

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

 \bigcirc Número de publicación: $2\ 358\ 190$

(51) Int. Cl.:

A61B 17/12 (2006.01)

$\widehat{}$,
12	TRADUCCIÓN DE PATENTE EUROPEA
(2)	I NADUCCION DE FAI ENTE EUNOFEA

Т3

- 96 Número de solicitud europea: 03718227 .6
- 96 Fecha de presentación : **04.04.2003**
- 97 Número de publicación de la solicitud: 1489976 97 Fecha de publicación de la solicitud: 29.12.2004
- 54) Título: Dispositivo de compresión y sutura guiado por Doppler.
- (30) Prioridad: **04.04.2002 US 115422**

- 73 Titular/es: VASCULAR CONTROL SYSTEMS, Inc. 32236-F Paseo Adelanto San Juan Capistrano, California 92675, US
- (45) Fecha de publicación de la mención BOPI: 06.05.2011
- (72) Inventor/es: Burbank, Fred, H.; Jones, Michael, L.; Altieri, Greig, E. y Serra, R., J.
- (45) Fecha de la publicación del folleto de la patente: 06.05.2011
- 74 Agente: Isern Jara, Jorge

ES 2 358 190 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Dispositivo de compresión y sutura guiado por Doppler

Fundamento de la invención

Campo de la invención

5

30

35

La presente invención se refiere a los dispositivos, sistemas y procesos útiles para localizar y comprimir una arteria uterina de una paciente humana, y más en particular a los dispositivos y sistemas capaces de localizar, comprimir, ligar y/o controlar o caracterizar de una forma fácil el flujo sanguíneo a través de una arteria uterina.

Breve descripción del modelo afín

Se ha propuesto que la oclusión de las arterias uterinas de una paciente humana puede matar miomas, es decir, miomas uterinos, o fibromas uterinos debido a la relativa fragilidad de los miomas uterinos frente a la anoxia o hipoxia, y a la relativamente elevada resistencia de los tejidos uterinos a la anoxia o hipoxia. Ver Burbank, Fred, M.D., y cols, Uterine Artery Occlusion by embolization of Surgery for the treatment of fibroids: A unifying hypothesis-Transient Uterine Ischemia. The Journal of the American Association of Gynecologic Laparoscopists, November 2000, Vol.7, No 4 Supplement, pp. S3-S49. La patente americana nr. 6.254.601 de Fred Burbank y cols, titulada "Métodos para la oclusión de las arterias uterinas", describe numerosos dispositivos y métodos útiles para ocluir una arteria uterina mediante la penetración del tejido de la paciente con el fin de acceder a la arteria uterina. Los dispositivos y métodos descritos en Burbank '601 han sido útiles para ocluir una arteria uterina; ha habido algunas dificultades en lo que se refiere a su uso.

De forma específica, las orientaciones alineadas del dispositivo de imagen, por ejemplo, de un dispositivo de ultrasonidos Doppler, y el elemento que pasa a través del tejido del paciente para ocluir la arteria uterina puede ser difícil
de mantener, para algunos pacientes y para algunos procedimientos. Adicionalmente, los dispositivos y los métodos
descritos en la patente '601 no necesariamente se aprovechan de la estructura y simetría de la anatomía femenina
para facilitar la oclusión de una arteria uterina. Los dispositivos y los métodos de la patente '601 tampoco se han
adaptado bien para realizar estudios del flujo sanguíneo de una arteria uterina.

Los dispositivos corrientes disponibles para la identificación y caracterización de la arteria uterina incluyen sistemas de ultrasonidos de color Doppler bidimensionales con muestras vaginales, abdominales o intracavitarias. Las máquinas típicas son fabricadas y distribuidas por General Electric Medical Systems, Toshiba y Acuson, entre otras fuentes.

Estas máquinas requieren un técnico en ultrasonidos o en ecografías para utilizar la muestra vaginal y colocar la matriz sensor de la muestra en la vagina, cerca del cuello, mientras que mirando por la pantalla de la máquina de ultrasonidos, colocan la muestra y luego seleccionan un ajuste o parámetro apropiado para evaluar el flujo sanguíneo. Los dispositivos actualmente disponibles requieren pues un grado elevado de habilidad para identificar y luego colocar la entrada o puerta del Doppler aproximadamente, para obtener una señal óptima que caracterice el flujo sanguíneo. Durante este tiempo, la muestra debe mantenerse lo más estable posible en su posición para eliminar lecturas y señales erróneas. Tal como observarán los expertos en este campo, los dispositivos empleados hasta ahora difícilmente han tenido éxito.

Los médicos, incluyendo los ginecólogos, han ligado la arteria uterina por vía quirúrgica usando clips vasculares metálicos o material de sutura y todo ello se ha logrado mediante disección quirúrgica. Estos procedimientos quirúrgicos se han realizado mediante cirugía abdominal abierta y laparoscopia, y requieren una gran habilidad quirúrgica para acceder, identificar, diseccionar y ligar la arteria uterina. Este requisito de elevada habilidad ha limitado el uso de la ligadura quirúrgica de las arterias uterinas como una alternativa clínica para el tratamiento de los fibromas uterinos y de otros trastornos uterinos.

Los dispositivos de ultrasonidos se han propuesto para medir el flujo sanguíneo en un vaso sanguíneo. Ver, por ejemplo, las patentes americanas 5.411.028, 5.453.575, 5.535.747 y 5.967.987.

En un artículo publicado en 1964, Bateman informaba sobre la ligadura o la división de los vasos de la arteria uterina, conseguida a través de la cirugía intra-abdominal similar a la histerectomía, y su eficacia en el tratamiento de menorragias tanto con como sin miomectomía. Bateman, W., M.D., "Treatment of intractable menorrhagia by bilateral uterine vessel interruption", 89 Am.J.Obstet. Gynecol. 825-827 (Harcourt Health Sciences, July 15, 1964). Mientras Bateman se adjudicaba algún éxito, este procedimiento implica abrir la cavidad abdominal, con el conocido riesgo y sus inconvenientes.

Los dispositivos de ligadura ya se han propuesto con anterioridad. Estos dispositivos de ligadura se han utilizado en

procedimientos laparoscópicos, y lo típico es que requieran que la característica anatómica de interés sea diseccionada o visualizada antes de la ligadura de dicha característica. Otros dispositivos de ligadura requieren la penetración de un haz de tejidos encapsulando el vaso anatómico para efectuar la localización y la ligadura del vaso.

- La ligadura también se consigue utilizando quirúrgicamente clips vasculares metálicos. En esta técnica el inconveniente es que el procedimiento debe ser realizado por vía laparoscópica y requiere una gran habilidad quirúrgica para acceder, identificar, diseccionar y ligar las arterias uterinas, y además es permanente. Debido a todo ello, el proceso ha limitado el uso de la ligadura quirúrgica de las arterias uterinas como una alternativa clínica al tratamiento del fibroma uterino.
- Por lo tanto existe la necesidad de desarrollar un aparato y unos métodos que ayuden al médico a acceder y realizar la oclusión y/o a medir las características del flujo sanguíneo en una arteria uterina

Resumen de la invención

15

30

En la reivindicación 1 se ha definido un dispositivo útil para comprimir una arteria uterina de una paciente humana conforme a la invención.

Otros aspectos, características y ventajas de la presente invención resultarán obvias para los expertos en la materia a partir de una lectura de la siguiente descripción detallada de las configuraciones creadas a partir de la misma, todo ello junto a las figuras adjuntas.

Breve descripción de las figuras

La invención de la presente solicitud se describe ahora con más detalle haciendo referencia a las configuraciones preferidas del aparato, que se muestran a modo de ejemplo y con referencia a los dibujos adjuntos, en los cuales:

La figura 1 ilustra una visión transversal simplificada de un útero, del cuello y de la vagina de una mujer en un plano frontal.

La figura 2 ilustra una visión de un plano tomada en la línea 2-2 en la figura 1, a lo largo de un plano axial o transversal.

La figura 3 ilustra una visión de alzado lateral (sagital derecho) de un dispositivo conforme a la presente invención colocado junto al cuello de la paciente de manera que reproduce una invaginación de la pared vaginal de la paciente.

La figura 4 muestra una visión similar a la ilustrada en la figura 3, con una arteria uterina comprimida.

40 Descripción de las configuraciones preferidas

Respecto a las figuras mencionadas, los números de referencia similares designan elementos idénticos o correspondientes en las diversas figuras.

- Los inventores han descubierto que las arterias uterinas de las mujeres están normalmente a unos 3 cm de la pared vaginal o menos, en el fórnix o fondo de saco vaginal donde la arteria uterina se encuentra con el útero, aunque las arterias uterinas en algún paciente se encuentran espaciadas a unas distancias ligeramente diferentes (ver distancias X1 y X2 en la figura 1). Los inventores también han descubierto que la arteria uterina derecha está colocada normalmente entre aproximadamente la 1 y las 5 horarias (ver fig.2), y más frecuentemente entre aproximadamente las 2 y las 4 horarias; y que existe una simetría entre las arterias uterinas, es decir, que la arteria uterina izquierda se encuentra normalmente colocada entre las 7 y las 11 horarias, y más frecuentemente entre las 8 y las 10. Los inventores también han descubierto que el cuello se puede utilizar como una plataforma y un punto de referencia a partir
- del cual se puede localizar y acceder a una arteria uterina debido a la simetría axial del cuello y a su forma exterior generalmente cilíndrica o frustocónica. Ver también la patente americana 7 223 279 para comentarios adicionales sobre la anatomía del útero y la pared vaginal.

Las figuras 1 y 2 ilustran dos visiones distintas del útero, cuello, vagina y arterias uterinas de una paciente. Puede resultar útil comentar brevemente esta parte de la anatomía humana femenina ya que se hará referencia en esta descripción a algunas de estas estructuras anatómicas. Un útero U incluye una cavidad uterina UC. La vagina V tiene una pared vaginal VW que se extiende hacia arriba hacia el fondo de saco vaginal VF. El cuello C se sitúa (normalmente) centrado y se extiende desde el útero U hasta un punto, normalmente por debajo del fondo de saco vaginal VF, incluyendo un orificio externo del cuello uterino CO que conduce a la cavidad uterina UC. Las arterias uterinas UA1 y UA2 conducen al útero U desde la arteria ilíaca inferior (no ilustrado). En estas descripciones siguientes, las orientaciones de las arterias uterinas UA1 y UA2 se describirán como la esfera de un reloj, es decir, las posi-

ciones de las arterias uterinas se identificarán como correspondiendo a tiempos en particular en un reloj. En este contexto, las 12 en punto es la dirección anterior desde el centro del orificio externo del cuello uterino CO, las 6 en punto es la dirección posterior, las 3 en punto equivale lateralmente a la derecha (el lado izquierdo del paciente, ver fig.2) y las 9 en punto corresponde lateralmente a la izquierda (el lado derecho del paciente, ver fig. 2). Tal como será obvio para los expertos en este campo, el uso de la esfera del reloj como un marcador de referencia es meramente para simplificar las comentarios y se pueden utilizar otros signos de referencia, como los grados o radianes de una línea de referencia conocida o que se pueda determinar.

Los dispositivos conforme a la presente invención tienen un tamaño tal que se pueden introducir a través de la vagina de una paciente, a lo largo de un lateral por fuera del cuello, y hacia la pared vaginal en el fondo del saco vaginal.

5

15

35

60

La manipulación de un compresor conforme a la presente invención comprime la arteria uterina, al menos parcialmente, y opcionalmente de forma completa, parando el flujo sanguíneo a través de la arteria. Tal como se ha descrito en la patente americana US 7 223 279, la cesación del flujo sanguíneo a través de la arteria uterina puede tener efectos ventajosos para el paciente, incluyendo el tratamiento de fibromas uterinos al limitar la sangre que alimenta el fibroma en el útero.

La figura 3 muestra una compresión ejemplar y el dispositivo de ligadura 100 conforme a la presente invención. Un aspecto de la presente invención incluye que el dispositivo 100 pueda opcional y preferiblemente incluir cristales

Doppler o chips para permitir localizar una arteria o arterias uterinas o bien otros vasos sanguíneos, y controlar el flujo sanguíneo a través de los vasos.

Volviendo ahora a la figura 3, el dispositivo 100 incluye una maneta, asa o mango 102 que incluye un primer y un segundo brazo 104, 106 y una abrazadera distal y/o una pieza de ligadura 108. Los dos brazos 104, 106 están unidos juntos en un perno o articulación o pivote 110, sobre el cual se pueden mover los brazos. Adheridos o formando parte de al menos una porción distal 108 hay un par de canales o conductos huecos guía, tipo tubo, 112, 114, que proporcionan un recorrido guiado para una guía de sutura 132 con una longitud de sutura o de material de ligadura 138 que se tiene que pasar alrededor de un vaso sanguíneo de interés, tal como se ha descrito con gran detalle a continuación. Preferiblemente, los conductos guía 112, 114 se extienden proximalmente de manera que son más fácilmente accesibles desde el extremo proximal del dispositivo 100.

El dispositivo 100 se muestra en la figura 3 en una posición hacia un lado del cuello C (ver figs. 1,2) después de haberlo introducido hacia arriba para atravesar la pared vaginal VW en el fondo de saco vaginal VF. La arteria uterina UA en ese lado del útero se puede ver en una posición entre las mordazas o garras abiertas del dispositivo 100, y antes de ser comprimida o ligada.

La porción distal 108 del dispositivo 100, conforme a las configuraciones preferidas de la presente invención incluye una pluralidad de chips o cristales Doppler 116 montados o bien pegados o adheridos de alguna manera a los extremos distales de la porción distal. Tal como se puede ver en la figura 3 gracias a la flecha, la dirección de visión del chip Doppler 116 es lateralmente cruzando el propio dispositivo hacia fuera desde la cara final 144 y hacia la cara final 146. Además opcionalmente, el dispositivo 100 puede incluir una pluralidad de chips Doppler, montados en una cara final distal 144, un chip 116, 118 en cada una de las caras 144, 146, una pluralidad de chips montados en una cara final, una pluralidad de chips montados en ambas caras finales y/o combinaciones de los mismos.

Las direcciones de visión del chip o de los chips incorporados al dispositivo 100 se elegirán de manera que tal como se muestra en la figura 3, cuando la pared vaginal sea invaginada por las tenazas o garras abiertas del dispositivo 100, el chip Doppler puede enviar señales Doppler y recibir señales Doppler desde la arteria uterina UA. Si se selecciona la dirección de visión del chip Doppler de esta manera, el chip Doppler se puede utilizar para determinar la posición de la arteria uterina UA con respecto a las caras terminales 144, 146 del dispositivo 100. Más específicamente, los datos del Doppler generados por él o los chips Doppler se pueden usar para determinar cuando la pared vaginal ha sido invaginada suficientemente de manera que la arteria uterina UA se encuentra entre las caras finales del dispositivo 100. Además, los datos del Doppler se pueden revisar para establecer que flujo sanguíneo básico está circulando a través de la arteria para futuras referencias. Este conocimiento de la posición de un flujo sanguíneo a través de la arteria uterina puede ser útil para que el médico decida si debe comprimir o ligar la arteria o bien meramente establecer un flujo sanguíneo básico a través de la arteria para futura referencia.

Volviendo a la figura 3, cada uno de los conductos guía 112, 114 incluye una luz 120, 122, que se extiende entre las aberturas o los puertos distal y proximal abiertos, 126, 128, 124, 130. Una guía de sutura 132 tendrá un tamaño determinado para que se pueda introducir por dentro de una o dos luces 120, 122 y tendrá un extremo distal 134 y un extremo proximal 136 al cual se unirá un trozo de sutura o de material de ligadura 138. La guía de sutura es de un tamaño y está formada por un material de manera que pueda ser empujada a través de uno de los conductos guía 112, fuera de la abertura distal 126, penetrando en la pared vaginal y atravesando los tejidos por detrás de la pared vaginal y por detrás de la arteria uterina UA, de nuevo a través de la pared vaginal, en el puerto distal 130 del conducto guía 112, y a través del otro conducto guía 114 (ver fig. 4). Puesto que el material 138 está adherido al

extremo proximal 136 de la guía 132, el material se estira por este mismo tramo. Por lo tanto un aspecto de la invención es que la longitud de la guía de sutura se elije de manera que pueda atravesar los dos conductos guía, tal como se ha descrito antes, y el extremo distal 134 pueda ser recuperado por la abertura proximal 124, estando el extremo proximal 136 de la guía de sutura todavía a la vista proximal a la abertura 128. A modo de ejemplo y no de limitación, una guía adecuada 132 está formada por alambre de acero inoxidable de 0,0020 pulgadas (diámetro exterior) y tiene una longitud de unas 20 pulgadas. Otros materiales adecuados pueden ser el nitinol (NiTi), y la forma de la sección transversal de la guía puede ser cualquiera de las conocidas por los expertos en la materia, incluyendo la forma rectangular, cuadrada y redonda. Opcionalmente, las formas de las secciones transversales de la guía de sutura 132 y de la luz 120, 122 de los conductos guía 112, 114 se puede seleccionar todas juntas para facilitar el paso de la guía de sutura a través de la luz, mientras se reduce al mínimo el espacio muerto entre la guía de sutura y el conducto guía. Además, el material del material de ligadura 138 puede ser reabsorbible, por lo que no será necesario retirarlo del paciente, o bien no reabsorbible, para lo cual se precisa la retirada eventual del material del paciente.

5

10

- 15 Las mordazas 140, 142 del dispositivo tienen preferiblemente una forma C en al menos una parte de su longitud. La curva de la forma C crea una zona o volumen entre las dos mordazas 140, 142, en la cual el tejido de la pared vaginal VW presenta una compresión mínima o nula cuando las mordazas están cerradas sobre una arteria uterina. La reducción o bien la falta de compresión de estos tejidos más proximales puede ayudar a mantener la posición de la arteria uterina UA respecto a las caras finales 144, 146. Tal como se apreciará si los tejidos proximales de la arteria 20 uterina UA están bajo presión, esto puede hacer que los tejidos y la arteria uterina se desplacen hacia arriba (distalmente) lejos del dispositivo 100, y fuera del espacio entre las caras finales 144, 146. Por lo tanto, la disposición opcional en el dispositivo 100 de una zona o volumen entre las mordazas 140, 142, en la cual los tejidos atrapados están expuestos a menos presión de las mordazas (ver fig. 4) es otro aspecto de la presente invención. Conforme a una configuración de la presente invención, la distancia entre el pivote 110 y las aberturas distales 126, 130 es de 25 cómo mínimo 2 pulgadas, y preferiblemente unas 3 pulgadas, para conseguir que este volumen se acomode a los tejidos proximales. Como apreciarán los expertos en la materia, se pueden elegir dimensiones más grandes o más pequeñas de forma alternativa, y solamente una de las mordazas puede tener una forma C o similar.
- Los chips Doppler 116, 118 están en contacto por medio de una señal con un procesador de señales Doppler y/o un dispositivo de visualización 152 a través de las guías 148, 150. Puesto que los expertos conocen bien este tipo de dispositivos 152 a continuación se incluyen más detalles.
- Tal como se ha comentado antes, los dispositivos de la presente invención incluyen cristales de ultrasonidos Doppler orientados de manera que la dirección de visión de los cristales es lateral, tal como sugieren las flechas en la figura 3. Mientras que una pluralidad de cristales puede ser una ventaja para tener más datos acerca del flujo sanguíneo a través de la arteria uterina de interés, más datos requieren una manipulación adicional, lo que puede incrementar la complejidad y el coste del dispositivo. En algunos casos puede ser mejor tener un único cristal sobre cada cara final distal para reducir la complejidad de los datos Doppler que deben ser interpretados.
- 40 Los cristales Doppler 116, 188 se encuentran colocados preferiblemente en las caras finales distales 144, 146 del dispositivo de manera que cualquier dato derivado de las señales recibidas por los cristales Doppler se puede correlacionar más fácilmente con la distancia de la arteria uterina desde el extremo distal, y puede verificar que la arteria uterina está entre las dos caras terminales. A modo de ejemplo y no de limitación, el chip o los chips Doppler se pueden colocar a aproximadamente 1 cm de la abertura del conducto sobre la misma mordaza 140, 142 que el cris-45 tal Doppler. Los cristales Doppler se pueden integrar en los dispositivos de la presente invención, por ejemplo, moldeados en el dispositivo propiamente, o bien de un modo alternativo se pueden acoplar al dispositivo pero a modo de quita y pon o sea desmontable. Como ejemplo y no como limitación los cristales Doppler 116, 118 pueden estar en una muestra Doppler correspondiente que es recibida por un soporte determinado (ver por ejemplo, un agujero o unos cortes en una o ambas mordazas 140, 142) que se crea en las porciones distales del dispositivo. Mientras que 50 muchas muestras Doppler disponibles en el comercio son adecuadas en la presente invención, una muestra Doppler de 8 MHz de Vascular Technology Inc.(Lowell, MA) o bien una muestra Doppler de 8 MHz de Koven (Koven, St. Louis, MO) se pueden utilizar como una muestra Doppler 214i, 216i.
- Los expertos en la materia reconocerán que la frecuencia del cristal Doppler modificará el ángulo de visión del cristal. Un aspecto de la presente invención es el uso de los cristales Doppler que permitan que los datos Doppler sean recogidos a una distancia de unos 3 cm, de manera que cuando el compresor sobre el cual están montados los cristales Doppler se empuja contra la pared vaginal en el fondo de saco vaginal VF, los cristales Doppler reciben las señales procedentes de la arteria uterina de interés. Por consiguiente, mientras que muchos cristales Doppler son adecuados en la presente invención, los que trabajan a 8 MHz son los más apropiados.

Las señales de los cristales Doppler o de las muestras se transmiten a un procesador de señales adecuado 152 (ver fig. 3), que visualiza los datos procedentes de las señales. De acuerdo con otros aspectos de la presente invención, los datos de cada uno de los cristales Doppler son examinados manual o automáticamente para determinar si la forma de la onda recibida por el cristal es representativa del flujo sanguíneo a través de una arteria uterina UA1.

Puesto que los cristales Doppler se seleccionan para tener unos ángulos de visión relativamente estrechos, el proceso de examinar las señales recibidas por cada cristal revelará que cristal apunta más directamente a la arteria uterina.

- Un dispositivo conforme a la presente invención como el dispositivo 100, se colocará dentro de la vagina de la paciente, con las mordazas 140, 142, situadas hacia un lateral del cuello C en el fondo de saco vaginal VF. Las mordazas 140, 142 están abiertas, y el dispositivo 100 está avanzado hacia arriba (hacia la arteria uterina por detrás de la pared vaginal). Los extremos distales de cada una de las mordazas, generalmente en la zona de las aberturas 126, 130, y de las caras terminales 144, 146, empujarán y penetrarán en la pared vaginal a ambos lados opuestos de la arteria uterina. La presencia de la arteria uterina generalmente entre las caras finales 144, 146 se puede confirmar mediante los datos Doppler enviados y recibidos por los chips 116, 118; si la arteria uterina está presente, se observará una señal en el Doppler que indica la presencia de una arteria mientras que la ausencia de la arteria uterina será visualizada por la falta de datos del flujo sanguíneo.
- En el caso de que la arteria uterina no esté entre las caras terminales 144, 146, el dispositivo 100 puede ser recolocado y/o se produce una nueva invaginación de la pared vaginal. Cuando los datos Doppler indican que la arteria uterina UA está entre las caras finales 144, 146, el médico tiene varias opciones. En primer lugar, el médico puede verificar que la arteria uterina UA se encuentra directamente entre las caras terminales 144, 146, desplazando el dispositivo 100 ligeramente en sentido distal y ligeramente en sentido proximal. Por ejemplo, si los datos Doppler indican una señal Doppler más fuerte cuando el dispositivo 100 se mueve distalmente (hacia arriba), entonces la arteria uterina está situada en una dirección más distal que la localización anterior del dispositivo; del mismo modo, si el movimiento distal del dispositivo produce una señal Doppler más débil, entonces la arteria uterina está situada en un sentido más proximal. Utilizando esta metodología, el médico puede determinar de forma fácil y rápida que la arteria uterina está situada básicamente entre las caras terminales 144, 146 y está situada en la dirección proximal de las aberturas distales del conducto quía 126, 130.
- Con el dispositivo 100, y más en particular con las mordazas 140, 142, colocadas con la arteria uterina UA entre las caras terminales o finales 144, 146, el médico puede elegir entre comprimir la arteria uterina cerrando las mordazas del dispositivo, empujar la guía de sutura 132 por detrás de la arteria uterina para pasar el material 138 alrededor de la arteria uterina, o bien ambas cosas (ver fig.4). Mientras que la secuencia exacta no es crítica, incluye una configuración preferida de la presente invención: la arteria uterina se comprime por primera vez manipulando las asas 104, 106 para comprimir la arteria uterina entre las caras terminales 144, 146; la guía de sutura 132 se hace pasar a través de la pared vaginal, por detrás de la arteria uterina, y de nuevo por fuera a través de la pared vaginal, estirando el material 138 por detrás de la arteria uterina y fuera de la abertura proximal 124; el material de sutura se separa de la guía y forma una ligadura para ligar la arteria uterina en un estado comprimido y cerrado; y las mordazas se abren y el dispositivo se retira, dejando la ligadura in situ cerrando la arteria uterina. Durante cualquier parte de un método, los datos Doppler de los chips Doppler se pueden utilizar para determinar si el flujo sanguíneo se ha interrumpido en la arteria uterina uterina.
- Una vez se ha observado que el flujo sanguíneo a través de la arteria uterina se ha interrumpido durante un periodo de tiempo eficaz desde el punto de vista terapéutico, el médico puede liberar las mordazas, retirar la ligadura o bien hacer ambas cosas. En el contexto del dispositivo 100, el médico abre las mordazas, y saca el dispositivo 100 por un lado del cuello del paciente. Tal como aquí se ha utilizado, el término tiempo eficaz terapéuticamente y sus equivalentes se utilizan como en la patente americana 6550482 y en la patente americana 7223279. Como la mayoría de pacientes tienen dos arterias uterinas en las cuales un médico puede querer realizar la hemostasis, el(los) método(s) descritos con anterioridad pueden actuar en la otra arteria uterina, o bien al mismo tiempo, o después de que la arteria uterina se haya comprimido.
- Conforme a un aspecto preferido de la presente invención, la ligadura se utiliza como el mecanismo por el cual la arteria o arterias uterinas se comprimen durante la mayor parte o bien todo el tiempo eficaz desde el punto de vista terapéutico, porque el volumen de tejido comprimido por el material relativamente fino 138 es muy inferior al comprimido por las mordazas 140, 142. Con menos tejido experimentando la presión compresiva y la fuerza del material 138, existe menos preocupación por la necrosis del tejido inducida por la presión.
- Las caras terminales o finales 144, 146 se pueden formar opcionalmente en o como parte de una almohadilla desmontable o integrada (no ilustrada) en los extremos distales de las mordazas 140, 142. Además opcionalmente, las almohadillas se configuran de un material que aporta una fricción o un agarre adicional entre la pared vaginal VW y el dispositivo 100. Las variaciones de las texturas pueden incluir resaltos o protuberancias plásticas, espuma, un acolchado tipo textil, dientes plásticos o metálicos que sobresalen de la cara de la mordaza, o combinaciones de los mismos para lograr más agarre o mordedura al tejido.

La presente invención también se refiere a los dispositivos, sistemas y procesos que pueden ser útiles en el tratamiento de la hemorragia uterina disfuncional (HUD). El experto se dará cuenta fácilmente de que la DUB puede ser un estado frustrante y alterado ya que la verdadera causa de la hemorragia es, por definición, desconocida. En otras

palabras, la HUD es un diagnóstico de exclusión; si una mujer tiene menorragia y ninguna anormalidad orgánica, estamos ante un caso de HUD. Las mujeres con HUD están tan débiles como las mujeres con fibromas uterinos y menorragia; pueden verse limitadas socialmente durante periodos de tiempo de elevada pérdida de sangre menstrual y están anémicas. Otros aspectos de la presente invención hacen referencia al tratamiento de una paciente a la que se ha diagnosticado HUD, comprimiendo una o ambas arterias uterinas, en serie o al mismo tiempo, de manera que el suministro sanguíneo uterino se vea reducido o bien eliminado por completo. Sin la sangre que suministran las arterias uterinas, el útero interrumpe la hemorragia, lo que puede facilitar que el médico haga un mejor diagnóstico del estado de la paciente. Sin limitarnos a una teoría en particular, aquí se postula o plantea que al menos algunos casos de HUD pueden ser tratados de forma eficaz por la compresión y/o ligadura de la arteria uterina, tal como se ha descrito aquí, es decir, que la HUD no volverá a producirse al restablecer el suministro de sangre al útero a través de las arterias uterinas. Para decirlo más coloquialmente, el aparato de la presente invención se puede utilizar para reajustar el útero, pasando por un periodo de anoxia o hipoxia inducida. El artículo de Bateman, mencionado brevemente, respalda totalmente esta hipótesis.

5

10

35

50

55

60

15 La presente invención incluye también como un aspecto, el tratamiento de la hemorragia asociado a la cesárea. El parto por cesárea da lugar a al menos dos fuentes de hemorragia post-parto: la pérdida de sangre en el lugar de incisión por la cesárea; y la pérdida de sangre en el lugar de la separación de la placenta. En general, mecanismos naturales controlan la pérdida de sangre en el lugar de separación de la placenta, mientras que la pérdida de sangre en el lugar de la incisión por cesárea se controla suturando los dos márgenes de la incisión firmemente. La presión 20 de las suturas hace que el flujo de sangre sea más lento en el lugar de la incisión y luego se forma el coágulo; sin embargo, la pérdida de sangre tiene lugar hasta que se consigue una sutura suficiente. Puesto que suturar el lugar de incisión en una cesárea solamente se realiza en condiciones urgentes, minimizar la pérdida de sangre suturando una parte de la incisión es algo que se hace como si el útero estuviera compuesto de una capa de tejido, en lugar de tres. Como consecuencia de ello, el resultado de este método anterior es subóptimo a nivel del endometrio, miome-25 trio y serosa. Por consiguiente, otro aspecto es el uso de los dispositivos de acuerdo con la presente invención en lugar de o en conjunto con estos métodos de sutura anteriores para tratar la hemorragia de parto por cesárea. Más específicamente, los dispositivos de la presente invención se utilizan y/o implementan para ralentizar o interrumpir el flujo sanguíneo al útero a través de las arterias uterinas justo después del parto. Posteriormente, la reparación de la incisión por cesárea se puede realizar de manera que optimice el cierre quirúrgico, sin preocupaciones acerca del 30 control de la pérdida de sangre en el momento del cierre.

La presente invención incluye también como un aspecto el tratamiento de la hemorragia asociada a la Hemorragia Post Parto (HPP). La HPP se define en la literatura médica como la pérdida aproximada de más de 500 ml de sangre después del parto. Se puede producir por una gran diversidad de razones y tiene lugar después de al menos un 5% de los partos. Lo más frecuente es que ocurra debido a que el útero deja de contraer tras la separación de la placenta (atonía uterina). Sin las contracciones uterinas adecuadas post parto, la sangre no se para lo suficiente en las arterias úteroplacentarias para coagular. Sin la formación del coágulo en las arterias úteroplacentarias, persiste la hemorragia de las arterias úteroplacentarias.

Existen muchos tratamientos para la hemorragia secundaria a la atonía uterina, que incluyen el masaje del útero a través de la pared abdominal, la administración de fármacos que estimulen la contracción del miometrio (por ejemplo, oxitocina, metilergonovina y prostaglandinas), la envoltura de la cavidad uterina con materiales textiles, taponamiento con globo de la cavidad uterina, ligadura quirúrgica bilateral de la arteria uterina, arterias del ovario o bien arteria ilíaca interna, embolización bilateral de la arteria uterina, sutura a través del útero (por ejemplo, técnica de B-Lynch Brace) e histerectomía. Muchos de los tratamientos existentes son ineficaces y otros son extremadamente complejos, invasivos y lentos de poner en marcha.

Conforme a los aspectos de la presente invención, cuando se reconoce que la hemorragia no se ha interrumpido en condiciones normales como debería haberlo hecho después del parto, se pueden emplear los dispositivos y/o los métodos conforme a la presente invención tal como se ha descrito aquí, con el objetivo de ralentizar o parar la HPP.

La presente invención abarca aquellos dispositivos que incluyen combinaciones de todas las características y etapas descritas con anterioridad. A modo de ejemplo y no de tipo limitativo, los chips Doppler descritos se podrán incorporar a cualquiera de los dispositivos descritos, montándose en los extremos distales del dispositivo sin que ello tenga aparente dificultad para el experto en la materia. Además, cualquiera de los dispositivos descritos que resultan útiles para ocluir una única arteria uterina, se pueden incorporar a los dispositivos bilaterales, es decir, dos de los dispositivos unilaterales se pueden unir en un único dispositivo bilateral, de manera que cada uno de los dos dispositivos unilaterales colocado en el dispositivo bilateral pueda acceder y/o localizar una única arteria uterina, y las etapas de un método para acceder y/o localizar una única arteria uterina se puedan realizar bilateralmente, en serie o bien simultáneamente.

Los dispositivos conforme a la presente invención pueden estar formados de numerosos materiales, tal como bien saben los expertos en la materia. A modo de ejemplo y no de limitación, los dispositivos pueden constar de materiales como: acero inoxidable quirúrgico, nitinol (NiTi), titanio, o bien otros metales biocompatibles y preferiblemente

ES 2 358 190 T3

esterilizables; cualquiera de una serie de materiales termoplásticos y termoestables que sean suficientemente biocompatibles y esterilizables; y combinaciones de los mismos.

Mientras que la invención se ha descrito con todo detalle en lo que se refiere a las configuraciones preferidas, resulta obvio para el experto que se pueden efectuar cambios y emplear material equivalente sin apartarse del objetivo de la invención.

10

REIVINDICACIONES

- 1. Dispositivo de oclusión intravaginal para ocluir una arteria uterina de una paciente humana que comprende:
- un primer elemento o pieza que tiene una primera mordaza (140) con un extremo distal, una cara o superficie (146) en el extremo distal, y un extremo proximal articulado y que tiene un asa o mango (104) que se extiende en dirección proximal al extremo proximal articulado;
- un segundo elemento o pieza que consta de una segunda mordaza (142) con un extremo distal, una superficie o cara (144) en el extremo distal, y un extremo proximal articulado, y que tiene un asa o mango que se
 extiende en sentido proximal hacia el extremo proximal articulado; la segunda mordaza tiene una forma que
 puede crear un área de volumen entre la primera mordaza y la segunda mordaza en la cual puede encontrase tejido de una pared vaginal; y
- un primer cristal Doppler (118) que está adherido a la cara extrema distal de la primera mordaza y un segundo cristal Doppler adherido a la cara final distal de la segunda mordaza; el primer y el segundo cristal Doppler tienen ambos una dirección de visión hacia el extremo distal de la otra mordaza cuando se encuentran en una configuración cerrada.
- 2. Dispositivo conforme a la reivindicación 1, donde al menos uno de los cristales Doppler esta adherido de forma desmontable a la primera o segunda cara o superficie extrema distal.
 - **3.** Dispositivo conforme a la reivindicación 1, donde al menos uno de los cristales Doppler se ha configurado de forma íntegra en la primera o segunda cara o superficie extrema distal.
 - **4.** Dispositivo conforme a la reivindicación 1, donde respectivamente varios cristales Doppler están adheridos a la primera y segunda cara o superficie extrema distal.
 - **5.** Dispositivo conforme a la reivindicación 1, que además comprende:
 - un primer conducto o canal guía en la primera mordaza que tiene una abertura proximal, una abertura distal y una luz que se extiende entre las aberturas proximal y distal; y
- un segundo conducto o canal guía en la segunda mordaza que tiene una abertura proximal, una abertura distal, y una luz que se extiende entre las aberturas proximal y distal.
 - **6.** Dispositivo conforme a la reivindicación 5, donde la abertura distal del primer conducto o canal guía y la abertura distal del segundo conducto guía están orientadas una hacia la otra cuando las mordazas están en una configuración cerrada.
 - 7. Dispositivo conforme a la reivindicación 5, que además comprende:
 - una guía de sutura de un tamaño y una forma para poder pasar a través de la primera luz del canal o conducto guía y de la segunda luz del conducto guía; y una longitud de material de ligadura adherida a la guía de sutura.
 - **8.** Dispositivo conforme a la reivindicación 1, donde tanto la primera como la segunda mordaza tienen una forma para crear una zona de volumen entre la primera y la segunda mordaza, en la cual se puede hallar teiido de una pared vaginal.
 - 9. Dispositivo conforme a la reivindicación 1, donde la segunda mordaza tiene forma de C.
 - Dispositivo conforme a la reivindicación 8, donde tanto la primera como la segunda mordaza tienen forma de C.

55

25

30

40

45

50

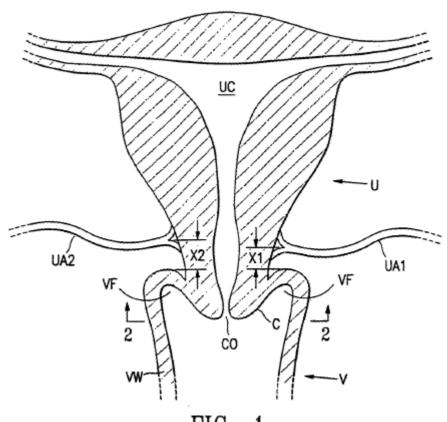
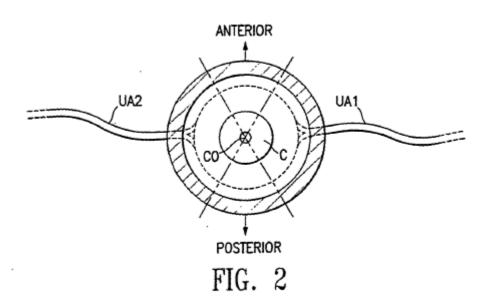
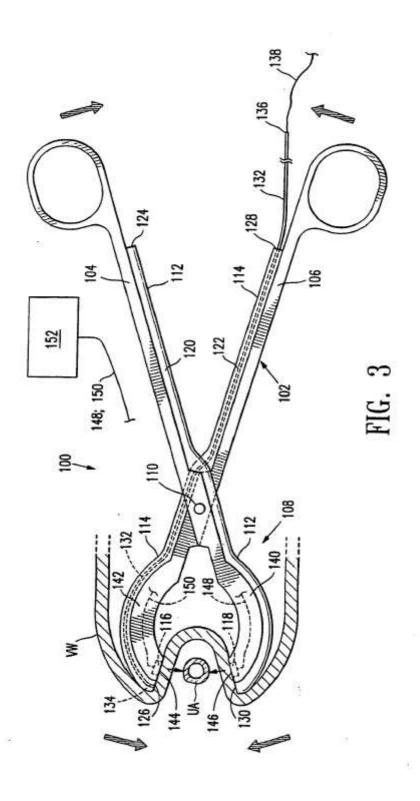
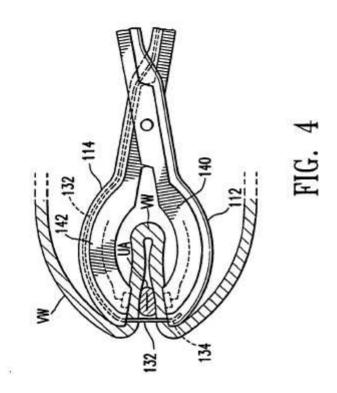





FIG. 1

