 1.00 26.05 MOTA GLN 852 119 52.791 1.00 23.83 CG -40.511 16.511 MOTA 853 CB GLN 119 16.633 53.499 1.00 15.28 -39.161 MOTA 854 CA GLN 119 -39.228 17.549 54.654 1.00 12.25 MOTA C CLM -37.819 17.865 1.00 13.13 855 119 55,191 MOTA 856 0 GLN 119 -37.023 18.655 54.674 1.00 11.96 MOTA 857 N SER 120 -37.520 17,136 56.272 1.00 12.77 SER MOTA 959 OG 120 59,024 -36.874 16.674 0.50 13.43 ATOM 859 CB SER 120 58.330 -36.074 17.591 0.50 15.06 ATOM 862 CA SER 120 -35,147 17.234 56.873 1.00 11.79 ATOM SER 120 863 C ~35.513 15.938 56,438 1.00 14.19 ATOM 864 O SER 120 -36.167 14.855 56.352 1.00 14.17 ATOM VAL 865 N 121 -34.228 16.035 56.037 1.00 14.53 MOTA 866 CG2 VAL 121 -34.392 15.445 53.235 1.00 20.02 MOTA 867 CG1 VAL 121 -32.537 13.814 53.494 1.00 22.53 -33.176 MOTA 858 CB VAL 15.085 54.041 121 1.00 19.23 MOTA 869 CA VAL 121 -33.466 14.920 55.565 1.00 14.50 ATOM 870 C VAL 121 14.892 -32.106 56.248 1.00 17.85 MOTA 871 0 VAL 121 -31.399 15.890 56.335 1.00 16.78 MOTA N SER 872 122 -31.749 13.694 56.677 1.00 18.77 ATOM 873 OG SER 122 -31.320 13.436 59.447 1.00 35.50 ATOM 874 CB SER 122 -30,306 12.902 1.00 26.24 58.611 MOTA 875 CA SER 122 ~30,397 13.594 57.262 1.00 20.95 MOTA 875 C SBR 122 -29.504 12.911 56.238 1.00 20.78 ATOM 877 SER 11.746 0 122 -29.704 55.840 1.00 25,20 MOTA 878 M TYR 123 -28.548 13.651 55.794 1.00 19.04 ATOM 879 CA TYR 123 -27.479 13.164 54.927 1.00 21.73 ATOM C TYR 123 980 -26.478 12.615 55.995 1.00 25.29

Fig. 2

13.015

57.187

1.00 26.53

-36.521

MOTA

O

TYR

881

MOTA	863	CB	TYR	123	-26.981	14.342	54.135	1.00 18.93
MOTA	883	ÇG	TYR	123	-27.915	14.920	53.100	1.00 18.61
ATOM	884	CDI	TYR	123	-27.849	16.273	52.784	1.00 15.70
MOTA	885	CD2	TYR	123	-28.840	14.144	52.381	1.00 21.00
atom	886	CEL	TYR	123	-28.658	16.844	51.808	1.00 15.37
MOTA	887	CE2	TYR	123	-29,712	14.700	51.423	1.00 18.34
MOTA	888	CZ	TYR	123	-29.581	16.057	51.133	1.00 16.52
ATOM	889	OH	TYR	123	-30.390	16.593	50.172	1.00 15.25
MOTA	890	N	PRO	124	-25,578	11.721	55.647	1.00 28.48
ATOM	891	CG	PRO	124	-24.105	10.334	54.354	1,00 32.40
ATOM	892	CD	PRO	124	-25.391	11.155	54.297	1.00 30.53
MOTA	893	CB	PRO	124	-23.748	10.168	55,828	1.00 32.32
MOTA	894	CA	PRO	124	-24.583	11.183	56.598	1.00 31.44
MOTA	895	C	PRO	124	-23.732	12.265	57,226	1.00 32.68
MOTA	896	0	PRO	124	-23,355	12.124	58,408	1.00 33.64
MOTA	897	N	GLU	125	-23.417	13.329	\$6,485	1.00 32.09
MOTA	898	CA	GLU	125	-22.546	14.515	56.843	1.00 32.45
MOTA	899	C	GLU	125	-23.410	15.484	57,766	1.00 33.22
MOTA	900	O	GLU	125	-22.932	15.954	58,861	1.00 33.87
MOTA	901	CB	GLŲ	125	-22.144	15.220	55.588	1.00 28.10
MOTA	902	CG	GLU	125	-22.899	15.278	54.299	1.00 34.56
ATOM	903	CD	GLU	125	-23.341	14.605	53.384	0.00 53.35
MOTA	904	OE1	GLU	125	-23.517	15.100	52.231	0.00 59.96
MOTA	905	OE2	GLU	125	-23.156	13.352	53.591	0.00 58.46
MOTA	905	N	GLY	126	-24.666	15.793	57.397	1.00 31.75
MOTA	907	CA	GLY	126	-25.549	16.682	58.182	1.00 28.35
nota	908	C	GLY	126	-27.017	16.695	57.720	1.00 25.07
ATOM	909	0	GLY	126	-27.393	16,107	56.582	1.00 25.93
MOTA	910	N	THR	127	-27.811	17.417	58.486	1.00 19.30
MOTA	911	CG2	THR	127	-31.485	17.638	59.516	1.00 15.49
ATOM	912	061	THR	127	-29.548	16.190	60.199	1.00 22.50
atom	913	CB	THR	127	-29.964	17.487	59.664	1.00 14.93
MOTA	914	CA	THR	127	-29.242	17.558	58.256	1.00 13.91
MOTA	915	C	THR	127	-29.689	18.791	57.491	1.00 11.25
atom	916	0	THR	127	-29.203	19.885	57.803	1.00 10.59
MOTA	917	N	VAL	128	-30.549	18.626	56.584	1.00 11.18
ATOM	918	CA	VAL	128	~31.201	19,747	55.79l	1.00 9.77
MOTA	919	C	VAL	128	-32,688	19.787	56.164	1.0D 8.45
MOTA	920	Ö	VAL	138	-33.182	18.697	56.393	1.00 11.45
MOTA	921	CB	VAL	128	-30.956	19.633	54.298	1.00 7-35
nota	922	CGI	VAL	128	-29.466	19.790	54.013	1.00 11.55
atom	923	CGS	VAL	128	-31.377	18.285	53.735	1.00 9.36
Mota	924	N	THR	129	-33.266	20.950	56.243	1.00 9.49
MOTA	925		THR	129	-34.182	21.202	59.125	1.00 18.71
aton	926	0 G 1		129	-34.282	23.173	57.758	1.00 14.40
MOTA	927	CB	THR	139	-34.884	21.913	57.959	1.00 8.96
MOTA	928	CA	THR	129	-34.580	21.088	56.613	1.00 9.66
ATOM	929	C	THR	129	-35.407	21.804	55.487	1.00 10.11
MOTA	930	٥	THR	139	-34.796	22.467	54.615	1.00 10.92
atom	931	M	asn	130	-36.709	21.619	55.563	1.00 10.84
ATOM	932		asn	130	-38.570	25.717	53.765	1.00 35.10
MOTA	933	OD1	asn	130	-39.854	23,969	54.369	1.00 28.19
MOTA	934	CG	asn	130	-38.739	24.527	54.362	1.00 30.11
ATOM	935	ÇB	asn	130	-37.496	23.827	54.952	1.00 17.09

Fig. 2

Cont. Fig 2 ATOM 936 CA ASN 130 -37.620 22,299 54.616 1.00 12.34 MOTA 937 Ç ASN 130 -37.386 21.988 53.136 1.00 11.59 asn 130 22.883 1.00 11.46 MOTA 938 ø -37.557 52.268 MOTA 939 N MET 131 -37.055 20.742 52.880 1.00 9.76 CE MET -33.020 20.248 MOTA 940 131 50.187 1.00 16.57 -33.597 1.00 20.94 MOTA 941 SD MET 21.082 51.529 131 MOTA CG 942 MET 131 -34.41119.573 52.379 1.00 9.59 MOTA CB MET 131 -35.664 19.199 51.580 943 1.00 5.73 9.93 MOTA 944 CA MET 131 -36.732 20.297 51.529 1.00 MOTA 945 C MET 19.797 131 -38.007 50.840 1.00 9.00 ATOM O MET 19.372 945 131 -38.962 51.519 1.00 10.48 19.869 49.527 MOTA 947 N THR 132 -37.995 1.00 8.82 MOTA 948 CA THR 132 -39.129 19.393 48.710 1.00 5.72 ATOM -38.769 18.054 949 C THR 132 48.108 1.00 7.44 MOTA 950 0 THR 132 -37.719 17.850 47.428 1.00 ATOM CB THR -39.497 20.516 47.675 951 132 1.00 5.44 MOTA 21.700 OG1 THR -39.851 952 132 48,434 1.00 9.35 ATOM CG2 THR -40.681 20,100 46.737 1,00 7.59 953 132 MOTA 954 N. ARG 133 -39.640 17.061 48.306 1.00 4.85 MOTA 955 NH2 ARG 133 -42.116 12.875 51,526 1.00 39.89 MOTA 956 NH1 ARG 133 -43.846 11.985 50.304 1.00 32.03 12.272 1.00 36.90 MOTA 957 CZ ARG -42.539 50.397 133 MOTA ARG 11.948 958 133 -41.666 49.418 1.00 28.98 NH ATOM ARG -40.253 12.204 49.398 1.00 20.06 959 \Box 133 MOTA 960 CG ARG 133 -39.632 13.318 48.354 1.00 11.77 ATOM ARG 961 CB 133 -40.079 14.660 48.801 1.00 5.59 ATOM CA ARG 133 -39.443 15.674 47.833 1.00 6.75 962 MOTA 963 C ARG 133 -40.092 15,457 46.455 1.00 7.45 ARG ATOM 964 0 139 -41,227 15.963 46.241 1.00 9.38 THR ATOM 965 N -39.360 14.793 45.552 1.00 9.58 134 ATOM 966 CG2 THR 134 -39.353 17.060 43.521 1.00 7.44 MOTA 967 OG1 THR 134 -38.110 15.030 42.788 1.00 8.17 MOTA THR -39.392 15.603 43.141 968 CB 134 1.00 8.74 ATOM 969 THR 134 -39.921 14.565 44.202 1.00 8.24 CA MOTA 43.785 1.00 970 C THR 134 ~39.576 13.135 8.06 MOTA 971 THR 134 -38.694 12.51B 44.396 1.00 9.92 MOTA 42.770 1.00 7.24 972 N THR 135 -40.301 12.622 MOTA 973 CG2 THR 135 -42.463 10.541 42.733 1.00 12.10 MOTA -41.753 1.00 11.13 974 DG1 THR 135 11.403 40.497 MOTA 975 CB THR 135 -41.362 10.601 41.650 1.00 10.58 MOTA 975 CA THR 135 -40.037 11.294 42.228 1.00 8.03 MOTA 1.00 7.98 THR -38.974 11.340 41.147 977 C 135 MOTA 978 0 THR 135 ~38.731 10.327 40.471 1.00 9.10 MOTA 979 N VAL 136 -38.326 12.452 40.852 1.00 10.38 MOTA CG2 VAL 980 136 -38.483 14.754 39.130 1.00 6.65 MOTA 981 CG1 VAL 136 1.00 10.08 -35.094 14.300 38,374 MOTA 982 CB VAL 136 -37.136 14.096 39.495 1.00 9.89 ATOM VAL 983 CA 136 -37.296 12.595 39.813 1.00 9.10 ATOM VAL 1.00 994 C 136 -35.990 40.235 9.23 11.927 136 MOTA 965 0 VAL 1.00 11.00 -35.640 12.113 41.414 N CYS 137 ATOM 986 -35.273 39.408 1.00 7.90 11.186 MOTA 987 CA CYS 137 -33.997 39.780 1.00 10.554 8.51 MOTA 988 C CYB 137 -32.841 39.681 1.00 9.07 11.600

Fig. 2

12.659

39.015

1.00

9.87

-33.024

MOTA

989

0

CYS

ATOM	990	CB	CYS	137	-33.702	9.452	38.761	1.00	8.35
NOTA	991	22	CYS	137	-33.425	10.013	37.031	1.00	11.68
ATOM	992	N	ALA	138	-31.687	11.330	40.300	1.00	7.09
ATOM	993	CB	ALA	136	-30.467	13.454	41.704	1.00	8.40
atom	994	CA	<u>ala</u>	138	-30.503	12.207	40.220	1.00	8.25
ATOM	995	¢	ALA	138	-29.294	11.352	40.568	1.00	8.58
MOTA	996	Ö	ALA	138	-29.409	10.287	41.211	1.00	10.2B
MOTA	997	N	GLU	139	-28.105	11,803	40.178	1.00	9.17
ATOM	998	OBZ	GLU	139	-27.880	7.597	37.175	1.00	10.81
MOTA	999	OE1	GLU	139	-25.854	8.348	37.135	1.00	10.87
MOTA	1000	CD	GLU	139	-26.946	8.270	37.673	1.00	12.62
MOTA	1001	CG	GLŪ	139	-27.289	9.053	38.912	1.00	10.79
MOTA	1002	CB	GLU	139	-26.414	10,298	39.196	1.00	8.09
MOTA	1003	CA	GLU	139	-26.818	11.099	40.431	1.00	9.02
MOTA	1004	¢	GLU	139	-25.776	12.156	40.775	1.00	9.85
ATOM	1005	0	GLU	139	-25.966	13.352	40.507	1.00	9.59
ATOM	1006	N	PRO	140	-24.577	11.769	41.394	1.00	11.00
ATOM	1007	CG	PRO	140	-23.255	10.606	42.890	1.00	10.81
MOTA	1008	CD	PRO	140	-24.305	10.376	41.788	1.00	10.23
MOTA	1009	CB	PRO	140	-22.595	11.921	42.569	1.00	13.07
ATOM	1010	CA	PRO	140	~23.611	12.741	41,794	1.00	10.28
ATOM	1011	C	PRO	140	-23.095	13.561	40.611	1.00	9.93
MOTA	1012	0	PRO	140	-22.846	33.081	39.498	1.00	11.30
MOTA	1013	N	GLY	141	-23.015	14.865	40.884	1.00	7.17
MOTA	1014	CA	gly	141	-22.596	15.857	39.927	1.00	7.59
MOTA	1015	C	GLY	141	-23,845	16.611	39.448	1.00	6.72
MOTA	1016	0	GLY	141	-23.742	17.715	38.907	1,00	7.49
MOTA	1017	N	asp	142	-25.050	16.077	39.671	1.00	7.35
MOTA	1018	CA	asp	142	-26,325	16.710	39.296	1.00	6.21
ATOM	1019	C	asp	142	-26.663	17.752	40.369	1.00	5.40
ATOM	1020	0	ASP	142	-27.522	18.627	40.062	1.00	3,95
MOTA	1021	CB	ASP	142	-27.497	15.784	39.058	1.00	7.83
MOTA	1022	CG	ASP	142	-27.531	14.867	37.860	1.00	7.53
ATOM	1023	ODI	ASP	142	-28.075	13.736	37.908	1.00	7.92
ATOM	1024	OD2	ASP	142	-27.048	15.355	36.863	1.00	6.85
ATOM	1025	N	Ser	143	-26,112	17.668	41.546	1.00	5.60
MOTA	1026	ZA.	SER	143	-26.422	18.670	42.589	1.00	5.95
MOTA	1027	C	Ser	143	-26.287	20.098	43.102	1.00	7.22
ATOM	1028	0	SBR	143	-25.328	20.407	41.346	1.00	7.03
MOTA	1029	CB	SER	143	-25.451	18.527	43.777	1.00	7.47
ATOM	1030	OG	SBR	143	-25.764	17.255	44.327	1.00	11.25
ATOM	1031	n	GLY	144	-27.206	20.956	42.571	1.00	5.35
ATOM	1032	CA	GLY	144	-27.301	22.370	42.249	1.00	5.48
MOTA	1033	C	GLY	144	-28.051	22.665	40.945	1.00	6.00
MOTA	1034	O	GĽY	144	-28.334	23.858	40.698	1.00	7.24
MOTA	1035	N	GLY	145	-28.295	21.671	40.140	1.00	5.00
ATOM	1036	CA	GLY	145	-28.959	21.818	38.828	1.00	5.08
ATOM	1037	C	GLY	145	-30.400	22.272	38.981	1.00	6.80
MOTA	1038	٥	GLY	145	-31.096	22.093	40.013	1.00	8.09
ATOM	1039	24	SER	146	-31,016	22.623	37.953	1.00	4.98
ATOM	1040	ÇA	SER	146	-32.375	23.344	37.961	1.00	4.54
ATOM	1041	C	SER	146	-33.561	22.389	38.160	1.00	5.95
ATOM	1042	0	SER	146	-33.513	21.305	37.566	1.00	6.69
ATOM	1043	CE	SER	146	-32.609	23.870	36.500	1.00	4.69
		- *					 		

Fig. 2

ATOM	1044	OG	SER	146	-31.487	24.440	35.945	1.00	7.80
ATOM	1045	N	TYR	147	-34.584	22.813	38.88	1.00	4.96
MOTA	1046	OB	TYR	147	~34.686	16.409	41.718		15.17
Atom	1047	CD3	TYR	147	-36.809	19.212	40.614	1.00	5.25
ATOM	1048	CZ2	TYR	147	-36.419	17.910	40.955		10.83
NOTA	1049	CZ	TYR	147	-35.130	17.695	41.413		13.00
ATOM	1050	CEL	TYR	147	-34.196	18.722	41,524	1.00	5.41
ATOM	1051	CD1	TYR	147	-34.601	20.028	41.200	1.00	7.28
MOTA	1052	CG	TYR	147	-35.885	20.262	40.762	1.00	5.98
ATOM	1053	CB	TYR	147	-36.255	21.677	40.422	1.00	5.48
ATOM	1054	CA	TYR	147	-35.875	22.091	39.028	1.00	5.55
MOTA	1055	C	TYR	147	-36.829	23.167	38.409	1.00	5.41
ATOM	1056	0	TYR	147	~36,859	24.306	38.918	1.00	6.54
MOTA	1057	N	ILE	148	-37.559	22.845	37.365	1.00	5.67
MOTA	1058	CA	ILE	148	-38.454	23.821	36.710	1.00	5.64
ATOM MOTA	1059	0	ILE	146	-39.775	23.154	36.317	1.00	5.20
atom Atom	1060 1061	C3	ILE	148 148	~39.743	21.993 24.408	35.83 4 35.475	1.00	6.60
atom atom	1062	CG1	ILE	148	-37.661 -38.445	25.567	34.643		8.25
MOTA	1063	CG3	ILE	148	-37.269	23,309	34.443		11.02
ATOM	1064	CDI	ILE	148	-37.739	26.438	33.738		11.12
ATOM	1065	N	SER	149	-40.878	23.912	36.472	1.00	6.67
ATOM	1056	ÒG	SER	149	-42.874	22.350	38.136		15.36
MOTA	1057	CE	SER	149	-43.209	23.415	37.231	1.00	9.17
ATOM	1058	CA	SER	149	-42.219	23.396	36.098	1.00	7.08
ATOM	1069	C	SER	149	-42.712	24.364	35.000	1.00	7.85
ATOM	1070	ō	9er	149	-43.087	25.496	35.341	1.00	9.98
ATOM	1071	N	GLY	150	-42.532	23.897	33.754		10.00
MOTA	1072	CA	GFX	150	-43.066	24.798	32.663		11.86
MOTA	1073	C	GLY	150	-41,990	25.883	32.482	1.00	8.97
ATOM	1074	Q	GLY	150	-40.850	25.591	32.148		12.79
ATOM	1075	M	THR	151	-42.463	27.096	32.745	1.00	9.09
MOTA	1076	CG2	THR	151	-42.428	29.087	30.347	1.00	13-40
ATOM	1077	OGI	THR	151	~43.398	29.844	32.497		13.13
MOTA	1078	CB	THR	151	-42.170	29.426	31.816		11.88
MOTA	1079	CA	THR	151	-41.527	28.257	32.661	1.00	10.61
ATOM	1080	C	THR	151	-41.195	28.758	34.085	1.00	9.76
aton	1081	٥	THR	151	-40.553	29.810	34.179	1.00	10.13
ATOM	1082	N	GLN	152	-41.628	28,099	35.157	1.00	6.87
ATOM	1083	CA	GLN	152	-41.440	28.600	36.494	1.00	7.20
MOTA	1084	C	gin	152	-40,304	27.909	37.266	1.00	8.56
MOTA	1085	0	GLM	152	-40,488	26.681	37.461		12.38
MOTA	1086	CB	GLN	152	-42.770	28.493	37.286	1.00	6.03
ATOM	1087	CG	GLN	152	-43.935	29.238	36.607	1.00	9.11
ATOM	1088	CD	GIN	152	~43.568	30.705	36.459	1.00	7.44
MOTA	1089		GIN	152	-49.411	31.422	37.422		11.18
MOTA	1090	NE3	gln	152	-43.686	31.229	35.247		15.32
MOTA	1091	N	ALA	153	-39.286	38.691	37.696	1.00	7.16
ATOM	1092	ČA.	ALA	153	-38.166	28.065	38.442	1.00	6.99
MOTA	1093	C	ALA	153	-38.696	37.573	39.786	1.00	6-78
ATOM	1094	0	ALA	153	-39.432	28.329	40.450	1.00	8.03
MOTA	1095	CE	ALA	153	-37.062	29.133	38.567	1.00	5.81
MOTA	1096	N	GLN	154	-38.383	36.349	40.199	1.00	4.41
MOTA	1097	CA	GLN	154	-38.827	25.782	41.460	1.00	5.90

Fig. 2

```
ATOM
       1098
              C
                   GLN
                          154
                                   -37.692
                                            25,687
                                                      42.494
                                                               1.00
                                                                      7.22
MOTA
       1099
              O
                   GLM
                          154
                                             26.098
                                   -37.931
                                                      43.540
                                                               1.00
MOTA
       1100
              CB
                  GLM
                          154
                                   -39.459
                                             24.374
                                                      41.221
                                                               1.00
MOTA
       1101
              CG
                  GLN
                          154
                                   -40.644
                                             34.402
                                                      40.211
                                                               1.00
                                                                      5.24
       1102
                                   -41.732
                                                      40.671
MOTA
              CD
                  GLN
                          154
                                             25.321
                                                               1.00
                                                                      9.04
MOTA
       1103
              OF1 GLN
                          154
                                   -42.271
                                             25.234
                                                      41.795
                                                               1.00
                                                                      9.56
MOTA
       1104
              NE2 GLN
                          154
                                   -42.164
                                             26.267
                                                      39.859
                                                               1.00
                                                                      4.50
MOTA
       1105
                   GLY
                          155
                                   -36.547
                                             25,153
                                                      42.078
              N
                                                               1.00
                                                                      7.56
MOTA
                  GLY
                                                      43.098
        1105
              CA
                          155
                                   -35.475
                                             24.954
                                                               1.00
                                                                     7.31
              C
ATOM
       1107
                   GLY
                          155
                                   -34.202
                                             24.370
                                                      42.501
                                                               2.00
                                                                      7.69
MOTA
                                             24.335
        1108
              ٥
                   GLY
                          155
                                                      41.280
                                                               1.00
                                                                      7.17
                                   -34.029
MOTA
        1109
              Ń
                   VAL
                                             24.073
                                                      43.370
                                                               1.00
                          156
                                   -33.252
                                                                      6.91
ATOM
        1110
              CA
                   VAL
                          156
                                   -31.925
                                             23.515
                                                      42.968
                                                               1.00
                                                                      7.24
MOTA
        1111
              C
                   VAL
                          156
                                   -31.760
                                             22.136
                                                      43.631
                                                               1.00
                                                                      5.91
MOTA
        1112
              0
                   VAL
                          156
                                   -32.096
                                             21.942
                                                      44.815
                                                               1.00
                                                                      6.78
MOTA
        1113
              CB
                   VAL
                          156
                                   -30.786
                                             24.527
                                                      43.154
                                                               1.00
                                                                      6.19
MOTA
       1114
              CCI VAL
                          156
                                   -31.04B
                                             25.862
                                                      42.407
                                                               1.00
                                                                      5,61
MOTA
        1115
              032
                  VAL
                          156
                                   -30.409
                                             24.754
                                                      44.616
                                                               1.00
                                                                      8.17
ATOM
                   THR
                          157
        1116
                                   -31.186
                                             21.164
                                                      42.911
                                                               1.00
                                                                      3.82
MOTA
        1117
              CG2
                  THR
                          157
                                   -30.184
                                             17.395
                                                      42.515
                                                               1.00
                                                                      4.16
ATOM
        1118
              OG1 THR
                          157
                                   -30.991
                                             19.138
                                                      41.073
                                                               1.00
                                                                     8,01
ATOM
        1119
              CE
                   THE
                          157
                                   -30.243
                                                      42.293
                                             18.893
                                                               1.00
                                                                      3.37
ATOM
        1120
              CA
                   THE
                          157
                                   -30.971
                                             19.799
                                                      43.383
                                                               1.00
                                                                      4.97
MOTA
        1121
              C
                   THR
                          157
                                   -30.083
                                             19.754
                                                      44.627
                                                               1.00
                                                                      5.89
ATOM
        1122
                   THR
                          157
                                   -28.979
                                             20.281
                                                      44.589
              O
                                                               1.00
                                                                      5.74
ATOM
        1123
              N
                   SER
                          158
                                   -30.588
                                             19.070
                                                      45.635
                                                               1.00
                                                                      5.99
ATOM
        1124
              CA
                   SER
                          158
                                   -29.830
                                             18.914
                                                      46.876
                                                               1.00
                                                                      7.64
MOTA
        1125
              ¢
                   SER
                          158
                                   -29.316
                                             17.473
                                                      46.969
                                                               1.00 10.26
                                   -28.087
ATOM
        1125
              O
                   SER
                          158
                                             17.229
                                                      47.132
                                                               1.00 10.04
ATOM
        1127
              CB
                   SER
                          158
                                   -30.519
                                             19.304
                                                      48.134
                                                               1.00
                                                                     8,30
MOTA
        1128
              ₽
                   SER
                          158
                                   -29.853
                                             18.975
                                                      49.296
                                                               1.00
                                                                     9.39
MOTA
        1129
              N
                   GLY
                          159
                                   -30.150
                                             16.443
                                                      46.900
                                                               2.00
                                                                     9.83
MOTA
              CA
        1130
                  GTA
                          159
                                   -29.635
                                             15.060
                                                      47.040
                                                               1.00 9.90
MOTA
              C
                   GLY
                                   -30.756
                                                      47.006
                                                               1.00 12.82
        1131
                          159
                                             14.048
                                                               1.00 13.31
MOTA
        1132
              0
                   GLY
                          159
                                   -31.878
                                             14.478
                                                      46.680
MOTA
        1133
              N
                   GLY
                          160
                                   ~30.510
                                             12.792
                                                      47.352
                                                               1.00 12.00
MOTA
        1134
              CA
                   GLY
                          160
                                   -31.646
                                             11.846
                                                      47.257
                                                               1.00 12.56
MOTA
        1135
              C
                   GTA
                          160
                                   -31,091
                                             10.410
                                                      47.219
                                                               1.00 15.35
MOTA
                   GLY
        1136
                          160
                                   -29.988
                                             10.197
                                                      47.741
                                                               1.00 15.70
              0
MOTA
        1137
                   SER
              N
                          161
                                   -31.869
                                              9.497
                                                      46.579
                                                               1.00 13.10
ATOM
        1138
              OG
                   SER
                          161
                                   -33.410
                                              7.381
                                                      47.752
                                                               1.00 18.73
MOTA
        1139
              CB
                   SER
                                   ~91.996
                          151
                                              7.324
                                                      47,833
                                                               1.00 16.84
MOTA
        1140
              CA
                   SER
                          151
                                   -31.379
                                              8.089
                                                      46.671
                                                               1.00 14.66
ATOM
        1141
              C
                   SER
                          161
                                   -31.670
                                              7.448
                                                      45.325
                                                               1.00 13.50
                   SER
MOTA
        1142
              0
                          161
                                   -32.491
                                              8.066
                                                      44.640
                                                               1.00 13.10
ATOM
                   GLY
        1143
              N
                          1.52
                                   -31.078
                                                      45.040
                                                               1.00 11.84
                                              6.310
MOTA
        1144
              CA
                   GLY
                          162
                                   -31.318
                                                               1.00 12.53
                                              5.641
                                                      43.734
ATOM
                                              6.331
        1145
              C
                   GLY
                          163
                                   -30.457
                                                      42.672
                                                               1.00 12.12
MOTA
                   GLY
        1146
              Ô
                          163
                                   -29.545
                                              7.088
                                                      42.957
                                                               1.00 11.79
                                                               1.00 10.66
ATOM
        1147
              N
                   ASN
                          163
                                   -30.786
                                              6.068
                                                      41.407
MOTA
              CA
                   ASN
        1148
                          163
                                   -30.058
                                              6.588
                                                      40.269
                                                               1.00
                                                                     8.29
MOTA
        1149
              ¢
                   ASN
                                                               1.00 11.02
                          163
                                   -31.D33
                                              6.671
                                                      39.D88
MOTA
        1150
              O
                   ASN
                          163
                                   -32.220
                                              6.293
                                                      39.233
                                                               1.00 10.33
MOTA
        1151
              CB
                   KRA
                          163
                                              5.741
                                                      39.950
                                                               1.00 10.88
                                   -28.927
```

Fig. 2

MOTA CG ASN -29.238 4.312 39.578 1.00 14.23 1152 153 ATOM 1153 OD1 ASN 163 -29,966 3.979 38.560 1.00 11.31 1.00 18.46 MOTA ND3 ASN 40.334 1154 163 -28.649 3.352 -30.499 ATOM 7.132 37.956 1.00 10.86 1155 CYS 164 N MOTA 1156 CA CYB 154 -31,420 7.271 36.806 1,00 11.83 MOTA 1157 -31,687 6.006 35.998 1.00 13.69 C CXE 164 MOTA 1158 CYS 164 -32.428 6.145 34.993 1.00 15.15 ٥ ATOM -31.100 8.500 35.971 1.00 10.31 1159 CB CY8 164 MOTA 1160 SG CYS 164 -31.448 10.097 36.795 1.00 9.57 1161 -31.110 MOTA N ARG 4.919 36.364 1.00 11.58 165 ATON 1162 NH2 ARG 165 -26.089 2.173 38.339 1.00 59.15 MOTA XH1 ARG -25.617 37.156 1,00 58.35 1163 165 4.096 MOTA 1164 CZ ARG 165 -26.258 2.909 37.212 1.00 55.39 MOTA -27.054 36.310 1.00 47.93 1165 ME ARG 165 2.356 MOTA -27.631 35.037 1.00 40.44 1156 CD ARG 165 2.632 MOTA 1167 CG ARG 163 -26.933 3.381 34.944 1.00 31.56 MOTA 35.785 1168 ĊВ ARG 165 -30.065 2.765 1.00 18.33 MOTA 1169 CA ARG 165 -31,324 3.621 35.703 1.00 17.34 MOTA -32.498 1.00 14.57 1170 C arg 165 2.928 36.433 MOTA 35.782 1.00 15.39 1171 ARG -33.499 2.588 D 163 1.00 12.62 MOTA 1172 N TRR -32.347 2.784 37.751 166 MOTA 1173 CG2 THR 166 -31.557 0.520 39.350 1.00 18.19 2.562 MOTA 1174 OGI THR 166 -32.296 40.679 1.00 17.67 ATOM 1175 CB THR 166 -32.716 1,474 39.795 1.00 16.75 ATOM 38.540 1176 CA THR 166 -33.407 2.140 1.00 13.18 3.049 1.00 15.18 1177 -34.528 39.012 MOTA THR 166 C MOTA 1178 -35.581 1.00 16.50 THR 166 2.528 39.436 ٥ ATON 1179 GLY 167 -34.296 4.347 39,040 1.00 13.17 N 1180 ATOM CA GLY 167 -35.255 5.345 39.536 1,00 13.42 ATOM 1181 GLY 167 -34.815 5.663 40.997 1.00 14.50 C MOTA 1182 0 GLY 167 -33.957 4.993 41.596 1.00 13.35 MOTA 1183 N GLY 168 -35.330 6.773 41.562 1.00 14.99 7.118 MOTA CA GLY -34.923 42.940 1.00 12.40 1184 168 MOTA 1185 C -35.852 8.241 43,371 1,00 15.29 GLY 168 MOTA 1186 ٥ GLY 168 -36.909 B.509 42.754 1.00 14.71 ATON 1187 THR -35.422 8.845 44.471 1.00 14.65 ĸ 169 47.345 MOTA 1188 CG2 THR 159 -37.341 10.701 1,00 11.85 1.00 16.91 MOTA 1189 OG1 THR 169 -37.698 8.540 46.281 MOTA 169 -36.711 46.529 1.00 14.83 1190 CB THR 9.582 MOTA 1191 CA THE 169 -36.177 9.973 45.077 1.00 13.13 ATOM 1192 -35.165 11.121 45.248 1.00 11.43 Ç THR 169 MOTA 1193 O THR 169 -34.007 10.807 45.611 1.00 11.62 ATOM THR 44.946 1.00 8.52 1194 N 170 -35.621 12.315 MOTA 1195 CG2 THR 12.956 43.075 1.00 5.44 -38.232 170 ATOM 1196 OG1 THR -35.355 14.161 43.068 1.00 19.35 170 MOTA 1197 CB TAR 170 -34.090 13.942 43.798 1.00 12.63 ATOM 1198 THR -34.667 13.406 45.165 1.00 8.99 CA 170 MOTA 1199 Ç THR 170 -35.363 14.555 45,880 1.00 11.07 45.736 ATOM 1200 0 THR 170 -36.592 14.758 1.00 12.91 ATON 1201 PHE 15.291 46,609 1.00 9.07 N 171 -34.531 ATOM 1202 15.430 CD2 PHE 171 -36.450 50.154 1.00 12.37 MOTA 1203 CE2 PHB -37.017 14.281 50,750 1.00 12.72 171 MOTA 1204 DHE 171 13.053 50.718 1.00 14.13 C2 -36.332 ATON 1205 CE1 PHE 171 -35.064 12.901 50.136 1.00 11.85

Fig. 2

Conf. Flg 2

ATOM	1206	CD1	PHE	171	-34.501	14.041	49.547	1.00 12.01
MOTA	1207	CG	PHE	171	~35.187	15.252	49.538	1.00 14.42
MOTA	1208	CB	PHE	171	-34.500	16.430	48.855	1.00 B.65
ATOM	1209	CA	PHE	171	-34.946	16.484	47.353	1.00 10.31
ATOM	1210	C	PHE	171	-34.276	17.746	46.736	1.00 9.69
ATON	1211	٥	PHE	171	-33.096	17.749	46.336	1.00 10.28
MOTA	1212	71	TYR	172	-35.022	18.818	46.721	1.00 5.76
MOTA	1213	OH	TYR	172	-40,405	22.042	43.789	1.00 10.33
NOTA	1214	CD2	TYR	172	-37.368	19.978	44.053	1.00 7.13
MOTA	1215	CE2	TYR	172	-38.680	20.393	43.754	1.00 9.56
nota	1216	CZ	TYR	172	-39.128	21.645	44.088	1.00 11.06
KOTA	1217	CEI	TYR	172	~38.255	22.544	44.740	1.00 7.89
ATOM	1318	CDI	TYR	172	-36.943	22.125	44.984	1.00 5.66
ATOM	1219	CG	TYR	172	-36.496	20.849	44.693	1.00 5.21
MOTA	1220	CB	TYR	172	-35.049	20.462	44.692	1.00 6.84
MOTA	1221	CA	TYR	172	-34.465	20.077	46.256	1.00 7.19
atom	1322	C	TYR	172	-34.711	21.217	47.245	1.00 6.71
ATOM	1223	0	TYR	172	-35.673	21.172	48.064	1.00 8.96
aton	1224	N	glw	173	-33.781	22.185	47.157	1.00 5.53
NOTA	1225	NE2	GT%	173	-33.746	26.714	50.03 3	1.00 6.96
ATON	1226	OB1	GLN	173	-32.289	25.169	50.891	1.00 10.23
MOTA	1227	ÇD	GLN	173	-32.795	25.753	49.933	1.00 9.42
ATON	1228	CG	GLN	173	-32.411	25.493	48.482	1.00 3.75
MOTA	1229	CB	GLN	173	-32.463	24.037	48.054	1.00 8.35
MOTA	1230	CA	GLN	173	-33.883	23.428	47.962	1.00 5.17
MOTA	1231	C	GTN	173	-34.741	24.402	47.187	1.00 6.51
ATOM	1232	0	GLN	173	-34.469	24.693	45.967	1.00 7.86
MOTA	1233	N	GLU	174	-35.814	24.921	47.782	1.00 6.75
ATOM	1234	OE2	glu	174	-40.122	25.837	46.396	1.00 8.25
MOTA	1235	OE1	GLU	174	-40.521	23.919	47.243	1.00 10.88
MOTA	1236	G C3	GLU GLU	174 174	-39.899 -38.863	24.969	47.265 48.362	1.00 10.25
mota Mota	1237 1238	CE.	GTA GTA	174	-37.861	25.164 26.313	48.083	1.00 8.85 1.00 9.36
ATOM	1239	CA	GLU	174	-36.686	25.892	47.108	1.00 7.86
MOTA	1240	C	GLU	174	-35.933	27-178	46.774	1.00 8.69
atom	1241	ā	GLU	174	-35.082	27.712	47.515	1.00 9.98
ATOM	1242	N	VAL	175	-36.198	27.769	45.591	1.00 8.61
MOTA	1243	ÇQ3	VAL	175	-34.568	29.950	43.032	1.00 11.90
ATOM	1244	CG1	VAL	175	-36.989	29.512	42.968	1.00 13.78
ATON	1245	CB	VAL	175	-35.652	29.062	43.589	1.00 23.52
MOTA	1246	CA	VAL	175	-35.605	29.022	45.144	1.00 8.03
MOTA	1247	C	VAL	175	-36,196	30.221	45.869	1.00 8.45
MOTA	1248	ō	VAL	175	-35.453	31.199	46.161	1.00 8.95
MOTA	1249	N	THR	176	-37.454	30.220	46.297	1.00 9.06
MOTA	1250	CG2	THR	176	-40,371	32.282	47.869	1.00 18.25
MOTA	1251	001	THR	176	-40.343	30.692	46.091	1.00 18.82
ATOM	1252	CB	THR	176	-39.648	31.030	47,350	1.00 15.35
MOTA	1253	CA	TER	176	-38.133	31.355	46.965	1.00 10.08
ATOM	1254	Ċ	THR	176	-37.370	32.053	48.082	1.00 12.75
MOTA	1255	ō	THR	176	-37.203	33.295	48.105	1.00 12.78
MOTA	1256	N	PRO	177	-36.827	31.275	49.019	1.00 13.60
MOTA	1257	CA	PRO	177	-36.059	31.831	50,137	1.00 14.56
ATOM	1258	C	PRO	177	-34.832	32.550	49.634	1.00 14.53
MOTA	1259	ō	PRO	177	-34.405	33.537	50.205	1.00 14.33
							-	

Fig. 2

. =	4646				** ***			
ATOM	1260	CB	PRO	177	-35.664	30.599	50.967	1.00 15.59
ATOM	1261	CG	PRO	177	-36.607	29.488	50.587	1.00 15.55
NOTA	1262	CD	Pro	177	-37.028	29.B1B	49.155	1.00 14.17
aton	1263	N	MET	17B	-34.177	32.085	48.557	1.00 11.26
MOTA	1264	CB	Met	17 B	-21.755	28.533	46.007	1.00 19.72
MOTA	1265	SD	MRT	178	-30.708	29.927	46.237	1.00 22.73
atom	1266	CG	MET	178	-31.639	30.737	47.551	1.00 17.28
MOTA	1267	CB	MET	178	-32.343	31.919	46.980	1.00 9.92
MOTA	1268	CA	MET	178	~32.991	32.789	48.077	1.00 11.19
ATOM	1269	Ç	MET	178	-33.372	34.163	47.572	1.00 14.99
MOTA	1270	ō	MET	178	-32,631	35.161	47.724	1.00 16.24
MOTA	1271	N	VAL	179	-34.492	34.273	46.870	1.00 12.66
ATOM	1272	CG2	VAL	179	-35.871	34.515	44.214	1.00 11.56
ATON	1273	CG1	VAL	179	-36,995	36.540	45.154	1.00 15.31
MOTA	1274	CB	VAL	179	-36.242	35.254	45.495	1.00 14.06
ATOM	1275	CA	VAL	179	-34.973	35.549	46.347	1.00 14.10
ATOM	1275	C	VAL	179	-35.411	36,462	47.516	1.00 17.87
MOTA	1277	0	VAL	179	-35.152	37.674	47.535	1.00 18.01
MOTA	1278	Ŋ	Mea	180	-36.139	35.872	48,451	1.00 17.87
MOTA	1279	ND2	aen	180	-39.996	35.004	49.792	1.00 34.66
MOTA	1280	OD1	asn	180	-39.173	36.590	48.442	1.00 25.20
MOTA	1281	CG	nea	180	-39.030	35.860	49.435	1.00 27.22
MOTA	1282	CB	aen	180	-37.798	35.850	50.334	1.00 22.46
MOTA	1283	CA	ASN	180	-36.683	36.628	49.576	1.00 21.81
ATOM	1284	C	aen	180	-35.663	37.122	50.588	
ATOM	1285	0	asn	180	-35.786	38.276	51.007	1.00 25.30
ATOM	1286	N	SER	181	-34.775	36.258	50.952	1.00 20.13
MOTA	1287	QG	SER	181	-34.362	34.891	53.477	1.00 46.23
MOTA	1288	CB	SER	181	-33.268	35.230	52.620	1.00 29.26
MOTA	1289	CA	SER	181	-33.740	36.530	51.921	1.00 20.62
	1290		SER					
MOTA		C		181	-32.474	37.109	51.355	1.00 20.10
MOTA	1291	0	SER	181	-31.914	37.915	52.104	1.00 20.08
MOTA	1292	N	TRP	182	-32.042	36.665	50.186	1.00 17.06
ATOM	1293	CD2	TRP	182	-28.744	33.771	49.583	1.00 20.91
MOTA	1294	CE3	TRP	182	-28.470	33.240	48.331	1.00 15.11
MOTA.	1295	CZ3	TRP	182	-27.853	31.999	48.269	1.00 15.36
aton	1296	CH2	TRP	182	-27.529	31.313	49.436	1.00 15.65
MOTA	1297	CZ2	TRP	182	-27.769	31.806	50.713	1.00 19.64
ATOM	1298	CB3	TRP	182	-28.381	33.057	50.742	1.00 24.59
ATOM	1299	NE1	TRP	182	-28.798	33.820	51.828	1.00 27.77
ATOM	1300	CD1	TRP	192	-29.323	34.986	51.373	1.00 29.42
ATOM	1301	C3	TRP	192	-29.377	35.009	50.004	1.00 22.91
ATOM	1302	CB	TRP	182	-29.884	36.098	49.127	1.00 20.07
ATOM	1303	CA	TRP	182	-30.771	37.210	49.681	1.00 14.46
ATOM	1304	C	TRP	182	-30.992	38.306	48.680	1.00 14.45
ATOM	1305	Ö	TRP	182	-30.007	38.974	48.321	1.00 16.23
ATOM	1306	N	GTA	183	-32.203	38.445	48.152	1.00 13.61
ATOM	1307	CA	GTA	183	-32.431	39.519	47.179	1.00 13.61
ATOM	1308	Ç	GLY	183	-31.864	39.105	45.900	1.00 12.98
ATOM	1309	0	GLY	183	-31.478	40.D15	45.005	1.00 11.51
ATOM	1310	N	VAL	184	-31.805	37.78B	45.559	1.00 12.12
ATOM	1311	CG2	VAL	184	-31.741	34.892	44.375	1.00 20.41
MOTA	1312		VAL	184	-29.458	35.739	44.931	1.00 20.83
ATOM	1313	CB	VAL	184	-30.729	35.966	44.088	1.00 14.52

Fig. 2

LISTA DE SECUENCIAS

```
<110> Novozymes A/S
    <120> Variantes de proteasa
    <130> 10508
   <160> 28
    <170> PatentIn version 3.2
15 <210> 1
    <211> 1596
    <212> ADN
    <213> Nocardiopsis sp. NRRL 18262 ("Proteasa 10")
    <220>
    <221> CDS
    <222> (318)..(1463)
    <220>
    <221> sig-péptido
    <222> (318)..(404)
    <220>
    <221> mat_péptido
  <222> (900)..(1463)
40
45
```

65

50

55

<400> 1

5	acgt	tttgg	gta d	gggta	rccgg	tgt	ccgc	atg	tggc	:aga:	it go	CCC	ttg	gac	29932	2 C	60
3	ggat	tcg	etc (gtago	gcat	: cga	ctc	gac	aaccg	jęgag	g to	gccg	ttc(cgt	cgcca	cg	120
	ttct	tgcg:	acc (tcato)Cgac	: cca	itcat	cgg	gtgad	ccca	ac co	gaget	ctga	atg	gtcca	cc	180
10	gtto	tgad	cgg 1	tcttt	cctc	acc		acgt	gcaco	ctate	g ti	tagga	lcgt1	gtt	taccg	aa	240
	tgto	ctcg(ptg a	acgad	aggg	gco	ggad	ggt	attco	gccc	c ga	atcco	ccg	t tga	tcccc	CC	300
15	agga	agag1	tag (gacco					cc ccc er Pro -19) Va	t gi	tc to al so	ec go	c at	e Gl		350
			gcg Ala				ggt Gly		gcg Ala -175					ccg Pro -170	ggt Gly		395
20			gcg Ala		acc Thr	gga	gcg	ctc Leu	ccc Pro -160	cag Gln	tça Ser	ÇÇC Pro	acc Thr	ccg Pro -155	gag Glu		440
25			gcg Ala		tcc Ser	atg Met	cag Gln	gao Glu	gcg Ala -145	ctc L e u	cag Gln	cgc Arg	gac Asp	ctc Leu -140	gac Asp		48:
20			tcc ser		gag Glu	gcc Ala	gag Glu	gag Glu	ctg Leu -130	ctg Leu	gcc Ala	gcc Ala	cag Gln	gac Asp -125	acc Thr		\$30
30	gcc Ala	ttc Phe	gag Glu	gtc Val -120	gac Asp	gag Glu	gcc Ala	gcg Ala	gcc Ala -115	gag Glu	gcc Ala	QCC Ala	ggg	gac Asp -110	gcc Ala		575
35			ggc Gly	tcc ser -105	gtc Val	ttc Phe	gac Asp	acc Thr	gag Glu -100	agc Ser	ctg L e u	caa Glu	ctg Leu	acc Thr -95	gtc c Val L	tg eu	623

		acc Thr	gat ASP -90	gcc	gcc Ala	aca Ala	gtc Val	Glu Glu -85	gcc Ala	gtg Val	Glu Glu	YJS	Thr -80	Gly	ăla Āla	ely ogg	671
5	acc Thr	gag Glu -75	ctg Leu	gtc Val	tcc Ser	tac Tyr	ogc Gly -70	atc Ile	gac Asp	ggt Gly	ctc Leu	gac Asp -65	gag Glu	atc Ile	otc Val	CAG Gìn	719
10	gag 61u -50	ctc L eu	aac Asn	gcc Ala	gcc Ala	gac Asp -55	gcc Ala	gtt Val	ccc Pro	ggt Gly	gtg Val -50	gtc Val	ggc Gly	tgg Trp	tac Tyr	ccg Pro -45	767
	gac Asp	oto Val	gcp Ala	ggt Gly	gac Asp -40	acc Thr	gtc Val	gtc Val	ctg Leu	gag Glu -35	gtc Val	ctg L e u	Glu	ggt Gly	tcc Ser -30	gga Gly	815
15	gcc	gac Asp	gtc Val	agc ser -25	ggc Gly	ctg Leu	ctc L e u	gcg Ala	gac Asp -20	gcc Ala	ggc Gly	gtg Val	gac 45p	gcc Ala -1S	tcg ser	gcc Ala	863
20	gtc Val	gag Glu	gtg Val -10	acc Thr	acg Thr	agc Ser	gac Asp	cag Gln -5	CCC Pro	gag Glu	ctc L e u	tac Tyr -1	gcc Ala 1	gac Asp	atc Ile	atc Ile	911
25	ggt Gly S	ggt Gly	ctg L e u	gcc Ala	tac Tyr	acc Thr 10	atg Met	ggc Gly	ggc	cgc Arg	tgt Cys 15	tcg Ser	gtc Val	ggc Gly	ttc Phe	gcg Ala 20	959
	gcc Ala	acc Thr	aac Asn	gcc Ala	gcc Ala 25	ggt Gly	cag Gln	CCC Pro	ggg Gly	ttc Phe 30	gtc Val	acc Thr	gcc	ggt Gly	cac His 35	tgc Cys	1007
30	ggc Gly	cgc Arg	gtg Væl	ggc Gly 40	acc Thr	cag Gìn	gtg Væl	acc Thr	atc Ile 45	ggc Gly	aaç Asn	ggc Gly	agg Arg	goc Gly 50	gtc Val	ttc Ph e	1055
35	gag Glu	cag Gln	tcc 5er 55	otc Val	ttc Phe	CCC Pro	ggc Gly	aac Asn 60	gac Asp	gcg Ala	gcc Ala	ttc Phe	gtc val 65	cgc Arg	got	acg Thr	1103
	tcc Ser	and Asn 70	ttc Phe	acg Thr	cto Leu	acc	aac A50 75	ctg Leu	gtc Val	agc Ser	cgc Arg	tac Tyr 80	ASR	acc Thr	ggc Gly	ggg Gly	1151
40	tac Tyr 85	gcc Ala	acg Thr	gtc Val	gcc Ala	ggt Gly 90	cac His	aac Asn	cag G]n	gçc Ala	CCC Pro 95	atc	ggc Gly	tcc Ser	tcc Ser	gtc Val 100	1199
45	tgc Cys	cgc Arg	tcc Ser	ggc 61y	tçc Ser 105	acc Thr	acc Thr	agt Gly	tg <u>s</u> Trp	cac His 110	tgc Cys	ggc Gly	acc Thr	atc	Cag Gln 115	gcc Ala	1247
50	cgc Arg	ggc Gly	cag Gln	tcg \$er 120	gtg Val	agc Ser	tac Tyr	CCC Pro	gag Glu 125	ggc Gly	acc Thr	gtc Val	acc Thr	aac Asn 130	atg Met	acc Thr	1295
	cgg Arg	acc Thr	acc Thr 135	gtg Val	tgc Cys	gcc Ala	gag Glu	Pro 140	ggc	gac Asp	tcc Ser	ggc	ggc Gly 145	tcc Ser	tac Tyr	atc Ile	1343
55	tcc ser	990 Gly 150	acc Thr	cag Gln	occ Ala	cag Gln	ggc Gly 155	oto Val	acc Thr	tcc Ser	ggc Gly	00C 61y 150	tcc Ser	ggc Gly	aac Asn	tgc Cys	1391
60	CQC Arg 165	acc Thr	ggc Gly	ggg Gly	acc Thr	acc Thr 170	ttc Phe	tac Tyr	cag Gln	gag Glu	gtc Val 175	acc Thr	ccc Pro	atg Met	gtg Val	aac Asn 180	1439
	tcc	tgg	ggc	gtc	cgt	ctc	cgg	acc	tga	tccc	cgc	ggtt	ccag	gc g	gaçç	gacgg	1493

	Ser Trp Gly Val Arg Leu Arg Thr 185
5	togtgacotg agtacoaggo gtocoogcog ottocagogg ogtocgoaco ggggtgggac ogggcgtggc cacggococa coogtgacog gacogocogg ota
10	<210> 2 <211> 382 <212> PRT <213> Nocardiopsis sp. NRRL 18262 ("Proteasa 10")
15	<400> 2
	Met Arg Pro Ser Pro Val Val Ser Ala Ile Gly Thr Gly Ala Leu -180 -180
20	Ala Phe Gly Leu Ala Leu Ser Gly Thr Pro Gly Ala Leu Ala Ala -175 -165
25	Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val -155 -150
30	Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser Ala -145 -140 -135
	Glu Ala Glu Ġlu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val -130 -125
35	Asp Glu Ala Ala Glu Ala Ala Gly Asp Ala Tyr Gly Gly Ser -115 -105
40	Val Phe Asp Thr Glu Ser Leu Glu Leu Thr Val Leu Val Thr Asp Ala -100 -95 -90
	Ala Ala Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Glu Leu Val -85 -80 -75
45	Ser Tyr Gly Ile Asp Gly Leu Asp Glu Ile Val Gln Glu Leu Asn Ala -60
50	Ala Asp Ala Val Pro Gly Val Val Gly Trp Tyr Pro Asp Val Ala Gly -55 -45
55	Asp Thr Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Ser -40 -35 -30 -25
	Gly Leu Leu Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val Thr -20 -15 -10
60	Thr Ser Asp Gln Pro Glu Leu Tyr Ala Asp Ile Ile Gly Gly Leu Ala
	Tyr Thr Net Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn Ala 10 20

		A]a 25	Gly	Glu	Pro	Gly	Phe 30	Val	Thr	Ala	GТу	His 35	Cys	Gly	Arg	Va	61y 40	•
5		Thr	G1n	Va1	Thr	17e 45	Gly	Asn	Gly	Arg	61y 50	Val	Phe	Glu	Gln	Ser 55	- ∨a1	
10		Phe	Pro	g٦y	Asn 50	Asp	Ala	Ala	Phe	va1 65	Arg	Gly	Thr	Ser	Asn 70	Phe	: Thr	
15		Leu	Thr	Asn 75	ren	٧a٦	Ser	Arg	туг 80	Asn	Thr	Gly	Gly	Tyr 85	Ala	l Thi	· val	
		Ala	G]y 90	His	Asn	Gln	Ala	Pro 95	Ile	Gly	Ser	Ser	va] 100	Cys	Arg	j Sei	· Gly	
20		Ser 105	Thr	Thr	Gly	Trp	His 110	Cys	Gly	Thr	Ile	G]n 115	БſΑ	Arg	G1y	าไอ ง	Ser 120	
25		Val	Ser	Tyr	Pro	Glu 125	GТу	Thr	Va]	Thr	ASR 130	Met	Thr	Arg	Thr	Th:	Val	
		Cys	S TA	G]u	Pro 140	G1y	ASP	Ser	Gly	Gly 145	Ser	⊤yr	Ile	ser	Gly 150	/ Thi	· Gln	
30		Ala	Gln	Gly 155	va1	Thr	Ser	Gly	Gly 160	Ser	Gly	Asn	Cys	Arg 165	Thr	· Gly	/ Gly	
35		Thr	Thr 170	Phe	⊤yr	Gln	Glu	Val 175	Thr	Pro	Met	Va1	Asn 180	Ser	Trp	Gl)	/ Va 1	
40		Arg 185	Leu	Arg	Thr													
	<210><211>																	
45	<212>	ADN	. 1:	:	· · · · · · · · · · · · · · · · · ·	1 - :	1	.:. I.		.:11 .: T	NCM.	12225	("D	.4	1022			
15	<213>	wocar	atops	is aas	sonvii	iei su	oespe	cie ad	issonv	illei 1)SIVI 2	+3233	(PIC	neasa	. 10)			
	<220> <221>	CDS																
50	<222>		062)															
	<220>																	
55	<221> <222>		•															
	<400>	3																
60			Pro -165	Ala	ccc Pro	gto Val	ecc Pro	Cag G r -16	1 Tr	c co r Pr	c gt	C 00	S Y	55	sp.	agc Ser	gcc Ala	45
65			agc ser -15(ato Net	acc Thr	gag Gli	gc Ala	Lei Lei -14	aa i Ly i5	ig Eg /\$ Ar	j¢ ga 'g As	c ct p Le	C ga U As -1	ic c ip l	tc .eu	acc Thr	tcg Ser	90

	gcc	gag Glu -139	_ Ala	gag Glu	GIL	ctt Leu	-13	i 50	er A	co ci la G	n G	LU A			ite d		135
5	acc Thr	gac Asp -120	ğcc Ala	gag	gc Ala	acc Thr	gag Gli -1		ia A	9 9	y G	ig go	c 1	tac (gc d	gc Ty	180
10		ctg Leu -105	Phe	gac	acc The	gag Giu	1 200 1 Thi -10	<u> </u>	tc g	aa ci lu Li	to ac eu Th	cc gi ir va -9	kij Li	tg gi	tc ac	ce gac ir Asp	228
15	gcc Ala -90	tcc Ser	320 ElÀ	gtc Val	gag Glu	gcg Ala -85	gtc Val	gag Glu	gcc Ala	acc Thr	002 61y -80	gcc Alæ	cag Gln	gcc Ala	acc Thr	gtc val -75	276
	gtc Val	tcc Ser	caç His	ggc Gly	acc Thr -70	gag Glu	ggc Gly	ctg L e u	acc Thr	gaç Glu -65	gtc Val	gtg Val	gag Glú	gac Asp	ctc Leu -60	REC ASN	324
20	goc GTy	Ala	Glu	ptt val -55	ccc Pro	GIU	agc Ser	gtc Val	ctc Leu -50	ggc Gly	tgg Trp	tac Tyr	ccg Pro	gac Asp -45	otg Val	grg Glu	372
25	agc Ser	gac Asp	acc Thr -40	gtç val	gtg Val	gtc Val	gag Glu	gtg Val -35	ctg L eu	gag Glu	ggc Gly	tcç Ser	gac ASP -30	DÇC Ala	geç ASP	gtc val	420
	occ Ala	gcc Ala -25	ctg Leu	ctc L e u	gcc Ala	gac Asp	9CC Ala -20	ggt Gly	gtg val	gac Asp	tcc Ser	tcc Ser -15	tcg Ser	gtc Val	Cgg Arg	gtg Val	468
30	gag Glu -10	gag Glu	gcc Ala	gag Glu	gag Glu	gcc Ala -5	ccg Pro	cag Gln	gtc val	tac Tyr -1	occ Ala 1	gac Asp	atc Ile	atc Ile	ggc Gly 5	ggc GTy	516
35	ctg L e u	gcc Ala	tac Tyr	tac Tyr 10	atg Met	ggc Gly	ggc GTy	cgc Arg	tgc Cys 15	tcc Se r	gtc val	ggc Gly	ttc Phe	gcc Åla 20	gcg Ala	acc Thr	564
40	ASD	agc Ser	gcc Ala 25	ggt Gly	cag Gln	CCC Pro	ggt Gly	ttc Phe 30	gtc val	acc Thr	gcc Ala	ggc	cac His 35	tgc Cys	ggc Gly	acc Thr	612
	gtc Val	ggc Gly 40	acc Thr	ggc Gly	gtg Val	acc Thr	atc Ile 45	ggc Gly	aac Asn	ggc Gly	acc Thr	ggc Gly 50	acc Thr	ttc Phe	Glu	aac Aşn	660
45	tcg Ser 55	gtc Val	ttc Phe	CCC Pro	ggc Gly	88 C A5 0 6 0	gac Asp	gcc Ala	gcc Ala	ttc Phe	gtc val 65	CGC Arg	ggc Gly	acc Thr	tcc ser	aac Asn 70	708
50			ctg L e u														756
	tcg Ser	gtg Val	acc Thr	ggt Gly 90	acc Thr	agc Ser	cag Gln	950 Ala	ccg Pro 95	gcc	ggc Gly	tcg Ser	SIA Ala	gtg Val 100	tgc Cys	cgc Arg	804
55	tcc Ser	ggc Gly	tcc Ser 105	acc Thr	acc Thr	ggc Gly	tgg Trp	C#C H1s 110	tgc Cys	ggc Gly	#CC Thr	atc Ile	cag Gln 115	gcc Ālā	cgc Arg	aac Asn	852
60	cag Gln	acc Thr 120	oto Val	cgc Arg	tac Tyr	ccg Pro	cag Gln 125	ggc Gly	acc Thr	gtc Val	tac Tyr	tcg Ser 130	ctc Leu	acc Thr	cgc Arg	acc Thr	900

		aac Asn 135	gtg val	tgc Cys	gcc Ala	ga g Glu	CCC Pro 140	ggc Gly	gac Asp	tcc Ser	ggc Gly	ggt Gly 145	tcg Ser	ttc Phe	atc Ile	tcc Ser	ggc GTy 150	948
5		tcg ser	cag G1n	gcc	cag Gln	00C GTy 155	gtc Val	acc Thr	tcc Ser	ggc Gly	990 Gly 160	tcc Ser	ggc Gly	aac Asn	tgc Cys	tcc Ser 16S	gtc Val	996
10		ggc Gly	ogc Gly	acg Thr	acc Thr 170	tac Tyr	tac Tyr	cag Gln	gag Glu	gtc val 175	acc Thr	CCG Pro	atg Met	atc Ile	22C Asn 180	tcc Ser	tgg Trp	1044
15		ggt Gly	gtc Val	agg Arg 185	atc Ile	cgg Arg	acc Thr	taa										1065
	<210>	4																
	<211>	354																
20	<212>	PRT																
	<213>	Noca	rdiop	sis da	ssonv	illei s	ubesp	ecie a	lasson	ıvillei	DSM	4323	5 ("Pı	roteas	a 18")		
	<400>	4																
25		Ala	Pro -16	s A7	a Pr	o Va] Pr	6 6] -1	n Ti 60	hr P	ra Vi	el A	le A	sp 155	Asp	Ser .	Ala	
30		Ala	Ser -15		t Th	r Gl	u Al	a Le: -1:		ys A	rg A	sp L		sp 140	L eu '	Thr:	Ser	
35		Ala	G]u -13		a GT	u Gl	u Le	u Le -1		ET A	la G	ln G		1a 125	a la	Ile :	Glu	
		Thr	ASP -12	ΓA 0	a G1	u Al	a Th	r G]: -1	u A 15	la A	la G	ly G	lu <u>A</u>	la 110	Туг	Gly	Gly	
40		Ser	L e u -10		e As	p Th	r Gl	u Th -1		eu 'G	lu L	eu T		a1 L 95	eu V	al T	hr Asp	,
45		Ala -90	Ser	ΑTa	val	Glu	Ala -85		Glu	Ala	Thr	Gly -80	Ala	Gln	Ala	Thr	va1 -75	
		Val	Ser	His	Gly	Thr -70		Gly	Leu	⊤hr	61u -65	Vāl	Val	G∃u	Asp	Leu -60		
50		Gly	A] z	Glu	Va1 -55	Pro	Glu	Ser	Va1	-50	Gly	Trp	Tyr	Pro	A50 -45	Val	Glu	
55		Ser	Asp	Thr -40	Val	val	Val	Glu	va1 -35	LEU	Glu	Gly	Ser	ASP -30	Ala	ASP	Va1	
60		Ala	A]a -25	Leu	Leu	Ala	Asp	Ala -20	Gly	Val	Asp	Ser	Ser -15	Ser	Val	Arg	Val	
		G]u -10	Glu	Ala	Glu	Glu	A]a -5	Fro	Gln	val	туг -1	Ala 1	Asp	Ile	Ile	GTy 5	Gly	

	Le	u A	47a	Tyr	Туг 10	Met	Gly	Gly	Arg	Cys 13	\$er	Val	Gly	Phe	A1a 20	ÆſA	Thr
5	24	n S	ser	Ala 25	gТy	Gln	Pro	61 y	Phe 30	Va ∃	Thr	Ala	Gly	His 35	Cys	Gly	Thr
10	Va	1 4	51y 10	Thr	GΊy	Val	Thr	17e 45	Gly	Asn	Gly	Thr	G]y 50	Thr	Phe	GÌn	Asa
	Se 55	r \	/a]	Phe	Pro	gly	Asn 60	ASp	#I#	Ala	Phe	Val 65	Arg	Gly	Thr	Ser	Asn 70
15	Ph	e 7	Thr	Leu	Thr	Asn 75	Leu	val	Ser	Arg	Tyr 80	Asn	Ser	Gly	Gly	Ţγr 85	Gln
20	Se	r \	/al	The	Gly 90	Thr	Ser	Gln	ATA	Pro 95	ATE	Gly	Ser	sfa	Val 100	Cys	Arg
	Se	re	Пy	Ser 105	Thr	Thr	Gly	⊤rp	His 110	Cy5	Gly	Thr	Ile	G]n 115	Ala	Arg	Asn
25	ĢΊ	n 1	Thr 120	val	Arg	Tyr	Pro	G]n 125	Gly	Thr	val	Tyr	Ser 130	Leu	Thr	Arg	Thr
30	As 13	n \ 5	/ a]	Cys	afa	G ใน	P ro 140	GТу	Asp	Ser	GТу	Gly 145	Ser	Phe	Ile	Ser	61y 150
35	Se	r (3ln	Ala	Gln	Gly 155	val	Thr	Ser	Gly	Gly 160	Ser	Gly	Asn	Cys	Ser 165	val
	G	y d	sly	Thr	Thr 170	Туг	Туг	GÌ⊓	Glu	Va] 175	Thr	Pro	Met	Ile	ASN 180	Ser	Trp
40	GT	у \	/al	Arg 185	Ile	Arg	Thr										
	<210>5																

```
    <210> 3
45 <211> 1062
<212> ADN
<213> Nocardiopsis prasina DSM 15648 ("Proteasa 11")
50 <220>
<221> CDS
<222> (1)..(1059)
55 <220>
<221> mat_péptido
<222> (496)..(1059)
```

<400> 5

gcc acc gga ccg ctc ccc cag tca ccc acc ccg gag gcc gcc 45
Ala Thr Gly Pro Leu Pro 160 -155 Glu Ala Asp Ala -165

gtc tcc atg cag gag gcg ctc cag cgc gac ctc ggc ctg acc ccg yal Ser Met Glu Ala Leu Glu Arg Asp Leu Gly Leu Thr Pro

	-150	1				-14	5				-1	L40					
5	ctt Leu -135	Glü				ctg L e u -13	ı Le	g go	c go	ia Gi	n As	ic p 25			rtc (Phe (135
	gtc Val -120	Asp	gag	gcc Ala	gcg Ala	gco Ala -11	L Al	g gg	c go	c gg	y As	ic ip L10			gc c		180
10	tcc ser -105	Ÿa?				gag Glu -10	ı _. Th					ır Vi				cc gad in Asp -90	1
15	gcc	gcc Ala	tcg Ser	gtc val	gag Glu -85	gct Ala	gtg Val	gag Glu	gcc Ala	acc Thr -80	ggc Gly	gcg Ala	ggt Gly	BCC Thr	g aa G1u -75	ctc Leu	276
20	gtc Val	tcc Ser	tac Tyr	ggc Gly -70	atc Ile	gag Glu	ggc Gly	ctc L e u	gac Asp -65	gag gag	atc Ile	atc Ile	cag Gln	gat Asp -50	ctc Leu	arc Asn	324
20	gcc Ala	gcc. Ala	gac Asp -55	gcc Ala	gtc Val	ccc Pro	ggc Gly	gtg Val -50	gtc Val	ggc Gly	tgg Trp	tac Tyr	ccg Pro -45	gac Asp	gtg Val	gcg	372
25	ggt Gly	gac Asp -40	acc Thr	gtc Val	gtc Val	ctg Leu	gag Glu -35	gtc Val	ctg L e u	gag Glu	ggt Gly	tcc Ser -30	GTY	gcc Ala	gac A s p	gtg Val	420
30	agc Ser -25	ggc	ctg L e u	ctc L e u	gcc Ala	gac Asp -20	gcc Ala	ggc Gly	gtg Val	gac Asp	gcc A1a -15	tcg Ser	gcc Ala	gtc Val	gag Glu	gtg Val -10	468
	acc Thr	agc Ser	agt Ser	gcg Ala	cag Gln -5	ccc Pro	gag u l D	ctc L eu	tac Tyr -1	gcc Ala 1	gac Asp	atc Ile	atc Ile	99c 61y 5	ggt Gly	ctg L eu	516
35	gcc Ala	tac Tyr	acc Thr 10	atg Met	ggc Gly	ggc Gly	cgc Arg	tgt Cys 15	tcg Ser	gtc Val	gga Gly	ttc Phe	gcg A1 a 20	gcc Ala	acc Thr	aac Asn	564
40	gcc Ala	gcc Ala 25	ggt Gly	cag Gln	ccc Pro	gga Gly	ttc Phe 30	gtc Val	acc Thr	gcc Ala	oot Gly	cac His 35	tgt Cys	ggc Gly	cgc Arg	gtg Val	612
45	ggc Gly 40	Thr	cag Gln	gtg Val	agc Ser	atc Ile 45	ggc	aac Asn	ogc Gly	Gìn	go c 61y 50	otc Val	ttc Phe	gag Glu	cag Gln	tcc ser 55	660
	atc Ile	ttc Phe	ccg Pro	ggc Gly	aac Asn 60	gac Asp	gcc Ala	gcc Ala	ttc Phe	gtc Val 65	cgc Arg	ggc	acg Thr	tcc Ser	aac Asn 70	ttc Phe	708
50	acg Thr	ctg L eu	acc Thr	aac Asn 75	ctg L e u	gtc val	agc Ser	cgc Arg	tac Tyr 80	aac Asn	acc	ggc Gly	ggt	tac Tyr 85	gcc	acc Thr	756
55	gtc Val	gcc Ala	99c 61y 90	CEC His	aac Asn	cag Gln	gcg Ala	Pro 95	atc Ile	ggc Gly	tcc Ser	tcc Ser	gtc Val 100	Cy5	cgc Arg	tcc ser	804
	ggc Gly	tcc Ser 105	acc Thr	acc Thr	ggc Gly	tgg Trp	cac His 110	tgc Cys	ggc Gly	acc Thr	atc Ile	Cag Gln 115	gcc Ala	cgc Arg	ggc Gly	cag Gla	852
60	tcg Ser 120	gtg Val	agc Ser	tac Tyr	CCC Pro	gag Glu 125	ggc	acc Thr	gtc Val	acc Thr	aac Asn 130	atg Met	acc Thr	cgg Arg	acc Thr	acc Thr 135	900

	gtg Val	tgc Cys	gcc Ala	gag Giu	ccc Pro 140	ggc Gly	gac Asp	tcc Ser	ggc 61y	ggc GTy 145	tcc Ser	tac Tyr	atc Ile	tcc ser	990 61y 150	aac Asn	948
5	cag Gln	gcc Åla	cag Gln	99c GTy 155	gtc Val	acc Thr	tcc Se r	ggc 61y	ggc Gly 160	tcc Ser	ggc Gly	aac Asn	tgc Cys	cgc Arg 165	acc Thr	ggc	996
10	ggg Gly	acc Thr	acc Thr 170	ttc Phe	tac Tyr	cag Gln	gag Glu	gtc Val 175	acc Thr	Pro	atg Met	gtg Val	aac Asn 180	tcc Ser	tgg irp	ggc Giy	1044
15	gtc val	cgt Arg 185	ctc L eu	cgg Arg	acc Thr	taa											1062

<210> 6

<211> 353

<212> PRT

<213> Nocardiopsis prasina DSM 15648 ("Proteasa 11")

<400> 6

Ala Thr Gly Pro Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala -165 -155 30 val Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Gly Leu Thr Pro -140 Leu Glu Ala Asp Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu -135 -125 Val Asp Glu Ala Ala Ala Ala Ala Gly Asp Ala Tyr Gly Gly -120 -110 Ser Val Phe Asp Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp -105 -95 -90 45 Ala Ala Ser Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Glu Leu
-85 -80 -75 Val Ser Tyr Gly Ile Glu Gly Leu Asp Glu Ile Ile Gln Asp Leu Asn
-70 -65 50 Ala Ala Asp Ala Val Pro Gly Val Val Gly Trp Tyr Pro Asp Val Ala -55 -50 -45 55 Gly Asp Thr Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val -40 -35 Ser Gly Leu Leu Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val -25 -15 -10 60 Thr Ser Ser Ala Gln Pro Glu Leu Tyr Ala Asp Ile Ile Gly Gly Leu

```
Ala Tyr Thr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn 10
           Ala Ala Gly Gln Pro Gly Phe Val Thr Ala Gly His Cys Gly Arg Val 25 30
           Gly Thr Glm Val Ser Ile Gly Asn Gly Gln Gly Val Phe Glu Gln Ser
40 55
10
            The Phe Pro Gly Asn Asp Ala Ala Phe Val Arg Gly Thr Ser Asn Phe 60 65 70
15
           Thr Leu Thr Asn Leu Val Ser Arg Tyr Asn Thr Gly Gly Tyr Ala Thr 75
           Val Ala Gly His Asn Gln Ala Pro Ile Gly Ser Ser val Cys Arg Ser 90 100
20
           Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Arg Gly Gln 105 115
            Ser Val Ser Tyr Pro Glu Gly Thr Val Thr Asn Met Thr Arg Thr Thr
120 135
25
           Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Tyr Ile Ser Gly Asn
140 145
30
            Gin Ala Gin Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly 165
            Gly Thr Thr Phe Tyr Gln Glu Val Thr Pro Met Val Asn Ser Trp Gly 170 180
35
           Val Arg Leu Arg Thr
40
    <210>7
    <211> 1062
    <212> ADN
    <213> Nocardiopsis prasina DSM 15649 ("Proteasa 35")
    <220>
    <221> CDS
    <222> (1)..(1059)
    <220>
    <221> mat_péptido
    <222> (496)..(1059)
    <400> 7
                                                                                                    45
             gcc acc gga cca ctc ccc cag tca ccc acc ccg gag gcc gac gcc
Ala Thr Gly Pro Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala
-165 -160 -155
60
                   too atg cag gag gcg ctc cag cgc gac ctc ggc ctg acc ccg
Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Gly Leu Thr Pro
                                                                                                    90
65
```

	-150)				-14	15				-1	140					
5	ctt Leu -135	ĠĨű	gcc	gat Asp	gaa Glu	ctg Leu -13	į Le	tg gg Nu A	c go	ce ca la Gi	п Аз	ec :	icc (Thr)	gee (ttc g Phe (ag Tu	135
	gtc Val -120	ĀSP	gag Glu	acc Ala	gcg Ala	gc Ala -11	G	iu A	c gg	c gg	y As	ic ! ip /	ec !	taç (Tyr (goc o	gc Ty	180
10	tcc ser -105	٧a٦	ttc Phe				i_ Ti					ור עו				c gac ir Asp -90	228
15	tcc Ser	gcc Ala	gcg Ala	gtc val	gag Glu -85	ocg Alä	gtg Væl	gag Glu	gcc Ala	acc Thr -80	ggc G1y	gcc	ogo Gly	acc Thr	gaa Glu -75	ctg Leŭ	276
20	gtc Val	tcc Ser	tac Tyr	ggc GTy -70	atc Ile	acg Thr	ggc GTy	ctc L e u	gac Asp -65	gag Glu	atc Ile	gtc Val	gag Glu	gag Glu -60	ctc Leu	aac Asn	324
	gcc Ālā	gcc Ala	gac Asp -55	gcc Ala	gtt Yal	CCC Pro	goc Gly	gtg Val -50	gtc Val	ggc Gly	tgg Trp	tac Tyr	ccg Pro -45	gac Asp	gtc Val	gcg Ala	372
25	ggt Gly	gac Asp -40	acc Thr	gtc Val	gtg Val	ctg L e u	gag G1u -35	gtc Val	ctg Leu	g a g Ğlü	ggt Gly	tcc Ser -30	ggc Gly	gcc Ala	gac Asp	gtg Val	420
30	ggc Gly -25	ggc Gly	ctg L e u	ctc L e u	gcc Ala	92C Asp -20	gcc Ala	ggc Gly	gtg Val	gac Asp	gcc Ala -15	tcg Ser	gcg	gtc Val	gag Glu	gtg Val -10	468
25	acc Thr	acc Thr	acc Thr	gag Glu	cag Gln -5	ccc Pro	gag Glu	ctg L e u	tac Tyr -1	gcc Ala 1	gac Asp	atc ile	atc Ile	ggc Gly 5	ggt Gly	ctg L e u	516
35	gcc Ala	tac Tyr	ACC Thr 10	atg Met	ggc Gly	ggc Gly	cgc Arg	tgt Cys 15	tcg Ser	gtc Val	ggc Gly	ttc Phe	gcg Ala 20	gcc	acc Thr	aac A s n	5 6 4
40	gcc Ala	gcc Åla 25	ggt Gly	cag Gln	CCC Pro	gog	ttc Phe 30	gtc Val	acc Thr	gcc Ala	ggt	cac His 35	tgt Cys	ggc Gly	CGC Arg	gtg Val	612
45	ggc Gly 40	acc Thr	Cag Gìn	gtg Val	acc Thr	atc Ile 45	ogc Gly	aaç Asn	ggc Gly	cgg Arg	ggc Gly 50	otc Val	ttc Phe	gag Glu	cag Gln	tcc Se r 55	660
	atc Ile	ttc Phe	ccg Pro	ggc Gly	aac Asn 60	gac Asp	gcc Ala	occ Ala	ttc Phe	gtc Val 65	cgc Arg	oga Gly	acg Thr	tcc Ser	aac Asn 70	ttc Phe	708
50	acg Thr	ctg L e u	acc Thr	aac Asn 75	ren	gtc Val	agc Ser	cgc Arg	tac Tyr 80	aac Asn	acc Thr	ggc Gly	ggc	tac Tyr 85	acc Ala	acc Thr	756
55	gtç Val	gcc Ala	ggt Gly 90	cac His	aac Asn	cag Gln	gcg Ala	CCC Pro 95	atc Ile	ggc Gly	tcc Ser	tcc Ser	gtc Val 100	tgc Cys	cgc Arg	tcc Ser	804
	ggc Gly	tcc Ser 105	acc Thr	acc Thr	ggt Gly	tgg Trp	cac His 110	tgc Cys	ggc Gly	acc Thr	atc Ile	Gln 115	ATA	cgc Arg	ggc	cag Gln	852
60	tcg Ser 120	gtg Val	agc Ser	tac Tyr	CCC Pro	gag Glu 125	ggc Gly	acc Thr	gtc Val	acc Thr	aac Asn 130	atg Met	acg Thr	Cgg Arg	acc Thr	acc Thr 135	900

	gg Va	C	tgc Cys	gcc Åla	gag Glu	CCC Pro 140	ggc	gac Asp	tcc Ser	ggc Gly	ggc Gly 145	tcc Ser	tac Tyr	atc Ile	tcc Ser	ggc Gly 150	aac Asn	948
5	G]	g	gcc Ala	cag Gln	ggc Gly 155	gtc Val	acc Thr	tcc Ser	ggc Gly	ggc Gly 160	tcc Ser	ggc	aac Asn	tgc Cys	CGC Arg 165	acc Thr	ggc Gly	996
10	99 G1	g	acc Thr	acc Thr 170	ttc Phe	tac Tyr	cag Gln	gag Glu	gtc Va? 175	acc Thr	ccc pro	atg Met	gto Val	aac Asn 180	tcc Ser	tgg Trp	ggc Gly	1044
		.7			Cgg Arg	acc Thr	taa											1062
15	<210> 8																	
20	<211> 353 <212> PRT <213> <i>Noca</i>	ırdi	iopsis	s pras	ina D	SM 1	5649	("Prot	teasa	35")								
25	<400> 8		•	•						Í								
	A1z -16		Thr	GТу	Pra	Lėu	Pro -16		n Se	r Pro	> Th	r Pro -1		lu A'	la A	sp A	ia	
30	va ¹		\$er	Met	Gla	Glu	Ala -14		ı Gl	n Ar	g Asi	p Le:		ly Li	eu Ti	hr Pi	ro	
35	Lei -1:	5	Glu	Ala	ASP	Glu	Leu -130	Lei	i Ali	R Ali	n Gl	n Ası -1	7 TH	ır A'	la Pi	he G	lu	
	∨a` -12		ASP	Glu	Ala	Ala	43m		A A R	R Ala	∎ Gl	y Asi -1		ia T	yr G	ly G	ly	
40	Sei -10		Yal	Fhe	Asp	Thr	6]u -10		r Le	น เป็น	u L e i	u Thi -9:		l Lei	ı Va	1 Th	- Asp - 9 0	
45	Sei	٠,	Ala /	Ala '	val (G]u / -85	Ala 1	val (Slu /	Ala "	Thr (-80	Gly i	Ala (ily 1	Thr	G]u 1 -75	-eu	
50	Val	. S	Ser '	Tyr	61y -70	Ile '	Thr	g]y ∣	Leu ,	Asp (glu :	ile '	/al (ilu (57 u -60	Leu /	is n	
	Ali	i A	ila /	AS D 4	Ala '	væ1	Pro (gly y	val ' -50	Val (Gly '	Trp '	Tyr :	ero /	\s p	Val /	Ma	
55	Gly	/ A	\$p 1	Chr '	V =} '	Val :	Leu !	Glu 1 -35	val i	Leu (G]u (Gly !	Ser (ily /	Ala.	Asp 1	/all	
60	61 y -2!	(ily (-cu	L eu :	Ale i	A5p (Ala (g) y 1	Val ,	Asp (A]a :	ser /	Ala V	/al	Glu <u>'</u>	/a] -10	
	The	٠ ٦	rhr :	Thr (G]ដូ	G]n : -5	Pro (ดใน (Leu '	туг -1	Ala d	Asp :	rle :	Ile (51y	Gly I	Leu	

J		gec	acc	acc	atg	gtç	gag	gçc	ctc	Çag	cgc	gac	cto	gge	: E	tg to		
5		gcg Ala	acc Thr	ggc Gly -165	ccc Pro	ctc Leu	ccc Pro	cag Gln	tcc ser -160	Pro	acc Thr	ecç Pro	gat Asp	gaa Glu	. A	cc g		
)	<400>	9																
	<222>	•	•															
5	<220> <221>	mat pé	ptido															
	<222>	(1)(10)65)															
	<221>																	
0	<220>																	
	<212> <213>		liopsi	s alba	DSM	1564	7 ("P	roteas	sa 08")								
5	<211> <212>																	
	<210>	9																
0		Val	Arg 185	Leu	Arg	Thr												
				170					175					180		•		
5		Gly	Thr	Thr	Phe	Tyr	Gl n	Glu	Va]	Thr	Pro	Met	Val	ĄŞN	Ser	Trp	Gly	
_		Gln	Ala	Gln	Gly 155	Val	Thr	Ser	Gly	Gly 160	Ser	Gly	Asn	Cys	Arg 165	Thr	Gly	
0		76'	~y≯	-15	A IN	140	uiy	vsh	Ser	wiy	145	agr	y y r	± 1₩	JEI	150	ADII	
		120	6.14	<u> </u>	61 14	Dri-a	125	A==	C	æ3.4	6 3.4	130	T	~ 7 ~	*	د	135	
5		Ser	Val	Ser	Tyr	Pro	Ģlu	ĢТу	Thr	va1	Thr		Met	Thr	Arg	Thr	Thr	
		۵ly	Ser 105	Thr	Thr	G٦y	Тгр	His 110	Cys	Gly	Thr	Ile	6]n 115	Ala	Arg	GJy	Gln	
0		Val	ATR	Gly 90	His	Asn	Glr	ATA	Pro 95	Ile	G1y	Ser	ser	727 100	Cys	Arg	ser	
					. •				Arg						03			
5		~ L-	1	Th -	A	60	\/ 7	s	A==	T	65	T L -	61 5.	مداج	T .,_	/0	Th.	
0		Ile	Phe	Pro	Gly		ASp	Αla	Α ^η a	Phe	Yal	Arg	Gly	Thr	Ser	Aşn	Phe	
		G]y 40	Thr	Gln	Val	Thr	Ile 45	Gly	Asn	Gly	Arg	Gly 50	Yal	Phe	Glu	GÌn	Ser 55	
5		ATa	Ala 25	GTy	Gln	Pro	Gly	Phe 30	Val	Thr	ATE	Gly	Hi5 35	Cys	ςΊу	Arg	va1	

			-150)				-14	15				3	L40			
5	ccc Pro	tct Ser	cag Gln -139	5 A	gac Asp	gag Glu	cto Leu	: ctc Leu -13	ري (C)	ig og	g c	ig go	a G	ig : lu : L25	tcc f	ttc Plie	135
	gag Glu	atc Ile	gac Asp -120	gag Glu	gcc	Ala	acc Thr	gc A1 -11		c oc	a go la Al	c ga		c : 110	tac (gc Sly	180
10	ggc Gly	tcc Se r	atc Ile -105	Phe	gac Asp	acc Thr	gac	ago Ser -10	_ L0	te ac	ic ct	g ac	c gi)] L	tg g	tc acc al Thr	225
15	gac Asp	gcc Ala -90	tcc Ser	gcc Ala	gtc Val	g ag gag	gcg Ala -85	gtc Val	gag Glü	Ala	gcc Ala	990 61y -80	gcc Āla	gag Glu	gcc Ala	aag Lys	276
20	gtg Val -75	gtc Val	tcg Ser	cac His	ggc Gly	atg Met -70	gag Glu	ggc Gly	ctg Leu	gag Glu	gag G1u -65	atc Ile	gtc Val	gcc	gac Asp	ctg Leu -60	324
	aac Asn	gcg Ala	gcc	gac QeA	oct Ala -55	c ag Gln	ccc Pro	ggc Gly	gtc Val	gtg Val -50	ggc Gly	tgg Trp	tac Tyr	ccc Pro	gac Asp -45	atc Ile	372
25	cac His	tcc Se r	gac Asp	acg Thr -40	gtc Val	gtc Val	ctc L e u	gag Glu	gtc Val -35	ctc	gag Glu	ggc GTy	tcc Ser	ggt Gly -30	gcc	gac Asp	420
30	gtg Val	gac Asp	tcc Ser -25	c tg L e u	ctc L e u	acc	gac Asp	occ Ala -20	ggt Gly	gtg Val	gac Asp	acc Thr	gcc 11a -15	gac A s p	gtc Val	aag Ly\$	468
	gtg Val	gag Glu -10	agc Ser	acc Thr	acc Thr	gag Glu	cag Gln -5	CCC Pro	gag Glu	ctg Leu	tac Tyr -1	gcc Ala 1	gac Asp	atc Ile	atc Ile	ggc Gly 5	516
35	got Gly	ctc L e u	gcc	tac Tyr	acc Thr 10	atg M e t	ggt Gly	Gly	cgc Arg	tgc Cys 15	tcg Ser	gtc Val	ggc Gly	ttc Phe	gcg Ala 20	gcc Ala	564
40	acc Thr	aac Asn	gcc Ala	tcc Ser 25	ggc	cag Gln	CCC Pro	ggg Gly	ttc Phe 30	gtc Val	acc Thr	gcc Ala	ggc Gly	cac His 35	tgc Cys	ggc Gly	612
45	acc Thr	gtc Val	ggc G1y 40	acc Thr	CCg Pro	gtc Val	agc Ser	atc Ile 45	ggc G1y	aac Asn	ggc Gly	cag Gln	99C 61y 50	otc Val	ttc Phe	gag Glu	660
			gtc Val														708
50	aac Asn 70	ttc Phe	ECC Thr	ctg L e u	≇cc Thr	aac Asn 75	ctg L eu	gtc Val	agc Ser	cgc Arg	tac Tyr 80	aac Asn	acc Thr	ggt	got	tac Tyr 85	756
55	gcg Ala	acc Thr	gtc Val	tcc Ser	ggc Gly 90	tcc 5er	tcg Ser	cag Gln	gcg Ala	gcg Ala 95	atc Ile	ggc Gly	tcg Ser	cag Gln	atc Ile 100	tg¢ Cys	804
	cgt Arg	tcc Ser	ggc Gly	tcc Ser 105	acc Thr	acc Thr	ggc Gly	tgg Trp	cac H ¹ 5 110	tgc Cys	ggc Gly	acc Thr	gtc Val	cag Gln 115	Ala	cgc Arg	852
60	ggc Gly	cag Gln	acg Thr 120	gtg Val	agc Ser	tac Tyr	ccc Pro	cag Gln 125	ggc Gly	acc Thr	gtç Val	cag Gln	aac Asn 130	ctg L eu	acc Thr	CGC Arg	900

	a T	cc hr	aac Asn 135	gtc Val	tgc Cys	gcc Ala	gag Glu	ccc Pro 140	ggt Gly	gac Asp	tcc ser	ggc ggc	ggc Gly 145	tcc Ser	ttc Phe	atc Ile	tcc Ser	948
5	G	gc Ty 50	agc Ser	cag Gln	gcc Ala	cag Gln	ggc Gly 155	gtc val	acc Thr	tcc ser	ggt Gly	09C Gly 160	tcc ser	ggc Gly	aac Asn	tgc Cys	tcc Ser 165	996
10	Þ	tc he	ggt Giy	ggc Gly	acc Thr	acc Thr 170	tac Tyr	tac Tyr	cag Gln	gag Glu	gtc val 175	aac Asn	CCQ PTO	atg Met	ctg Leu	agc Ser 180	agc Ser	1044
15						ctg Leu			tga									1068
20	<210> 10 <211> 35: <212> PR <213> No	Т	diops	is alb	a DSN	М 156	47 ("l	Protea	ısa 08	")								
25	<400> 10																	
30				-155		Leu Val			-16	0 _				-1	55			
35				-150	_	ASP			-14	5				-1	40			
33			_	-135	Glu	Ala	_		-13	0 _ Al				-1 p Se	25			
40	G1	ly	Ser	I]e -105		ASP	Thr	Asp	Ser -10		u Th	r L e	u Th	r Va -9		u Va	1 Thr	
45	As		Ala -90	Ser	afa	Val	Glu .	47a -85	Val	gใบ	ATA	Ala	61y .	Ala	Glu	ATA	Lys	
50	∨a -7	75	Val	Ser	His	Gly	Met -70	Glu	G∃y	Leu	Glu	G]u -65	Ile '	Val .	Ala	Asp	Leu -60	
55	As	in	sfa	sΓA	Asp	Ala -55	Gln	Pro	Gly	۷a٦	va1 -50	Gly	Тгр '	Tyr	Pro	Asp -45	Ile	
33	Hi	5	Ser	Asp	Thr -40	Val	Val	Leu	Glu	Va7 -35	Leu	Glu	Gly	Ser -	61y -30	Ala	ASP	
60				-25		Leu			-20					-15				
65	Va	ı٦	6]u -10	Ser	Thr	Thr	Glu	G]n -5	Pro	ធ ាព	Leu	Tyr -1	Ala 1	Asp	Ilė	Ile	G]y S	

	Gly	Leu	Ala	Tyr	Thr 10	Met	GTy	Gly	Arg	Cys 15	Ser	VAI	ĢΊy	Phe	Ala 20	ATa
5	Thr	A\$n	Ala	Se r 25	Gly	G1n	Pro	Gly	Phe 30	va1	Thr	Ala	Gly	His 35	Cys	Gly
10	Thr	Val	G]y 40	Thr	Pro	val	Ser	17e 45	G1y	Asn	۵Jy	Gln	Gly 50	Val	Phe	Glu
15	Arg	Ser 55	val	Phe	Pro	G1y	A sn 60	Asp	Ser	ΑĪā	Phe	Val 65	Arg	Gly	Thr	Ser
15	Asn 70	Phe	Thr	L eu	Thr	Asn 75	Leu	Val	Ser	Arg	Tyr 80	Asn	Thr	G٦y	БÌу	Tyr 85
20	Ala	Thr	Val	Ser	G1y 90	Ser	Ser	G]n	Ala	A]a 95	Ile	Gly	Ser	Gìn	1)e 100	Cys
25	Arg	Ser	GТу	Ser 105	Thr	Thr	Gly	Trp	His 110	Cys	Gly	Thr	ya]	G]n 115	Ala	Arg
	Gly	Gln	Thr 120	Val	Ser	туг	Pro	G]n 125	Gly	⊤ħr	va 1	Gln	AST 130	Leu	Thr	Arg
30	Thr	Asn 135	Val	Cys	Ala	Glu	Pro 140	Gly	Asp	ser	۵ly	G7y 145	Ser	Phe	Ile	Ser
35	Gly 1 50	ser	Gln	Ala	aln	G7y 155	٧a٦	Thr	Ser	Gly	Gly 160	Ser	Gly	Asn	Cys	Ser 165
40	Phe	Gly	ςΊу	Thr	Thr 170	Tyr	Tyr	Gln	Glu	Val 175	A \$n	Pro	Met	Leu	Ser 180	Ser
40	Тгр	Gly	Leu	Thr 185	Leu	Arg	Thr									

<210> 11 <211> 27 <212> ADN 50 <213> Artificial

45

<220>

<223> Cebador

<400> 11

ccgattatgg agcggattga acatgcg 60

<210> 12

<211> 31

<212> ADN

<213> Artificial

```
<220>
    <223> Cebador
    <400> 12
                                                                                                            31
           gtgaccatcg gcgacggcag gggcgtcttc g
    <210> 13
    <211> 10172
    <212> ADN
    <213> Artificial
15
    <220>
    <223> Cassette de expresión
   <220>
    <221> fuente
    <222> (1)..(3323)
    <223> Secuencia de genoma de Bacillus subtilis incluyendo genes yfmH-yfmD-yfmC-yfmB-yfmA
    <220>
    <221> misc_recomb
    <222> (3561)..(4208)
    <223> Gen cat que proporciona resistencia al cloranfenicol
    <220>
    <221> promotor
    <222> (4523)..(5633)
    <223> Triple promotor PamyL-scBAN-CryIIIA incluyendo la secuencia estabilizante mRND
    <220>
    <221> péptido señal
    <222> (5658)..(5738)
   <220>
    <221> CDS
    <222> (5658)..(6797)
   <220>
    <221> mat_péptido
    <222> (6234)..(6797)
    <220>
    <221> fuente
    <222> (6839)..(7540)
    <223> Parte de gen de pectato liasa de Bacillus subtilis
    <220>
    <221> fuente
    <222> (7541)..(10172)
    <223> ADN de genoma de Bacillus subtilis incluidos genes de yfls-citM
```

<400> 13

5	gagtatcgcc	agtaaggggc	gtttttgttt	tctggttgtt	ttcttcattt	caggtttcgc	60
	cctttccttg	ccaaatataa	gazzzacggc	gttccgataa	tcgcggtgac	matgccgacc	120
	ggtgattcat	aaggaaatgc	aatccatctg	gccagaacat	ctgcgtacac	cagcaaaatg	180
10	gcaccgaaca	gtgccgaaaa	cggzagczcg	tattgataat	gttctccgat	cagcttgcgg	240
	acaatatgcg	ggacgagcag	cccgacaaag	ccaatcggcc	cggcgacggc	tacggaagcg	300
	ccggaaagaa	ttaaaataat	casactgatc	agaatcctga	tgccgttcat	attttgtcca	360
15	agcccttttg	ctgtttcgtc	tccgagaccg	agaacagaaa	cagaaccgga	austacgagg	420
	gcaagcccga	tgccaatgac	#gaaaaagg#	gcgatggtta	tgacgtcctg	ccagttgctg	480
	ccgtcgattg	cgcctgtcat	ccagtacaga	acatecteac	ctgactcatt	tasastaatg	540
20							
25							
25							
30							
30							
35							
40							
45							
50							
55							
JJ							
60							
•							

	atggcctgtg	tcatagagga	gaggaacaag	tgcacggcca	ttcctgacag	cgccagcttg	600
	acaggegtea	ttccgccgga	tgaggcmatc	atatacacaa	tcgcgccgcc	tgctgccgca	660
5	cccgcasaag	cgaatataac	agatgaatag	ggcgatgccg	gcagaatgac	gagagaagca	720
	1042021814	gcgatgcacc	cgcattcaca	ccgaaaattt	ggggtgaagc	cagaggattt	780
10	ctggtcatag	cctgcatcag	cgcccctgct	acagctaggc	tggcgccgac	aaaacgccg	840
10	attaatgtgc	ggggaaggcg	aagagtagag	atgatgagct	gttcctttga	accgtcccat	900
	acasasagat	atttcaatga	atctatgatg	ctgatgtctg	aggctcctac	tgaaagattc	960
15	agcccaagcc	casatateas	aatmatcagt	gcaatgatax	acatcatcag	tcttgatgat	1020
	gagcgccgtt	tggctgaatg	atacaacagt	ctcacttcct	tactgcgtct	ggttgcaaaa	1080
	acgaagaagc	aaggattccc	ctcgcttctc	atttgtccta	tttattatac	actttttaa	1140
20	gcacatcttt	ggcgcttgtt	tcactagact	tgatgcctct	gaatcttgtc	caagtgtcac	1200
	ggtccgcatc	atagacttgt	ccatttttca	ccgctttgag	atttttccag	agegggtteg	1260
	ttttccactc	atctacaatg	gttttgcctt	cgttggctga	gatgaacaaa	atatcaggat	1320
25	cgattttgct	caattgctca	aggctgacct	cttgataggc	gttatctgaç	ttcacagcgt	1380
	gtgtaaagcc	tagcatttta	aagatttctc	cgtcatagga	tgatgatgta	tgaagctgga	1440
	aggaatccgc	tcttgczacg	ccgagaacga	tgttgcggtt	ttcatctttc	ggaagttcgg	1500
30	cttttagatc	gttgatgact	tttttgtgct	cggcaagctt	ttcttttcct	tcatcttctt	1560
	tatttaatgc	tttagcaatg	gtcgtaaagc	tgtcgatcgt	ttcgtcatat	gtcgcttcac	1620
35	ggctttttaa	ttcaatcgtc	ggggcgattt	ttttcagctg	tttataaatg	tttttatggc	1680
33	gctcagcgtc	agcgatgatt	aaatcaggct	tcaaggaact	gatgacctca	agattgggtt	1740
	cgctgcgtgt	gcctacagat	gtgtaatcaa	tggagctgcc	gacaagcttt	ttaatcatat	1800
40	cttttttgtt	gtcatctgcg	atgcccaccg	gcgtaatgcc	gagattgtga	acggcatcca	1860
	agaatgamag	ctcaagcaca	accacccgct	taggtgtgcc	gcttactgtc	gtttttcctt	1920
	cttcgtcatg	gatcactctg	gaatccttag	actcgctttt	gccgcttccg	ttgttattct	1980
45	ggcttgatga	acagccggat	acastgaggc	aggcgagcsa	taaaacactc	atgatggcaa	2040
	tcaacttgtt	agaataggtg	cgcatgtcat	tcttcctttt	ttcagattta	gtaatgagaa	2100
	tcattatcac	atgtaacact	ataatagcat	ggcttatcat	gtcaatattt	ttttagtaam	2160
50	gaaagctgcg	tttttactgc	tttctcatga	aagcatcatc	agacacasat	aagtggtatg	2220
	cagcgttacc	gtgtcttcga	gacaaaaacg	catgggcgtt	ggctttagag	gtttcgaaca	2280
	tatcagcagt	gacatuagga	aggagagtgc	tgagataacc	ggacaatttc	ttttctattt	2340
55	catctgttag	tgcaaattca	atgtcgccga	tattcatgat	aatcgagaaa	acaaagtcga	2400
	tategatatg	aaaatgttcc	tcggcaaaaa	CCGC&AGCTC	gtgaattcct	ggtgaacatc	2460
60	Cggcacgctt	arggaaaatc	tgtttgacta	aatcactcac	aatccaagca	ttgtattgct	2520
50	gttctggtga	anagtattgc	Ettagacata	cctcctgctc	gtacggataa	aggcagcgtt	2580

	tcatggtcgt	gtgctccgtg	cagoggotto	tccttaattt	tgatttttct	gaaaataggt	2640
	cccgttccta	tcactttacc	atggacggaa	aacaaatagc	tactaccatt	cctcctgttt	2700
5	ttctcttcaa	tgttctggaa	tctgtttcag	gtacagacga	tcgggtatga	aagaaatata	2760
	gaaaacatga	aggaggaata	tcgacatgaa	accagttgta	asagagtata	caaatgacga	2820
	acageteatg	aaagatgtag	aggaattgca	gamaatgggt	gttgcgaaag	aggatgtata	2880
10	cgtcttagct	cacgacgatg	acagaacgga	acgcctggct	gacaacacga	acgccaacac	2940
	gatcggagcc	azagzazczg	gtttcaagca	cgcggtggga	aatatcttca	ataaaaaagg	3000
15	agacgagete	cgcaataaaa	ttcacgazat	cggtttttct	gaagatgaag	ccgctcaatt	3060
13	tgaaaaacgc	ttagatgaag	gaaaagtgct	tctctttgtg	acagataacg	aaaaagtgaa	3120
	agcttgggca	taaagcaagg	assasacces	anggccaatg	tcggcctttt	ggtttttttg	3180
20	cggtctttgc	ggtgggattt	tgcagaatgc	cgcaatagga	tagcggaaca	ttttcggttc	3240
	tgaatgtccc	tcaatttgct	attatatttt	tgtgatamat	tggaatazaz	tctcacaaaa	3300
	tagaaaatgg	gggtacatag	tggccatcat	ggccagctag	catgcacatg	ggatctggga	3360
25	ccaataataa	tgactagaga	agaaagaatg	aagattgttc	atgamattam	ggaacgaata	3420
	ttggataaag	tggggtattt	ttaaaatata	tatttatgtt	acagtaatat	tgacttttaa	3480
	assaggattg	attctaagaa	gaaagcagac	aagtaagcct	cctaaattca	Ctttagataa	3540
30	asatttagga	ggcatatcaa	atgaacttta	ataaaattga	tttagacaat	tggaagagaa	3600
	aagagatatt	taatcattat	ttgaaccaac	mancgacttt	tagtataacc	acagaaattg	3660
25	mtmttagtgt	tttataccga	aacataaaac	aagaaggata	taaattttac	cctgcattta	3720
35	ttttcttagt	gacaagggtg	ataaactcaa	atacagcttt	tagaactggt	tacaatagcg	3780
	acggagagtt	aggttattgg	gataagttag	agccacttta	tacaattttt	gatggtgtat	3840
40	ctaaaacatt	ctctggtatt	tggactcctg	taaagaatga	cttcaaagag	ttttatgatt	3900
10	tatacctttc	tgatgtagag	azatataatg	ottcggggaa	attgtttccc	aaaacaccta	3960
	tacctgaaaa	tgctttttct	ctttctatta	ttccatggac	ttcatttact	gggtttaact	4020
45	taaatatcaa	taataatagt	aattaccttc	tacccattat	tacagcagga	aaattcatta	4080
	atazaggtaa	ttcaatatat	ttaccgctat	ctttacaggt	acatcattct	gtttgtgatg	4140
	gttatcatgc	aggattgttt	atgaactcta	ttcaggmatt	gtcagatagg	cctaatgact	4200
50	ggcttttata	atatgagata	atgccgactg	tactttttac	agtcggtttt	ctaacgatac	4260
	attaataggt	acgaaaaagc	aactttttt	gcgcttaaaa	ccagtcatac	caataactta	4320
	agggtaacta	gcctcgccgg	assgagcgaa	aatgcctcac	atttgtgcca	cctaaaaagg	4380
55	agcgatttac	atatgagtta	tgcagtttgt	agaatgcaaa	amgtgamatc	agctggacta	4440
	aaaggcatgg	catgccttcg	atagtttatt	astattagtg	gagctcagtg	agagcgaagc	4500
60	gaacacttga	ttttttaatt	ttctatcttt	tataggtcat	tagagtatac	ttatttgtcc	4560
60	tataaactat	ttagcagcat	aatagattta	ttgaataggt	catttaagtt	gmgcatatta	4620
	ggggaggaaa	atcttggaga	astatttgas	gaacccgagg	atctagatca	ggtaccgcaa	4680

	cgttcgcaga tgctgctgaa gagattatta amaagctgaa agcaaaaggc tatcaattgg	4740
	taactgtatc tcagcttgaa gaagtgaaga agcagagagg ctattgaata aatgagtaga	4800
5	aagogocata toggogottt tottttggaa gaaaatatag ggaaaatggt acttgttaaa	4860
	aattoggaat atttatacaa tatcatatgt atcacattga aaggaggggc ctgctgtcca	4920
	gactgtccgc tgtgtaaaaa aaaggaataa aggggggttg acattatttt actgatatgt	4980
10	ataatataat ttgtataaga aaatggaggg gccctcgasa cgtaagatga aaccttagat	5040
	ammagtgett tittigtige mattgamgam timitamigt tamgetimmt tamagminat	5100
	atctttgaat tgtaacgccc ctcaaaagta agaactacaa aaaaagaata cgttatatag	5160
15	aaatatgttt gaaccttctt cagattacaa atatattcgg acggactcta cctcaaatgc	5220
	ttatctmact stagmatgac atacaagcac aaccttgaaa atttgaaaat ataactacca	5280
20	atgaacttgt tcatgtgaat tatcgctgta tttaattttc tcaattcast atataatatg	\$340
20	ccaatacatt gttacaagta gaaattaaga cacccttgat agccttacta tacctaacat	5400
	gatgtagtat tamatgaata tgtamatata tttatgataa gaagcgactt atttatmatc	5460
25	attacatatt tttctattgg aatgattaag attccaatag aatagtgtat aaattattta	5520
	tettganagg agggatgeet aaaaacgaag aacattaaaa acatatattt geacegteta	5580
	atggatttat gaassatcat titatcagtt tgaasattat gtattatgga gctctgsass	5640
30	managgagagg atamaga atg ang ann ccg ttg ggg ann att gtc gca agc Met Lys Lys Pro Leu Gly Lys Ile Val Ala Ser -190 -185	5690
35	acc gca cta ctc att tct gtt gct ttt agt tca tcg atc gca tcg Thr Ala Leu Leu Ile Ser Val Ala Phe Ser Ser Ser Ile Ala Ser -180 -175 -170	5735
	get get mer gga geg etc coe eag tea eec ace eeg gag gee gae Ala Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp -165 -155	5780
40	gcg gtc tcc atg cag gag gcg ctc cag cgc gac ctc gac ctg acc Ala Val Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr -150 -145	5825
45	tee gee gag gee gag gag etg etg gee gee cag gae ace gee tte Ser Ala Glu Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe -135 -130 -125	5870
50	gag gtc gac gag gcc gcg gcc gag gcc gcc ggg gac gcc tac ggc Glu Val Asp Glu Ala Ala Glu Ala Ala Gly Asp Ala Tyr Gly -120 -115	5915
	ggc tcc gtc ttc gac acc gag agc ctg gaa ctg acc gtc ctg gtc acc Gly Ser Val Phe Asp Thr Glu Ser Leu Glu Leu Thr Val Leu Val Thr -105	5963
55	gat gcc gcc gcg gtc gag gcc gtg gag gcc acc ggc gcc ggg acc gag Asp Ala Ala Ala Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Glu	6011
	-90 -85 -80 -75	

	aac Asn	Ala	gcc Ala	dac Asp -55	Ala	ott Val	Pro	ggt	gtg Val -50	gtc	ggc	tgg Trp	tac Tyr	Pro -45	gac Asp	gtg Val	6107
5	gcg Ala	ggt Gly	gac Asp -40	acc Thr	otc val	gtc Val	.ctg Leu	gag Glu -35	gtc Val	ctg L e u	gag Glu	ggt Gly	tcc ser -30	gga Gly	occ Ala	gac Asp	6155
10	otc Val	agc Ser -25	ggc	ctg	ctc Leu	occ Ala	gac Asp -20	gcc Ala	ogc 61y	oto Val	gac Asp	QCC Ala -15	tcg Ser	occ Ala	otc Val	gag Glu	6203
15	gtg Val -10	acc Thr	acg Thr	agc Ser	gac Asp	Cag G1n -5	CCC Pro	gag Glu	ctc Leu	tac Tyr -1	gcc Ala 1	gac Asp	atc Ile	atc Ile	ggt Gly 5	ggt Gly	6251
15	ctg L eu	gcc	tac Tyr	acc Thr 10	atg Met	ggc Gly	ggc Gly	cgc Arg	tgt Cys 15	tcg Ser	gtc val	ggc Gly	ttc Phe	ocg Ala 20	gcc Ala	acc Thr	6299
20	aac Asn	gcc	gcc Ala 25	ggt GTy	cag Gln	ccc Pro	ggg GTy	ttc Phe 30	gtc Val	acc Thr	gcc Ala	ggt Gly	cac His 35	tgc Cys	gly	cgc Arg	6347
25	gtg Val	ggc Gly 40	acc Thr	cag Gln	gtg Val	acc Thr	atc Ile 45	ggc Gly	aac Asn	ggc Gly	agg Arg	ggc Gly 50	otc Val	ttc Phe	gag GTU	cag Gln	6395
	tcc Ser 55	otc Val	ttc Phe	ccc Pro	ogc Gly	aac Asn 60	gac Asp	gcg Ala	gcc Ala	ttc Phe	gtc val 65	cgc Arg	ggt Gly	acg Thr	tcc Ser	ASD 70	6443
30	ttc Fhe	acg Thr	ctg Leu	acc Thr	aac Asn 75	ctg	gtç Val	agc Ser	cgc Arg	tac Tyr 80	ASR	acc Thr	ogc Gly	oga Gly	tac Tyr 85	acc Alm	6491
35	acg Thr	gtc Val	gcc Ala	ggt Gly 90	cac His	aac Asn	cag Gìn	gcc Ala	ccc Pro 95	atc Tie	ggc Gly	tcc Ser	tcc Ser	gtc Val 100	tgc Cys	cgc Arg	6539
40	tcc Ser	ggc Gly	tcc Ser 105	acc Thr	acc Thr	ggt Gly	tgg Trp	CRC His 110	tgc Cys	ggc Gly	acc Thr	atc Ile	Cag Gln 115	gçc Ala	cgc Arg	ggc Gly	6587
40				agc Ser													6635
45	acc Thr 135	gtg Val	tgc Cys	gcc Åla	gag Glu	ссс Рго 140	ggc GTy	gac Asp	tcc Ser	ggc Gly	ogc Gly 143	tcc Ser	tac Tyr	atc Ile	tcc Ser	ggc Gly 150	6683
50				cag Gln	gge Gly 155	gtg Val	acc Thr	tcc Ser	ggc Gly	ggc Gly 160	tcc Ser	ggc Gly	aac Asn	tgc Cys	cgc Arg 165	acc Thr	6731
	ggc	ggg Gly	Thr	acc Thr 170	ttc Phe	tac Tyr	cag Gln	gag Glu	gtc Val 175	acc Thr	ccc Pro	atg Met	gtg Val	аас А S П 180	tcc Ser	tgg Trp	6779
55	ggc Gly	gtc Val	cgt Arg 183	ctc L e u			taa	tcgc	ntg 1	ttca	nt cc;	gc t	ccat	aa tc			5827
	gtc	gacg	cgg i	cggt	t¢g¢	gt c	cgga	cage	r ca.	tcac	cgaa	ata	ttat	gga	.gaa	RATATO	6887
60	age	TCCS.	tga	cggc	caaa	cg g	atgc	ttcc	a ac	ggtg	ctaa	cta	tato	acg :	atgt	cctaca	6947
	act	atta	tca	cgate	catg	at a	aaag	ctcc	m tt	ttcg	gatc	449	tgac	agc :	2112	cctccg	7007

	atgacggcaa	attassastt	acgctgcatc	ataaccgcta	taaxaatatt	gtccagcgcg	7067
	cgccgagagt	ccgcttcggg	caagtgcacg	tatacaacaa	ctattatgaa	ggaagcacaa	7127
5	gctcttcaag	ttatcctttt	agctatgcat	ggggaatcgg	aaagtcatct	aasstctatg	7187
	CCCEARACAA	tgtcattgac	gtaccgggac	tgtcagctgc	tammacgatc	agcgtattca	7247
10	gcgggggaac	ggctttatat	gactccggca	cgttgctgaa	cggcacacag	atcaacgcat	7307
10	cggctgcaaa	cgggctgagc	tcttctgtcg	gctggacgcc	gtctctgcat	ggatcgattg	7367
	atgcttctgc	taatgtgaaa	tcaaatgtta	taaatcaagc	gggtgcgggt	aaattaaatt	7427
15	aagemagtga	ezeacacaaa	gggtgctaac	ctttgtgttt	tttaattaat	teasatgttt	7487
	attaacttag	ttmaggagta	gaatggaaaa	goggatcgga	aaacaagtat	ataggaggag	7547
	acctatttat	ggċttcagaa	aaagacgcag	gaaaacagtc	agcagtaaag	cttgttccat	7607
20	tgcttattac	tgtcgctgtg	ggactaatca	tctggtttat	tecegeteeg	tccggacttg	7667
	aacctaaagc	ttggcatttg	tttgcgattt	ttgtcgcaac	aattatcggc	tttatctcca	7727
	agcccttgcc	aatgggtgca	attgcaattt	ttgcattggc	ggttactgca	ctaactggaa	7787
25	cactatcaat	tgaggataca	ttaagcggat	tcgggaataa	gaccatttgg	cttatcgtta	7847
	tcgcattctt	tatttcccgg	ggatttatca	aaaccggtct	cggtgcgaga	atttcgtatg	7907
	tettcgttca	gaaattcgga	******	ttggactttc	ttattcactg	ctattcagtg	7967
30	atttaatact	ttcacctgct	attccaagta	atacggcgcg	tgcaggaggc	attatatttc	8027
	ctattatcag	atcattatcc	gasacattcg	gatcaagccc	ggcasatggs	acagagagaa	8087
35	aaatcggtgc	attcttatta	aaaaccggtt	ttcaggggaa	tctgatcaca	tctgctatgt	8147
33	tcctgacagc	gatggcggcg	macccgctgm	ttgccaagct	ggcccatgat	gtcgcagggg	8207
	tggacttaac	atggacaagc	tgggcaattg	ccgcgattgt	accgggactt	gtaagcttam	8267
40	tcatcacgcc	gcttgtgatt	tacmaactgt	atccgccgga	aatcaangsa	acaccggatg	8327
	cggcgaaaat	cgcaacagaa	aaactgaaag	asatgggacc	gttcaaaaaa	tcggagcttt	8387
	ccatggttat	cgtgtttctt	ttggtgcttg	tgctgtggat	ttttggcggc	agetteaaca	8447
45	tcgacgctac	cacaaccgca	ttgatcggtt	tggccgttct	cttattatca	caagttctga	8507
	cttgggatga	tatcaagaaa	gaacagggcg	cttgggatac	gctcacttgg	tttgcggcgc	8567
	ttgtcatgct	cgccaacttc	ttgaatgaat	taggcatggt	gtcttggttc	agtaatgcca	8627
50	tgaaatcatc	cgtatcaggg	ttctcttgga	ttgtggcatt	catcatttta	attgttgtgt	8687
	attattactc	tcactatttc	tttgcaagtg	cdacadccca	catcagtgcg	atgtattcag	8747
	catttttggc	tgtcgtcgtg	gcagcgggcg	caccgccgct	tttagcagcg	ctgagcctcg	8807
55	cgttcatcag	caacctgttc	gggtcaacga	ctcactacgg	ttctggagcg	gctccggtct	8867
	tcttcggagc	aggetacate	ccgcaaggca	aatggtggtc	catcggattt	atcctgtcga	8927
60	ttgttcatat	catcgtatgg	cttgtgatcg	gcggattatg	gtggaaagta	ctaggaatat	8987
00	ggtagazaga	esesggcaga	cgcggtctgc	ctttttttat	tttcmctcct	tcgtaagaaa	9047

```
atggattitg assastgaga asattocotg tgaaaaatgg tatgatotag gtagaaagga
                                                                                  9107
          cggctggtgc tgtggtgaaa aageggttee attitieest gcaaacaaaa ataatgggge
                                                                                  9167
5
          tgattgcggc tctgctggtc tttgtcattg gtgtgctgac cattacgtta gccgttcagc
                                                                                  9227
          atacacaggg agaacggaga caggcagage agctggcggt tcaaacggcg agaaccattt
                                                                                  9287
         cctatatgcc gccggttaaa gagctcattg agagaaaaga cggacatgcg gctcagacgc
                                                                                  9347
10
          aagaggtcat tgaacaaarg aaagaacaga crogtocott toccatitat ottitoaaco
                                                                                  9407
                                                                                  9467
         aaaaaggaga cattcgcagc gcctctggaa aaagcggatt aaagamactg gagcgcagca
         gagaaatttt gtttggcggt tcgcatgttt ctgaaacaaa agcggatgga cgaagagtga
                                                                                  9527
15
                                                                                  9587
         tragagggag cycycryatt atamagaar agaagggata cagcraagtg atrygragry
         tgtctgttga tittctgcas acggagacag agcasagcat casasagcat ttgagamatt
                                                                                  9647
                                                                                  9707
         tgagtgtgat tgctgtgctt gtactgctgc tcggatttat tggcgccgcc gtgctggcga
20
         asagcatcag asaggatacg ctcgggcttg asccgcatga gatcgcggct ctatatcgtg
                                                                                  9767
         agaggaacgc aatgcttttc gcgattcgag aagggattat tgccaccaat cgtgaaggcg
                                                                                  9827
                                                                                  9887
         tegteaceat gatgaaegta teggeggeeg agatgetgaa getgeeegag eetgtgatee
25
         atcttcctat agatgacgtc atgccgggag cagggctgat gtctgtgctt gaaaaaggag
                                                                                  9947
                                                                                10007
         ashtgctgcc gsaccaggaa gtaagcgtca acgatcaagt gtttattatc astacgaasg
30
         tgatgaatca aggcgggcag gcgtatggga ttgtcgtcag cttcagggag aaaacagagc
                                                                                10067
          tgaagaagct gatcgacaca ttgacagagg ttcgcaaata ttcagaggat ctcagggcgc
                                                                                10127
         agactcatga attttcaaat aagctttatg cgattttagg gctgc
                                                                                10172
35
   <210> 14
   <211> 380
   <212> PRT
   <213> Artificial
   <220>
45
   <223> Constructo sintético
   <400> 14
50
         Met Lys Lys Pro Leu Gly Lys Ile Val Ala Ser Thr Ala Leu Leu -180 -185
         Ile Ser Val Ala Phe Ser Ser Ser Ile Ala Ser Ala Ala Thr Gly
-175 -165
55
         Ala Leu Pro Gin Ser Pro Thr Pro Giu Ala Asp Ala Val Ser Met -160 -155
60
         Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser Ala Glu Ala
-145 -140 -135
         Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu
-130 -125
65
```

	Ala	Ala	Ala -115	GTL	s (A 1	L Ala	ı Gly	/ ASI	LO AT	la T)	/r G	ly G	ly S	er \ 105	/a]	Phe
5	Asp	Thr	G]u -100	S€r	· Leu	ı Glu	ı Let	Th: -95	Va]	Leu	/ Vai	Thi	-91		A)	L AT
10	Val	G]u -85	sΓA	val	Gไม	ATa	Thr -80	Gly	Ala	G1y	Thr	G]u -75	L eu	va1	Ser	⊤yr
15	Gly -70	Ile	Asp	Gly	Leu	ASD -65	Glu	IJe	Val	Gln	G]u -60	Leu	Asn	Ala	Ala	Asp -55
13	Ala	Val	Pro	Gly	Va1 -50	Val	Gly	Тгр	Tyr	Pro -45	Asp	VAT	ATa	Gly	Asp -40	Thr
20	Val	Val	Leu	G]u -35	val	Leu	Glu	GÌy	5er -30	Gly	ATA	ASP	Val	ser -25	G1y	Leu
25	Leu	Ala	Asp -20	ΔĪα	Gly	Val	ASP	Ala -15	5er	Ala	val	Glu	va1 -10	Thr	Thr	Ser
	Asp	G]n -5	Pro	Gไน	Leu	Tyr -1	Ala 1	Asp	Ile	Ile	Gly 5	Gly	Leu	Ala	Туг	Thr 10
30	Met	Gly	Gly	Arg	Cys 15	Ser	val	Gly	Phe	A1a 20	Ala	The	A5 n	Ala	A7a 25	Gly
35	Gìn	Pro	Gly	Phe 30	val	Thr	ATE	Gly	H15 35	Cys	Gly	Arg	Væl	Gly 40	Thr	GÌn
40	۷al	⊤hr	17e 45	Gly	ASn	G]y	Arg	G]y 50	∨al	Phe	Glu	G1 n	Ser 55	Val	Phe	Pro
40	G1y	Asn 60	Asp	Ala	Ala	Phe	Va1 65	Arg	Gly	Thr	Ser	A5n 70	Phe	Thr	L cu	Thr
45	Asn 75	Leu	Val	Ser	Arg	Tyr 80	ASN	Thr	Gly	Gly	Tyr 85	Ala	Thr	Val	Ala	gly Gly
50	His	A3n	Gln	Ala	Pro 95	Ile	Gly	Ser	Ser	Val 100	Cys	Arg	Ser	GТу	Ser 105	Thr
	⊤ħr	Gly	Trp	His 110	Cy3	Gly	Thr	Ile	G]n 115	ATA	Arg	Gly	Gln	Ser 120	V&1	Ser
55	Tyr	Pro	Glu 125	Gly	Thr	Val	Thr	A s n 130	Met	Thr	Arg	Thr	Thr 135	Val	Cys	Ala
60	Glu	Pro 140	Gly	Asp	Ser	GТу	Gly 145	Ser	Туг	Ilė	Ser	G ¹ y 150	Thr	Gln	Ala	Gln
	Gly	va1	Thr	Ser	Gly	G ly	Ser	Gly	Asn	Cys	Arg	Thr	Gly	Gly	Thr	Thr

		155					160					155					170		
5		Phe '	Tyr	GÌn	GТШ	va7 175	Thr	Pro	Met	Val	A58 180	Ser	Trp	Gly	val	Arg 185	Leu		
10		Arg '	Thr																
15	<210> 1 <211> 3 <212> 4 <213> 4	35 ADN	ial																
20	<220> <223> 0	Cebad	or																
25	<400> 1	15 ggagct	ctga	aaaaaa	aggag	g agga	taaaga	a atga	ıa										35
30	<210> 1<211> 2<212> 4<213> 4	29 ADN	ial																
35	<220> <223> 0	Cebad	or																
40	<400> 1	16 gegttee	ogat a	natege	ggtg	acaatg	gccg												29
45	<210> 1 <211> 2 <212> 4 <213> 4	29 ADN	ial																
50	<220> <223> (Cebad	or																
55	<400> 1	17 .tcatga	gtc tg	gegeed	ctga g	gateeto	etg												29
60	<210> 1 <211> 3 <212> 4 <213> 4	30 ADN	ial																
65	<220> <223> 0																		

	<400>	18	
		taatcgcatg ttcaatccgc tccataatcg	30
5	<210>	19	
	<211>		
	<212>		
10		Artificial	
	220		
	<220>	Cebador	
15	<223>	Cebador	
15	<400>	19	
		cccaacggtt tetteattet ttateetete ettttttea gage	44
20	<210>	20	
	<211>		
	<211>		
25		Artificial	
	<220>		
		Proteasa 22	
30	\ZZ3>	1 Totedsu 22	
	<220>		
	<221>	CDS	
35	<222>	(1)(1164)	
33	<220>		
		Péptido señal	
		(1)(81)	
40			
	<220>		
		mat_péptido	
45	<222>	(577)(1164)	
50			
55			

<400> 20

5		aaa Lys	222 Lys -190	Pro	ctg	gga Gly	Lys	att 11e -185	gtc Val	gca Ala	agc Ser	aca Thr	gca Ala -180	Ctt Leu	ctt Leu	45
10		tca Ser	gtg Val -175	Ala	ttt Phe	agc Ser	tca 5er	tct Ser -170	art Ile	gca Ala	tca Ser	gca Ala	gct Ala -165	aca Thr		90
	gca Ala	tta Leu	ccg Pro -160	cag G1n	tct Ser	ccg Pro	aca Thr	ccg Pro -155	gaa Glu	gça Ala	gat Asp	gça Ala	gtc Val -150	tça Şer	· · · •	135
15		gaa Glu						ctt Leu -140								180
20		g aa Glu		ctt Leu	gct Ala	gca Ala	caa Gln	gat Asp -125	aca Thr	gca Ala	ttt Phe	Glu	gtg Val -120	gat Asp		225
25		gcg	gca Ala -115	gaa Glu	gca Ala	oca Ala	gga Gly	gat Asp -110	gca Ala	tat Tyr	ggc Gly	ggc Gly	tca 5er -105	gtt væl		270
23		aca Thr		tca Ser	ctt Leu	gaa Glu	CTT L eu	aca Thr -95	gtt (Val	ctt (Leu)	gtt a Val 1	ſhr å	sat gi	ta go	a gca la Ala	316
30	gtt Val	gaz Glu -85	gca Ala	ott Val	gaa ! Glu !	oca :	nca (Thr (gga g Gly A	ca p la G	ga ai ly Ti	ca pi hr Va	ta c1 17 L6 75	t gt	t tca	tat Tyr	366
35	61y -70	att Ile	gat Asp	ggc Gly	Leu /	gat (Asp (מבת פוני	att g Ile V	tt c	In G	aa c1 14 L4 50	ss es ea us	it gci	g gct	gat Asp -55	414
	gct Ala	gtt Val	Pro	Gly '	gtt (Val (-50	gtt (Val (ggc :	tgg t Trp T	yr P	cg gi ro Ai 45	at gi sp Va	t go	t gg	n gat y Asp -40	Thr	462
40	gtt Val	gtc Val	Leu	gaa G1u -35	gtt (Val	ctt (gaa (Slu (gga t Gly 5	ca g er G 30	gc g Ty A	ca ga la As	it gi sp Vi	tt to	r Gly	ctg / Leu	510
45	ctg	gça	ğec	gça	gga	gtc (gat !	gca t	ca g	ca g	tt g	a gt	tt ac	a açı	tca	558

	Leu	Ala	ASD -20	БГА	Gly	Val	ASP	Ala -15	ser	ATa	Val	Glu	val -10	Thr	Thr	Ser	
5	gat A s p	cam Gln -\$	ccg Pro	gaa Glu	ctt Leu	tat Tyr -1	gca Ala 1	gat Asp	att Ile	att Ile	ogc Gly S	ggc	ctg Leu	gcr Ala	tat Tyr	tat Tyr 10	606
10	mtg Met	ggc Gly	ggc Gly	aga Arg	tgc Cys 15	agc Ser	gtt val	ggc	ttt Phe	gca A1a 20	oca Ala	aca Thr	aat Asn	gca Ala	tca Ser 25	ggc Gly	654
	caa Gln	ccg Pro	ggc	ttt Phe 30	gtt Val	aca Thr	gca	ggc Gly	cat His 35	tgc Cys	ggc Gly	aca Thr	gtt Val	ogc Gly 40	aca Thr	CC2 Pro	702
15	gtt Val	tca Ser	att Ile 45	ggc Gly	aat Asn	ggc Gly	222 Lys	ggc GTy 50	gtt Val	ttt Phe	gaa Glu	cga Arg	agc Ser 55	att Ile	ttt Phe	ccg Pro	750
20	ggc	aat Asn 60	gat Asp	tca Ser	gca Ala	ttt Ph e	gtt Val 65	aga Arg	ggc Gly	aca Thr	tca Ser	aat Asn 70	ttt Phe	aca Thr	ctt Leu	aça Thr	798
25	aat Asn 75	ctg	gtt Val	tça Ser	aga Arg	tat Tyr 80	aat Asn	tca Ser	ggc Gly	ggc Gly	tat Tyr 85	gca Ala	aca Thr	gtt Val	oca Ala	61y 90	846
23	cat H1s	aat Asn	Ca2 Gln	gca Ala	ccg Pro 95	att	ggc Gly	tca Ser	gca Ala	gtt Val 100	Cy5	aga Arg	tca Ser	ggc Gly	tca Ser 105	aca Thr	894
30	aça Thr	ogc Gly	tgg Trp	cat His 110	tgc Cys	ogc Gly	aca Thr	att Ile	caa Gln 115	gca	aga Arg	aat Asn	caa Gln	aca Thr 120	ott Val	agg Arg	942
35	tat Tyr	ccg Pro	Caa Gln 125	ggc Gly	aca Thr	gtt Val	tat Tyr	agt Ser 130	ctg L e u	aca Thr	aga Arg	aca Thr	aca Thr 135	gtt Val	tgt Cys	gca Ala	990
	gaa Glu	ccg Pro 140	goc Gly	gat Asp	tca Ser	ggc Gly	ggc Gly 145	tca Ser	tat Tyr	att Ile	agc Ser	ggc Gly 150	act Thr	caa Gln	aca ala	caa Gln	1038
40	ggc Gly 155	gtt Val	aca Thr	tca Ser	ogc Gly	ggc Gly 160	tca Ser	ggc Gly	aat Asn	tgc Cys	agt Ser 165	gct Ala	ggc Gly	ggc Gly	aca Thr	Thr 170	1086
45	tat Tyr	tac Tyr	caa Gln	gaa Glu	gtt Val 175	aat Asn	ccg Pro	atg M e t	ctt L e u	agt Ser 180	tca Ser	tgg Trp	ggc Gly	ctt L eu	aca Thr 185	ctt L eu	1134
	aga Arg	aca Thr	caa Gln	tcg Ser 190	cat His	gtt val	caa Gln	tcc Ser	gct Ala 195	CC& Pro							1164

50

<210> 21

55 <211> 388

<212> PRT

<213> Artificial

60 <220>

<223> Constructo sintético

100		-
<400	1>	21

5	Met	Lys	Lys -19(Pr:	o Lei	u Gly	y Ly:	- 116 - 16	2 Va 35	al A	la s	er T		1a 180	Leu	Leu
	Ile	Ser	Val -175		L Pho	: Ser	' Ser	• Se r	. I.	le A	ia Se	er A]a '	Thr	Gly
10	Ala	Leu		G٦١	n Ser	· Pro	Thr		o G	ìu A'	la As	5P A	la v	n] :	Ser	Met
15	Gla	Glu	_	Lei	≟ G]r	n Arg] A5		ì As	sp Le	eu Ti	nr si	er A		Glu .	Ala
	Glu	Glu			IFA 1	a fa	ı Glr			hr A'	la Pi	ne G		135 130	Asp	Glu
20				۵٦ı	s [A ì) A'	_			ly s			
25	ASP	The		Ser	· Lei	ม ต ไม	ı Lev		Va] Lei	J VE	I Thi		p Ala	E Al	a Ala
30	Val	G]u -85	_		G] u	δſΑ	Thr -80	_		Gly	Thr	Val -75		•	Ser	Tyr
	Gly -70	Ile	ASp	Gly	Leu	ASD -65	GTu	Ile	Val	G In	G] u -60	Leu	Asn	S『A	Ala	ASD -55
35	ATa	۷a٦	Pro	Gly	Va1 -50	۷al	Gly	Тгр	Tyr	Pro -45	Asp	VaT	Ala	G٦y	Asp -40	Thr
40	Va]	٧a٦	Leu	G]u -35	val	Leu	Glu	Gly	Ser -30	Gly	sfA	Asp	val	Ser -25	Gly	Leu
15	Fen	Ala	Asp -20	δΓA	Gly	val	Asp	A]a -15	Ser	Ala	raī	Glu	Val -10	Thr	Thr	Ser
45	Asp	G]n -S	Pro	Glu	Leu	Ţţr	Ala 1	Asp	ΙΊe	Ile	<u>գ</u> Դ ջ 5	Gly	Leu	Ala	Tyr	Tyr 10
50	Met	Gly	Gly	Arg	Cys 15	Ser	۷al	Gly	Phe	Ala 20	Ala	Thr	Asn	Ala	Ser 25	Gly
55	GIn	Pro	Gly	Phe 30	Val	Thr	Ala	Gly	His 35	Cys	۵Ìy	Thr	Val	G]y	Thr	Pro
	val	\$ e r	Ile 45	GТу	Asn	Gly	Ly ş	G] y 50	Val	Phe	چاو	Arg	Ser 55	Ile	Phe	Pro
60	Gly.	Asn 50	Asp	Ser	Ala	Phe	val 65	Arg	Gly	Thr	Ser	A5n 70	Phe	Thr	Leu	Thr
65	Asn 75	Leu	Val	Ser	Arg	Tyr	Asn	Ser	G] y	G٦y	Tyr	Ala	Thr	val	Ala	Gly

His Asn Gln Ala Pro Ile Gly Ser Ala Val Cys Arg Ser Gly Ser Thr 5 Thr Gly Trp His Cys Gly Thr Ile Glm Ala Arg Asn Glm Thr Val Arg 110 120 Tyr Pro Gln Gly Thr Val Tyr Ser Leu Thr Arg Thr Thr Val Cys Ala 125 130 10 Glu Pro Gly Asp Ser Gly Gly Ser Tyr Ile Ser Gly Thr Gln Ala Gln 140 150 15 Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Ser Ala Gly Gly Thr Thr 155 160 170 Tyr Tyr Gin Glu Val Asn Pro Met Leu Ser Ser Trp Gly Lau Thr Leu 175 180 20 Arg Thr Gln Ser His Val Gln Ser Ala Pro 190 195

25

<210> 22

<211> 188

<212> PRT

<213> Nocardiopsis sp. TOA-1

<400> 22

45

50

55

60

Ala Asp Ile Ile Gly Gly Leu Ala Tyr Thr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn Ala Ser Gly Gln Pro Gly Phe Val Thr 20 30 Ala Gly His Cys Gly Ser Val Gly Thr Gln Val Ser Ile Gly Asn Gly Arg Gly Val Phe Glu Arg Ser Val Phe Pro Gly Asn Asp Ala Ala Phe 50 60 Val Arg Gly Thr Ser Asn Phe Thr Leu Thr Asn Leu Val Ser Arg Tyr 65 70 75 Asn Ser Gly Gly Tyr Ala Thr Val Ser Gly Ser Ser Thr Ala Pro Ile 85 90 Gly Ser Glm Val Cys Arg Ser Gly Ser Thr Thr Gly Trp Tyr Cys Gly 100 105 Thr Ile Gln Ala Arg Asn Gln Thr Val Ser Tyr Pro Gln Gly Thr Val 125 His Ser Leu Thr Arg Thr Ser Val Cys Ala Glu Pro Gly Asp Ser Ala 130 140 Gly Ser Phe Ile Ser Gly Thr Gln Ala Gln Gly Val Thr Ser Gly Gly 145 155 160 Ser Gly Asn Cys Arg Thr Gly Gly Thr Thr Phe Tyr Gln Glu Val Asn 165 170

Pro Met Leu Asn Ser Trp Asn Leu Arg Leu Arg Thr 180 185 188

<210> 23 <211> 381 <212> PRT <213> Nocardiopsis dassonvillei subesp. dassonvillei DSM 43235

<400> 23

10

Met Arg Pro Ser Pro Ala Ile Ser Ala Ile Gly Thr Gly Ala Leu
-185 -180 -175 Ala Phe Gly Leu Ala Phe Ser Val Thr Pro Gly Ala Ser Ala Ala -160 -160 15 Thr Val Pro Ala Glu Pro Ala Ser Glu Ala Gln Thr Het Met Glu -155 -150 -145 20 Ala Leu Gln Arg Asp Leu Gly Leu Thr Pro Leu Gly Ala Glu Glu -140 -135 25 Leu Leu Ser Ala Glu Glu Glu Ala Ile Glu Thr Asp Ala Glu Ala -125 -115 Thr Glu Ala Ala Gly Ala Ser Tyr Gly Gly Ser Leu Phe Asp Thr
-110 -105 30 Glu Thr Leu Gln Leu Thr Val Leu Val Thr Asp Ala Ser Ala Val Glu
-95 -85 35 Ala Val Glu Ala Thr Gly Ala Glu Ala Thr Val Val Ser His Gly Ala -80 -75 Glu Gly Leu Ala Glu Val Val Asp Ala Leu Asp Glu Thr Gly Gly Arg -65 -55 40 Glu Gly Val Val Gly Trp Tyr Pro Asp Val Glu Ser Asp Thr Val Val -50 -40 45 Val Gln Val Ala Glu Gly Ala Ser Ala Asp Gly Leu Ile Glu Ala Ala -35 -25 -25 50 Gly Val Asp Pro Ser Ala Val Arg Val Glu Glu Thr Ser Glu Thr Pro
-15 -10 -5 Arg Leu Tyr Ala Asp Ile Val Gly Gly Glu Ala Tyr Tyr Met Gly Gly 55 Gly Arg Cys Ser Val Gly Phe Ala Val Thr Asp Gly Ser Gly Ala Gly 15 20

65

Gly Phe Val Thr Ala Gly His Cys Gly Thr Val Gly Thr Gly Ala Glu 30 40 45 5 Ser Ser Asp Gly Ser Gly Ser Gly Thr Phe Gln Glu Ser Val Phe Pro 50 55 Gly Ser Asp Gly Ala Phe Val Ala Ala Thr Ser Asn Trp Asn Val Thr 65 70 75 10 Asn Leu Val Ser Arg Tyr Asp Ser Gly Ser Pro Gln Ala Val Ser Gly 80 90 15 Ser Ser Glm Ala Pro Glu Gly Ser Ala Val Cys Arg Ser Gly Ser Thr 95 105 Thr Gly Trp His Cys Gly Thr Ile Glu Ala Arg Gly Gln Thr Val Asn 110 120 120 20 Tyr Pro Glm Gly Thr Val Glm Asp Leu Thr Arg Thr Asp Val Cys Ala 130 135 140 25 Glu Pro Gly Asp Ser Gly Gly Ser Phe Ile Ala Gly Ser Gln Ala Gln 145 150 Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Thr Ser Gly Gly Thr Thr 160 170 Tyr Tyr Gln Glu Val Thr Pro Leu Leu Ser Ser Trp Gly Leu Ser Leu 175 180 185 35 Val Thr Gly

40

<210> 24

<211> 383 <212> PRT

<213> Nocardiopsis prasina DSM 15649

50

55

60

5	Glu	A s p -130	L e u	L eu	Glu	i Ala	-12	1 A5	n As	ip Al	a Le	eu G] -:	120 I	ile A	(Sp	Thr
10	#Į#	Ala -115	Ala	Lys	s Ala	Ala	-1)	lo As	ip Al	la Ty	r Al	a G	y 5 105	ier V	/al :	₽he
	ASP	Thr -100	Asp)	⊤hr	Leu	GTU	-95	The	- Val	Lei	l Lei	Th: -9:	r As;	Ala	GT;	y Al
15	Va1 -85	Ser	ASP	Val	Glu	A7a -80	Thr	Gly	Ala	GТу	Thr -75	Glu	L e u	Val	Ser	Tyr -70
20	Gly	Thr	G lu	٩٦y	L eu -65	ΔĪα	G Tu	Ile	Met	A50 -60	G1ц	Leu	Asp	Ala	A]a -55	Gly
25	Ala	g1n	Pro	G1y -50	val	Val	۵٦y	тгр	Tyr -45	Pro	Asp	Leu	aľA	G1y -40	Asp	Thr
	Yal	Va1	17e -35	Glu	Ala	Thr	ASP	Thr -30	Ser	Glu	aſA	Gln	Ser -25	Phe	Val	Glu
30	Ala	A]a -20	бĨу	Val	Asp	Ser	5er -15	Ala	Val	Gln	Val	G]u -10	G1n	Thr	Asp	Glu
35	A]a -5	Pro	GIn	Leu	Ţγr -Î	Ala 1	Asp	Ile	Val	GTy 5	GTy	Asp	Ala	Tyr	Туг 10	Met
	Gly	GΊy	Gly	Arg 15	Cys	Ser	Væl	G ly	Phe 20	aFA	val	Thr	ASP	Ser 25	Ser	Gly
40	Asn	Asp	G1y 30	Phe	Val	Thr	ATa	գ շ 35	His	Cys	GTy	Thr	ya1 40	Gly	Thr	Ser
45	ATE	A5P 45	Ser	Glu	Asp	Gly	Ser 50	Gly	Ser	Gly	val	Phe 55	Glu	G∃⊔	Ser	Ile
50	Phe 60	Pro	Gly	Asn	Asp	A14 65	ATA	Phe	Val	Ser	5er 70	Thr	Ser	Asn	Trp	Thr 75
50	Val	Thr	A≸N	Leu	Va] 8 0	Asn	Met	Туг	Ser	ser 85	Gly	Gly	Thr	Gìn	ser 90	Val
55	Gly	Gly	Ser	Sег 95	Gln	AÌa	Рго	Val	Gly 100	Ala	Ala	val	Cys	Arg 105	Ser	Gly
60	Ser	Thr	Thr 110	G٦y	⊤гр	His	Cys	Gly 115	Ser	Ile	Glu	Ala	Arg 120	Gly	GÌn	Ser
	Val	Ser 125	Туг	Pro	Glu	G٦y	Thr 130	Val	Thr	ASp	Met	Thr 135	Arg	Thr	Asp	Val

	Cys 140	Ala)	Glu	Pro	Gly	A50 145	Ser	GTy	Gly	Ser	Phe 150	Ile	Ala	Asp	ASP	G1n 155
5	Ala	L G]n	Gly	Met	Thr 160	5er	Gly	Gly	Ser	Gly 165	πzA	Cys	Ser	Ser	Gly 170	Gly
10	Th	- Thr	Tyr	Tyr 175	Gln	Glu	val	Gly	Pro 180	δľΑ	Leu	Ser	Thr	Trp 185	ΑSΠ	Leu
15	Ser	' Leu	Va] 190	Thr	Ser											
	<210> 25 <211> 383															
20	<212> PRT <213> Noca	rdiops	sis pra	sina I	OSM 1	14010										
25	<400> 25										_			_		
	Met	Arg -190	Pro	Ser	Pro	Val	11e -18	: 5 é S	r Al	a I1	e Gi	y Th -1		ily A	VIA L	.eu
30	Ala	Phe -17!	G) y	Leu	Ala	Leu	Ser -17		IA I	a Pr	fD o	y Ala -1		er A	VIA V	'a 1
35	Thr	A]a -16(Pro	Ala	Glu	Pro	Ser -15		ro Gl	n Gl	y G7	4]. -1		hr 1	Thr M	let
	Gln	G]u -14	ATa S	L e y	Glu	Arg	Asp -14		e G1	y Le	u Th	r Pro		he (A uf	la.
40	ASD	ASP -130	Leu	i Leu	Glu	Ala	G]n -12	Ly 5	's G1	IA u	a Le	u G] -1		1e #	SP T	hr
45	ATE	Ala -11	Ala S	เดิน	e Ala	Ala	5]y -11		FA Q	z Ty	r Al	a G1 -1		ier (/al P	he
50	Asp	Thr -100		Thr	. ren	Glu	Leu -95		' Val	Leu	Leu	Thr -90		GT)	/ Gly	Pro
	A]a -85	Ser	A5p	Val	G]U	414 08-	Ala	Gly	ATA	Glu	Thr -75	Ser '	va1	Val	Ser	H1s -70
55	Gly	Thr	Asp	Gly	Leu -65	Ala	Ala	Ile	Met	ASD -60	Glu	Leu :	Asp	Ala	Va1 -55	Gly
60	Ala	Gln	PFD	Gly -50	Val	Val	GТу	Trp	Tyr -45	Pro	A5p	Leu .	Ala	Ser -40	ASP	Thr
	Val	٧a٦	Va1 -35	Glu	Alz	Thr	Asp	A]a -30	Ser	A S D	Ala	Gln	G]y -25	Phe	Ile	Glu
65																

Ala Ala Gly Val Asp Ser Ser Ala Val Gln Val Glu Glu Thr Asp Glu -20 -15 Ser Pro Glu Leu Tyr Ala Asp Ile Val Gly Gly Asp Ala Tyr Tyr Met 5 Gly Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asp Ser Ala Gly 15 10 Asn Asp Gly Pne Val Thr Ala Gly His Cys Gly Thr Val Gly Thr Ser 15 Ala Asp Ser Glu Asp Gly Ser Gly Ser Gly Val Phe Glu Glu Ser Ile 45 Phe Pro Gly Asn Asp Ala Ala Phe val Arg Ser Thr Ser Asn Trp Thr 60 70 75 20 Val Thr Asn Leu Val Asn Met Tyr Ser Ser Gly Gly Thr Gln Ser Val 8025 Gly Gly Ser Thr Gln Ala Pro Val Gly Ala Ala Val Cys Arg Ser Gly 95 100 Ser Thr Thr Gly Trp His Cys Gly Thr Ile Glu Ala Arg Gly Gln Ser 110 30 Val Ser Tyr Pro Glu Gly Thr Val Asn Asp Wet Thr Arg Thr Asn Val 125 130 35 Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Phe Ile Ser Asp Asp Gln 140 150 150 40 Ala Gln Gly Met Thr Ser Gly Gly Ser Gly Asn Cys Thr Ser Gly Gly 160 165 Thr Thr Tyr Gln Glu Val Gly Pro Ala Leu Ser Thr Trp Asn Leu 175 180 185 45 Ser Leu Val Thr Ser 190

50

<210> 26

<211> 384

<212> PRT

<213> Nocardiopsis sp. DSM 16424

60

5	-180)	,			-17	5				-	170		- • • •	,	
	Pro -165		y Pro	va]	Pro	6]r -16		ir Pi	ro Vi	kī A		5p 155	Asp :	ser /	lla /	Ala
10	Ser -150	Me1	t Thr	· Glu	sfA ı	Lei -14	i Li	/5 AI	rg As	sp Lo		5n 140	Leu :	Ser :	ser /	A]a
15	6]u -135		. ចោ	G Tu	i L e u	L e t		er A	la G	ln Gʻ		a 125	Ala :	Ile (51u 1	Thr
20	ASP -120		ı Glu	ı Ala	a [A]	6]u -1]		ìa A	la G	ly G		1a 110	Туг	Gly (51y :	ser
	Leu -105		e Asp	3 Thr	ู้ Gไม	The -10		en e.	lu La	eu Ti		m ⁷ L 95	eu V	al Ti	hr At	5p Th -9
25	Thr	Ala	Val	Asp	A]a -85	val	Glu	ATa	Thr	Gly -80	δſΑ	6]u	Ala	Thr	Val -75	Val
30	Thr	His	Gly	Thr -70	Asp	Gly	L e u	Ala	G]u -65	val	Va]	6 ไน	Asp	Leu -60	Asn	Ser
	ATa	Asp	Ala -55	Pro	ΑTα	Gly	val	Leu -50	ĞΪΥ	Тгр	Туг	Pro	A5p -45	Met	G lu	Ser
35	Asp	⊤hr -40	val	val	val	Glu	va1 -35	Leu	Gใน	Gly	Ser	A5 P	Ala	A5p	Va1	Ala
40	Ala -25	Leu	Leu	ΔſΑ	ASQ	A]a -20	Gly	val	Asp	Ala	Ser -15	Ala	Va]	Arg	Val	Glu -10
45	Glu	ATA	Ģ٦u	Glu	va7 -5	Pro	₫Ìn	Val	Туг -1	Ala 1	Asn	Ile	Ile	gly 5	۵ly	Leu
	Alz	Туг	Thr 10	Met	Gly	Gly	Arg	Cys 15	Ser	val	Gly	Phe	Ala 20	Ala	Thr	ÄSII
50	Ser	A1a 25	G٦y	Glm	Pro	G ly	Phe 30	Val	Thr	ATA	Gly	ніs 35	Cys	Gly	Thr	Val
55	Gly 40	Thr	Ala	۷a٦	Thr	Ile 45	Gly	Asp	Gly	Arg	Gly 50	Val	Phe	Glu	Arg	Ser 55
	Val	Phe	Pro	Gly	Asn 60	Asp	Ala	Ala	Phe	val 65	Arg	Gly	Thr	Ser	Asn 70	Phe
60	Thr	Leu	⊤hr	Asn 75	Leu	Val	Ser	Arg	Tyr 80	ASN	Ser	бјÀ	g]y	His 85	Gln	Ala
65	val	The	Gly	Thr	Ser	G] n	Ala	Pro	Ala	Gly	Ser	ΔĪΑ	Va]	Cys	Arg	Ser

			90					95					100			
5	Gly	Se r 105	Thr	Thr	Gly	Trp	ні з 110	Cys	Gly	Thr	Ile	G]n 115	Ala	Arg	A\$n	Gln
10	Thr 120	Val	Arg	Туг	Pro	G1n 125	Gly	Thr	Val	Asn	Ala 130	Leu	Thr	Arg	Thr	Asn 135
10	Val	Cys	Ala	Glu	Pro 140	Gly	Asp	Ser	Gly	Gly 145	Ser	Phe	Ile	Ser	Gly 150	Ser
15	Gln	Ala	Gln	G]y 155	Val	Thr	Ser	۵Ìy	G]y 160	Ser	Gly	Asn	Cys	ser 165	Phe	Gly
20	Gly	Thr	Thr 170	Туг	⊤yr	G₹n	Glu	Va] 175	Ala	Pro	Met	Ile	Asn 180	Ser	Υгр	Gly
	Val	Arg 185	Ilg	Arg	Thr	Ser										
25																
	<210> 27															
	<211> 383															
	<212> PRT															
30	<213> Nocara	liopsis	s alka	lifila Ì	DSM	4465	7									
	<400> 27	1		,												
35																
	Met -195	Arg	Pro	Ser	Pro	Val -19	Va 0	17 Se	er Al	a Il	e G]]	y 1	thr (ily A	Ja L	.eu
40	Ala -180	Phe	۵٦y	Leu	A]a	-17	, G1 75	y Th	ĭΓ 5€	:r Pr	[A 0'	a . 170	i er	le A	A af.	la
45	Pro -165	Ala	Pro	Gln	Ser	Pro -18	A 5	sp Th	ir Gì	u Th	r 6] -1	n 4	ila G	ilu A	la v	/all
	Thr -150	Met	ΑΊa	Glu	a1a	. Leu -14	. GT	n Ar	g As	ip Le	iu G] -1	y (.eu S	ier S	ier S	ėr
50	Glu -135	εſΑ	Thr	Glu	Leu	-13	A)	A 5	la G1	In Al		u .4 L25	Ala P	he G	ilu v	⁄a 1
55	Asp -120	Glu	ATa	Ala	Thr	G]u -11	4 A]	ia Ai	la Al	la As		la 1	yr G	ily G	ily s	er
	L e u -105	Phe	ASp	Thr	ASP	Ser -10		เน ธา	lu Le	eu Th	nr Va -9		eu Va	⊾7 ⊤h	P As	ip 5 4
60	Ala	A]a	Val	Asp	Ala -85	Val	Glu	Ala	Thr	Gly -80	Ala	Lys	Ala	Glu	Va1 -75	Va]
65	Asp	His	Gly	Ile	Glu	Gly	F6N.	Glu	Glu	Ile	val	Asp	Glu	Leu	Asn	Glu

~70 -65 -60

Ser Asn Ala Lys Ser Gly Val Val Gly Trp Tyr Pro Asp Val Ala Gly
-55 -45 Asp Thr Val Val Leu Glu Val Met Glu Gly Ser Glu Ala Asp Val Asp
-40
-35 10 Ala Leu Leu Ala Glu Thr Gly Val Asp Ala Asp Val Thr Val Glu -25 -10 -15 Thr Thr Glu Gln Pro Glu Leu Tyr Ala Ásp Ile Ile Gly Gly Leu
-5 -1 1 15 Ala Tyr Thr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn 10 20 20 Ser Ser Gly Glm Pro Gly Phe Val Thr Ala Gly His Cys Gly Ser Val 25 Gly Thr Gly Val Thr Ile Gly Ash Gly Arg Gly Val Phe Glu Arg Ser 40 50 Ile Phe Pro Gly Asn Asp Ala Ala Phe Val Arg Gly Thr Ser Asn Phe 60 65 70 30 Thr Leu Thr Asn Leu Val Ser Arg Tyr Asn Ser Gly Gly Tyr Ala Thr 75 80 85 Val Ser Gly Ser Ser Ala Ala Pro Ile Gly Ser Gln Val Cys Arg Ser 90 95 Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Arg Asn Gln 105 115 40 Thr Val Arg Tyr Pro Gln Gly Thr Val Gln Ala Leu Thr Arg Thr Ser 120 135 45 Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Phe Ile Ser Gly Ser 140 145 50 Gin Ala Gin Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly 165 Gly Thr Thr Tyr Tyr Gln Glu Val Asn Pro Met Leu Asn Ser Trp Gly
170
180 55 Leu Arg Leu Arg Thr 185

60

<210> 28

<211> 384

< 212 > PRT

<213> Nocardiopsis lucentensis DSM 44048

	_	
< 40	(\ \	-28
<+U	11/	Z.O

5	Met Arg Pro Ser Pro Val Ile Ser Ala Leu Gly Thr Gly Ala Leu -195 -185
	Ala Phe Gly Leu Val Ile Thr Met Ala Pro Gly Val Asn Ala Gly -180 -175
10	Thr Val Pro Thr Pro Gln Ala Pro Val Pro Asp Asp Glu Ala Thr -165 -155
15	Thr Het Leu Glu Ala Met Glu Arg Asp Leu Asp Leu Thr Pro Phe -150 -145
20	Glu Ala Glu Glu Leu Phe Glu Ala Gln Glu Glu Ala Ile Asp Leu -135 -125
	Asp Glu Glu Ala Thr Glu Ala Ala Gly Ala Ala Tyr Gly Gly Ser -120 -110
25	Leu Phe Asp Thr Glu Thr His Glu Leu Thr Val Leu Val Thr Asp Va -105 -95 -9
30	Asp Ala Val Glu Ala Val Glu Ala Thr Gly Ala Ala Ala Glu Val Val -85 -80 -75
	Ser His Gly Ser Asp Gly Leu Ale Asp Ile Val Glu Asp Leu Ash Ala -70
35	Thr Asp Ala Gly Ser Glu Val Val Gly Trp Tyr Pro Asp Val Thr Ser -55 -55
40	Asp Ser Val Val Val Glu Val Val Glu Gly Ser Asp Val Asp val Asp -40 +35
45	Ser Ile Val Glu Gly Thr Gly Val Asp Pro Ala Val Ile Glu Val Gln -25 -10
	Glu Val Ser Glu Gln Pro Gln Thr Tyr Ala Asn Ile Ile Gly Gly Leu -5
50	Ala Tyr Tyr Met Ser Ser Gly Gly Arg Cys Ser Val Gly Phe Pro Ala 10
55	Thr Asn Ser Ser Gly Gln Pro Gly Phe Val Thr Ala Glý His Cys Gly 25
	Thr Val Gly Thr Gly Val Thr Ile Gly Asn Gly Arg Gly Thr Phe Glu 40 55
60	

	Arg	Ser	Val	Phe	Pro 60	Gly	ASN	ASP	Ala	A7a 65	Phe	Va1	Arg	Gly	Thr 70	Ser
5	Asn	Phe	Thr	Leu 75	Туг	Asn	Leu	va1	ТУГ 80	Arg	Tyr	Ser	σΊy	Tyr 85	G1n	Thr
10	Va]	Thr	Gīy 90	Ser	nzA	Ala	Ala	Pro 95	Iìs	Gly	Ser	Ser	115 100	Cys	Arg	5er
15	Gly	ser 105	Thr	Thr	Gly	Trp	НіS 110	Cys	Gly	Thr	Ile	G]n 115	ATE	Arg	ASII	σÎn
	Thr 120	val	Arg	Tyr	Pro	6]n 125	Gly	Thr	val	Туг	Tyr 130	Leu	Thr	Arg	⊤hr	A5n 135
20	Val	Cys	Ala	GJu	Pro 140	Gly	Asp	Ser	Gly	G]y 145	Ser	Phe	Ile	Ser	67y 150	Thr
25	GIn	Ala	GIn	G7y 155	Met	Thr	Ser	Gly	G] y 160	Ser	Gly	Asn	Cys	Ser 165	Ser	Gly
20	Gly	Thr	Thr 170	Phe	Туг	Gln	Glu	Va1 175	ASP	₽ro	val	Glu	Ser 180	ΔÎΞ	Тгр	GТу
30	Val	Arg 185	Leu	Arg	Thr	Ser										