

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 358 182

(51) Int. Cl.:

C12Q 1/68 (2006.01)

$\widehat{}$,
12	TRADUCCIÓN DE PATENTE EUROPEA
(4)	I NADOCCION DE FAI ENTE LONGFEA

Т3

- 96 Número de solicitud europea: 08716110 .5
- 96 Fecha de presentación : 28.02.2008
- 97 Número de publicación de la solicitud: 2118315 97 Fecha de publicación de la solicitud: 18.11.2009
- (54) Título: Genes de control para la normalización de datos de análisis de la expresión génica.
- (30) Prioridad: **02.03.2007 DE 10 2007 010 252**
- (73) Titular/es: SIRS-LAB GmbH Winzerlaer Strasse 2A 07745 Jena, DE
- (45) Fecha de publicación de la mención BOPI: 06.05.2011
- (72) Inventor/es: Russwurm, Stefan; Saluz, Hans, Peter y Deigner, Hans-Peter
- (45) Fecha de la publicación del folleto de la patente: 06.05.2011
- (74) Agente: Roeb Díaz-Álvarez, María

ES 2 358 182 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Genes de control para la normalización de datos de análisis de la expresión génica.

2.5

La presente invención se refiere a genes de control, especialmente a un conjunto de genes de control según la reivindicación 1 para la normalización de datos de análisis de la expresión génica, a cebadores de PCR derivados de los genes de control, especialmente al conjunto de cebadores de PCR según la reivindicación 2, a sondas derivadas de genes de control, especialmente al conjunto de sondas según la reivindicación 3, así como a un procedimiento para la normalización de análisis de la expresión génica según la reivindicación 4.

Al igual que antes existe la necesidad de identificar genes, especialmente de células sanguíneas, que en su expresión sólo muestren una mínima variación bajo distintas condiciones. Estos llamados "genes de mantenimiento" ("House-keeper") se usan como referencias, controles internos y valores de referencia en la cuantificación de la expresión génica y de ARN y ARNm con procedimientos como transferencia Northern, ensayo de protección de ribonucleasas, electroforesis capilar, micromatrices y PCR cuantitativa en tiempo real, así como mediante otros procedimientos para la medición directa de la transcripción y la medición después de la amplificación previa.

A continuación se resumen los términos genes de mantenimiento y genes de control de la expresión por el término genes de control. Esta simplificación se realiza por razones de legibilidad y no representa ninguna limitación de la invención.

Una normalización de datos cuantitativos mediante genes de control tiene numerosas posibilidades de aplicación. Los genes de control hacen posible una identificación de genes cuya actividad se regula de forma diferente en distintos estados de enfermedad, así como el desarrollo de diagnósticos basados en ellos.

Un gen de control es un gen que muestra un cambio mínimo de la expresión y la transcripción a través de distintas muestras de ARN y por tanto sirve de control para la medición de actividades génicas variables a través de distintas muestras. Ningún gen muestra actividad inalterada a través de todos los tejidos. Por tanto, existe una gran necesidad de nuevos genes de control, especialmente para la sangre, ya que diagnósticamente se aplican valores de expresión de la sangre.

Aunque en la bibliografía se conocen distintos genes de control [1], no se conoce ningún gen de control ni sus transcritos, así como su uso combinado, para la normalización de la expresión génica y la transcripción de muestras de sangre completa y células sanguíneas. Los transcritos (también ARNm y microARN, así como otros ARN) con concentración constante en células sanguíneas y en células de órganos y tejido periférico que están localizados en sangre completa constituyen una condición previa para la normalización de las actividades génicas y para la determinación de cambios de otras actividades génicas y, por tanto, una condición previa para el diagnóstico basado en sangre. Igualmente ya se han publicado distintos estudios para la medición de la actividad génica para el diagnóstico/pronóstico de SIRS y sepsis, por ejemplo [2, 3]; sin embargo, todavía no se ha descrito un uso y cuantificación de estas señales de actividad génica mediante genes de control de la sangre.

Por tanto, existe la necesidad de genes de control de la sangre y de células sanguíneas robustos y que dispongan de una estabilidad que haga posible una normalización y cuantificación de la expresión génica de genes específicos para enfermedad o conjuntos de genes.

El punto de partida para la invención dada a conocer en la presente solicitud de patente es el conocimiento de que actividades génicas de distintos genes que están presentes en células sanguíneas en muestras de un individuo al que se le diagnosticaron fenómenos patológicos típicos de sepsis (correspondientemente a la definición en [4]) no se diferencian de las actividades génicas de los mismos genes en individuos en los que no se diagnosticó sepsis y pueden usarse conjuntamente o individualmente como genes de control para la normalización de actividades génicas de células sanguíneas y para la determinación de la concentración de transcritos de sangre. Esto permite la normalización y la cuantificación relativa de actividades de otros genes, lo que puede usarse para el diagnóstico, el pronóstico, la terapia y el control de seguimiento.

Por tanto, el objetivo de la presente invención se basa en poner a disposición agentes y procedimientos que hagan posible un punto de referencia para la diferenciación de cambios en la expresión génica debidos a enfermedad y, por tanto, un diagnóstico o control de seguimiento de la terapia.

Este objetivo se alcanza mediante genes de control y especialmente un conjunto de genes de control con las características caracterizadoras de la reivindicación 1.

El objetivo se alcanza además mediante un cebador derivado del conjunto de genes de control según la reivindicación 1, especialmente el conjunto de cebadores según la reivindicación 2, así como por sondas, especialmente el conjunto de sondas según la reivindicación 3.

Desde el punto de vista de la ingeniería de procesos, el objetivo se alcanza mediante las características caracterizadoras de la reivindicación 4.

La invención describe la identificación de nuevos genes de control de sangre, sondas de micromatrices adecuadas y cebadores de PCR y su uso, también en combinación, para la normalización de datos de expresión cuantitativa de sangre y células sanguíneas en micromatrices, ensayos de PCR en tiempo real y otros sistemas con o sin amplificación y con distintas posibilidades de visualización para la determinación, así como su aplicación al diagnóstico de cambios debidos a enfermedad en inflamaciones locales de diferente localización y en la reacción sistémica a los mismos como SIRS, sepsis, sepsis grave con insuficiencia orgánica.

En estas investigaciones es de importancia decisiva la normalización del análisis de expresión génica. Para los fines de la presente invención por normalización se entenderá lo siguiente:

"Por una normalización se entiende hacer comparables mediciones de distintas matrices o PCR o especialmente experimentos de RT-PCR reduciéndose o eliminándose la variabilidad técnica. Dentro de estos experimentos hay una pluralidad de fuentes que pueden falsear las mediciones. Las posibles fuentes de perturbación técnica son una eficiencia diferente en la transcripción inversa, el marcado o las reacciones de hibridación, así como problemas con las matrices, efectos de carga en los reactivos o condiciones específicas del laboratorio".

El procedimiento según la invención se caracteriza porque en una muestra de sangre de un individuo puede diferenciarse la actividad de uno o varios genes que van a investigarse mediante la comprobación de la presencia y la cantidad del producto génico con respecto a las cantidades de los productos génicos de los genes de control entre SIRS y sepsis.

Para esto se dan a conocer genes de control y secuencias de genes de sangre y células sanguíneas, así como cebadores y sondas derivados de los mismos, que pueden usarse para determinar, visualizar y normalizar y cuantificar actividades génicas y transcritos. Las secuencias de las sondas de oligonucleótidos en la realización preferida se exponen en la Tabla 1 y se corresponden en la lista de secuencias adjunta con SEQ ID 1 a SEQ ID 7, las secuencias de cebadores usadas en la Tabla 2 se corresponden en la lista de secuencias adjunta con SEQ ID 8 a SEQ ID 21. A este respecto, las secuencias de las sondas de oligonucleótidos también pueden asumir otras secuencias, en la realización preferida de una longitud de 50-100 nucleótidos, que unen específicamente transcritos de los genes representados en la Tabla 3 con las secuencias SEQ ID 22 a SEQ ID 97. La longitud de las secuencias usadas en los procedimientos de amplificación como PCR puede ser discrecional en tanto que apoyen la manipulación enzimática deseada y la amplificación.

TABLA 1
Sondas de oligonucleótidos de ADN

Símbolo del gen	SEQ ID
ITGAL	1
SNAPC1	2
CASP8	3
C7	4
PPARD	5
IL18	6
F3	7

TABLA 2
Cebador de ADN directo e inverso

Símbolo del gen	SEQ ID de cebadores directos	SEQ ID de cebadores inversos
ITGAL	8	15
SNAPC1	9	16
CASP8	10	17
C7	11	18
PPARD	12	19
IL18	13	20
F3	14	21

55

10

35

40

45

50

55

TABLA 3
Genes de control (secuencias de ARN)

5	

Número de registro de GenBank	SEQ ID
NM_024081	22
AA398364	23
N34546	24
AA659421	25
AA682479	26
AK024118	27
AA923316	28
BM309952	29
Al093653	30
Al131415	31
Al263527	32
AA282242	33
CR740270	34
BG191861	35
Al301257	36
Al310464	37
AW964023	38
Al351933	39
AA100540	40
Al362368	41
Al817134	42
Al381377	43
Al520967	44
AA253470	45
AI559304	46
Al565002	47
AI587389	48
Al609367	49
Al635278	50
Al702056	51
Al707917	52
Al733176	53
Al769053	54
AI798545	55
Al801425	56
AI801595	57
Al809873	58
Al862063	59
Al923251	60
Al925556	61
Al932551	62
Al932884	63
Al933797	64

Número de registro de GenBank	SEQ ID
Al933967	65
Al935874	66
H06263	67
H22921	68
H54423	69
N22551	70
N73510	71
R06107	72
R42511	73
R43088	74
NM_181705	75
R92455	76
R93174	77
T77995	78
T79815	79
T83946	80
T95909	81
T98779	82
AK127462	83
W80744	84
W86575	85
AJ297560	86
NM_001562	87
BU629240	88
NM_001228	89
NM_001993	90
NM 002209	91
NM 002392	92
NM_000587	93
NM_004379	94
BC002715	95
NM_003082	96
AA664688	97

Los cebadores en la Tabla 2 pueden usarse para preparar productos de amplificación que contienen la región 40 deseada (secuencia) de los genes mencionados. En la realización habitual, el producto tiene 150-200 nucleótidos de longitud.

Los genes de control pueden usarse por separado o en combinación de varios. Normalmente, la actividad de los genes de control puede determinarse como aquí se describe con sondas de hibridación para micromatrices o cebadores de PCR y PCR en tiempo real. Sin embargo, los genes de control y sus productos de expresión también pueden determinarse después de la amplificación con otros procedimientos conocidos para el experto como, por ejemplo, NASBA (amplificación basada en secuencias de ácido nucleico, de Nucleic Acid Sequence-based Amplification) y en distinta combinación. También pueden determinarse con una serie de otros procedimientos o posibilidades de visualización como, por ejemplo, con ayuda de anticuerpos monoclonales. Los cebadores y las sondas pueden utilizarse para el gen, el producto de expresión (ARNm) o los productos intermedios de expresión que no se procesan completamente en ARNm.

En otras realizaciones, los cebadores y las sondas se unen a una región específica de los genes de control aquí dados a conocer o de sus transcritos. Pero las sondas y los cebadores pueden interaccionar con cualquier región de las secuencias de genes aquí dadas a conocer o secuencias transcritas a partir de éstas. Los cebadores y las sondas pueden interaccionar mediante apareamiento de bases sucesivo, pero no deben interaccionar continuamente con la secuencia complementaria completa. Aquí pueden elegirse de forma variable las composiciones de tampones, las concentraciones de sales, las etapas de lavado y las temperaturas.

Igualmente, estos cambios de los genes de control y de los genes de prueba pueden compararse con los valores de expresión (o los datos derivados a partir de éstos como, por ejemplo, valores promedio) de una o varias muestras de referencia que no se determinan al mismo tiempo con la muestra diana.

Una forma de realización de la revelación se caracteriza porque se determinan valores de expresión aplicando genes de control de la Tabla 3, así como ácidos nucleicos y transcritos de estos genes de control de sangre y de células sanguíneas, como genes de control mediante comparación de los valores de expresión con uno o varios ácidos nucleicos de prueba y mediante cuantificación en relación con el ácido nucleico de prueba.

5

10

15

20

25

30

35

Otra forma de realización de la revelación se caracteriza porque se usan ácidos nucleicos y sondas de ADN con las secuencias según la Tabla 1 y su unión de ARN, incluyendo microARN, y de transcritos (ARN o ARNm) en sangre o de células sanguíneas de genes según la Tabla 3 en disolución o inmovilizados sobre superficies o partículas o perlas y el uso de los transcritos unidos de estos genes para la normalización mediante comparación de las cantidades unidas (valores de expresión) de los ácidos nucleicos con uno o varios ácidos nucleicos de prueba unidos a sondas y para la cuantificación en relación con el ácido nucleico de prueba unido.

Una forma de realización de la revelación se caracteriza porque el procedimiento para la diferenciación *ex vivo*, *in vitro* entre SIRS y sepsis (ambos correspondientemente a [4]) basado en establecer una relación entre cantidades de ARN del gen de control y del gen de prueba comprende las siguientes etapas:

a) aislar el ARN del gen de control, así como el ARN del gen de prueba, de una muestra de sangre

- b) marcar el ARN del gen de control y del gen de prueba con un marcador detectable y poner en contacto con el ADN bajo condiciones de hibridación, siendo el ADN un fragmento de gen u oligonucleótido que se une específicamente a transcritos, productos de amplificación o transcritos *in vitro* de genes de control
 - c) registrar cuantitativamente las señales de marcado del ARN del gen de control y del gen de prueba correspondientemente a b) y
 - d) comparar los datos cuantitativos de las señales de marcado para facilitar información de si un gen específico o fragmento de gen se expresa más fuertemente o más débilmente en comparación con las señales de los genes de control.
- Otra forma de realización de la invención se caracteriza porque el ARN del gen de control se hibrida con el ADN antes de la medición del ARN del gen de prueba y se registran las señales de marcado del complejo de ARN de control/ADN, dado el caso se transforman adicionalmente y dado el caso se archivan en forma de una curva o tabla de calibrado.
- Otra forma de realización de la invención se caracteriza porque el ARN de los genes de control o partes de los mismos se identifica y se cuantifica mediante secuenciación o secuenciación parcial, por ejemplo, mediante pirosecuenciación.
- Otra forma de realización de la invención se caracteriza porque como ARN del gen de control se usa ARNm o microARN.
 - Otra forma de realización de la invención se caracteriza porque el ADN se dispone, especialmente se inmoviliza, para la unión específica del ARN del gen de control o sus transcritos *in vitro* en zonas previamente determinadas sobre un soporte en forma de una micromatriz.
 - Otra forma de realización de la invención se caracteriza porque en el caso de la muestra biológica se trata de un ser humano.
- Estas secuencias con la ID de secuencia: 1 a ID de secuencia: 97 están englobadas por el alcance de la presente revelación y se dan a conocer en particular en la lista de secuencias de 70 páginas adjunta que comprende 107 secuencias que, por tanto, es parte de la revelación.
 - Otra forma de realización de la revelación se caracteriza porque las sondas inmovilizadas o libres se marcan con secuencias correspondientes a la Tabla 1. Para esta forma de realización se usan como sondas oligonucleótidos autocomplementarios, las llamadas balizas moleculares ("molecular beacons"). Llevan en sus extremos un par de fluoróforos/extintores de fluorescencia de manera que en ausencia de una secuencia complementaria están presentes en una estructura de horquilla plegada y sólo proporcionan una señal de fluorescencia con una secuencia de sonda correspondiente. La estructura de horquilla de las balizas moleculares ("molecular beacons") es estable hasta que la muestra se hibrida con la secuencia secuestrante específica, lo que conduce a un cambio de conformación y, por tanto, también a la liberación de la fluorescencia indicadora.
 - Otra forma de realización de la revelación se caracteriza porque por lo menos 1 a 14 sondas de ácidos nucleicos o sus complementos se usan para la unión de los transcritos, o sus complementos, de los genes de control.
- Otra forma de realización de la invención se caracteriza porque los análogos sintéticos de los genes de control o los nucleótidos sintéticos que se unen a los transcritos de los genes de control comprenden especialmente aproximadamente 60 pares de bases.
- Otra forma de realización de la invención se caracteriza porque los genes enumerados como ADN en las reivindicaciones se sustituyen por secuencias derivadas de su ARN, análogos sintéticos, aptámeros, así como ácidos nucleicos de péptidos.

Otra forma de realización de la invención se caracteriza porque como marcador detectable se usa un marcador radiactivo, especialmente 32 P, 14 C, 125 I, 33 P o 3 H.

Otra forma de realización de la invención se caracteriza porque como marcador detectable se usa un marcador no radiactivo, especialmente un marcador coloreado o fluorescente, un marcador enzimático o inmunomarcador, y/o puntos cuánticos o una señal eléctricamente medible, especialmente cambio de potencial y/o de conductividad y/o de capacidad en las hibridaciones.

Otra forma de realización de la invención se caracteriza porque el ARN de muestras y el ARN del gen de control y/o derivados enzimáticos o químicos llevan el mismo marcado.

Otra forma de realización de la invención se caracteriza porque el ARN del gen de prueba y el ARN del gen de control y/o derivados enzimáticos o químicos llevan diferentes marcados.

Otra forma de realización de la invención se caracteriza porque las sondas de ADN se inmovilizan sobre vidrio o plástico.

15

20

25

30

50

Otra forma de realización de la invención se caracteriza porque las moléculas de ADN individuales se inmovilizan al material de soporte mediante un enlace covalente.

Otra forma de realización de la invención se caracteriza porque las moléculas de ADN individuales se inmovilizan al material de soporte mediante interacciones electrostáticas y/o dipolo-dipolo y/o hidrófobas y/o puentes de hidrógeno.

Otra forma de realización de la invención consiste en el uso de secuencias de ácidos nucleicos de genes de control específicos recombinantes o preparados sintéticamente, secuencias parciales individualmente o en cantidades parciales como calibrador en ensayos de sepsis y/o para la evaluación de la acción y la toxicidad en el cribado de principios activos y/o para la preparación de agentes terapéuticos y de sustancias y mezclas de sustancias que están previstas como agente terapéutico para la prevención y el tratamiento de SIRS y sepsis.

Es evidente para el experto que las características individuales de la invención expuestas en las reivindicaciones pueden combinarse discrecionalmente entre sí sin limitación.

Como genes de control en el sentido de la invención se entiende todas las secuencias de ADN derivadas, secuencias parciales y análogos sintéticos (por ejemplo, ácidos nucleicos de péptidos, PNA). La descripción de la invención referida a la determinación de la expresión génica al nivel del ARN no representa ninguna limitación, sino sólo una aplicación a modo de ejemplo.

Una aplicación del procedimiento según la invención se encuentra en la normalización de datos de medición de la expresión génica diferencial de sangre completa, por ejemplo, para diferenciar entre SIRS y sepsis y sus grados de gravedad (ambos correspondientemente a [4]). Para esto, el ARN de los genes de control se aísla de la sangre completa de pacientes correspondientes y una muestra de control de un probando sano o paciente no infeccioso. A continuación se marca el ARN, por ejemplo, radiactivamente con ³²P o con moléculas de colorante (fluorescencia). Como moléculas de marcado pueden utilizarse todas las moléculas y/o señales de detección conocidas para este fin en el estado de la técnica. La moléculas y/o los procedimientos correspondientes también son conocidos para el experto.

El ARN así marcado se hibrida a continuación con moléculas de ADN inmovilizadas sobre una micromatriz. Las moléculas de ADN inmovilizadas sobre la micromatriz representan una selección específica de los genes según la presente invención para la normalización de datos de expresión génica en la diferenciación de SIRS y sepsis.

Las señales de intensidad de las moléculas hibridadas se miden a continuación mediante aparatos de medición adecuados (sistema de detección y cuantificación de la radiactividad, escáner de micromatrices) y se analizan mediante otras evaluaciones asistidas por ordenador. A partir de las intensidades de señal medidas se determinan las relaciones de expresión entre los genes de prueba de la muestra del paciente y los genes de control. A partir de las relaciones de expresión de los genes regulados en defecto y/o en exceso pueden sacarse conclusiones sobre la diferenciación de SIRS y sepsis como en los siguientes experimentos representados.

Otra aplicación de las actividades génicas determinadas mediante análisis de micromatrices con posterior cuantificación para la normalización de los datos de expresión génica consiste en la aplicación para la diferenciación de SIRS y sepsis para el procesamiento electrónico con el fin de la preparación de software para fines de diagnóstico (por ejemplo, para la determinación de la localización de una inflamación y para la estimación de la gravedad de enfermedad de una respuesta inmunitaria individual, especialmente en infecciones, también en el marco de sistemas de gestión de datos de pacientes o sistemas de expertos), o para la modelación de rutas de transmisión de señales celulares.

Para la realización de la evaluación de la micromatriz para los fines de la presente solicitud de patente es válido lo siguiente:

Descripción de experimentos con micromatrices

(según Minimum Information About a Microarray Experiment [MIAME] Checkliste - nueva edición de enero de 2005, basado en Brazma A y col., Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nature Genetics 29, 365-371 (2001) [17), a cuyo contenido completo se hace referencia mediante la presente)

Lectura del portaobjetos/especificaciones técnicas del escáner

a) Escáner: Escáner de fluorescencia en luz incidente homofocal GenePix 4000B

(Axon Instruments)

b) Software para el barrido: GenPix Pro 4.0

c) Parámetros de barrido: Potencia del láser: Canal Cy3 -100% Canal Cy5 - 100%

15 **Tensión de PM**T: **Canal Cy3 - 700 V Canat Cy5 - 800 V**

d) Resolución espacial (espacio entre píxeles) - $10 \mu m$.

20 Lectura y procesado de los datos

10

En el marco de los experimentos se hibridaron más de 1000 muestras de sangre de pacientes. Cada par de ARN (ARN de paciente contra comparativo) se cohibridó en una micromatriz. A este respecto, los ARN de pacientes se marcaron con un colorante fluorescente rojo y los ARN comparativos con un colorante fluorescente verde. Las imágenes digitalizadas de la matriz hibridada se evaluaron con el software GenePix Pro 4.0 ó 5.0 de Axon Instruments. Para la detección de puntos, la cuantificación de señales y la evaluación de la calidad de los puntos se usó el software de análisis GenePixTM. Los puntos se marcaron correspondientemente a los parámetros en el software GenePixTM con 100 = "buenos" ("good"), 0 = "encontrados" ("found"), -50 = "no encontrados" ("not found"), -75 = "ausentes" ("absent"), -100 = "malos" ("bad"). Los datos brutos se archivaron en un archivo *.gpr correspondiente.

Normalización, transformación y procedimiento de selección de datos

e) Transformación y normalización de los datos de señales

Para la normalización y la transformación estabilizada por varianza de los datos brutos se aplicó el procedimiento de Huber y col. [5] en el que los errores aditivos y multiplicativos se estimaron bloque por bloque. Para esto se recurrió a aproximadamente el 75% de todos los puntos. Las señales se transforman a continuación con la función arsenh (por tanto, la relación transformada de ±0,4 se corresponde con aproximadamente un cambio de 1,5 veces {para números mayores el arsenh (x) es casi idéntico al ln (2x)}.

Rocke DM, Durbin B, A model for measurement error for gene expression arrays, J Comput Biol. 2001; 8(6):557-69 [18] han desarrollado un modelo para estimar el error de medición en matrices de expresión génica como función del nivel de expresión, a cuyo contenido completo se hace referencia mediante la presente. Este modelo de error, junto con otros procedimientos de análisis, transformaciones de datos y ponderaciones, ya permite una comparación más precisa de los datos de expresión génica y proporciona pautas para análisis del fondo, determinación de intervalos de confianza y procesamiento de los datos de análisis para su posterior procesamiento o análisis multifactorial.

Basándose en el modelo de error anteriormente mencionado de Rocke y Durbin [18], Huber W, Heydebreck A y Sueltmann H, Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics. 2002; 18 Suppl 1:S96-104 [19], han desarrollado un modelo estadístico para datos de expresión génica de micromatrices, a cuyo contenido completo se hace referencia mediante la presente. El modelo comprende un calibrado de datos, la cuantificación de diferentes niveles de expresión, así como la cuantificación del error de medición. Huber y col. [19] han deducido para esto una transformación de datos para las mediciones de la intensidad de señal y una estadística diferencial que con uso de la función de área arsenh conduce a una estabilización de la varianza y a una normalización de un conjunto de datos de señales a lo largo de un intervalo de intensidad completo. Este procedimiento se mostró especialmente mediante datos de expresión génica en micromatrices, pero en el marco de la presente invención también puede transferirse a otros procedimientos para la medición de la expresión génica.

Por tanto, la dependencia de la varianza frecuentemente observada en la evaluación de señales de la intensidad de señal se compensa por la transformación mencionada mediante la función de área.

f) Filtración

Los replicados técnicos (múltiples puntos de la misma muestra) sobre la micromatriz se separan por filtración de las intensidades de señal corregidas y transformadas en función de su calidad de puntos. Para cada punto se seleccionan los replicados con la mayor caracterización y se promedia la intensidad de señal correspondiente. La expresión de puntos con replicados exclusivamente no medibles se caracteriza con "ND" (no disponible, "NA", not available).

Otra aplicación del procedimiento según la invención consiste en la medición de la expresión génica diferencial para la determinación concomitante con la terapia de la probabilidad de que pacientes respondan a la terapia planteada y/o para la determinación de la respuesta a una terapia especializada y/o a la fijación del fin de la terapia en el sentido de una "monitorización de fármacos" ("drug monitoring") en pacientes con SIRS y sepsis y sus grados de gravedad. Para esto, el ARN (ARN de prueba y ARN de control) se aísla de muestras de sangre del paciente recogidas a intervalos temporales. Las distintas muestras de ARN se marcan juntas y se hibridan con genes de prueba seleccionados, así como genes de control que están inmovilizados sobre una micromatriz. Por tanto, a partir de las relaciones de expresión entre genes de control individuales o varios genes de control y genes de prueba como, por ejemplo, TNF alfa, puede valorarse qué probabilidad existe de que los pacientes respondan a la terapia planteada y/o si la terapia empezada es eficaz y/o cuánto tiempo deben todavía tratarse correspondientemente los pacientes y/o si ya se ha alcanzado el efecto máximo de la terapia con la dosis y la duración usadas.

Otra aplicación del procedimiento según la invención consiste en el uso del ARN de los genes según la invención para la obtención de informaciones cuantitativas mediante procedimientos independientes de la hibridación, especialmente hidrólisis enzimática o química, procedimiento de resonancia de plasmones superficiales (procedimiento de SPR), posterior cuantificación de los ácidos nucleicos y/o de derivados y/o fragmentos de los mismos.

15

35

50

Los transcritos de genes de control amplificados y cuantificados mediante PCR (también otros procedimientos de amplificación como, por ejemplo, NASBA) representan otra forma de realización según la presente invención para la normalización de datos de expresión génica en la diferenciación de SIRS y sepsis y sus grados de gravedad. Las señales de intensidad de los transcritos amplificados se miden a continuación mediante aparatos de medición adecuados (detector de fluorescencia de PCR) y se analizan mediante otras evaluaciones asistidas por ordenador. A partir de las intensidades de señal medidas se determinan las relaciones de expresión entre los genes de prueba de la muestra del paciente y los genes de control. A partir de las relaciones de expresión de los genes regulados en defecto y/o en exceso pueden sacarse conclusiones sobre la diferenciación de SIRS y sepsis y sus grados de gravedad como en los experimentos representados más adelante.

Otra aplicación del procedimiento según la invención consiste en el uso de las actividades génicas determinadas mediante PCR u otros procedimientos de amplificación con posterior cuantificación para la normalización de datos de expresión génica para la diferenciación de SIRS y sepsis y sus grados de gravedad para el procesamiento electrónico con el fin de la preparación de software para fines de diagnóstico (por ejemplo, para la determinación del foco de una inflamación y para la estimación de la gravedad de una respuesta inmunitaria individual, especialmente en infección bacteriana, también en el marco de sistemas de gestión de datos de pacientes o sistemas de expertos), o para la modelación de rutas de transmisión de señales celulares.

Otra aplicación del procedimiento dado a conocer consiste en la determinación de una cantidad de ARNm en una muestra que comprende a) aislamiento de los ácidos nucleicos, b) una medición del valor de expresión de uno o varios ácidos nucleicos seleccionados de SEQ ID 22 a SEQ ID 97; c) una comparación de los valores de expresión de los ácidos nucleicos seleccionados con valores de porcentaje conocidos de los ácidos nucleicos en la cantidad total de ARNm; d) extrapolación de los valores de expresión de uno o varios ácidos nucleicos seleccionados de SEQ ID 22 a SEQ ID 97 a la cantidad total de ARNm y d) determinación de la cantidad total de ARNm en la muestra.

Otra aplicación del procedimiento dado a conocer consiste en la normalización de una cantidad de ARNm dado el caso amplificado en varias muestras que comprende a) una comparación de los valores de expresión de uno o varios ácidos nucleicos seleccionados de SEQ ID 22 a SEQ ID 97 a través de distintas muestras; b) derivación de un valor para la normalización de valores de expresión de uno o varios ácidos nucleicos seleccionados de SEQ ID 22 a SEQ ID 97 a través de varias muestras y c) una normalización de la expresión de otros ácidos nucleicos que se aislaron a partir de varias muestras basándose en la etapa b).

Además, se da a conocer un kit que contiene una selección de secuencias según SEQ ID 22 a SEQ ID 97 y/o fragmentos de genes de las mismas con por lo menos 1-100, en una realización preferida 1-5 y 1-10 nucleótidos, para determinar perfiles de expresión génica *in vitro* en una muestra de paciente para uso como genes de control.

Además, también se da a conocer un kit que contiene una selección de sondas de hibridación según SEQ ID No. 1 a SEQ ID No. 7 y/o fragmentos de genes de las mismas con por lo menos 50 nucleótidos para determinar perfiles de expresión génica *in vitro* en una muestra de paciente para uso como genes de control.

Igualmente también se da a conocer un kit que contiene una selección de sondas de cebadores según SEQ ID No. 8 a SEQ ID No. 21 y/o fragmentos de genes de las mismas con por lo menos 15 nucleótidos para determinar perfiles de expresión génica *in vitro* en una muestra de paciente para uso como genes de control.

En su versión más amplia y más general, la presente revelación se refiere a las siguientes formas de realización:

A) Por lo menos un gen de control para la normalización de datos de análisis de la expresión génica de muestras de sangre de un paciente, en el que el gen de control se selecciona de las siguientes secuencias de ARN: SEQ ID 22 a SEQ ID 97, especialmente SEQ ID 87, SEQ ID 89, SEQ ID 90, SEQ ID 91, SEQ ID 93, SEQ ID 95 y SEQ ID 96.

- B) Por lo menos un cebador derivado de los genes de control según A) para la normalización de datos de análisis de la expresión génica basados en la amplificación de ácidos nucleicos de muestras de sangre de un paciente, en el que el cebador se selecciona de las siguientes secuencias de ADN: SEQ ID 8 a SEQ ID 21.
- C) Por lo menos una sonda derivada de los genes de control según B) para la normalización de datos de análisis de la expresión génica de muestras de sangre de un paciente, en el que el conjunto de sondas comprende la siguientes secuencias de ADN: SEQ ID 1 a SEQ ID 7, así como sus secuencias de ácidos nucleicos complementarios.
- D) Un procedimiento para la normalización de datos de análisis de la expresión génica con por lo menos un ácido nucleico de control seleccionado de los genes de control según A) o un conjunto de cebadores según B) o un conjunto de sondas según C), en el que
 - a) se realiza por lo menos un ensayo de análisis de la expresión génica de muestras de sangre de un paciente *in vitro*;
 - como base para la normalización de los datos de análisis de la expresión génica de las muestras que van a investigarse se investiga conjuntamente por lo menos un ácido nucleico de control en el mismo ensayo;
- c) se registran las señales de los análisis de la expresión génica que reflejan el grado de expresión génica de una pluralidad de genes, así como de por lo menos un ácido nucleico de control;
 - d) los datos de señales obtenidos en la etapa c) se someten a una transformación matemática para debilitar por lo menos la variabilidad técnica de los datos de señales; y, por tanto,
- e) para normalizar los datos de señales de las muestras que van a investigarse.
 - E) Formas de realización preferidas del procedimiento según D) son:

Un procedimiento según D), en el que la transformación matemática de los datos de señales se realiza mediante el arsenh o mediante un enfoque logarítmico;

y/o

15

35

40

50

55

60

el ensayo de la expresión génica comprende las siguientes etapas:

f) aislamiento de ácidos nucleicos de una muestra de sangre;

- g) dado el caso una coamplificación de un conjunto de ácidos nucleicos de control, así como de los ácidos nucleicos que van a probarse; e
 - h) hibridación de sondas;

y/o

los ácidos nucleicos comprenden ARNm o microARN;

y/o

los ácidos nucleicos se amplifican mediante PCR, PCR en tiempo real, NASBA, TMA o SDA;

v/o

los valores de expresión de los ácidos nucleicos de control y de prueba se determinan mediante procedimientos de hibridación;

y/o

la medición de los valores de expresión de los ácidos nucleicos de control y de prueba se realiza en disolución o en ácidos nucleicos que están inmovilizados en un soporte;

y/o

el soporte es una micromatriz, partícula, perla, vidrio, metal o membrana;

65 y/o

los ácidos nucleicos de control y/o de prueba están acoplados indirectamente al soporte mediante otros componentes de unión como anticuerpos, antígenos, oligonucleótidos, balizas moleculares o enzimas;

y/o

los valores de expresión de los ácidos nucleicos de control y de prueba determinados *in vitro* a partir de una muestra de paciente se utilizan como parámetros de entrada para la preparación de software para la descripción del pronóstico individual de un paciente, para fines de diagnóstico, para las decisiones de terapia y/o sistemas de gestión de datos de pacientes.

- F) Un uso de por lo menos un ácido nucleico de control seleccionado de los genes de control según A) o un cebador según B) o una sonda según C) para la normalización de un procedimiento de análisis de la expresión génica para el diagnóstico de enfermedades con reacción inmunitaria sistémica.
 - G) Formas de realización preferidas del uso según F) son:
- Un uso según F), en el que las enfermedades se seleccionan de: sepsis, sepsis grave, choque séptico o insuficiencia multiorgánica;

y/o

25

40

50

- en un procedimiento para el diagnóstico *in vitro* de SIRS, sepsis, sepsis grave, choque séptico o insuficiencia multiorgánica en un individuo usando conjuntos de ácidos nucleicos de control y ácidos nucleicos de prueba cuya expresión es específica para SIRS o sepsis, que comprende las siguientes etapas:
 - a) aislamiento simultáneo de los ácidos nucleicos de control y de prueba de una muestra del individuo,
 - b) dado el caso amplificación de los ácidos nucleicos de control y de prueba,
 - determinación de los valores de expresión de los ácidos nucleicos de control y de prueba,
- d) una normalización de la expresión génica de los ácidos nucleicos de prueba basada en los valores de expresión de los ácidos nucleicos de control,
 - e) determinación de si los valores de expresión normalizados del ácido nucleico de prueba han alcanzado un valor específico para SIRS, sepsis, sepsis grave, choque séptico o insuficiencia multiorgánica.
- En principio, lo siguiente también es válido para la transformación/normalización de datos en el marco de la presente invención:
 - 1ª variante: (se propone en experimentos de PCR o también en matrices diagnósticas pequeñas como normalización)

Se suman las señales de los genes de control y a continuación se calcula la relación de las señales de los genes de prueba con respecto a la señal sumada de los genes de control. En el caso de señales logarítmicas la relación consiste entonces en la diferencia.

45 2ª variante: (por ejemplo, Huber y col. [19] en conjuntos de "genoma completo" ("whole genome") o matrices grandes)

Se usan las señales de los genes de control para estimar los parámetros de una transformación adecuada o la propia transformación.

A continuación se aplica esta transformación a los genes de prueba.

Otras ventajas y características de la presente invención resultan de la descripción de los ejemplos de realización.

55 Ejemplo de realización 1

Identificación de genes de control de sangre y de células sanguíneas

Medición de la expresión génica

Se midió la expresión génica de 372 pacientes en cuidados intensivos (pacientes en UCI). Todos los pacientes se trataron bajo tratamiento médico de cuidados intensivos. A este respecto, por paciente se consideraron como máximo siete días en la UCI. En pacientes con más de siete días en la UCI se eligieron aleatoriamente siete días. En total, en los análisis entraron los datos de 1261 experimentos de micromatriz.

Las características seleccionadas de los pacientes se representan en las Tablas 4 y 5. Se facilitan datos sobre la edad, sexo y categorías de ACCP/SCCM. Como muestras de referencia sirvieron los ARN totales de las líneas celulares SIG-M5. Todas las muestras de pacientes se cohibridaron en una micromatriz con la muestra de referencia, respectivamente.

11

TABLA 4

Datos generales de los pacientes

Número de pacientes (micromatrices)	372 (1261)
Mortalidad	94 (25,3%)
Sexo [F/M]	113/259
Edad en años	68 (15)
APACHE-II	16 (9)
SAPS-II	32(15)
SOFA	8 (4)
Duración de la hospitalización en días	8 (22)

Se especifican respectivamente medianas y en paréntesis el intervalo intercuartil (IQR)

TABLA 5
Indicaciones sometidas a operación con respecto al análisis verdadero (posibilidad de múltiples entradas)

Indicación	Número de pacientes
Vasos coronarios	153
Válvulas cardíacas	65
Gastrointestinal	34
Tórax	17
Politraumatismo	13
Vasos periféricos cardíacos	8
Urogenital	8
Neurocirugía	6

Descripción experimental

Extracción de sangre y aislamiento de ARN

La sangre completa de los pacientes se extrajo de los pacientes en la unidad de cuidados intensivos mediante el kit PAXGene según las especificaciones del fabricante (Qiagen). Después de extraerse la sangre completa, el ARN total de las muestras se aisló usando el kit PAXGene Blood RNA según las especificaciones del fabricante (Qiagen).

Cultivo celular

5

10

15

20

25

30

35

40

45

Para el cultivo de células (muestras de control) se utilizaron 19 criocultivos celulares (SIGM5) (congelados en nitrógeno líquido). Las células se inocularon respectivamente con 2 ml de medio Iscove (Biochrom AG) complementado con suero bovino fetal al 20% (SBF). Los cultivos celulares se incubaron a continuación durante 24 horas a 37°C con 5% de CO₂ en placas de 12 pocillos. Después se dividió el contenido de 18 pocillos en 2 partes con respectivamente el mismo volumen de manera que finalmente estuvieran a disposición 3 placas de la misma forma (en total 36 pocillos). El cultivo continuó a continuación durante 24 horas bajo las mismas condiciones. A continuación se reunieron los cultivos resultantes de 11 pocillos de cada placa y se centrifugaron (1000 x g, 5 min, temperatura ambiente). El sobrenadante se desechó y el sedimento celular se disolvió en 40 ml del medio anteriormente mencionado. Estas células disueltas en 40 ml se repartieron a partes iguales en dos matraces de 250 ml y se incubaron de nuevo después de 48 horas de incubación y adición de 5 ml del medio anteriormente mencionado. 80 µl de los 2 ml restantes de las dos placas restantes se añadieron a pocillos vacíos de las mismas placas que ya se habían preparado previamente con 1 ml del medio anteriormente mencionado. Después de 48 horas de incubación sólo se procesó una de las placas de 12 pocillos del siguiente modo: de cada pocillo se extrajeron 500 μ l y se reunieron. Los 6 ml resultantes de esto se añadieron a un matraz de 250 ml que contenía aproximadamente 10 ml de medio fresco. Esta mezcla se centrifugó 5 minutos a 1000 x g a temperatura ambiente y se disolvió en 10 ml del medio anteriormente mencionado. El posterior recuento de células produjo el siguiente resultado: 1,5 x 10⁷ células por ml, 10 ml de volumen total, número total de células: 1,5 x 108. Como el número de células no era todavía suficiente se añadieron 2,5 ml de la suspensión de células anteriormente mencionada en 30 ml del medio anteriormente mencionado en un matraz de 250 ml (75 cm²) (en total 4 matraces). Después de 72 horas de tiempo de incubación, a los matraces se les añadieron respectivamente 20 ml de medio fresco. Después de la siguiente incubación de 24 horas se realizó el recuento de células como se ha descrito anteriormente, que dio un número de células total de 3,8 x 108 células. Para alcanzar el número de células deseado de 2 x 10⁶ células, las células se resuspendieron en 47,5 ml del medio anteriormente mencionado en 4 matraces. Después

de un tiempo de incubación de 24 horas, las células se centrifugaron y se lavaron dos veces con tampón fosfato sin Ca²⁺ ni Mg²⁺ (Biochrom AG).

El aislamiento del ARN total se realiza mediante el kit NucleoSpin RNA L (Machery&Nagel) correspondientemente a las indicaciones del fabricante. El procedimiento anteriormente descrito se repitió hasta que se alcanzó el número de células necesario. Esto fue necesario para alcanzar la cantidad necesaria de 6 mg de ARN total, lo que se corresponde con aproximadamente una eficiencia de 600 µg de ARN por 10⁸ células.

Transcripción inversa/marcado/hibridación

10

Después de extraer la sangre completa, el ARN total de las muestras se aisló usando el kit PAXGene Blood RNA (PreAnalytiX) según las especificaciones del fabricante y se comprobó para su calidad. De cada muestra se tomaron alícuotas de $10\,\mu\mathrm{g}$ de ARN total y junto con $10\,\mu\mathrm{g}$ de ARN total de células SIGM5 como ARN de referencia se transcribieron en ADN complementario (ADNc) con la transcriptasa inversa Superscript II (Invitrogen) y el ARN se eliminó a continuación de la mezcla mediante hidrólisis alcalina. En la mezcla de reacción se sustituyó una parte del dTTP por aminoalil-dUTP (AA-dUTP) para hacer posible posteriormente el acoplamiento del colorante de fluorescencia al ADNc.

Después de la purificación de la mezcla de reacción, los ADNc de las muestras y los controles se marcaron covalentemente con el colorante de fluorescencia Alexa 647 y Alexa 555 y se hibridaron sobre una micromatriz de la empresa SRIS-Lab. Sobre la micromatriz usada se encuentran 5308 polinucleótidos inmovilizados con una longitud de 55-70 pares de bases que representan respectivamente un gen humano y puntos de control para el aseguramiento de la calidad. Una micromatriz está dividida en 28 submatrices con una rejilla de 15x15 puntos.

La hibridación y el posterior lavado o secado se realizó en la estación de hibridación HS 400 (Tecan) según las indicaciones del fabricante durante 10,5 horas a 42°C. La disolución de hibridación usada está constituida por las muestras de ADNc marcadas respectivas, 3,5x SSC (1x SSC contiene cloruro sódico 150 mM y citrato sódico 15 mM), dodecilsulfato de sodio al 0,3% (v/v), formamida al 25% (v/v) y 0,8 μg μl⁻¹ de cada uno de cot-1 DNA, ARNt de levadura y ARN de poli-A. El posterior lavado de las micromatrices se realizó con el siguiente programa a temperatura ambiente: cada 90 segundos lavado con tampón de lavado 1 (2x SSC, dodecilsulfato de sodio al 0,03%), con tampón de lavado 2 (1x SSC) y por último con tampón de lavado 3 (0,2x SSC). Después, las micromatrices se secaron bajo una corriente de nitrógeno con una presión de 2,5 bar (0,25 MPa) a 30°C durante 150 segundos.

Después de la hibridación, las señales de hibridación de las micromatrices se leyeron con un escáner GenePix 4000B (Axon) y las relaciones de expresión de los genes diferencialmente expresados se determinaron con el software GenePix Pro 4.0 (Axon).

Evaluación

40 Para la evaluación, la intensidad media de un punto se determinó como la mediana del valor de los píxeles de puntos correspondientes.

Preselección de muestras de genes

Para una primera preselección de las sondas de genes la corrección de errores sistemáticos se realizó según el enfoque de Huber y col. [5]. A este respecto, el sesgo aditivo y multiplicativo dentro de una micromatriz se estimó a partir del 75% de las muestras de genes presentes.

A continuación, las relaciones normalizadas y transformadas de las señales de las muestras de pacientes se calcularon frente a los controles generales. Es decir, para el gen j de la matriz k el cálculo dio el valor

 $G_{j,k}$ =arsenh(Scy5(j,k) - arsenh(Scy3(j,k))

en la que [Scy3(j,k), Scy5(j,k)] designa el par de señales de fluorescencia respectivo. Para todas las sondas de genes se calculó a continuación la mediana de las desviaciones absolutas de la mediana (DAM), es decir, DAM(G_{j,1}, ..., G_{j,1261}), y se seleccionó el 10% de las sondas de genes con la DAM más pequeña. Como segundo criterio para la preselección se empleó la intensidad de señal media arsenh(Scy5(j,k)) + arsenh(Scy3(j,k)). En los otros análisis sólo se consideraron sondas de genes cuya mediana de la intensidad de señal media se encontraba en el intervalo de señales dinámico, preferiblemente entre 6 y 8 (en la escala logarítmica).

Selección de los genes de control

Se calcularon cantidades relativas para las sondas de genes preseleccionadas fijando el mayor valor de expresión a 1. A continuación se calculó la medida de estabilidad génica M de Vandesompele y col. [6]. Las sondas de genes se dispusieron según su estabilidad mediante el procedimiento escalonado también descrito en Vandesompele y col. en el que en cada etapa se elimina el gen con la menor estabilidad. Como valor umbral superior para la selección de las sondas de genes se tomó por base el valor (redondeado) de 0,6 para el valor medio de la medida de estabilidad M (Tabla 6).

La definición matemática para la medida de estabilidad génica M es según Vandesompele y col.:

Para cada combinación de dos genes de control internos j y k se especifica una matriz A_{jk} de m elementos que está constituida por las relaciones de expresión transformadas por $\log_2 a_{ij}/a_{ik}$ (Ecuación 1). La variación V_{jk} de datos emparejados para los genes de control j y k se define además como la desviación estándar de los elementos A_{jk} (Ecuación 2), en la que DE es la desviación estándar. La medida de estabilidad génica M_j para el gen de control j es entonces la media aritmética de todas las variaciones de datos emparejados V_{jk} (Ecuación 3):

(Para cada j,k es válido \in [1,n] y j \neq k):

10

15

$$A_{jk} = \left[log_2 \left(\frac{a_{1j}}{a_{1k}} \right), log_2 \left(\frac{a_{2j}}{a_{2k}} \right),, log_2 \left(\frac{a_{mj}}{a_{mk}} \right) \right] = \left[log_2 \left(\frac{a_{ij}}{a_{ik}} \right) \right]_{i=1,\dots,m}$$
(1)

$$V_{jk} = DE(A_{jk})$$
 (2)

$$M_{j} = \frac{\sum_{k=1}^{n} V_{jk}}{n-1}$$
 (3)

Se determinó un conjunto de 76 secuencias específicas con actividad génica invariable correspondientemente a SEQ ID No. 22 a SEQ ID No. 97 que son constituyentes de la lista de secuencias adjunta.

TABLA 6

Genes de control determinados (basados en ARN) y sus valores de estabilidad

35	SEQ ID	Número de registro de GenBank	DAM de la relación de señales	Mediana de las intensidades medias	Estabilidad M
	22	NM 024081	0,200	7,190	0.368
	23	AA398364	0,179	6,730	0,385
	24	N34546	0,171	6.265	0.401
40	25	AA659421	0,212	7.127	0,380
10	26	AA682479	0,218	6,209	0,373
	27	AK024118	0.172	6,601	0.457
	28	AA923316	0,197	6,891	0,374
	29	BM309952	0,205	7,533	0,417
45	30	AI093653	0,156	7,120	0,355
	31	AI131415	0,156	6,881	0,413
	32	Al263527	0,173	6,614	0.379
	33	AA282242	0,181	6,758	0,381
	34	CR740270	0,191	6,360	0,346
50	35	BG191861	0,191	6,292	0,377
	36	Al301257	0,244	6,039	0,401
	37	Al310464	0,202	6,229	0,423
	38	AW964023	0,204	6,776	0,380
	39	Al351933	0,171	6,478	0,414
55	40	AA100540	0,196	7,180	0,365
	41	Al362368	0,199	6,967	0,397
	42	Al817134	0,167	6,592	0.362
	43	Al381377	0,193	6,179	0,401
	44	AI520967	0,188	6,534	0,386
60	45	AA253470	0,182	7,002	0,365
	46	AI559304	0,195	7,408	0,369
	47	Al565002	0,182	7,149	0,381
	48	AI587389	0,197	7,006	0,355
	49	Al609367	0,206	6,648	0,354
65	50	AI635278	0,200	6,629	0,427

	SEQ ID	Número de registro de GenBank	DAM de la relación de señales	Mediana de las intensidades medias	Estabilidad M
	51	AI702056	0,208	6,370	0,391
_	52	Al707917	0,177	6,392	0,414
5	53	AI733176	0,209	6,211	0,411
	54	AI769053	0,210	7,570	0,383
	55	Al798545	0,167	7,289	0,394
	56	Al801425	0,174	6,780	0,406
_	57	Al801595	0,188	7,061	0,409
0	58	Al809873	0,200	7,207	0,413
	59	Al862063	0,173	7,001	0,347
	60	Al923251	0,197	7,085	0,359
	61	Al925556	0,178	6,924	0,329
_	62	Al932551	0.177	7,191	0,415
5	63	Al932884	0,182	7,430	0,409
	64	Al933797	0,204	6,834	0,423
	65	Al933967	0,193	7.007	0,443
	66	Al935874	0,203	7,166	0,388
	67	H06263	0,169	7,140	0,337
0	68	H22921	0,241	6,445	0,408
	69	H54423	0,175	7,046	0,385
	70	N22551	0,205	6,830	0,387
	71	N73510	0,181	7,084	0,388
	72	R06107	0,164	7,067	0,352
5	73	R42511	0,212	6,110	0,332
	74	R43088	0,215	6.067	0,398
	75	NM 181705	0,208	6,821	0,383
	76	R92455	0,203	6,629	0,410
	77	R93174	0,211	7,164	0,358
0	78	T77995	0,201	7,104	0,423
	79	T79815	0,197	7,270	0,423
	80	T83946	0,196	7,388	0,363
	81	T95909	0,177	7,109	0,414
	82	T98779	0,186	6,964	0,414
5	83	AK127462	0,198	6,784	0,367
	84	W80744	0,194	6,995	0,364
	85	W86575	0,194	6,761	0,304
	86	AJ297560	0,230	7,063	0,380
	87	NM_001562	0,173	7,003	0,516
C	88	BU629240	0,192	6,696	0,401
	89	NM 001228	0,214	6,286	0,401
	90	NM 001993	0,233	6,874	0,423
	91	NM 002209	0,192	7,676	
	92	NM 002392	0,201		0,425
5	93	NM 000587	0,199	6,969	0,431
	93	NM_004379	0,199	6,848	0,334
	95	BC002715		7,135	0,415
	95		0,182	6,685	0,502
		NM_003082	0,214	6,327	0,469
0	97	AA664688	0,192	6,610	0,396

Ejemplo de realización 2

Investigación de la estabilidad de los genes de control mediante investigaciones de expresión génica de pacientes con y sin sepsis

Los inventores muestran en este ejemplo de realización que los genes de control determinados en el primer ejemplo de realización también son estables en pacientes tratados con cuidados intensivos con y sin sepsis. Los inventores consideraron para esto datos de micromatrices de 118 pacientes. En total se analizaron 394 días de pacientes (micromatrices), considerándose como máximo siete días por paciente.

TABLA 7

Datos generales de los pacientes

Número de pacientes (micromatrices)	118 (394)
Mortalidad	31 (26,3%)
Sexo [F/M]	41/77
Edad en años [mediana (IQR)]	68,5 (14,8)

TABLA 8

Clasificación de los días de pacientes según la categoría de ACCP/SCCM, así como otros parámetros de diagnóstico

	Pacientes en UCI*	SIRS	Sepsis	Sepsis grave	Choque séptico
Número de días	33	158	24	90	89
Puntuación SOFA	7 (3)	7 (4)	6 (3,25)	8 (4)	10 (3)
Número de ODF	2 (2)	2 (1)	1,5 (1)	3 (2)	3 (2)
PCT [ng/ml]	1,6 (3,8)	1,8 (5,4)	1,2 (5,1)	2,5 (4,9)	6,4 (11,5)
CRP [mg/l]	144 (53,9)	112,5 (106,4)	141 (87,1)	133 (105,9)	170 (146)
WBC [no/l]	7750 (4075)	11100 (7100)	13350 (8800)	12900 (6675)	16100 (10600)

^{*} pacientes tratados con cuidados intensivos que no han desarrollado SIRS ni sepsis

Se especifica respectivamente la mediana y en paréntesis el intervalo intercuartil (IQR).

Se eligieron los siguientes genes de prueba para demostrar una aplicabilidad de los genes de control mediante una comparación de pacientes con SIRS y sepsis (véase la Tabla 9).

TABLA 9

Genes de prueba para la comparación de pacientes con SIRS y sepsis

Número	Número de registro de GenBank	Bibliografía	SEQ ID
CARD8	NM_014959	[7]	98
CCBP2	NM_001296	[8]	99
CCL26	NM_006072	[9]	100
FADD	NM_003824	[10]	101
IL6R	NM_181359	[11]	102
ITGB2	NM_000211	[12]	103
MAPK3	NM_002746	[13]	104
MYD88	NM_002468	[14]	105
TNF	NM_000594	[15]	106
TREM1	NM_018643	[16]	107

Estos genes de prueba se describen en la bibliografía científica en relación con la sepsis.

--

5

10

15

20

25

30

35

40

45

50

55

Para el análisis estadístico se seleccionaron 6 pacientes con SIRS grave (SIRS + disfunciones orgánicas) y 9 pacientes con sepsis grave (sepsis + disfunciones orgánicas) (Tabla 10).

5

TABLA 10

Características seleccionadas de pacientes con SIRS y sepsis

10

15

20

SIRS grave Sepsis grave Número de pacientes 6 Mortalidad 0 (0%) 5 (55,6%) Sexo [M/F] 4/2 7/2 Edad [años] 70,5 (7) 74 (7) Puntuación SOFA 8 (2,25) 10 (4) Número de ODF 3,5 (1,75) 3 (1) PCT [ng/ml] 3,1 (5,5) 28,2 (38,8) CRP [mg/l] 71,2 (15,6) 206 (180) WBC [no/l] 14250 (3800) 15800 (4600)

Se especifica respectivamente la mediana y en paréntesis el intervalo intercuartil (IQR).

Número de registro de Carbanto

La normalización de los diez genes de prueba se realizó mediante los siguientes cinco genes de control seleccionados aleatoriamente. Para esto se usó el procedimiento de Vandesompele y col. [6] (Tabla 11).

30

TABLA 11

Genes de control seleccionados (conjunto 1)

35

40

SEQ ID
32
38
64
82
94

Una comparación mediante la prueba de la t de dos muestras proporciona el siguiente resultado (Tabla 12)

45

TABLA 12

Actividad génica de los genes de prueba normalizada con el conjunto 1 de los genes de control

50

55

60

Símbolo del gen	SEQ ID	SIRS medio	Sepsis media	Valor de p
CARD8	98	1,85	4,32	0,045
CCBP2	99	1,25	2,69	0,004
CCL26	_100	1,52	2,69	0,041
FADD	101	1,26	3,45	0,028
IL6R	102	1,58	2,15	0,175
ITGB2	103	1,04	2,60	0,074
MAPK3	104	1,26_	2,49	0,052
MYD88	105	1,11	2,34	0,025
TNF	106	1,41	2,47	0,055
TREM1	107	1,09	1,52	0,154

Para demostrar la reproducibilidad de los resultados se repitió la comparación estadística seleccionándose aleatoriamente de nuevo cinco genes de control (conjunto 2) (Tabla 13)

> TABLA 13 Genes de control (conjunto 2)

Número de registro de GenBank	SEQ ID
Al609367	49
Al862063	59
H06263	67
R92455	76
BC002715	95

Después de la normalización mediante el procedimiento de Vandesompele y col. los inventores obtienen los siguientes resultados para la prueba de t de dos muestras (Tabla 14):

TABLA 14 Actividad génica de los genes de prueba normalizada con el conjunto 2 de los genes de control

Símbolo del gen	SEQ ID	SIRS medio	Sepsis media	Valor de p
CARD8	98	1,67	3,71	0,029
CCBP2	99	1,15	2,35	0,001
CCL26	100	1,37	2,34	0,033
FADD	101	1,15	2,98	0,015
IL6R	102	1,44	1,88	0,210
ITGB2	103	0,97	2,27	0,050
MAPK3	104	1,15	2,34	0,065
MYD88	105	1,03	2,05	0,028
TNF	106	1,28	2,20	0,057
TREM1	107	0,99	1,34	0,145

Los resultados muestran una reproducibilidad muy buena de los resultados. En ambas comparaciones, marcadores idénticos al 5% o al 10% de nivel son significativos.

Ejemplo de realización 3

45 Determinación de los valores de estabilidad de genes de control seleccionados mediante su cebador específico mediante PCR en tiempo real

Aislamiento de ARN

Se aisló ARN a partir de sangre completa con ayuda del kit PAXgene (PreAnalytiX) según indicaciones del fabricante

PCR cuantitativa con transcriptasa inversa (RT-PCR)

- Mediante la transcripción inversa, el ARNm se transcribió independientemente de su secuencia en ADNc con ayuda de un cebador oligo(dT). Las hebras de ADNc formadas a este respecto complementarias al ARNm utilizado se utilizaron a continuación como molde para distintas reacciones de PCR.
 - a) Para el lote se pipetearon juntos los siguientes constituyentes:
 - 5 μg de ARN concentrado
 - $10 \,\mu l$ de H₂O
 - $1 \mu l$ de dNTP (dGTP, dATP, dCTP, dTTP)
 - $1 \mu l$ de oligo(dT) $(0.5 \mu g/\mu l)$

18

5

10

15

20

30

25

35

50

55

- b) 5 min a 70°C, a continuación 5 min sobre hielo
- c) a continuación se añadió la siguiente mezcla:
- $4 \mu l$ de tampón de RT

5

10

15

25

30

35

40

45

50

60

65

- $2 \mu l$ de DTT 0,1 M
- 1 μl de RNasa OUT (inhibidor de RNasa)
- $1 \mu l$ de transcriptasa inversa SuperScript
- d) incubar 1 h a 42°C
- e) incubar 15 min a 70°C

Reacción en cadena de la polimerasa

Con ayuda de PCR se amplificó el fragmento de ADN seleccionado y a continuación se cuantificó y así se determinó la intensidad de la expresión génica de los genes de control:

Para la PCR se usó el sistema de Taq ADN polimerasa AccuPrime de Invitrogen.

Para un lote de 25 µl se pipetean juntos los siguientes constituyentes en un tubo de 200 µl:

2,5 µl de 10x tampón I de PCR AccuPrime

 $20 \,\mu l$ de RNasa libre de H_2O

, -

 $1 \mu l$ de molde de ADN diluido1:10 (aproximadamente 0,82 ng/ μl)

1 μ l de mezcla de cebadores (0,5 μ l de cada uno de cebador directo/inverso correspondientemente a la Tabla 2)

 $0.5 \mu l$ de Taq ADN polimerasa AccuPrime

Se realiza el siguiente programa en el ciclador térmico de PCR en tiempo real (Corbett Research RG 3000):

El ADN de molde se desnaturalizó primero completamente a 94°C y la enzima se activó. A continuación siguieron 30 ciclos de amplificación constituidos por desnaturalización a 94°C, hibridación a 58°C y extensión a 68°C. A continuación de la PCR, las muestras se aplicaron sobre un gel de agarosa al 1,5% para comprobar la exactitud de los productos mediante el tamaño de los fragmentos.

TABLA 15

Valores de estabilidad de genes de control seleccionados (basados en ARN) determinados mediante cebador específico y PCR en tiempo real

SEQ ID	Número de registro de GenBank	Estabilidad M
87	NM_001562	1,1028295
89	NM_001228	1,0377301
90	NM_001993	1,9214240
91	NM_002209	1,1226082
93	NM_000587	1,1679851
95	BC002715	1,1285312
96	NM_003082	0,9456845

Referencias

15

- [1] **Warrington** JA, **Nair** A, **Mahadevappa** M y col., Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes., *Physiol Genomics*. 2000 Apr 27; 2(3):143-7.
- [2] US 10/551,874, Method for recognising acute generalized inflammatory conditions (SIRS), Sepsis, Sepsis-like conditions and systemic infections.
- [3] **O'Dwyer** MJ. **Mankan** AK, **Stordeur** P, The occurrence of severe sepsis and septic shock are related to distinct patterns of cytokine gene expression. *Shock*. 2006 Dec; 26(6):544-50.
 - [4] **Bone** RC, **Balk** RA, **Cerra** FB y col. (<u>1992</u>) The ACCP/SCCM Consensus Conference Committee (1992) Definitions for Sepsis and organ failure and guidelines for the use of innovative therapies in Sepsis. *Chest* 101:1656-1662; und Crit Care Med 1992; 20: 864-874.
 - [5] **Huber** W, **Heydebreck** A, **Sueltmann** H y col. (2003) Parameter estimation for the calibration and variance stabilization of microarray data. *Stat. Appl. in Gen. and Mol. Biol.* Vol. 2, Issue 1, Article 3.
- [6] **Vandesompele** J, De **Preter** K, **Pattyn** F y col., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology* 2002, 3(7):research0034.1-0034.11
 - [7] **Razmara** M, **Srinivasula** SM, **Wang** L y col., CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. *J Biol Chem.* 2002 Apr 19; 277(16):13952-8. Epub 2002 Jan 30.
- 25 [8] **Coelho** AL, **Hogaboam** CM, **Kunkel** SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. *Cytokine Growth Factor Rev*. 2005 Dec; 16(6):553-60. Epub 2005 Jun 20.
 - [9] Yamamoto T, Umegae S, Kitagawa T, Matsumoto K. Intraperitoneal cytokine productions and their relationship to peritoneal sepsis and systemic inflammatory markers in patients with inflammatory bowel disease. *Dis Colon Rectum.* 2005 May; 48(5):1005-15.
 - [10] **Oberholzer** C, **Oberholzer** A, **Clare-Salzler** M, **Moldawer** LL. Apoptosis in sepsis: a new target for therapeutic exploration. *FASEB J.* 2001 Apr; 15(6):879-92.
 - [11] **Andrejko** K.M., **Chen** J. y **Deutschman** C.S. Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat. *Am J Physiol Gastrointest Liver Physiol* 275: G1423-G1429, 1998.
 - [12] **Piguet** P.F., **Vesin** C., **Rochat** A. β2 Integrin modulates platelet caspase activation and life span in mice. *European Journal of Cell Biology*, Volume 80, Number 2, February 2001, pp. 171-177(7).
 - [13] **Riedemann** NC, **Guo** RF, **Hollmann** TJ y col., Regulatory role of C5a in LPS induced IL-6 production by neutrophils during sepsis. *FASEB J.* 2004 Feb; 18(2):370-2. Epub 2003 Dec 19.
- [14] **Weighardt** H, **Kaiser-Moore** S, **Vabulas** RM y col., Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. *J Immunol*. 2002 Sep 15; 169(6):2823-
 - [15] **Hedberg** CL, **Adcock** K, **Martin** J y col., Tumor necrosis factor alpha -- 308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. *Pediatr Infect Dis J.* 2004 May; 23(5):424-8.
 - [16] **Gibot** S, **Kolopp-Sarda** MN, **Bene** MC y col., A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. *J Exp Med.* 2004 Dec 6; 200(11):1419-26.
- [17] **Brazma** A, **Hingamp** P, **Quackenbush** J y col., Minimum information about a microarray experiment (MIA-55 ME)-toward standards for microarray data, *Nature Genetics* 29, 365-371 (2001).
 - [18] **Rocke** DM, **Durbin** B, A model for measurement error for gene expression arrays., *J Comput Biol*. <u>2001</u>; 8 (6):557-69.
- [19] **Huber** W, **Heydebreck** A, **Sueltmann** H, Variance stabilization applied to microarray data calibration and to the quantification of differential expression., *Bioinformatics*. 2002; 18 Suppl 1:S96-104.

65

REIVINDICACIONES

- 1. Conjunto de genes de control para la normalización de datos de análisis de la expresión génica de muestras de sangre de un paciente, en el que el conjunto de genes de control comprende las siguientes secuencias de ARN: SEQ ID 87, SEQ ID 89, SEQ ID 90, SEQ ID 91, SEQ ID 93, SEQ ID 95 y SEQ ID 96.
 - 2. Conjunto de cebadores derivado del conjunto de genes de control según la reivindicación 1 para la normalización de datos de análisis de la expresión génica basados en la amplificación de ácidos nucleicos de muestras de sangre de un paciente, en el que el conjunto de cebadores comprende las siguientes secuencias de ADN: SEQ ID 8 a SEQ ID 21.
 - 3. Conjunto de sondas derivado del conjunto de genes de control según la reivindicación 1 para la normalización de datos de análisis de la expresión génica de muestras de sangre de un paciente, en el que el conjunto de sondas comprende las siguientes secuencias de ADN: SEQ ID 1 a SEQ ID 7, así como sus secuencias de ácidos nucleicos complementarios.
 - 4. Procedimiento para la normalización de datos de análisis de la expresión génica con un conjunto de ácidos nucleicos de control seleccionado de un conjunto de genes de control según la reivindicación 1 o de un conjunto de cebadores según la reivindicación 2 o de un conjunto de sondas según la reivindicación 3, en el que
 - se realiza por lo menos un ensayo de análisis de la expresión génica de muestras de sangre de un paciente a)
 - b) como base para la normalización de los datos de análisis de la expresión génica de las muestras que van a investigarse, en el mismo ensayo se investigan conjuntamente un conjunto de ácidos nucleicos de control según la reivindicación 1 o un conjunto de cebadores según la reivindicación 2 o un conjunto de sondas según la reivindicación 3;
 - se registran las señales de los análisis de la expresión génica que reflejan el grado de expresión génica c) de una pluralidad de genes, así como del conjunto de ácidos nucleicos de control;
 - los datos de señales obtenidos en la etapa c) se someten a una transformación matemática para debilitar d) por lo menos la variabilidad técnica de los datos de señales; y
 - e) para así normalizar los datos de señales transformados de las muestras que van a investigarse.
 - 5. Procedimiento según la reivindicación 4, caracterizado porque la transformación matemática de los datos de señales se realiza mediante el arsenh o mediante un enfoque logarítmico.
- 6. Procedimiento según la reivindicación 4 ó 5, caracterizado porque el ensayo de expresión génica comprende las siguientes etapas:
 - aislamiento de los ácidos nucleicos de una muestra de sangre;
 - dado el caso una coamplificación de un conjunto de ácidos nucleicos de control, así como los ácidos b) nucleicos que van a probarse; e
 - hibridación de sondas. c)
 - 7. Procedimiento según la reivindicación 6, en el que los ácidos nucleicos comprenden ARNm o microARN.
- 8. Procedimiento según una de las reivindicaciones 4-7, en el que los ácidos nucleicos se amplifican mediante PCR, PCR en tiempo real, NASBA, TMA o SDA. 55
 - 9. Procedimiento según una de las reivindicaciones 6-8, en el que los valores de expresión de los ácidos nucleicos de control y de prueba se determinan mediante procedimientos de hibridación.
 - 10. Procedimiento según una de las reivindicaciones 4-9, en el que la medición de los valores de expresión de los ácidos nucleicos de control y/o de prueba se realiza en disolución o en ácidos nucleicos que están inmovilizados en un soporte.
 - 11. Procedimiento según la reivindicación 10, en el que el soporte es una micromatriz, partícula, perla, vidrio, metal o membrana.
 - 12. Procedimiento según una de las reivindicaciones 4-11, en el que los ácidos nucleicos de control y/o de prueba están acoplados indirectamente al soporte mediante otros componentes de unión como anticuerpos, antígenos, oligo-

2.1

20

25

30

35

45

40

50

nucleótidos, balizas moleculares o enzimas; y/o en el que los valores de expresión de los ácidos nucleicos de control y de prueba determinados *in vitro* a partir de una muestra de paciente se utilizan como parámetros de entrada para la preparación de software para la descripción del pronóstico individual de un paciente, para fines de diagnóstico, para las decisiones de terapia y/o sistemas de gestión de datos de pacientes.

- 5
- 13. Uso de un conjunto de ácidos nucleicos de control seleccionado de un conjunto de genes de control según la reivindicación 1 o de un conjunto de cebadores según la reivindicación 2 o de un conjunto de sondas según la reivindicación 3 para la normalización de un procedimiento de análisis de la expresión génica para el diagnóstico de enfermedades con reacción inmunitaria sistémica.

10

14. Uso según la reivindicación 13, en el que las enfermedades se seleccionan de: sepsis, sepsis grave, choque séptico o insuficiencia multiorgánica.

1

15. Uso según la reivindicación 13 ó 14 en un procedimiento para el diagnóstico *in vitro* de SIRS, sepsis, sepsis grave, choque séptico o insuficiencia multiorgánica en un individuo usando conjuntos de ácidos nucleicos de control y ácidos nucleicos de prueba cuya expresión es específica para SIRS o sepsis que comprende las siguientes etapas:

a) ais

e)

a) aislamiento simultáneo de los ácidos nucleicos de control y de prueba de una muestra del individuo;

20

b) dado el caso amplificación de los ácidos nucleicos de control y de prueba;

c) determinación de los valores de expresión de los ácidos nucleicos de control y de prueba;

25

 d) una normalización de la expresión génica de los ácidos nucleicos de prueba basada en los valores de expresión de los ácidos nucleicos de control; y

un valor específico para SIRS, sepsis, sepsis grave, choque séptico o insuficiencia multiorgánica.

determinación de si los valores de expresión normalizados del ácido nucleico de prueba han alcanzado

30

35

40

45

50

55

60

LISTA DE SECUENCIAS

5	<120> Genes de control para la normalización de datos de análisis de la expresión gén	nica
5	<130> Ref del archivo de la solicitud: 85SL0593	
	<140>	
	<141>	
10	<160> 107	
	<170> Patent Prepare 0.6.0	
15	<210> 1	
	<211> 67	
	<212> DNA	
20	<213> Homo sapiens	
	<400> 1	
25	gagttagagg ccagcctggc gaaaccccat ctctactaaa aatacaaaat ccaggcgtgg	60
	tggcaca	67
	<210> 2	
30	<211> 69	
	<212> DNA	
	<213> Homo sapiens	
35		
	<400> 2	
	ttataggtgt gagctactgt acccagcctt aacctgtttc acagttgatt atacttcatg	60
40	ctgttttcc	69
	<210> 3	
	<211> 69	
45	<212> DNA	
	<213> Homo sapiens	
50	<400> 3	
50		
	ccacactacc acattaaaaa aattagaaag tagccacgta tggtggctca tgtctataat	60
	cccagcact	6 9
55		
	<210> 4	
	<211> 64	
60	<212> DNA	
00	<213> Homo sapiens	
	<400> 4	
65	cccaaatgct gggattacag acatgaacca ccacgcctgg ctggaatact tactcttgtc	60

	<210> 5 <211> 65	
	<212> DNA	
5	<213> Homo sapiens	
	<400> 5	
10	acgtagatag aggtggagac aggaaaaaga ctaagccaga cgtggtggct cacacctgta 60	
	atccc 65	
15	<210> 6	
13	<211> 70	
	<212> DNA	
	<213> Homo sapiens	
20		
	<400> 6	
	gttcaaaacg aagactagct attaaaattt catgccgggc gcagtggctc acgcctgtaa	60
25	tcccagccct	70
	teeragetee	,,
	<210> 7	
30	<211>70	
30	<212> DNA	
	<213> Homo sapiens	
35	<400> 7	
	cttggcctcc caaagtgcta gtattatggg cgtgaaccac catgcccagc cgaaaagctt	60
	ttgaggggct	70
40	ttgagggget	70
	<210> 8	
	<210> 6 <211> 19	
45	<212> DNA	
	<213> Homo sapiens	
50	<400> 8	
50	.	
	tgacagagcc agtgggaag	19
	<210> 9	
55	<211> 19	
	<212> DNA	
	<213> Homo sapiens	
60		
	<400> 9	
		_
<i>(F</i>	aggtgtgagc tactgtacc	19
65	2105 10	
	<210> 10 <211> 20	

	<212> DNA	
	<213> Homo sapiens	
5	<400> 10	
	gctaaattcc acactaccac	
10	<210> 11	
	<211> 20	
	<212> DNA	
15	<213> Homo sapiens	
	<400> 11	
20	ccacgctcgt ctccaactcc	2
	<210> 12	
	<211> 20	
25	<212> DNA	
	<213> Homo sapiens	
30	<400> 12	
30	cactgtgcct gagctctgac	;
25	<210> 13	
35	<211> 20	
	<212> DNA	
	<213> Homo sapiens	
40	<400> 13	
	gatgaattgg gggatagatc	20
45		
	<210> 14	
	<211> 19 <212> DNA	
50	<213> Homo sapiens	
	<400> 14	
55		,
	gagatggggt ttcaccatc	1
60	<210> 15 <211> 19	
υU	<211> 19 <212> DNA	
	<213> Homo sapiens	
	A - 1 - 1 - 1	
65		

	<400> 15	
	caattctcct acctcaacc	19
5	210 16	
	<210> 16 <211> 19	
	<211> 19 <212> DNA	
10	<213> Homo sapiens	
	<400> 16	
15	ggattacagg catgcaacc	19
	<210> 17	
20	<211> 20	
	<212> DNA	
	<213> Homo sapiens	
25	<400> 17	
	ttgagtgcag cggtgtgaac	20
30	<210> 18	
	<211> 21	
	<212> DNA	
35	<213> Homo sapiens	
	<400> 18	
40	ccacagcata atgaattctg c	21
	<210> 19	
	<211> 20	
45	<212> DNA	
	<213> Homo sapiens	
50	<400> 19	
30	tgttggccag gctggtttcg	20
	-54-55	
55	<210> 20	
	<211> 19	
	<212> DNA	
60	<213> Homo sapiens	
60	<400> 20	

4

19

cctgacctct ggtgatctg

65

<210> 21

	<211> 21	
	<212> DNA	
	<213> Homo sapiens	
5	<400> 21	
10	ttagaaaagt cctagaaatg c	21
	<210> 22	
	<211> 2015	
15	<212> DNA	
	<213> Homo sapiens	
	<400> 22	
20	cccggaccga ggcaggacct caccccgcgc gtgttccccg ggcgcccctc tgcgaacccc	60
	aggcccttcc caggtttgcg cgcgggggcc atccagaccc tgcggagagc gaggcccgga	120
25	gcgtcgccga ggtttgaggg cgccggagac cgagggcctg gcggccgaag gaaccgcccc	180
	aagaagagcc tctggcccgg gggctgctgg aacatgtgcg gggggacaca gtttgtttga	240
	cagttgccag actatgttta cgcttctggt tctactcagc caactgccca cagttaccct	300
30	ggggtttcct cattgcgcaa gaggtccaaa ggcttctaag catgcgggag aagaagtgtt	360
	tacatcaaaa gaagaagcaa actttttcat acatagacgc cttctgtata atagatttga	420
	tctggagctc ttcactcccg gcaacctaga aagagagtgc aatgaagaac tttgcaatta	480
35	tgaggaagcc agagagattt ttgtggatga agataaaacg attgcatttt ggcaggaata	540
	ttcagctaaa ggaccaacca caaaatcaga tggcaacaga gagaaaatag atgttatggg	600
	ccttctgact ggattaattg ctgctggagt atttttggtt atttttggat tacttggcta	660
40	ctatctttgt atcactaagt gtaataggct acaacatcca tgctcttcag ccgtctatga	720
	aagggggagg cacactccct ccatcatttt cagaagacct gaggaggctg ccttgtctcc	780
	attgccgcct tctgtggagg atgcaggatt accttcttat gaacaggcag tggcgctgac	840
45	cagaaaacac agtgtttcac caccaccacc atatcctggg cacacaaaag gatttagggt	900
	atttaaaaaa tctatgtctc tcccatctca ctgactacct tgtcattttg gtataagaaa	960
	tttgtgttat ttgataggcc gggcatggtg gctcatgcct gtaatcccag cactttggga	1020
50	ggccaggagt tcgagaccag cctggccaac atggtgaaac ccggtctcta ctaaaaattc	1080
	aaaaattacc taggcgtcat ggggcatgcc tgtagtccca cctacttggg aggctgaagc	1140
	aggagaattg ctcgaacctg ggaggcagag gttgcagtaa gctgagatca cgccactgca	1200
55	ttccagcctg ggcgacagag caagactcca tctcaaaaat aaaataaaaa aagaaagaaa	1260
	gaaaagaaga agaaaagaga agaaggagaa ggagatgaag gaggaggagg aggagaagga	1320
	gaagaagaag aagaagaaga ccacaaaaga catgactatc caactttta tgacaaactg	1380
60	caaggaataa aggaagaata agtccatgta ctgtaccaca gaagttctgt ctgcatcttg	1440
	gacctgaact tgatcattat cagcttgata agagactttt tgactctata tccttgcagt	1500

	taagaagaaa gcactttttt gtaatgtttg ttttaatggt tcaaaaaaaa tctttcttat	1560
	aaagagcata ggtagaatta gtgaactctt tggatccttt gtacagataa aggttataga	1620
5	tttcttgtgt tgaatattaa aaaagcaagg atgtctaacc attaagatta tccaaagtca	1680
	ggctgggcgc agtggctcac gcctgtaatc ccagcacttt gggagggata ggtgggcgga	1740
	tcacctgagg tcaggagttt gagaccagcc tggccaacat ggcaaaaccc cgtctctaca	1800
10	aaaatacaaa agaaattagc cagacatgat ggcgggtgcc tctaatccca gctactgggg	1860
	aggctgaggt gggagaatcg cttgaactcg ggaggtggag gttgtagtga ggcgagattg	1920
	tgccattgca ctccaacctg ggcgacagag tgagactcca tctcaaaaaa aaaaaaaaaa	1980
15	222223232 22222222 22222222 22222	2015
	<210> 23	
	<210> 25 <211> 356	
20	<212> DNA	
	<213> Homo sapiens	
	.400. 22	
25	<400> 23	
20	gtttigttig tittgittit tittitaata tittitaaga gcigtaaaga aggagaagag	60
	gaatgagaaa atgagaaaga attattatta ttattggtgg tagtagtgat agagactgta	120
30	tgtggcctat aaaggctaac atattcactg tctgaccctt tagagaaagt ttgtcaaccc	180
30	ctggcctaga acatgggtgg cttcttacta gggctcagta agtgtctgaa tgaaggaagg	240
	aacagtttaa aactcagctt tgccgggcgc agtggctcac gcctgcaatc ccagcaccct	300
25	gggaggccga ggcgggcgga tcatgaggtc aggagttcga gaccagcccg gccaac	356
35	<210> 24	
	<211> 451	
	<212> DNA	
40	<213> Homo sapiens	
	<220>	
	<221> misc_feature	
45	<222> (451)(451)	
	<223> n is a, c, g or t.	
	<400> 24	
50	aatggagacg agttcttact atgttgccca ggcaagtctc aaactcctgg gttcaagcga	60
	ctctcccacc tcactctccc aaagtgttgg gattacaggc gtgaggcact gcacctggcc	120
	taatccacaa actgtctaga agcaaacaac caaacatatc gagaattttt ctgagtgtaa	180
55	aaataaatct ctttgtggca tgattctatt acagatcact ggtatgcctg attaaagtgg	240
	actacaataa agattacata caccagactt taaataattg caatccactg aaataacagc	300
	attractaat ctcagcgaat gctcaattta ttgagcattt acacctgacc aaatgtctta	360
60	attcaacctt ttactcaatc ctgaatcatc tgtataaatt ggaaataaca gttgtcatac	420
	aaactttaag taattccttc actgggtacc n	451
	-	471
65	<210> 25	
	<211> 397 <212> DNA	
	THIMP DOING	

<213> Homo sapiens <400> 25 ttttttttt tttttgagac gtagtctttc tctgtcacct aggttgaagt gcagtggtgc 60 5 aatcttggct cactgcaacc tccacctccc aggttgaagc gattctcctg cctcagcctc 120 ctgagtagct gggattacag gcatgcacca tcacacctga ctttgtattt ttagtagaga 180 eggggttteg ceatgttgee aggetggtet caaacteetg ageteageea atetgeeege 240 10 cttggcctcc caaaatgctg ggattacagg cgtgacacta gtgcctggcc tggtctttca 300 gtaccatata caagcctgca ataaatctgt ttagacataa tgtcatagaa gtgagtgtat 360 ctgtgggaca aatccctaga attgctgggt caaaggg 397 15 <210> 26 <211> 457 20 <212> DNA <213> Homo sapiens <400> 26 25 tgaccaggat ctcactcagt cactcaggct agagtgcagt ggcatgatca tggctcacca 60 cagacttgac ctcccagact caggtgattc tcccacctca gcctcccgag tagctacgac 120 tacaggcgtg cgccaccacg cctggactaa tttttccata gaaacggggt tttaccatgt 180 30 tgccccagge tggtetegaa etettgtget taagagatee teetgeetea cacteecaaa 240 gtgctgggat tacaggtgtg agccacggtg cctggcctat actatctctt tcaactctct 300 caataactta caaatgaaga aactagggct tacagaggtt aagggttaag taggggcaca 360 35 tggtaggaaa tcagaattct aacctacatc tatgcaaccc cgacatctgt gctccttcca 420 ttccattaaa aacatgtagg ctgcaaaaaa ccacagg 457 <210> 27 40 <211> 2811 <212> DNA <213> Homo sapiens 45 <400> 27 60 acaaggcagg atgtgtgcgt gggaggaaga ttgacagtga ctgagcctgg acgggggaga ccaggtatga ggtctgaagc acctggaaca gaaaggacag gacagatgtg ggcacactgc 120 50 180 acgtgtagaa tcaaaggact gacagcaggt cgaatgtgag gaatgaggga gggaaagaat 240 caggactcaa gtgccatcdt ggctgcctca aaaaatgata ctgtcttcca gagggaaagg

65

55

60

aaagataaca atagttactg ctttgtggcg tacatgtgat gaatttcatt ttggacattc

cagtaggata tccaagtgga aatgcccagt aagccttaga cataaggatc tggatctcaa gagaaaaatt qaggttgaac cataatatgt ctttcccctc gaatcatgta ggtttctctt

ttgccttctt tcattggcct aagtggtcct aaatgctact gctgatgctg tcttagtttg

cgactgttgt ttgcacccca ccttttccca aaggtaatct gtagacttgc atggattggg

ttaaggtggt taacctgcag ctttgctgtt caaagcttgg cttcccacta ccagtttgcc

300

360

420

480

540

	aacttaatga	gtacttcaac	ttgagtcaaa	ttagtattgt	tccaaatatc	ctaatagtat	660
	cctctatgtg	tgactctagg	tcttacaaaa	tcaaggtgtc	ctttctcatt	gagacttcct	720
5	tattaataaa	atatttcttc	tattaaatto	aacctggcac	caagcatagt	aggtaatagg	780
J	cacacacaat	gactgtttat	tgaatgaatg	aataaaatga	ttatgttagg	gcattctgag	840
	caattcatcc	taagcagcta	attttctcct	acttctttta	ttatagtgtg	tgtttgtgtg	900
10	tgtgtgtgtg	tgtgtctgaa	atgtcccatc	ctacaggttc	attaatattt	aatagaaatg	960
	aaagaagaaa	aatacctatt	aagtgttttg	atttcatcct	tttcattgaa	ttgaaaaagt	1020
	atatcattta	ttcctgaaga	gaaatctaga	ttttgctcta	tattaaacat	ttgacattta	1080
15	ttggtcctta	atgctaatat	agataccagc	ctgctggttg	tcacattcta	tctgtttata	1140
	cgaaggttgt	agacacacag	cgtatgtaca	tatgcctagt	tgctctcatt	ccttttgttt	1200
	cacatctcaa	gcctaaccca	gactgaaaag	gttttgaagg	ctgagattat	tcatcacccc	1260
20	atcattatag	aaagcagggc	tggcccaagg	ttctcacagt	gggagcaagg	tggattttaa	1320
	ctctgatcag	tgttgtagct	caaatataaa	aagaactgca	gcacaaaagt	cacaaggata	1380
	aatgatcccc	tcgttcttct	cccataaaaa	taagcagcca	attgaaggtg	gaagtcagta	1440
25	cagtgcggca	ttcccagagg	cgacagaacc	taagattcca	tttctaaaga	cactgctcaa	1500
	caagaagacc	acctgggatg	tcttacataa	aaccattggc	ctggcagctt	ttggctgagt	1560
	tctctattct	ggttcaagcc	agcatcacag	cctatctgtg	gttttaacaa	ctgatggaat	1620
30	ttgtattttg	agaaccctca	tccgttagca	tgaagcaaac	tcaaagcatt	gttgctcatc	1680
. •	agttgtcatc	tgtttgagaa	agattttgat	ttgtttactt	gtagtgaagc	ttgaccatac	1740
	ttctccaggg	gctttttaaa	aagatgaatg	tgtcagcttg	tagatttgtc	cccatgaatg	1800
35	aaaccacaag	caaattctct	tctctcttcc	agcctccctt	cctccctctt	gtttcttcag	1860
,,,	tggccatctg	tgcattatgt	tcccattgcc	aggccctctt	caagcagctt	atctatgagt	1920
	gaattcagaa	acttcaaatt	ataaaggaca	cccagataat	tggcctgttc	tccaaagtat	1980
10	ctgtcccctg	tgctgctgcc	agattccttc	ttaatgaata	catccagtga	cagtgggatt	2040
	cttgagcttg	tccgtatctg	tgagaaaatg	agctctcctg	ctttgtaaca	gcttgtggct	2100
	cagggaaaaa	aatgacagcc	attgcacaag	tttcctttga	atgtagtttt	ctttcccata	2160
15	aatgatactt	tgagaataca	gttaaggggt	tattagtttt	ctatttcatg	cctggcctgt	2220
	gtgtgagaat	aacacaagct	gtcactgcaa	atcagtagct	aaaaatgctt	tgtctggtta	2280
	atgtgaacat	ttaatatttg	gctcaattaa	aaattaaccg	atgaaagtac	atgtcattgg	2340
50	aatttgaaaa	taccttttgt	acggaatact	taaagggcat	cacccatgac	taaaccagtg	2400
. •	cttttaaaat	atggagaata	tggggaaatt	taatatgagt	tgggatactt	gactctttt	2460
	taaaacctct	ctacctgttt	ggcacaacag	ggtattgata	aagagtgggc	tcattgttat	2520
55	ggcaaaggat	tcacttgcat	ctctgtgttt	ttaagtgggt	aattgttttt	ttgcactcag	2580
-	tcacatgatt	aaagcagaca	gaacaagaga	tcagttattc	atttatacca	tacttttaaa	2640
	aaaatattga	gccaggccct	ggggaagtgg	gaagtgagag	ccagagcggc	gtggctgata	2700
60	gtctagggca	gtgctatcca	atcttttggc	ttccctgggc	cacattggaa	gaagaagaat	2760
	tgtcttgggc	cacacgtaaa	atacgctaac	acgaatgata	gctgatgagc	t	2811

65 <210> 28 <211> 394 <212> DNA

60

120

180

240

<213> Homo sapiens <400> 28 ttttttggag acggagtcgt ccccgtcacc caagctggaa cgcatggtgt ggatctcggc 5 tcactgcaaa ctctgcctcc caggtttaag tgattctcct gccccagcct cccaagtagc tgggattaca gaagcgcgcc actacaccca gctaattttt gtatttttag tagagacagg otttcagtat gttggtcagg ctggtctcga actcttgacc tagtgatcca cccgcctcgg 10 15 <210> 29 <211> 497 <212> DNA <213> Homo sapiens <400> 29 25

cctcccaaag tgctgggatt acaggcgtgc gactgcgtcc ggcctgattc acatatattt 300 360 taagagacta aacataggaa agctaggaga tcttgtgtgg tggcaggttt cttctgccac 394 tcaggggtag gacactgggg cagggggagt ggcc gcacgagaag agtctcattc caggaaccct ttgtagttag ttggctggca tgtttacttg 60 ctgctgtagc cagccaagat gagtgcacct aggccctcaa aaaggatttt tttttacctc 120 aatctagcct gaccctcata tctgtggttg cctctgagac gaacatccat gctagtataa 180 240 30 aaatagttag gaatgccctt ggcagaactg aagctcttat taaatggtgg acagagctct 300 tgccagcttt gatccagccc ctcagtctcg gagttatggg gcagggttgg ggggcagtgc tacactgtaa agaatttcca ggctgggcgc ggtggctcat gcctgtaatc ccagcacttt 360 420 35 gggaggccga ggagggcgga tcacaaggtc aagagattga gatcatcctg gccaacatgg tgaaactccg tctctactaa aaatacaaaa attagctggg catggtggca cgtgcctgta 480 497 gtcccagcta cttggga 40 <210> 30 <211> 206 <212> DNA <213> Homo sapiens <400> 30 60 tgagacagtg tcttactcag ttgggactac aagtgtgtgc caccatgccc ggctatctta 50 tctacctatc gacctgagac agggtctccc cttctgttgc ctgggctgga gtgcaccggt

120 180 gtgatctcgg ctccctatag cctccacctc ttgggcccaa gtgatcctcc aacctcagtc 206 tcacgagtag ctgggattac agctgc

55 <210> 31 <211> 376 <212> DNA <213> Homo sapiens

	<400>31	
	ttttttttt taagtgtcag tgttcataaa ggcccttttt cttttcaag gatgggtata	60
	aagtgttact cggccgaacg cggtggctca cacctgtaat tccaacactt tgggattaca	120
5	ggcgtgagcg accgcgccca gccgaacttc tgcctcttaa atccagggtt ctccctgtca	180
	gtacagtgag gtggtaacta gcaaaagcta tgagatatga ctgcctgggt acatatccca	240
	gctctttcac ttatctttgt ggctttacgc aaattactta acctctttat gattgtttct	300
10	tcatttgtaa aaggaagata ataacagtgc ctatatatag ggtttttatg aagaataaat	360
	gagatagtat atataa	376
15	<210> 32 <211> 337	
	<212> DNA	
	<213> Homo sapiens	
20		
	<400> 32	
	ttttttttt ttttattttt agacaaagtc ttgctctatt gcccaggctg tagtgcagtg	60
25	gcacaatcat agctcactat aaccctcgac ctcccgggct caagcaatcc tcccacctca	120
	gcctcccgaa tagctgggac tacaggcatg caccaccaag cctggctaat ttgctatttt	180
	tgtttttcat agagacagag tctggccatg ttgcttaggc aggtttcgaa ttccttgcct	240
30	cagcctctca aggaatttgc attgttttta atgaaaaaac acacatatgg tgaacagtaa	300
	aagtgggaga attgaacagc cctaaaatca agtagtc	337
	<210> 33	
35	<211> 381	
	<212> DNA	
	<213> Homo sapiens	
40	4005 22	
	<400> 33	_
	aagatggagt cttactctgt cgcccagact ggagtggtgc gatctcggct cactgcaacc	60
45	tccaactcct gggttcaagc aattctcctg cctcagcttt ccaagtagct gggactacag	120
15	gtgtgcgccg ccacacccag ctaatttttg tatttttag tagagacagg gcttcactat	180
	atgitggcaa gactggictc gaacccciga ccicaggiaa icigccigcc iiggciiccc	240
50	taagtgctgg gattacagtt gtgagccacc acgcccagcc agcactacct tttctattgt	300
50	gcatcctaat ggtctgtagt atagacatat ttatagggga aagaaaggaa tagatgtggg	360
	Caaaaagaag ctaaaaaaca t	381
	<210> 34	
55	<211>494	
	<212> DNA	
	<213> Homo sapiens	
60	<400> 34	
	ttatttggct aaattattga teetaettea gagggaaagt gtaccaggea gttttggtgg	60

	!	grggrgcrga	agicigggga	grgagrrrag	tttttagatt	accertygey	acatcaccag	120
	•	tgttgcaagc	accaccattc	ccagttaggc	actttttgtc	cctggtaaga	cttgaccttt	180
5	i	atctggaaca	ctccttttgt	ccctagagtg	gggacctaag	gctcagcaaa	agggcagaat	240
	(caggaaagcc	tttatggtgt	ggctaaagga	gtggccagag	ccttgggact	cctttgctgc	300
	(cttctccctg	gttccagttg	tctttagatt	ttcacggctc	ttactgctgt	tacttaacag	360
10	1	tattttccag	ccaggcatgg	tggttcacgc	ctctggtccc	tgcactttgg	gaggccgagg	420
	(caggcggatc	acctgggatt	gggagttcgg	gaccagcctg	tccaacatgg	cgaacctcgt	480
	•	ctcttctgag	agta					494
15								
	<210> 35							
	<211> 521							
20	<212> DNA <213> <i>Homo</i>	sanions						
20	<213> 1101110	supiens						
	<400> 35							
25	1	tttttttt	tttttacttg	ataatagatt	aagatttatt	tattcagtaa	gcgataacaa	60
23	1	ttttgaattt	ttatgcctaa	tggtattaac	ttaaaataat	aatacaagca	atattgagaa	120
	i	atctat aa ga	aataacagac	aaatctataa	tcatagaagg	aaatttcagc	cactgctaga	180
30	1	taaggtagac	acaaaagtca	gtaaggttgc	aaaaggtgag	cagaatgatt	aaaaatttaa	240
30	•	caagttggca	gggcacagtg	gctcatgcat	gtaatcccag	cactttagga	ggccgaggca	300
	ç	gctgatcac	gaggtcagga	gttcaagacc	agcctggcca	acatggtaaa	accccatctc	360
25	1	tactaaaaat	acaaaaatta	tccgggtgta	gtggtgcatg	cctgtaatcc	cagctactcg	420
35	g	gaggctgag	gcaggagaat	tgcttgaatc	caggaggag	agattgtggt	gagccaagat	480
	t	gcctcactg	cactccagcc	tggggaacag	agaaaggccc	t		521
40	<210> 36							
40	<210> 30							
	<212> DNA							
	<213> Homo	sapiens						
45	.400: 26							
	<400> 36						***	50
			ctttttatat		-	-		60
50	·		aatgggcatg					120
	•		ccggcatata	• • •		_		180
		_	ctatgtgaac		-			240
55			tccccataca	_	_			300
	•	gcatccatac	tgtgcctctt	gcggtcctct	gtgagagctt	cctgagagac	9	351
	<210> 37							
60	<211> 451							
	<212> DNA							
	<213> <i>Homo</i>	sapiens						

	<400> 37	
	tttttgagac acagtcttgc tctgtcaccc gggctggaat acagtggtac aatcttggcc	60
5	tccacctccc aagttcaagc aattctcctg cctcagcctc ccaagtagct aggattacag	120
J	gcacccacca ccacgcccgg ttaacttttg gttttaagac ggtgtcttgc tctgttgccc	180
	aggctagggt gcaatggtgc catcttggct caccgcaacc tccacctcat gggttcaagc	240
10	aattotootg cotcagooto oogagtagot gggattacaa gogcaccoca ccacaccogg	300
10	ctaatttttg tatttttagt agagacggag tttcaccatg ttggccaggc tggtctggaa	360
	ctcctgacct caagtgatcc gcccgcctcg gcctcccaag gtgctaggat tacaggcgtg	420
15	agccaccgct cccagccgca ccgtttttt c	451
13	<210> 38	
	<211> 674	
20	<212> DNA	
20	<213> Homo sapiens	
	<220>	
	<221> misc_feature	
25	<222> (552)(552)	
	<223> n is a, c, g or t.	
	<220>	
30	<221> misc_feature	
	<222> (556)(556)	
	<223> n is a, c, g or t.	
35	<400> 38	
	ttatttggtg ttaaacaggt ttaatgacgg tcatggcaac tttttggcac aatgaaaaat	60
40	atcgcccatg atcaacgtgt tctgttctgg ggaagggggc aaaggcaggg tgaatcactt	120
40	tcttaaaaag tatagctcaa gttgggagtg cagagggaat ggggagaaaa cccttccgct	180
	gcctgtgtcg aagtgcagga gcccccaccc ccatactcac ctgagtccag cccctctggg	240
	gaaagaaggg gtgcatgaac tccccttagt ccacaggcgc ctccctgtgg cccaaggccc	300
45	tcttcacact ccatcttgta gccccagcag gagctatttt ccgaaaagtg ctgggattac	360
	aggcgtgagc cactgtgccc agctgagatc tgatggtttt aaaaagagga gctcccctgc	420
	atgagatete acttritgee tgetaceatt tatgiaagat gigaettget eetterigee	480
50	ttccatcatg actgtgaagc ttcccccacc atatggaatt gtaagttcaa ttaaacttct	540
	tttctttgga anttcnaaag ccctcccttt acacttgcaa agggtcccaa aatacttcct	600
	tgaggggggg gccccgtacc ccaattcgcc ctttggtgga gtcgttttaa caattccctg	660
55	gcccgccgtt ttaa	674
	<210> 39	
	<211> 330	
60	<212> DNA <213> Homo sapiens	
	12137 11011W suprens	
	<400> 39	
65	tttttttaga aagaagtggg gtctcacatg ctgtccaggc tagtctcaaa ctcctgggct	60
	caagccatcc tctcacctcg gcctcccaaa gtgctgggat tcaggcatga gccaccactc	120

	ccggccctca attaataact tgacttaaga taatctagtt catattaact taatttcata	180
	gcatacaaaa actatgcttc atttcttcct tccattattc tatcatgaat atggcacctt	240
5	tttgtgttat aagcccattg acacagttta taattattgc ttatgcaggt gggtgtcttt	300
3	taaatcagag ataagagaat aaaatatcta	330
	<210> 40	
10	<211> 446	
10	<212> DNA	
	<213> Homo sapiens	
	<220>	
15	<221> misc_feature	
	- <222> (446)(446)	
	<223> n is a, c, g or t.	
20	<400> 40	
	ccagtttgta tttatttatt tatttattta tttagagaca gagtctcgct Ctgtcgccta	60
	ggggggtgca gtggcgcaat ctcagctcac tgcaacctcc acctcccggg ttcaagcgat	120
25	tctcctgcct cagcctcctg agtagctggg attacaggcg tgtgccacca tgcccagcta	180
	attititgta titttagtag agacagggtt tcaccgtgtt agccagggtg gtcttgatct	240
	cetgacetea tgatecgtee geeteageet eccagagtge tgggattaca ggcatgagee	300
30	actgcgcctg gcccaattta tttttttttg tagtttcatt ctcctcacat ccaaacagct	360
	acagettee etectitigt ggggteecea aaceaagtet ettiteagga gageagacat	420
	gtgcctccac acagttctga agttcn	446
35	<210> 41	
	<210> 41 <211> 406	
	<212> DNA	
40	<213> Homo sapiens	
	* · · · · · · · · · · · · · · · · · · ·	
	<400> 41	
45	tttttctga gacggagtct tgctctgtcc cccaggccgg agtgcagtgg cgccatctca	60
73	tctcactgca agctccgcct cccgggttca cgcccttctc ctgcctcagc ctcccgagtt	120
	gctgggacta caggcgcccg ccaccacgcc cggctaattt ttgtattttt agtagagaag	180
50	gggtttcacc gtgttagcca taatggtctc gatctcctga cctcatgatc cacccgtctc	240
50	agcctcccaa agtgctagga ttacaggcgt gagccagcgc gcccggccta ccctccctat	300
	tttcaaaaac attgtggcaa tggacaaaat tcacatgtac aaccgatcat tacaatcaga	360
	cgctctgtga tacgtgtacc aacgacaagg gctgaaataa tgactg	406
55	<210> 42	
	<211> 320	
	<212> DNA	
60	<213> Homo sapiens	
	<400> 42	
	cacacccagc taactttttg tatttttgt agacagggtt tcaccttatt tctcaggctg	60
65	gtcttcaact tctgggctca agcaatccac ccgcctcagt cacccaaaat gctaggatta	120

	caggcgtgag	ccattgcgcc	cagcctcaaa	actcttctac	ctaaaatcac	cttcagagcc	180
	atgctagaaa	attagtatca	ttcctttaca	atcggaatcc	aacttggcca	ctaaaatgtt	240
5	tccttagact	tggtcctaaa	tgatttttgg	attgtttcaa	aacctgaaaa	acaccttcac	300
	aggataaaga	taaaagaatg					320
	210 42						
10	<210> 43						
	<211> 448						
	<212> DNA						
	<213> Homo sapiens						
15							
	<220>						
	<221> misc_feature						
	<222> (167)(167)						
20	<223> n is a, c, g or t.						
	, , ,						
	<220>						
	<221> misc_feature						
25	<222> (181)(182)						
	<223> n is a, c, g or t.						
	12237 II IS a, c, g of t.						
	<220>						
30	<221> misc_feature						
	<222> (219)(219)						

<223> n is a, c, g or t.

45 <222> (346)..(346) <223> n is a, c, g or t.

<220>
50
<221> misc_feature
<222> (401)..(403)
<223> n is a, c, g or t.

55 <220> <221> misc_feature <222> (420)..(420) 60 <223> n is a, c, g or t. <220>

<221> misc_feature
65 <222> (428)..(433)
<223> n is a, c, g or t.

	<220>	
	<221> misc_feature	
	<222> (442)(442)	
5	<223> n is a, c, g or t.	
	<220>	
	<221> misc_feature	
10	<222> (445)(445)	
	<223> n is a, c, g or t.	
	<400> 43	
15	tttcttttag acagggtctc actctgttgc ccagactgga atgcagtggt gcagtcttgg	60
	ctcactgcag cctcaacgtc ttgggctcaa gcgatcctcc catctcagcc tttcaagtac	120
20	ttgggactac aggcatgctc caccacatcc agctaatttt tgtattntgc gtaaagatgg	180
20	nngttttgcc atgctgcttc tcgaactcct ggagggggnc aagtaattct gtccacctca	240
	acctacaaaa gtgccggaac tataagcatg agccactgac ccagcttgaa atggtaatnt	300
25	aataaaatat atcatttatt tttcaaagac tagatctacc catganccac agatctgaat	360
	attttaaatt gtcttccctg gtacatcatt gccattacct nnnaatggta cactctacan	420
	tatgctannn nnnggtgcat anaangaa	448
30	<210> 44	
	<211> 270	
	<212> DNA	
35	<213> Homo sapiens	
	<400> 44	
	ttttttttt tttttgctca cagaatgtat acgtttattt tttaacggag ttaattcatg	60
40	gccgggtgtt gtggctccca cctgtaatcc cagcactttg ggaggctgag gcgggtggat	120
	cacctgaggt caggagttca agatcagcct ggccaaaatg gtgaaacctc atctctacta	180
	aaaatacaaa aattagccag gtgtgatggc atgtacctat aatcccagct actcaggagg	240
45	ctgagacagg agaatcgctt gaatctggga	270
	<210> 45	
	<211> 386	
50	<212> DNA	
	<213> Homo sapiens	
	<400> 45	
55	taaaataata gaggcatagt ctctctatgt caggctggtc tcaaaactcc tggcctcaag	60
	caatcctccc acctcagcct cccaaagtgc tgggattaca ggcatgagcc actgtgccta	120
	gccaacatgg gacatttcta actcgagggt attgtcaggc catgtaggaa agggagcaga	180
60	gattgccctt gaggagatgc tcccaggtgg cagatttgtc ctacttgata gattccaaaa	240
	tggaaaacgg attttctgc tgcctctggg gacactgaaa aaagaacctc cacatgagtt	300
, -	cagaggcagc accggcagct taggggaagt catggcttcc actgcgtgtc taggaagcgc	360
65	tctttcagga tgctctgagg ctgcca	386

	<210> 46 <211> 413 <212> DNA	
5	<213> Homo sapiens	
	<400> 46	
10	tggtgagaca gagatttact cttgttgccc aggctggagt gcaatggcat gatctcagct	60
	caccgcatcc tccacatcct ccgcctccca ggttcaagtg attctcctgc ctcagcctcc	120
	tgagtatctg ggattacagg catgtgccac cacgcccggc taattttgta cttttttagt	180
15	agagacgggg tttcatagtg ttgcctaggc tgatctcaaa ctcctgacct caggtgatct	240
	gcccgcctct gcctcccaaa gtactgggat tacaggcgtg agccactgcg cccggcctac	300
	cagaactaat ttttaatcaa atttcataaa taaatctagc caatcttagc tggttcatta	360
20	aggaccagca aaatcatctg ttgggacttg ttagtggagc tctcctagat agt	413
25	<210> 47 <211> 438 <212> DNA <213> Homo sapiens	
30	<400> 47	
	tictiticic cititititi titictititi igagicagag icigicgccc agcciggagg	60
	gcagtggtgg gatcttggct cactgcaatc tctgccttcc aggctcaagc aattctcctg	120
35	cctcagcctc ctgagtagct gggactacag gcctgcacta ccacacctgg ctaacttttg	180
	tatttttagg agacagggtt tcaccatgtt ggccaggctg gtctcgaact cctggcttca	240
	agtgattcgc ctgcctccca aagtgatggg attacaggcg tgagccactg tgcccggcca	300
40	gggttttttt ttcctgaagg gctgatcatg gctttgttcc actcactgtg cccttcttcc	360
	tctgcttgga actggacaga agttccaata agctactgtc ttctattaag taaggaccag	420
	acatgaaaaa ctttatgg	438
45		
	<210> 48	
	<211>651	
50	<212> DNA	
	<213> Homo sapiens	
	<220>	
55	<221> misc_feature	
	<222> (448)(448)	
	<223> n is a, c, g or t.	
60	<220>	
	<221> misc_feature	
	<222> (590)(590)	
	<223> n is a, c, g or t.	

	<400> 48							
		tccatttgaa	agacactcat	ttatttgtta	ataacacaag	ccaaacaaaa	acatatctgg	60
5		ggatgaatct	gcgaaaccta	ctagggttaa	aattttactt	ctcttaattg	tttggcttcc	120
3		aaaacatatt	tggcttccaa	aacagattca	aattcaaaaa	atatttacgg	ccagctgtgg	180
		tggctcatgc	ctgtaatccc	agcactttgg	gaggccaagg	tgggcggatc	acgaggtcag	240
10		gagatggaga	ccattctagc	caacatggtg	aaaccccgtc	tctactaaaa	atgcaaaaat	300
10		tatctgggta	tggtggtacg	tgcctggagt	cccagctact	tcggaggctg	aggctggaga	360
		atcactttca	cctggaaggg	cgaggttgca	gtgagctgag	atttgccact	gcactccaac	420
		ttggtgacag	agtgagactc	tgtctcanaa	aaatggaata	attaaataaa	aaataattgt	480
15		tcagagtgcc	actagggaga	ggtatattca	ttagaatgga	caatgccttt	taatggtatg	540
		gttgccggtg	gctggctcac	gcctgatccc	acaactttgg	agggcgaggn	gggcgaacaa	600
		gaggtcaggt	cgaaccagcc	tgacccaaat	gtgaaacctg	cttactaaaa	a	651
20	<210> 49							
	<211> 428							
	<212> DNA							
25	<213> <i>Homo</i>	sapiens						
	<400> 49							
		ccactgttgc	tgagacattt	ttattggcat	aggttatatg	tttgtgtgtg	tgtgtgtgtg	60
30		tgtccctaaa	caatatttag	caagttgact	gtttttaaac	ttitatatcaa	tggtgtatat	120
		taaatatgat	cgtctacagt	ttgcttttac	agctcaatag	tttaaaaaca	232C2222C2	180
		aaaagctgca	gtaatccccc	tgccgttatt	catgaggatt	acatttcacg	acccccagtg	240
35		gatgtctaaa	actagattag	tactaaatcc	tgtatacatt	ttcctataca	tatgtaccta	300
		tgatggttta	atttataatg	tttgcacggg	agattaaaaa	caataactaa	taataaaata	360
		gaataactag	agcaggccag	gcaaggtgac	tcacgcctgt	aatcccagct	ctttgggagg	420
40		ctgaggtg						428
	<210> 50							
	<211> 436							
45	<212> DNA							
	<213> <i>Homo</i>	sapiens						
	<400> 50							
50		ttttttttta	aaggatgaga	aaaaattggt	acacacgaac	aatgctcaca	aaacggctgg	60
		gagaaaggca	aaatctaagc	atattataag	ggtgggattc	agaatacagg	agggcagagg	120
		gggctgccac	tgtgatgggt	gggaatgaag	aaagggaact	gctactgctc	tgaaggagaa	180
55		gggaaagccc	gctgtcgggc	agtgtgtgtg	cagagacagg	aaactggctg	aagcatccac	240
		tgtgaagaat	ggaagactgg	gactacattt	cccaaattct	acttgtgtat	tataaactgc	300
		tacccatgaa	gatggttcta	tttgaaagta	atatttaggc	cgggcgtaat	ctcagcactt	360
60		tgggattaaa	cgcgtgagcc	accacacccg	gcccaagtct	taaaaagaaa	aaacaaaacg	420
		acagggatat	attatt					436
	<210> 51							
65	<211> 475							
	<212> DNA							
	<213> Homo	sapiens						

	<400> 51							
		tatgagatgg	gggtcttact	atgttgccca	ggatggattt	gaaatcctgg	gcttaaggga	60
~		tcctcctgct	caggctctgg	actagctggg	attacaggtg	tgtgccacca	caccttgctt	120
5		tcccactaat	tctgttcctg	ctagtttctt	cccttacaag	taaggtgggt	catatttacc	180
		tgtgagaaac	tcagaaatac	tcacttttcc	aggacagctg	gggtgaagag	aatatgtagt	240
		ggccactgta	ctttgtagga	aagacctagg	gctgcccagc	cagatgcagg	ggcttcccgg	300
10		•	cccgagaagg			_		360
			ttgtcaagtg					420
			gttgaaaggc					475
15			ggg				333.5	
	<210> 52							
	<211> 439							
20	<212> DNA <213> <i>Homo</i>	canions						
	\213\times 110m0	supiens						
	<400> 52							
25		tggagagttg	gatctcgtat	cctgcctaga	ctggtcttga	acacctgggc	taagcgatcc	60
		tccacttcag	cctccccaag	ttcttggact	acaggcgtca	gccaccatgc	ccagctccta	120
		gtgtcctttt	tagggtctta	agcaccacaa	agggaatctt	gattaactag	tgacaatcac	180
30		aacaagtcca	cagccttgct	cctagcctgc	ctccatacag	acagcaatta	aataccacct	240
		gtgtaaactg	caggagagta	gttcaaattt	ggctgagtaa	ctttttcctg	gcatgaaaga	300
		accggctcta	atgactagtt	cattccagat	ttcactggac	attagatcta	gtgctttgtt	360
35		ttgtttgcaa	catttcctat	ttgcccacac	ataaatggac	tttggggtct	aaggccccac	420
		tgctcttcaa	atggacatg					439
	<210> 53							
40	<211> 519							
	<212> DNA							
	<213> Homo	sapiens						
45	<220>							
43	<221> misc_	feature						
	<222> (483).	(483)						
50	<223> n is a,	c, g or t.						
50	<400> 53							
	<400 <i>></i> 33	******	aatctttatt	atcantctat	cacctatata	+ctatantta	nona anettt	60
				-		_	•	120
55			aagggtgcac	· ·	•		_	180
			ccaggtgctc	•			_	240
			tttaaaagta			_		
60			tttacttctt	-				300
		_	aacagtgatt	_	_			360
			gacacatctc	-				420
65		•	ttggaaagaa			catggtggct	ctaaaggtaa	480
		ttntaaaagt	cctcaaaatg	ttttaattgt	agcattgcg			519

	<210> 54							
	<211> 349							
	<212> DNA							
5	<213> Home	o sapiens						
	<400> 54							
10		ttttttaatg	tgacccattt	atttatttat	ttatttatga	tggagtctca	aaaaaaaaa	60
10		aaagaaagaa	aaacaattct	tgtaatccca	gcactttggg	aggcatatca	cttgaggtca	120
		ggagttggag	acgagcctga	ccaacatgaa	accctatctc	taaaaaagaa	aaagacctct	180
1.5		ttgcaaacaa	ccttggtgca	aaagtttact	actaccattt	cattctcaac	attaaggacc	240
15		tagtgtgctt	ggtgggtgga	caagaaaaca	aatctaggaa	agggaaagct	tttctacaca	300
		aagagtagta	gcacctcaa					319
20								
	<210> 55							
	<211> 352							
2.5	<212> DNA							
25	<213> Home	o sapiens						
	<400> 55							
		tttttttt	tttttttaat	tttttttat	ttatttattt	tgagacagag	tctcattctg	60
30		tcccccaggc	tggagtgcag	tggtacgatc	ttggctcact	gcagcctccg	cctcctggat	120
		tcaagcgatt	ctcctgcctc	agcctgccga	gtggctggga	ttacaggtgt	gcaccaccat	180
		gcccggctaa	tcttttgtat	ttttagtaga	tatggggttt	caccatgttg	gccaggttgg	240
35		tctcaagctc	ctgacctcaa	ggatccgccc	accttggctt	cccaaagtgg	ctgggttaca	300
		ggcgtgagcc	accatgccca	gccagaatgc	aaccatatgt	ttaaagataa	ta	352
40	<210> 56							
	<211> 232							
	<212> DNA							
45	<213> Home	o sapiens						
		-						
	<400> 56	*******		*******		********	******	60
50			gtgtcgctct					
30		_	cacctcctgg		_			120
			gcccaccacc					180
		ttcaccatgt	tggccaggct	ggtctggaac	ttctgacctc	aggtgatcca	СС	232
55	210 55							
	<210> 57							
	<211> 446							
60	<212> DNA							
•	<213> Home	o sapiens						

	<400> 57	
	tgagacggag tettagttgt ccaggetgga gtgcagtggt acgatetcag etcactgcaa	60
5	ccactgactc ccaggttcaa gcaattcttc tgtgtcagcc tcctgaggag ttggggctgc	120
3	aggcaagtgc caccacgcct ggctaacttt tgtattttta gtagagacgg ggtttcacca	180
	tatcgctcag gctggtctca aacttctgac ctcatgacct gcccgcctct acctcccaaa	240
10	gtgttgggat tacaggcgtg agctaccacg cctggccaga actatcattt gattcagaaa	300
10	tctcatcatt gggtatctac ccaaagaaaa atagtttatt atatgaaaat gatacgtata	360
	cttgcacatt tattgcagca tgctcacaac agcaaactgt atatatcaga aaagcttaat	420
15	attcaaaata tatagaaaat tcaaag	446
15	<210> 58	
	<211> 510	
20	<212> DNA	
20	<213> Homo sapiens	
	<400> 58	
25	aattagctgg gcatggtggt gcacacctat agtcctaact acttaggagg ctgaggtggg	60
	acgactgctt gagccgagga gtttgaaggc aatagagaga gactctgttt caaagaaata	120
	aaatgtaaag acaaatttct ccttcctctt caaatatgag aatcatcata gccctcccta	180
30	actcctatat tttttagatt aatcaaactc agatttctca aacattctag aacacaactt	240
	gatcttgcct cccaagatta accettecag aactttttaa etttgttaaa gtgeetgtet	300
	ttccatcttt ttaaaataga gcttatcaaa gaatttctgt gaaagtttcc ctttgcttcc	360
35	tcaccggaat gatctgtgat cacattagga ttccatcttt gaaaactact atctaagcca	420
	tctttccatt ttaagatttc tgaatacaaa aaaaaaatcc ctttttctta atttctctaa	480
	aattcactga cttaatgggt cttattcttt	510
40	<210> 59	
	<211> 245	
	<212> DNA	
45	<213> Homo sapiens	
	<400> 59	
	ttctttaaga gatggggcct ctctatgttg ctcaggctgg tcatgaattc cagccctcaa	60
50	atgatectee cacettgget tetecaagtg etgggattae aggtgtgaet caceatgete	120
	ggccagatca tcacttttct gtcacttaaa tctcttgata aaggtgcttg atctcaaatt	180
	ttctcttctt taccttagct cctataccac taaagtcttc tttgaaaaaa aaaaaaatca	240
55	ctttt	245
	<210> 60	
	<211> 479	
60	<212> DNA	
	<213> Homo sapiens	

	<400> 60	
	ttttttgag atggggtctc gctctgtcgc ccaggctgga gtgcgtgcag tggcacaatc	60
_	toggotoacg goaaactotg cotocoagat accacacaag gacttotoog agcoagottt	120
5	ctgagggtta actgagggct gaggggttca agaaggagga cacgggcaca gggactcacg	180
	ggcagtgaga ggcagtgggg ccaatggcgt gaggagcacc agagagcagg agggaacggg	240
10	cccggggcgt gaatccggcc ccatgagtgc tcttcggccg cccaaaaccg gtcccatggg	300
10	taacagcgtg gccttcggca agtgactaaa gggcttcctg cctcagcttc cccacctgta	360
	aacagaggat aacaatggca tgtactggat ctggcataaa gtaaatgttc aatagatagc	420
15	tagaaaagaa tgttttaaaa cctcagagat acattaggcg aaaatamaag ctgggctac	479
15	<210> 61	
	<211> 480	
	<212> DNA	
20	<213> Homo sapiens	
	<400> 61	
	tgagacagag tctcaccctg tcacccaggc tggatggagt gcagtggtgt gatctcggct	60
25		120
	cactgcaagc teegeeteet gggtteacae tteteetgee teageeteet gagtagetgg	
	gactacagge gecegecace aegeceaget aattititt gtagittiag tagagieggg	180
30	gtttcaccgt gttaaccagg atggtctcga tctcctgccc ttgtgatccg cccgcctcgg	240
	cctcccaaag tgctgggatt acaggcgtga gctaccacgc ccggccgtct tgtgtcttct	300
	ttactgtgac tgggtcgttt ttaagaaagg ttatcagctt tgtgtttggt ttcccacagt	360
35	tgataaaaat ctatcaaaaa cattataatt tgcaaggaaa aaggtttttc aatggctgca	420
	ggaaccagaa agaaatagca tttcttatct gtataaacac aaacatttaa agctagtcac	480
	<210> 62	
40	<211> 179	
	<212> DNA	
	<213> Homo sapiens	
45	<220>	
	<221> misc_feature	
	<222> (165)(165)	
50	<223> n is a, c, g or t.	
30	<400> 62	
	tttttttta atttcagaca gaatctcact cggtcgccca ggctggagtg caatggtgcg	60
55	atctcggctc actgcaacct ctgcctcctg gattcaggca attctcctgg ctcagcctcc	120
55	tgagtagctg ggattacagg cacccaccac catgcccagc tattntctgt attittagt	179
	<210> 63	
	<211> 307	
60	<212> DNA	
	<213> Homo sapiens	
	· · · · · · · · · · · · · · · · · · ·	

	<400> 63	
	gtattttag tagagacggg gtttcaccat gttggttagg ctggtctcga acccctcacc	60
	ttgtgatcca cccacctcgg cctcccaaag tgctgggatt acaggcatga gccaccgcac	120
5	ccggccctaa acattigita gacaatacti ccgaatgitt tgictaigia attiagitca	180
	caaatcattc agctcataaa tcaacttgtc tagactcatg ccctgggttc acagaattag	240
	aaataatact attttacatt agggactact aagaacaacc aggatgatga taatagtcat	300
10	cactaaa	307
	<210> 64	
15	<211> 275	
	<212> DNA	
	<213> Homo sapiens	
20	<220>	
	<221> misc_feature	
	<222> (176)(176)	
25	<223> n is a, c, g or t.	
23		
	<220>	
	<221> misc_feature	
30	<222> (245)(245)	
	<223> n is a, c, g or t.	
	<400> 64	
35	tgtattttca gtagagacaa ggtttcagtc ttgaattcct aacctccggt gatccacctg	60
	cctcagcctc ccaaagttct gggattacag gcatgagaaa ccatgcccag ccgatttctc	120
	tcatttttt tttttttt ttttaagaga caaggtgctc gctgtgttgc ccaggnctgg	180
40	tctcaaactc ctgggctcaa gcaatcctcc tgccttggcc tcctgagtca aaaagtgcat	240
	ctcanatagt tttaaaatgg atgtgcaata tttag	275
45	<210> 65	
	<211> 306	
	<212> DNA	
50	<213> Homo sapiens	
30	220	
	<220>	
	<221> misc_feature <222> (231)(231)	
55	<223> n is a, c, g or t.	
	12207 11 10 41, 0, 6 01 11	
	<220>	
60	<221> misc_feature	
	<222> (233)(233)	
	<223> n is a, c, g or t.	

	<400> 65	
	trittitit tigagacagi cicactitgi cgccaggcig gagigiggag igcagiggca	60
	caatcttggc tcactgcaac ctctgcctcc tgggttcaag cgattctcct gcttcagcct	120
5	cctaagtagc tgggattaca ggcacacccc accacacccg gctaattttt atatttttag	180
	tagaaagggg gtttacccat gttggccagc tgggtcttga actcctacct ntntggatcc	240
	acccgcctcg gcttccaaaa gggggaagtc actgcaccca gccttgctgg atttttctaa	300
10	aacctt	306
	aaccc	300
	<210> 66	
15	<211> 444	
	<212> DNA	
	<213> Homo sapiens	
20	400-66	
	<400> 66	60
	ttttttttt tttttttt ttttgagatg gaattttgtt cttgttgtcc aggctggagt	60
25	gcaatggggt gatctcggct caccgaaacc tccagcctgg gtgacagagt gacaccctat	120
23	ctcaaaaaaa aaaaattctt cattgctcat atacgtcaga ttattacaat tttggtatgc	180
	ttaaaaatca cagagagcca aataaggtgg ccaagagaga agaaaatgat aagttgtcca	240
	cacaagcgct ctgatccaag ttaaaaacaa gcaaagtaag gtatgggagt acaaaatcac	300
30	aaaaatattt tagagcattt taaaaagggg gctattataa ttatcttctt ttaattatta	360
	attttaatat cttaacatgc caccaaatta aattcttcct gaatagagaa agataagctt	420
	ttaaaaattc tgcatcatta ctgg	444
35		
	<210> 67	
	<211> 311	
40	<212> DNA	
	<213> Homo sapiens	
	<220>	
45	<221> misc_feature	
	<222> (64)(64)	
	<223> n is a, c, g or t.	
50	<400> 67	
	tttttttt tttttttt atttagagat ggggttttgc tctgttgccc	60
	aggntggagt gcagtggcat gatcatagct cacagcagcc tctaactCat gggctcaagc	120
55	aactcttaca cttcagcctc caaagtagct gggactacag gcatgagaaa ccacacttgg	180
33	ctaacacaca cacacacaca cacacacaca cacacataat tgctatcatc tctatcaaat	240
	atacacatat atttqatata tatgtatatt tgtgtgtgtg tgtgtgtgt tatatata	300
	tatatatatg t	311
60	cosusus s	
	210. 60	
	<210> 68 <211> 441	
65		
	<210> 68	
	<212> DNA	
	<213> Homo sapiens	

<220> <221> misc_feature <222> (282)..(282) ⁵ <223> n is a, c, g or t. <220> <221> misc_feature <222> (356)..(356) <223> n is a, c, g or t. <220> 15 <221> misc_feature <222> (368)..(368) <223> n is a, c, g or t. <220> <221> misc_feature <222> (373)..(373) <223> n is a, c, g or t. <220> <221> misc_feature <222> (394)..(394) <223> n is a, c, g or t. <220> <221> misc_feature <222> (405)..(405) <223> n is a, c, g or t. <220> <221> misc_feature <222> (413)..(413) <223> n is a, c, g or t. <220> <221> misc_feature <222> (424)..(424) <223> n is a, c, g or t. <220> 55 <221> misc_feature <222> (435)..(435)

60

<223> n is a, c, g or t.

	<400> 68						
	tttttttt	tttgagacag	ggtctcactc	tgtcacccag	gctagagtac	agtggcacaa	60
5	tctcggctta	ctgcaacctc	tgcctcccag	gttcaagcga	ttctcctgcc	tcagcctccc	120
3	gagtaactag	gaccacaggc	acacaccacc	atgcccggct	aatttttgca	tttttagtag	180
	agacagggct	tcaccatgtt	ggccagggct	ggtctcaatt	tcttgacctc	atgatccacc	240
	agcatcggcc	tcatgatgtg	ctggggatta	cagggcatga	gncaacgcac	tegggeetag	300
10			ggccacctct		-		360
			actggaattc			-	420
	acantggatt				2-2-2-2		441
15		_					
	<210> 69						
	<211> 435						
20	<212> DNA						
	<213> Homo sapiens						
	<220>						
25	<221> misc_feature						
	<222> (360)(360)						
	<223> n is a, c, g or t.						
20	.220:						
30	<220>						
	<221> misc_feature <222> (372)(372)						
	<223> n is a, c, g or t.						
35	12207 II 10 til, 0, g 01 ti						
	<220>						
	<221> misc_feature						
40	<222> (390)(390)						
	<223> n is a, c, g or t.						
	<220>						
45	<221> misc_feature						
	<222> (395)(395)						
	<223> n is a, c, g or t.						
50	<220>						
30	<221> misc_feature						
	<222> (401)(401)						
	<223> n is a, c, g or t.						
55	220						
	<220>						
	<221> misc_feature						
60	<222> (415)(415) <223> n is a, c, g or t.						
	~223/ 11 18 a, c, g 01 t.						
	<220>						
65	<221> misc_feature						
	<222> (423)(423)						

<223> n is a, c, g or t.

<400> 69

	tgttgttgaa	tattccttaa	tggagtcgat	gaatttgcag	agacccctcc	aagattcttt	60
5	tgtttgattc						120
	gttgtgtgtt	_		_			180
	tagettagta	ggatatatgg	ctttttctat	gaaaggtgga	gaacatgcat	taaaaatggg	240
10	caaattctgg	cctggggcat	ggtggcttat	gcctgttaat	cccagcactt	ggggaggctg	300
	aagcgggcag	gtcgtctgag	ggtcagggag	ttttgagacc	agcctggccc	aaaataatgn	360
	aatcctgtct	cntgctaaaa	ctaccaaaan	tagcntgggc	ntggtagcac	acccntagtc	420
15	congotactt	999 9a					435
	<210> 70						
20	<211> 348						
	<212> DNA						
	<213> Homo sapiens						
25	<220>						
	<221> misc_feature						
	<222> (212)(212)						
30	<223> n is a, c, g or t.						
	<220>						
	<221> misc_feature						
35	<222> (269)(269)						
	<223> n is a, c, g or t.						
	<400> 70						
40							
	tttttttt	ttttttttt	ttttttttt	: aaagagatgg	agtcttgcca	tcttacgcag	60
	gatggtctca	aactcctggg	ctcaagcgag	tctcctgcct	tggtgtttca	aagtgctggg	120
45	20 0		• •		•	ttcagattta	180
						atccaccaaa	240
	-					ttaactactc	300
50	tacagacttg	actcaaaatt	caccaactgt	ctgcctaatt	ttagtcca		348
	<210> 71						
	<211> 304						
55	<212> DNA						
	<213> Homo sapiens						
	<220>						
60	<221> misc_feature						
	<222> (302)(302)						
	<223> n is a, c, g or t.						

	<400> 71	
	**************************************	60
5	tgtagagaca ggcgcttact atgttgccca ggctcggttt taaactccaa gcctcaagtg	120
Ü	atcctcctgc cttggattcc aaagtgctgg gattatagft gtgagccact gcgcccaaca ttcccatgac ttttttgtga aggaggcatt caccaagctt ttcctaatct ttaccataag	180
	ccaggctctg cggtaaacac cccacaataa atgtttatca gaggacttag cagggaagta	240
10	cattaaatgt taacgcctta atctgatact gaaaataaaa gataatttca acttggtttt	300
10		304
	tnaa	304
15	<210> 72	
13	<211> 192	
	<212> DNA	
20	<213> Homo sapiens	
20	<400> 72	
	N-1002 12	
	gggcgtctcc ctatgttacc caggctggtc ttgaagtcct gggctcaagc aatgctcctg	60
25	cctcagcctc ccaaagtact gggattatgg gcatgagcac tgccctgcac ccagtcagaa	120
	atgcttctct tgaataagca gttattagag gaattaaaca ttcaagaacc ctaacatgcc	180
	cccaaacatc gt	192
30		
	<210> 73	
	<211> 487	
35	<212> DNA <213> Homo sapiens	
	(213) Homo suprens	
	<220>	
40	<221> misc_feature	
	<222> (12)(12)	
	<223> n is a, c, g or t.	
45	<220>	
	<221> misc_feature	
	<222> (276)(276)	
50	<223> n is a, c, g or t.	
	<220>	
	<221> misc_feature	
55	<222> (300)(300)	
	<223> n is a, c, g or t.	
	<220>	
60	<221> misc_feature	
	<222> (367)(367)	
	<223> n is a, c, g or t.	
65	<220>	
-	<221> misc_feature	

<222> (384)..(384)

```
<223> n is a, c, g or t.
    <220>
5 <221> misc_feature
    <222> (390)..(390)
    <223> n is a, c, g or t.
10 <220>
    <221> misc_feature
    <222> (475)..(475)
    <223> n is a, c, g or t.
    <400> 73
                                                                                            60
                 ttttttttt tntctatttt tagcagagac ggggtttcac catgttggtc aggctggtct
20
                                                                                           120
                 agageteetg accteaggeg atceaecege etcageetee caaaatgetg gtataacagg
                 catgagccac agcgtctggc cagaatcata tcttaatagc aatcccataa tgtagtttta
                                                                                           180
                 ccagaaatac catagtcaat tttacagggt gggttcagtt tttcttaaat tacttacccc
                                                                                           240
25
                 taagattaaa gaatatttta aaatattgtt ataagngaca taactaaact attaggtttn
                                                                                           300
                 tgcaaaagta attgtagttt ttgccattaa aaggcaatta taaaggaaaa cggggatatt
                                                                                           360
                                                                                           420
                 aataggngtt acttctaggc ttgnaagggn taacattctt ttttggctac ttaaaagtaa
30
                                                                                           480
                 tgggcaaaaa ctggcaattg tttttggcac caacctatta gggcaagaga acccnatggg
                                                                                           487
                 ctttttg
35
    <210> 74
    <211> 446
    <212> DNA
40 <213> Homo sapiens
    <220>
    <221> misc_feature
<sup>45</sup> <222> (381)..(381)
    <223> n is a, c, g or t.
    <220>
50
    <221> misc feature
    <222> (390)..(390)
    <223> n is a, c, g or t.
    <220>
    <221> misc_feature
    <222> (442)..(442)
   <223> n is a, c, g or t.
```

<40	n\	74
< 41	ハノ>	74

60 ttttttttt aatagagatg ggggatctca tcgtcaccca ggttggaatg cagtgatacc 5 atcacagete getgeageet ecaceteetg ggateaacce etaceteatt etectgaetg 120 ggactacagg cactcaccac cacactgggc taattaaaaa aaaaaattct tttttgtagg 180 gaagtggtct tgctatgtca cccaggttga tctagaactc ctgacctcaa gtcacccgtc 240 cgcattatcc tcccaaagtg ctgaggatta cagacgtgag gccactgcac ttgggcctat 300 10 ttaggggctt ctaattcact ttccttttcc ttcttgtcta aattcttgtg tttttagaat 360 ctggcatttt attttaaggt natcttcaan tccttttggg aagtagtgag gggagtaaat 420 gcttaacctg tgtaggaaac cntttt 446 15

<210> 75 <211> 6213 <212> DNA <213> Homo sapiens

25 <400> 75

30

35

40

45

cagtetttga ttggttgctg agaggcgggg ctactcgact gctctggagg tagcggccgc 60 120 ggtgaggaga gccatgggac gggcagtcaa ggttttacag ctctttaaaa cactgcacag gaccagacaa caagttttta aaaatgatgc cagagcatta gaagcagcca gaataaagat 180 240 aaatgaagaa ttcaaaaata ataaaagtga aacttcttct aagaaaatag aagagctaat gaaaataggt tetgatgttg aattattaet cagaacatet gttatacaag gtattcacac 300 agaccacaat acactgaaac tggtccctag gaaagacctt cttgtagaaa atgtgccata 360 ttgtgatgca ccaactcaga agcaatgagt tttctagaat acaacaagtc tttgtacttt 420 ttaactttaa aatctacaac tctggcaaaa gtcctggaaa tgcagacatt ttccctgaac 480 tggcatattg aaaatgaatg aattacagaa tagcttcata tttaaatttc atgttaaaag 540 600 gtcattactg agaactaaag aacataatta agtatttcta aaggaaatta gataagaaaa catttcattt tcattgaaaa tcaaatttca taaagcaaag taaatgctta gggagatata 660 720 ttcaatcttt gaccttgatg agtatttgat cttaccatag ctatttgaga atgtggtgct tttacaaatt ggtgagtttt cctgccatgt gaaatgcaat tattacattt aaattgttag 780

50

55

60

	actawaatyw	tatttagttt	(yaanaa ta t	canactygec	0000000000000	cagigiatge	070
	cagctctcta	cagaaagtgg	cctttgtttt	ctaaagcact	gggattattt	ctgtagctaa	900
5	tatataattg	tacagtttct	ttttagagat	agagagtatc	tctgtgttct	tatgaagaca	960
	tttttatca	gttttctgaa	aatagatgaa	taaaatatta	tagtcaccta	gggtcactat	1020
	ggaataaaga	aatcctagtt	taaagaggaa	atagtggccc	ttgatcaaac	tatttaatat	1080
10	ggccttagta	gaattagctg	tatttagaca	aagttagact	ttagtgtgaa	atgtaatcgg	1140
	tggctacatt	ctcatcgttt	taattaatga	aacttaaatg	gcttctcttc	ttccacatgt	1200
	cctgtccttg	acaagatggg	cagtatcaca	aaaggtcctg	gcattctacc	atctaacact	1260
15	aggaactgta	aaatactgtt	taatattctt	cttgtttctc	ttttatctgt	gtatctttgc	1320
	cattctattt	tctcagtgaa	tagtatgttt	tctcccattc	actgataaat	tctctcattt	1380
	gatgatgata	cagggttttt	aatttttgca	agattctcaa	tgcaagcatt	gttatgtatc	1440
20	tagaaattat	acctagagaa	aaatgaaagt	cgtttcaaat	ttgaaatttg	cccttttaag	1500
	agaatgctga	atgtcatcgc	agtatataat	cactatataa	atgtgctgac	ttacagttat	1560
	tttagtgtct	atatgacata	ttttgaggaa	agttggctga	cgttatttaa	atttaatata	1620
25	tattctatat	tttagtgtta	ttgaatattt	tatcactgag	cttttttctt	taacctgaat	1680
	tccctgttcc	atttttcatt	catattaatt	taaataactc	cagatttctt	tcttatagtc	1740
	attattagta	gcagatgaga	ttaataattc	acatgtttat	taaagatagt	ggcttagaaa	1800
30	ttttaagata	tattgatata	ggcccgggcg	ctgtggctca	cacctgtaat	cccgcacttt	1860
	gggaggctga	ggcgggcaga	tcacaaggtc	aggagttcga	gaccagcctg	gccaatgtgg	1920
	tgaaacccca	tctctactaa	aaacacaaaa	attagccagg	tatggtggcg	ggcgcctgta	1980
35	gtcccagcta	ctcgggaggc	tgaggcagga	aaatcacttg	aacccgggag	gtggaggttg	2040
	cagtgaactg	agattgtgcc	actgcactcc	agcctggggg	acagagtgag	actctgtctc	2100
	aaaaaaaaa	aagaaaaaa	aaggaaaaag	gaaaaaaaa	agatatattg	atacagatag	2160
40	gtagatatga	tattgtactt	tcatgccata	agactacaca	ataaagttcc	tgaaagttcc	2220
	tggctgggcg	cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggcaggcag	2280
	atcacctgag	gtcaggagtt	ctagaccagc	ctgaccaaca	tggggaaacc	ctgtctctac	2340
45	taaaaaaaat	acagaattag	ccaggtgtgg	tggcacatgt	ctgtaatccc	agctactcgg	2400
	gagactgagg _.	caggagaatt	gcttgaaccc	aggagacgga	ggttgcagtg	agccgagatc	2460
	gcaccattgc	actccagcct	aggcaacaag	agtgaaactc	cgtctcaaaa	ataaataaat	2520
50	aaataaagtt	cctgtgaagt	atataaacat	gtcaacaaca	ggcttgactg	tcacaaaatt	2580
	ctgaaagatg	tcgcactcta	ttcttatata	gcatatgcta	atttatttat	ttattttttg	2640
	agattgagtt	ctgctgtgtc	acccaggttg	gagtgcagtg	gcatggtcat	ggtccactaa	2700
55	agccttgacc	cctggggctc	agcagttatg	ccaactaagc	ctcccaaata	gctgagacta	2760
	gaggtatgcg	ccaccacacc	tagctatttt	ttttattttt	agtaaggaca	aggtctcatt	2820

	atgttggcca	ggctggtctc	aaattcctga	gctcagttga	tcctcccacc	tcagcctccc	288
	aaagtgctgg	gattacaggt	gtaagccact	gcaccctgcc	tattcttata	atcatatatt	294
5	tatatttcaa	atggatttta	actggttatt	taatagttta	attagataaa	gtaattcatg	300
	gctgggtgtg	gtggctcacg	cctgtaatcc	cagcactttg	gcaggctgag	gcaggtggat	306
	tacctgaggt	cggaagttcg	agaccagccc	aaccaacgtg	gagaaacccc	atctctatta	312
10	aaaatgcaaa	attagcagga	catggtgata	cacacctgta	atcccagcta	gtcaggaggc	318
	tgaggcagga	gaattacttg	agccagggaa	gcagaggttg	tggtgagcta	agattgtgcc	324
	actgcactcc	agcctgagag	a acaagactc	cgtctcaaaa	aaagaaaaaa	agaaaacttt	330
15	tttacacatg	ggtatctcac	catgttgccc	aggctggagt	gcagtagcta	ttcataggca	336
	cagtcatagc	acactgcagc	ctagaatttc	tgacctcaag	caatcatcct	gcctcagcct	342
	cctaagtagc	taggactaca	ggtgcatacc	accataacca	gctttaatta	aatgttttt	348
20	atttggttat	tttttttaag	ttttctgtat	tcacacaagg	ggttgcccaa	atataatttt	354
	gctttgacta	ttgagatcta	gtgaaagtgg	ggtatatgaa	ttctaattgc	aaatatccag	360
	gctcagaggc	ccagcaggac	tttctaacac	aatcttttag	cggaagttag	aaatggtata	366
25	tagcaggaga	gtcagatttg	agaagcatat	gtagattcga	agctggggga	atatggcagg	372
	tagtttgtac	aacatctaat	tcagaacatt	aaaattaaga	ttttagtcaa	actgtgttta	3780
	agttagttct	tattttcctg	tagatgcatc	tcacagcatc	agtacaatac	caaaaaagca	3840
30	cacaagaata	agaatatgtg	gaatttctat	acctattgac	aaagcacata	atttaaccat	3900
	aaacacaaag	ccataggtca	acaaagaaat	gaagattcca	gttctgaagg	tgagttttct	3960
	gaagccaaag	tggatacatg	caaaattaat	atagttttac	tgtatatcag	ttgtcaccaa	4020
35	tcagaaatgg	aaaacagatc	ctatttataa	ttgcaaacaa	aa ctgtaaaa	tagacttttt	4080
	aaagtctggg	aatagacttc	taaaataagc	tataacactt	aaaaaggaga	gatatactat	4140
	gttcctagat	aggacaattg	aaaattctgg	agatgacagt	ttttcaaaaa	tctattgagg	4200
40	ccaggtgcag	tggcccatgc	ctgtagttcc	agtactttgg	gaggcctagg	tgggtggatc	4260
	acctgaggtt	gggagtttga	gaccagcctg	accaacatgg	agaaaccccg	tctctactaa	4320
	aaatacaaaa	ttagccaggc	gtggtggtgc	atgcctgtaa	tcccagctac	tcgggaggct	4380
45	gaggcgtgag	aatcgcttga	acccggtagg	cagatgttgc	agtgagccga	gatcgcacca	444(
	ttgcactcca	gcctaggcaa	caagagcgaa	actccatctc	aaaaatagaa	aaaacattta	4500
	tcgaaatccc	aaca ag ttga	caaatatatc	Cacataaaaa	tataaaactt	ctgtattctg	4560
50	tgaaagctac	tataaataaa	gtttagagaa	agttatttgc	cacctatgtc	atgattgaaa	4620
	tagttaattg	atcctgtgaa	tcagttagca	aaacataact	caatggaaag	ataggcaaat	4680
	gatacaaata	agaaattcac	aaaagaagaa	atactaagtc	tctagtgatg	agagaaatgt	4740
55	aaattaaaat	gaaacatgtt	tgttcatcaa	gttgtcacaa	gttagacaat	catatccaat	4800
	atttttaaao	attataaaac	tataaqqaaa	tagccactot	catatcattt	ttaaaooaat	486

```
4920
              tgttgtctag gctggactca aacttctgga ctcaagcaat cctcgcaaca tcattaatag
                                                                                4980
              ctgagagtag agacttgagc caccacacct gactataggg cctttttgaa aggaaaattg
                                                                                5040 -
5
              acatcatcaa aattttaaat atattcagtc tatttctcaa aaactcaaag aatactaata
                                                                                5100
              aatgtgtact caggtatatg tacagaaatt gctgtaacat tataatttta aacaatttaa
                                                                                5160
              aacagactga gtttccaaag ttagggtaca atgaaagaaa aggtggctta tttatactct
                                                                                5220
10
             ggaatatttt ccaagagttg aaaaggatga ggatacacac acacacaca acacacacac
                                                                                5280
             acacacaca acacacaca agtttgggta tccctaatcc agaaattcaa atgctccaaa
                                                                                5340
                                                                                5400
             gtccaaaact ttctgaccca ccaacatgac tgatgctcaa aggaaatggc cactggaaga
15
             tttcagattt tcagatttgg agtgctcaac cagtaagtat ataatgcaaa taatccaaaa
                                                                                5460
             tacaaaaaaa aaaaaaaaga aatctgaaac acttctgatc ccaagcattt cagaaaacgg
                                                                                5520
                                                                               5580
             atgttcattt gtgtgtgtgt gtgtgtgtaa gcaggtgttg ctagaaattc acttatatac
20
             aagaaaactt tttgtgtaca tatttgcata tatatgtaca aatgggtaga aacgatacat
                                                                                5640
                                                                               5700
             gattaatett aategggaag gaaaagagat ttagggaagg aageagtaag tgagaaettt
                                                                                5760
             tattctattt actcctgcac gtttaaatat tgtttacagt gagtatatca acatgtaagt
25
             gttaaaagac aataagctac tagtgatttt taatataaaa ttaactataa aatattttaa
                                                                               5820
             atattagcaa ataatatagc acactcatga acctaattcc cacatttgat agttgttaca
                                                                               5880
             ttttgccatg tttgtttaaa ggtctaagtc ataaaatctt ataaagctaa accccaccct
                                                                               5940
30
             tctctttctc ctctctccc aggataatta ctgttttata gtttgtggat atcattccct
                                                                               6000
             tacttqtqtt tatactttta ccaaqtqtqt atqtattcaa aaaacaqttq ttttqtqatt
                                                                               6060
             ttaaaatgta aatgaatggc gttatgctcc atgtattctg caacttttca tcatacatta
                                                                               6120
35
             ggttttggcg atttagccat aatttggcat gaattcaggt cttttaagtt ttattccatt
                                                                               6180
                                                                               6213
             gtaagaataa acaagtttgt tcattcatgt ctc
```

```
40 <210> 76

<211> 354

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
```

<222> (184)..(184)

<223> n is a, c, g or t.

<220>

50

55 <221> misc_feature <222> (343)..(343)

<223> n is a, c, g or t.

60 <220> <221> misc_feature <222> (351)..(351) <223> n is a, c, g or t.

	<400> 76	
	gtaaaaggca aaaatttgag acttataagc tatatggtag cttatttttg ggtggggaag	60
5	aaatgagaaa agaatataac atctcttact ggcatgacac attttgataa aaaatcttat	120
3	tgtcctttcc tactaggaat gatccactgt aagggcaaaa ataatataca aggcaaagtt	180
	ttintitggg aggacagagi cicacicigi caccogggot gggagigcag igggiacgai	240
10	tettgggete actggeaace tetecetece ggggtteaag gtgattette gtgeeteage	300
10	ctcttgagta gctgggggtt tacagggcgc gtgccactgc gtnccggcta nttt	354
	<210> 77	
15	<211> 399	
13	<212> DNA	
	<213> Homo sapiens	
20	<220>	
20	<221> misc_feature	
	<222> (175)(175)	
	<223> n is a, c, g or t.	
25	(223) II 18 d, C, g of th	
	<220>	
	<221> misc_feature	
30	<222> (261)(261)	
	<223> n is a, c, g or t.	
	<220>	
35	<221> misc_feature	
33	<222> (336)(336)	
	<223> n is a, c, g or t.	
10	<220>	
40	<221> misc_feature	
	<222> (361)(361)	
	<223> n is a, c, g or t.	
45		
	<400> 77	
	gcgtgtgtgt aaccttgaac tcctaggctc aagtgatcct cccaccttag cctctcaagt	60
50	agctgggtct acaggtgtgt accaccatgt ctggctaatt tattaatttt ttttgtagag	120
	acagggtctc actatgttgc ccaggctggt cttgaattcc tgggcttcaa gtgancctaa	180
	tgcctcagec tectaaaget etgggactae aggeatgage tateatgeee agccagtact	240
55	aaataatttt taacaaaaga ntaaatcatt attttttata taaggtttct gtaagggggg	300
	ctacaggatt tattatactt ttctgacatc caaagntttc aaatttggtt atatttttcc	360
	ngatatatgg agggcccaaa atacttttt aataacctt	399
60	<210> 78	
	<211> 510	
	<212> DNA	
65	<213> Homo sapiens	
55	т	
	<220>	

```
<221> misc_feature
    <222> (270)..(270)
    <223> n is a, c, g or t.
    <220>
    <221> misc_feature
    <222> (361)..(361)
    <223> n is a, c, g or t.
    <220>
    <221> misc_feature
15
    <222> (376)..(376)
    <223> n is a, c, g or t.
    <220>
    <221> misc feature
    <222> (492)..(492)
    <223> n is a, c, g or t.
25
    <220>
    <221> misc_feature
    <222> (500)..(500)
    <223> n is a, c, g or t.
    <400> 78
                                                                                            60
                 ttttgtagat aatggggtct taccatattg cccatgctgg tgtcaaactc ctgggctcaa
35
                 gcaatcctcc cacctcagcg tcccgagtag ctgggaccac aggcacccac caccatgcca
                                                                                           120
                 cactaaaatt tttttttgg gggggagggt agagaagggg tcttaccatg ttgcccaggc
                                                                                           180
                                                                                           240
                 tggtgtcaaa ctcctgggct caagcgatcc tcccacctca gcctcccgac atgtaaacgg
40
                                                                                           300
                 tggctacatt tccgcacaat ccccgcggtn tccctcattc tgttttacaa ctactcccac
                                                                                           360
                 ataaagtaac gtaggaaaga cggagccccg ttattccctt aggaagggta ggactgggag
                ntttgcaggg aagctntagg ggattaaaca ttcagagggc caacttgagg attaaaacgg
                                                                                           420
45
                                                                                           480
                 aaacacccgg ggtgattttt aaggttaatt caagaggccc cttttcacgt gggggtgatt
                                                                                           510
                 ttttaaactt antcaggggn cttttttca
    <210> 79
50
    <211> 392
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> misc feature
    <222> (134)..(134)
   <223> n is a, c, g or t.
    <220>
    <221> misc_feature
65 <222> (374)..(374)
    <223> n is a, c, g or t.
```

<400> 79

```
60
                ttcagagata gggtctagct ctgtcactta ggctggagtg cagtagatga tttatagctc
5
                actgcaacct tgaactcctg acctcgtgat ccgcccacct tggcctccca aagtggtggg
                                                                                           120
                                                                                           180
                attacaggcg tgcnccgttg cctggccatg ccagctaatt taaatttttt tttttgtaga
                                                                                           240
                ggaaggagtc atgctacatt ccccaggctg gtcttaagct cctggcctca agtcggcctg
                                                                                           300
                ggcttccaaa ttctgggatt atgggtttta cctgggccag agaagatata tttgaatcaa
10
                                                                                           360
                acttaggggg acaaggattt ctgtacatca gtgttgtcct tgaggaaact gaaatgcagc
                                                                                           392
                tttggggaaa gatnttttca gagcagagag aa
15
    <210> 80
    <211> 498
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> misc_feature
25
    <222> (33)..(33)
    <223> n is a, c, g or t.
    <220>
30
    <221> misc_feature
    <222> (298)..(298)
    <223> n is a, c, g or t.
35
    <220>
    <221> misc_feature
    <222> (328)..(328)
^{40} <223> n is a, c, g or t.
    <220>
    <221> misc_feature
45
    <222> (426)..(426)
    <223> n is a, c, g or t.
    <220>
50
    <221> misc_feature
    <222> (479)..(479)
    <223> n is a, c, g or t.
55
    <220>
    <221> misc_feature
    <222> (487)..(487)
```

65

60 <223> n is a, c, g or t.

<400> 80

```
tttttaagta gagatggggt tttgccatgt tgncagggtg gtctcaaact catagcctca
                                                                                       60
5
                tgtaatccac ctgcctcgac ttccaaaagt gctgggatta caggtgtgag ccactgtgac
                                                                                      120
                cagcotgact toaaatootg tgttgaatag aagtagtgag atogggcato ottotottat
                                                                                      180
                                                                                      240
                tcctgatctt ggaggcaaag atttcagtct ttcacctaaa atgactgaaa gactttcagc
                catgggcttt gcatgactgg cctttatttt gttgctgtac attccttctt ttcctggntt
                                                                                      300
10
                                                                                      360
                tgggagtgtt ttaccagggg aaagggtntt caaggctggg ggcaccgtgg gcctcaagcc
                ttgcaaattg cccagcactt ttggggaggg ccaagggtgg ggcgctccgt gcccaatttc
                                                                                      420
                                                                                      480
                ttgggncctc gagggccaaa atttccccaa taagtgaagg ccgtatttta aaattccgna
15
                                                                                      498
                aatcaangtc aaaaggct
```

- 20 <210> 81 <211> 325 <212> DNA <213> Homo sapiens 25 <220>
 - <221> misc_feature <222> (4)..(5)
- <223> n is a, c, g or t.
 - <220>
- <221> misc_feature
 <222> (273)..(273)
 <223> n is a, c, g or t.
- <220>
 <221> misc_feature
 <222> (278)..(178)
 <223> n is a, c, g or t.
- - <220> <221> misc_feature
- 55 <222> (303)..(303) <223> n is a, c, g or t.
- <220>
 60 <221> misc_feature
 <222> (311)..(311)
 <223> n is a, c, g or t.

CCCNNCT9ST	
	60
CCCABATAGAGA TENTRICAN T	120
10	180
tingtiggga natgatgctg gtate	240
tingtiggga natgatgctg gtate	300
<pre> <210> 82 <211> 431 <212> DNA <213> Homo sapiens 20 <220> <221> misc_feature <222> (10)(10) <223> n is a, c, g or t. 220> <221 misc_feature <222> (26)(26) 30 <223> n is a, c, g or t. <220> <221 misc_feature <222> (21)(41) <223> n is a, c, g or t. <220> <221 misc_feature <222> (21)(41) <223> n is a, c, g or t. <220> <221 misc_feature <222> (27)(31) <223 n is a, c, g or t. <220> <221 misc_feature <222> (23)(43) <223> n is a, c, g or t. </pre> 45 220> <221 misc_feature <222> (270)(270) 50 223 n is a, c, g or t. 220> <221 misc_feature <222> (270)(270) 50 223 n is a, c, g or t. 220> <221 misc_feature <222> (270)(282) <223 n is a, c, g or t. 220> <221 misc_feature <222> (282)(282) <223 n is a, c, g or t.	325
211> 431 212> DNA 213> Homo sapiens 20	
15	
<213> Homo sapiens 20 <220> <221 misc_feature <222> (10)(10) <223 n is a, c, g or t. <221 misc_feature <222> (26)(26) <221 misc_feature <222> (22) < <221 misc_feature <222> (21) misc_feature <222> (21) misc_feature <222> (21) misc_feature <223 n is a, c, g or t. <221 misc_feature <221 misc_feature <222 (34)(41) <223 n is a, c, g or t. <221 misc_feature <222 (34)(43) <223 n is a, c, g or t. <221 misc_feature <222 (270)(270) <223 n is a, c, g or t. <220 <221 misc_feature <222 (270)(270) <223 n is a, c, g or t. <220 <221 misc_feature <222 (282)(282) <223 n is a, c, g or t. <220 <221 misc_feature <222 (282)(282) <223 n is a, c, g or t.	
20 <220> <221> misc_feature <222> (10)(10) <223> n is a, c, g or t. 25 <220> <221> misc_feature <222> (26)(26) 30 <223> n is a, c, g or t. <220> <221> misc_feature <222> (21)(41) <223> n is a, c, g or t. 40 <220> <221> misc_feature <222> (41)(41) <223> n is a, c, g or t. 41 <220> <221> misc_feature <222> (43)(43) <223> n is a, c, g or t. 42 <220> <221> misc_feature <222> (270)(270) 50 <223> n is a, c, g or t. <220> <221> misc_feature <222> (222) (282)(282) <223> n is a, c, g or t. <220> <223> n is a, c, g or t. <220> <223> n is a, c, g or t. <220>	
<pre></pre>	
<pre><221> misc_feature <222> (10)(10) <223> n is a, c, g or t. 25 <220> <221> misc_feature <222> (26)(26) 30</pre>	
<pre> <222> (10)(10) <223> n is a, c, g or t. 25 <220> <221> misc_feature <222> (26)(26) 30</pre>	
<pre> <223> n is a, c, g or t. 220></pre>	
25	
<pre> <221> misc_feature</pre>	
<pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	
30 <223> n is a, c, g or t. <220> <221> misc_feature 35 <222> (41)(41) <223> n is a, c, g or t. 40 <220> <221> misc_feature <222> (43)(43) <223> n is a, c, g or t. 45 <220> <221> misc_feature <222> (270)(270) 50 <223> n is a, c, g or t. <220> <221> misc_feature <222> (270)(270) 50 <223> n is a, c, g or t. <220> <221> misc_feature <222> (282)(282) <223> n is a, c, g or t. <220> <221> misc_feature <220> <221> misc_feature <222> (282)(282) <223> n is a, c, g or t.	
<pre> <220> <221> misc_feature <222> (41)(41) <223> n is a, c, g or t. 40</pre>	
<pre> 35</pre>	
35	
<pre> <222> (41)(41) <222> n is a, c, g or t. 40</pre>	
<pre> 40</pre>	
<pre>40</pre>	
<pre>40</pre>	
<pre> <222> (43)(43)</pre>	
<pre> <223> n is a, c, g or t. 45 <220></pre>	
<pre>45</pre>	
<pre><221> misc_feature <222> (270)(270) 50 <223> n is a, c, g or t. <220> <221> misc_feature 55 <222> (282)(282) <223> n is a, c, g or t. </pre> <220>	
<pre> <222> (270)(270) 50 <223> n is a, c, g or t. <220></pre>	
50 <223> n is a, c, g or t. <220> <221> misc_feature 55 <222> (282)(282) <223> n is a, c, g or t. <220>	
<220> <221> misc_feature 55 <222> (282)(282) <223> n is a, c, g or t. <220>	
<221> misc_feature 55 <222> (282)(282) <223> n is a, c, g or t. <220>	
55 <222> (282)(282) <223> n is a, c, g or t. <220>	
<223> n is a, c, g or t. <220>	
<220>	
60	
60 <221 misc feature	
\221\times_leature	
<222> (377)(377)	
<223> n is a, c, g or t.	
65 <220>	
<221> misc_feature	

```
<222> (389)..(389)
    <223> n is a, c, g or t.
   <220>
    <221> misc_feature
    <222> (397)..(397)
    <223> n is a, c, g or t.
10
    <220>
    <221> misc_feature
    <222> (410)..(410)
15
    <223> n is a, c, g or t.
    <220>
    <221> misc feature
20
    <222> (417)..(417)
    <223> n is a, c, g or t.
    <400> 82
25
                                                                                    60
              cggagtcccn tcgttgttgc ccaggntgga gtgcaatggc ngntctttgg ctcaccacaa
                                                                                   120
              cctccgcctc ccgggttcaa gagattctcg tctcaaactt ccgagtagct gggattacag
                                                                                   180
              gcatgcacca ccacacccgg ctaattttgt atttttagtg gagacagggt ttctccatgt
30
                                                                                   240
              tggtcaggct ggtcttgaac tcccgacctc aggtgatccg cctgcctcgg cctcccaaag
                                                                                   300
              tgctggggat tacaggcgtg cgacccacgn cccagccacc tnttaaattt cttaatcacg
                                                                                   360
              gattgittic agcicaggac atacacaagg gcaagtagga attactaata aaatcactti
35
              taccctcaac cattcanggt ctctaaggng catgcanagg ggttacatgn cgggggnaag
                                                                                   420
                                                                                   431
              ggaaggcact t
40
   <210>83
    <211> 2350
    <212> DNA
   <213> Homo sapiens
    <400> 83
              atatgccttt ttaaaaaaat tatcttttcc attggtgact atgaggttga gagatgattc
                                                                                    60
50
              tcctacattt ctggctgctc ctcttcaagt accttccctg gctcctctgg atttttttgt
                                                                                   120
                                                                                   180
              tttgttttgt tttgttttgt tttgtttttg agacaaagtc ttgctttgtt gcccaggctg
              gagtgcagtg gcaggatctt ggctcaccag ctcactgcag cctccacctc ccgggttcga
                                                                                   240
55
              gggattctgg tgcctcagcc tccagagtag ctgggactac aggcccggct agtttttgta
                                                                                   300
              cttttggtag agatgggggt ttcaccaggc tggtcttgaa ctcctgcctc gggtgatctg
                                                                                   360
                                                                                    420
              60
                                                                                    480
              tcctcttctt cttccactca gatatgcctg accctgtcaa cactttggtt gaggtcttct
```

	ttcttctttc tittttgctc cgcacattta gcttatgact tcaaccatca tttct	cagag 540
	catgggtctg gctcaacctc tctcctgaat ttcagaccta caagtctagc tactt	ggtgg 600
5	agacctccgc agaatgacct gctgcttccc aaaagcagac tctccaaatt acagt	cagta 660
	terececegg aageatteee ceaggeattt etetteetge etteaattee eeatt	ctcct 720
	acattgcctt gccagaagcc tgctggtcag cttggatttc tttttgtcct ttttt	ttcta 780
10	tattttgctg gtgcctagtc atgtagttgc tgcctctaca ctttctcttc tttaa	aaaaa 84 0
	attattaaag caccacgtgc ttgttgtaaa catttccaga aaatacagaa gtgct	caaag 900
	tgaaaaaatg gaaatgcctt gtcccttcct cattccctgc cctaacctca cgccc	cagat 960
15	tcagctatgt aatagtctgt catgccaagt cttatttcca gctcctcttt tccat	cccca 1020
	ctgccatcat ctgaactaaa cggattgttt tccatctggt ctccttggct tttcc	tttca 1080
	gtgcagctca acagacatta atcaagtgcc ttccacacac caaagtccta cccta	gatcc 1140
20	tagaggttca gagacaagta agatagttaa agagatccac attccagagc tgttt	aactt 1200
	tgggcaagtt acttaatctc tctgaccctt acttccttat ctgtaaaatg atgct	aatcc 1260
	cagcaccttt ttcatgggtt tggacgagca ttaatgagat gatccatgta aaact	ctttg 1320
25	tactaactac ctggtacact gtatctgctc cataaatgtc agtgacaaca atgat	aataa 1380
-0	tgacaatgtt tggaggagtt tatagcttaa tggagagact taaagcataa gaatt	atcta 1440
	ggcgaagaat gatgagaaaa tatttttgga aaaggaaaac aaacagttct actaa	aatta 1500
30	aaaggctgat gtagaggctt gggaaactgg gaggtaagag ctcggactgt gtcct	ctaag 1560
30	acagtaattc ccgaagtgtg agcaaaagtc cacctgcatc agtcttactt ggggt	gattg 1620
	ctcaaaatga ggatttaatg gctgcacctc cgagcaagtt ggtaatttac atatc	ggaat 1680
35	gctatccatc aaggaaaatg ggcagactac agttacatgc atcaacacag acaagg	cttca 1740
55	aacaatattg agtgtaaaaa gcaagacata gaaatatata tttagtaaga gtaaaa	atac 1800
	agtaaaggta aaaaagaggc aaaactaaac aatatattgc ttaagcaata aggata	acaca 1860
40	aactaatgaa aatcaaagga tttactaata caaacttcag tatagtaatt aattgg	gaatg 1920
40	ggagagaaag atgcaaagtt tctatttctt tttttgtttt gttttgagac agtgt	tcat 1980
	tctgttgcca aggcaggagt gcggtggcag gatctcagat cactgcaggc tcagco	tcct 2040
	gggttcaggt ggttcttctg cctcggcctc ccgagtggct gggattgcag gcatg	zacca 2100
45	ccacgcccgg ctgatttttg taattttggt agagatggag tttcaccgtg ttggcc	caggc 2160
	tggtctcgaa ctcctggtct taagtaatcc gcccacctct gccatcaaag tttctg	gtttc 2220
	ttaagttggc tgccgagtac acaggttttc tttgtaaaat aattatttaa attgt	aata 2280
50	tgcattactt atatgctttt catttacaat gtatttcaca agaaaaataa aacaaa	igca a 2340
	ataagaaaac	2350

55 <210> 84 <211> 184 <212> DNA

60 <213> Homo sapiens

	<400> 84							
		gttgcagaga	tggtgaggat	gtcttgcttt	gttacccagg	ttggtcttga	atttgtggct	6
5		ttaagtgatc	ctcccacctt	ggcctcccaa	agtgctcggg	ttacaggcgt	acaacagtgc	120
3		ctggcctgta	ttttattgta	attccttttt	ccattctcat	ctcaatgcat	ttccaaatta	180
		g aga						184
10	<210> 85							
10	<211> 410							
	<212> DNA							
1.5	<213> Homo	sapiens						
15	<400> 85							
20				aaggatgact				60
20				aagctcagaa				120
				cttccattct				180
				tggaggcagt				240
25	t	ccaagttgt	agtgcactat	catcatgcca	ctgcatctgc	actccagcct	gggtgacaga	300
	2	tgaaactct	gtgtctccat	tccccgtggt	ttgcttggtt	tggtttgatt	tgggtctggt	360
	C	ttactactg	ctgcctctcc	gtttgactgg	caaagtgtgg	actgggcact		410
30	<210> 86							
	<211> 16459							
	<212> DNA							
35	<213> Homo	sapiens						
	<400> 86							
		tqcaatggt	gcaatctcag	ctcgctgtaa	cctccgcctc	ctgggttcaa	gcaattctcc	60
40				ctgggattac				120
				gggtttcagc				180
				tcggccaccc				240
45				tttaaaaaag				300
	_	• • • • • • • • • • • • • • • • • • • •	• •	tggcaggcgc	•			360
				gggaggtgga				420
50				gcgagactct				480
				aaataattca				540
				tgtgatacat				600
55		_	•	ctttgtcgct	_			660
								720
			• •	ccttacatgg				
60				tttctgttgt	_			780
		_		gtctttttt				840
	(.tctatcacc	adoct doadt	acaataacac	aatctcooct	Lactocaacc	TOCOCCTCCT	900

	gggttcaagc	gattctcctg	cctcagcccc	cccaagtage	tgggactata	ggagcacacc	900
	accacgtcca	gctaattttt	gtatttttag	tagagacagg	gtttcaccat	gttggccaga	1020
5	tctgctgacc	tggtcgtgat	ctcctgacct	tgtgatccac	ccacgttggt	ctcccaaagt	1080
	gctgggatta	caggtgtgag	ccaccgcacc	cggccaggaa	gtcttttttg	actcctgcca	1140
	tgttctcctg	gcacttcttc	cttatacaga	gatcacacat	gcacattgta	catttgctca	1200
10	gtgagtgtag	ggactgctgc	tctggttttc	ttgtttgttt	gttgcttatt	tctgtatcac	1260
10	caggatctaa	cacaatgctt	ggttagctgt	acccgagtat	ttactgagtg	catgaattcc	1320
	atccattgta	ttttctgtag	ctacctgatc	tttatttgaa	cctttcaaga	tatctcattc	1380
15	cattttggtg	ttcttattat	aatagaaatt	agagaaaata	tttgcaacca	aaatgagaaa	1440
15	aaggtaatat	taatatacaa	aaagctcata	taagttactg	aagaaaatgt	ctaaagccct	1500
	aataaatagg	caaagaatgt	aaatagctaa	gtcacaaaag	aaatcttaga	atgcttaaaa	1560
	gatccaggtg	caatggttca	tgcctgtaat	cccaacactt	taggaggcca	aggcagt ag g	1620
20	atcacttgaa	gccaggagtt	acaagcttag	caacaaagca	agacctcatc	tctacaaaaa	1680
	acaaaaaaat	aaaaaaacta	gccaggcgta	gtggcactca	cctgtagtcc	cagctattct	1740
	agagccaagg	gagggaggat	tgccttgagc	ccagggattt	gacgctatgg	tgagctatga	1800
25	tcgtgtcact	gcactcagcc	tgggcaataa	agagacacac	tgactcttaa	aaaaaatggc	1860
	caaaagagat	ctgagaataa	ttatctttac	taggcatcaa	ataagtgcaa	atcaaagcaa	1920
	actgccacct	attaattgag	caaaacattt	aattgataat	ctatttttca	gaatgtattg	1980
30	gtctagttag	aatatcaatt	cttacctttc	tgacagatga	ctagtccttt	gtaaataccc	2040
	agtcacctct	tttcagttaa	agttgctgtc	tccaaggagt	ttgcaatcta	attggggagg	2100
	taaaatctca	actcaagaaa	tgagaagtca	gcatgaaaac	ccattgatgt	cgtattgctt	2160
35	ttgctgctct	gatgtggtgg	ctcacacctg	taatcccagc	actttgggag	gctggggtga	2220
	gaggatcact	tgaacccagg	agttcaagag	cagcctgggt	aacatggcca	aaccctgtgt	2280
	caaaaaaagt	ttttaaaaat	tagcccggcg	tggtggcaca	tgcctgtagt	cccagctact	2340
40	caggaggctg	aggtgagagg	atggctggag	gctggcaagt	agaggctgta	atgaactgag	2400
	atggtgccac	cagaaggacg	gagtttccct	taaccaagat	aatatgtata	gtggctagtc	2460
	tggcacatgg	cacttactgg	gtattccata	aagagtagtt	tatttcccca	aaatgtagag	2520
45	taagagtgaa	agactttgat	ccaatgtact	tctgtccacc	tacacaagca	aatagaatgt	2580
	ttcaccagaa	taattagaca	aaaaatttta	tatgtaattg	gcacattgga	atccttgtaa	2640
	artactcctt	ctgttggcca	agagatttac	tcctttggtg	gaacttgtgt	ttttccatat	2700
50	gacaataata	tagtaatggc	aagtatatca	ataataataa	aactttttt	aaaaagtaaa	2760
	gggaaaatct	taccaaatta	atgtttcatt	ttaaggaaaa	tatgactcta	tgcccatttt	2820
	tttccttcca	ggatgttgcc	ttatggctgt	ttagcaacag	gagatcgctc	tggcctcatt	2880
55	gaagttgtga	gcacctctga	aacaattgct	gacattcagc	tgaacagtag	caatgtggct	2940

	gergeageag	CCCCCaacaa	ayacycccii	cryaactyyc	LLEGASYARIA	caactctyyy	3000
	ttagtttatt	ctgtttaatt	atcatttttc	tgtacaaaca	gccaaacaaa	tactgtatgc	3060
5	tcccaataga	agtcagcagt	gtgttagagg	aaatattagt	gttttttatc	tattgcttca	3120
J	tttcttgtta	gaacaaaatg	acacatagcc	cttcgtaaag	tcttgtaaat	ggtgaatgtt	3180
	gaattctact	ttatctaaat	caaattttgg	agccccgcag	taaagttaca	atctatgaat	3240
10	ttaagtattt	aaagataaca	tactgaagcc	tttgttcaag	tgcatcagct	tctctaatta	3300
10	tgtgaatata	tgaacttaag	tgagttttta	atgagttggt	agattgtgat	ttctccaaac	3360
	taaaaaatgc	aatgtttgga	attatggcta	tggtgttaga	aaagcactaa	tatataggaa	3420
15	ataaaagaac	ttcacagtgt	gagggggaaa	tggtctgcaa	gtatttttgg	ctaaagactt	3480
15	cagagtcaga	cacattttat	cgagaacttg	taatatgcaa	atcagtttcc	aaattttgat	3540
	cttaaggcct	tgtctccagg	gaatctctat	tacttacttc	taattgaaat	cagtgactta	3600
20	aatgtttgaa	actgcagtgc	ttaactctta	aacatgaaat	tgtagtcagt	ctttggtcaa	3660
20	aactaactaa	aatgttccca	acccctagca	tgatctagca	aagccatggt	ctcttctaag	3720
	tactgtgaac	atgagtctac	tcacagcccc	accgaaacac	agctcccagg	acgtttgaat	3780
	atctaaggcc	cagttattta	atgtctttga	aggcagctct	ctcagcccag	cccctgtgaa	3840
25	gaccacccac	actccccttg	gctgatccac	atgttctctc	atacggtttt	ggcagctctg	3900
	tgttctcctc	acaattaaaa	aggaaacaga	ggtatggttt	gggtctcact	ctacacgctt	3960
	ggaggctgaa	aacctttttt	gcttctgttc	ttttctcttg	ttcagggatg	acctggaccg	4020
30	agccattgag	gaatttacac	tgtcctgtgc	tggctactgt	gtagcttctt	atgtccttgg	4080
	gattggtgac	agacatagtg	acaacatcat	ggtcaaaaa	actggccagg	tgagctgctc	4140
	ctcaggatct	gccaagggcc	ttagtaatgc	tatttcttat	gtatagcata	atctcttgtg	4200
35	caactcagcc	agattctttt-	gtgattctta	gtgtcatatc	tttgtcttta	cttcaatttc	4260
	tcactacctc	tcgtttcata	tatagtctac	tacatgtatt	catttgtttg	cttgcttgat	4320
	ggtaagcatt	tatttgttta	aaaaattact	aaaggctgtg	tgtggtggct	cacgcctgta	4380
40	atcccagcac	tttgggatcc	cgagccggcc	ggattacctg	aggtcaggag	tttgagacca	4440
	gcctggtcaa	catggcgaaa	ccccgtctct	actaaaaata	taaaaattag	ccaggcatgg	4500
	tggcäggcgc	ctgtaatccc	agctacttgg	gagactgagg	caggagaatc	acttgaacct	4560
45	gggaggcgga	ggttgcagtg	agccgagatc	gcctcactgt	gctccagcct	gggcaacaag	4620
	agtgaaactc	catctcaaaa	aaaaattatt	gaaaaaattt	ttgtagttaa	agtggcctgt	4680
	tcttcaatat	aagaaatagt	atttgggata	catttgtacc	taacagaagg	agcggataat	4740
50	gtactggatg	tattaaattt	aaagattacc	aatgctattc	atatcctttg	cccacttttt	4800
	gatggggttg	tttgtttttt	tcttgtaaat	ttgtttgagt	tcattgtaga	ttctggacat	4860
	tagccatttg	tcagatgagt	aggttgcgaa	aattttctcc	cattttgtag	gttgcctgtt	4920
55	cactctgatg	gtagtttctt	ttgctgtgca	gaagctcttt	agtttaatta	gatcccattt	4980

	grcaatttg	gcttttgttg	ccattgcttt	tggtgtttta	gacatgaagt	ccttgcccat	5040
	gcctatgtcc	tgaatggtaa	tgcctaagtt	ttcttctagg	gtttttatgg	ttttaggtct	5100
5	aacgtttaag	tctttaatcc	aaaagaagac	atttatgcag	ccaacagaca	catgaaaaaa	5160
	tgctcatcat	cactggccat	cagagaaatg	caaatcaaaa	ccacagtggg	ataccatctc	5220
	acaccagtta	gaatggcaat	cattaaaaag	tcaggaaaca	acaggtgctg	gagaggatgt	5280
10	ggagaaatag	gaacactttt	acattgttgg	tgggactgta	aactagttca	accattgtgg	5340
	aagtcagtgt	ggcgattcct	cagggatcta	gaactagaaa	taccatttga	cccagccatc	5400
	ccattactgg	gtatataccc	aaaggactat	aaatcatgct	gctataaaga	cacatgcaca	5460
15	cgtatgttta	ttgcggcact	attcacaata	gcaaagactt	ggaaccaacc	caaatgtcca	5520
	acaatgatag	actggattaa	gaaaatgtgg	cacatatata	ccatggaata	ctatgcagcc	5580
	ataaaaagg	atgagttcat	gtcctttgta	gggacatgga	tgaaattgga	aatcatcatt	5640
20	ctcagtaaac	tatcacaagg	асаааааасс	aaacaccgca	tgttctcact	catagatggg	5700
20	aattgaacaa	tgagaacaca	tggacacagg	aaggggaaca	tcacactctg	gggactgttg	5760
	tggggtgggg	ggagggggga	gggatagcat	taggagatat	acctaatgct	aaaggacgag	5820
25	ttaatgggta	cagcacacca	gcatggcaca	tgtatacata	tgtaactaac	cggcacattg	5880
25	tgcacatgta	ccctaaaact	taaaataaaa	аааааааааа	agattaccaa	tgctaaaaaa	5940
	aaaaagttgg	gatgaacccc	acttgagtta	ttttctcttt	tagaacatca	tacctaatta	6000
	tatatgggag	aagggagaac	agtcgtgtga	gtaatagcat	tctggggtac	ctagggaatc	6060
30	tagaccatgt	tgtttataaa	gtacttaagt	tttcaaatga	aaatttcatt	tttcagagtg	6120
	acatatttgt	aaacactttt	tatgttaagc	aaaaacagat	gagatatctt	agataatttt	6180
	tcagtttagc	cccctagga	attcccacat	tagaggcata	ctagaatgaa	aatctctctg	6240
35	ggtcactgtg	tgaactttgg	ttctatgagg	gacccacagt	tttgtatctc	cttggaaatc	6300
	tggattagtt	ctggcttggg	ctttgagagt	tgatgtggaa	tgaatttgta	atgcactata	6360
	atacatgaat	gcaccatgta	cgattgagga	atctcgtgtc	catacttaaa	aggagtccct	6420
40	tggacttccg	tccaatcaca	ttaaacactt	agatttatct	ccattttctt	cttttacacc	6480
	tctaaaacaa	taataaggaa	ttaagaaata	tataaactca	agaagtcaaa	gatgatagga	6540
	aaataggcca	cagtgggtga	aacctattac	cagacttcgg	ggtgatagaa	agt ga gatag	6600
45	agaagtggca	gtgacttagc	agaactgaga	aaatagaaag	tcagtacttg	taaaggggta	6660
	cgcaagtccc	ataaaagctc	tggaatcaga	ggcaccatgt	atactgttca	aggagggata	6720
	cagaaagagg	ctgaaacaga	actagttggc	agcttatata	tggaaccagt	taggcactca	6780
50	agtccccttc	ccttatgcca	agaaggagac	agatttattc	tctgaagaaa	ctggttctga	6840
	ctcaagcaca	cttatttcta	cagagactac	aagaaagggt	cccatattaa	aaatggagat	6900
	ggagtgaaag	tcggcgtagt	aaatggtaca	atctgcagcc	acttccactt	gctttattct	6960
55	aagaacagtg	gcagccagat	gtatagttga	ccctcatcaa	aagactaggt	gattctattc	7020

	tagaaatetg	attggtttta	ttgaaaagtt	ctycagatet	gacagttgag	attictete	708
	agtttctata	caaggaagtc	caccaatcaa	caagcaagcc	taccatgtac	atagaatttt	714
5	cattcagctt	tttagtgatt	cattgttaaa	tatgaatggt	cagctaagga	ttaatatact	7200
	tttaaaaaat	gacaaaaatt	gaatatgttt	atcatgtacg	acatattgtt	ttgaagtatg	7260
	tcttcattgt	ggacttgata	aattgagctg	acctgtgtgt	tacctcacat	acttatcttt	7320
10	ttttgtgatg	ataacattta	aaacctagtc	tttcagcagt	tttcaggaat	acaatatatt	7380
	gttgttaact	atagttgcca	tgttgtaaga	cagatctgtt	gaacttattc	ctcctaagtg	7440
	aaattttgta	ttatttgacc	agtatctccc	cagcacctgc	agccaccatt	ctactctcta	7500
15	ctggattagc	agacatttaa	gggaaacctc	taccatgaaa	gatagaaacc	aaataggcaa	7560
	aatagggaag	aaaagaaaag	aactctggga	aaacagggta	actgcagtaa	acagagggtg	7620
	attttaaaaa	tcaaagcaaa	aäaatatatt	gtatctttaa	agtaataata	ggattctgtt	7680
20	ttttacaatc	agcacataga	ggtcttgaaa	attagaaata	ggaacaaaca	aaaagttaaa	7740
	atagaaatag	tgtaaatatt	ttgtggcagg	catagttgta	agtgctttat	atataatcta	7800
	atgccttcag	gcctgatgac	aaccttatag	agtggcggca	atagccccat	tttacaagtg	7860
25	aggatattaa	ggcaacagag	agtagacata	tcaggatttt	aaccctggga	gtttggctca	7920
	tattcttttt	ttttaatcca	ccatgcctta	atatctccaa	aaaatatgat	aaatagagag	7980
	aagatccaga	aacaatagag	actcagtcca	gggaggtata	ctctcagcct	aatggatatt	8040
30	ccagaaagaa	ggagaatggc	gtgaacctgg	gaggtggagc	ttgcagtaag	ctgaaatcac	8100
	gccactgcac	tctagcctgg	gcgacagagc	gagactccgt	ctcaaaaaaa	23232222	8160
	aaaaaaagaa	gaggaaagaa	gggcacttac	taagcaaata	atatactaag	acatttccca	8220
35	gagccaatgt	tcatgaatat	ccagtcaaaa	tagcacaaaa	a ttttctgag	aacggaagaa	8280
	aaacaccctt	actaagtacc	tgcactatga	aatttcagtg	catcagacgt	aaagagaaag	8340
	tcttaaaact	ttcacagaga	cacagcaggc	cacataccag	agtttagaag	tcaaaatgac	8400
40	ttggctcctc	aatagctaca	ttggcaatta	taagacagtg	cacgttagcc	ttcataattt	8460
	tgagggaaaa	tgatttctaa	cctaaaattc	gataaccaaa	ctttttttt	tttttctgag	8520
	acggagactt	gctctgtcgc	ccaggctgga	gtgcagtggc	gtgatcccgg	ctcactgcag	8580
45	cctccgcctc	ctgggttcaa	gtgattctcc	tgcctcagcc	tccccaggca	gctgggggac	8640
	cacaggcatg	cgccaccacg	cccagtcaag	tataaagggt	agaatgaaga	catttttcca	8700
	acttgcaggg	tcacaaaact	tgtcactcct	ctgcatcttt	tctcagaggc	tgccagaata	8760
50	aggacatcta	ccaaaacaag	tgcctaaacc	aataattatc	aagtggggtg	atttttcact	8820
	caggggacat	ttgttaatat	atgaaaacag	ttttagttgt	cataactggg	gggtggggta	8880
	gtccagtgga	tagaggccag	ggatgctgct	aaacacccat	acaggacaga	accccatatc	8940
55	aaagaattat	atggcctatg	tcagtgtgtg	ccagtattga	gaaaccctgg	tctcaaccaa	9000
	aagagaatgt	gatgtggaca	caaaacgggc	tccaaatggg	agaagaggaa	agggaaggcc	9060

	caggatgatg	gctctgcagc	aacaccggag	aacaaccagc	ccayctayaa	accagtagat	9120
	tacctgactg	tctggaaaac	agttttg aaa	atgatttgta	gatttgttgt	tgtttgattt	9180
5	gtagattttt	aaggagagtt	tgggaagaat	taatgctaag	gtcatagaac	actaagctaa	9240
3	atgaatgaat	gaatacatgc	gtacagtttt	ctaaaggaaa	aaaaggtgaa	catgtgaaaa	9300
	ataaaaacac	tgaatattga	tgtaaccaga	aattatgaca	taatgtgcca	cagtgtgtag	9360
10	cattatgtta	gcataaaagt	actaaatctt	tatcttccat	aataagaata	gtaatataca	9420
10	attagggagc	aaaaataaat	ataaacatat	tatttagaaa	aatggaggca	gacaccagga	9480
	aaaacaccta	gtgagaagag	taagaagtta	cctctaaaga	gtagcactca	atgtggggag	9540
15	ctagtagggc	aaggatgtac	ttttttgtgg	ttgttgttgt	tgttgagaca	gggtcttact	9600
15	ctgtcaccca	ggcaagagcg	tagtggcatc	atcatggccc	attgcagcct	cgacctccta	9660
	ggctcaagca	attcccccac	ctcaccccc	ctgagtagct	gggaccacag	gtgtgtgcca	9720
20	ctatgcctga	ctaattttt	ccttcatttg	tagagatggg	gtctcgctat	gttgcctagg	9780
20	ctggccttga	actcctggtt	tcaagtgatc	ctcctgcctc	agcttcccaa	agtgctggga	9840
	ttgcagacat	gagccaccac	aaccaacctg	tactcttttc	ttgttatgtt	ttatagaact	9900
	atttgacttt	ttaaaaatca	gacattttaa	ttctttggat	gtatttttct	ttctaaagcg	9960
25	tctccttttc	cactagatat	ctacagttta	atatcagggt	tatttattat	tgattgtaaa	10020
	agtcttaaga	gtgttagata	tggtctcttc	tcacctggct	cagtgggcta	taaacagagg	10080
	gagaagggct	cagatgtgga	tgggtatagt	tcctgggggt	ctaggactat	ggaggttttg	10140
30	cctttatatt	tggaacccac	cagaaaaatg	aaggaaatta	aatcccattt	gttttccagc	10200
	tcttccacat	tgactttgga	catattcttg	gaaatttcaa	atctaagttt	ggcattaaaa	10260
	gggagcgagt	gccttttatt	cttacctatg	atttcatcca	tgtcattcaa	c aaggaaa aa	10320
35	caggaaatac	agaaaagttt	ggccggtgag	tactgccctt	gtgccaaggc	tgaacacttc	10380
	taacattttc	ttatctgacc	aggtggacca	gcatttctta	gctgagatat	atttggatct	10440
	gggagatatt	cagtctgatt	ataggaagct	tttgggggaa	tttgcctgtc	agattattgt	10500
40	gctggttcag	aaattcccag	ataggagaaa	cagaatgcta	gaaatt taaa	atagttatta	10560
	tattttattc	caataatata	ctacctttta	cctgtttcag	aacattctct	gaaactatta	10620
	agacagttga	taggaagatg	ctgaaaagac	atctgctgtc	attgtgtatg	gagtacagta	10680
45	agggaactag	aattcagggc	aaatttttta	atctctgatc	tattactggc	tacctacatg	10740
	ttcccaagca	taatacttgt	ctttttgcct	ttgtatcatc	ttaaaatggg·	gacaaaaata	10800
	tgaaattaag	ggctactatg	atggttagag	acatatcatg	taaccaacaç	atacttaaca	10860
50	aatcattgtc	actatccttt	atagttctgt	ttgggtttct	gcagaatata	cctcagtggg	10920
	tctagttttc	tctttggcaa	aataagggga	tacgattgga	tggtcctcag	cctggcgcgg	10980
	taggtcatgc	ctgtaatctc	agcactttgg	gaggccaagg	cacacagatc	actggaggtc	11040
55	ggagtttgag	accagcctga	ccaacatggt	gaaaccccgt	ctctactaaa	aatacaaaaa	11100

	gragecaggi	grygryycac	acyccigiaa	tettagetac	ccayyayycc	gaggcagaat	11100
	tgcttgaacc	tggaaggcag	aagttgcagt	gagccaagat	cacgccactg	cactccagcc	11220
5	tgggagacag	agcaaggttc	catctcaaaa	aaaaaacatt	ggatgatctt	cttgagggac	11280
	catcttgaag	aggagagaga	gggaaggcag	gatgacagga	aggagcaaaa	gcactgacac	11340
	tgattgaggg	gacttttaaa	aaattagttt	ctggaatcag	accacaaata	tagaacccag	11400
10	aagtatgttc	agaaatcctt	gtggattata	attataactg	atttaataat	cagttcttgt	11460
	gtctcataga	attaaaaagt	ctagattatt	attaaaaatg	taatagcctt	tcgtcataga	11520
	atttctattt	agttttgttt	ttgaaaaata	tatctgtgat	gttagagaga	ttgattgttt	11580
15	tatgtagatt	ttagtcctgg	gacaattttc	gcagaagt aa	aaatcagaaa	tgaaccttta	11640
	gttcagtagg	aattttctta	ttctaataga	aagtctagct	gtgttttctt	aatttcctgt	11700
	atgaaatgtg	ctctctcccc	tctaacactg	tgctcatgtg	gtttgctgca	tcacccaaag	11760
20	gttccgccag	tgttgtgagg	atgcatatct	gattttacga	cggcatggga	atctcttcat	11820
	cactctcttt	gcgctgatgt	tgactgcagg	gcttcctgaa	ctcacatcag	tcaaagatat	11880
	acagtatctt	aaggtataaa	accacttttc	cttctctctt	ggactttgtg	ggcattgagc	11940
25	tcagttttag	ctgcctgttt	tattcaagtg	gctgaaggaa	gtagaacaaa	gtcatttcct	12000
	ctaagatggt	tcttagccag	gagggaaaga	atctgggaag	tacataaagg	aggaattttg	12060
	tagagtagct	tgtaacccag	aagattttcc	catcagtaga	aggggcgtaa	agaagactgg	12120
30	tattgggctg	tagccttctt	actcacatta	ctgaaagacc	gcagatcagg	agcgggttgc	12180
	caccttgatt	ttccacagtc	tgcctttttc	ttgccaggat	cttagtaggt	cttgagtcat	12240
	cttactggat	ttgggtggta	gtggcaagca	gctgtgcatc	ctgcagtaat	tataaattat	12300
35	tttcatcttc	aaaaaccttt	tggaagaagt	catattatct	ccctatcttg	gggttctgcc	12360
	tcctgcagat	gatatttaaa	taagaacatg	aagcatgctg	cctgatggtg	gctggggagg	12420
	cacaaccaat	ccagcctcct	gcagactttg	atatttgcac	atctctacta	aagttatata	12480
40	aaatcatatt	ttcccccttc	cattttagga	ctctcttgca	ttaggg aaga	gtgaagaaga	12540
	agcactcaaa	cagtttaagc	aaaaatttga	tgaggcgctc	agggaaagct	ggactactaa	12600
	agtgaactgg	atggcccaca	cagttcggaa	agactacaga	tcttaacgat	cagccttcgc	12660
45	tcctaatgta	tttgttggtt	tcatttcatt	ttcattttgc	acttgcacta	aattgaacat	12720
	gaccctgtta	gagatgttat	aaagggaatg	aaatcctgga	actcagagtt	aaattaagaa	12780
	caaggcatcc	cacagaacct	aatctgaaca	atccccgatg	attccctctg	ctttttgaat	12840
50	gcttccaaga	cttatcatga	aaactgtcaa	tggataatca	tttcctgctg	actttgcacg	12900
	ccaaggaatg	ctactaggga	ttgtttccgt	ttttgtttgt	tttttctaat	atttggtact	12960
	tcccagaatg	gtgtaaatac	ttcttttcaa	tgttgtgacc	aagtattgtc	actcagccaa	13020
55	caacttttcc	acacctgggg	gttggtggct	gttcttactg	tccaaatgaa	gctaaaaaga	13080
	aaggcatctt	tcttcccttt	taaaattgtg	taaactgcaa	att ataa tat	aatttgaatt	13140

	tatgattatt	ttccagaaga	aatcttgtaa	acctgtggat	actcattaat	tcttttgtta	13200
	atatttattt	ccatgatagc	atcattccag	ccagacttgc	tgaaaatcta	ctggtgaggc	13260
4	aaatataata	tatataaata	tgctacatat	atatttataa	aatttctagt	gggagttcta	13320
	tataaatgtt	tctttggtat	tcttcagcct	gtgatttaaa	gttttacaaa	aagcagagct	13380
	ttttcctaag	ttacttttca	gttaggtaac	tgtgtgatcc	agttcttcca	gctgcttcta	13440
10	taatgaggca	catattaata	cagtttttat	atggtatcta	tgaaagagtt	cacttcatag	13500
	agaataatac	ttgagcaaat	gtatccaaga	aagcaagcaa	atgaaaagaa	acctatttat	13560
	ggaataaact	ccagatctga	aattcagtat	tttagaaaaa	tgccagctct	tcttactgta	13620
15	tttattaaaa	cttgtaataa	tgtgattttt	ttcaaggata	ttagttcaaa	ttgaaatggt	13680
	ttcacgccac	acggaaatct	ttaagttatt	tgttgaggta	ccatatattt	agggtgctag	13740
	gggcaagtaa	tgttaatatg	tgcaatagga	actactggtt	tgaatgtgta	aatgggtgat	13800
20	ctctctgagt	cctggcaaca	tccagcaaaa	ctactgctta	ttctccaaag	aatattggga	13860
	gctctcaatc	ctcggtgata	tgggaaagag	aactgagtat	ttgccctatg	actgagcttt	13920
	ctataggaat.	tttattaaag	aatgtttaat	tttgttgtcc	ttcttaatgt	tctcagtcaa	13980
25	ataaatgagt	gagctggttt	cggctgctct	tggaatgggt	gagcctcttc	tttatgggta	14040
	gactgggcct	ttggaacttg	gcactggaac	tccaagaaat	ggccaagtca	gtagacaaac	14100
	caacctcagg	aataggctaa	ggcttattat	ggcctcttcc	ctgacttctc	cccttgtttc	14160
30	ccagcctcat	caggcatggt	ataggaggcc	ccctggactt	tggtgggagc	ctgaggtaag	14220
	gagccatgca	tatgggaggt	gtcctgaagt	ctgggtagtt	acttggcact	gagccaaggc	14280
	cagactctgc	tgctttggag	ctcttgttca	tggggcagat	gctggagcag	t ccagttc ct	14340
35	tggaaataac	tcagctgagg	atgggagttg	gcccctgaat	tcctcatttc	cagggetggt	14400
	gtagactcac	tgagacttcc	aggaatagaa	ctatggaagg	acaggtttgt	tcagagatct	14460
	ttgtctagta	gccacccacc	atttcatgaa	ccaggccgca	ggtcagtggt	ttggagaatg	14520
40	gtgaacactg	ccaggaagaa	atggatacca	ttctttccag	aggggtctcc	tcagccaaaa	14580
	ggagggcctt	gataaataca	tgccaaatca	gtgaagttca	agtcaactgt	ttttcccata	14640
	tgggcaccaa	attgtatctt	tcctgttttc	tttgaagggt	taagtaacgt	gaccatagtc	14700
45	acagagtagt	tgatggagcc	agtattcaaa	cccagaaagt	aagaagccta	ttttaattat	14760
	ctgtgctctt	tactcacaat	gcctcagtat	acatttcaga	tttattgggt	tccacaaata	14820
	gaaacctatg	gaaattttga	atcaaattgc	attaagct a t	agacaaggtt	gagacaaatt	14880
50	gacatctcca	gaatattgag	ttttccaaaa	tatgtaagtg	gagtacccat	ttatttagat	14940
		ttatatccgc	aatgatttat	agtattctgt	gtttacatat	tatgcatcgt	15000
	ttgttagatt	cctgggtaag	tgactttatt	gtaagtttca	ttgttgttaa	tctatagcaa	15060
55	tcattctcca	agtgtggtcc	cctgatgagg	agcatcagca	tcaccagaga	gaactggtta	15120
		ttcttaattt	ttaatttttg	tgagtacata	gtagatatat	atatgggata	15180

	catggaatat	tttgatacag	gcatataaca	tgtaattatc	gcatcagggt	aattggggta	15240
	tccattacct	caagcattta	tcctttgtat	tagaaacaat	ccagttatac	tcttttagtt	15300
5	attttaagat	ctataattaa	attatcgact	atagttactc	tgttgtgcta	tcaaatacta	15360
	gatcttattc	attettacta	tttttttgt	acccatagaa	atgcagattc	ttggtggggc	15420
	ctggcagctc	acacctgtaa	tcccagcatt	ttgggagggc	gaggccgggg	aatcacctga	15480
10	ggtcaggagt	tcaagattag	cctggccaac	atggtgaaac	ctgtatctac	taaaaacaca	15540
	aaaattagct	gggcatggtg	gctggctcct	gtaatcccag	ctactcgaaa	ggctgaggta	15600
	ggagaatcac	ttgaacccag	gaggcggagg	ttgcagtagc	cgagatcaca	ccactgcact	15660
15	ccagcctggg	taacagagtg	agactccatc	tcaaaaaaag	242222222	gaaatgcaca	15720
	tccttgagcc	ctgccctgga	gctactgatt	tagaaatggg	ggtggagccc	caaacctgta	15780
	tttaatttaa	tttatttatt	tatttatttt	ttgagatgga	gtctcgcttt	gttgcccagg	15840
20	ctggagtgca	gtggtgtgat	ctcgattcac	ttcaacctcc	acctcccagg	ttcaagcaat	15900
	tatgtctcaa	cctcccgagt	ttagctggga	ctacaggtat	gcaccaccat	gtccagctaa	15960
	tttttgtatt	tttaataaag	a cag gg tttc	accatattgg	tcaggctggt	ctcgaactcc	16020
25	tgacctcagg	tgatccacct	acctcaacct	cccaaagtgc	tgggattata	ggcatgagcc	16080
	accgcaccca	gccaaacctg	tattttcata	aagttccaga	gcaaaggtcc	acaaatacat	16140
	ttgatgtttg	tatttagcag	actta taa ac	tttctaatta	atcctaacaa	tttatttgta	16200
30	tgaattttt	ttttttttc	ttgagacagg	gtctcactat	gtcacccagg	ctggagtgca	16260
	gtggcgtact	ctcggctcac	tgcaacctct	gtctcctggg	cttaggtggt	cctccgacct	16320
	cagcctcctg	aatagctggg	gccacaggca	tgcaccacca	cacgcagcta	atttttgttt	16380
35	gtttgtttgt	ttgttttaag	agacggaggt	ttaccatgtt	gcccaggttg	gcctcaaact	16440
	tctggactca	agcagtctg					16459

<210> 87
<211> 1145
<212> DNA
<213> Homo sapiens

⁴⁵ <400> 87

	attctctccc	cagcttgctg	agccctttgc	tcccctggcg	actgcctgga	cagtcagcaa	60
50	ggaattgtct	cccagtgcat	tttgccctcc	tggctgccaa	ctctggctgc	taaagcggct	120
	gccacctgct	gcagtctaca	cagcttcggg	aagaggaaag	gaacctcaga	ccttccagat	180
	cgcttcctct	cgcaacaaac	tatttgtcgc	aggaataaag	atggctgctg	aaccagtaga	240
55	agacaattgc	atcaactttg	tggcaatgaa	atttattgac	aatacgcttt	actttatagc	300
	tgaagatgat	gaaaacctgg	aatcagatta	ctttggcaag	cttgaatcta	aattatcagt	360
	cataagaaat	ttgaatgacc	aagttctctt	cattgaccaa	ggaaatcggc	ctctatttga	420
50	agatatgact	gattctgact	gtagagataa	tgcaccccgg	accatattta	ttataagtat	480

	gtataaagat agccagccta gaggtatggc tgtaactatc tctgtgaagt gtgagaaaat	540
	ttcaactctc tcctgtgaga acaaaattat ttcctttaag gaaatgaatc ctcctgataa	600
5	catcaaggat acaaaaagtg acatcatatt ctttcagaga agtgtcccag gacatgataa	660
	taagatgcaa titgaatcii catcatacga aggataciii ctagciigig aaaaagagag	720
	agaccttttt aaactcattt tgaaaaaaga ggatgaattg ggggatagat ctataatgtt	780
10	cactgttcaa aacgaagact agctattaaa atttcatgcc gggcgcagtg gctcacgcct	840
	gtaatcccag ccctttggga ggctgaggcg ggcagatcac cagaggtcag gtgttcaaga	900
	ccagcctgac caacatggtg aaacctcatc tctactaaaa atacaaaaaa ttagctgagt	960
15	gtagtgacgc atgccctcaa tcccagctac tcaagaggct gaggcaggag aatcacttgc	1020
	actccggagg tagaggttgt ggtgagccga gattgcacca ttgcgctcta gcctgggcaa	1080
	caacagcaaa actccatctc aaaaaaataaa ataaataaat aaacaaataa aaaattcata	1140
20	atgtg	1145
	210 99	
	<210> 88 <211> 732	
25	<212> DNA	
	<213> Homo sapiens	
	400- 99	
30	<400> 88	-
	ttttttttt tttttttgg acacagggtc ttgctgttgc ccaggctgga gtgcagtggc	60
	atgaccatag ctcactgcag ccttgacttc cttaactcaa gcaatcctct tgcctcagcc	120
35	tcctgtagca ctgtaggcac acacaactat gcctggctaa ttttaacatt tttctttcac	180
	cttcttgacc cttatcttct atacccggct aattttttgt agagacagtg tcttgctatg	240
	ttgtccaage tggtcttgaa ttcctcgcct caagcaatce ttccacctca gcttcctgag	300
40	tgttaggatt acaggcatga gccactgcac ctggcctcca acaggtaatt ttagaacatt	360
	tttccctcta cactaattac cctcctataa cctccatttg ttatcactta ctttctgatg	420
	ttgtattcat agagcatgaa tatcttagaa agatggcacc atccttctat taataagacc	480
45	agcagaatag ctcagtttaa agttcctcta aacccaagaa aatatcaaac aaaaatgtct	540
	ttttttagat aaatttgaag tcagaagata ttttgatatg agtctagtca tctctttggta	600
	tccatggggg attggttcct gaaacccttg gataccaaaa tccacagaag gatgctcaag	660
50	tctctgtaaa atagcatagt atttatatat agcctatgca catttcccca tacactttag	720
	attactctag at	732
	<210> 89	
55	<211> 2914	
55	<212> DNA	
	<213> Homo sapiens	
60	<400> 89	
60	gtgctctgag tttttggttt ctgtttcacc ttgtgtctga gctggtctga aggctggttg	60
	ttcagactga gcttcctgcc tgcctgtacc ccgccaacag cttcagaaga aggtgactgg	120

	rggergeerg	ayyaatacca	g cgggcaagu	guattageme	receyyayea	tetyetytet	100
	gagcagcccc	tgggtgcgtc	cactttctgg	gcacgtgagg	ttgggccttg	gccgcctgag	240
5	cccttgagtt	ggtcacttga	accttgggaa	tattgagatt	atattctcct	gccttttaaa	300
	aagatggact	tcagcagaaa	tctttatgat	attggggaac	aactggacag	tgaagatctg	360
	gcctccctca	agttcctgag	cctggactac	attccgcaaa	ggaagcaaga	acccatcaag	420
10	gatgccttga	tgttattcca	gagactccag	gaaaagagaa	tgttggagga	aagcaatctg	480
	tccttcctga	aggagctgct	cttccgaatt	aatagactgg	atttgctgat	tacctaccta	540
	aacactagaa	aggaggagat	ggaaagggaa	cttcagacac	caggcagggc	tcaaatttct	600
15	gcctacaggt	tccacttctg	ccgcatgagc	tgggctgaag	caaacagcca	gtgccagaca	660
	cagtctgtac	ctttctggcg	gagggtcgat	catctattaa	taagggtcat	gctctatcag	720
	atttcagaag	aagtgagcag	atcagaattg	aggtctttta	agtttctttt	gcaagaggaa	780
20	atctccaaat	gcaaactgga	tgatgacatg	aacctgct g g	atattttcat	agagatggag	840
	aagagggtca	tcctgggaga	aggaaagttg	gacatcctga	aaagagtctg	tgcccaaatc	900
	aacaag a gcc	tgctgaagat	aatcaacgac	tatgaagaat	tcagcaaagg	ggaggagttg	960
25	tgtggggtaa	tgacaatctc	ggactctcca	agagaacagg	atagtgaatc	acagactttg	1020
	gacaaagttt	accaaatgaa	aagcaaacct	cggggatact	gtctgatcat	caacaatcac	1080
	aattttgcaa	aagcacggga	gaaagtgccc	aaacttcaca	gcattaggga	caggaatgga	1140
30	acacacttgg	atgcaggggc	tttgaccacg	acctttgaag	agcttcattt	tgagatcaag	1200
	ccccacgatg	actgcacagt	agagcaaatc	tatgagattt	tgaaaatctæ	ccaactcatg	1260
	-	acatggactg					1320
35	atctatggca	ctgatggaca	ggaggccccc	atctatgagc	tgacatctca	gttcactggt	1380
		cttcccttgc					1440
	gataactacc	agaaaggtat	acctgttgag	actgattcag	aggagcaacc	ctatttagaa	1500
40		catcacctca					1560
		tgaataactg					1620
	cagtcacttt	gccagagcct	gagagagcga	tgtcctcgag	gcgatgatat	tctcaccatc	1680
45		tgaactatga					1740
		ctactttcac	•				1800
		gttttgtttt					1860
50		agtggcgtga					1920
		tcagcctccc					1980
		aaatattttt					2040
55	_	cctcgtgatc					2100
	gagccaccgc	gcctggccga	tggtactatt	tagatataac	actatgttta	tttactaatt	2160

		ttctagattt	tctactttat	taattgtttt	gcactttttt	ataagagcta	aagttaaata	2220
		ggatattaac	aacaataaca	ctgtctcctt	tctcttatgc	ttaaggcttt	gggaatgttt	2280
5		ttagctggtg	gcaataaata	ccagacacgt	acaaaatcca	gctatgaata	tagagggctt	2340
		atgattcaga	ttgttatcta	tcaactataa	gcccactgtt	aatattctat	taactttaat	2400
		tctctttcaa	agctaaattc	cacactacca	cattaaaaaa	attagaaagt	agccacgtat	2460
10		ggtggctcat	gtctataatc	ccagcacttt	gggaggttga	ggtgggagga	ttgcttgaac	2520
		ccaagaggtc	aaggctgcag	tgagccatgt	tcacaccgct	gcactcaagc	ttgggtgaca	2580
		gaacaagacc	ccgtctcaaa	aaaaattttt	tttttaataa	aacaaaattt	gtttgaaatc	2640
15		ttttaaaaat	tcaaatgatt	tttacaagtt	ttaaataagc	tctccccaaa	cttgctttat	2700
		gccttcttat	tgcttttatg	atatatatat	gcttggctaa	ctatatttgc	tttttgctaa	2760
		caatgctctg	gggtcttttt	atgcatttgc	atttgctctt	tcatctctgc	ttggattatt	2820
20		ttaaatcatt	aggaattaag	ttatctttaa	aatttaagta	tctttttca	aaaacatttt	2880
		ttaatagaat	aaaatataat	ttgatcttat	taaa			2914
25	<210> 90							
	<211> 2153 <212> DNA							
	<212> DNA <213> Homo	saniens						
30	\213> 110m0	sapiens						
	<400> 90							
		aanactoroa	gctccccgca	cccctcoca	ctccctctoa	CC00CCC200	000000	60
35			ccagccccac					120
			cccctgcctg			-	-	180
			gctgggtctt					240
40			atttaacttg					300
			atcaagtcta					360
		_	acacaacaga		-			420
45			acttggcacg					480
			agcctctgta					540
			caacaattca					600
50								660
			ggactttagt taatttatac					720
								780
55			acactaatga					840
		-	cagtgattcc					900
			gccaggagaa		_			960
60			tcatcatcct					
60		gcaggagtgg	ggcagagctg	yaaggagaac	rccccactga	acgetteata	aaggaagcac	1020

65

tgttggagct actgcaaatg ctatattgca ctgtgaccga gaacttttaa gaggatagaa

		tacatggaaa	cgcaaatgag	tatttcggag	catgaagacc	ctggagttca	aaaaactctt	1140
		gatatgacct	gttattacca	ttagcattct	ggttttgaca	tcagcattag	tcactttgaa	1200
5		atgtaacgaa	tggtactaca	accaattcca	agttttaatt	tttaacacca	tggcaccttt	1260
		tgcacataac	atgctttaga	ttatatattc	cgcacttaag	gattaaccag	gtcgtccaag	1320
		caaaaacaaa	tgggaaaatg	tcttaaaaaa	tcctgggtgg	acttttgaaa	agcttttttt	1380
10		ttttttttt	tttgagacgg	agtcttgctc	tgttgcccag	gctggagtgc	agtagcacga	1440
		tctcggctca	cttgcaccct	ccgtctctcg	ggttcaagca	attgtctgcc	tcagcctccc	1500
		gagtagctgg	gattacaggt	gcgcactacc	acgccaagct	aatttttgta	ttttttagta	1560
15		gagatggggt	ttcaccatct	tggccaggct	ggtcttgaat	tcctgacctc	agtgatccac	1620
		ccaccttggc	ctcccaaaga	tgctagtatt	atgggcgtga	accaccatgc	ccagccgaaa	1680
		agcttttgag	gggctgactt	caatccatgt	aggaaagtaa	aatggaagga	aattgggtgc	1740
20		atttctagga	cttttctaac	atatgtctat	aatatagtgt	ttaggttctt	tttttttca	1800
		ggaatacatt	tggaaattca	aaacaattgg	gcaaactttg	tattaatgtg	ttaagtgcag	1860
		gagacattgg	tattctgggc	agcttcctaa	tatgctttac	aatctgcact	ttaactgact	1920
25		taagtggcat	taaacatttg	agagctaact	atattttat	aagactacta	tacaaactac	1980
23		agagtttatg	atttaaggta	cttaaagctt	ctatgg ttga	cattgtatat	ataatttttt	2040
		aaaa aggttt	ttctatatgg	ggattttcta	tttatgtagg	taatattgtt	ctatttgtat	2100
30		atattgagat	aatttattta	atatacttta	aataaaggtg	actgggaatt	gtt	2153
30								
	<210>91							
35	<211> 5133 <212> DNA							
33	<212> DNA <213> Homo	sapiens						
	12137 1101110	suprens						
10	<400> 91							
40								50
				ttgccagcaa				60
				ctggaaggat				120
45				ttttcttcgc				180
			=	caccgcgcgc				240
				tgggagctcc				300
50		_		gacactgcct				360
				ccttggcaac				420
				cgtgtgacca				480
55				gtcccatgct				540
				tatttctgtt				600
				tcatgaagga				660
60		ccagtttoct	gctgttcagt	tttccacaag	ctacaaaaca	gaatttgatt	tctcagatta	720

	tgttaaatgg	, aaggaccctg	atgctctgct	gaagcatgta	aagcacatgt	tgctgttgac	780
	caataccttt	ggtgccatca	attatgtcgc	gacagaggtg	ttccgggagg	agctgggggc	840
5	ccggccagat	gccaccaaag	tgcttatcat	catcacggat	ggggaggcca	ctgacagtgg	900
	caacatcgat	gcggccaaag	acatcatccg	ctacatcatc	gggattggaa	agcattttca	960
	gaccaaggag	agtcaggag a	ccctccacaa	atttgcatca	aaacccgcga	gcgagtttgt	1020
10	gaaaattctg	gacacatttg	agaagctgaa	agatctattc	actgagctgc	agaagaagat	1080
	ctatgtcatt	gagggcacaa	gcaaacagga	cctgacttcc	ttcaacatgg	agctgtcctc	1140
	cagcggcatc	agtgctgacc	tcagcagggg	ccatgcagtc	gtgggggcag	taggagccaa	1200
15	ggactgggct	gggggctttc	ttgacctgaa	ggcagacctg	caggatgaca	catttattgg	1260
	gaatgaacca	ttgacaccag	aagtgagagc	aggctatttg	ggttacaccg	tgacctggct	1320
	gccctcccgg	caaaagactt	cgttgctggc	ctcgggagcc	cctcgatacc	agcacatggg	1380
20	ccgagtgctg	ctgttccaag	agccacaggg	cggaggacac	tggagccagg	tccagacaat	1440
20	ccatgggacc	cagattggct	cttatttcgg	tggggagctg	tgtggcgtcg	acgtggacca	1500
	agat ggggag	acagagetge	tgctgattgg	tgccccactg	ttctatgggg	agcagagagg	1560
25	aggccgggtg	tttatctacc	agagaagaca	gttggggttt	gaagaagtct	cagagetgea	1620
25	gggggacccc	ggctacccac	tcgggcggtt	tggagaagcc	atcactgctc	tgacagacat	1680
	caacggcgat	gggctggtag	acgtggctgt	gggggcccct	ctggaggagc	agggggctgt	1740
	gtacatcttc	aatgggaggc	acggggggct	tagtccccag	ccaagtcagc	ggatagaagg	1800
30	gacccaagtg	ctctcaggaa	ttcagtggtt	tggacgctcc	atccatgggg	tgaaggacct	1860
	tgaaggggat	ggcttggcag	atgtggctgt	gggggctgag	agccagatga	tcgtgctgag	19 20
	ctcccggucc	gtggtggata	tggtcaccct	gatgtccttc	tctccagctg	agatcccagt	1980
35	gcatgaagtg	gagtgctcct	attcaaccag	taacaagatg	aaagaaggag	ttaatatcac	2040
	aatctgtttc	cagatcaagt	ctctctaccc	ccagttccaa	ggccgcctgg	ttgccaatct	2100
	cacttacact	ctgcagctgg	atggccaccg	gaccagaaga	cgggggttgt	tcccaggagg	2160
40	gagacatgaa	ctcagaagga	atatagctgt	caccaccagc	atgtcatgca	ctgacttctc	2220
	atttcatttc	ccggtatgtg	ttcaagacct	catctccccc	atcaatgttt	ccctgaattt	2280
	ctctctttgg	gaggaggaag	ggacaccgag	ggaccaaagg	gcgcagggca	aggacatacc	2340
45	gcccatcctg	agaccctccc	tgcactcgga	aacctgggag	atcccttttg	agaagaactg	2400
	tggggaggac	aagaagtgtg	aggcaaactt	gagagtgtcc	ttctctcctg	caagatccag	2460
	agccctgcgt	ctaactgctt	ttgccagcct	ctctgtggag	ctgagcctga	gtaacttgga	2520
50	agaagatgct	tactgggtcc	agctggacct	gcacttcccc	ccgggactct	ccttccgcaa	2580
	ggtggagatg	ctgaagcccc	atagccagat	acctgtgagc	tgcgaggagc	ttcctgaaga	2640
	gtccaggctt	ctgtccaggg	cattatcttg	caatgtgagc	tctcccatct	tcaaagcagg	2700
55	ccactcggtt	gctctgcaga	tgatgtttaa	tacactggta	aacagctcct	ggggggactc	2760

	ggttgaattg cacgccaatg	tgacctgtaa	caatgaggac	tcagacctcc	tggaggacaa	2820
	ctcagccact accatcatcc	ccatcctgta	ccccatcaac	atcctcatcc	aggaccaaga	2880
5	agactccaca ctctatgtca	gtttcacccc	caaaggcccc	aagatccacc	aagtcaagca	2940
	catgtaccag gtgaggatcc	agccttccat	ccacgaccac	aacataccca	ccctggaggc	3000
	tgtggttggg gtgccacagc	ctcccagcga	ggggcccatc	acacaccagt	ggagcgtgca	3060
10	gatggagcct cccgtgccct	gccactatga	ggatctggag	aggctcccgg	atgcagctga	3120
	gccttgtctc cccggagccc	tgttccgctg	ccctgttgtc	ttcaggcagg	agatcctcgt	3180
	ccaagtgatc gggactctgg	agctggtggg	agagatcgag	gcctcttcca	tgttcagcct	3240
15	ctgcagctcc ctctccatct	ccttcaacag	cagcaagcat	ttccacctct	atggcagcaa	3300
	cgcctccctg gcccaggttg	tcatgaaggt	tgacgtggtg	tatgagaagc	agatgctcta	3360
	cctctacgtg ctgagcggca	tcggggggct	gctgctgctg	ctgctcattt	tcatagtgct	3420
20	gtacaaggtt ggtttcttca	aacggaacct	gaaggagaag	atggaggctg	gcagaggtgt	3480
20	cccgaatgga atccctgcag	aagactctga	gcagctggca	tctgggcaag	aggctgggga	3540
	tcccggctgc ctgaagcccc	tccatgagaa	ggactctgag	agtggtggtg	gcaaggactg	3600
25	agtccaggcc tgtgaggtgc	agagtgccca	gaactggact	caggatgccc	agggccactc	3660
23	tgcctctgcc tgcattctgc			-		3720
	agtttcccta tctcgaacat					3780
	aagacctgct gagggaccag	ccaagagggc	tgcaaaagtg	agggcttgtc	attaccagac	3840
30	ggttcaccag cctctcttgg 1	ttccttcctt	ggaagagaat	gtctgatcta	aatgtggaga	3900
	aactgtagtc tcaggaccta (3960
	gatgcctcca ccccccagaa	cctgtccttg	cacactcccc	tgcactggag	tccagtctct	4020
35	tctgctggca gaaagcaaat g	gtgacctgtg	tcactacgtg	actgtggcac	acgccttgtt	4080
	cttggccaaa gaccaaattc	cttggcatgc	cttccagcac	cctgcaaaat	gagaccctcg	4140
	tggccttccc cagcctcttc 1		_			4200
40	agcctttctc ccaggccagg (ctccttcctg	tcttcctgca	ttcacccaga	cagctccctc	4260
	tgcctgaacc ttccatctcg		-		•	4320
	cacacacttg gttgggtcct o	cacatctttc	acacttccac	caccetgeac	tactccctca	4380
45	aagcacacgt catgtttctt o	catccggcag	cctggatgtt	ttttccctgt	ttaatgattg	4440
	acgtacttag cagctatctc 1	tcagtgaact	gtgagggtaa	aggctatact	tgtcttgttc	4500
	accttgggat gacgccgcat g	gatatgtcag	ggcgtgggac	atctagtagg	tgcttgacat	4560
50	aatttcactg aattaatgac a	agagccagtg	ggaagataca	gaaaaagagg	gccggggctg	4620
	ggcgcggtgg ttcacgcctg 1	taatcccagc	actttgggag	gccaaggagg	gtggatcacc	4680
	tgaggtcagg agttagaggc	cagcctggcg	aaaccccatc	tctactaaaa	atacaaaatc	4740
55	caggcgtggt ggcacacacc 1	tgtagtccca	gctactcagg	aggttgaggt	aggagaattg	4800
	cttgaacctg ggaggtggag g	gttgcagtga	gccaagattg	cgccattgca	ctccagcctg	4860
	ggcaacacag cgagactccg 1	tctcaaggaa	aaaataaaaa	taaaaagcgg	gcacgggccc	4920
60	ggacatcccc acccttggag g	gctgtcttct	caggctctgc	cctgccctag	ctccacaccc	4980
	tctcccagga cccatcacgc (ctgtgcagtg	gcccccacag	aaagactgag	ctcaaggtgg	5040
	gaaccacgtc tgctaacttg g	gagccccagt	gccaagcaca	gtgcctgcat	gtatttatcc	5100
65	aataaatgtg aaattctgtc o	aaaaaaaa	aaa			5133
65						

<210> 92 <211> 2357 <212> DNA 5 <213> Homo sapiens

<400> 92

10	cgagcttggc tgcttctggg gcctgtgtgg ccctgtgtgt cggaaagatg gagcaagaa	g 60
	ccgagcccga ggggcggccg cgacccctct gaccgagatc ctgctgcttt cgcagccag	g 120
	agcaccgtcc ctccccggat tagtgcgtac gagcgcccag tgccctggcc cggagagtg	g 180
15	aatgatcccc gaggcccagg gcgtcgtgct tccgcgcgcc ccgtgaagga aactgggga	g 240
	tcttgaggga cccccgactc caagcgcgaa aaccccggat ggtgaggagc aggcaaatg	t 300
	gcaataccaa catgtctgta cctactgatg gtgctgtaac cacctcacag attccagct	t 360
20	cggaacaaga gaccctggtt agaccaaagc cattgctttt gaagttatta aagtctgtt	g 420
	gtgcacaaaa agacacttat actatgaaag aggttctttt ttatcttggc cagtatatt	a 480
	tgactaaacg attatatgat gagaagcaac aacatattgt atattgttca aatgatctt	c 540
25	taggagattt gtttggcgtg ccaagcttct ctgtgaaaga gcacaggaaa atatatacc	a 600
	tgatctacag gaacttggta gtagtcaatc agcaggaatc atcggactca ggtacatct	g 660
	tgagtgagaa caggtgtcac cttgaaggtg ggagtgatca aaaggacctt gtacaagag	c 720
30	ttcaggaaga gaaaccttca tcttcacatt tggtttctag accatctacc tcatctaga	a 780
	ggagagcaat tagtgagaca gaagaaaatt cagatgaatt atctggtgaa cgacaaaga	a 840
	aacgccacaa atctgatagt atttcccttt cctttgatga aagcctggct ctgtgtgta	a 900
35	taagggagat atgttgtgaa agaagcagta gcagtgaatc tacagggacg ccatcgaat	960
	cggatcttga tgctggtgta agtgaacatt caggtgattg gttggatcag gattcagtt	1020
	cagatcagtt tagtgtagaa tttgaagttg aatctctcga ctcagaagat tatagcctt	a 1080
40	gtgaagaagg acaagaactc tcagatgaag atgatgaggt atatcaagtt actgtgtat	1140
40	aggcagggga gagtgataca gattcatttg aagaagatcc tgaaatttcc ttagctgac	1200
	attggaaatg cacttcatgc aatgaaatga atcccccct tccatcacat tgcaacaga	1260
4.5	gttgggccct tcgtgagaat tggcttcctg aagataaagg gaaagataaa ggggaaatc	1320
45	ctgagaaagc caaactggaa aactcaacac aagctgaaga gggctttgat gttcctgat	1380
	gtaaaaaaac tatagtgaat gattccagag agtcatgtgt tgaggaaaat gatgataaa	1440
	ttacacaago ttoacaatoa caagaaagtg aagactatto toagocatoa acttotagto	ı 1500
50		

55

60

	gcattattta	tagcagccaa	gaagatgtga	aagagtttga	aagggaagaa	acccaagaca	1560
	aagaagagag	tgtggaatct	agtttgcccc	ttaatgccat	tgaaccttgt	gtgatttgtc	1620
5	aaggtcgacc	taaaaatggt	tgcattgtcc	atggcaaaac	aggacatctt	atggcctgct	1680
	ttacatgtgc	aaagaagcta	aagaaaagga	ataagccctg	cccagtatgt	agacaaccaa	1740
	ttcaaatgat	tgtgctaact	tatttcccct	agttgacctg	tctataagag	aattatatat	1800
10	ttctaactat	ataaccctag	gaatttagac	aacctgaaat	ttattcacat	atatcaaagt	1860
	gagaaaatgc	ctcaattcac	atagatttct	tctctttagt	ataattgacc	tactttggta	1920
	gtggaatagt	gaatacttac	tataatttga	cttgaatatg	tagctcatcc	tttacaccaa	1980
15	ctcctaattt	taaataattt	ctactctgtc	ttaa atgaga	agtacttggt	ttttttttt	2040
	cttaaatatg	tatatgacat	ttaaatgtaa	cttattattt	tttttgagac	cgagtcttgc	2100
	tctgttaccc	aggctggag t	gcagtggcgt	gatcttggct	cactgcaagc	tctgcctccc	2160
20	gggttcgcac	cattctcctg	cctcagcctc	ccaattagct	tggcctacag	tcatctgcca	2220
	ccacacctgg	ctaattttt	gtacttttag	tagagacagg	gtttcaccgt	gttagccagg	2280
	atggtctcga	tctcctgacc	tcgtgatccg	cccacctcgg	cctcccaaag	tgctgggatt	2340
25	acaogcatoa	accacca					2357

<210> 93 30 <211> 4034 <212> DNA <213> Homo sapiens

< 400> 93

	agggagaggc agagggcag gcagcctgct gggctcttcc tgctgttgaa aacttacccg	60
40	gcccttacag aggaaatett ceteetetet tetgecetga atgttttece aaacatgaag	120
	gtgataagct tattcatttt ggtgggattt ataggagagt tccaaagttt ttcaagtgcc	180
	tcctctccag tcaactgcca gtgggacttc tatgcccctt ggtcagaatg caatggctgt	240
45	accaagactc agactcgcag gcggtcagtt gctgtgtatg ggcagtatgg aggccagcct	300
	tgtgttggaa atgcttttga aacacagtcc tgtgaaccta caagaggatg tccaacagag	360
	gagggatgtg gagagcgttt caggtgcttt tcaggtcagt gcatcagcaa atcattggtt	420
50	tgcaatgggg attctgactg tgatgaagac agtgctgatg aagacagatg tgaggactca	480
50	gaaaggagac cttcctgtga tatcgataaa cctcctccta acatagaact tactggaaat	540
	ggttacaatg aactcactgg ccagtttagg aacagagtca tcaataccaa aagttttggt	600
<i>E E</i>	ggtcaatgta gaaaggtgtt tagtggggat ggaaaagatt tctacaggct gagtggaaat	660
55	gtcctgtcct atacattcca ggrgaaaata aataatgatt ttaattatga attttacaat	720
	agtacttggt cttatgtaaa acatacgtcg acagaacaca catcatctag tcggaagcgc	780
(0)	tcctttttta gatcttcatc atcttcttca cgcagttata cttcacatac caatgaaatc	840
60	cataaannaa ananttaca actortoott ottoanaaca ctottoaant oortranttr	900

	attaataaca	atccagaatt	tttacaactt	gctgagccat	tctggaagga	gctttcccac	960
	ctccctctc	tgtatgacta	cagtgcctac	cgaagattaa	tcgaccagta	cgggacacat	1020
5	tatctgcaat	ctgggtcgtt	aggaggagaa	tacagagttc	tattttatgt	ggactcagaa	1080
	aaattaaaac	aaaatgattt	taattcagtc	gaagaaaaga	aatgtaaatc	ctcaggttgg	1140
	cattttgtcg	ttaaattttc	aagtcatgga	tgcaaggaac	tggaaaacgc	tttaaaagct	1200
10	gcttcaggaa	cccagaacaa	tgtattgcga	ggagaaccgt	tcatcagagg	gggaggtgca	1260
	ggcttcatat	ctggccttag	ttacctagag	ctggacaatc	ctgctggaaa	caaaaggcga	1320
	tattctgcct	gggcagaatc	tgtgactaat	cttcctcaag	tcataaaaca	aaagctgaca	1380
15	cctttatatg	agctggtaaa	ggaagtacct	tgtgcctctg	tgaaaaaact	atacctgaaa	1440
13	tgggctcttg	aagagtatct	ggatgaattt	gacccctgtc	attgccggcc	ttgtcaaaat	1500
	ggtggtttgg	ctactgttga	ggggacccat	tgtctgtgcc	attgcaaacc	gtacacattt	1560
20	ggtgcggcgt	gtgagcaagg	agtcctcgta	gggaatcaag	caggaggggt	tgatggaggt	1620
20	tggagttgct	ggtcctcttg	gagcccctgt	gtccaaggga	agaaaacaag	aagccgtgaa	1680
	tgcaataacc	cacctcccag	tgggggtggg	agatcctgcg	ttggagaaac	gacagaaagc	1740
25	acacaatgcg	aagatgagga	gctggagcac	ttgaggttgc	ttgaaccaca	ttgctttcct	1800
23	ttgtctttgg	ttccaacag a	attctgtcca	tcacctcctg	ccttgaaag a	tggatttgtt	1860
	caagatgaag	gtacaatgtt	tcctgtgggg	aaaaatgtag	tgtacacttg	caatgaagga	1920
20	tactctctta	ttggaaaccc	agtggccaga	tgtggagaag	atttacggtg	gcttgttggg	1980
30	gaaatgcatt	gtcagaaaat	tgcctgtgtt	ctacctgtac	tgatggatgg	catacagagt	2040
	cacccccaaa	aacctttcta	cacagttggt	gagaaggtga	ctgtttcctg	ttcaggtggc	2100
25	atgtccttag	aaggtccttc	agcatttctc	tgtggctcca	gccttaagtg	gagtcctgag	2160
35	atgaagaatg	cccgctgtgt	acaaaaagaa	aatccgttaa	cacaggcagt	gcctaaatgt	2220
	cagcgctggg	agaaactgca	ga a ttcaaga	tgtgtttgta	aaatgcccta	cgaatgtgga	2280
40	ccttccttgg	atgtatgtgc	tcaagatgag	agaagcaaaa	ggatactgcc	tctgacagtt	2340
40	tgcaagatgc	atgttctcca	ctgtcagggt	agaaattaca	cccttactgg	tagggacagc	2400
	tgtactctgc	ctgcctcagc	tgagaaagct	tgtggtgcct	gcccactgtg	gggaaaatgt	2460
	gatgctgaga	gcagcaaatg	tgtctgccga	gaagcatcgg	agtgcgagga	agaagggttt	2520
45	agcatttgtg	tggaagtgaa	cggcaaggag	cagacgatgt	ctgagtgtga	ggcgggcgct	2580
	ctgagatgca	gagggcagag	catctctgtc	accagcataa	ggccttgtgc	tgcggaaacc	2640
	cagtaggctc	ctggaggccc	tggtcagctt	gcttggaatc	cagcaggcag	ctggggctga	2700
50	gtgaaaacat	ctgcacaact	gggcactgga	cagcttttcc	ttcttctcca	gtgtctacct	2760
	tcctcctcaa	ctcccagcca	tctgtataaa	cacaatcctt	tgttctccca	aatctgaatc	2820
	gaattactct	tttgcctcct	ttttaatgtc	agtaaggat a	tgagcctttg	cacaggctgg	2880
55	ctgcgtgttc	ttqaaatagg	tgttaccttc	tctagacctt	ggttttttaa	aatctgtaaa	2940

	attagaggat	tgcactagag	aaacttgaat	gctccattca	ggcctatcat	tttattaagt	3000
	atgattgaca	cagcccatgg	gccagaacac	actctacaaa	atgactagga	taacagaaag	3060
5	aacgtgatct	cctgattaga	gagggtggtt	ttcctcaatg	gaaccaaata	taaagaggac	3120
	ttgaacaaaa	atgacagata	caaactattt	ctatcctgag	tagtaatctc	acacttcatc	3180
	ctatagagtc	aaccaccaca	gataggaatt	ccttattctt	tttttaattt	ttttaagaca	3240
10	gagtctcact	ttgttgccca	ggctggagcg	cagtggggtg	atctcatctc	cctgcaacct	3300
	ccgcctcctg	ggttcaagcg	attcttgtgc	ctcagcttcc	caagcagctg	ggattacagg	3360
	tgcccgccac	cacgcccagc	taatttttgc	atttttagta	gagatggggt	ttcaccatgt	3420
15	tggccacgct	cgtctccaac	tcctgacctc	aggtaatccg	cctgccttgg	cctcccaaag	3480
	tgctgggatt	acagacatga	accaccacgc	ctggctggaa	tacttactct	tgtcgggaga	3540
	ttgaaccact	aaaatgttag	agcagaattc	attatgctgt	ggtcacaggg	gtgtcttgtc	3600
20	tgagaacaaa	tacaattcag	tcttctcttt	ggggttttag	tatgtgtcaa	acataggact	3660
	ggaagtttgc	ccctgttctt	ttttcttttg	aaagaacatc	agttcatgcc	tgaggcatga	3720
	gtgactgtgc	atttgagaat	agttttccct	attctgtgga	tacagtccca	gagttttcag	3780
25	ggagtacaca	ggtagattag	tttgaagcat	tgacctttta	tttattcctt	atttctcttt	3840
	catcaaaaca	aaacagcagc	tgtgggagga	gaaatgagag	ggcttaaatg	aaatttaaaa	3900
	taagctatat	tatacaaata	ctatctctgt	attgttctga	ccctggtaaa	tatatttcaa	3960
30	aacttcagat	gacaaggatt	agaacactca	ttaaagatgc	tattcttcag	2222121812	4020
	222222222	2 222					4034

35 <210> 94 <211> 2964 <212> DNA <213> Homo sapiens

<400> 94

	agtcggcggc	ggctgctgct	gcctgtggcc	cgggcggctg	ggagaagcgg	agtgttggtg	60
15	agtgacgcgg	cggaggtgta	gtttgacgcg	gtgtgttacg	tgggggagag	aataaaactc	120
	cagcgagatc	cgggccgtga	acgaaagcag	tgacggagga	gcttgtacca	ccggtaacta	180
	aatgaccatg	gaatctggag	ccgagaacca	gcagagtgga	gatgcagctg	taacagaagc	240
50	tgaaaaccaa	caaatgacag	ttcaagccca	gccacagatt	gccacattag	cccaggtatc	300
	tatgccagca	gctcatgcaa	catcatctgc	tcccaccgta	actctagtac	agctgcccaa	360
	tgggcagaca	gttcaagtcc	atggagtcat	tcaggcggcc	cagccatcag	ttattcagtc	420
55	tccacaagtc	caaacagttc	agatttcaac	tattgcagaa	agtgaagatt	cacaggagtc	480
	agtggatagt	gtaactgatt	cccaaaagcg	aagggaaatt	ctttcaagga	ggccttccta	540
	caggaaaatt	ttgaatgact	tatcttctga	tgcaccagga	gtgccaagga	ttgaagaaga	600
50	gaagtctgaa	gaggagactt	cagcacctgc	catcaccact	gtaacggtgc	caactccaat	660
	ttaccaaact	agcagtggac	agtatattgc	cattacccag	ggaggagcaa	tacagctggc	720

	taacaatggt	accgatgggg	tacagggcct	gcaaacacta	accatyacca	argeageage	700
	cactcagccg	ggtactacca	ttctacagta	tgcacagacc	actgatggac	agcagatctt	840
5	agtgcccagc	aaccaagttg	ttgttcaagc	tgcctctgga	gacgtacaaa	cataccagat	900
	tcgcacagca	cccactagca	ctattgcccc	tggagttgtt	atggcatcct	ccccagcact	960
	tcctacacag	cctgctgaag	aagcagcacg	aaagagagag	gtccgtctaa	tgaagaacag	1020
10	ggaagcagct	cgagagtgtc	gtagaaagaa	gaaagaatat	gtgaaatgtt	tagaaaacag	1080
	agtggcagtg	cttgaaaatc	aaaacaagac	attgattgag	gagctaaaag	cacttaagga	1140
	cctttactgc	cacaaatcag	attaatttgg	gatttaaatt	ttcacctgtt	aaggtggaaa	1200
15	atggactggc	ttggccacaa	cctgaaagac	aaaataaaca	ttttattttc	taaacatttc	1260
	tttttttcta	tgcgcaaaac	tgcctgaaag	caactacaga	atttcattca	tttgtgcttt	1320
	tgcattaaac	tgtgaatgtt	ccaacacctg	cctccacttc	tcccctcaag	aaattttcaa	1380
20	cgccaggaat	catgaagaga	cttctgcttt	tcaaccccca	ccctcctcaa	gaagtaataa	1440
	tttgtttact	tgtaaattga	tgggagaaat	gaggaaaaga	aaatcttttt	aaaaatgatt	1500
	tcaaggtttg	tgctgagctc	cttgattgcc	ttagggacag	aattacccca	gcctcttgag	1560
25	ctgaagtaat	gtgtgggccg	catgcataaa	gtaagtaagg	tgcaatgaag	aagtgttgat	1620
23	tgccaaattg	acatgttgtc	acattctcat	tgtgaattat	gtaaagttgt	taagagacat	1680
	accctctaaa	aaagaacttt	agcatggtat	tgaag <mark>gaa</mark> tt	agaaatgaat	ttggagtgct	1740
30	ttttatgtat	gttgtcttct	tcaatactga	aaatttgtcc	ttggttctta	aaagcattct	1800
	gtactaatac	agctcttcca	tagggcagtt	gttgcttctt	aattcagttc	tgtatgtgtt	1860
	caacattttt	gaatacatta	aaagaagtaa	ccaactgaac	gacaaagcat	ggtatttgaa	1920
35	ttttaaatta	aagcaaagta	aataaaagta	caaagcatat	tttagttagt	actaaattct	1980
33	tagtaaaatg	ctgatcagta	aaccaatccc	ttgagttata	taacaagatt	tttaaataaa	2040
	tgttattgtc	ctcaccttca	aaaatattta	tattgtcact	catttacgta	aaaagatatt	2100
40	tctaatttac	tgttgcccat	tgcacttaca	taccaccacc	aagaaagcct	tcaagatgtc	2160
-10	aaataaagca	aagtgatata	tatttgttta	tgaaatgtta	catgtagaaa	aatactgatt	2220
	ttaaatattt	tccatattaa	caatttaaca	gagaatctct	agtgaatttt	ttaaatgaaa	2280
45	gaagttgtaa	ggatataaaa	agtacagtgt	tagatgtgca	caaggaaagt	tattttcaga	2340
73	catatttgaa	tgactgctgt	actgcaatat	ttggattgtc	attcttacaa	aacatttttt	2400
	tgttctcttg	taaaaagagt	agttattagt	tctgctttag	ctttccaata	tgctgtatag	2460
50	cctttgtcat	tttataattt	taattcctga	ttaaaacagt	ctgtatttgt	gtatatcata	2520
30	cattgttttc	aataccactt	ttaattgtta	ctcattttat	tcactaagct	cgataaatct	2580
	aacagttact	cttaaaaaaa	aaaaaaagac	taaggtggat	tttaaaaatt	ggaaactgac	2640
55	ataatgttag	gttataattt	ctcatttgga	gccgggcgca	gtggctcacg	cctgtaatcc	2700
55	cagcactttg	ggaggccaag	gtgggtggat	cacctgtggt	caagagttca	agaccagcct	2760
	ggccatcatg	gtgaaacccc	atctctacta	aaaatacaaa	aattagccag	gcgtggtggc	2820
60	tggcgcctgt	aatcccagct	actcaggagg	ttgaggcagc	agaattgctt	gaacccagga	2880
60	ggcagagggt	tgcagtgagc	cgagatagca	ccattgcact	ccagcctggg	cgactccatc	2940
	tcaaaaaata	aaaaaaaaa	aaaa				2964

65 <210> 95 <211> 1977

<212> DNA <213> Homo sapiens

5 <400> 95

	grrreggeag	, gaycyyyaya	attetycyga	gcctgcggga	cggcggcggt	ggcgccgrag	00
10	gcagccggga	cagtgttgta	cagtgttttg	ggcatgcacg	tgatactcac	acagtggctt	120
10	ctgctcacca	i acagatg <mark>aa</mark> g	acagatgcac	caacgaggct	gatgggaacc	atcctgtaga	180
	ggtccatctg	cgttcagacc	cagacgatgc	cagagetatg	actgggcctg	caggtgtggc	240
15	gccgagggga	gatcagccat	ggagcagcca	caggaggaag	cccctgaggt	ccgggaagag	300
15	gaggagaaag	aggaagtggc	agaggcagaa	ggagccccag	agctcaatgg	gggaccacag	360
	catgcactto	cttccagcag	ctacacagac	ctctcccgga	gctcctcgcc	accctcactg	420
20	ctggaccaac	tgcagatggg	ctgtgacggg	gcctcatgcg	gcagcctcaa	catggagtgc	480
20	cgggtgtgcg	gggacaaggc	atcgggcttc	cactacggtg	ttcatgcatg	tgaggggtgc	540
	aagggcttct	tccgtcgtac	gatccgcatg	aagctggagt	acgag aa gtg	tgagcgcagc	600
	tgcaagattc	agaagaagaa	ccgcaacaag	tgccagtact	gccgcttcca	gaagtgcctg	660
25	gcactgggca	tgtcacacaa	cgctatccgt	tttggtcgga	tgccggaggc	tgagaagagg	720
	aagctggtgg	cagggctgac	tgcaaatgag	gggagccagt	acaacccaca	ggtggccgac	780
	ctgaaggcct	tctccaagca	catctacaat	gcctacctga	aaaacttcaa	catgaccaaa	840
30	aagaaggccc	gcagcatcct	caccggcaaa	gccagccaca	cggcgccctt	tgtgatccac	900
	gacategaga	cattgtggca	ggcagagaag	gggctggtgt	ggaagcagtt	ggtgaatggc	960
	ctgcctccct	acaaggagat	cagcgtgcac	gtcttctacc	gctgccagtg	caccacagtg	1020
35	gagaccgtgc	gggagctcac	tgagttcgcc	aagagcatcc	ccagcttcag	cagcctcttc	1080
	ctcaacgacc	aggttaccct	tctcaagtat	ggcgtgcacg	aggccatctt	cgccatgctg	1140
	gcctctatcg	tcaacaagga	cgggctgctg	gtagccaacg	gcagtggctt	tgtcacccgt.	1200
40	gagttcctgc	gcagcctccg	caaacccttc	agtgatatca	ttgagcctaa	gtttgaattt	1260
	gctgtcaagt	tcaacgccct	ggaacttgat	gacagtgacc	tggccctatt	cattgcggcc	1320
	atcattctgt	gtggaggtga	gtgagagtgg	ggcaggtggg	ctggcctggc	acacccagtc	1380
45	gtcctggggg	ttggccctca	ctgcagggca	ctgtgcctga	gctctgacag	tgtggggaag	1440
	tgtccctgtg	atcttggcag	tggaacatgc	aaggcactga	ctgagcatgc	aggatcagct	1500
	ccatctcatt	atgtacgtag	atagaggtgg	agacaggaaa	aagactaagc	cagacgtggt	1560
50	ggctcacacc	tgtaatccca	gcactttggc	aggccgaggc	gggtggatca	cttgaggtca	1620
	ggagttcg aa	accagcctgg	ccaacatggt	gaaaccccgt	ctctactaaa	aatacaaaaa	1680
	attagccaga	tgtggtggca	cgcgcctgta	atcccagcta	cttgggaggc	tgagccagga	1740
55	gaatcgcttg	aacccgagag	gtggaggttg	cagtgagcca	aaatcccacc	actgcactcc	1800
	agcctgggtg	acagagtgag	accctgtctc	aaaaaaagg	aaaaggacta	acaggcagta	1860
	tgctgtcatg	ttaatgtggg	gtggaaaaat	tgtctgcatt	ttttctgcat	ttttaaaatt	1920
60	ccaacacaat	aaatacaata	ataactatgc	taaaaaaaaa	9933393399	222222	1977

<210> 96

65 <211> 2594

<212> DNA

<213> Homo sapiens

<400> 96

	gcttcgggtg	ccatggggac	tcctcccggc	ctgcagaccg	actgcgaggc	gctgctcagc	60
5	cgcttccagg	agacggacag	tgtacgcttc	gaggacttca	cggagctctg	gagaaacatg	120
	aagttcggga	ctatcttctg	tggcagaatg	agaaatttag	aaaagaacat	gtttacaaaa	180
	gaagctttag	ctttggcttg	gcgatatttt	ttacctccat	acaccttcca	gatcagagtt	240
10	ggtgctttgt	atctgctata	tggattatat	aatacccaac	tgtgtcaacc	aaaacaa aag	300
	atcagagttg	ccctgaagga	ttgggatgaa	gttttaaaat	ttcagcaaga	tttagtaaat	360
	gcacagcatt	ttgatgcagc	ttatattttt	aggaagctac	gactagacag	agcatttcac	420
15	tttacagcaa	tgcccaaatt	gctgtcatat	aggatgaaga	aaaaaattca	ccgagctgaa	480
	gttacagaag	aatttaagga	cccaagtgat	cgtgtgatga	aacttatcac	ttctgatgta	540
	ttagagga aa	tgctgaatgt	tcatgatcat	tatcagaaca	tgaaacatgt	aatttcagtt	600
20	gataagtcca	agccagataa	agccctcagc	ttgataaagg	atgattttt	tgacaatatt	660
	aagaacatag	ttttggagca	tcagcagtgg	cacaaagaca	gaaagaatcc	atccttaaag	720
	tcaaaaacta	atgatggaga	a gaaaaaatg	gaaggaaatt	cacaagaaac	ggagagatgt	780
25	gaaagggcag	aatcattagc	gaaaataaaa	tcaaaggcct	tttcagttgt	catacaggca	840
	tccaaatcaa	gaaggcatcg	tcaagtcaaa	ctcgactctt	ctgactctga	ttctgcatct	900
	ggtcaagggc	aagtcaaagc	aactaggaaa	aaagagaaga	aagaaagatt	gaaaccagca	960
30	ggaaggaaga	tgtctctcag	aaacaaaggc	aatgtgcaga	atatacacaa	ggaagataaa	1020
	cctttaagtc	tgagtatgcc	tgtaattaca	gaagaagaag	agaatgaaag	tttgagtgga	1080
	acagagttca	ctgcatccaa	gaagaggaga	aaacactgaa	caaagagcct	ggtgtagttt	1140
35	ttaattttga	gttttctgac	agaagaaaag	attgatattt	tgtgtattga	acaggaagac	1200
	tgccagtatt	aaaaaaatcc	ttctgggaat	ctgtaggtta	tttcttggaa	attgcaatac	1260
	gtagttctag	aataaaagta	caaaaaatta	gaataagaat	tctttaacat	tttctttaat	1320
40	gatttgcata	aatggagata	aaacttgtat	ttagtatgta	atagaaaaaa	ttctgttatt	1380
	cgcagattgt	tactatttcc	tataaggttt	tgtgatacta	tactgtccta	atacagtctg	1440

		graatactat	tctattttat	ttaaaatatt	ttttattgaa	atattaatgt	ttattacatg	120
		caaataacta	ttttgtatct	acagtcggat	aatggatttt	ttattttgta	tatttattct	156
5		attttgtata	ttgttaagtg	caataaagtt	tttgccttgc	tttatttttt	aatacataaa	162
		acttacattc	tcataacgtg	attgataact	taggaagttc	acaatgtatt	ttctacttct	168
		gcaattaaat	attetttagt	gcttgtttat	tattactaaa	tactaattaa	gtactaacaa	174
10		gtacttaaat	actaatgtat	taagtattta	agtactttct	aataaaatct	ttaacaataa	180
		taatgtaaat	ttcagaatgt	gtctctggta	cagaatagtt	gatattaaca	gaaaaaaaaa	186
		aatctgtagc	ttcatgaata	tgccactctg	ttaatttctt	gttccagaca	ttttaataga	192
15		gattgcttga	gccatgttgt	ttgaattgct	gccaatagca	gaccatatcc	ctatcatgtt	198
		gttggctcaa	ctgtttttt	tttttcccta	atagagatgg	agtatcgcta	tgttgctcag	204
		gctggtcttg	aactcctggg	ctcaagctat	cctcctgcct	cagcctccca	aagtactggg	210
20		attataggtg	tgagctactg	tacccagcct	taacctgttt	cacagttgat	tatacttcat	216
		gctgttttcc	agcatggtat	tattaaggga	tttaaagttt	gggttgcatg	cctgtaatcc	222
		cagcattttg	ggaggccgag	gtgggcggat	cacgaggtca	ggagatcgag	accatcgtga	228
25		ctaacacagt	gaaaccccgt	ctctaataaa	aatacgaaaa	attagccagg	cgtggtggcg	234
		ggcgcctgta	atcccagcta	ctcgggaagc	tgaggcagga	gaatggtgtg	aacccagtga	240
		gccgagatcg	tgccactgca	ctccagcctg	ggcaacagag	tgagacttcg	tctcaaaaaa	246
30		aaaaaaaaaa	gtttgggttg	aagatcaaat	tcgtgatatc	tctatatcta	atctttaaaa	2526
		atcagaatgc	taatgctgac	gcaaataaaa	ttttcattta	ttagcaaaaa	22222222	2580
		aaaaaaaaa	aaaa					259
35	<210> 97							
	<211> 273							
	<212> DNA							
40	<213> Homo	sapiens						
	<400> 97							
		ttttttttt	tttttttt	gggacggagt	tcgctctgtc	gcccaggctg	gagcgcactg	60
45					tcccgggtgt			120
		ttttgaactt	ctgactcaag	tgatctgcac	acctcagcct	ttaaagtgct	aggattacaa	180
		gcatgagcca	ccacacctgc	tccttctatt	tcattttaac	ataaataagt	aatagtagct	240
50			aagcactatg			_	-	273
		•		-				
	<210> 98							
	<211> 5059							
55	<212> DNA							
	<213> <i>Homo</i>	sapiens						
	<400> 98							
60		ctggttctca	acttcttttg	aaataatgtt	catagagaag	gagggctgtc	tgagattcga	60
		gggaaacaag	ctctcaggac	ttccggtcgc	catgatggct	gtgggcggta	aacgcggtta	120

	gtgcaagçat	ctgggccatc	ttcaatggta	aaaaagatac	agtaaagaca	taaataccac	180
	atttgacaaa	tggaaaaaa	ggagtgtcca	gaaaagagta	gcagcagtga	ggaagagctg	240
5	ccgagacggg	tatacaggga	gctaccctgt	gtttctgaga	ccctttgtga	catctcacat	300
	tttttccaag	aagatgatga	gacagaggca	gagccattat	tgttccgtgc	tgttcctgag	360
	tgtcaactat	ctggggggga	cattcccagg	agacatttgc	tcagaagaga	atcaaatagt	420
10	ttcctcttat	gcttctaaag	tctgttttga	gatcgaagaa	gattataaaa	atcgtcagtt	480
	tctggggcct	gaaggaaatg	tggatgttga	gttgattgat	aagagcacaa	acagatacag	540
	cgtttggttc	cccactgctg	gctggtatct	gtggtcagcc	acaggcctcg	gcttcctggt	600
15	aagggatgag	gtcacagtga	cgattgcgtt	tggttcctgg	agtcagcacc	tggccctgga	660
	cctgcagcac	catgaacagt	ggctggtggg	cggccccttg	tttgatgtca	ctgcagagcc	720
	agaggaggct	gtcgccgaaa	tccacctccc	ccacttcatc	tccctccaag	gtgaggtgga	780
20	cgtctcctgg	tttctcgttg	cccattttaa	gaatgaaggg	atggtcctgg	agcatccagc	840
	ccgggtggag	cctttctatg	ctgtcctgga	aagccccagc	ttctctctga	tgggcatcct	900
	gctgcggatc	gccagtggga	ctcgcctctc	catccccatc	acttccaaca	cattgatcta	960
25	ttatcacccc	caccccgaag	atattaagtt	ccacttgtac	cttgtcccca	gcgacgcctt	1020
	gctaacaaag	gcgatagatg	atgaggaaga	tcgcttccat	ggtgtgcgcc	tgcagacttc	1080
	gcccccaatg	gaacccctga	actttggttc	cagttatatt	gtgtctaatt	ctgctaacct	1140
30	gaaagtaatg	cccaaggagt	tgaaattgtc	ctacaggagc	cctggagaaa	ttcagcactt	1200
	ctcaaaattc	tatgctgggc	agatgaagga	acccattcaa	cttgagatta	ctgaaaaaag	1260
	acatgggact	ttggtgtggg	atactgaggt	gaagccagtg	gatctccagc	ttgtagctgc	1320
35	atcagcccct	cctcctttct	caggtgcagc	ctttgtgaag	gagaaccacc	ggcaactcca	1380
	agccaggatg	ggggacctga	aaggggtgct	cgatgatctc	caggacaatg	aggttcttac	1440
	tgagaatgag	aaggagctgg	tggagcagga	aaagacacgg	cagagcaaga	atgaggcctt	1500
40	gctgagcatg	gtggagaaga	aaggggacct	ggccctggac	gtgctcttca	gaagcattag	1560
	tgaaagggac	ccttacctcg	tgtcctatct	tagacagcag	aatttgtaaa	atgagtcagt	1620
	taggtagtct	ggaagagaga	atccagcgtt	ctcattggaa	atggataaac	agaaatgtga	1680
45	tcattgattt	cagtgttcaa	gacagaagaa	gactgggtaa	catctatcac	acaggctttc	1740
	aggacagact	tgtaacctgg	catgtaccta	ttgactgtat	cctcatgcat	tttcctcaag	1800
	aatgtctgaa	gaaggtagta	atattccttt	taaatttttt	ccaaccattg	cttgatatat	1860
50	cactatttta	tccattgaca	tgattcttga	agacccagga	taaaggacat	ccggataggt	1920
	gtgtttatga	aggatggggc	ctggaaaggc	aacttttcct	gattaatgtg	aaaaataatt	1980
	cctatggaca	ctccgtttga	agtatcacct	tctcataact	aaaagcagaa	aagctaacaa	2040
55	aagcttctca	gctgaggaca	ctcaaggcat	acatgatgac	agtcttttt	ttttttgtat	2100
	gttaggactt	taacacttta	tctatggcta	ctgttattag	aacaatgtaa	atgtatttgc	2160

	tgaaagagag	cacaaaaatg	ggagaaaatg	caaacatgag	cagaaaatat	tttcccactg	2220
	gtgtgtagco	tgctacaagg	agttgttggg	ttaaatgttc	atggtcaact	ccaaggaata	2280
5	ctgagatgaa	atgtggtaaa	tcaactccac	agaaccacca	aaaagaaaat	gagggtaatt	2340
	cagcttatto	tgagacagac	attcctggca	atgtaccata	caaaaaataa	gccaactctg	2400
	acatttggat	tctaccatag	actctgtcat	tttgtagcca	tttcagctgt	cttttgatta	2460
10	atgttttcgt	ggcacacata	tttccatcct	tttatgttta	atctgtttaa	aacaagttcc	2520
	tagtagacac	catctggttg	agtcagtttt	ttttatggtg	tattttgaac	ccattctgat	2580
	agtctctttt	aactggaaga	tttcaattac	ttacgttaat	gtaattatta	atatgttagg	2640
15	atttatcctc	agtcagccag	tttgttatgt	cttttctatt	ctactgttat	cacatttgta	2700
	ccacttaaag	tggaatctag	gcactttatc	accatttaga	tcctattacc	ttttctcatc	2760
	taggatatag	ttatcttcta	cataatcttt	ctgtatctta	aaacccatca	ataaattatt	2820
20	atatattttc	tacttttaat	cactcagaag	atttaaaaaa	ctcatgagaa	gagtaatctg	2880
	ttatgttttt	ccagatattt	accatttctg	ttgctcttcc	ttcattattt	tccaaatttc	2940
	gttctgcaaa	tttccacttc	ttctgataga	cgttttttag	ttcttttaga	gtggttctga	3000
25	taggtacaga	ttctcttatt	ttttgcttcc	tctgaggaca	tctttttctc	accttcattc	3060
	tcagtgatgt	tttttgcttg	tagtattttt	agttgacatt	gttttctgtt	cagcagtttc	3120
	crtttagctt	ccgtatttcc	tgatgagaaa	tctgcagtca	ttcaaattgt	tgtttccctg	3180
30		gtcatttttc					3240
	tcattatgtt	ggggatgagt	ttccttgttt	tattcccttt	ggaatttgct	ccaattcata	3300
	aatttgcagt	tttatgtctt	ttaccaaact	tagaggtttt	cagcctaatt	tctaaaaata	3360
35	ctttttatta	gcctgatttt	catctttata	ggaaatagtt	taagtgatga	caagttccaa	3420
	tagcttatat	gcccagaagg	ccttcaaaat	aagaattttg	aaagaataca	gaaaacaaac	3480
		ttctcatgtc	_				3540
40		aacagtcttg					3600
		tcttacatgt					3660
		caatattata					3720
45	aatgttagac	ttttatgttt	tcctaaatgt	ccctgatatt	ctacttattt	agaacatctt	3780
	ttcatttttt	ccattattct	gattgggtaa	ttttaatttg	tctattttca	aatttgctgg	3840
	agtgttca cc	tgttgttgtc	tgtgtcgtcc	cactgagtgc	attcaccacc	ttttaaattt	3900
50	-	atgtatcagt					3960
	ggcttatatt	ctattttcct	gcaaatgtgt	cagcatttgc	ttgtttgagc	ttttttttt	4020
	tcaagacagg	gtctcaactc	tgttacccag	gctggagtgc	agtggtgcga	tctcagctca	4080
55	ctgcaacctc	tgcctcctgg	ttcaagcgat	tattgtgcct	cagcctcctg	agtagctggg	4140
	attacaggca	tgcaccacca	cagcccagct	aattttttgt	attittagta	gagacagagt	4200

	tttgctatgt	tggccaggct	ggttttgaac	tcctggcctc	aagtgatcca	cccacctcag	4260
	cctcccaaag	tgctgggatt	acaggccact	acacctggca	catttgagta	ttttttttt	4320
5	ttttttttt	ttgagatgga	gtctcgctct	gtcatctagg	ctggagtgca	gtggtgtgat	4380
	ctcagctcac	tgcagcctct	gtctcccggg	ctcaagcgat	tctcttgcct	cagcctcctg	4440
	agtagctagg	actacaggtg	catgccaaca	cgcccggcta	atttttttaa	aaaatatttt	4500
10	tagtagagac	agggtttcac	cattttggcc	aggatggtct	cgatctcctg	acctcatgat	4560
	ccacccgcct	cggccttcca	aagtgctggg	attacaggca	tgagccaccg	tgcctggcct	4620
	catttgagta	tttttataat	gtctctttta	aagtctttgt	cagataattc	cactgtacat	4680
15	gttattcagt	gtttggtgtc	cactgagttg	tcatttgcca	gacaagtgga	gatttttgca	4740
	gctcatcctt	gtattctcag	tagttccgat	atgtaccctc	gacatgtgaa	tgttatctta	4800
	tgagactctg	ttttatttgt	atccaacaga	agatgtttat	tatttatttg	gctttctgtg	4860
20	aactgaggtc	ttaatatcag	ctcattttaa	aagtctttgc	agtggtattc	ggatctatcc	4920
	tgtgtgtgcc	tatgagattg	ggtgcagtgt	atcctgttag	ctccattctc	agggcgtttg	4980
	aatgtgaatt	aggaccagcg	caatgaatgc	tcaagttggg	gttgggcgtt	agaattcata	5040
25	aaagtcttta	tatgctcag					5059

<210> 99 <211> 2962 <212> DNA <213> Homo sapiens

₃₅ <400> 99

60 ggatcctttc tggaatggag gtcttatgag ctgctattga acacggcaga gcctgttggt 120 gacctgcaca caggagccct ccagtcagta ctgattgaat tactcaaggc tgcctctctg 40 180 caaagttgag cactacagga cgtcgggact gggcatttcc ttccaacatg gccgccactg cctctccgca gccactcgcc actgaggatg ccgattctga gaatagcagc ttctattact 240 300 atgactacct ggatgaagtg gccttcatgc tctgcaggaa ggatgcagtg gtgtcctttg 45 gcaaagtett ceteceagte ttetatagee tgattittgt gitgggeete agegggaace 360 420 tccttcttct catggtcttg ctccgttacg tgcctcgcag gcggatggtt gagatctatc 480 tgctgaatct ggccatctcc aaccttctgt ttctggtgac actgcccttc tggggcatct 50 540 ccgtggcctg gcattgggtc ttcgggagtt tcttgtgcaa gatggtgagc actctttata 600 ctattaactt ttacagtggc atcttttca ttagctgcat gagcctggac aagtacctgg agategitea tgeteageee taccacagge tgaggaceeg ggeeaagage etgeteettg 660 55 ctaccatagt atgggctgtg tccctggccg tctccatccc tgatatggtc tttgtacaga 720 cacatgaaaa tcccaagggt gtgtggaact gccacgcaga tttcggcggg catgggacca 780 tttggaaget cttcctccgc ttccagcaga acctcctagg gtttctcctt ccactccttg 840 60 ccatgatett ettetaetee egtattggtt gtgtettggt gaggetgagg ecegeaggee 900

	*ABBCCARAC		getgeageet	caacaacaac	cereticity	ctatggttt	300
	catacaatct	caccttgttt	ctgcatacgc	tgttggacct	gcaagtattc	gggaactgtg	1020
5	aggtcagcca	gcatctagac	tacgcactcc	aggtaacaga	gagcatcgcc	ttccttcact	1080
	gctgcttttc	ccccatcctg	tatgccttct	ccagtcaccg	cttccgccag	tacctgaagg	1140
	ctttcctggc	tgccgtgctt	ggatggcacc	tggcacctgg	cactgcccag	gcctcattat	1200
10	ccagctgttc	tgagagcagc	atacttactg	cccaagagga	aatgactggc	atgaatgacc	1260
	ttggagagag	gcagtctgag	aactacccta	acaaggagga	tgtggggaat	aaatcagcct	1320
	gagtgaccaa	attttggtct	ggtgggaaca	gatgggaacc	agctcaattg	ggtgtccact	1380
15	caaagtgctc	tctccagggg	cctcagtgac	tgtgttgcta	aacccagtgg	tcagttctca	1440
	gttctcagcc	atcagcagca	tttgctcgcc	ccgccttctt	cctccacttt	cttcacttgc	1500
	ttccaggata	ccacgctttc	ttttctgaat	tgctacaatc	tttcttcctt	ccttccttgc	1560
20	ttccttcctt	ccttccttcc	ctctctccct	ccctccctcc	ctcgcttctt	cccttcctcc	1620
	tttcctccct	tcctactttc	cttccttcct	tctgacaggg	tcttgctcta	ttgctctgtc	1680
	acccaggctg	gaatgcagtg	gcgagatctc	cgctcactgt	agcctcctcc	ccctgggttg	1740
25	aagcaattct	catgcctcag	cctcccaagt	agccaggact	ataggcacct	gccaccatgc	1800
	ctggctaatt	tttgtatttt	ttttctttct	ttctttcttt	tcttttttt	tttttttga	1860
	gacggagtct	cactcttgtt	gcccaggctg	gacaacaatg	gcgcgatctc	ggctcactgc	1920
30	aacctccacc	tcccggattc	aagcgattct	cctgcctcag	cctcctgagt	agctggaact	1980
	acatgcgcgt	gccaccacgc	acagctaatt	tttataattt	tagtagagat	ggggtttcac	2040
	tgcgttggcc	aggatgatct	cgatctcttg	accttgggat	ccacccgcct	tggcctccca	2100
35	aagtgctggg	attacaggtg	tgagccacca	tgcctggccc	taatttttgt	gtttttatta	2160
	gaaacagagt	ttcaccatgt	tggccaggct	ggagaattgc	tgtaatagtt	ttccaactgg	2220
	cccctgtcct	tcctctctct	tgctctcctc	ccatctcatc	tgcacctagc	agccagagtg	2280
40	atcctgatac	tctcggcctt	tacttccgcc	tccctcagag	cagcagcctg	tcaaaacacc	2340
	agattacaac	aaatttagtt	taaaggtctc	aattagcgtt	attggcaatt	ctagaatcag	2400
	gcaacagact	cattgaatca	ggaacagatt	cactccataa	aatacagaga	gtgctgcaat	2460
45	gagctgggta	gaagaggtta	gttttataga	caggaagggg	ctgtcaaagg	cagaaagaaa	2520
	tgaagaacaa	aaaaaaagat	tgattttttt	ttttttgaga	caggatetea	ctctgtcatc	2580
	caggctgaag	tccaatccca	caatcatggc	tcactgcagc	caccacctcc	tgagctcaag	2640
50	tgatcctccc	atctaagccc	ccaagtagct	aggactacag	gagcacacca	ccacacctgg	2700
	ctaatttttg	tattttttgt	ggagacaggg	tctcagtatg	ttacccaggt	tggactggaa	2760
	acccttggct	caagcaattt	gcctgcctca	gcctcccaaa	gtgctgggat	tacaggcgtg	2820
55	agccactgca	cagggccaga	ttcatcattt	caaagttact	ttctatatgc	ggccggaaca	2880
	gggtggttga	catcagtttt	cttcaggtta	ctttttaata	atgattaaaa	cggggaactt	2940
	cattatcaaa	aaaaaaaaa	aa			•	2962
60							

<210> 100 <211> 562 <212> DNA <213> Homo sapiens

<400> 100

60

65

	ctggaattga	ggctgagcca	aagaccccag	ggccgtctca	gtctcataaa	aggggatcag	60
5	gcaggaggag	tttgggagaa	acctgagaag	ggcctgattt	gcagcatcat	gatgggcctc	120
	tccttggcct	ctgctgtgct	cctggcctcc	ctcctgagtc	tccaccttgg	aactgccaca	180
	cgtgggagtg	acatatccaa	gacctgctgc	ttccaataca	gccacaagcc	ccttccctgg	240
10	acctgggtgc	gaagctatga	attcaccagt	aacagctgct	cccagcgggc	tgtgatattc	300
	actaccaaaa	gaggcaagaa	agtctgtacc	catccaagga	aaaaatgggt	gcaaaaatac	360
	atttctttac	tgaaaactcc	gaaacaattg	tgactcagct	gaattttcat	ccgaggacgc	420
15	ttggaccccg	ctcttggctc	tgcagccctc	tggggagcct	gcggaatctt	ttctgaaggc	480
	tacatggacc	cgctggggag	gagagggtgt	ttcctcccag	agttacttta.	ataaaggttg	540
	ttcatagagt	tgacttgttc	at				562
20							
	<210> 101						
	<211> 1873						
25	<212> DNA						
	<213> Homo sapiens						
	<400> 101						
30							
	gacgatacgc	cgggcgcagg	cgcagaagcc	gcgcccgtcc	gcggcgccgc	cagccagggc	60
	ggaaacggct	gcggcttcgc	tagggacgca	tgcgcgggtc	ccttagtttt	cgcgagataa	120
35	cggtcgaaaa	cgcgctcttg	tcgatttcct	gtagtgaatc	aggcaccgga	gtgcaggttc	180
	gggggtggaa	tccttgggcc	gctgggcaag	cggcgagacc	tggccagggc	cagcgagccg	240
	aggacagagg	gcgcacggag	ggccgggccg	cagccccggc	cgcttgcaga	ccccgccatg	300
40	gacccgttcc	tggtgctgct	gcactcggtg	tcgtccagcc	tgtcgagcag	cgagctgacc	360
	gagctcaagt	tcctatgcct	cgggcgcgtg	ggcaagcgca	agctggagcg	cgtgcagagc	420
	ggcctagacc	tcttctccat	gctgctggag	cagaacgacc	tggagcccgg	gcacaccgag	480
45	ctcctgcgcg	agctgctcgc	ctccctgcgg	cgccacgacc	tgctgcggcg	cgtcgacgac	540
15	ttcgaggcgg	gggcggcggc	cggggccgcg	cctggggaag	aagacctgtg	tgcagcattt	600
	aacgtcatat	gtgataatgt	ggggaaagat	tggagaaggc	tggctcgtca	gctcaaagtc	660
50	tcagacacca	agatcgacag	catcgaggac	agataccccc	gcaacctgac	agagcgtgtg	720
50	cgggagtcac	tgagaatctg	gaagaacaca	gagaaggaga	acgcaacagt	ggcccacctg	780
	gtgggggctc	tcaggtcctg	ccagatgaac	ctggtggctg	acctggtaca	agaggttcag	840
55	caggcccgtg	acctccagaa	caggagtggg	gccatgtccc	cgatgtcatg	gaactcagac	900
55	gcatctacct	ccgaagcgtc	ctgatgggcc	gctgctttgc	gctggtggac	cacaggcatc	960

	tacacagcct	ggactttggt	tctctccagg	aaggtagccc	agcactgtga	agacccagcá	1020
	ggaagccagg	ctgagtgagc	cacagaccac	ctgcttctga	actcaagctg	cgtttattaa	1080
5	tgcctctccc	gcaccaggcc	gggcttgggc	cctgcacaga	tatttccatt	tcttcctcac	1140
	tatgacactg	agcaagatct	tgtctccact	aaatgagctc	ctgcgggagt	agttggaaag	1200
	ttggaaccgt	gtccagcaca	gaaggaatct	gtgcagatga	gcagtcacac	tgttactcca	1260
10	cagcggagga	gaccagctca	gaggcccagg	aatcggagcg	aagcagagag	gtggagaact	1320
	gggatttgaa	ccccgccat	ccttcaccag	agcccatgct	caaccactgt	ggcgttctgc	1380
	tgcccctgca	gttggcagaa	aggatgtttt	gtcccatttc	cttggaggcc	accgggacag	1440
15	acctggacac	tagggtcagg	cggggtgcgt	ggtggggaga	ggcatggctg	gggtgggggt	1500
	ggggagacct	ggttggccgt	ggtccagctc	ttggcccctg	tgtgagttga	gtctcctctc	1560
	tgagactgct	aagtaggggc	agtgatggtt	gccaggacga	attgagataa	tatctgtgag	1620
20	gtgctgatga	gtgattgaca	cacagcactc	tctaaatctt	ccttgtgagg	attatgggtc	1680
	ctgcaattct	acagtttctt	actgttttgt	atcaaaatca	ctatctttct	gataacagaa	1740
	ttgccaaggc	agcgggatct	cgtatcttta	aaaagcagtc	ctcttattcc	taaggtaatc	1800
25	ctattaaaac	acagctttac	aacttccata	tcacaaaaaa	SESSES SSS	aaaaaaaaa	1860
	aaaaaaaaa	aaa					1873

30 <210> 102 <211> 4082 <212> DNA <213> Homo sapiens 35

<400> 102

60 ggcggtcccc tgttctcccc gctcaggtgc ggcgctgtgg caggaagcca ccccctcggt 40 cggccggtgc gcggggctgt tgcgccatcc gctccggctt tcgtaaccgc accctgggac 120 ggcccagaga cgctccagcg cgagttcctc aaatgttttc ctgcgttgcc aggaccgtcc 180 gccgctctga gtcatgtgcg agtgggaagt cgcactgaca ctgagccggg ccagagggag 240 45 aggagccgag cgcggcgcgg ggccgaggga ctcgcagtgt gtgtagagag ccgggctcct 300 360 geggatgggg getgeeceeg gggeetgage eegeetgeee geecaeegee eegeeeegee cctgccaccc ctgccgcccg gttcccatta gcctgtccgc ctctgcggga ccatggagtg 420 50 gtagccgagg aggaagcatg ctggccgtcg gctgcgcgct gctggctgcc ctgctggccg 480 540 cgccgggagc ggcgctggcc ccaaggcgct gccctgcgca ggaggtggcg agaggcgtgc 600 tgaccagtct gccaggagac agcgtgactc tgacctgccc gggggtagag ccggaagaca 55 atgccactgt tractgggtg ctcaggaagc cggctgcagg ctcccacccc agcagatggg 660 720 ctggcatggg aaggaggctg ctgctgaggt cggtgcagct ccacgactct ggaaactatt 780 catgctaccg ggccggccgc ccagctggga ctgtgcactt gctggtggat gttccccccg 60 aggagececa geteteetge tteeggaaga geceecteag caatgttgtt tgtgagtggg 840 900 gtcctcggag caccccatcc ctgacgacaa aqqctqtgct cttggtgagg aagtttcaga

	acagtccggc	cgaagacttc	caggagccgt	gccagtattc	ccaggagtcc	cagaagttct	960
	cctgccagtt	agcagtcccg	gagggagaca	gctctttcta	catagtgtcc	atgtgcgtcg	1020
5	ccagtagtgt	cgggagcaag	ttcagcaaaa	ctcaaacctt	tcagggttgt	ggaatcttgc	1080
	agcctgatcc	gcctgccaac	atcacagtca	ctgccgtggc	cagaaacccc	cgctggctca	1140
	gtgtcacctg	gcaagacccc	cactcctgga	actcatcttt	ctacagacta	cggtttgagc	1200
10	tcagatatcg	ggctgaacgg	tcaaagacat	tcacaacatg	gatggtcaag	gacctccagc	1260
	atcactgtgt	catccacgac	gcctggagcg	gcctgaggca	cgtggtgcag	cttcgtgccc	1320
	aggaggagtt	cgggcaaggc	gagtggagcg	agtggagccc	ggaggccatg	ggcacgcctt	1380
15	ggacagaatc	caggagtcct	ccagctgaga	acgaggtgtc	cacccccatg	caggcactta	1440
	ctactaataa	agacgatgat	aatattctct	tcagagattc	tgcaaatgcg	acaagcctcc	1500
	caggttcaag	aagacgtgga	agctgcgggc	tctgaaggaa	ggcaagacaa	gcatgcatcc	1560
20	gccgtactct	ttggggcagc	tggtcccgga	gaggcctcga	cccaccccag	tgcttgttcc	1620
	tctcatctcc	ccaccggtgt	cccccagcag	cctggggtct	gacaatacct	cgagccacaa	1680
	ccgaccagat	gccagggacc	cacggagccc	ttatgacatc	agcaatacag	actacttctt	1740
25	ccccagatag	ctggctgggt	ggcaccagca	gcctggaccc	tgtggatgat	aaaacacaaa	1800
	cgggctcagc	aaaagatgct	tctcactgcc	atgccagctt	atctcagggg	tgtgcggcct	1860
	ttggcttcac	ggaagagcct	tgcggaaggt	tctacgccag	gggaaaatca	gcctgctcca	1920
30	gctgttcagc	tggttgaggt	ttcaaacctc	cctttccaaa	tgcccagctt	aaaggggcta	1980
	gagtgaactt	gggccactgt	gaagagaacc	atatcaagac	tctttggaca	ctcacacgga	2040
	cactcaaaag	ctgggcaggt	tggtgggggc	ctcggtgtgg	agaagcggct	ggcagcccac	2100
35	ccctcaacac	ctctgcacaa	gctgcaccct	caggcaggtg	ggatggattt	ccagccaaag	2160
	cctcctccag	ccgccatgct	cctggcccac	tgcatcgttt	catcttccaa	ctcaaactct	2220
	taaaacccaa	gtgccttagc	aaattctgtt	tttctaggcc	tggggacggc	ttttacttaa	2280
40	accgccaagg	ctgggggaag	aagctctctc	ctccctttct	tccctacagt	tgaaaaacag	2340
	ctgagggtga	gtgggtgaat	aatacagtat	ctcagggcct	ggtcgttttc	aacagaatta	2400
	taattagttc	ctcattagca	ttttgctaaa	tgtgaatgat	gatcctaggc	atttgctgaa	2460
45	tacagaggca	actgcattgg	ctttgggttg	caggacctca	ggtgagaagc	agaggaagga	2520
	gaggagaggg	gcacagggtc	tctaccatcc	cctgtagagt	gggagctgag	tgggggatca	2580
	cagcctctga	aaaccaatgt	tctctcttct	ccacctccca	caaaggagag	ctagcagcag	2640
50	ggagggcttc	tgccatttct	gagatcaaaa	cggttttact	gcagctttgt	ttgttgtcag	2700
	ctgaacctgg	gtaactaggg	aagataatat	taaggaagac	aatgtgaaaa	gaaaaatgag	2760
	cctggcaaga	atgtgtttaa	acttggtttt	taaaaaactg	ctgactgttt	tctcttgaga	2820
55	gggtggaata	tccaatattc	gctgtgtcag	catagaagta	acttacttag	gtgtggggga	2880
	agcaccataa	ctttgtttag	cccaaaacca	agtcaagtga	aaaaggagga	agagaaaaaa	2940

	tatttcctg ccaggcatgg tggcccacgc acttcgggag gtcgaggcag gaggatcact	3000
	tgagtccaga agtttgagat cagcctgggc aatgtgataa aaccccatct ctacaaaaag	3060
5	cataaaaatt agccaagtgt ggtagagtgt gcctgaagtc ccagatactt ggggggctga	3120
	ggtgggagga tctcttgagc ctgggaggtc aaggctgcag tgagccgaga ttgcaccact	3180
	gcactccagc ctgggtgaca gagcaagtga gaccctgtct caaaaaaaaga aaaagaaaaa	3240
10	gaaaaaatat titccctatt agagaagaga tigiggiitc attcigtati tigiiitigi	3300
	cttaaaaagt ggaaaaatag cctgcctctt ctctactcta	3360
	tactccccca ggtggttatg gagagggtgt ccggtccctg tcccagtgcc gagaaggaag	3420
15	cctcccacga ctgcccggca gggtcctaga aattccccac cctgaaagcc ctgagctttc	3480
	tgctatcaaa gaggttttaa aaaaatccca tttaaaaaaa atcccttacc tcggtgcctt	3540
	cctcttttta tttagttcct tgagttgatt cagctctgca agaattgaag caggactaaa	3600
20	tgtctagttg taacaccatg attaaccact tcagctgact tttctgtccg agctttgaaa	3660
	attcagtggt gttagtggtt acccagttag ctctcaagtt atcagggtat tccagagtgg	3720
	ggatatgatt taaatcagcc gtgtaaccat ggacccaata tttaccagac cacaaaactt	3780
25	ttctaatact ctaccctctt agaaaaacca ccaccatcac cagacaggtg cgaaaggatg	3840
	aaagtgacca tgttttgttt acggttttcc aggtttaagc tgttactgtc ttcagtaagc	3900
	cgtgattttc attgctgggc ttgtctgtag attrtagacc ctattgctgc ttgaggcaac	3960
30	tcatcttagg ttggcaaaaa ggcaggatgg ccgggcgcgg tggctcacgc ctgtaatcct	4020
50	agcactttgg gaggccaagg tgggaggatt gcttgagctc aggagtttga gaccaacctg	4080
	99	4082
35		
	<210> 103	
	<211> 2887	
40	<212> DNA	
40	<213> Homo sapiens	
	<400> 103	
45	**************************************	60
	ggagctgaga ggaacaggaa gtgtcaggac tttacgaccc gcgcctccag ctgaggfttc	120
	tagacgtgac ccagggcaga ctggtagcaa agcccccacg cccagccagg agcaccgccg	180
50	aggactccag cacaccgagg gacatgctgg gcctgcgccc cccactgctc gccctggtgg	240
	ggctgctctc cctcgggtgc gtcctctctc aggagtgcac gaagttcaag gtcagcagct	
	gccgggaatg catcgagtcg gggcccggct gcacctggtg ccagaagctg aacttcacag	300 360
55	ggccggggga tcctgactcc attcgctgcg acacccggcc acagctgctc atgaggggct	420
	gtgcggctga cgacatcatg gaccccacaa gcctcgctga aacccaggaa gaccacaatg	480
	ggggccagaa gcagctgtcc ccacaaaaag tgacgcttta cctgcgacca ggccaggcag	
60	cagcgttcaa cgtgaccttc cggcgggcca agggctaccc catcgacctg tactatctga	540
	tggacctctc ctactccatg cttgatgacc tcaggaatgt caagaagcta ggtggcgacc	600

		tgctccgggc c	ctcaacgag	atcaccgagt	ccggccgcat	tggcttcggg	tccttcgtgg	660
actecacaca grttcagacc gaggteggga agcagteggt treeggaara cregatycac 840 ccgagggrgg crtgaccc argatycagg tegetegge cccggaggaa aregyctyc 900 gcaacgtcac geggetegg grttycac ctgatyacgg ctccattre gegggegacg 960 ggaagetygg cgcratctrg acceccaacg acggccgctg teacctggag gacaacttgt 1020 acaayaggag caacgatte gactacccat ctggtgggcca ctgatyacgag gacaacttgt 1020 acaayaggag caacgatte gactacccat cggtggggca gtggaggac tacgagagaac 1140 tcaacgagat catccccaag tcagccgtgg gggagactgtc tgagggactc acgatagtgg 1200 tcaaccat taagaatgct tacaataaac tctctctcag ggtcttcctg gatacaacg 1260 ccctccccga caccctgaaa gtcacctac actctctcrg agcaattgga gtgaagacc acgatagtgg 1200 ggaaccagc cagagggac tgtgatggcg tgcagatcaa tgtcccgatc accttccag 1380 tgaaggtcac ggccacagag tgatccagg ggagatgtt tgtcatccgg gcgtcycggct 1440 25 tcacggaat agtgaccgtg cagttette cccagtgtga gtgccggatc accttccagg 1380 gcagagaccg cagcctctgc catggcaagg gcttcttgga gtgccggatc tgcagggact 1500 gcagagaccg cagtcttgc catggcaagg gcttcttgga gtgccggatc tgcagggag 1500 gcagagaccg cagtcttgc catggcaagg gcttcttgga gtgccggatc tgcagggag 1500 gcagagaccg cagtcttgc catggagag gctcatcacac gggccggaga ggggagaggag 1620 acactggcga gtgcctgtgc caacaccagg acgtccccgg caagttgat tacggggag 1580 tctgcggagg ggacacact gaggggag gctcatcacac gggccggaga ggggagaggaggaggaggaggaggaggaggagga		acaagaccgt g	ctgccgttc	gtgaacacgc	accctgataa	gctgcgaaac	ccatgcccca	720
	5	acaaggagaa a	gagtgccag	ccccgtttg	ccttcaggca	cgtgctgaag	ctgaccaaca	780
		actccaacca g	tttcagacc	gaggtcggga	agcagctgat	ttccggaaac	ctggatgcac	840
ggaagtegg caccatectg accectance acguerates teatroggag gearactett 1020 acanaggaga caacgaattc gactacctat cagtoggcca getggecac angetggetg 1080 tcaactact taagaatgct teccetag gggaggctgt tagaggaac tacgaaaac 1140 tcaccgagat catccccaag tcagccgtg gggagctgtc tgaggaaccc acgaatggg 1200 tccaactcat taagaatgct tacaataaac tetectecag ggtcttectg gatcaccaacg 1260 ccctccccga caccctgaaa gtcacctacg actecttetg cagcaatgga gtgacgcac 1320 ggaaccagc cagaggtgac tgtgatggg tgcagatca tgtcccqatc acctrccagg 1380 tgaaggcac ggccacagag tgcatccagg acgatcgtt tgtcatccgg cgggaccaga 1500 gcaggaccag cagccttgc catggcagg ggcttettgg gtgcaggcac gggaccaga 1500 gcaggaccg cagccttgc catggcagg ggcttcttgg gtgcgggac cggggaccaga 1500 gcaggaccg cactggcag ggcacacaga tgcatccagg gtgcgggac gggagccaga 1500 gcaggaccg cagctctgc catggcagg gctcttggg gtgcggcac tggaggtgt 1560 acactggcaa actggggaaa aactgtgatg tgcagcacag gggccgggac tgcagggag 1500 acactgggaa tgtgccggaag gcaacaact ccatcatctg ctcagggag ggcaggagg 1620 acatgggaag ttgcctgtgc cacacacact catcatctg ctcagggctg ggggcccgg 1800 actgcggga gtgcctgtgc cacacacagc acgtccccgg caggtttga gggcccgg 1800 actgcgatgg gaggaccact gagggctgc ctgaacccgg gcggtttgag ggccaggat 1740 actgcgagtg tgacaccat gagggctgc tgaacccgcg gcgtttgag ggctcaggt 1860 gccagtgcga gaggaccact gagggctgc tgaacccgcg gcggtttgag gtcagggt 1920 gtggccggtg ccgctgcacc gatgcggag gcaacacgg gcggtttgag gtcagggt 1920 gtggccggtg ccgctgcacc taccctgtg gcaagtacat ctcctgcgg gatgtgggt 1920 gtggccggtg ccgctgcacc taccctgtg gcaagtacat ctcctgcgg gatgtgggt 1920 aggacacacc cggaaggag aggaccact gagaggaga ctcagaggg tgtggggt 1920 aggacacacc cggaaggag aggaccaca aggaggaga ctcagaggg tgtggggt 1220 aggaggaggaggaggaggaggagagagagagagagaga		ccgagggtgg g	ctggacgcc	atgatgcagg	tcgccgcctg	cccggaggaa	atcggctggc	900
acaagagaag caacgaattc gactacccat cggtgggcca gctggcgcac aagctggttg 1080 tccaacccat ccagcccatc ttcgcggtg ccagtaggat ggtgaagacc tacgagaaac 1140 tcaccgagat catccccaag tcagccgtgg gggagctgtc tgaggaccc aagcaatggg 1200 tccaactcat taagaatgct tacaataaac tctcctccag ggtcttcctg gatcaccacg 1260 ccctccccga caccctgaaa gtcacctacg actcettctg cagcaatgga gtgacgcaca 1320 ggaaccagc cagaggggac tgtgatggcg tgcagatcaa tgtcccggtc accttccagg 1380 tgaaggtcac ggccacagag tgcatccagg agcagtcgtt tgtcatccgg cggggcgggc 1440 25 tcacggacat agtgaccgtg caggtcttc cccagtgtga gtgccggtgc cgggaccaga 1500 gcagagaccg cagcctctgc catggcaagg gctrcttgga gtgccggtgc cgggaccaga 1500 gcagagaccg cagcctctgc catggcaagg gctrcttgga gtgccggtgc cgggaccaga 1560 acactggcta cattgggaaa aactgtgagt gccagacca gggccggagc agccaggagc 1620 acatggggag tgcctgtgc cacaccagcg acgtccccgg caagctgata tacgggcag 1680 tctgcggggc gtgcctgtgc cacaccagcg acgtccccgg caagctgata tacgggcagt 1740 actgcgggtg tgacaccatc aactgtgagc gctacaaccg ggctttgag ggccgggccg	10	gcaacgtcac g	cggctgctg	gtgtttgcca	ctgatgacgg	cttccatttc	gcgggcgacg	960
15		ggaagctggg c	gccatcctg	acccccaacg	acggccgctg	tcacctggag	gacaacttgt	1020
tcaccgagat catccccaag tcagccgtgg gggagctgtc tgaggactc agcatgggg 1200 tccaactcat taagaatgct tacaacaac tctcctccag ggtcttcctg gacaccaacag 1260 ccctccccga caccctgaaa gtcacctacg actccttctg cagcaatgga gtqacgcaa 1320 ggaaccagc cagaggtgac tgtgatggcg tgcagatcaa tgtcccggt accctaccag ggaaccagc 1380 tgaaggtcac ggccacagag tgcatccagg agcagtcgtt tgtcatccgg egctgggct 1440 25 tcacggacat agtgaccgtg caggttcttc cccagtgtga gtgccggtc cgggaccaga 1500 gcagagacg cagcctctgc catggcaagg gcttcttgga gtgccggcg cgggaccaga 1500 gcagagacg cagcctctgc catggcaagg gcttcttgga gtgccggcg cgggaccaga 1500 acactggcta cattgggaaa aactgtgagt gccagacaca gggccggagc agccaggagc 1620 acactggcta cattgggaaa aactgtgagt gccagacaca gggccggagc agccaggagc 1620 toggaaggag ttgcctgtgc cacaccagc acgtccccgg caagctgat tacgggcagt 1740 actgcgagtg tgacaccat aactgtgag gtcacacag ccaggtctgc gggggcccgg 1800 35 ggagggggct ctgcttctgc gggaaggcc gctgcaccc gggctttgag ggccaggt 1860 gccagtgcga gaggaccact gagggctgcc tgaaccacg gcggtttgag ggctcagcgt 1860 gccagtgcga gaggaccact gagggctgcc tgaaccagg gcggtttgag ggctcagcgt 1860 gcagtgcggt ccgctgcaac gatgccggt gccatcaagg ctaccaggc gctgttgag ggctcagcg 1920 gtggccggtg ccgctgcac traccctgtg gccagtacat ctcctggg gggttgag ggctcaggt 1920 aggaggggcc cggtgcgcc traccctgtg gcagtacat ctcctggcg gagtgccg 1920 aggaggggcc cggtgaggga gagaccact gaggagagag gcttcaggg ttaccaggc cttgagggtg 1920 aggagatgcc gggccccttt gggaagacat gcaggcggg gtgtcgggg ctgcagggc tgcagggc 1220 gagagatgtgt ggcagggcc caccacg gagagaccgca aggagaggag ctccacacg gggacctgt 2220 gagagatgtgt ggcagggccc aggaccaca ggaagacga ccatcacgcg gggaccactg ggagacct 2280 tgctgatcgg cattccccg ctggagagagag ggctcaccac gaggacct 2280 tgctgaaga aggccgcta ggaccaca ggaccaca taacacgaa tccacactg ggaacact 2460 tggcaaga caggccgca aggaccaca taggacaca taacacgaa tccagggcg cgagacact 2460 tggcaaga caggccgca caggccgc cgggtctc ctggggggcc gaggagggg ggctgaggt tgggggac 2280 ctgccacag ctcttgaga tgtcaccac taggagacc gtcgggggg ggctgaggt tgggggac 2280 ctgaccaca caggccgca aggaccaca taggagaca tcaggaca tcagggcg ggctgaga		acaagaggag c	aacgaattc	gactacccat	cggtgggcca	gctggcgcac	aagctggctg	1080
tccaactcat taagaatgct tacaacaac tetectecag ggtettectg gatcacaacg 1260 ccctccccga caccetgaaa gtcacetacg actecttetg cagcaatgga gtgacgcaa 1320 ggaaccagc cagaggtgac tytgatggcg tgcagatcaa tytcccgatc accttccagg 1380 tgaaggtcac ggccacagag tgcatccagg agcagtcgtt tytcatccgg gcgtgggct 1440 25 tcacggacat agtgaccgt caggtrette cccagtgtga gtgccggtge cgggaccaga 1500 gcagagaccg cagcetetge catggcaagg gcttettgga gtgccggtge cgggaccaga 1500 gcagagacg cagcetetge catggcaagg gctcattgga gtgccggage agccaggage 1620 acactggcta cattgggaaa aactgtgagt gccagacaca gggccggage agccaggage 1620 ttgggaggaag etgcctgtge cacaccage acgtccccgg caagctgat tacgggage 1620 actgcgagtg tgacaccat aactgtgage gctacacag gccaggtgtg ggcgggccggg 1800 actgcgagtg tgacaccat aactgtgage gctacacag ccaggtctge ggcgcccgg 1800 ggaggggggt ctgctttge gggaagtgcc gtgaccccc gggctttgag ggctcagcgt 1860 gccagtgcga gaggaccact gagggctgcc tgaacccgg gcgtgttgag tgtagtggte 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagct gctctgccc 1980 40 aggagtgcc cggctgcac gagacctct gggaagaact ctcctgcgc gagtgcctga 2040 agttcgaaaa gggccccttt gggaagaact gcagcgggg cttcagggg cttgcgggt 2220 gagaggtgt ggcaggag gaggactgca aggagaggg accgctacct catctatgtg gatgaggacc 2220 gagagttgg cattetcctg ctggtcatct ggaagggga ctcaacagg gaggacccg 2220 gagagttgt ggcaggcag gagggactgca aggaggggc tcaacaggg gaggacccc 2340 45 cctacacgt ggagagaca gaggacctgca aggagaggt taaggagg gaggacccc 2220 gagagttgg cattetctg ctggtcatct ggaaggct gatcacctg gaggacccc 2220 gagagtacag gcgctttgag aaggagagc tcaagtcca gtggaacat gataatccc 2400 ttttcaagag cgccaccag aggaccacca tgccgc catcacagt tgctgagag taggagacc 2520 cttgccacag ctcttgagg tgtcaccac tgccggcc tgcgggggc cgagacat 2460 tggtgaagac aaggccgc aggccccaca tgccgacact tacacgaga tgcggagacat 2520 cttgccacag ctcttgaga tgtcaccact taaccagaa tccagttat ttccgcccc 2580 aaaatgaca catggccg caggcctca aggacact gaggagggg ggcttgaggggg aggctccact 2580 aaaatgaca catggccg aggacact aggagact taggaggag ggcttgagg tgcgggggct 2580 aggtgctgt ttcctgtgc aggacact agagacat cagtgcat aatacccat taacca	15	aaaacaacat c	cagcccatc	ttcgcggtga	ccagtaggat	ggtgaagacc	tacgagaaac	1140
20		tcaccgagat c	atccccaag	tcagccgtgg	gggagctgtc	tgaggactcc	agcaatgtgg	1200
ggaaccagcc cagaggtgac tygtatggcg tycagatcaa tytcccgatc accttccagg 1380 tgaaggtcac gyccacagag tygtatccagg agcagtcgtt tytcatccgg gcgtcggggct 1440 gcaggaccg cagccctctg caggctcttc cccagtgtga gtgccggggc cgggaccaga 1500 gcaggaccg cagcctctg catggcaagg gctctttga gtgccgggcatc tycaggtgg 1560 acactggcta cattgggaaa aactgtgagt gccagacaca gggccggagc agccagagagc 1620 ttggaggaag ctgccggaag gacacaact ccatcatctg ctcagggctg ggggactgt 1740 actgcgagtg tgacaccatc aactgtgagc gctaccagg caagctgata tacgggcagt 1740 actgcgagtg tgacaccatc aactgtgagc gctaccaccg gactgctgc ggcggcccgg 1800 gcagtgcga gaggaccatc ggaggtcgc gctgccacc gggctttgag ggcggccgg 1800 gcagtgcga gaggaccatc gagggctgcc tgaacccgg gcggtttgag ggtagtggc 1920 gtggccggtg ccgctgcaac gaaggctgcc tgaacccgg gcgtttgag gttagtggtc 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccaactg cctctgtgcc 1980 aggagtgcc cggctgcac tacccttgtg gcaagtacat ctcctgcgcc gaggtctgc 1920 gtggccggtg ccgctgcaac gaaggacgga gcaattcagg ctaccaagcg ctctctgtgc 1980 aggagtgcc cggctgccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgcctga 2040 agttcgaaaa gggcccctt gggaagaact gaaggagggg ctcagagggc tgcaggtgtg 2160 cgaacaaccc cgtgaagggc aggacctgca aggagagggg gtccagaggctg gctggggtg 2160 cgaacaaccc cgtgaaggc aggagagag accgctacct catctatgg gatggagcc 2220 gagagttgt ggcaggccc aacatcgccg ccatcgtcgg gggcaccgg gcaggcactg 2220 gagagttgg gcaggccct acactcgccg ccatcgtcgg gggaccgg gcaggcaccg 2220 ggagagtagg gcgctttgg aaggaaga ctcaagtccca gtggaacaat gataatccc 2400 tttcaagaa gcccaccac gaggcacaa acatcgcca ctacgtcgg gggaacaa gagagacct 2220 gggagtaag acgccacac acggccacaa tacaccaagtt tgctgaagat taggagcct 2220 tgggagaa aaggccgtc gggaccacaa taaccaagat tgctgagag cagctccac 2240 tgggaagaa aaggccgtc ggaccacaa taaccaagat tgctgagag cagctccac 2260 ttgccacag ctcttgga gtaccaaat taaccaagaa tccagttat ttccgcccc 2580 aaaatgaca ccatggcgg ccgggcccaa agtcccaa ttccagcaa tcaggtggc gcggacact 260 aggtgcgtg ttccctgtgca agtcaggac gaacacaact catggcgga ggctgaggg ggctgaggt 270 aggtgctgt ttcctgtgca agtcaggaaca acaggctgca taaggaggag gcctgaaaaa aaaaaaaaaa		tccaactcat t	aagaatgct	tacaataaac	tctcctccag	ggtcttcctg	gatcacaacg	1260
tgaaggtcac ggccacagag tgcatccagg agcagtcgtt tgtcatccgg gcgctgggct 1440 tcacggacat agtgaccgtg caggttcttc cccagtgtga gtgccggtgc cgggaccaga 1500 gcagagaccg cagctctcgc catggcaagg gcttcttgga gtgccggacc cgggaccaga 1500 acactggcta cattgggaaa aactgtgagt gccagacaca gggccggagc agccaggagc 1620 toggaaggaag ctgccggaag gacaacaact ccatcatctg ctcagggctg ggggactgt 1680 tctgcgggca gtgccggaag gacaacaact ccatcatctg ctcagggctg ggggactgt 1740 actgcgagtg tgacaccat aactgtgagc gctaccacgg caagctgata tacggggagt 1740 actgcgagtg tgacaccat aactgtgagc gctacaacgg ccaggtctgc ggcggcccgg 1800 gcagtgcga gaggaccact ggggagtgcc gtgacacccg ggctttgag ggctcaggct 1860 gccagtgcga gaggaccact gagggctgcc tgaacccgg gcggtttgag ggctcaggct 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 aggagtgcc cggctgccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgctgc 2040 agttcgaaaa gggcccctt gggaagaact gcaggaggg gtgtccggag tgtcgggtg 2160 cgaacaaccc cgtgaagggc aggacacga ggaaggagg gtgtccggag tgtcgggtg 2160 cgaacaaccc cgtgaagggc aggaccacaa ggagagggg gtgtccggag tgtcggggg 2280 aggagtgtg ggaaggcca aacatcgccg ccatcgtcga gggcaccgg gaggactgg 2280 tgctgatcgg cattctctg ctggtcatct ggaaggagg ggcaccagg gaggactcc 2280 gggagtacg gcgctttgga agggaagg ccatcaagtccc gtggaacaa garaactcc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgaagat taggagcct 2280 tgggaagac aaggccgtca ggacccacca tgtctgccc atcagtgcg cgagacatcc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgaagat taggagcct 2280 tgggaagac aaggccgtca ggacccacca tgtctgccc atcagtgcg cgagacatc 2260 tgggaagac cattctctg ggacccacca tgtccccaagtt tgctgaagat taggagcct 2280 tgggaagac acgccaccac acggccgtct tcaggggcc tcaggggga cggctcacc 2260 ctggccaca cctttgagg tgtcaccact taccaagtt tgctgaagat tgggacctcc 2280 aaaatgaca ccatggccg ccgggtctt tctgggggct tcggggggct tggggggcgcgcc 2280 aggggcgtt ttcctgtgca agtcagaac tcaggtcgt taaagggga ggcttgaggt tggtgaggt 2200 aggtgcgt ttcctgtgca agtcagaac tcagtcgat taaaggggg ggctgaggt 2200 aggtgctgt ttcctgtgca agtcagaac tcagtctgat taaaggggg gccaatttac 280 acgtgtag aaaaaaaaaaaaaaaaaaaaaaaa	20	ccctccccga c	accctgaaa	gtcacctacg	actccttctg	cagcaatgga	gtgacgcaca	1320
tcacggacat agtgaccgtg caggttette eccagtgtga gtgeeggtge egggaccaga 1500 geagagaccg cagectetge eatggeaagg gettettgga gtgeeggtat tgeaggtgtg 1560 acactggeta eattgggaaa aactgtgaagt geeagacca gggeeggate tgeagggac 1620 tggaaggaag etgeeggaag gacaacaact ceateatetg etcagggetg ggggactgtg 1680 tetgeeggaa gtgeeggaag gacaacaact ceateatetg etcagggetg ggggactgtg 1680 tetgeeggaag tgeeeggaag gacaacaact ceateatetg etcaggetg ggggactgtg 1740 actgeeggag tgacaccate aactgtgage getacaacgg ceaggttgaa tacgggeagt 1740 actgeeggag tgacaccate aactgtgage getacaacgg ceaggtttgag ggeteageg 1800 gecagtgega gaggaccate gagggetgee getgeeacce gggetttgag ggeteagegt 1860 gecagtgega gaggaccate gagggetgee etgacecce ggetgttgag tgtagtggt 1920 gtggeeggtg eegetgeeac gtatgeeggt gecattcagg etcateagetg etctetgee 1980 aggagtgee eegetgeeac gtatgeeggt gecattcagg etceteggee etgagetgt 2100 egaacaacce egggaaggge aggacctgea ggagagagg etcagggge etgeagetgt 2100 egaacaacce egtgaaggge aggacctgea aggagaggga etcagaggge tgetgggggg 2160 aggagatgtg ggeaggacgag gacgggatgg accgetacct eatetatgtg gatgaggace 2220 gagagtgtg ggeaggacca gaactgeegg ecatecteegg gaggacctgg 2280 tgetgategg eatteteetg etgggteatet ggaagggett ggaggacct 2340 gggaagtagg eateteteetg etggeteatet ggaagggett ggaggacat gaggacctee 2340 tgetgaaga aaggeegtea gagccacca acategeeg eateteeteegge egggaccacca gtateaccag aeggaccacca gteeggagat tacaggagat taggaagaca 2460 tggtgaagac aaggeegtea gaccaccaa taaccagaaa tecagttatt treegeecte 2580 aaaatgacag ecateggeegg eeggggettt etggggggat eageteeact 2640 etggeeggaa eagetettga atggagact eaggagact etgggggga eageteeact 2640 etggeegga eagetettge atggagactt eaggaggat ggetgaggt tggtgaggt 2700 aggteeggt treetggea agtcaggaca teaggagaca taaaggagga ggettgaggt tggtgaggtt 2700 aggteeggt treetggea agtcaggaaca aagteeggaa aagteeggaa aagaagaaaa aaaaaaaaaa		ggaaccagcc c	agaggtgac	tgtgatggcg	tgcagatcaa	tgtcccgatc	accttccagg	1380
gcagagaccg cagcctctgc catggcaagg gcttcttgga gtgcggcatc tgcaggtgtg 1560 acactopcta cattgggaaa aactgtgagt gccagaacaa gggccggagc agcaggagc 1620 toggaaggaag ctgccggaag gacaacaact ccatcatctg ctcagggctg ggggactgtg 1680 tctgcggggc gtgcttgtg cacaccacgc acgtccccgg caagctgata tacgggcagt 1740 actgcgagtg tgacaccatc aactgtgagc gctacaacgg ccaggtttgag ggcgccggg 1800 spaggggggct ctgcttctgc gggaagtgcc gctgccaccc gggctttgag ggctcagcgt 1860 gccagtgcga gaggaccact gaggggctgcc tgaccccgc gggtttgag tgtagtggtc 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 aggagtgccc cggctgcccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgcctga 2040 agttcgaaaa gggccccttt gggaagaact gcaggcggg gtgtcgggc ctgcagctgt 2100 cgacaaccc cgtgaagggc aggacctgca aggagggga ctcagagggc tgctgggggg 2160 45 cctacacgct ggaggacga gacgggatgg accgttact catctatgtg gatgaggcc 2220 gaagagtgtg gcattctcctg ctggtcatct ggaaggctct gatccacctg agcgacctc 2340 50 ggggagtacag gcgtttgag aaggagaag tcaagtccca gtggaacaat gataatccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagacct 2460 tggtgaagac aaggccgtca ggaccacca tgtctgccc atcacgggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgcccc 2580 aaaatgacag ccatggccgg ccgggtgctt ctgggggga ggcttgagg tggtgaggt 2700 aggtgcggt ttccttgc atggagactt gaggaggag ggcttgaggt tggtgaggtt 2700 aggtgcggt ttccttggca agtcaggac tcaggtcgat taaaggtgg ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttccttggca agtcaggac tcaggtcgat taaaggtgg ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttccttggca agtcaggac tcagtctgat taaaggtggt ggcaatttat 2760 ttacattaa acttgtcagg gtataaaatg acatcccat aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaaata aaacttcaat accagctgtc catggaaaaa aaaaaaaaaa		tgaaggtcac g	gccacagag	tgcatccagg	agcagtcgtt	tgtcatccgg	gcgctgggct	1440
acactggcta cattgggaaa aactgtgagt gccagacaca gggccggagc agcaggagc 1620 tggaaggaag ctgccggaag gacaacaact ccatcatctg ctcagggctg ggggactgtg 1680 tctgcgggca gtgcctgtgc cacaccagcg acgtccccgg caagctgata tacgggcagt 1740 actgcgagtg tgacaccatc aactgtgagc gctacaacgg ccaggtctgc ggcggcccgg 1800 35 ggagggggct ctgcttctgc ggggaagtgcc gctgccaccc gggctttgag ggctcagcgt 1860 gccagtgcga gaggaccact gagggctgcc tgaacccgcg gcgtgttgag tgtagtggtc 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 40 aggagtgccc cggctgcccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgccga 2040 agttcgaaaa gggccccttt gggaagaact gcagcgggc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagggga ctcagagggc tgctgggggg 2160 45 cctacacgct ggagcagcag gacgggatgg accgctacct catctatgtg gatgagggc 2220 gagagtgtg ggcaggccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctt gatcacctg agcgacctc 2340 50 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgaggt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgggc cgagacatgg 2520 55 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccg ccgggtctt ctgggggct gtcggggga ggcttgaggt tgggaggt 2700 aggtgcgtgt ttcctgtgca agtcaggact gaggagggag ggcttgaggt tggggaggt 2700 aggtgcgtgt ttcctgtgca agtcaggact gaggagggag ggcttgaggt tgggggggt 2700 aggtgcgtgt ttcctgtgca agtcaggact aacacccatt aattaattg ttaatcaatc 2820 acgtgtatag aaaaaaaaaaa aaactcaat aacacgctgtc catggaaaaa aaaaaaaaaa	25	tcacggacat a	gtgaccgtg	caggttcttc	cccagtgtga	gtgccggtgc	cgggaccaga	1500
1680 tctgcgggag ctgccggaag gacaacaact ccatcatctg ctcagggctg ggggactgtg 1680 tctgcggggca gtgcctgtgc cacaccagcg acgtccccgg caagctgata tacgggcagt 1740 actgcgagtg tgacaccatc aactgtgagc gctacaacgg ccaggtttgc ggcggcccgg 1800 35 ggagggggct ctgcttctgc ggggaagtgcc gctgccaccc gggctttgag ggctcagcgt 1860 gccagtgcga gaggaccact gagggctgcc tgaacccgg gcggttgag tgtagtggtc 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 40 aggagtgccc cggctgcccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgcctga 2040 agttcgaaaa gggccccttt gggaagaact gcagtgcggc gtgtccggg ctgcagtgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcagagggc tgctgggtg 2160 45 cctacacgct ggagcagcag gacgggatgg accgctacct catctatgtg gatgagagcc 2220 gagagtgtgt ggcaggccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaagggctct gatccacct gacgacccc 2340 gggagtacag gcgctttgag aaggaagac tcaagtccca gtggaacaat gataatccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcgg cgagacatgg 2520 55 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccggggctt ctggggggga ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggacat caggtcgta taaaggtggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggacat caggtctgat taaaggtggt ggcaatttat 2760 ttacattaa acttgtcagg gtataaaatg acatcccat aattaattg ttaatcaatc 2820 acgtgatag aaaaaaaaata aaacttcaat acaggctgtc catgggaaaaa aaaaaaaaaa		gcagagaccg ca	agcctctgc	catggcaagg	gcttcttgga	gtgcggcatc	tgcaggtgtg	1560
tctgcgggca gtgcctgtgc cacaccagcg acgtccccgg caagctgata tacgggcagt 1740 actgcgagtg tgacaccatc aactgtgagc gctacaacgg ccaggtttgc ggcggcccgg 1800 35 ggagggggct ctgcttctgc gggaagtgcc gctgccaccc gggctttgag ggctcagcgt 1860 gccagtgcga gaggaccact gagggctgcc tgaacccgcg gcggtttgag ggctcagcgt 1860 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 40 aggagtgccc cggctgccac tcaccctgtg gcaagtacat ctcctgcgcc gagtgctga 2040 agttcgaaaa gggccccttt gggaagaact gcagcgggc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggaggggg gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggaggaggga ctcagagggc tgctggggg 2220 gagagtgtg ggcagcaga gacgggatgg accgctacct catctatgtg gatgagagcc 2220 gagagtgtg ggcagcccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaagggctct gatcacctg agcgacctcc 2340 50 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatcccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcgg cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgcccc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggga ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggacat caggtctgat taaaggtggt tggtgaggtt 2700 aggtgctgt ttcctgtgca agtcaggaca tcagtcgt taaaggtggt tggtgaggtt 2700 aggtgctgt ttcctgtgca agtcaggaca tcagtctgt taaaggtggt tggtgaggtt 2700 aggtgctgt ttcctgtgca agtcaggaca tcagtctgt taaaggtggt gccaatttat 2760 ttacattaa acttgtcagg gtataaaatg acatcccatt aattaattg ttaatcaatc 2820 acgtgatag aaaaaaaaata aaacttcaat accggctgtc catggaaaaa aaaaaaaaaa		acactggcta ca	attgggaaa	aactgtgagt	gccagacaca	gggccggagċ	agccaggagc	1620
actgcgagtg tgacaccatc aactgtgagc gctacaacgg ccaggtctgc ggcggcccgg 1800 ggagggggct ctgcttctgc gggaagtgcc gctgccaccc gggctttgag ggctcagcgt 1860 gccagtgcga gaggaccact gagggctgcc tgaacccgcg gcgtgttgag tgtagtggtc 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 aggagtgccc cggctgccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgctga 2040 agttcgaaaa gggccccttt gggaagaact gcaggcggc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcaggaggc tgctgggg 2160 cctacacgct ggagcagcag gacgggatgg accgttacct catctatgtg gatgagagcc 2220 gagagtgtgt ggcaggcccc aacatcgccg ccatcgtcgg gggcaccgtg gaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgactcc 2340 fgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgacctc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccct 2580 aaaatgacag ccatggccgg ccgggtgctt ctgggggctc gtcggggg cagctccact 2640 ctgactggca cagtctttgc atggagacct tcaggcggct gtcggggg ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagctcgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaaaa aaactccaat aacaggctgtc catggaaaaa aaaaaaaaaa	30	tggaaggaag c	tgccggaag	gacaacaact	ccatcatctg	ctcagggctg	ggggactgtg	1680
ggagggggct ctgcttctgc gggaagtgcc gctgccaccc gggctttgag ggctcagcgt 1860 gccagtgcga gaggaccact gagggctgcc tgaacccgcg gcgtgttgag tgtagtggtc 1920 gtggccggtg ccgctgcaac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 aggagtgccc cggctgcccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgcctga 2040 agttcgaaaa gggccccttt gggaagaact gcagcgggc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcagagggc tgctgggtg 2160 cctacacgct ggagcagcag gaccggatgg accgctacct catctatgtg gatgagagcc 2220 gagagtgtg ggcaggccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgactcc 2340 sgggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcgg cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccct 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggct gtgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacattaa acttgtcagg gtataaaatg acatcccatt aattaattg ttaatcaatc 2820 accgtgtatag aaaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		tctgcgggca g	tgcctgtgc	cacaccagcg	acgtccccgg	caagctgata	tacgggcagt	1740
gccagtgcga gaggaccact gagggctgcc tgaacccgcg gcgtgttgag tgtagtggtc 1920 gtggccggtg ccgctgcaac gratgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 aggagtgccc cggctgcccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgcctga 2040 agttcgaaaa gggccccttt gggaagaact gcagcgcggc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcagagggc tgctgggtgg 2160 cctacacgct ggagcagcag gacgggatgg accgctacct catctatgtg gatgagagcc 2220 gagagtgtg ggcaggccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgactcc 2340 sgggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcgg cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt trccgcccc 2580 aaaatgacag ccatggccgg ccgggtgctt ctgggggctc gtcggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggacat ccagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		actgcgagtg to	gacaccatc	aactgtgagc	gctacaacgg	ccaggtctgc	ggcggcccgg	1800
gtggccggtg ccgctgcac gtatgcgagt gccattcagg ctaccagctg cctctgtgcc 1980 aggagtgccc cggctgccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgcctga 2040 agttcgaaaa gggccccttt gggaagaact gcagcgggc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcagagggc tgctgggtgg 2160 45 cctacacgct ggagcagcag gacgggatgg accgctacct catctatgtg gatgagagcc 2220 gaagatgtgt ggcaggcccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatcacctg agcgacctcc 2340 50 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatccc 2400 ttttcaagaa cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcggc cgagacatgg 2520 55 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggct gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaaggtggt gccaatttat 2760 ttacattaa acttgtcagg gtataaaatg acatcccat aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaa 2880	35	ggaggggct c	tgcttctgc	gggaagtgcc	gctgccaccc	gggctttgag	ggctcagcgt	1860
aggagtgccc cggctgcccc tcaccctgtg gcaagtacat ctcctgcgcc gagtgcctga 2040 agttcgaaaa gggccccttt gggaagaact gcagcgcgc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcagagggc tgctgggtgg 2160 45 cctacacgct ggagcagcag gacgggatgg accgctacct catctatgtg gatgagagcc 2220 gagagtgtgt ggcaggcccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgacctc 2340 50 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgcccc atcacgcggc cgagacatgg 2520 55 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggtc gtcgggggga cagctccact 2640 60 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaattat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatttg ttaatcaatc 2820 acgtgtatag aaaaaaaaaa aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		gccagtgcga ga	aggaccact (gagggctgcc	tgaacccgcg	gcgtgttgag	tgtagtggtc	1920
agttcgaaaa gggccccttt gggaagaact gcagcgggc gtgtccgggc ctgcagctgt 2100 cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcagagggc tgctgggtgg 2160 45 cctacacgct ggagcagcag gacgggatgg accgctacct catctatgtg gatgagagcc 2220 gagagtgtgt ggcaggcccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgacctcc 2340 50 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatcccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggct gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacattaa acttgtcagg gtataaaatg acatcccatt aattaattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaactcaat acaggctgtc catggaaaaa aaaaaaaaaa		gtggccggtg co	cgctgcaac	gtatgcgagt	gccattcagg	ctaccagctg	cctctgtgcc	1980
cgaacaaccc cgtgaagggc aggacctgca aggagaggga ctcagagggc tgctgggtgg 2160 45	40	aggagtgccc cg	ggctgcccc	tcaccctgtg	gcaagtacat	ctcctgcgcc	gagtgcctga	2040
cctacacgct ggagcagcag gacgggatgg accgctacct catctatgtg gatgagagcc 2220 gagagtgtgt ggcaggcccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgacctcc 2340 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatcccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggtc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacattaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		agttcgaaaa g	ggccccttt	gggaagaact	gcagcgcggc	gtgtccgggc	ctgcagctgt	2100
gagagtgtgt ggcaggcccc aacatcgccg ccatcgtcgg gggcaccgtg gcaggcatcg 2280 tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgactcc 2340 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatcccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt trccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggctc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		cgaacaaccc cg	gtgaagggc	aggacctgca	aggagaggga	ctcagagggc	tgctgggtgg	2160
tgctgatcgg cattctcctg ctggtcatct ggaaggctct gatccacctg agcgacctcc 2340 gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatcccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgcccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggctc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa	45	cctacacgct gg	gagcagcag (gacgggatgg	accgctacct	catctatgtg	gatgagagcc	2220
gggagtacag gcgctttgag aaggagaagc tcaagtccca gtggaacaat gataatcccc 2400 ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgcccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggctc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		gagagtgtgt gg	gcaggcccc	aacatcgccg	ccatcgtcgg	gggcaccgtg	gcaggcatcg	2280
ttttcaagag cgccaccacg acggtcatga accccaagtt tgctgagagt taggagcact 2460 tggtgaagac aaggccgtca ggacccacca tgtctgcccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggctc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		tgctgatcgg ca	attctcctg	ctggtcatct	ggaa gg ctct	gatccacctg	agcgacctcc	2340
tggtgaagac aaggccgtca ggacccacca tgtctgcccc atcacgcggc cgagacatgg 2520 cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggctc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa	50	gggagtacag go	cgctttgag a	aaggagaagc	tcaagtccca	gtggaacaat	gataatcccc	2400
cttgccacag ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc 2580 aaaatgacag ccatggccgg ccgggtgctt ctggggggctc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		ttttcaagag c	gccaccacg	acggtcatga	accccaagtt	tgctgagagt	taggagcact	2460
aaaatgacag ccatggccgg ccgggtgctt ctggggggctc gtcgggggga cagctccact 2640 ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		tggtgaagac aa	aggccgtca	ggacccacca	tgtctgcccc	atcacgcggc	cgagacatgg	2520
ctgactggca cagtctttgc atggagactt gaggagggag ggcttgaggt tggtgaggtt 2700 aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa	55	cttgccacag ct	tcttgagga '	tgtcaccaat	taaccagaaa	tccagttatt	ttccgccctc	2580
aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		aaaatgacag co	catggccgg	ccgggtgctt	ctgggggctc	gtcgggggga	cagctccact	2640
aggtgcgtgt ttcctgtgca agtcaggaca tcagtctgat taaaggtggt gccaatttat 2760 ttacatttaa acttgtcagg gtataaaatg acatcccatt aattatattg ttaatcaatc 2820 acgtgtatag aaaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa		ctgactggca c	agtctttgc	atggagactt	gaggagggag	ggcttgaggt	tggtgaggtt	2700
acgtgtatag aaaaaaata aaacttcaat acaggctgtc catggaaaaa aaaaaaaaaa	60	aggtgcgtgt t	tcctgtgca	agtcaggaca	tcagtctgat	taaaggtggt	gccaatttat	2760
65		ttacatttaa a	cttgtcagg	gtataaaatg	acatcccatt	aattatattg	ttaatcaatc	2820
65 aaaaaaa 2887		acgtgtatag a	aaaaaaata	aaacttcaat	acaggctgtc	catggaaaaa	aaaaaaaaa	2880
	65	aaaaaaa						2887

<210> 104 <211> 1902 <212> DNA 5 <213> Homo sapiens

<400> 104

10	ctggcgcgcg	cggccctgcg	ggtgacaggc	aggcgggaag	gggcggggcc	tcgggcgggg	60
10	ccgccgtggg	gaggagggcg	gtgggagggg	aggagtggag	atggcggcgg	cggcggctca	120
	9999999999	ggcggggggc	cccgtagaac	cgagggggtc	ggcccggggg	tcccggggga	180
	ggtggagatg	gtgaaggggc	agccgttcga	cgtgggcccg	cgctacacgc	agttgcagta	240
15	catcggcgag	ggcgcgtacg	gcatggtcag	ctcggcctat	gaccacgtgc	gcaagactcg	300
	cgtggccatc	aagaagatca	gccccttcga	acatcagacc	tactgccagc	gcacgctccg	360
20	ggagatccag	atcctgctgc	gcttccgcca	tgagaatgtc	atcggcatcc	gagacattct	420
20	gcgggcgtcc	accctggaag	ccatgagaga	tgtctacatt	gtgcaggacc	tgatggagac	480
	tgacctgtac	aagttgctga	aaagccagca	gctgagcaat	gaccatatct	gctacttcct	540
25	ctaccagatc	ctgcggggcc	tcaagtacat	ccactccgcc	aacgtgctcc	accgagatct	600
25	aaagccctcc	aacctgctca	tcaacaccac	ctgcgacctt	aagatttgtg	atttcggcct	660
	ggcccggatt	gccgatcctg	agcatgacca	caccggcttc	ctgacggagt	atgtggctac	720
	gcgctggtac	cgggccccag	agatcatgct	gaactccaag	ggctatacca	agtccatcga	780
30	catctggtct	gtgggctgca	ttctggctga	gatgctctct	aaccggccca	tcttccctgg	840
	caagcactac	ctggatcagc	tcaaccacat	tctgggcatc	ctgggctccc	catcccagga	900
	ggacctgaat	tgtatcatca	acatgaaggc	ccgaaactac	ctacagtctc	tgccctccaa	960
35	gaccaaggtg	gcttgggcca	agcttttccc	caagtcagac	tccaaagccc	ttgacctgct	1020
	ggaccggatg	ttaaccttta	accccaataa	acggatcaca	gtggaggaag	cgctggctca	1080
	cccctacctg	gagcagtact	atgacccgac	ggatgagcca	gtggccgagg	agcccttcac	1140
40	cttcgccatg	gagctggatg	acctacctaa	ggagcggctg	aaggagctca	tcttccagga	1200
	gacagcacgc	ttccagcccg	gagtgctgga	ggccccctag	cccagacaga	catctctgca	1260
	ccctggggcc	tggacctgcc	tcctgcctgc	ccctctcccg	ccagactgtt	agaaaatgga	1320
45	cactgtgccc	agcccggacc	ttggcagccc	aggccggggt	ggagcatggg	cctggccacc	1380
	tctctccttt	gctgaggcct	ccagcttcag	gcaggccaag	gccttctcct	ccccacccgc	1440
	cctccccacg	gggcctcggg	acctcaggtg	gccccagttc	aatctcccgc	tgctgctgct	1500
50	gcgcccttac	cttccccagc	gtcccagtct	ctggcagttc	tggaatggaa	gggttctggc	1560
	tgccccaacc	tgctgaaggg	cagaggtgga	gggtgggggg	cgctgagtag	ggactcaggg	1620
	ccatgcctgc	cccctcatc	tcattcaaac	cccaccctag	tttccctgaa	ggaacattcc	1680
55	ttagtctcaa	gggctagcat	ccctgaggag	ccaggccggg	ccgaatcccc	tccctgtcaa	1740
	agctgtcact	tcgcgtgccc	tcgctgcttc	tgtgtgtggt	gagcagaagt	ggagctgggg	1800
	ggcgtggaga	gcccggcgcc	cctgccacct	ccctgacccg	tctaatatat	aaatatagag	1860
60	atgtgtctat	ggctgaaaaa	aaaaaaaaa	aaaaaaaaa	aa		1902

<210> 105

<211> 2826

<212> DNA

<213> Homo sapiens

<400> 105

	tcgagacctc	aagggtagag	grgggcaccc	ccgcctccgc	acttttgctc	ggggctccag	ы
5	attgtagggc	agggcggcgc	ttctcggaaa	gcgaaagccg	gcggggcggg	gcgggtgccg	120
	caggagaaag	aggaagcgct	ggcagacaat	gcgacccgac	cgcgctgagg	ctccaggacc	180
	gcccgccatg	gctgcaggag	gtcccggcgc	ggggtctgcg	gccccggtct	cctccacatc	240
10	ctcccttccc	ctggctgctc	tcaacatgcg	agtgcggcgc	cgcctgtctc	tgttcttgaa	300
	cgtgcggaca	caggtggcgg	ccgactggac	cgcgctggcg	gaggagatgg	actttgagta	360
	cttggagatc	cggcaactgg	agacacaagc	ggaccccact	ggcaggctgc	tggacgcctg	420
15	gcagggacgc	cctggcgcct	ctgtaggccg	actgctcgag	ctgcttacca	agctgggccg	480
	cgacgacgtg	ctgctggagc	tgggacccag	cattgaggag	gattgccaaa	agtatatctt	540
	gaagcagcag	caggaggagg	ctgagaagcc	tttacaggtg	gccgctgtag	acagcagtgt	600
20	cccacggaca	gcagagctgg	cgggcatcac	cacacttgat	gaccccctgg	ggcatatgcc	660
	tgagcgtttc	gatgccttca	tctgctattg	ccccagcgac	atccagtttg	tgcaggagat	720
	gatccggcaa	ctggaacaga	caaactatcg	actgaagttg	tgtgtgtctg	accgcgatgt	780
25	cctgcctggc	acctgtgtct	ggtctattgc	tagtgagctc	atcgaaaaga	ggtgccgccg	840
	gatggtggtg	gttgtctctg	atgattacct	gcagagcaag	gaatgtgact	tccagaccaa	900
	atttgcactc	agcctctctc	caggtgccca	tcagaagcga	ctgatcccca	tcaagtacaa	960
30	ggcaatgaag	aaagagttcc	ccagcatcct	gaggttcatc	actgtctgcg	actacaccaa	1020
	cccctgcacc	aaatcttggt	tctggactcg	ccttgccaag	gccttgtccc	tgccctgaag	1080
	actgttctga	ggccctgggt	gtgtgtgtat	ctgtctgcct	gtccatgtac	ttctgccctg	1140
35	cctcctctt	tcgttgtagg	aggaatctgt	gctctactta	cctctcaatt	cctggagatg	1200
	ccaacttcac	agacacgtct	gcagcagctg	gacatcacat	ttcatgtcct	gcatggaacc	1260
	agtggctgtg	agtggcatgt	ccacttgctg	gattatcagc	caggacacta	tagaacagga	1320
40	ccagctgaga	ctaagaagga	ccagcagagc	cagctcagct	ctgagccatt	cacacatctt	1380
	caccctcagt	ttcctcactt	gaggagtggg	atggggagaa	cagagagtag	ctgtgtttga	1440

	atccctgtag	gaaatggtga	agcatagctc	tgggtctcct	gggggagacc	aggcttggct	1500
	gcgggagag	tggctgttgc	tggactacat	gctggccact	gctgtgacca	cgacactgct	1560
5	ggggcagctt	cttccacagt	gatgcctact	gatgcttcag	tgcctctgca	caccgcccat	1620
	tccacttcct	ccttccccac	agggcaggtg	gggaagcagt	ttggcccagc	ccaaggagac	1680
	cccaccttga	gccttatttc	ctaatgggtc	cacctctcat	ctgcatcttt	cacacctccc	1740
10	agcttctgcc	caaccttcag	cagtgacaag	tccccaagag	actcgcctga	gcagcttggg	1800
	ctgcttttca	tttccacctg	tcaggatgcc	tgtggtcatg	ctctcagctc	cacctggcat	1860
	gagaagggat	cctggcctct	ggcatattca	tcaagtatga	gttctgggga	tgagtcactg	1920
15	taatgatgtg	agcagggagc	cttcctccct	gggccacctg	cagagagctt	tcccaccaac	1980
	tttgtacctt	gattgcctta	caaagttatt	tgtttacaaa	cagcgaccat	ataaaagcct	2040
	cctgccccaa	agcttgtggg	cacatgggca	catacagact	cacatacaga	cacacacata	2100
20	tatgtacaga	catgtactct	cacacacaca	ggcaccagca	tacacacgtt	tttctaggta	2160
	cagctcccag	gaacagctag	gtgggaaagt	cccatcactg	agggagccta	accatgtccc	2220
	tgaacaaaaa	ttgggcactc	atctattcct	tttctcttgt	gtccctactc	attgaaacca	2280
25	aactctggaa	aggacccaat	gtaccagtat	ttatacctct	aatgaagcac	agagagga	2340
	agagagctgc	ttaaactcac	acaacaatga	actgcagaca	cagctgttct	ctccctctct	2400
	ccttcccaga	gcaatttata	ctttaccctc	aggctgtcct	ctggggagaa	ggtgccatgg	2460
30	tcttaggtgt	ctgtgcccca	ggacagaccc	taggacccta	aatccaatag	aaaatgcata	2520
	tctttgctcc	actttcagcc	aggctggagc	aaggtacctt	ttcttaggat	cttgggaggg	2580
	aatggatgcc	cctctctgca	tgatcttgtt	gaggcattta	gctgccatgc	acctgtcccc	2640
35	ctttaatact	gggcatttta	aagccatctc	aagaggcatc	ttctacatgt	tttgtacgca .	2700
	ttaaaataat	ttcaaagata	tctgagaaaa	gccgatattt	gccattcttc	ctatatcctg	2760
	gaatatatct	tgcatcctga	gtttataata	ataaataata	ttctaccttg	gaaaaaaaaa	2820
40	aaaaaa						2826
10							
	<210> 106						
45	<211> 1669						
43	<212> DNA						
	<213> Homo sapiens						
50	<400> 106						
	ctccctcage	: aaggacagca	gaggaccagc	taagagggag	agaagcaact	acagaccccc	60
	cctgaaaaca	accctcagac	gccacatccc	ctgacaagct	gccaggcagg	ttctcttcct	120
55	ctcacatact	gacccacggc	tccaccctct	ctcccctgga	aaggacacca	tgagcactga	180
	aagcatgato	cgggacgtgg	agctggccga	ggaggcgctc	cccaagaaga	caggggggcc	240
	ccagggctco	aggcggtgct	tgttcctcag	cctcttctcc	ttcctgatcg	tggcaggcgc	300
60	caccacgcto	ttctgcctgc	tgcactttgg	agtgatcggc	ccccagaggg	aagagttccc	360
	cagggaccto	tctctaatca	gccctctggc	ccaggcagtc	agatcatctt	ctcgaacccc	420

		gagtgacaag	cctgtagccc	atgttgtagc	aaacccccaa	gctgaggggc	agctccagtg	48
		gctgaaccgc	cgggccaatg	ccctcctggc	caatggcgtg	gagctgagag	ataaccagct	54
5		ggtggtgcca	tcagagggcc	tgtacctcat	ctactcccag	gtcctcttca	agggccaagg	60
		ctgcccctcc	acccatgtgc	tcctcaccca	caccatcagc	cgcatcgccg	tctcctacca	66
		gaccaaggtc	aacctcctct	ctgccatcaa	gagcccctgc	cagagggaga	ccccagaggg	72
10		ggctgaggcc	aagccctggt	atgagcccat	ctatctggga	ggggtcttcc	agctggagaa	78
		gggtgaccga	ctcagcgctg	agatcaatcg	gcccgactat	ctcgactttg	ccgagtctgg	84
		gcaggtctac	tttgggatca	ttgccctgtg	aggaggacga	acatccaacc	ttcccaaacg	90
15		cctcccctgc	cccaatccct	ttattacccc	ctccttcaga	caccctcaac	ctcttctggc	96
		tcaaaaagag	aattgggggc	ttagggtcgg	aacccaagct	tagaacttta	agcaacaaga	102
		ccaccacttc	gaaacctggg	attcaggaat	gtgtggcctg	cacagtgaag	tgctggcaac	108
20		cactaagaat	tcaaactggg	gcctccagaa	ctcactgggg	cctacagctt	tgatccctga	114
		catctggaat	ctggagacca	gggagccttt	ggttctggcc	agaatgctgc	aggacttgag	120
		aagacctcac	ctagaaattg	acacaagtgg	accttaggcc	ttcctctctc	cagatgtttc	126
25		cagacttcct	tgagacacgg	agcccagccc	tccccatgga	gccagctccc	tctatttatg	132
		tttgcacttg	tgattattta	ttatttattt	attatttatt	tatttacaga	tgaatgtatt	138
		tatttgggag	accggggtat	cctgggggac	ccaatgtagg	agctgccttg	gctcagacat	144
30		gttttccgtg	aaaacggagc	tgaacaatag	gctgttccca	tgtagccccc	tggcctctgt	150
		gccttctttt	gattatgttt	tttaaaatat	ttatctgatt	aagttgtcta	aacaatgctg	1560
		atttggtgac	caactgtcac	tcattgctga	gcctctgctc	cccaggggag	ttgtgtctgt	1626
35		aatcgcccta	ctattcagtg	gcgagaaata	aagtttgctt	agaaaagaa		1669
	<210> 107							
40	<211> 948							
10	<212> DNA							
	<213> Home	o sapiens						
45	<400> 107							
		attgtggtgc	cttgtagctg	tcccgggagc	cctcagcagc	agttggagct	ggtgcacagg	6
		aaggatgagg	aagaccaggc	tctgggggct	gctgtggatg	ctctttgtct	cagaactccg	12
50			aaattaactg					18
			tacacgctag					24
			atgcccaaga					30
55			gggaggatca					36
			cttcaagtgg					420
		• •	cacatgctgt			-		48
60		•	- -	-			ctaccaccac	54

					acccaagctc		600
	aactgccgat	gtctccactc	ctgactctga	aatcaacctt	acaaatgtga	cagatatcat	660
5	cagggttccg	gtgttcaaca	ttgtcattct	cctggctggt	ggattcctga	gtaagagcct	720
	ggtcttctct	gtcctgtttg	ctgtcacgct	gaggtcattt	gtaccctagg	cccacgaacc	780
	cacgagaatg	tcctctgact	tccagccaca	tccatctggc	agttgtgcca	<u>agggaggagg</u>	840
10	gaggaggtaa	aaggcaggga	gttaataaca	tgaattaaat	ctgtaatcac	cagctatttc	900
	taaagtcagc	gtctcacctt	a a aaaaaaa	22222223	222222		948
15							
20							
25							
30							
35							
40							
45							
45							
50							
30							
55							
60							