

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de publicación: $2\ 358\ 576$

(51) Int. Cl.:

G01N 33/86 (2006.01)

	`	,
(12	2)	TRADUCCIÓN DE PATENTE EUROPEA
<u> </u>	_	THE DOCUMENT OF THE PORT OF THE

Т3

- 96 Número de solicitud europea: 00947934 .6
- 96 Fecha de presentación : **05.07.2000**
- 97 Número de publicación de la solicitud: 1190260 97 Fecha de publicación de la solicitud: 27.03.2002
- 54 Título: Detección de la actividad del factor de von-Willebrand (vWF).
- (30) Prioridad: **05.07.1999 EP 99112967**

(73) Titular/es:

K.U. LEUVEN RESEARCH & DEVELOPMENT Groot Begijnhof, Benedenstraat 59 3000 Leuven, BE

- (45) Fecha de publicación de la mención BOPI: 11.05.2011
- (2) Inventor/es: Cauwenberghs, Nancy; Van Hoorelbeke, Karen y Deckmyn, Hans
- (45) Fecha de la publicación del folleto de la patente: 11.05.2011
- (74) Agente: Elzaburu Márquez, Alberto

ES 2 358 576 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Se describe un método para detectar la actividad del factor de von-Willebrand (vWF) que comprende analizar una muestra en presencia de una forma soluble o una parte de la glicoproteína lb (α) (GPIb (α)) y ristocetina, o una sustancia funcionalmente equivalente. Además, la invención se refiere al uso de la forma soluble anteriormente mencionada o parte de la glicoproteína lb (α), de la ristocetina o una sustancia equivalente funcional, de anticuerpo(s) anti-GPIB (α) que reacciona(n) específicamente y/o parejas de unión específicas, como anticuerpo(s) anti-vWF (α) que reacciona(n) específicamente para llevar a cabo el método de la invención. Además, la presente invención se refiere a kits para llevar a cabo el método de la invención.

10

15

20

25

30

35

40

45

50

Varios documentos son citados por todo el texto de esta memoria descriptiva. Cada uno de los documentos citados en este documento (incluyendo cualesquiera memorias descriptivas de fabricantes, instrucciones, etc.) es, por medio de ésta, incorporado como referencia; sin embargo, no se admite que cualquier documento citado sea en efecto la técnica anterior de la presente invención.

El factor de Von Willebrand (vWF) es una glicoproteína grande multimérica que está presente en el plasma, subendotelio y α-gránulos de plaquetas. El vWF tiene dos funciones distintas en la hemostasia primaria: promueve la adhesión de plaquetas en sitios con daños vasculares y protege de que el factor de coagulación VIII (FVIII) sea inactivado por la proteína C activada (para una revisión, véase: Sadler, *Annu Rev Biochem* 1998; **67**: 395-424).

La enfermedad de Von Willebrand (vWD) genera anormalidades cuantitativas y cualitativas en el vWF. Es el desorden de sangrado heredado más común con un predominio del 0.1 %-1 % (Rodeghiero, Blood 1987; 69: 454-9). Se distinguen tres categorías principales del vWD (Sadler, Thromb Haemost 1994; 71: 520-5). Los tipos 1 y 3 se refieren a una deficiencia cuantitativa media y severa del vWF, respectivamente, mientras que el tipo 2 se refiere a anormalidades cualitativas. El tipo cualitativo 2 del vWD está dividido además en cuatro subtipos (A, B, M y N). En los individuos del tipo 2A, hay una ausencia de multímeros de peso molecular alto (HMW). Las variantes del tipo 2B muestran una mayor afinidad para la glicoproteína (GP) Ib en plaquetas que causan una pérdida de multímeros de HMW en el plasma. El VWD tipo 2M incluye variantes en las cuales la adhesión de plaquetas está dificultada pero la distribución del multímero vWF es normal. Las variantes del tipo 2N muestran una afinidad marcadamente menor para el factor VIII (FVIII). Como se dice, entre otras cosas, en Vevradier, Int. J. Clin. Lab. Res. 28 (1998), 201-210, una menor proporción de la actividad del cofactor de ristocetina del factor de von Willebrand / antígeno del factor de von Willebrand está a favor de los tres subtipos (2A, 2M, y 2B) definidos por una interacción normal entre el factor de von Willebrand y la glicoproteína lb de plaquetas, mientras que una menor proporción del factor VIII / antígeno del factor de von Willebrand sugiere el subtipo 2N, definido por una unión defectuosa del factor de von Willebrand al factor VIII. En la mayor parte de los laboratorios, las pruebas de rastreo básicas usadas a fin de evaluar a un nuevo paciente que se sospecha que padece vWD son: el Tiempo de Sangrado (TS), nivel de antígeno de vWF (vWF:Ag) y aglutinación de plaquetas inducida por ristocetina de vWF, denominada actividad del cofactor de ristocetina (vWF:RiCof). Otros estudios, tales como la determinación de vWF:RiCoF a varias concentraciones de ristocetina, la aglutinación de plaguetas inducida por ristocetina con plasma y plaquetas del paciente, análisis de gel del multímero y análisis de ADN permiten una clasificación más del vWD requerido para una terapia directa y apropiada (Ewenstein, Annu Rev Med 1997; 48: 525-42; Veyradier, loc. cit.). Dichos ensayos, sin embargo, pueden ser realizados sólo en laboratorios muy especializados. También se mostró que la determinación de la actividad de unión del colágeno de vWF (vWF:CBA) era un instrumento valioso en la diagnosis de pacientes con vWD (Brown, Thromb Res 1986; 43: 303-11, Favaloro, Blood Coagul Fibrinolysis 1991; 2: 285-91).

Debido a las limitaciones de cada ensayo y debido a una amplia diversidad de variedades intraindividuales, ninguna prueba simple es lo suficientemente eficaz para permitir la detección de todas las variantes de vWD. La medida del vWF:Ag es la que con más frecuencia se realiza como ensayo ELISA (Ingerslev, *Scand J Clin LabInvest* 1987; **47**: 143-9). Este ensayo proporciona buena información sobre el nivel absoluto del vWF presente pero no da ninguna información sobre la calidad del vWF que puede ser obtenida. Por lo tanto, el ensayo de vWF:Ag ayudará a detectar todos los pacientes con vWD tipo 3, la mayor parte del tipo 1 y sólo alguno del tipo 2, ya que muchos pacientes con vWD del tipo 2 proporcionará resultados de vWF:Ag que están dentro del intervalo de referencia normal.

10

15

20

25

30

35

40

45

50

Los dos ensayos de vWF no detectan la concentración de vWF (vWF:Aq) sólo, pero se correlacionan con sus propiedades funcionales: el ensayo del cofactor de vWF:ristocetina y el ensayo de unión de vWF:colágeno. Ya que los rasgos cualitativos / las propiedades funcionales del vWF son medidos con estos ensayos la terminología "actividad de vWF" se usa para determinar el vWF por estos procedimientos. En lo siguiente, la expresión "actividad de vWF" se usa para describir la interacción dependiente de ristocetina entre su GPIb (α) (o un fragmento) y vWF. La ristocetina es un antibiótico que promueve la interacción entre el complejo GP lb/V/IX de plaqueta y vWF (Howard, Thromb Diath Haemorrh 1971; 26: 362-9; Hoylaerts, Biochem J 1995; 306: 453-63). Esta actividad del co-factor de ristocetina es observada principalmente en presencia de formas de HMW de vWF (Fischer, Thromb Res 1996; **84**:55-66; Federici, Br J Haematol 1989; **73**:93-9). La región de GPIb implicada en esta interacción ha sido identificada respecto a la parte globular de 42 kDa del amino terminal de GPIba (Vincente, J. Biol Chem 1988, 263:18473-18479), La actividad de vWF:RiCoF se determina usando un procedimiento de aglutinación de plaquetas (Macfarlane, Thromb Diath Haemorrh 1975; 34:306-8). Las diluciones de plasma pobre en plaquetas del paciente son mezcladas con las plaquetas fijadas de para-formaldehido lavado en presencia de una concentración fija de ristocetina y se mide la capacidad del plasma de paciente de inducir la aglutinación de plaqueta. El ensayo de vWF:RiCof permite la identificación de pacientes tipo 2A y 2B cuando son medidos bajos niveles de vWF:RiCof con relación a vWF:Aq. Este ensayo, sin embargo, tiene una variabilidad alta tanto de interensayo como interlaboratorio debido a la complejidad del procedimiento, p. ei., el uso de plaquetas de donante, las diferentes etapas de ensayo y a veces la difícil interpretación de la aglutinación de plaquetas (Favaloro, Pathology 1997; 29:385-91). Se sabe que la alta variabilidad en el ensayo de vWF:RiCof puede llevar a un diagnóstico erróneo de vWD. Además, la alta variabilidad del ensayo de vWF:RiCof puede ser debida al sistema bastante complejo usado, es decir al empleo de plaquetas enteras. Los ensayos de vWF basados en plaquetas están comprometidos por el hecho de que las plaquetas tienen más de un sitio de unión para vWF (Ruggeri, J. Clin. Invest. 1983; 72: 1-12) que comprenden, entre otras cosas, el complejo GPIIb/IIIa (De Marco, J. Clin. Invest. 1986; 77: 1272-1277). Además, se sabe que vWF se une a otras moléculas (macro)biológicas como proteínas y lípidos modificados, que comprenden no sólo el Factor VIII y colágenos (fibrilares), sino también heparinas, glicosaminoglicanos y sulfatidas (véase, por ejemplo, Mohlke, J. Lab Clin Med 1997 130: 253-261). Se sabe además que la unión de vWF al subendotelio induce un cambio estructural que permite la interacción primaria con GPIb, generando la última una señal para la activación de plaquetas sobre la cual se une el vWF (mediado por el dominio de RGD a GPIIb/IIIa) a un complejo en dicha plagueta activada. Como GPIb, el complejo GPIIb/IIIa es un componente integral de la membrana de las plaquetas que se piensa que es esencial para la adhesión normal y la agregación (véase, por ejemplo, Berliner, J Biol Chem 1988, 263:7500-7505). Como Lechner ("Blutgerinnungsstorungen", Springer Verlag Berlín-Heidelberg-Nueva-York, 1982, p.197-200) describe, la preparación de plaguetas que se usan en ensayos vWF: RiCoF llevan a una activación de dichas plaquetas. Por lo tanto, todas las plaquetas, como se usan comúnmente en ensayos de vWF:RiCoF, comprenden más de una molécula de unión para vWF. Como se indica en este documento más arriba, la interacción entre vWF y las plaquetas es bastante compleja y depende de al menos dos receptores diferentes en las plaquetas así como de las propiedades fisiológicas de vWF (por ejemplo, multímeros de HMW).

Se han emprendido diversas tentativas para estandarizar más y simplificar el ensayo de la actividad de vWF: RiCof pero todavía hay dificultades de interpretación de los ensayos de aglutinación de plaquetas.

5

10

15

20

25

30

35

40

45

El ensayo de vWF:CBA es un ensayo funcional en el cual es medida la calidad de la proteína (Brown, *Thromb Res* 1986; **43**:303-11; Favaloro, *Blood Coagul Fibrinolysis* 1991; **2**: 285-91). La vWF:CBA es determinada en un procedimiento basado en ELISA en el cual son detectados principalmente los multímeros de HMW (Fischer, *Thromb Res* 1996; **84**:55-66; Aihara, *Thromb Haemost* 1988; **59**:485-90). Esta prueba también contribuye al diagnóstico de pacientes tipo 2A y tipo 2B cuando estos subtipos tienden a dar valores muy bajos de vWF:CBA debido a la ausencia de formas HMW vWF en el plasma de tales pacientes. La prueba de vWF:CBA, sin embargo, no es una prueba rutinaria en el diagnóstico de vWD y mide una propiedad diferente de vWF comparado con la prueba de vWF:Ricof. Otra desventaja del ensayo de vWF:CBA es la alta sensibilidad para transportar influencias y ciclos de congelación/descongelación repetidos (como, *inter alia*, los mencionados en Budde, "Hamostaseologie, Molekulare undzellulare Mechanismen, Pathophysiologie und Klinik"; *SpringerVerlag* (1998), 228-237). Haylaerts (*Biochem. J.* **306**, 1995, p 453-463 describe el uso de GPIB y ristocetina para estudiar la interacción con vWF.

Además, las pruebas actuales de la enfermedad de von-Willebrand (vWD) están, por lo general, basadas en los anteriores ensayos descritos, tales como el tiempo de sangrado, actividad del cofactor del antígeno de vWF y de ristocetina de vWF (empleando la actividad de agregación de plaquetas en presencia de ristocetina).

A menudo, los ensayos basados en plaquetas no sólo muestran una sensibilidad y reproductibilidad relativamente pobres, sino que también requieren la preparación de muestras de sangre recientes y llevan mucho tiempo (Murdoch, *Thromb. Haemost.* **78** (1997), 1272-1277). Se sabe que estas pruebas no son exactas, ni reproducibles y a menudo no pueden definir el trastorno (como se ha examinado, entre otros, por Mohlke, *J. Lab. Clin. Med.* **130** (1997), 252-260). Además, Favaloro (*Am. J. Clin. Pathol.* **104** (1995), 264-271) ha encontrado que el uso clínico de ensayos diferentes predecía de manera irregular el diagnóstico de vWD. Así, los anteriores ensayos descritos para detectar vWD no son del todo óptimos o no están preparados para el análisis de un gran número de muestras (por ejemplo, el análisis de ADN y multímero).

El problema técnico, que es en lo que se basa la presente invención, era proporcionar mejores medios para una prueba más reproducible y más precisa del factor de von-Willebrand con una variabilidad baja interensayo e intraensayo. La solución a dicho problema técnico es conseguida proporcionando las realizaciones caracterizadas en las reivindicaciones.

En consecuencia, se describe un método para detectar la actividad del factor de von-Willebrand (vWF) que comprende analizar una muestra en presencia de:

- (a) una forma soluble o parte de la glicoproteína lb (α) (GPIb (α)) y
- (b) ristocetina, o una sustancia funcionalmente equivalente.

De acuerdo con la presente invención, se ha encontrado sorprendentemente que la actividad del factor de von-Willebrand puede ser analizada exactamente y ser reproducible de una manera adecuada analizando una muestra de un paciente conocido o que se sospecha que padece la enfermedad de von-Willebrand o analizando una muestra obtenida de un individuo sano. El sistema de ensayo de la presente invención es menos complejo que los ensayos de vWD/vWF mencionados antes y sorprendentemente todavía proporciona datos clínicamente relevantes que, en algunos aspectos, pueden ser usados para sustituir los ensayos de plaquetas basados en vWF:RiCof. Como se indica en este documento más arriba, la expresión "actividad de vWF", según se usa de acuerdo con esta invención, describe una interacción independiente de ristocetina entre GP1b (α) (ο un fragmento del mismo) y vWF.

Generalmente, la invención, según se perfila más arriba, provee el empleo de una forma soluble, parte o fragmento de la glicoproteína lb (α). La expresión "forma soluble o parte de la glicoproteína lb (α)", según se usa en este documento, denota una molécula, preferentemente una proteína, un péptido o un (poli)péptido que no está asociado a plaquetas. Además, dicha expresión comprende fragmentos de dicha glicoproteína GPIb (α), entre otras cosas, la parte extracelular de dicha proteína. Dentro del ámbito de la presente invención hay además formas solubles, partes o fragmentos de GPIb (a) que pueden comprender, además de partes proteicas, hidratos de carbono específicos. Tales GPIb (α), partes o fragmentos del mismo pueden ser obtenidos por métodos bioquímicos o sintéticos y/o técnicas de biología molecular recombinante. Tales métodos son conocidos por los expertos ordinarios en la técnica (véase, por ejemplo, Sambrook et al. "Molecular Cloning; A Laboratory Manual", 2ª Edición, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY (1989); Harlow y Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, NY (1988); Merrifield, J. Am. Chem. Soc. 85 (1963), 2149-2146; Stewart, "Solid Phase Peptide Synthesis", WH Freeman Co, San Francisco (1969); Scopes, "Protein Purification", Springer Verlag, New York, Heidelberg, Berlín (1987); Janson, "Protein Purification, Principles, High Resolution Methods and Applications", VCH Publishers, New York, Weinheim, Cambridge (1989); Wrede, "Concepts in Protein Engineering and Design", Walter de Gruyter, Berlín, New York (1994); Wittmann-Liebold, Jungblut "Analysis and Characterization of Proteins", 47-107).

5

10

15

20

25

30

35

40

45

50

Además de la producción bioquímica o recombinante, dicho GPIb (α), parte(s) o fragmento(s) del mismo, puede ser producido por síntesis de péptidos directa usando técnicas en fase sólida (cfr. Stewart *et al.* (1969) Solid Phase Peptide Synthesis, WH Freeman Co, San Francisco; Merrifield, *J. Am. Chem. Soc.* **85** (1963), 2149-2154). Se puede realizar la síntesis de proteínas *in vitro* usando técnicas manuales o por automatización. La síntesis automatizada se puede conseguir, por ejemplo, usando el Sintetizador de Péptidos 431A de Applied Biosystems (PerkinElmer, Foster City, California) de acuerdo con las instrucciones proporcionadas por el fabricante. Se pueden sintetizar diversas partes o fragmentos de GPIb (α) por medios químicos por separado y se pueden combinar usando métodos químicos para producir la molécula de longitud completa.

Dentro del ámbito de esta invención hay, por lo tanto, métodos que emplean todas las formas de GPIb (α) y/o fragmentos del mismo que no están asociados o unidos a plaguetas. Preferiblemente, dicha forma soluble, parte o fragmento de la glicoproteína lb (α) comprende el dominio del extremo N-terminal de una cadena de la glicoproteína lb de plaqueta humana, aún más preferiblemente, comprende la parte de 42 kDa del extremo N-terminal de GPIb (α) y lo más preferiblemente comprende los residuos His 1-Val 289 (véase, por ejemplo, Schampp-Vonach, Cytotechnology 17 (1995) 133-141). La expresión "forma soluble o parte de GPIb (α)" comprende, dentro del ámbito de esta invención, no sólo moléculas solas, individuales, sino también complejos más grandes, tales como, por ejemplo, al menos dos moléculas GPIb (α) que pueden formar una sola entidad. La expresión "ristocetina o una sustancia funcionalmente equivalente", según se usa de acuerdo con esta invención, significa el antibiótico glicopéptido aislado de Nocardia lurida, que imita al(a los) componente(s) activo(s) de la pared de los vasos expuesta y causa la unión de vWF humano a las plaquetas humanas y la aglutinación de las plaquetas. Además, la expresión comprende ristocetina recombinantemente o bioquímicamente producida o fragmentos de la misma. Además, la expresión "sustancias funcionalmente equivalentes" comprende cualquier sustancia que pueda sustituir ristocetina o los fragmentos de la misma como inductor no fisiológico de la unión de vWF a GPIb, como la botrocetina. (Furlan, 1995, Thromb. Haemost. 54: 463-465). Dentro del ámbito de la invención está además el uso de anticuerpos específicos que realzan la eficacia/potencia de la ristocetina que, por su parte, permiten el uso de concentraciones de ristocetina inferiores (véase, por ejemplo Tornai, J Clin Invest 1993; 91: 273-282).

En una realización más preferida, el método de la presente invención comprende un método en el que dicha detección es realizada detectando la formación de un complejo de vWF

y GPIb (α) y/o un complejo formado por vWF y GPIb (α). La detección de la formación de dicho complejo y/o la detección del complejo formado se puede realizar por métodos conocidos por cualquier persona experta en la técnica. Ejemplos de dichas detecciones son descritos en este documento más abajo. A fin de detectar dicho complejo o dicha formación de un complejo entre GPIb (α) y vWF, se podrían emplear proteínas, tales como GPIb (α), anticuerpos preferiblemente marcados, así como diferentes anticuerpos, como anti-GPIb (α), anti-vWF o antifactor VIII. Además, se prevé que el Factor VIII, colágeno(s) y/o GPIIb/IIIa puedan ser usados para detectar dicho complejo o dicha formación del complejo.

En una realización de la presente invención, dicho GPlb (α) o el complejo mencionado más arriba formado por vWF y dicha forma soluble o parte de GPlb (α) se unen a un soporte sólido. Los métodos adecuados para unir dicho GPlb (α) o dicho complejo al soporte sólido incluyen, pero sin limitación, interacciones iónicas, hidrófobas, covalentes y otras similares. El soporte sólido puede retener uno o varios receptor(es) adicional(es) que tiene(n) la capacidad de atraer e inmovilizar dicha(s) molécula(s) de GPlb (α) o dicho complejo. Estos receptores pueden comprender una superficie cargada, que está opuestamente cargada con respecto a dicha(s) molécula(s) de GPlb (α) o dicho complejo o a una sustancia cargada conjugada al reactivo de captura o el receptor puede ser cualquier pareja de unión específica, tal como, entre otras cosas, un anticuerpo. Esto significa que dicha unión incluye el acoplamiento químico, bioquímico, revestimiento, la unión por fuerzas de van-der-Waals, etc. La unión de dicho complejo se puede medir, entre otras cosas, con anticuerpos anti-GPlb α , anticuerpos anti-vWF, con anticuerpos del antifactor VIII así como por colágeno(s), factor VIII y/o GPIIb/IIIa.

10

15

20

25

30

35

40

45

Se prefiere que dicho GPIb (α) se una a dicho soporte sólido por una reacción específica del anticuerpo anti-GPIb (α) y/o que dicho complejo se una a dicho soporte por una reacción específica del anticuerpo anti-GPIb (α), por una reacción específica del anticuerpo anti-vWF, por un antifactor que reacciona específicamente con el anticuerpo VIII y/o por colágeno. Específicamente, son conocidos en la técnica anticuerpos que reaccionan, por ejemplo, contra GPIb (α) o los fragmentos del mismo y son descritos, entre otros, en los ejemplos añadidos (por ejemplo, ejemplo 1).

Los anticuerpos que reaccionan específicamente con el Factor VIII también son conocidos en la técnica y comprenden, entre otros, el anticuerpo descrito en Casonato *Am J Clin Path* 1998; **109**: 347-352. Se han descrito colágeno(s) útil(es), entre otros, en Brown, *Thromb. Res.* 1986, **43**: 303-11; Favaloro, *Blood Coag. Fibrinol.* 1991; **2**: 285-91 o Thomas, *Hämostaseologie* 1994; **14**: 133-9.

En otra realización preferida del método de la presente invención, dicha detección es realizada por una reacción específica del anticuerpo de anti-vWF, por un antifactor que reacciona específicamente con el anticuerpo VIII, por el anticuerpo anti-GPIb (α) que reacciona específicamente, por colágeno y/o sus mezclas. Los anticuerpos anti-vWF policlónicos son conocidos en la técnica y están, entre otros, disponibles en Serotec Ltd. (AHPO62, MCA127).

También están comprendidas por el método de la invención realizaciones en las que el anticuerpo / anticuerpos antes mencionados es(son) anticuerpo/anticuerpos monoclónico(s), (un) anticuerpo(s) policlónico(s) o (un) anticuerpo(s) quimérico(s). Además, dicho(s) anticuerpo(s) comprende(n) anticuerpos sintéticos, fragmentos de anticuerpos, o un derivado modificado por medios químicos de cualquiera de éstos.

Los anticuerpos monoclónicos se pueden preparar, por ejemplo, por las técnicas que ya se han descrito en Köhler y Milstein, *Nature* **256** (1975), 495, y Galfré, *Meth. Enzymol.* **73** (1981), 3, que comprenden la fusión de células de mieloma de ratón con células de bazo derivadas de mamíferos inmunizados con modificaciones desarrolladas en la técnica.

Como se menciona en este documento más arriba, los anticuerpos pueden ser anticuerpos monoclónicos, anticuerpos policlónicos o anticuerpos sintéticos así como

fragmentos de anticuerpos, tales como fragmentos Fab, Fv o scFv, etc. Se pueden obtener anticuerpos, o fragmentos del mismo, usando métodos que son descritos, por ejemplo, en Harlow y Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, 1988. La producción de anticuerpos quiméricos es descrita, por ejemplo, en el documento W089/09622.

5

10

15

20

25

30

35

40

45

50

En una realización más de la presente invención, dicho anticuerpo o dicho colágeno, usado en el paso de la detección del método de la invención, está(n) marcado(s) de forma detectable. Dicho marcador puede ser, entre otras cosas, un marcador, un marcador fluorescente, una enzima, una partícula o un marcador radiactivo. Tales marcadores son conocidos por los expertos en la técnica y comprenden, entre otras cosas, peroxidasa de rábano picante, fosfatasa alcalina, β - galactosidasa, fluorocromos (tales como fluoresceína, rodamina, Rojo de Texas, etc.) metales coloidales (como partículas de oro), biotina, digoxigenina y compuestos quimioluminiscentes o bioluminiscentes. Cualquier método de detección para detectar GPIb (a) o un fragmento del mismo, la actividad del factor de von-Willebrand (vWF), proteína(s) de vWF o la presencia de un complejo formado por vWF y GPIb (α) o la formación de dicho complejo puede ayudarse por tecnología informática. Los métodos de detección pueden ser, por lo tanto, automatizados por varios medios, incluyendo el análisis de imagen por citometría de flujo. Por ejemplo, de acuerdo con la presente invención, dicha detección se puede realizar por un ensayo heterogéneo u homogéneo o por otros métodos de detección conocidos en la técnica. Estos ensayos y detecciones comprenden, pero sin limitación, ensayos inmunes y detecciones inmunes. Según la presente invención, dichos ensayos (inmunes) heterogéneos comprenden, entre otras cosas, inmunoensayos de unión enzimática (ELISA), radioinmunoensavos (RIA), ensavos inmunes radiométricos (IRMA), inmunoensayos fluorescentes (FIA), ensayos inmunes quimioluminiscentes (CLIA) y/o ensayos inmunes electro-quimioluminiscentes (ECL). Los ensayos homogéneos comprenden ensayos en los que las parejas de unión permanecen en disolución. Estos ensayos homogéneos, por lo tanto, también comprenden ensayos de aglutinación que miden la formación de un complejo, un complejo sin mediación de anticuerpo o fragmentos de anticuerpo (ensayo homogéneo) o la formación de un complejo que implica, p.ej., un anticuerpo puente o de detección (inmunoensayo homogéneo). Un ejemplo de un tal ensayo homogéneo es el (inmuno)ensayo turbidimétrico realzado de látex. Además, la actividad de vWF/vWF se puede detectar, entre otras cosas, por la transferencia de energía de resonancia de fluorescencia (FRET), como, p.ej. se describe en Ng, Science 283 (1999), 2085-2089. La agregación se puede registrar por dispositivos comercialmente disponibles, tales como agregómetros. De acuerdo con la presente invención, podría preverse que la interacción directa de la forma soluble o la parte de la glicoproteína lb (α) con vWF pudieran ser directamente medidas o que una de las parejas de compleios (o ambas) se unieran a los anteriores soportes sólidos descritos, tales como, entre otras cosas, cuentas de látex, y que la interacción/aglutinación de dicho soporte sólido fuera medida.

En otra realización más, el soporte sólido del método de la presente invención comprende un soporte plástico, un cristal, un silicio, un metal coloidal, una celulosa y/o un soporte polimérico. Dicho soporte sólido se selecciona del grupo que consiste en polímeros orgánicos sólidos, celulosa/membranas de celulosa, partículas metálicas coloidales, superficies plásticas o cualquiera de sus combinaciones.

Varios soportes conocidos en la técnica son adecuados para servir a los objetivos de la presente invención. Tales soportes pueden comprender, entre otras cosas, membranas, placas, tiras, pocillos, microchips o recipientes. Los materiales adecuados para tales soportes o los materiales para la capa adicional de dichos soportes incluyen, pero sin limitación, cristal, poliestireno, poli(cloruro de vinilo), polipropileno, polietileno, policarbonato, dextrano, nilón, amilosas, celulosas naturales y modificadas, tales como nitrocelulosa, poliacrilamida, agarosas, magnetida y metales. Las partículas metálicas coloidales arriba mencionadas pueden ser, entre otras cosas, partículas de oro, y dicha superficie plástica arriba mencionada comprende el pocillo de una placa de microtítulo. Además, dicho polímero orgánico sólido antes mencionado

comprende una cuenta de látex. Las combinaciones de varios soportes, tales como, p.ej., cuentas de látex y partículas coloides de metal, también están dentro del ámbito de la presente invención.

Como se indica en este documento más arriba, el método de la presente invención comprende además un método en el que dicho ensayo homogéneo es un ensayo de aglutinación.

5

10

15

20

25

30

35

40

45

En una realización más preferida, la invención se refiere a un método en el que dicho ensayo de aglutinación está basado en la aglutinación de cuentas de látex. Dentro del ámbito de la presente invención hay, sin embargo, también ensayos de aglutinación basados en la aglutinación de proteínas y/o fragmentos de proteínas que podrían ser medidos, entre otras cosas, turbidimétricamente. En aún una realización más preferida, dicha aglutinación es medida por la variación de un campo eléctrico, variación de un campo magnético, variación turbidimétrica o dispersión de la luz. Tales métodos son conocidos por los expertos en la técnica.

Por lo tanto, en el método de la presente invención, dicha detección de la formación del complejo entre la forma soluble o la parte de GPIb (α) y vWF se puede establecer midiendo el distinto cambio de propiedades físicas que están causadas, p.ej., por la aglutinación. Dicha aglutinación se puede medir por la interacción directa de las dos parejas de unión y/o se puede medir y efectuar por reticulación a una de las parejas de unión previas o durante dicha detección a un soporte sólido, tal como una cuenta, preferiblemente una cuenta de látex o una partícula de oro coloidal.

En una realización particularmente preferida, la muestra que se analiza en la presente invención es una muestra de sangre. Por lo tanto, dicha muestra es sangre o se puede derivar de la sangre, del suero o del plasma. En una realización preferida, dicha muestra de sangre es una muestra de plasma. La muestra que se analiza se puede tratar, por ejemplo, para extraer, entre otras cosas, los componentes proteicos que comprenden, por ejemplo, proteínas, fragmentos de proteínas o péptidos. Dicha muestra, además, se puede diluir.

En una realización preferida, dicha muestra (la sangre) está diluida. Dicha dilución podría estar en el intervalo de 1:2 a 1:1.000. Dicha dilución preferiblemente está en un intervalo de 1:5 a 1:100. Como se ilustra, entre otras cosas, en los ejemplos añadidos, en otra realización más, la presente invención se refiere a un método para discriminar entre una enfermedad de von Willebrand (vWD) del tipo 1 y del tipo 2 que comprende las etapas:

- (a) detectar la actividad de vWF en una muestra de ensayo según el método de la presente invención;
- (b) determinar la cantidad de vWF-antígeno en dicha muestra de ensayo:
- (c) determinar la proporción entre la actividad de vWF y vWF-antígeno para dicha muestra de ensayo; y
- (d) comparar el la proporción obtenida bajo (c) con el intervalo de proporciones establecidas como un intervalo normal.

El término "discriminación" significa, dentro del ámbito de esta invención, que los pacientes que padecen vWD se pueden clasificar fácilmente en pacientes que padecen el tipo 1 y pacientes que padecen el tipo 2 vWD empleando el método de la presente invención. Los pacientes vWD tipo 1 se caracterizan por una proporción normal de vWF: RiCof (actividad de vWF) a vWF: Ag (vWF-antígeno), mientras que en los pacientes tipo 2 por debajo de la referencia o variedad normal (determinado, por ejemplo, con voluntarios sanos). Una reducción de la actividad de vWF: RiCof es, en consecuencia, típica para los pacientes del tipo 2. La expresión "intervalo normal", según se usa de acuerdo con esta invención, es conocida por los expertos en la técnica, tales como médicos, y comprende la expresión "intervalo de referencia".

El "intervalo normal o de referencia" es determinado por lo general midiendo el parámetro clínico de investigación en un grupo de sujetos considerados sanos, pero quiénes no son, por otra parte según las estadísticas, diferentes en los datos demográficos relevantes a pacientes que se sospecha que padecen la enfermedad. Los valores obtenidos son evaluados por procedimientos estadísticos estándares y el intervalo normal o el intervalo de referencia es definido entonces, por ejemplo, cubriendo el intervalo entre el valor promedio ± dos o tres desviaciones estándares.

Preferiblemente, la muestra analizada de un paciente vWD es una muestra de plasma.

En otra realización más, la presente invención se refiere al uso de una forma soluble o parte de la glicoproteína lb (α) (GPIb (α)) para llevar a cabo el método de la presente invención.

Además, se describe el uso de ristocetina o una sustancia equivalente funcional de la misma.

En una realización preferida, la presente invención se refiere al uso de una anticuerpo anti-GPIb (α) que reacciona específicamente y al uso de un anticuerpo de anti-vWF que reacciona específicamente para llevar a cabo el método de la presente invención.

Además, la presente invención se refiere al uso de un kit para llevar a cabo el método de la presente invención, comprendiendo dicho kit al menos uno de lo siguiente:

- (a) una forma soluble o parte de glicoproteína lb (α) (GPIb (α));
- (b) ristocetina, un fragmento de la misma, o botrocetina;

5

10

15

20

30

35

40

- (c) un anticuerpo según se define en este documento más arriba;
- (d) un soporte sólido según se define en este documento más arriba, o
- (e) un intervalo de referencia o normal de proporciones entre actividad de vWF y antígeno de vWF.

En una realización preferida, la presente invención se refiere a un kit que comprende al menos uno de lo siguiente:

- (a) una forma soluble o parte de glicoproteína lb (α) (GPIb (α));
- (b) ristocetina, un fragmento de la misma, o botrocetina;
- (c) un anticuerpo según se define en este documento más arriba;
- (d) un soporte sólido según se define en este documento más arriba; y
- (e) un intervalo de referencia o normal de proporciones entre la actividad de vWF y el antígeno de vWF, adaptado para llevar a cabo el método de la presente invención, que comprende opcionalmente además un estándar y/o medios para ensayos (inmunes) homogéneos o heterogéneos. El kit de la presente invención es particularmente útil en la realización del método de la invención que ha sido descrita detalladamente en este documento más arriba.

El kit de la invención puede comprender medios vehículos que están compartimentados para alojar en un confinamiento cercano uno o varios medios recipientes, tales como viales, tubos y otros similares, comprendiendo cada uno de los medios recipientes uno de los elementos separados que se usan en el método de la invención. Por ejemplo, uno de los recipientes puede comprender, entre otras cosas, la forma soluble o la parte de GPIb (α) en forma liofilizada o en disolución. Además, los medios vehículos también pueden contener una pluralidad de recipientes cada uno de los cuales comprende, entre otras cosas, cantidades diferentes, predeterminadas de vWF o una cantidad de vWF siendo diagnósticas para tipos diferentes de la enfermedad von-Willebrand útil en el método de la invención. Estos recipientes

últimos se pueden usar entonces para preparar una curva estándar en la cual se pueden interpolar los resultados obtenidos de la muestra que contiene la cantidad desconocida de vWF y/o el tipo desconocido de actividad de vWF.

Además, la presente invención se refiere al método, el uso o el kit de la presente invención, en el que dicha forma soluble o parte de la glicoproteína lb (α) (GPIb (α)) son recombinantemente producidas.

Dicho GPIb (α) recombinantemente producido es un péptido o un (poli)péptido. El término (poli)péptido, como se menciona en este documento más arriba y de acuerdo con esta invención, puede comprender péptidos naturales o proteínas, así como péptidos/proteínas sintéticos o recombinantemente producidos. El (poli)péptido puede abarcar cadenas de aminoácidos de cualquier longitud, en el que los residuos de aminoácidos se unen por enlaces peptídicos covalentes. Sin embargo, también se contemplan en la invención peptidomiméticos de tales (poli)péptidos en los que el(los) aminoácido(s) y/o el(los) enlace(s) peptídico(s) ha(n) sido sustituido(s) por análogos funcionales. De acuerdo con esta invención, un (poli)péptido puede comprender diferentes especies de (poli)péptido. Una especie de (poli)péptido es definida por su composición química y las modificaciones de dicho(s) péptido(s) / polipéptido (s), entre otras cosas, por glucosilaciones, acetilaciones, fosforilaciones, lipidaciones o por cambios de aminoácidos. La expresión especies (poli)peptídicas es, por lo tanto, definida como la unidad más pequeña de clasificación de proteínas, definida por su estructura química.

Las figuras muestran:

5

10

15

20

- Fig. 1: La ristocetina indujo la unión de vWF de plasma al fragmento de α-rGPlb (his1-Val289). La unión de vWF de plasma (de 1/32 a 1/512) al fragmento de α-rGPlb capturado fue estudiada en presencia de 1 mg/ml (\blacksquare), 760 μg/ml (\bullet), 500 μg/ml (Δ) y 250 μg/ml (V) de ristocetina. En ausencia de la ristocetina, no fue observada ninguna unión (no se muestra).
- La ristocetina indujo la unión de vWF al fragmento de α-rGPlb en presencia Fig. 2: de anti-GPIb-mAbs y anti-vWF-mAbs A. El fragmento de α -rGPIb fue preincubado durante 30 minutos con diluciones consecutivas de mAb 6B4 () (un anti-GPIb-mAb que inhibe la aglutinación de plaquetas humanas inducidas por 30 ristocetina) v mAb 7D2 (•) (un anti-GPIb-mAb no inhibitorio). Después, fue añadida una cantidad constante del fondo del plasma (0,032 U/ml, concentración final) y vWF unido fue detectado con anti-vWF-Ig-HRP. B. Se preincubaron cantidades constantes del fondo del plasma (0,032 U/ml vWF, concentración final) durante 30 minutos con mAb 1C1E7 (12,5 µg/ml, concentración final) (•) antes de que las muestras fueran añadidas al fragmento rGPlba. La unión de 35 vWF-GPIb fue estudiada en presencia de concentraciones diferentes de ristocetina y fueron comparadas con la unión en ausencia de mAb1C1E7 (•).C. Fue preincubado el vWF del fondo del plasma (0,032 U/ml vWF, concentración final) durante 30 minutos con diluciones consecutivas de mAb 701 (■) (un anti-(dominio vWF A1)-mAb que inhibe la aglutinación de plaquetas humanas 40 inducida por la ristocetina) y mAb 82D6A3 (•) (un anti-(dominio vWF A3)-mAb que inhibe la unión de vWF-colágeno). Después, las muestras fueron añadidas al fragmento de α -rGPIb que contiene pocillos, y el vWF unido fue detectado con anti-vWF-Ig-HRP. Las curvas de unión son representativas de 2 experimentos. 45 Fig. 2D: la unión de vWF al colágeno tipo I humano en presencia del vWF de fondo de plasma anti-vWmAbs (0,032 U/ml vWF, concentración final) fue preincubada durante 30 minutos con diluciones consecutivas de mAbs 701 (■) y 82D6A3 (•). Después, las muestras fueron añadidas a los pocillos cubiertos de colágeno, y el vWF unido fue detectado con anti-vWF-lg-HRP.

Fig. 3: Una representación de una curva de unión del vWF del fondo del plasma al rGPlbα para determinar las actividades de vWF:RiCof desconocidas Se realizó la regresión polinómica (línea de puntos) en la curva de unión de vWF de plasma frente al fragmento de rGPlbα en presencia de 760 μg/ml (•) y produjo una correlación de 0,9997.

5

20

25

30

35

40

45

- Fig. 4: vWF:RiCof, vWF:CBA y vWF:Ag de vWF de plasma de individuos normales (n = 24) Fueron determinados vWF:RiCof, vWF: CBA y vWF:Ag en ensayos ELISA (véase Materiales y Métodos). Cada dato representa el promedio de 2 medidas.
- 10 **Fig. 5: vWF:RiCof, vWF:CBA y vWF:Ag de vWF de plasma de pacientes vWD** Las columnas representan un intervalo de datos (de valores mínimo a valores máximos), conteniendo los puntos de datos individuales (•). Se representan los valores promedios son representados por una línea horizontal. Individuos normales (n = 24), pacientes vWD de tipo 1 (n =17), pacientes de tipo 2A (n = 18) y pacientes de tipo 2B (n = 4), para tipo 3 (n = 3) y pacientes vWD tipo 2N (n = 2), véase el texto. Para cada paciente fueron medidas tres actividades al menos 2 veces.
 - Fig. 6: Análisis de dispersión de puntos de vWF:RiCof determinado en el ensayo ELISA y en el ensayo de aglutinación (n = 44) Los valores medidos en la prueba ELISA fueron determinados como se describe, los valores del ensayo de aglutinación fueron amablemente proporcionados por el doctor C. Mazurier y el doctor K. Peerlinck.

La invención será a continuación ilustrada en cuanto a los ejemplos siguientes que son simplemente ilustrativos y no deben ser interpretados como limitantes del alcance de la presente invención.

Ejemplo 1: Preparación de muestras, anticuerpos monoclónicos y preparación y purificación de una forma soluble de glicoproteína lb (α)

Se extrajo sangre de 22 voluntarios sanos en citrato de sodio al 3,13 % (9:1 vol/vol). Se preparó plasma pobre en plaquetas por centrifugación a 2000 revoluciones por minuto durante 10 minutos. El plasma de pacientes con vWD fue una generosa donación del doctor C. Mazurier (Lila, Francia) y del doctor K. Peerlinck (RU, Leuven, Bélgica). El fondo del plasma fue formado a partir del plasma de 25 individuos normales y fue calibrado frente a un fondo de plasma de 50 individuos sanos (donación del doctor C. Mazurier, Lila).

El plasma congelado se descongeló, se incubó durante 5 minutos a 37°C, se fraccionó y almacenó a - 80°C. Antes de su uso, las fracciones fueron incubadas otra vez durante 5 minutos a 37 °C. Las fracciones sólo fueron usadas dos veces.

Los anticuerpos monoclónicos se han preparado según los protocolos estándares.

Los anticuerpos monoclónicos (mAb) anti-GPIb α usados en este estudio fueron producidos y caracterizados por el empleo del siguiente breve protocolo. Se prepararon MoAbs murinos anti-GPIb según los métodos descritos por Köhler y Milstein, loc. cit.. Se inmunizaron ratones BALB/c por inyección de GPIb purificado. Dos días después de la última inmunización, fueron fundidas células de bazo con células de mieloma de ratón Sp2/0 y se cultivaron en medio de selección de HAT (GIBCO). Se realizó la clonación por el método de dilución limitante usando placas de microtítulo de 96 pocillos con capas de alimentador de macrófago peritoneal de ratón. Esta clonación originó una probabilidad estadística de monoclonalidad mayor que el 99 %. Los hibridomas que producían los anticuerpos anti-GPIb fueron analizados en ELISA utilizando placas revestidas de GPIb purificado y además se rastreó en un ensayo de

aglutinación en microplacas de 96 pocillos como se ha descrito anteriormente (Depraetere, *Blood* **91** (1998), 3792-3799).

El fluido ascético rico en anticuerpos anti-GPIb se preparó por inyección intraperitoneal de ratones BALB/c pretratados con Pristane con 5x10⁶ células híbridas. La IgG fue purificada del fluido ascético por cromatografía en Proteína-Sepharose CL-4B (Pharmacia). La concentración de anticuerpo fue medida espectrofotométricamente, usando 1,35 = 1 unidad OD. El subtipo de inmunoglobulina fue determinado usando un kit ELISA (Sigma).

Los fragmentos $F(ab')_2$ se prepararon a partir de 27A10 por digestión con pepsina (Sigma) usando una proporción de pepsina/proteína 1/50 (peso/peso) y además se purificaron en Proteína-A-Sepharose CL-4B. En la electroforesis de gel de SDS-poliacrilamida bajo condiciones no reductoras, el 27A10 $F(ab')_2$ dio un grupo solo con un peso molecular de $\cong 110.000 \ kD$.

Dos MoAbs anti-GPIb bien caracterizados, AP-1 y 6D1 fueron amablemente proporcionados por los doctores T.J. Kunicki (Milwaukee, Wisconsin) y B. S. Coller (SUNY Stony Brook, Nueva York) respectivamente. Los mAbs12G1 y 6B4 son mAbs anti-GPIb α dependientes de la conformación que inhiben la aglutinación de plaquetas humana inducida por ristocetina. Los mAbs 2D4 y 7D2 también son mAbs anti-GPIb α dependientes de la conformación sin características funcionales. El MAb1 C1 E7 es un anticuerpo anti-vWF que realza la unión inducida de ristocetina de vWF a GPIb (Tornai, *J Clin Invest* 1993; **91**: 273-82). El mAb 701 es un anticuerpo anti-(dominio vWF A1) que inhibe a las plaquetas inducidas por ristocetina y la botrocetina (Obert, *Blood* 1999; **93**: 1959-1968). El mAb 82D6A3 es un anticuerpo anti-(dominio vWF A3) que inhibe la unión de vWF al colágeno tipo I e III (Hoylaerts, *Biochem J* 1997; **324**: 185-91).

El mAb inhibitorio 12G1 se biotiniló usando NHS LC Biotina (sulfosuccinimidil 6-(biotinamido)hexanoato) de Pierce (Rockford, Illinois) según las instrucciones del fabricante.

Cultivo de células CHO que expresan el fragmento de rGPlb α (His1-Val 289)

Las células CHO que expresan el fragmento rGPlb α soluble (His1-Val289) fueron una donación generosa del doctor S. Meyer (Basilea, Suiza) (Schumpp-Vonach, *Cytotechnology* 1995; **17**: 133-41). Las células CHO se cultivaron en un fermentador miniPERM con una membrana de diálisis de 12,5 kD (Heraeus Instruments GmbH, Hanau, Alemania) (Falkenberg, *Immunol Methods* 1995; **179**: 13-29) según las instrucciones del fabricante.

Brevemente, las primeras células se cultivaron en medio CHO-S-SFMII (GIBCO-BRL, Paisley, Escocia) complementado con ULTROSER ® G al 1 %, 200 µg/mL estreptomicina, 200 U/mL de penicilina (GIBCO-BRL) y antiFOAM a al 0,3 % (Heraeus Instruments, GmbH) en matraces de cultivo en T (180 mm³). Después de alcanzar la confluencia, las células fueron cosechadas añadiendo EDTA 1 mM. Las células (5 x106/ml) fueron inyectadas entonces en el módulo de producción del fermentador miniPERM y fueron cultivadas continuamente en este sistema por un período de dos meses. El medio de cultivo en el módulo nutritivo fue sustituido cada dos días. El medio que contiene el fragmento de rGPlb α (His1-Val289) fue recogido dos veces a la semana, las células fueron eliminadas por centrifugación y los siguientes inhibidores de proteasa fueron añadidos al sobrenadante: 20 µM leupeptina (Sigma, San Louis, EE.UU.), PMSF 1 mM (Sigma) y N-etilmaleimida 1 mM (ICN, Ohio, EE.UU.). El sobrenadante se almacenó a -80 ° C antes de la purificación.

Purificación del fragmento rGPlb α (His1-Val 289)

10

15

20

25

30

35

40

45

La proteína recombinante fue purificada como se describe (Schumpp-Vonach, *Cytotechnology* 1995; **17**:133-41) con algunas modificaciones. Para la purificación, se usó la cromatografía de inmunoafinidad. El anti-GPIb-mAb 12G1 fue conectado a CNBr-activado Sepharose ® 4B (Pharmacia Biotech, Uppsala, Suecia) según las instrucciones del fabricante.

Antes de cargar en la columna, el sobrenadante reunido recogido a partir del fermentador miniPERM fue concentrado 5 veces usando un Concentrador de CH2PR S_1Y_3 (Amicon, EE.UU.). La columna fue lavada con TBS, CHAPS 0,3 mM (Boehringer Mannheim) y las proteínas unidas se eluyeron con glicina-HCl 0,1 mM, pH 2,8. El pH de las fracciones eluídas fue neutralizado inmediatamente por la adición de Tris-HCl 1 M, pH 9. Las fracciones que contienen el fragmento rGPlb α fueron identificadas en un ELISA sándwich (cfr. infra). Las fracciones máximas fueron reunidas, la concentración del fragmento rGPlb α (His1-Val289) fue determinada usando el kit de Bradford (Biorad, Hércules, EE.UU.) con albúmina de suero bovino como estándar y las fracciones reunidas se almacenaron a -80°C hasta su uso adicional.

La pureza del fragmento recombinante en la fracción eluída reunida fue evaluada por electroforesis de gel de SDS-poliacrilamida.

Ejemplo 2: Ensayo ELISA

ELISA sandwich

10

15

20

25

30

35

40

45

Las placas de microtítulo (96 pocillos, Greiner, Frickenhausen, Alemania) fueron revestidas durante la noche a 4°C con 100 μ l/pocillo de mAb 2D4 (5 μ g/ml en PBS). Las placas fueron bloqueadas con leche en polvo al 3 % (250 μ l/pocillo) durante 2 horas a TA, entonces 50 μ l de cada fracción del eluado de la columna fueron añadidos a 50 μ l de TBS y las muestras fueron incubadas durante 1,5 horas a 37°C. El fragmento rGPlb α (His1-Val289) presente, fue detectado después de 1 h de incubación a 37°C con el mAb 12G1 biotinilado (100 μ l/pocillo), seguido de una incubación de 45 minutos con la estreptavidina-POD (Boehringer Mannheim) (100 μ l/pocillo) (1/10 000 en TBS, Tween-20 al 0,1 %). La visualización fue realizada con 4 mol/L de H₂SO₄. La absorbancia fue determinada a 490 nm. Después de cada etapa de incubación, las placas fueron lavadas con TBS, Tween-20 al 0,1 %, tres veces después de las atapas de revestimiento y bloqueo y doce veces por otra parte.

ENSAYO VWF:CBA

Las placas de microtítulo (96 pocillos) fueron revestidas durante una noche a 4°C con el tipo I de colágeno humano (25 µg/ml, 100 µl/pocillo) (Sigma). El tipo I de colágeno humano usado, fue dializado durante 48 h contra PBS. Las placas fueron bloqueadas con leche en polvo al 3 % durante 2 horas a TA (250 µl/pocillo). Después, las series de dilución (1/2 en la leche en polvo al 0,3 %) de fondo de plasma y fueron añadidas muestras de ensayo comenzando de 1/80 a 1/640 (100 µl/pocillo) y las muestras fueron incubadas durante 1,5 h a TA. El fondo de plasma siempre se añadió por triplicado y las muestras de ensayo por duplicado. El VWF unido fue detectado con anti-vWF-Ig-HRP (1/3 000 en leche en polvo al 0,3 %) después de 1 h de incubación a TA. La visualización fue realizada como se describe más arriba. Después de cada etapa de incubación, las placas fueron lavadas con PBS, Tween-80 al 0,002 % como se describe más arriba.

ELISAS COMPETITIVOS

Competición entre vWF y anti-GPIb-mAbs para unir al fragmento de rGPIb a

El ELISA fue realizado como se describe para el ELISA de vWF: RiCof salvo que las diluciones consecutivas de mAbs 6B4 y 7D2 (comenzando de 25 μ g/ml, 50 μ l/pocillo) fueron preincubadas durante 30 minutos con el fragmento de rGPlb α a 37°C. Entonces, fueron añadidos a cada pocillo 50 μ l de una concentración constante del fondo de plasma (0,064 U/ml vWF). Las muestras fueron incubadas durante 1,5 horas a 37°C antes de que la unión de vWF fuera detectado después de la incubación con anti-vWF-Ig-HRP.

Competición entre vWF y anti-vWF-mAbs para unir al fragmento de rGPlb α

El ELISA fue realizado como se describe para el ELISA de vWF: RiCof salvo que las diluciones consecutivas de mAbs 701 y 82D6A3 (comenzando de 50 μ g/ml, 100 μ l/pocillo) fueron preincubadas durante 30 minutos con 100 μ l de una concentración constante del fondo de plasma (0,064 U/ml de vWF) en una placa prebloqueada. Cien μ l de estas soluciones fueron añadidos entonces a los pocillos que contienen el fragmento de rGPlb α y las muestras fueron incubadas durante 1,5 horas a 37°C antes que la unión de vWF fuera detectada después de la incubación con anti-vWF-lg-HRP.

Competición entre vWF y anti-vWF-mAbs para unir al colágeno de tipo I humano

El ELISA fue realizado como se describe para el ELISA vWF: CBA salvo que las diluciones consecutivas de mAbs 82D6A3 y 701 (comenzando de 0,2 μ g/ml, 100 μ l/pocillo) fueron preincubadas durante 30 minutos con 100 μ l de una concentración constante del fondo de plasma (100 ng/ml vWF) en una placa prebloqueada. Las muestras fueron entonces añadidas a cada pocillo que contiene colágeno y fueron incubadas durante 1,5 horas a 37°C antes que la unión de vWF fuera detectada después de la incubación con anti-vWF-Ig-HRP.

La ristocetina indujo la unión de vWF en presencia de 1C1E7

El revestimiento, el bloqueo y la incubación con el fragmento de rGPlb α fueron como se describe para el ELISA de vWF: RiCof. Entonces, antes de que fuera añadido a cada pocillo el fondo de plasma (el fondo de plasma de donantes normales, plasmas sanos), fue preincubado mAb 1C1E7 (25 µg/ml, 100 µl/pocillo) con cantidades constantes del fondo de plasma (100 µl/pocillo, 0,064 U/ml vWF) durante 30 minutos a TA. Las muestras fueron añadidas entonces a los pocillos que contienen el fragmento de rGPlb α en presencia de concentraciones diferentes de ristocetina (0 - 600 µg/ml), y fueron incubadas durante 1,5 horas a 37°C. El VWF unido fue detectado como se describe antes. El VWF unido fue detectado con antisuero de factor de von Willebrand antihumano de conejo marcado con peroxidasa de rábano picante (anti-vWF-lg-HRP, Dako, Glostrup, Dinamarca) (1/3 000 en TBS, Tween-20 al 0,1 %) después de 1 h de incubación a TA. La visualización fue realizada con OPD y la reacción de coloración fue parada con 4 mol/L de H_2SO_4 . La absorbancia fue determinada a 490 nm. Después de cada etapa de incubación, las placas fueron lavadas con TBS, Tween-20 al 0,1 %, tres veces después de las etapas de revestimiento y bloqueo y doce veces en otra parte.

30 ENSAYO DE VWF: AG

5

10

15

20

25

35

40

45

Las placas de microtítulo (96 pocillos) fueron revestidas durante una noche a 4°C con 125 μ l/pocillo de una anti-vWF-Ig-solución policlónico (Dako) (1/1 000 en tampón de carbonato de 50 mM pH de 9,6). Las placas fueron bloqueadas durante 2 h a (TA) con 250 μ l/pocillo de solución de leche en polvo al 3 %. Entonces, como un estándar, fue aplicado un fondo de plasma (por triplicado) a los pocillos en diluciones de 1/40 a 1/2560 (las muestras fueron diluidas en leche en polvo al 0,3 %). Las muestras de ensayo (paciente) fueron aplicadas por duplicado en las mismas diluciones. Todas las muestras fueron incubadas durante 2 h a 37°C. El VWF unido fue detectado con anti-vWF-Ig-HRP (1/3 000 en leche en polvo al 0,3 %) después de 1 h de incubación a TA. La visualización fue realizada como se describe más arriba. Después de cada etapa de incubación las placas fueron lavadas con TBS, Tween-20 al 0,1 % como se describe más arriba.

VWF: RiCof-ELISA

Las placas de microtítulo (96 pocillos) fueron revestidas durante la noche a 4°C con 100 μ l/pocillo de mAb 2D4 (5 μ g/ml en PBS). Las placas fueron bloqueadas con leche en polvo al 3 % (250 μ l/pocillo) durante 2 horas a TA seguido de una incubación de 2 horas a 37°C con una solución que contiene 2,5 μ g/ml de fragmento de rGPlb α (His1-Val289) (en TBS, Tween-20 al 0,1 %, 100 μ l/pocillo). La unión de vWF al fragmento de rGPlb α (His1-Val289) fue realizada en presencia de ristocetina (Ristocetina A SO_4 , abp, Nueva York) durante 1,5 h a 37°C. Por lo

tanto, el fondo del plasma (donantes sanos) y las muestras de ensayo (muestras de pacientes) fueron diluidos de 1/32 a 1/512 y de 1/32 a 1/256 respectivamente en TBS, Tween-20 al 0,1 % que contiene 760 μ g/ml de ristocetina y fueron añadidos 100 μ l de cada dilución a los pocillos revestidos con rGplb α . El fondo del plasma siempre era añadido por triplicado y las muestras de ensayo por duplicado. El VWF unido fue detectado con antisuero del factor antihumano de conejo de von Willebrand marcado con peroxidasa de rábano picante (anti-vWF-lg-HRP, Dako, Glostrup, Dinamarca) (1/3 000 en TBS, Tween-20 al 0,1 %) después de 1 h de incubación a TA. La visualización fue realizada con OPD y la reacción de coloración fue parada con 4 mol/L de H_2SO_4 . La absorbancia fue determinada a 490 nm. Después de cada etapa de incubación las placas fueron lavadas con TBS, Tween-20 al 0,1 %, tres veces después de las etapas de revestimiento y bloqueo y doce veces en otra parte.

10

15

20

25

30

35

40

45

50

Ejemplo 3: La ristocetina indujo la unión de vWF de plasma al fragmento de rGPlb α (His1-Val289)

La unión de vWF de plasma al fragmento de rGPlb α capturado (His1-Val289) en presencia de concentraciones variadas de ristocetina fue probada en un sistema ELISA como se describe más arriba. Las curvas de unión siempre fueron estudiadas comenzando a partir de una dilución 1/32 de plasma ya que cuanto más concentrado estaba el plasma menos unión fue observada, probablemente debido a una interferencia no específica de la ristocetina con las proteínas presentes del plasma. Una unión buena de vWF al fragmento de rGPlb α (his1-Val289) fue observada en presencia de 760 μg/ml de ristocetina (Fig. 1). La especificidad de unión de vWF al fragmento de rGPlb α en presencia de ristocetina fue evaluada estudiando esta unión en presencia de anti-GPIb-mAbs 6B4 y 7D2 y en presencia de anti-vWF-mAbs 1C1E7, 701 y 82D6A3. La preincubación del fragmento de rGPIb α con mAbs 6B4 y 7D2 reveló la inhibición del 100 por ciento en presencia de mAb 6B4 (un anti-GPIb α-mAb que inhibe la aglutinación de plaquetas inducida de ristocetina, N. C., presentado) mientras que el anti-GPIb α-mAb 7D2 no inhibidor no tenía ningún efecto (Fig. 2A). La preincubación de vWF con mAb 1C1E7 (un anti-vWF-mAb que realza la unión inducida por ristocetina de vWF a GPIb, (17) mostró un aumento de la unión de vWF al fragmento de rGPlb α en presencia de concentraciones hasta bajas de ristocetina (Fig. 2B). La preincubación de vWF con mAbs 701 y 82D6A3 mostró una inhibición del 100 por ciento en vWF que une al fragmento de rGPlb α en presencia del anti-(dominio vWF A1) mAb 701 (que inhibe la aglutinación de plaquetas inducida de ristocetina, Girma, JP, comunicación personal) mientras que el anti-(dominio vWF A3) mAb 82D6A3 (18) no tenía ningún efecto (Fig. 2C). La preincubación de mAb 82D6A3 con vWF sin embargo, causó la inhibición del 100 por ciento de la unión de vWF al colágeno (Fig. 2do) mientras que el anti-(dominio vWF A1) mAb 701 no tenía ningún efecto en la unión del colágeno (Fig. 2do) como se esperaba.

Estos datos muestran que la unión inducida por ristocetina de vWF a GPIb, que es rutinariamente probada en un ensayo de aglutinación de plaquetas, se puede estudiar de forma reproducible en un sistema ELISA y que esta prueba se puede usar para diagnosticar a pacientes con vWD. Se demostró que vWF en el plasma se une a un fragmento de rGPIb α capturado en presencia de ristocetina (Fig. 1). Esta unión era además específica ya que (i) la interacción de vWF-GPIb α podría ser inhibida por mAb 6B4, que inhibe la aglutinación de plaquetas inducida por la ristocetina e (ii) desde mAb 1C1E7, un anticuerpo anti-vWF que realza la unión inducida por ristocetina de vWF a GPIb (Tornai, *J Clin Invest* 1993; **91**: 273-82) también podría aumentar considerablemente esta unión inducida por ristocetina (Fig. 2).

Inhibición de la unión inducida por la ristocetina de vWF a GPIb purificado por MoAbs medido en un sistema ELISA

Este ensayo fue realizado como se ha descrito anteriormente (Harsfali, *Blood* 1995; **85**:705-11). Brevemente, el GPIb purificado fue revestido en pocillos de placas de microtítulo a

 $5~\mu g/mL$, después de bloquear los sitios no adsorbidos con BSA (10 mg/mL), los pocillos fueron preincubados con MoAbs anti-GPIb durante 30 minutos a 22°C. Entonces fueron añadidos a la placa vWF (10 $\mu g/mL$) y la ristocetina (varias concentraciones). El VWF GPIb-asociado fue revelado por un anticuerpo anti-vWF policlónico HRP-conjugado (Dako, Glostrup, Dinamarca) y orto-fenilendiamina (OPD, Sigma). La reacción fue parada con 4 mol/L de H_2SO_4 y la absorbancia fue determinada a 492 nm. La unión de vWF no específica fue medida repitiendo el mismo ELISA en una placa de microtítulo no revestida.

5

10

15

20

25

30

Inhibición de la unión inducida por ristocetina o botrocetina de ¹²⁵I-VWF a plaquetas fijadas lavadas por MoAbs

La unión de 125 I-vWF a plaquetas fijadas lavadas fue estudiada esencialmente como se ha descrito anteriormente (Sakariassen, *J. Lab. Clin. Med.* **102** (1983), 522). Una concentración final de 108 plaquetas/mL fue premezclada durante 30 minutos con 10 μ g/mL de varios MoAbs anti-GPlb. Después de añadir 125 I-vWF (0,5 μ g/mL) la unión fue inducida por la adición de la ristocetina (varias concentraciones) o botrocetina (0,1 μ g/mL, f. c.). Después de 45 minutos de la incubación, las alícuotas duplicadas de la mezcla se separaron en cojines de sacarosa al 20 %. El 125 I-vWF unido y libre fue separado por centrifugación y se contó. El porcentaje de radiactividad unida total fue calculado como radiactividad unida / (libre + unida)*100. Los resultados son ilustrados en la tabla siguiente:

Moab	Subtipo	Agregación de plaquetas humanas inducida por ristocetina (1,2 mg/mL)	Agregación de plaquetas humanas inducida por Botrocetina (0,5 µg/mL)	Adhesión de plaquetas humanas inducida por cizalla a colágeno tipo I (velocidad de cizalla 2600/s) en cámara de flujo del tipo Sakariassen Los datos proporcionados es el % de la superficie cubierta en comparación al control (=adhesión de plaqueta en ausencia de Ab es así puesto como 100%)
2D4	IGg1	Sin inhibición	Sin inhibición	ND
6B4	IGg1	1 μg/ml de Ab causa una completa inhibición	1 mg/ml de Ab causa una completa inhibición	Los ensayos hechos con 5 μg/ml de Ab: 4,2 % ± 1,4 (SEM)

Recientemente, fue desarrollado otro ensayo ELISA como una alternativa para el ensayo de aglutinación de vWF:RiCof (Murdock, *Thromb Haemost* 1997; **78**: 1272-7). En esta prueba, se usó un mAb que reconoce un epítopo en el dominio de vWF-A1 importante en su interacción con GPIb. Se ha demostrado que este ensayo sin embargo da resultados que se diferencian ampliamente del análisis de vWF: RiCof en un UK NEQAS Survey (Preston, *Thromb Haemost* 1998; **80**: 863) y en pruebas normales de vWF (Fischer, *Thromb Res* 1998; **91**: 39-43) y su utilidad todavía tiene que ser probada.

Algunos laboratorios usan el ensayo de unión de colágeno en el diagnóstico de vWD. Aunque no sea una prueba rutinaria, se ha probado ya que esto es útil en la determinación de las actividades de vWF en muchos estudios. Ha sido propuesto por algunos autores sustituir las medidas de vWF:RiCof (Brown, *Thromb Res* 1986; **43**:303-11, Favaloro, *Pathology* 1993; **25**: 152-8), pero hay que señalar que ambas pruebas están basadas en características de unión diferentes de vWF. VWF se une al colágeno principalmente por su dominio A3 (Lankhof, *Thromb Haemost* 1996; **75**: 950-8) mientras que vWF se une a GPIb por el dominio A1 (Sixma,

Eur J Biochem 1991; **196**: 369-75). Esto se muestra en la Fig. 2C y D donde el mAb 701 anti-(dominio de A1 vWF) inhibe la unión inducida por ristocetina de vWF al fragmento de rGPlb α , mientras que el mAb 82D6A3 anti-(dominio de A3 vWF) no tiene ningún efecto. El MAb último sin embargo inhibe la unión de vWF al colágeno en contraste con 701.

5 Ejemplo 4: El uso del vWF:RiCof-ELISA como prueba fiable para determinar las actividades desconocidas de vWF:RiCof

La actividad de vWF: RiCof de una serie de dilución del fondo del plasma (de 1/32 a 1/512) fue medida en el sistema ELISA. La representación del OD (490 nm) frente a la actividad de vWF:RiCof originó una curva de unión de vWF de plasma a rGPIb α lo que podría ajustarse mejor por el uso de regresión polinómica (y = A_0 + A_1 x + A_2 x², Fig. 3). La actividad de vWF: RiCof en muestras de ensayo se puede calcular entonces como sigue:

$$x = (-A_1 + ((A_1)^2 - 4A_2 (A_0 - y))^{1/2})/2A_2$$

siendo x = Ia actividad de vWF:RiCof desconocida (U/mI)

y = la OD medida (490 nm)

10

20

25

35

40

45

15 A_0 , A_1 , A_2 , constantes en la ecuación $y = A_0 + A_1x + A_2x^2$

La repetibilidad de esta prueba fue determinada analizando 5 diluciones del fondo del plasma (1/32, 1/64, 1/128, 1/256, 1/512) en seis replicados en una tirada. El coeficiente de variación (CV) siempre fue menor del 13 % (4 %, 8 %, 10 %, 12 %, 11 %, respectivamente). La reproducibilidad fue determinada probando las mismas muestras de control en seis replicados más de 3 días y esto por dos técnicos. El CV máximo observado para cada punto de datos fue 13 %, 9 %, 13 %, 9 % y 10 %, respectivamente.

El cálculo de la línea de regresión polinómica mostró una correlación intraensayo de 0.9984 ± 0.0018 y una correlación interensayo de 0.9978 ± 0.00189 . Para determinar el límite de detección y el límite de cuantificación del vWF: RiCof-ELISA, fueron probados seis replicados de nueve diluciones (de 1/32 a 1/8 192) del fondo del plasma en tres ensayos. El límite de detección (DL) en el vWF: RiCof-ELISA (definido como 3SD más arriba del promedio del cero estándar) era 0.0005 U/ml (1/2 048 dilución de plasma). El límite de cuantificación (QL), es decir, la concentración mínima que se puede medir del ensayo para analizar con el CV < 20 % fue 0.0005 U/ml (1/2 048 dilución de plasma).

30 Ejemplo 5: VWF: RiCof en plasma de individuos normales comparado con vWF:CBA y vWF:Ag

La actividad de vWF: RiCof fue determinada en el plasma de voluntarios adultos aparentemente normales (n = 24) utilizando el sistema ELISA. La actividad de vWF: RiCof en el plasma de todos estos individuos normales estaba en el intervalo de 0,46 U/ml a 1,6 U/ml (0,75 U/ml medianos) (Fig. 4). La determinación de vWF: CBA y vWF: Ag en estos plasmas reveló actividades que se correlacionaban bien con la actividad de vWF: RiCof (Fig. 4). La representación de vWF: RiCof frente a vWF: Ag reveló una correlación de 0,82, vWF: RiCof frente a vWF: CBA llevó a una correlación de 0,80, como se esperaba para individuos normales.

Ejemplo 6: Medida de las actividades de vWF en plasmas de pacientes con vWD

Fueron analizadas muestras de plasma de 45 pacientes con vWD de subtipo conocido para vWF: RiCof con el ensayo ELISA (Fig. 5). Para los pacientes vWD del tipo 1 (n = 17), el valor estaba en el intervalo de 0,005 U/ml a 0,559 U/ml (mediana, 0,28 U/ml). En el plasma del tipo 2A (n = 18) y el 4 tipo 2B los pacientes con vWD examinador, fueron medidos valores de vWF: RiCof de 0,005 U/ml a 0,38 U/ml (0,055 U/ml medianos) y de 0,005 U/ml a 0,34 U/ml (0,094 U/ml medianos) respectivamente. Las actividades de vWF: RiCof en los plasmas de 3

pacientes de vWD tipo 3 disponibles estaban por debajo de 0,0005 U/ml (QL en el ensayo ELISA). El vWF en el plasma de 2 pacientes tipo 2N tenía actividades de vWF: RiCof normales (0,87 U/ml y 0,62 U/ml). La actividad de vWF: RiCof determinada en la prueba de ELISA fue comparada con la actividad de vWF: RiCof determinada en la prueba de aglutinación. Los datos últimos fueron amablemente proporcionados por el doctor C. Mazurier y el doctor K. Peerlinck. Fue obtenida una correlación de 0,828 (Fig. 6).

En pacientes tipo 1, las actividades de vWF: RiCof, vWF: CBA (mediana, 0,34 U/ml) y vWF: Ag (mediana, 0,34) son proporcionales, cuando no hay ningún defecto funcional en vWF (Fig. 5). Esto causó proporciones de vWF:Ag/vWF:RiCof y vWF:Ag/vWF:CBA alrededor de uno (mediana: 1,23 U/ml y 0,964 U/ml respectivamente). En los pacientes tipo 2A y 2B, el defecto funcional estaba claro ya que vWF: RiCof y vWF: CBA (mediana 0,146 U/ml y 0,31 U/ml respectivamente) eran bajas. El vWF: Ag era bajo o normal (mediana: 0,16 U/ml y 0,31 U/ml, respectivamente) en estos pacientes (Fig. 5). En el tipo 3, pacientes fueron un defecto cuantitativo claro cuando casi ninguna actividad de vWF:Ag fue medida. Los 2 pacientes tipo 2N mostraron actividades de vWF:Ag y vWF:CBA normales de acuerdo con la actividad de vWF:RiCof.

Se mostró que este vWF: RiCof-ELISA se puede usar para discriminar (i) entre individuos normales y pacientes con vWD e (ii) entre pacientes tipo 2A y tipo 2B. (i), la actividad de vWF: RiCof de vWF de plasma de todos los individuos normales era > 50 % (excepto un paciente). Estos resultados correspondieron a los valores de vWF: CBA y vWF: Ag, causando proporciones de vWF:Ag/vWF:RiCof y vWF:Ag/vWF:CBA de alrededor de uno (mediana: 1,23 U/ml y 0,96 U/ml, respectivamente). Por otra parte, los pacientes con vWD tipo 1 tenían vWF: RiCof < 50 % (excepto un paciente) y tenía actividades de vWF: CBA y vWF: Ag comparables ya que esto en efecto es un desorden cuantitativo y no cualitativo (Fig. 5). Los pacientes del tipo 2A y 2B tenían bajos vWF: RiCof comparado con el vWF: Ag bajo o normal. En los 3 pacientes tipo 3 disponibles, no fueron observadas ningunas actividades de vWF: RiCof, vWF: CBA o vWF: Ag detectables. Los 2 pacientes tipo 2N no tenían ninguna anormalidad en ninguna de las actividades de vWF medidas. Para concluir, los valores de vWF: RiCof determinados en el sistema ELISA se correlacionaron bien con los valores obtenidos de los estudios de aglutinación de plaquetas (véase la Fig. 6).

REIVINDICACIONES

- 1. Un método para detectar la enfermedad de von-Willebrand (vWD) que comprende las etapas de:
 - a) detectar la actividad del Factor de von Willebrand (vWF) en una muestra que comprende una forma soluble o parte de la glicoproteína lb (α) (GPIb (α)) y ristocetina o un fragmento del mismo o botrocetina capaz de inducir la unión de vWF a GpIb (α),
 - b) determinar la cantidad de vWF-antígeno en dicha muestra,

5

10

15

20

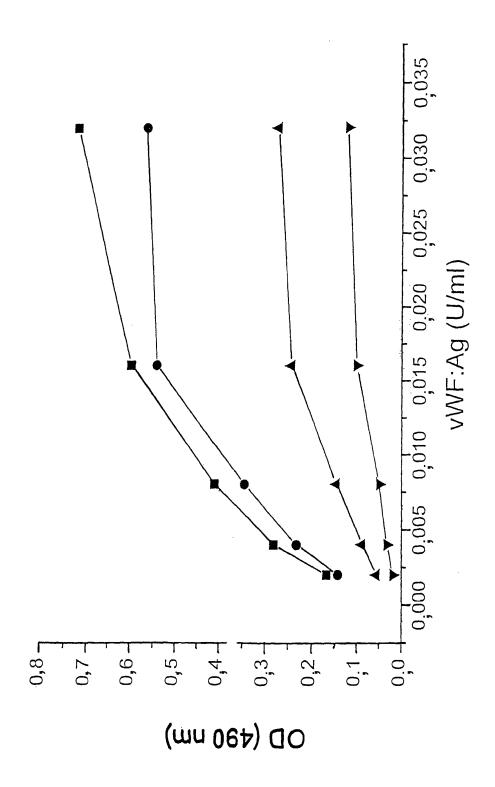
30

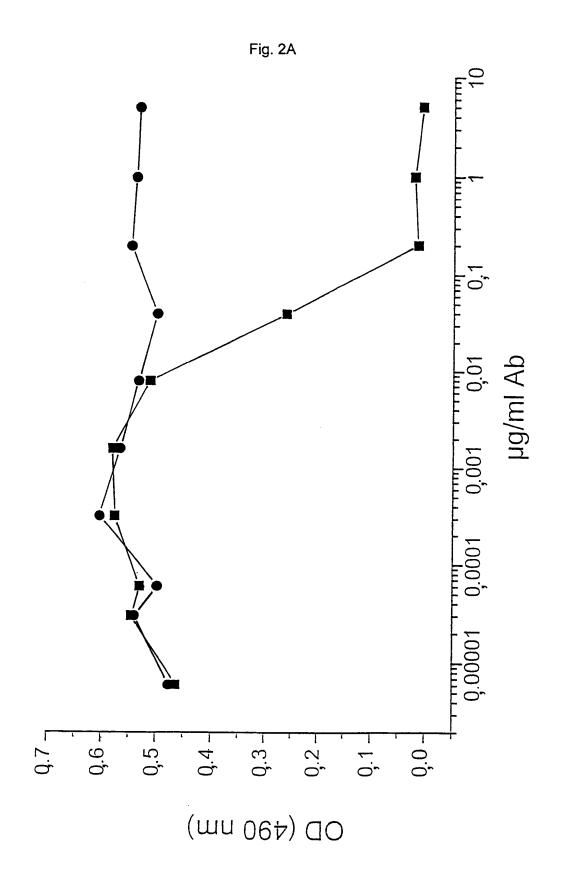
35

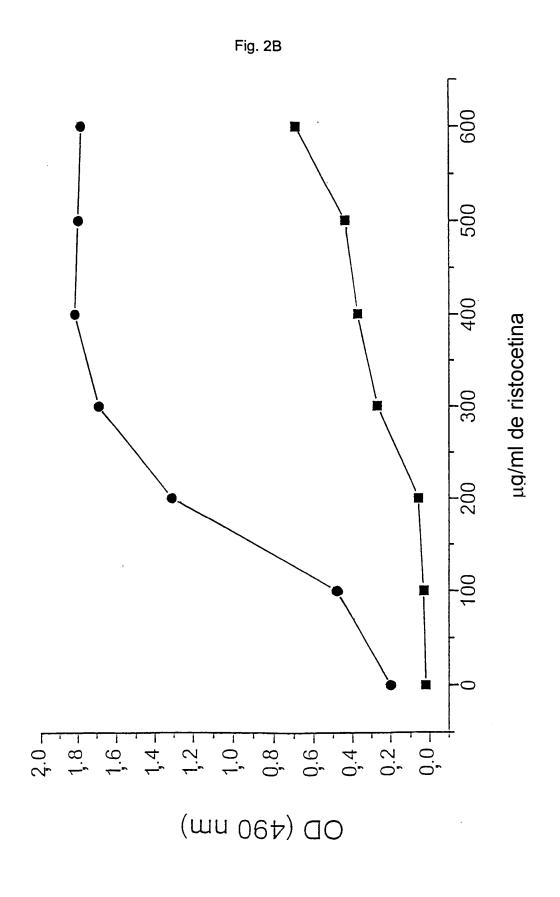
- c) determinar la proporción entre la actividad de vWF y el antígeno de vWF para dicha muestra,
- d) comparar la baja proporción obtenida (c) respecto al intervalo de proporciones establecidas como el intervalo normal.
- 2. El método de la reivindicación 1, en el que la detección de la enfermedad de von-Willebrand comprende discriminar entre tipos diferentes de la enfermedad de von-Willebrand.
- 3. El método de la reivindicación 2, en el que la detección de la enfermedad de von-Willebrand comprende discriminar entre la enfermedad de von-Willebrand del tipo 1 y del tipo 2.
- 4. El método de cualquiera de las reivindicaciones 1 a 3, en el que dicha detección de la actividad del factor de von-Willebrand (vWF) es realizada detectando la formación de un complejo de vWF y GPlb (α) y/o un complejo formado por vWF y GPlb (α).
- 5. El método de cualquiera de las reivindicaciones 1 a 4, en el que dicho GPIb (α) se une a un soporte sólido.
- 6. El método de la reivindicación 5, en el que dicho GPIb (α) se une a dicho soporte sólido por una reacción específica del anticuerpo anti-GPIb (α).
 - 7. El método de la reivindicación 4, en el que dicho complejo se une a un soporte sólido.
- 8. El método de la reivindicación 7, en el que dicho complejo se une a dicho soporte por una reacción específica del anticuerpo anti-GPlb (α), por una reacción específica del anticuerpo anti-vWF, por un reacción específica del anticuerpo del antifactor VIII y/o por el colágeno.
 - 9. El método de cualquiera de las reivindicaciones 1 a 8, en el que dicha detección se realiza por una reacción específica del anticuerpo anti-vWF, por una reacción específica del anticuerpo anti-GPIb (α), por colágeno y/o sus mezclas.
 - 10. El método de cualquiera de las reivindicaciones 6, 8 y 9, en el que dicho anticuerpo es un anticuerpo monoclónico, un anticuerpo policlónico o un anticuerpo quimérico.
 - 11. El método de la reivindicación 9 o 10, en el que dicho anticuerpo o dicho colágeno se marca de forma detectable.
 - 12. El método de cualquiera de las reivindicaciones 5 a 7, en el que dicho soporte sólido es un soporte de plástico, un vidrio, un silicio, un metal coloidal, una celulosa o un soporte polimérico.
 - 13. El método de cualquiera de las reivindicaciones 5 a 7, en el que dicho soporte sólido se selecciona del grupo que consiste en polímeros orgánicos sólidos, partículas metálicas coloidales de celulosa/ membranas de celulosa, superficies plásticas, y cualquier combinación de estos.

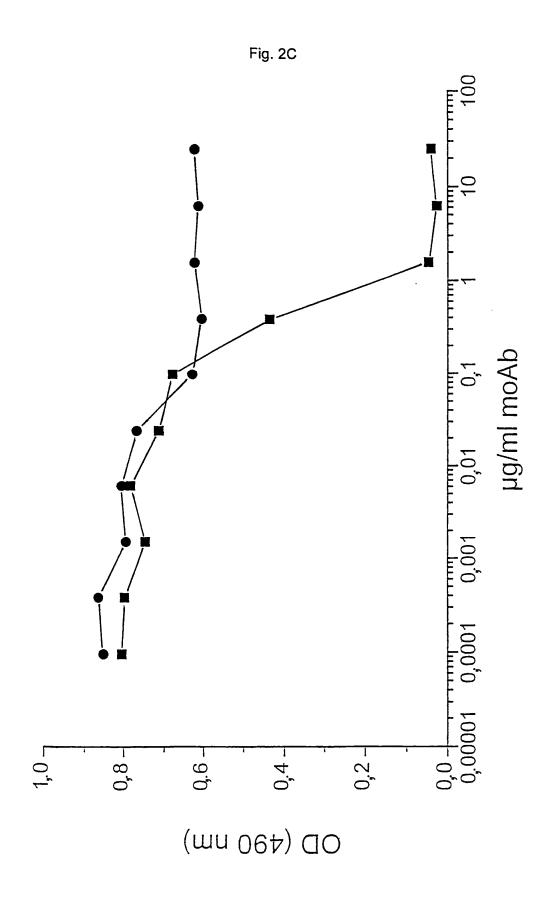
- 14. El método de la reivindicación 13, en el que dicha partícula metálica coloidal es una partícula de oro.
- 15. El método de la reivindicación 13, en el que dicha superficie de plástico es el pocillo de una placa de microtítulo.
- 16. El método de la reivindicación 13, en el que dicho polímero orgánico sólido es una cuenta de látex.

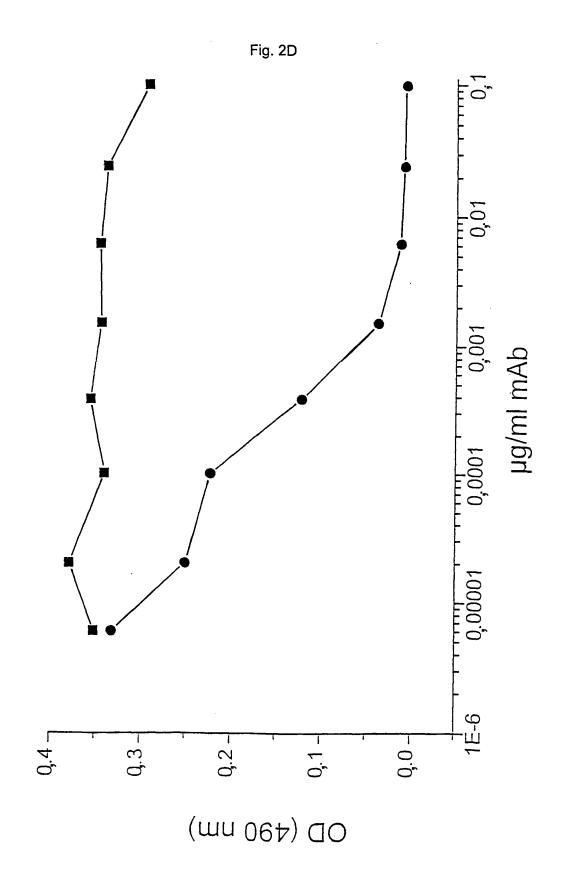
5

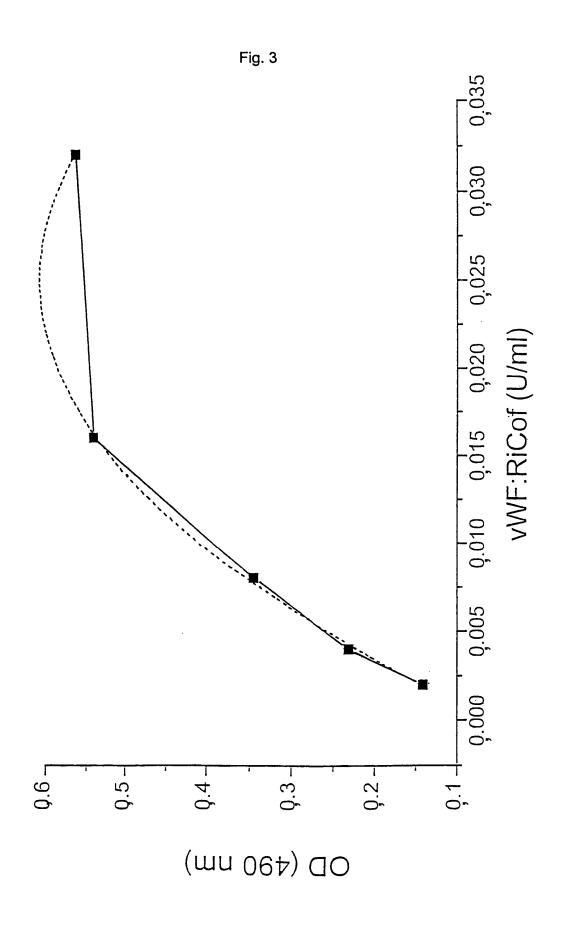

10


- 17. El método de cualquiera de las reivindicaciones 1 a 16, en el que dicha detección se realiza por un ensayo heterogéneo o uno homogéneo.
- 18. El método de la reivindicación 17, en el que dicho ensayo heterogéneo es un ensayo inmune-absorbente de unión enzimática (ELISA), un radioinmunoensayo (RIA), un inmunoensayo radiométrico (IRMA), un inmunoensayo fluorescente (FIA), un inmunoensayo quimioluminiscente (CLIA) o un inmunoensayo electro-quimioluminiscente (ECL).
- 19. El método de la reivindicación 17, en el que dicho ensayo homogéneo es un ensayo de aglutinación.
- 20. El método de la reivindicación 19, en el que dicho ensayo de aglutinación está basado en la aglutinación de cuentas de látex.
 - 21. El método de la reivindicación 19, en el que dicha aglutinación es medida por variación de la carga eléctrica, variación del campo magnético, variación turbidimétrica o dispersión de la luz.
- 22. El método de cualquiera de las reivindicaciones 1 a 21, en el que dicha muestra es una muestra de sangre.
 - 23. El método de cualquiera de las reivindicaciones 1 a 21, en el que dicha muestra es una muestra de suero.
- 24. El método de la reivindicación 22, en el que dicha muestra de sangre es una muestra de plasma.
 - 25. El método de cualquiera de las reivindicaciones 22 a 24, en el que dicha muestra está diluida.
 - 26. El uso de una forma soluble o una parte de la glicoproteína lb (α) (GPIb (α)) en el método de cualquiera de las reivindicaciones 1 a 25.
- 30 27. El uso de ristocetina, botrocetina *in vitro* en el método de cualquiera de las reivindicaciones 1 a 25.
 - 28. El uso de un anticuerpo de anti-GPIb (α) que reacciona específicamente en el método de cualquiera de las reivindicaciones 6 a 25.
- 29. El uso de un anticuerpo de anti-vWF que reacciona específicamente en el método de cualquiera de las reivindicaciones 8 a 25.
 - 30. El uso de un kit in vitro que comprende:
 - (a) una forma soluble o parte de glicoproteína lb (α) (GPIb (α)) y
 - (b) ristocetina *in vitro*, botrocetina capaz de inducir la unión de vWF a GpIb (α) , para detectar la enfermedad de von-Willebrand (vWD)
- 40 31. El uso según la reivindicación 30, en el que la detección de la enfermedad de von-Willebrand comprende discriminar entre tipos diferentes de la enfermedad de von-Willebrand.


- 32. El uso según la reivindicación 30 o 31, en el que el kit comprende además un anticuerpo según se define en cualquiera de las reivindicaciones 6, 8, 9, 10 y 11.
- 33. El uso según cualquiera de las reivindicaciones 30 a 32, en el que el kit comprende además un anticuerpo capaz de unirse al vWF-antígeno.
- 34. El uso según cualquiera de las reivindicaciones 30 a 33, en el que el kit comprende además un estándar y/o medios para la detección en ensayos homogéneos y/o heterogéneos según se define en cualquiera de las reivindicaciones 17 a 21.


- 35. El uso según cualquiera de las reivindicaciones 30 a 34, en el que la forma soluble o parte de GP1b (α) es una proteína recombinante.
- 36. El método de cualquiera de las reivindicaciones 1 a 25 o el uso de cualquiera de las reivindicaciones 26 a 35, en el que dicha forma soluble o parte de la glicoproteína lb (α) (GPIb (α)) es recombinantemente producida.





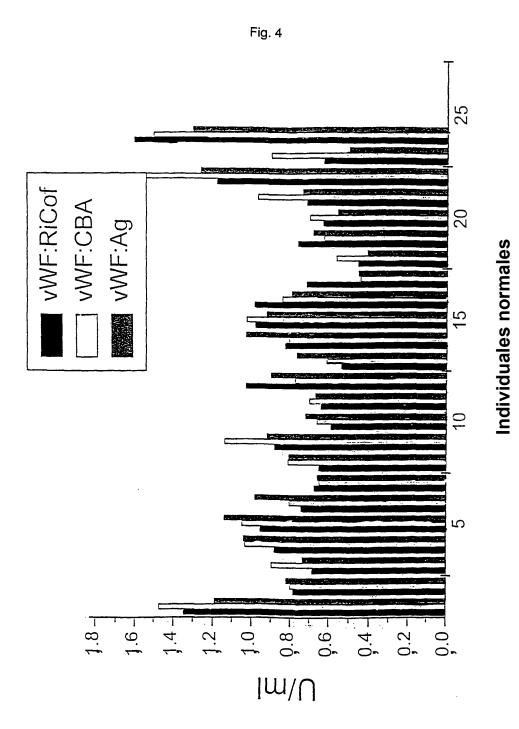
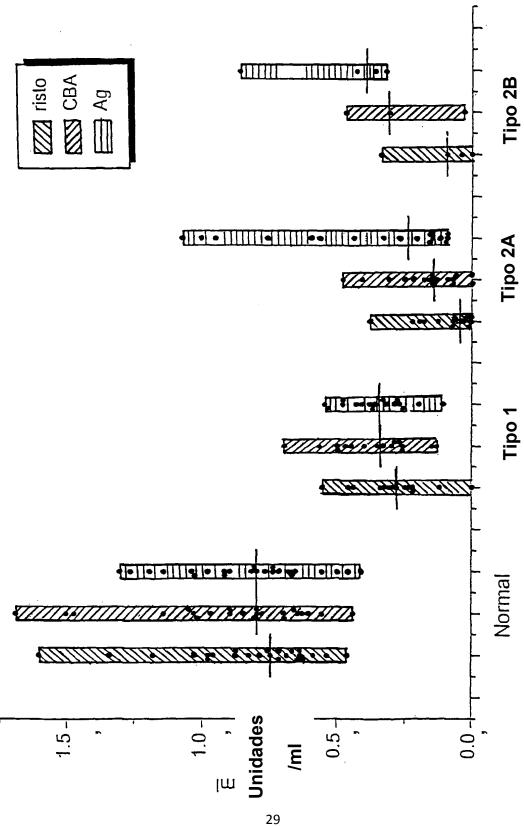
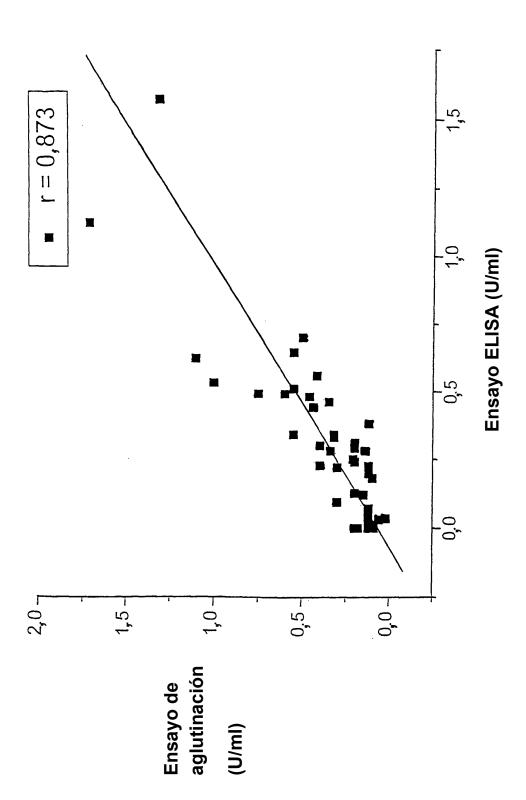




Fig. 5

