

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

 \bigcirc Número de publicación: $2\ 358\ 643$

(51) Int. Cl.:

A01H 1/06 (2006.01)

_	_
12	TRADUCCIÓN DE PATENTE EUROPEA
(2)	I NADUCCION DE FAI LIVIE LUNCELA

Т3

- 96 Número de solicitud europea: 03744375 .1
- 96 Fecha de presentación : **18.03.2003**
- 97 Número de publicación de la solicitud: 1487255 97) Fecha de publicación de la solicitud: 22.12.2004
- 🗿 Título: Población de plantas transgénicas, material derivado de las mismas, colección de plásmido correspondiente y población de organismos huéspedes transformados, así como su uso y métodos para su generación.
- (30) Prioridad: **19.03.2002 DE 102 12 158**
- 73 Titular/es: METANOMICS GmbH & Co. KGaA Tegeler Weg 33 10589 Berlin-Charlottenburg, DE METANOMICS GmbH
- (45) Fecha de publicación de la mención BOPI: 12.05.2011
- (2) Inventor/es: Blau, Astrid; Klein, Mathieu y Wendel, Birgit
- (45) Fecha de la publicación del folleto de la patente: 12.05.2011
- (74) Agente: Carvajal y Urquijo, Isabel

ES 2 358 643 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Población de plantas transgénicas, material derivado de las mismas, colección de plásmido correspondiente y población de organismos huéspedes transformados, así como su uso y métodos para su generación

La presente invención se refiere a poblaciones de plantas transgénicas que comprenden una parte esencial de todos los segmentos codogénicos del gen de un organismo donante, así como al material biológico transgénico de las mismos, a colecciones de plásmidos y poblaciones de organismos huéspedes transformados, con los cuales pueden transformarse plantas de una manera correspondiente. También se describen métodos para la generación de las plantas y del material, así como al uso de las plantas y del material para investigaciones funcionales.

Debido al aumento de la población mundial y a las áreas de cultivo decrecientes existe una necesidad de producción sostenible. Aquí pueden aprovecharse informaciones genómicas para optimizar procesos de producción, en particular en la química, la producción de alimentos y en la agricultura. Ya ahora se encuentran disponibles enormes cantidades de información genómica. Aunque de manera preponderante se trata de información de secuencias sin asignación funcional o solo con indirecta asignación funcional.

Ya hubo ensayos para expresar genes individuales de organismos de tipos diferentes en plantas con propósitos diferentes. El objetivo de estos ensayos fue investigar la función de un gen determinado en la planta y su efecto en la fisiología vegetal.

En WO 01/26459 y WO 01/35725 se describen investigaciones de la empresa Mendel Biotechnology, Inc. para introducir factores de transcripción en Arabidopsis. En Lazo G., et al., BioTechnology 9, 1991, 963-967, se describe un banco que se compone de 21.600 clones. Los clones son agrobacterias que se han transferido, clonados en un vector de cósmido, con fragmentos de ADN genómico del genoma de arabidopsis. En tal caso cada fragmento codogénico de gen se produce en promedio cuatro veces en el banco.

A manera de ejemplo, en WO 99/36516 y WO 01/07600 se describe un enfoque sobre expresión transitoria de varios genes de un organismo donante determinado en una planta modelo. Allí se inserta un banco de ADNc derivado del organismo donante en un vector adecuado de un virus vegetal, por lo cual puede lograrse una expresión rápida y fuerte del ADNc después de la infección de la planta huésped con el vector dicho. Aunque en tal caso solo se expresan en los vegetales aquellos ADNcs que están presentes en la biblioteca original. Sin embargo, si se expresan, las porciones significativas del gen de un genoma lo hacen solo muy débilmente o solo en condiciones muy específicas y, por lo tanto, no está comprendido en tal enfoque. La desventaja en este procedimiento también es que por la infección aparecen efectos. Estos pueden influenciar los resultados de investigaciones fisiológicas en las plantas infectadas. Una debilidad que también es inherente a la expresión transitoria es que la disponibilidad del material transfectado es solo temporal. Así, en las investigaciones analíticas sólo pueden considerarse lapsos de tiempo relativamente cortos. No se reconocen las influencias relevantes al desarrollo que actúen por tiempos largos. Además, al usar vectores virales el tamaño de las secuencias que pueden incorporarse se limita debido al empacamiento indispensable de las secuencias en la envoltura viral.

Por lo tanto era un objetivo de la presente invención suministrar plantas en las que pudieran llevarse a cabo investigaciones funcionales de manera sistemática mediante la función de genes ajenos por todo el ciclo de desarrollo de los vegetales y deseablemente incluso por varias generaciones.

Este problema se resuelve gracias al objeto de la presente invención, a saber, gracias a una población de plantas transgénicas que comprende un grupo de plantas transgénicas, donde al genoma de cada planta transgénica del grupo se integra un segmento de gen codogénico de un organismo donante, pero no otro segmento de gen codogénico del organismo donante; la población puede obtenerse:

a) suministrando un segmento de gen codogénico del organismo donante;

20

40

- b) integrando este segmento de gen codogénico en el genoma de una planta; y
- c) llevando a cabo los pasos a) y b) para al menos el 50% de todos los segmentos codogénicos de gen del organismo donante en un número correspondiente de plantas, de modo que cada uno de estas plantas tiene un segmento codogénico de gen, pero no otro, y el organismo donante se selecciona entre Acetobacter (subgen. Acetobacter) aceti; Acidithiobacillus ferrooxidans; Acinetobacter sp.; Actinobacillus sp; Aeromonas salmonicida; Agrobacterium tumefaciens; Aquifex aeolicus; Arcanobacterium pyogenes; Aster yellows phytoplasma; Bacillus sp.; Bifidobacterium sp.; Borrelia burgdorferi; Brevibacterium linens; Brucella melitensis; Buchnera sp.; Butyrivibrio fibrisolvens; Campylobacter jejuni; Caulobacter crescentus; Chlamydia sp.; Chlamydophila sp.; Chlorobium limicola;

Citrobacter rodentium; Clostridium sp.; Comamonas testosteroni; Corynebacterium sp.; Coxiella burnetii; Deinococcus radiodurans; Dichelobacter nodosus; Edwardsiella ictaluri; Enterobacter sp.; Erysipelothrix rhusiopathiae; Escherichia coli; Flavobacterium sp.; Francisella tularensis; Frankia sp. Cpl1; Fusobacterium nucleatum; Geobacillus stearothermophilus; Gluconobacter oxydans; Haemophilus sp.; Helicobacter pylori; Klebsiella pneumoniae; Lactobacillus sp.; Lactococcus lactis; Listeria sp.; Mannheimia haemolytica; Mesorhizobium loti; Methylophaga thalassica; Microcystis aeruginosa; Microscilla sp. PRE1; Moraxella sp. TA144;

5

10

15

30

35

Mycobacterium sp.; Mycoplasma sp.; Neisseria sp.; Nitrosomonas sp.; Nostoc sp. PCC 7120; Novosphingobium aromaticivorans; Oenococcus oeni; Pantoea citrea; Pasteurella multocida; Pediococcus pentosaceus; Phormidium foveolarum; Phytoplasma sp.; Plectonema boryanum; Prevotella ruminicola; Propionibacterium sp.; Proteus vulgaris; Pseudomonas sp.; Ralstonia sp.; Rhizobium sp.; Rhodococcus equi; Rhodothermus marinus; Rickettsia sp.; Riemerella anatipestifer; Ruminococcus flavefaciens; Saccharomyces cerevisiae; Salmonella sp.; Selenomonas ruminantium; Serratia entomophila; Shigella sp.; Sinorhizobium meliloti; Staphylococcus sp.; Streptococcus sp.; Streptomyces sp.; Synechococcus sp.; Synechocystis sp. PCC 6803; Thermotoga maritima; Treponema sp.; Ureaplasma urealyticum; Vibrio cholerae; Vibrio parahaemolyticus; Xylella fastidiosa; Yersinia sp.; Zymomonas mobilis

El término "segmento de gen codogénico" se refiere a un ácido nucleico. Los ácidos nucleicos se forman de monómeros (nucleótidos) y contienen azúcares, fosfato y o bien una purina o una pirimidina o derivados de éstas. Estos incluyen secuencias de ADN y ARN que pueden ser mono- o bicatenarias y pueden tener opcionalmente bases de nucleótidos sintéticas, no naturales o modificadas, que pueden incorporarse al ADN o ARN.

20 En particular, la expresión "segmento de gen codogénico" se refiere a la secuencia codificante, es decir a la parte de un gen que codifica una proteína, polipéptido o una parte de éstos.

El término "gen" se refiere a una secuencia de ADN que comprende tanto el segmento de gen codogénico, es decir en particular la secuencia codificante, como también elementos regulatorios.

El gen estructural que comprende el segmento de gen codogénico puede tener una secuencia codificante continua (marco de lectura abierto, abreviado ORF) o puede contener uno o más intrones que están enlazados con los exones mediante enlaces de empalme adecuados.

Los segmentos codogénicos de gen de acuerdo con la invención pueden encontrarse normalmente en las células del organismo donante. Con respecto al organismo donante se trata, por lo tanto, de secuencias autólogas. En contraste, estos segmentos codogénicos de gen no pueden encontrarse en los vegetales en los que se basan las poblaciones de acuerdo con la invención (vegetales receptores). Con respecto al vegetal receptor se trata, por lo tanto, de secuencias heterólogas.

Para la presente invención es crítica la integración de segmentos codogénicos de gen en el genoma de los vegetales. En tal caso puede integrarse un determinado segmento codogénico de gen como secuencia codificante continua (ORF) o contener uno o más intrones. Si es este último el caso, como consecuencia de la expresión por el vegetal regularmente se empalman secuencias de este tipo, en cuyo caso el patrón de empalme puede, aunque no tiene que, corresponder al del organismo donante.

Fundamentalmente los segmentos codogénicos de gen pueden integrarse al genoma extranuclear, por ejemplo al genoma de plástido, a una planta. De acuerdo con la invención se prefiere sin embargo la integración al genoma nuclear.

- 40 De acuerdo con la invención se prefiere integrar establemente las secuencias que comprenden al genoma de las plantas. Esto está conectado con uno o varios de los siguientes aspectos:
 - el número de copias por célula de un determinado segmento codogénico de gen es esencialmente constante durante el ciclo de vida de una planta;
 - el número de copias por célula de un determinado segmento codogénico de gen es determinable,
- el segmento codogénico del gen es hereditario como rasgo de la planta, y en caso de integración nuclear se rige por las reglas de Mendel.

Regularmente el número por célula de copias integradas de un determinado segmento codogénico del gen es de menos de 20 y, en la mayoría de los casos, de menos de 10. Según la invención se prefieren plantas con células

que comprenden aproximadamente 1 a 5 copias y, en particular, 1 copia de un determinado segmento codogénico del gen. El número de copias por célula puede determinarse de una manera conocida de por sí mediante análisis de "Southern-Blot" (extracción del ADN genómico, digestión enzimática de restricción, separación electroforética, transferencia de membrana, hibridación con sonda marcada específica de ADN o PCR cuantitativa.

De acuerdo con la invención, el ciclo de vida de una planta comprende de manera ventajosa todas las etapas de desarrollo desde la germinación hasta la maduración de las semillas. A manera de ejemplo, el ciclo de vida de Arabidopsis thaliana comprende la germinación epigeal, el desarrollo de la plántula hasta la roseta, la formación del vástago principal a partir de la roseta, su ramificación, el desarrollo de flores en los vástagos, el proceso de florecimiento y la maduración de semillas. En condiciones favorables, la Arabidopsis thaliana puede propagarse en el transcurso de 6 semanas de semilla a semilla.

Según una forma particular de realización de la presente invención, los segmentos codogénicos heterólogos del gen de las plantas transgénicas de secuencias de ADN-T, en particular de secuencias de plásmidos de agrobacteria Ti, se flanquean unilateral o bilateralmente. Esto también es una expresión de la integración estable según la invención de los segmentos codogénicos del gen en el genoma de las plantas.

Las poblaciones de acuerdo con la invención de las plantas transgénicas comprenden al menos 50% de todos los segmentos codogénicos del gen de un determinado organismo donante. Se prefieren poblaciones de plantas transgénicas con al menos 70 % en particular con al menos 90 % de todos los segmentos codogénicos del gen de un determinado organismo donante.

Además, los segmentos codogénicos del gen de un organismo donante regularmente pueden distinguirse por la función de sus productos de expresión. Esto incluye en particular funciones en los aspectos de metabolismo, energía, transcripción, síntesis de proteína, procesamiento de proteínas, transporte celular y mecanismos de transporte, comunicación celular y transducción de señales, rescate de células, defensa de células y virulencia de células, regulación del ambiente celular e interacción de las células con su ambiente, destino de células, elementos capaces de transponerse, proteínas virales y proteínas de plásmidos, control de organización celular, localización subcelular, regulación de la actividad proteínica, proteínas con función de enlace o requisito de cofactor y facilitación del transporte. Segmentos codogénicos del gen de igual función se combinan con las así llamadas familias de gen funcionales.

Las funciones metabólicas se refieren ante todo al metabolismo de aminoácido, al metabolismo de nitrógeno y de azufre, al metabolismo de nucleótido, al metabolismo de fosfato, al metabolismo de carbono y de carbonidrato, al metabolismo de grasa, de ácido graso y de isoprenoide, al metabolismo de vitaminas, cofactores y grupos prostéticos y al metabolismo secundario.

30

35

Las funciones energéticas se refieren ante todo a la glicólisis y gliconeogénesis, al metabolismo de pentosa-fosfato, al ciclo de citrato, al transporte de electrones y al almacenamiento de energía asociado a la membrana, a la respiración, a la fotosíntesis, a la fermentación, al metabolismo de reservas de energía, al ciclo de glioxilato y a la oxidación de ácido graso. Las funciones en el campo de la transcripción se refieren ante todo a la transcripción de ARNr, ARNt y ARNm, al transporte de ARN y al procesamiento de la transcripción.

Las funciones en el campo de la síntesis de proteína se refieren ante todo a la biogénesis de ribosomas, la translación, el control de translación y a las sintetasas de aminoacilo-ARNt.

Las funciones en el campo del procesamiento de proteína se refieren ante todo al doblez y a la estabilización de la diana (targeting), clasificación (sorting) y translocación, así como a la modificación de proteínas, al ensamblaje de complejos proteínicos y a la degradación proteolítica de proteínas.

Las funciones en el campo del transporte celular y de los mecanismos de transporte se refieren ante todo al transporte nuclear, mitocondrial, vesicular, peroxisomal, vacuolar y extracelular, a la exocitosis y la secreción, la endocitosis, la importación celular y el transporte dependiente del citoesqueleto.

Las funciones en el campo de la comunicación celular y la transducción de señales se refieren ante todo a señalización intracelular y recepción de señal, y a la transducción de señal de transmembrana.

Las funciones en el campo del rescate de células, de la defensa de células y de la virulencia de células se refieren ante todo a la respuesta ante el estrés, la desintoxicación y la degradación de sustancias extrañas (exógenas).

Las funciones en el campo de la regulación del ambiente celular y de la interacción de las células con su ambiente se refieren ante todo a la homeostasis iónica y a la percepción celular y a la respuesta.

Las funciones en el campo de destino de células se refieren ante todo al ciclo de la célula y al crecimiento de la célula, a la morfogénesis de la célula, la diferenciación de la célula, la muerte de la célula y al envejecimiento de la célula.

Las funciones en el campo del control de organización celular se refieren ante todo a la pared de la célula, la membrana de plasma, el citoplasma, el citoesquéleto, el retículo endoplasmático, el aparato de golgi, los plástidos, las vesículas de transporte intracelular, el núcleo, las mitocondrias, las peroxisomas, las endosomas y a las vacuolas o los lisosomas. Las funciones en el campo de la localización subcelular se refieren en particular a la pared de la célula, la membrana de plasma, el citoplasma, el citoesqueleto, los centrosomas, el retículo endoplasmático, el aparato de golgi, las vesículas de transporte intracelular, al núcleo de la célula, a las mitocondrias, a peroxisomas, endosomas, vacuolas o lisomas, proteínas extracelulares o secretadas y a la membrana procariótida de la célula.

10

20

30

35

40

45

Las funciones en el campo de la regulación de la actividad de la proteína se refieren ante todo a las dianas respectivas a regular.

Las funciones en el campo de las proteínas con función de enlace o requisito de cofactor se refieren ante todo al enlace de proteína y al enlace de lípido.

Las funciones en el campo de la facilitación de transporte se refieren ante todo a transportadores del tipo canal/poros, transportadores de iones, transportadores de carbono y carbohidrato, transportadores de aminoácido, transportadores de péptidos, transportadores de lípidos, transportadores de nucleótidos, transportadores de alantoina y alantoato, transportadores de sustancias activas y mecanismos de transporte.

De acuerdo con la invención son de particular importancia las funciones en los campos del metabolismo y de la energía, en especial enzimas del metabolismo primario y secundario, por ejemplo enzimas P450, en el campo de la transcripción, en particular los factores de transcripción, y en el campo del transporte celular y mecanismos de transporte, en particular canales y transportadores.

De esta manera se prefieren en particular poblaciones de vegetales transgénicos que tienen al menos una subpoblación que se caracteriza porque la subpoblación comprende al menos 55 % y en particular al menos 80 % de todos los segmentos codogénicos del gen que pueden atribuirse a una familia funcional de gen.

Los segmentos codogénicos de gen de un determinado organismo donante regularmente se encuentran disponibles de manera general. En particular aquí pueden nombrarse bancos de datos de genes públicos como el banco de datos EMBL (Stoesser G. et al., Nucleic Acids Res 2001, Vol. 29, 17-21), el banco de datos GenBank (Benson D.A. et al., Nucleic Acids Res 2000, Vol. 28,15-18), o el banco de datos PIR (Barker W. C. et al., Nucleic Acids Res. 1999, Vol. 27, 39-43).

Además, pueden usarse bancos de datos de genes, específicos por organismos, así, por ejemplo, para levaduras el banco de datos SGD (Cherry J. M. et al., Nucleic Acids Res. 1998, Vol. 26, 73-80) o el banco de datos MIPS (Mewes H.W. et al., Nucleic Acids Res. 1999, Vol. 27, 44-48), para el E. coli el banco de datos GenProtEC (http://web.bham.ac.uk/bcm4ght6/res.html), para Arabidopsis el banco de datos TAIR (Huala, E. et al., Nucleic Acids Res. 2001 Vol. 29(1). 102-5) o el banco de datos MIPS.

Por medio de estas informaciones de bancos de datos de una manera conocida de por sí, a partir de fuentes adecuadas pueden obtenerse ácidos nucleicos conocidos que comprenden los segmentos codogénicos del gen y proveerse para la integración posterior al genoma de la planta.

Los organismos donantes incluyen organismos tanto procariota como también eucariota.

Los organismos donantes de acuerdo con la invención son microorganismos cuyos genomas se secuencian, por ejemplo Acetobacter (subgen. Acetobacter) aceti; Acidithiobacillus ferrooxidans; Acinetobacter sp.; Actinobacillus sp; Aeromonas salmonicida; Agrobacterium tumefaciens; Aquifex aeolicus; Arcanobacterium pyogenes; Aster yellows phytoplasma; Bacillus sp.; Bifidobacterium sp.; Borrelia burgdorferi; Brevibacterium linens; Brucella melitensis; Buchnera sp.; Butyrivibrio fibrisolvens; Campylobacter jejuni; Caulobacter crescentus; Chlamydia sp.; Chlamydophila sp.; Chlorobium limicola; Citrobacter rodentium; Clostridium sp.; Comamonas testosteroni; Corynebacterium sp.; Coxiella burnetii; Deinococcus radiodurans; Dichelobacter nodosus; Edwardsiella ictaluri; Enterobacter sp.; Erysipelothrix rhusiopathiae; Escherichia coli; Flavobacterium sp.; Francisella tularensis; Frankia sp. Cpl1;

Fusobacterium nucleatum; Geobacillus stearothermophilus; Gluconobacter oxydans; Haemophilus sp.; Helicobacter pylori; Klebsiella pneumoniae; Lactobacillus sp.; Lactococcus lactis; Listeria sp.; Mannheimia haemolytica; Mesorhizobium loti; Methylophaga thalassica; Microcystis aeruginosa; Microscilla sp. PRE1; Moraxella sp. TA144; Mycobacterium sp.; Mycoplasma sp.; Neisseria sp.; Nitrosomonas sp.; Nostoc sp. PCC 7120; Novosphingobium aromaticivorans; Oenococcus oeni; Pantoea citrea; Pasteurella multocida; Pediococcus pentosaceus; Phormidium foveolarum; Phytoplasma sp.; Plectonema boryanum; Prevotella ruminicola; Propionibacterium sp.; Proteus vulgaris; Pseudomonas sp.; Ralstonia sp.; Rhizobium sp.; Rhodococcus equi; Rhodothermus marinus; Rickettsia sp.; Riemerella anatipestifer, Ruminococcus flavefaciens; Salmonella sp.; Selenomonas ruminantium; Serratia entomophila; Shigella sp.; Sinorhizobium meliloti; Staphylococcus sp.; Streptococcus sp.; Streptomyces sp.; Synechococcus sp.; Synechocystis sp. PCC 6803; Thermotoga maritima; Treponema sp.; Ureaplasma urealyticum; Vibrio cholerae; Vibrio parahaemolyticus; Xylella fastidiosa; Yersinia sp.; Zymomonas mobilis.

10

25

30

40

45

50

Según una forma particular de realización de la presente invención, el organismo donante es una levadura, preferiblemente del género Saccharomyces, en particular Saccharomyces cerevisiae.

Por lo tanto, la presente invención se refiere, según una forma muy particular de realización, a poblaciones de plantas transgénicas que comprenden al menos aproximadamente 3000, preferiblemente alrededor de 4500 y ventajosamente al menos cerca de 5500 de segmentos codogénicos del gen de Saccharomyces cerevisiae, en cuyo caso se parte de un número total aproximado de segmentos codogénicos del gen de 6300 (Mewes et al., Nature 387 (Suppl) Jul 65, 1997). En particular los segmentos codogénicos del gen se seleccionan entre los segmentos codogénicos del gen indicados en la figura 1.

20 Según otra forma particular de realización, el organismo donante es una bacteria del género Escherichia preferiblemente E. coli.

De acuerdo con esto, según otra forma muy particular de realización la presente invención se refiere a poblaciones de plantas transgénicas que comprenden al menos cerca de 2000, preferiblemente al menos cerca de 3000 y ventajosamente al menos cerca de 3500 segmentos codogénicos del gen de E. coli, en cuyo caso se parte de un número total aproximado de segmentos codogénicos de gen de 4300. En particular los segmentos codogénicos del gen se seleccionan entre los segmentos codogénicos del gen indicados en la figura 2.

Las poblaciones de plantas transgénicas de la invención se componen por lo tanto de varios individuos de planta. Los individuos de planta son distinguibles al menos a nivel molecular. De esta manera, para cada segmento codogénico de gen de la totalidad de los segmentos codogénicos del gen comprendidos por la población de las plantas transgénicas de acuerdo con la invención existe un individuo de la población que presenta este segmento codogénico del gen. Por consiguiente, una población de plantas transgénicas, según la invención, que comprende una cantidad determinada de distintos segmentos codogénicos del gen de un organismo donante, contiene al menos la misma cantidad de individuos vegetales de los cuales cada uno se caracteriza porque tiene un dicho determinado segmento codogénico del gen aunque no tenga el resto de los dichos segmentos codogénicos de gen.

Además las poblaciones según la invención pueden comprender otro individuo de planta en cuyo genoma se encuentre integrado un determinado segmento codogénico del gen de un organismo donante en combinación con otro segmento codogénico de gen o varios otros segmentos codogénicos de gen del organismo donante.

Regularmente, los segmentos codogénicos del gen se conectan funcionalmente con secuencias regulatorias en el genoma de las plantas. Dentro de una población de plantas transgénicas se prefiere usar secuencias regulatorias análogas para la totalidad de los segmentos codogénicos heterólogos de gen.

Una conexión funcional de un determinado segmento codogénico de gen con una o varias secuencias regulatorias comprende regularmente una fusión química de dos o más fragmentos de ADN en orientación adecuada, por ejemplo en orientación sense o antisense para que se mantenga o se cree un marco de lectura adecuado mediante las secuencias fusionadas y se garantice una regulación apropiada de la expresión de las secuencias de ADN en la célula vegetal.

El término "expresión" significa la transcripción y/o translación de un segmento codogénico de gen. Regularmente el producto resultante es una proteína. Sin embargo, la expresión también incluye la transcripción de un ADN que se inserta en orientación antisense con referencia a los elementos regulatorios, creando así un ARNm antisense. Los productos también incluyen ribozomas. La expresión puede efectuarse sistémica o localmente, limitarse a tipos determinados de células, a tejidos o a órganos, por ejemplo.

Fundamentalmente, las secuencias regulatorias son secuencias de las plantas receptoras de la invención, secuencias del organismo donante, secuencias de otro organismo o secuencias sintéticas, siempre que se garantice la función de estas secuencias en las plantas de acuerdo con la invención.

Las secuencias regulatorias se disponen regularmente corriente arriba (5'), en el intervalo y/o corriente abajo (3') en referencia a un determinado segmento codogénico de gen. En particular controlan la transcripción y/o translación así como la capacidad de transcribirse que tiene el segmento codogénico de gen, opcionalmente de manera conjunta con otros sistemas funcionales propios de la célula, como el aparato de biosíntesis de proteínas de la célula.

5

10

20

25

30

40

Las secuencias regulatorias incluyen ante todo secuencias dispuestas corriente arriba (5') las cuales se refieren en particular a la regulación de la iniciación de la transcripción, como los promotores, y secuencias dispuestas corriente abajo (3'), las cuales se refieren ante todo a la regulación de la terminación de la transcripción, como señales de poliadenilación. Los promotores controlan de manera principal la expresión del segmento codogénico del gen componiendo el sitio de conexión para polimerasas de ARN y/u otros factores necesarios para una adecuada iniciación de la transcripción.

Fundamentalmente pueden emplearse todos los promotores que pueden estimular la transcripción de genes en las plantas. En general son conocidos promotores capaces de tener una función, que son adecuados en las plantas. Puede tratarse de promotores constitutivos o inducibles. Promotores adecuados pueden ser también específicos del desarrollo y/o del tejido, como promotores específicos de hoja, raíz, semillas y fruta.

En particular, han demostrado ser útiles los promotores de bacterias y virus patógenos para las plantas. Ejemplos de esto son: el promotor 35S de CaMV, el promotor 34S de FMV o un promotor del virus Cassava Vein Mosaic Virus (CsVMV), así como, por ejemplo, distintos promotores de Agrobacterium tumefaciens, como el promotor de sintasa octopina (ocs), el promotor de sintasa nopalina (nos), o el promotor sintasa mannopina. Además, se encuentra a disposición una gran cantidad de promotores vegetales para la expresión de genes en determinados tejidos, como raíces, flores o células de guarda y, ante todo, semillas como, por ejemplo, el promotor arc5 de frijol, el promotor LeB4 y el promotor USP de Vicia faba así como el promotor DcG3 de zanahoria. Ante todo, para la expresión en semillas también se encuentran disponibles distintos promotores. Otros promotores específicos de semillas son: el promotor de proteína que enlaza sacarosa (WO 00/26388), el promotor de faseolina y el promotor napina. Para la expresión fuerte de las secuencias heterólogas en la mayor cantidad posible de tejidos, en particular también en hojas, se prefiere usar promotores vegetales de genes de actina y ubiquitina, tales como por ejemplo el promotor V-ATPasa de remolacha de azúcar (WO 01/14572). A manera de ejemplo de promotores constitutivos sintéticos pueden mencionarse super-promotor (WO 95/14098) y promotores derivados de cajas G (G-boxes) (WO 94/12015). Además, en circunstancias también pueden utilizarse promotores inducibles químicamente, compárese EP-A 388186, EP-A 335528, WO 97/06268. Para la expresión de genes en plantas también se encuentran disponibles promotores específicos de hojas tales como están descritos en DE-A 19644478, o promotores regulados por la luz, como por ejemplo el promotor petE de guisante.

De las señales de poliadenilación puede nombrarse en particular la secuencia de de poli-A-adición a partir del ocsgen o del nos-gen de Agrobacterium tumefaciens.

Otras secuencias regulatorias opcionalmente convenientes también incluyen secuencias que controlan el transporte y/o la localización de los productos de expresión (targeting). Aquí pueden nombrarse en particular las secuencias que codifican péptido de señal o péptido de tránsito que se conocen de por sí. A manera de ejemplo, con ayuda de secuencias que codifican plástido-péptido de tránsito se consigue conducir el producto de expresión al plástido de una célula vegetal.

Como plantas receptoras se prefieren en particular plantas que pueden transformarse de manera conveniente. Esto incluye plantas mono- y dicotiledóneas. En particular pueden nombrarse plantas útiles como cereales y gramíneas, por ejemplo Triticum spp., Zea mais, Hordeum vulgare, avena, Secale cereale, Oryza sativa, Pennisetum glaucum, Sorghum bicolor, triticale, Agrostis spp., Cenchrus ciliaris, Dactylis glomerata, Festuca arundinacea, Lolium spp., Medicago spp. y Saccharum spp., leguminosas y oleaginosas, por ejemplo Brassica juncea, Brassica napus, Glycine max, Arachis hypogaea, Gossypium hirsutum, Cicer arietinum, Helianthus annuus, Lens culinaris, Linum usitatissimum, Sinapisalba, Trifolium repens y Vicia narbonensis, hortalizas y frutas, por ejemplo banano, uva, Lycopersicon esculentum, espárragos, col, sandía, kiwis, Solanum tuberosum, Beta vulgaris, yuca y achicoria, árboles como, por ejemplo especies de café, Citrus spp., Eucalyptus spp., Picea spp., Pinus spp. y Populus spp., plantas medicinales y árboles y flores.

Según una forma particular de realización, la presente invención se refiere a plantas transgénicas del género Gattung Arabidopsis, por ejemplo Arabidopsis thaliana y del género Oryza, por ejemplo Oryza sativa.

Poblaciones de plantas transgénicas particularmente preferidas de acuerdo con la invención se basan en una población de plantas receptoras, la cual es esencialmente homogénea. Por consiguiente el rasgo distintivo esencial de cada uno de los individuos de estas poblaciones es la integración de uno o más segmentos codogénicos del gen de un organismo donante. Sin embargo, de una transformación in planta que se ha realizado con uno o más segmentos codogénicos de gen, regularmente se obtienen varias plantas transgénicas que luego forman con la progenie directa respectiva líneas de uno o varios segmentos codogénicos del gen (conjunto de líneas). En tal caso entre dos líneas, es decir plantas transgénicas individuales y sus descendientes, en cuyo genoma se integra el mismo o los mismos segmentos codogénicos del gen de un organismo donante, resulta cierta variabilidad que puede atribuirse esencialmente a diferencias en el proceso de transformación. A manera de ejemplo los diferentes sitios de integración y/o diferentes números de copias entre las líneas pueden conducir a una expresión cuantitativamente diferente del o de los segmentos codogénicos del gen.

Según una forma particular de realización, las poblaciones de la invención comprenden al menos 5, al menos 10 o al menos 20 líneas por segmento codogénico.

En particular para una determinada población de plantas transgénicas se prefiere seleccionar de manera uniforme secuencias regulatorias y otras secuencias condicionadas por el proceso de transformación para diferentes sectores codogénicos del gen, de modo que las diferencias dentro de la población pueden atribuirse esencialmente a los diferentes segmentos codogénicos del gen.

Por consiguiente, las plantas transgénicas de la invención se caracterizan por al menos una célula transgénica que tiene uno o varios segmentos codogénicos de gen de un organismo donante y está en capacidad de expresar este segmento de manera ventajosa. Preferiblemente todas las células de una planta transgénica según la invención son esencialmente transgénicas.

El término "planta transgénica", empleado según la invención, se refiere también a la descendencia de una planta transgénica, por ejemplo las generaciones de plantas T1, T2, T3 y subsecuentes o las generaciones de plantas BC1, BC2, BC3 y subsecuentes. Así, las plantas transgénicas según la invención pueden cultivarse y cruzarse consigo mismas o con otros individuos para obtener otras plantas transgénicas según la invención. También pueden obtenerse plantas transgénicas por propagación vegetativa de las células de plantas transgénicas.

También es objeto de la presente invención el material vegetal transgénico derivable de una población de plantas transgénicas según la invención, el cual comprende al menos el 50 % de todos los segmentos codogénicos del gen del organismo donante. Este incluye células vegetales y determinados tejidos, órganos y partes de las plantas en todas sus manifestaciones como semillas, hojas, anteras, fibras, raíces, pelo de raíz, tallos, embriones, callos de células, cotiledones, peciolos, material de cosecha, tejido vegetal, tejido reproductivo y cultivos celulares que se deriva de las propias plantas transgénicas y/o puede usarse para producir las plantas transgénicas. El material de este tipo también comprende al menos 50 % de todos los segmentos codogénicos de gen del organismo donante correspondiente.

- Otro objeto de la presente invención es un método para la generación de una población de plantas transgénicas, en cuyo caso
 - a) se proporciona un segmento codogénicos de gen de un organismo donante;

10

20

25

30

- b) se integra este segmento codogénico del gen en el genoma de una planta; y
- c) se realizan los pasos a) y b) para al menos 50 % de todos los segmentos codogénicos del gen del organismo 40 donante en una cantidad correspondiente de plantas, de modo que cada una de estas plantas tiene uno, pero no otro de los segmentos codogénicos del gen, en cuyo caso el organismo donante se selecciona entre Acetobacter (subgen. Acetobacter) aceti; Acidithiobacillus ferrooxidans; Acinetobacter sp.; Actinobacillus sp; Aeromonas salmonicida; Agrobacterium tumefaciens; Aquifex aeolicus; Arcanobacterium pyogenes; Aster yellows phytoplasma; Bacillus sp.; Bifidobacterium sp.; Borrelia burgdorferi; Brevibacterium linens; Brucella melitensis; Buchnera sp.; Butyrivibrio fibrisolvens; Campylobacter jejuni; Caulobacter crescentus; Chlamydia sp.; Chlamydophila sp.; Chlorobium limicola; Citrobacter rodentium; Clostridium sp.; Comamonas testosteroni; Corynebacterium sp.; Coxiella 45 burnetii; Deinococcus radiodurans; Dichelobacter nodosus; Edwardsiella ictaluri; Enterobacter sp.; Erysipelothrix rhusiopathiae; Escherichia coli; Flavobacterium sp.; Francisella tularensis; Frankia sp. Cpl1; Fusobacterium nucleatum; Geobacillus stearothermophilus; Gluconobacter oxydans; Haemophilus sp.; Helicobacter pylori; Klebsiella 50 pneumoniae; Lactobacillus sp.; Lactococcus lactis; Listeria sp.; Mannheimia haemolytica; Mesorhizobium loti; Methylophaga thalassica; Microcystis aeruginosa; Microscilla sp. PRE1: Moraxella sp. TA144; Mycobacterium sp.; Mycoplasma sp.; Neisseria sp.; Nitrosomonas sp.; Nostoc sp. PCC 7120; Novosphingobium aromaticivorans; Oenococcus oeni; Pantoea citrea; Pasteurella multocida; Pediococcus pentosaceus; Phormidium foveolarum;

Phytoplasma sp.; Plectonema boryanum; Prevotella ruminicola; Propionibacterium sp.; Proteus vulgaris; Pseudomonas sp.; Ralstonia sp.; Rhizobium sp.; Rhodococcus equi; Rhodothermus marinus; Rickettsia sp.; Riemerella anatipestifer, Ruminococcus flavefaciens; Saccharomyces cerevisiae; Salmonella sp.; Selenomonas ruminantium; Serratia entomophila; Shigella sp.; Sinorhizobium meliloti; Staphylococcus sp.; Streptococcus sp.; Streptomyces sp.; Synechococcus sp.; Synechoc

La provisión conveniente de un segmento codogénico de gen puede efectuarse de manera conocida, por ejemplo por clonación usual. En particular, el ADN o el ARNm genómicos puede amplificarse por medio de ADNc del organismo donante. El procedimiento mencionado primero se propone en el caso de organismos donantes cuyo genoma no tienen intrones. El procedimiento mencionado de último es conveniente cuando el genoma del organismo donante tiene intrones y estos intrones no vayan a integrarse juntos con el segmento codogénico de gen en el genoma de la planta. Se obtiene una secuencia de ácido nucleico que contiene el segmento codogénico de gen.

Para seguir clonando, la secuencia que contiene el segmento codogénico del gen obtenida de esta manera se inserta regularmente en un vector adecuado de clonación. Ante todo son adecuados los vectores que pueden replicarse en huéspedes intermedios como las células bacterianas huésped, por ejemplo Bacillus, Streptomyces, Salmonella y ante todo Escherichia coli. La persona técnica en la materia conoce una gran cantidad de vectores adecuados y también manipulaciones como restricción, inserción, ligación, deleción, etc. pertenecen a las habilidades del experto técnico, de tal modo que regularmente se logra preparar la secuencia deseada que contiene el segmento codogénico del gen, opcionalmente junto con los elementos regulatorios y/u otros necesarios para la transformación y la expresión.

Según una forma preferida de realización, para la provisión de un segmento codogénico del gen éste puede clonarse independientemente de ligación. Esto tiene la ventaja de que los segmentos codogénicos del gen no se cortan por el uso previo de endonucleasas de restricción ni se clonan de manera no dirigida por los extremos romos o pegajosos (blunt-ends o stickyends) y el vector mismo no tiene potencial de religación por lo cual se logra una eficiencia alta en la clonación.

En particular, para esto es posible

10

25

40

45

- a1) amplificar el segmento codogénico de gen con incorporación aleatoria de una cantidad de tio-dNTPs;
- 30 a2) permitir que sobre el amplificado actúe una 3'-5'-exonucleasa de tal modo que se formen fragmentos con extremos monocatenarios; y
 - a3) incubar en condiciones de adhesión los fragmentos resultantes en el paso a2) con un vector cuyos extremos monocatenarios son complementarios, al menos parcialmente, a los extremos monocatenarios de los fragmentos

La amplificación misma puede realizarse de una manera conocida de por sí.

Preferiblemente se procede de conformidad con el protocolo de la polimerasa Pfu-ADN o una mezcla polimerasa Pfu/Taq-ADN.

Los primers o cebadores se seleccionan de manera similar a la secuencia a amplificar. De manera conveniente deben seleccionarse los primers (cebadores) de tal manera que el amplificado comprenda toda la secuencia codogénica del codón de inicio (start codon) y codón de detención (stop codon). Preferiblemente se emplean quimeras cuyos extremos 5' se forman en cada caso por una secuencia adaptadora universal y cuyos extremos 3' se forman en cada caso por una secuencia del segmento codogénico del gen. Si las secuencias adaptadoras universales para primers (cebadores) forward (adelante) y reverse (reversas) son diferentes, es posible una clonación dirigida al vector de expresión.

A continuación de la amplificación, los amplificados se analizan de manera conveniente. Por ejemplo, la separación mediante electroforesis en gel puede seguirse por análisis cualitativo y cuantitativo.

Si se emplean dNTPs en mezcla con tio-dNTPs para la amplificación, una proporción de 125:1 ha probado ser ventajosa, es decir que en teoría se incorpora una tio-dNTP en lugar de una dNTP en cada posición 125 del amplificado.

La incorporación de tio-dNTPs ofrece la posibilidad de modificar los amplificados con la ayuda de exonucleasas. En particular, los amplificados que como regla tengan extremos bicatenarios pueden incubarse con la enzima exonucleasa III. La enzima posee una actividad 3'-5' exonucleasa, de modo que los extremos de ADN bicatenarios de los amplificados se degradan iniciando en el extremo 3' como una función de cantidad de amplificado, temperatura, tiempo y cantidad de enzima. Queda la hebra complementaria con el extremo 5' resistente. Puesto qe esta enzima no es capaz de degradar tio-dNTPs, la degradación se detiene en el primer tionucleótido que se ha incorporado. Debido a la incorporación de las tio-dNTPs los amplificados se degradan solo de manera limitada independientemente de su tamaño y concentración de ADN.

A continuación los amplificados modificados pueden purificarse según un protocolo estándar (por ejemplo Qiagen). Una alícuota de los amplificados purificados está disponible luego para la clonación subsiguiente lo cual, según las descripciones de arriba, puede realizarse en particular de una manera independiente de la ligación.

Vectores de clonación adecuados son conocidos generalmente por el experto en la materia. Estos incluyen en particular vectores que son replicables en sistemas bacterianos que garantizan una clonación eficiente en E. coli y hacen posible la transformación estable de plantas. En particular pueden nombrarse diferentes sistemas de vectores adecuados para la transformación mediada de T-ADN, binarios y co-integrados. Sistemas de vectores de este tipo se caracterizan regularmente porque contienen al menos los genes vir necesarios para la transformación mediada por agrobacterium así como las secuencias que delimitan el T-ADN (TADN- border). Estos sistemas de vectores también comprenden preferiblemente otras regiones regulatorias – cis tales como promotores y terminadores y/o marcadores de selección, con los cuales pueden identificarse de manera correspondiente los organismos transformados. Mientras que genes vir y secuencias de T-ADN se disponen en el mismo vector en el caso de sistemas de vector cointegrados, los sistemas binarios se basan en al menos dos vectores de los cuales uno alberga genes vir pero no T-ADN, mientras que un segundo vector alberga T-ADN pero no genes vir. A causa de esto estos vectores son relativamente pequeños, fáciles de manipular y pueden replicarse tanto en E-coli como también en agrobacterium. Estos vectores binarios incluyen vectores de las series pBIB-HYG, pPZP, pBecks, pGreen. De acuerdo con la invención se prefiere usar Bin19, pB1101, pBinAR, pGPTV y pCAMBIA. Una sinopsis sobre vectores binarios y su utilización se da en Hellens et al, Trends in Plant Science (2000) 5, 446-451.

Para la preparación de vector, los vectores pueden linealizarse primero con endonucleasa(s) de restricción y luego modificarse de manera enzimática de una manera adecuada. Otra enzima que es adecuada para este propósito y que tiene actividad 3'-5' exonucleasa es la polimerasa T4 ADN, la cual degrada los extremos de ADN bicatenarios del vector linealizado hacia una hebra individual dependiendo de la cantidad de vector, la temperatura, el tiempo y la cantidad de enzima. A continuación se purifica el vector y se emplea respectivamente una alícuota para la clonación independiente de la ligación.

En el caso de la clonación independiente de ligación se clonan los amplificados modificados enzimáticamente y, en caso de requerirse purificados, con fragmentos de vector preparados similarmente sin emplear ligasa. En lugar de esta enzima usada habitualmente se aprovecha el potencial de apareamiento (annealing) de los extremos monocatenarios de los amplificados modificados y de los extremos monocatenarios del vector, cuyas secuencias de adaptador son compatibles. De esta manera se obtienen vectores que comprenden el o los segmentos codogénicos deseados del gen (constructos de plásmido).

- 40 Por lo tanto, también son objeto de la presente invención colecciones de constructos de plásmido que comprenden un grupo de constructos de plásmidos, donde se integra en cada constructo del grupo un segmento codogénico del gen de un organismo donante, la colección puede obtenerse:
 - a) proveyendo un segmento codogénico del gen del organismo donante:

15

20

25

30

- b) integrando este segmento codogénico de gen a un constructo de plásmido; y
- c) realizando los pasos a) y b) para al menos 50 % de todos los segmentos codogénicos del gen del organismo donante en un número correspondiente de constructos de plásmido de modo que cada uno de estos constructos tiene un segmento codogénico del gen pero no otro de éstos, y el organismo donante se selecciona entre Acetobacter (subgen. Acetobacter) aceti; Acidithiobacillus ferrooxidans; Acinetobacter sp.; Actinobacillus sp; Aeromonas salmonicida; Agrobacterium tumefaciens; Aquifex aeolicus; Arcanobacterium pyogenes; Aster yellows phytoplasma; Bacillus sp.; Bifidobacterium sp.; Borrelia burgdorferi; Brevibacterium linens; Brucella melitensis; Buchnera sp.; Butyrivibrio fibrisolvens; Campylobacter jejuni; Caulobacter crescentus; Chlamydia sp.; Chlamydophila sp.; Chlorobium limicola; Citrobacter rodentium; Clostridium sp.; Comamonas testosteroni; Corynebacterium sp.; Coxiella burnetii; Deinococcus radiodurans; Dichelobacter nodosus; Edwardsiella ictaluri; Enterobacter sp.;

Erysipelothrix rhusiopathiae; Escherichia coli, Flavobacterium sp.; Francisella tularensis; Frankia sp. Cpl1; Fusobacterium nucleatum; Geobacillus stearothermophilus; Gluconobacter oxydans; Haemophilus sp.; Helicobacter pylori; Klebsiella pneumoniae; Lactobacillus sp.; Lactococcus lactis; Listeria sp.; Mannheimia haemolytica; Mesorhizobium loti; Methylophaga thalassica; Microcystis aeruginosa; Microscilla sp. PRE1; Moraxella sp. TA144; Mycobacterium sp.; Mycoplasma sp.; Neisseria sp.; Nitrosomonas sp.; Nostoc sp. PCC 7120; Novosphingobium aromaticivorans; Oenococcus oeni; Pantoea citrea; Pasteurella multocida; Pediococcus pentosaceus; Phormidium foveolarum; Phytoplasma sp.; Plectonema boryanum; Prevotella ruminicola; Propionibacterium sp.; Proteus vulgaris; Pseudomonas sp.; Ralstonia sp.; Rhizobium sp.; Rhodococcus equi; Rhodothermus marinus; Rickettsia sp.; Riemerella anatipestifer; Ruminococcus flavefaciens; Saccharomyces cerevisiae; Salmonella sp.; Selenomonas ruminantium; Serratia entomophila; Shigella sp.; Sinorhizobium meliloti; Staphylococcus sp.; Streptococcus sp.; Streptomyces sp.; Synechococcus sp.; Synechocystis sp. PCC 6803; Thermotoga maritima; Treponema sp.; Ureaplasma urealyticum; Vibrio cholerae; Vibrio parahaemolyticus; Xylella fastidiosa; Yersinia sp.; Zymomonas mobilis. En tal caso, un determinado constructo de plásmidos puede tener uno o también varios segmentos codogénicos del gen. Preferiblemente en estos constructos de plásmido se conectan de manera funcional los segmentos codogénicos del gen con secuencias regulatorias.

10

15

40

45

50

Las secuencias regulatorias incluyen en particular secuencias vegetales como los promotores y terminadores arriba descritos. Los constructos de plásmido pueden propagarse en condiciones selectivas de manera estable, ventajosamente, en microorganismos, en particular Escherichia coli y Agrobacterium turnefaciens y hacen posible una transferencia de ADN heterólogo en plantas.

Según una forma particular de realización los constructos de plásmido según la invención se basan en vectores binarios (compendio sobre vectores binarios en Hellens et al., 2000). Estos contienen regularmente secuencias regulatorias procariotas como origen de replicación, para la reproducción en microorganismos como Escherichia coli und Agrobacterium turnefaciens, y secuencias de ADN – T – agrobacteria con el propósito de transferir de ADN al genoma de las plantas. De la secuencia completa de ADN-T de la agrobacteria se necesita al menos la secuencia del límite derecho que comprende aproximadamente 25 pares de base. Los constructos de vector de acuerdo con la invención habitualmente contienen secuencias de ADN-T tanto de la región limítrofe derecha como también de la izquierda, las cuales contienen sitios de reconocimiento convenientes para enzimas que actúan de manera específica para el sitio, las cuales a su vez se codifican po una parte de los genes vir.

Aparte de esto también son objeto de la presente invención colecciones de organismos huéspedes que contienen las colecciones de la invención de los constructos de plásmido. En este sentido los organismos huésped se transforman con los constructos de plásmido de acuerdo con la invención. Organismos huésped adecuados son conocidos para la persona experta en la materia. Aquí se incluyen, ante todo, huéspedes bacterianos de los cuales ya se han nombrado arriba algunos en el contexto de los microorganismos donantes, por ejemplo bacterias del género Bacillus Streptomyces, Salmonella, y similares. De acuerdo con la invención se prefieren organismos huésped del género Escherichia, en particular Escherichia coli, y agrobacteria, en particular Agrobacterium turnefaciens.

Por lo demás, son válidas las descripciones para la población de las plantas de manera análoga para las colecciones de constructos de plásmido de acuerdo con la invención.

Los constructos de plásmido resultantes pueden transferirse a continuación a un huésped intermedio adecuado, por ejemplo una bacteria, para propósitos de verificación. Aquí ha demostrado ser conveniente la transformación en E. coli que puede realizarse de una manera conocida de por sí, por ejemplo mediante choque de calor o electroporación.

Así pueden estudiarse las colonias transformadas de E. coli respecto de la eficiencia de clonación. Esto puede efectuarse con ayuda de una PCR. En tal caso tanto la identidad como también la integridad del constructo de plásmido pueden verificarse por medio de un número definido de colonias sometiendo una alícuota de las colonias a la dicha PCR. Para esto se emplean primers (cebadores) regularmente universales, derivados de las secuencias de vector, en cuyo caso el cebador forward se dispone corriente arriba del Start-ATG y el cebador reversa se dispone corriente abajo del codon de detención (stop-codon) del segmento codogénico del gen. Los amplificados se separan por electroforesis y se valoran respecto de la cantidad y calidad. Si se detecta un fragmento en la cantidad correspondiente se efectúa una valoración positiva.

Los constructos de plásmido verificados opcionalmente se usan a continuación para la transformación de las plantas. Para esto primero es necesario obtener los constructos del huésped intermedio. A manera de ejemplo pueden obtenerse los constructos como plásmidos de huésédes bacterianos de manera similar a un aislamiento convencional de plásmidos.

Se conocen numerosos métodos para la transformación de plantas. Puesto que de acuerdo con la invención es ventajosa una integración estable de ADN heterólogo al genoma de las plantas, ha demostrado ser conveniente en particular la transformación mediada por DNA-T.

Para esto es necesario primero transformar vehículos adecuados, en particular agrobacterias, con el segmento codogénico de gen o el constructo de plásmido correspondiente. Esto puede realizarse de manera conocida de por sí. Por ejemplo, el constructo de plásmido que se ha generado de acuerdo con la descripción de arriba puede transformarse en agrobacterias competentes por medio de electroporación o choque de calor.

5

10

15

20

40

En principio, de esta manera pueden distinguirse entre la formación de vectores co-integrados, por una parte, y la transformación con vectores binarios. En la primera alternativa los constructos de vector que comprenden el segmento codogénico del gen no tienen secuencias ADN-T, sino que la formación de los vectores cointegrados se efectúa en las agrobacterias por recombinaición homóloga del constructo de vector con ADN-T. El ADN-T se encuentra presente en las agrobacterias en forma de plásmidos Ti o Ri, en los que los oncógenos se han reemplazados de manera conveniente por ADN exógeno. Si se usan vectores binarios entonces estos pueden transferirse a agrobacterias por conjugación bacteriana o transferencia directa. Si estas agrobacterias de manera conveniente contienen ya el vector que alberga los genes –vir (frecuentemente denominados como auxiliares de plásmido - Ti(Ri)).

Junto con el constructo de plásmido y el ADN-T también pueden usarse convenientemente uno o varios marcadores por medio de los cuales es posible la selección de agrobacterias transformadas y células vegetales transformadas. Para este propósito se desarrolló una cantidad grande de marcadores. Estos incluyen, por ejemplo, aquellos que confieren una resistencia contra cloranfenicol, canamicina, el aminoglicósido G418, higromicina y similares.

En caso de desearse, los constructos de plásmido pueden verificarse de nuevo con respecto a su identidad y/o integridad antes de su transformación en agrobacterias. Esto puede hacerse por ejemplo en analogía a la PCR de arriba para verificar la eficacia de la clonación.

Regularmente se desea que los constructos de plásmidos estén flanqueados por ADN-T de manera unilateral o bilateral del segmento codogénico del gen. Esto es de particular provecho cuando para la transformación se usan bacterias de los tipos Agrobacterium turnefaciens o Agrobacterium rhizogenes.

De acuerdo con la invención se prefiere la transformación con la ayuda de Agrobacterium turnefaciens.

Las agrobacterias transformadas pueden cultivarse de una manera conocida de por sí y así se encuentran disponibles para una conveniente transformación de las plantas.

Las plantas, o partes de las plantas, a transformarse se cultivan o se proveen de la manera convencional. A continuación se deja actuar a las agrobacterias transformadas sobre las plantas o las partes de las plantas hasta que se haya logrado una velocidad de transformación suficientemente alta.

Las agrobacterias pueden actuar sobre las plantas o partes de las plantas de diferentes modos y maneras.

Por ejemplo, puede usarse un cultivo de células o tejidos vegetales morfogénicos. A continuación de la transferencia de ADN-T, las bacterias se eliminan, regularmente por medio de antibióticos, y se induce la regeneración de los tejidos de la planta. Esto se hace en particular usando hormonas vegetales adecuadas para promover el desarrollo de vástagos después de la formación inicial de callo.

De acuerdo con la invención, la transformación se efectúa preferiblemente in planta. Para esto pueden dejarse actuar las agrobacterias sobe las semillas de la planta, por ejemplo, o inocular meristemo de las plantas con agrobacterias.

De acuerdo con la invención ha demostrado ser particularmente conveniente dejar actuar una suspensión de agrobacterias transformadas sobre toda la planta o al menos los primordios de las flores. Estos se siguen cultivando a continuación hasta que se obtienen semillas de las plantas tratadas (Clough y Bent, Plant J. (1998) 16, 735-743).

Para seleccionar plantas transformadas se somete regularmente el material vegetal obtenido de la transformación a condiciones selectivas de modo que las plantas transformadas puedan diferenciarse de las plantas no transformadas. Por ejemplo, las semillas obtenidas de la manera y modo obtenidos previamente pueden plantarse de nuevo y, después del cultivo, someterse a selección adecuada mediante aspersión. Otra posibilidad consiste en

cultivar las semillas, si se requiere después de esterilizar, sobre placas de agar usando un agente de selección adecuado tal que solo las semillas transformadas pueden crecer a ser plantas.

También es objeto de la presente invención el uso de una población de plantas transgénicas de acuerdo con la invención y/o de un material biológico derivado de estas para estudios funcionales.

- Según una forma de realización los análisis funcionales se refieren al metabolismo de las plantas transgénicas. Así pueden analizarse en particular parámetros bioquímicos como la acumulación de determinados sustratos o productos de reacciones enzimáticas o la expresión de genes endógenos de las plantas receptoras, por ejemplo por medio del ARN o del perfil de proteína de la planta.
- Según otra forma de realización los estudios funcionales se refieren a los rasgos fenotípicos de las plantas transgénicas. Los rasgos fenotípicos de interés incluyen, por ejemplo, el crecimiento, el color, la morfología, la conducta de florecer de las plantas y otros rasgos que caracterizan el fenotipo de la planta. Estudios de este tipo pueden realizarse evaluando células individuales de las plantas transgénicas. Regularmente tales estudios se emprenden, sin embargo, a nivel multicelular por evaluación de estructuras organizadas, es decir particularmente de la planta entera o de las partes de la planta como hojas, raíces y similares. Por lo tanto los estudios pueden ser macroscópicos o microscópicos.

Según una forma particular de realización se investiga al menos un rasgo que se selecciona entre el comportamiento de germinación, el número de cotiledóneos, área de los cotiledóneos, el número de las hojas de roseta, área de las hojas de roseta, número de la estoma sobre las hojas de roseta, forma de las hojas de roseta, peso seco de las hojas de roseta, velocidad de crecimiento de las plantas, momento de la formación de vástagos, ramificación del vástago, longitud del vástago número de los vástagos laterales, números de las flores, tamalo de las flores, duración de las flores, forma de la inflorescencia, tamaño del polen, color y cantidad de polen, tamaño de semillas, color de semillas, forma de semillas, peso relativo (respecto del volumen de semillas) y absoluto de las semillas, número total de semillas, cantidad de semillas por vaina, largo de la vaina, cantidad de vainas por planta, duración de la maduración de las semillas, longitud de las raíces, peso total de las raíces, ramificación de las raíces, cantidad y longitud de los pelos de la raíz, momento del inicio de la senescencia, duración de la senescencia y pigmentación de la planta (contenido de la clorofila).

Según un aspecto particular de la presente invención los estudios funcionales se realizan en plantas que se exponen a condiciones ambientales particulares. A estos pertenecen factores de estrés abióticos tales como estrés al frío, estrés a la helada, estrés a la sequía, estrés a la sal, estrés al ozono, estrés al CO₂, estrés a la luz, estrés oxidativo, estres al calor, estrés anóxico, metales pesados, radiación ionizante / UV, deficiencia de nutrientes (por ejemplo, N, P, K, microelementos y similares), agentes de estrés bióticos, como patógenos vegetales, por ejemplo hongos, plasmodios, bacterias y virus, patógenos vegetales como nematodos, protozoos, caracoles e insectos, además plantas superiores parasitarias e interacciones biológicas, como simbiosis.

De particular importancia es la determinación de función de los segmentos codogénicos del gen del organismo donante en la planta receptora. Esta aplicación es válida tanto para segmentos codogénicos del gen cuya función en el organismo donante se conoce, como también para segmentos codogénicos del gen cuya función en el organismo donante no se ha aclarado o no se ha aclarado de manera suficiente. En tal caso la función puede ejercerse ya por el ARN transcrito, por ejemplo en el sentido de una supresión antisense o co-supresión, o por un ARN regulatorio. En la mayoría de los casos la función sin embargo se refiere a la proteína traducida.

40 La determinación de función puede realizarse, por ejemplo, por medio de las modificaciones metabólicas o fenotípicas descritas arriba.

El uso de acuerdo con la invención para los estudios funcionales incluye regularmente un método en donde

- a) se provee la población de plantas transgénicas de acuerdo con la invención;
- b) se realiza el estudio funcional deseado;
- 45

20

25

30

c) el resultado del estudio se compara con un resultado de estudio obtenido de manera análoga en al menos una planta de referencia.

La planta de referencia se caracteriza porque ninguno de los segmentos codogénicos del gen comprendidos por la población según la invención se integra a su genoma o al menos no se expresa allí. En este sentido, la planta de referencia debe referirse como del tipo silvestre del cual difieren las plantas transgénicas de la población de acuerdo con la invención mediante la integración y en particular la expresión de al menos un segmento codogénico del gen.

Si de la comparación resulta una desviación puede concluirse sobre una modificación funcional de la planta receptora que se correlaciona con la expresión de uno o más determinados segmentos codogénicos de un organismo donante.

La presente invención se describe en más detalle en lo sucesivo por medio de ejemplos.

Ejemplo 1: Generación de la población de plantas transgénicas

Figura 1 muestra un listado de 5393 segmentos codogénicos del gen a partir de Saccharomyces cerevisiae.

Figura 2 muestra un listado de segmentos codogénicos del gen a partir de E. coli.

La generación de una población de plantas transgénicas de acuerdo con la invención se describe en el ejemplo de Arabidopsis thaliana, en cuyo genoma se integran los segmentos codogénicos del gen de Saccharomyces cerevisiae. A manera de ejemplo se da información específica para el gen YKL174C y el gen YKR009C. La integración del resto de los segmentos codogénicos del gen se efectúa regularmente de manera análoga o según requisitos en forma modificada de manera correspondiente.

1. Generación de agrobacterias transformadas

Para generar la población de plantas transgénicas de acuerdo con la invención, primero se transfieren a agrobacterias los segmentos codogénicos del gen a integrarse. La cadena de proceso empleada para este propósito, la cual comprende ocho pasos, permite una amplificación eficaz y una clonación dirigida de los amplificados a los vectores de expresión constitutivos con marcadores de selección de plantas así como su transformación en agrobacterias en el método de alto rendimiento.

La cadena de proceso se divide en los siguientes ocho pasos de proceso: amplificación (1), modificación de amplilficado (2), preparación de vector (3), clonación independiente de ligación (4), transformación de E.coli (5), PCR para verificar la eficiencia de la clonación (6), preparación de plásmido (7) y transformación de agrobacterias (8). A menos que se indique algo diferente se usan métodos estándar según Sambrook et al., Molecular Cloning: A Laboratory manual, Cold Spring Harbor 1989, Cold Spring Harbor Laboratory Press.

1.1. Amplificación

15

20

25

30

35

La amplificación se efectúa en una termoplaca de 96 pozos de manera correspondiente al protocolo de la Pfu Turbo o polimerasa - ADN Herculase (empresa Stratagene). La composición es como sigue: búfer 1x PCR [Tris-HCl de 20 mM (pH 8,8), MgSO₄ de 2 mM, KCl de 10 mM, (NH₄)SO₄ de 10mM, Triton X-100 de 0,1 %, 0,1 mg/ml de BSA], α-tio-dNTP de 0,2 mM y dNTP (1:125), 100 ng de ADN genómico de Saccharomyces cerevisiae (cepa S288C; empresa Research Genetics, Inc., ahora Invitrogen), cebador forward de 50 pmol, cebador reverse de 50 pmol, 2,5 u de Pfu o polimerasa - ADN Herculase. Los ciclos de amplificación son como sigue: 1 ciclo por 3' a 94 °C, seguido de 25-30 ciclos respectivamente con 30" a 94 °C, 30" a 55 °C y 5-6' a 72 °C, seguido de 1 ciclo por 7-10' a 72 °C, luego 4 °C ∞. Los productos de amplificación se separan por electroforesis y se evalúan con respecto a la cantidad y la calidad. Si se detecta un fragmento en la medida correspondiente, tiene lugar una evaluación positiva.

Se seleccionan las siguientes secuencias de cebador para el gen YKL174C:

- 1) cebador forward (SEQ ID NO:1)
- 40 5'-GGAATTCCAGCTGACCACCATGCCAGAGTATACGCTACTGGC
 - 2) cebador reverse (SEQ ID NO:2)
 - 5'-ATCCCCGGGAATTGCCATGTCATATATCATATCTACGATCATGG

Gen YKR009C:

- 1) cebador forward (SEQ ID NO:3)
- 5'-GGAATTCCAGCTGACCACCATGCCTGGAAATTTATCCTTCAAAG
- 2) cebador reverse (SEQ ID NO:4)
- 5'-ATCCCCGGGAATTGCCATGTTATAGTTTAGATTTTGCCTGCGATA
- 5 1.2. Modificación de amplificado

El tratamiento de exonucleasa III se efectúa en la misma termoplaca de 96 pozos como previamente la amplificación, mediante la adición de 10 u de exonucleasa III (empresa MBI-Fermentas). Se incuba en el ciclador por 10' a 20 °C y se detiene mediante adición de búfer alto en sal del kit Qiaquick Purification (empresa Qiagen). La purificación se efectúa según el protocolo estándar Qiaquick (empresa Qiagen).

10 1.3. Preparación de vector

La restricción con Ncol y su inhibición se realizan con 30 µg de ADN-vector según el protocolo Ncol (empresa MBI-Fermentas). Se usa un vector binario que contiene entre las secuencias limítrofes ADN-T un casete de selección (promotor, marcador de selección, terminador), así como un casete de expresión con promotor, casete de clonación y secuencia de terminador. Además, en el casete de clonación el vector binario no posee un sitio de escisión Ncol.

El casete de clonación se compone de la siguiente secuencia: 5'-GGAATTCCAGCTGACCACCATGGCAATTCCCGGGGATC-3'. La reacción de nucleasa se detiene después de la adición de 1 u de polimerasa ADN-T4, se incuba por 2' a 37°C y se detiene por adición de búfer alto en sal. La purificación de los fragmentos de vector linealizados y modificados se efectúa por columnas Nucleobond según protocolo estándar (Machery-Nagel).

20 1.4. Clonación independiente de ligación

Se mezclan cerca de 30 ng de vector preparado (según 1.3.) y una cantidad definida de amplificado modificado (cerca de 80 ng, según 1.2) en una termoplaca de 96 pozos.

El annealing (apareamiento) se efectúa en el ciclador tal como sigue: 1 ciclo por 15' a 65°C, enfriar a 37°C (0,1 °C/1"), 1 ciclo por 10' a 37°C, enfriar a 4°C (0,1 °C/1"), luego a 4 °C ∞.

25 1.5. Transformación de Escherichia coli

30

35

La transformación se efectúa en la misma termoplaca de 96 pozos como previamente la clonación independiente de ligación, mediante adición de células E. coli competentes (cepa DH5α) e incubación en el ciclador por 20' a 1°C, seguido de un choque de calor por 90" a 42 °C y enfriamiento a 4°C. Luego se efectúa la adición de medio completo (SOC) y su transferencia a una placa Deepwell de 96 pozos con incubación por 45' a 37°C. A continuación se se cultiva la mezcla completa sobre placas de agar con canamicina y se incuba por una noche a 37°C.

1.6. PCR para la verificación de la eficiencia de clonación

La amplificación se efectúa en una termoplaca de 96 pozos de manera correspondiente al protocolo de la polimerasa- ADN Taq (empresa Gibco-BRL). La composición es como sigue: búfer 1x PCR [Tris-HCL de 20 mM (pH 8,4), MgCl₂ de 1,5 mM, KCl de 50 mM, dNTP de 0,2 mM, cebador forward de 5 pmol, cebador reverse de 5 pmol, 0,625 u de polimerasa - ADN Taq. Se selecciona una cantidad definida de constructos de plásmido de cada placa de agar y se transfiere una alícuota respectivamente a un pozo (de la termoplaca de 96 pozos) lleno con la mezcla maestra PCR. Los ciclos de amplificación son como sigue: 1 ciclo por 5' a 94°C, seguido de 35 ciclos respectivamente con 15" a 94 °C, 15" a 66 °C y 5' a 72 °C, seguido de 1 ciclo por 10' a 72 °C. Luego 4 °C ∞.

Regularmente se analizan cuatro colonias diferentes por constructo codogénico de plásmido. Para esto se toman las colonias correspondientes con una punta de pipeta y se transfieren a la solución para la PCR.

Se utilizan cebadores de control que enlazan corriente arriba y corriente abajo del casete de clonación y de esta manera hacen posible la amplificación de la inserción.

Los productos de amplificación se separan por electroforesis y se evalúan respecto de su calidad. Si se detecta un fragmento PCR en la medida correspondiente, tiene lugar una valoración positiva. De cada 4º grupo se transfiere respectivamente la colonia del primer fragmento PCR positivo a la preparación subsiguiente de plásmido.

1.7. Preparación de plásmido

5 Se transfiere una alícuota de colonias positivas a un pozo de una placa Deepwell lleno de medio completo (LB) y canamicina y se incuba por una noche a 37 °C.

La preparación de plásmido se efectúa según las prescripciones del protocolo estándar Qiaprep (empresa Qiagen).

1.8. Transformación de agrobacterias

1 ng del ADN – plásmido aislado se transforma por medio de electroporación en células competentes de Agrobacterium tumefaciens, cepa GV 3101 pMP90 (Koncz and Schell, Mol. Gen. Gent. 204, 383-396, 1986) en una termoplaca de 96 pozos. Luego se efectúa la adición de medio completo (YEP) y su trannsferencia a una placa Deepwell de 96 pozos con incubación por 3 h a 28 °C. A continuación toda la mezcla se cultiva sobre placas de agar EP con canamicina y se incuba 48 h a 28 °C.

2. Transformación de plantas y selección

Los constructos de plásmidos presentes en las agrobacterias generadas según 1. se encuentran disponibles para la transformación de plantas

2.1. Cultivo de bacterias

Con ayuda de la punta de una pipeta se recoge una colonia desde la plca de agar y se lleva a 3 ml de medio TB líquido que también contiene canamicina, rifampicina y gentamicina. Elprecultivo crece 48 h a 28 °C y 120 rpm.

Para el cultivo principal se usan 400 ml de medio LB que también contiene canamicina y gentamicina. El precultivo se transfiere al cultivo principal. Este crece 18 h a 28 °C y 120 rpm. Después de centrifugar a 4000 rpm el comprimido se resuspende en medio de infiltración (medio MS, sacarosa de 10 %).

2.2. Cultivo de plantas

Los platos (Piki Saat 80, verdes con fondo de tamiz, 30 x 20 x 4,5 cm, empresa Wiesauplast, Kunststofftechnik, Alemania) se llenan hasta la mitad con un sustrato GS 90 (tierra estándar, Werkverband E.V., Alemania). Los platos se remojan por una noche con solución de Previcur de 0,05 % (Previcur N, Aventis CropScience). Semillas de Arabidopsis thaliana C24 se dispersan sobre los platos, aproximadamente 1000 semillas por plato. Los platos se cubren con una cubierta y se ponen en la cámara de estratificación (8 h, 110 µE, 22 °C; 16 h, oscuro, 6 °C). Después de 5 días se ponen los platos el fitotrón de día corto (8h 130 µE, 22 °C; 16 h, oscuro, 20 °C). Aquí se quedan aproximadamente 10 días hasta que se forman las primeras hojas vegetativas.

Las plántulas se transfieren a las macetas que contienen el mismo sustrato (macetas Teku, 10 cm \emptyset , serie LC, fabricante Pöppelmann GmbH&Co, Alemania). Se pican nueve plantas en una maceta. Las macetas se ponen de nuevo en el fitotrón de día corto para que sigan creciendo.

Después de 10 días las plantas van a la cabina de invernadero (iluminación adicional, 16 h, 340 µE, 22 °C; 8 h, oscuro, 20 °C). Aguí siguen creciendo aún por 17 días.

2.3. Transformación

Plantas de Arabidopsis de 6 semanas de edad, ya florecientes, se sumergen por 10 segundos a la suspensión de agrobacterias arriba descrita. Esta se había mezclado previamente con 10 µl de Silwett L77 (Crompton S.A., Osi Specialties, Suiza). El método correspondiente se describe en Clough y Bent, 1998.

40 A continuación las plantas se colocan en una cámara húmeda por 18 h. Después para seguir el crecimiento se ponen las macetas de nuevo en el invernadero. Aquí las plantas permanecen 10 semanas más hasta que pueden cosecharse las semillas.

2.4. Selección

10

15

Dependiendo del marcador de resistencia usado para la selección de las plantas transformadas se plantan en el invernadero las semillas cosechadas y se someten a selección por aspersión o se cultivan después de la esterilización sobre placas de agar con el respectivo agente de selección. Después de cerca de 10-14 días se distinguen claramente las plantas resistentes transformadas de las plántulas de tipo silvestre muertas y pueden picarse en macetas de 6 cm. Para la selección en el invernadero se aspergen plántulas por 3 días después de la estratificación con una solución acuosa de 4 mg/l de Pursuit. Esta selección se repite después de 3 días y de 5 días. Después de otros 2 días las plántulas (plántulas en la etapa de cuatro hojas) resistentes transformadas pueden distinguirse distintivamente de las plántulas no transformadas. Las plántulas que no son transgénicas están descoloridas o muertas. Las plantas transformadas resistentes se pican en macetas de 6 cm, allí se cultivan y se obtienen sus semillas. Las semillas de las plantas transgénicas de A. thaliana se conservan en el congelador (a -20 °C).

De este modo y manera se genera una población de plantas transgénicas o el material derivado de las mismas de la especie Arabidopsis thaliana, en cuyo genoma está integrado respectivamente un segmento codogénico del gen de Saccharomyces cerevisiae.

Esta población se investiga funcionalmente. Como ejemplo sirve la investigación fenotípica en condiciones normales y de estrés.

- 3. Descripción de los análisis morfológicos.
- 3.1. Provisión del material vegetal
- Para la siembra se usaron macetas plásticas con un diámetro de 60 mm. Como mezcla de suelos se mezcla conjuntamente una mezcla de sustrato GS-90 y arena de cuarzo (4:1 V/V) en la máquina para enmacetar y se llenan las macetas. Después se agrupan 35 macetas en un plato y se tratan con Previcur. Para el tratamiento se llevan 25 ml de Previcur a 10 l de agua. Esta cantidad alcanzó para tratar cerca de 200 macetas. Las macetas se ponen en la solución de Previcur y se riegan desde arriba adicionalmente con agua de acueducto sin Previcur. La siembra tiene lugar el mismo día.

Para la siembra se retiran las semillas guardadas en el congelador (a -20 °C) de los recipientes de reacción con ayuda de un palillo de dientes y se transfiere a las macetas con la mezcla de tierra. En total se distribuyem cerca de 5-12 semillas en la mitad de la maceta.

Después de la siembra se cubren los platos con las macetas con una capucha plástica que se ajusta a las mismas y se ponen en la cámara de crecimiento a la luz por 16 h (20 °C) y 3-4 días de oscuridad (4 °C). La humedad alcanza cerca de 80-90 %. Después de la estratificación se cultivan plantas de ensayo por 21 días a un ritmo de 16 horas de día y 8 horas de noche a 20 °C y una humedad de aire de 60%. Como fuente de luz sirven tubos de Vialox de Osram, los cuales generan una luz del color SON-T PLUS con una intensidad de 220 µE/m²/s.

Después de la estratificación se separan las plántulas en la edad de 10 días. Las plantas que crecen en la mitad de la maceta de la manera más óptima se consideran como plantas objetivo. Con ayuda de pinzas metálicas se retiran cuidadosamente todas las plantas restantes y se desechan.

Durante el crecimiento se riegan las plantas dos veces al día con agua de acueducto desde arriba (sobre la tierra).

3.2. Análisis morfológico

Las plantas de ensayo se evalúan a la edad de 21 días según una clave de desarrollo. Todas las desviaciones morfológicas de la planta de referencia (tipo silvestre no modificado por ingeniería genética) se registran en tal caso. La clave de desarrollo agrupa todas las desviaciones morfológicas de las plantas de Arabidopsis en seis grupos principales. En este caso se distingue entre: mutantes de pigmento, mutantes de cabeza de col, mutantes enanos, mutantes de hoja, mutantes de rosetas y mutantes de flor. En el grupo principal respectivo se registran entre dos y cinco fenotipos distintos. Así, por ejemplo, en el grupo principal de los mutantes de pigmento se distingue entre los mutantes albinos/amarillos, mutantes fucsia y los mutantes de color verde oscuro. Adicionalmente a los rasgos principales, en el grupo principal respectivo se registran otros rasgos como la forma de las hojas, el grado de hirsutismo de las hojas, el tamaño de las plantas y el tiempo de florecimiento.

Con la ayuda de la clave de desarrollo se detectan dentro de la población varias líneas en las que se observa una desviación morfológica distintiva hacia el fenotipo del tipo silvestre.

Así, las líneas (2510) que expresan el gen YKL174C (similarity to choline transport protein HNM1P), muestran un florecimiento temprano. En tal caso las plantas transgénicas florecen ya a la edad de 25 días. Por contraste, las plantas de tipo silvestre, no transgénicas florecen en las mismas condiciones de crecimiento solo a la edad de 30 días o más. Adicionalmente al fenómeno del florecimiento temprano, con ayuda de la clave puede identificarse otros rasgos morfológicos como pigmentación de color verde oscuro y enanismo.

Líneas que expresan el gen YKR009C (hidratasa-dehidrogenasa-epimerasa, peroxisomal), muestran al día 21 después de la germinación un pequeño crecimiento. En tal caso el diámetro de roseta de las plantas transgénicas alcanzan cerca de 15 mm, por el contrario el diámetro de rosetas de un tipo silvestre de igual edad alcanza cerca de 40 mm. La pigmentación también es distintivamente más oscura lo cual puede atribuirse a un contenido incrementado de clorofila.

Otras líneas que expresan otros segmentos codogénicos determinados del gen también muestran modificaciones fenotípicas, mientras que en la expresión de los segmentos codogénicos residuales en el modelo de investigación subyacente no pueden registrarse modificaciones fenotípicas en las plantas transgénicas.

3.3. Análisis de estrés a la sequía

5

10

15

20

50

Después de la investigación de los rasgos morfológicos, las plantas de ensayp se exponen a la prueba de estrés a la sequía. Para garantizar las mismas condiciones de estrés a la sequía para todas las plantas de ensayo se remojan generosamente las plantas de ensayo antes del comienzo del estrés a la sequía. Esta medida debe garantizar a las plantas de ensayo tanta homogeneidad como sea posible con respecto al contenido de humedad. Para minimizar los daños por la luz, durante el ensayo se reduce la intensidad de luz a cerca de 150 µEm⁻²s⁻¹. La humedad relativa del aire se reduce desde 60 % a 20 % a 20 °C. En tal caso, la reducción de la humedad relativa del aire transcurre por pasos en 10 % por día. Para excluir efectos específicos de posición las bandejas de cultivo con las plantas de ensayo rotan durante todo el tiempo del ensayo en la cámara.

Las plantas que muestran una reacción sensible frente al agente de estrés (sensible en comparación con el tipo silvestre) se registran en el día 7, 8, y 9 después del inicio del estrés. En tal caso las hojas viejas de la planta sensible a la sequía se tinturan de color amarillento o verde claro y se encuentran marchitas en el suelo. Por contraste, las hojas más jóvenes se curvan y se asemejan por el color a las hojas sanas. El tamaño de las plantas sensibles a la sequía comprende, por lo contrario, aproximadamente al del tipo silvestre. Al día 9 después del inicio del estrés, las plantas sensibles a la sequía se desecan y se ponen quebradizas.

Las plantas que en comparación con las plantas de referencia del tipo silvestre muestran una resistencia a la sequía se observan diariamente entre el día 11 y el día 14 después del inicio del estrés. Las observaciones se documentan. El fenotipo de las plantas resistentes a la sequía no se diferencia en tal caso del fenotipo de una planta no estresada. Por el contrario, las plantas del tipo silvestre se desecan después del día 10.

Así, la expresión de determinados segmentos codogénicos del gen de Saccharomyces cerevisiae (en particular los ORFs YDR51w y YER174c que codifican para la glutaredoxina y tioredoxina) causa una resistencia a la sequía mejorada en Arabidopsis thaliana en comparación con el tipo silvestre, mientras que la expresión de los segmentos codogénicas restantes no tiene influencia en la resistencia a la sequía.

3.4. Análisis al estrés por helada.

40 Para el análisis del congelamiento se cultivan las plantas de ensayo de la forma descrita arriba. A la edad de 21 días se exponen entonces al ensayo de estrés por congelamiento. Para evitar los daños por luz durante el ensayo la intensidad de la luz se reduce durante el ensayo a cerca de 50 μEm²s¹. La humedad relativa del aire no se modifica durante el ensayo. El estrés por congelamiento se realiza a las siguientes temperaturas: primero 10 horas a -2 °C y después 48 horas a -6 °C. la transición de 20 °C a -2 °C, de -2 °C a -6 °C y de -6 °C a 20 °C dura respectivamente 4 horas. Estas condiciones de estrés alcanzan para matar las plantas de tipo silvestre. 3 días después de finalizar el estrés por congelamiento las plantas de ensayo se investigan respecto de la existencia de reacciones de resistencia.

En las líneas resistentes al congelamiento se observa que siguen creciendo 3 días después del final del estrés. En tal caso no se observaron lesiones o lesiones aisladas por la helada. Estas se limitan en la mayoría de los casos a las hojas más viejas. Las lesiones por congelamiento se caracterizan por la desecación y por la decoloración de los sitios lesionados, en particular de las hojas. En tal caso las hojas descoloridas son verde claro o amarillas.

Así, la expresión de determinados segmentos codogénicos del gen de Saccharomyces cerevisiae causan en Arabidopsis thaliana una resistencia mejorada a la helada en comparación con el tipo silvestre, mientras que la expresión de los segmentos codogénicos restantes del gen no tiene influencia en la resistencia a la helada.

- 4. Cultivo de las plantas para estudios bioanalíticos
- 5 Para el estudio bioanalítico de las plantas se necesita un cultivo rápido y uniforme de las plantas.

Como mezcla de suelos se hace una mezcla de sustrato GS-90 y arena de cuarzo (4:1 VN) en la máquina para poner en macetas (Laible System GmbH, Singen, Alemania) y se llenan las macetas. Después se agrupan 35 macetas en un plato y se tratan con Previcur. Para el tratamiento se llevan 25 ml de Previcur a 10 l de agua de acueducto. Esta cantidad alcanzó para tratar cercea de 200 macetas. Las macetas se ponen en la solución de Previcur y se regó desde arriba adicionalmente con agua de acueducto sin Previcur. La siembra tiene lugar en el mismo día.

Para la siembra se retiran las semillas guardadas en el congelador (a -20 °C) de los tubos de Eppendorf con ayuda de un palillo de dientes y se trasladan a las macetas con la mezcla de tierra. En total se distribuyen cerca de 5-12 semillas en la mitad de la maceta.

Después de la siembra se cubren los platos con las macetas con una capucha de plástico que se ajista a las macetas y se ponen en la cámara de crecimiento a 16 h de luz a 20 °C y 8 h de oscuridad a 4 °C. La humedad alcanza cerca de 80-90 % por una duración del tratamiento de 72 h. Después de la estratificación se cultivan plantas de ensayo por 21 días con un ritmo de 16 h de luz y 8 h de oscuridad a 20 °C, una humedad del aire de 60 % y una concentración de CO₂ de 400 ppm. Como fuentes de luz sirven lampas Powerstar HQI-T 250 W/D Daylight de Osram, las cuales generan una luz similar al espectro de luz del sol con una intensidad de luz de 220 μE/m²/s.

Después de la estratificación se separan las plántulas de edad de 10 días. Las plantas que mejor crecen en el centro de la maceta se consideran como planta objetivo. Con ayuda de pinzas de metal todas las demás plantas se retiran y se desechan.

Durante el crecimiento se riegan las plantas dos veces diariamente con agua de acueducto desde arriba (sobre las plantas/macetas). Las plantas se cultivan después de cerca de 22 días con un peso de cerca de 300-400 mg para el análisis.

5. Análisis metabólicos

10

30

35

40

45

Después de la cosecha rápida, el material vegetal se congela por choque en nitrógeno líquido, se seca por helada y a continuación se extrae por medios de extracción acelerada del solvente (ASE) usando metanol/agua y metanol/diclorometano. Después de una distribución líquido/líquido se concentran alícuotas de la fase orgánica y de la fase acuosa hasta secar. En el caso de la fase orgánica la derivatización comprende transmetilación seguirá por metoxiaminación mediante reacción con metoxiamina hidrocloruro y trimetilsililación con MSTFA (N-metil-N-(trimetilsilil)-trifluoracetamida). La fase metanólica/ acuosa se derivatiza solo por medio de metoxiaminación y trimetilsililación. La determinación final se efectúa con GC/EI-MS. Para la LCMS/MS los extractos que se han evaporado hasta la sequedad se llevan a la fase móvil y luego se analizan.

De esta manera el material vegetal puede estudiarse para el contenido de los aminoácidos metionina y treonina, por ejemplo. Para este propósito el contenido de metionina y el contenido de treonina se determinan por cromatografía líquida y de gas (LC y GC) para cada planta transgénica en la población arriba descrita (Arabidopsis thaliana con segmentos codogénicos de gen de Saccharomyces cerevisiae) en cada caso en 15 líneas transgénicas y otras muestras de plantas del tipo silvestre que sirven para comparación (Arabidopsis thaliana). Para evaluar los cromatogramas las áreas o las alturas medidas de los máximos de los analitos a determinar (metionina o treonina) se divide por el área o la altura de los máximos del estándar interno respectivo. Estos valores se estandarizan al peso fresco determinado para la planta. Después el valor se relaciona para cada planta transgénica con el respectivo grupo silvestre de control dividiéndolo por el valor promedio (factor 1) de los 5 valores obtenidos para las plantas de tipo silvestre concernidas.

Además, el valor para una planta transgénica con un ORF determinado determinado se refiere al valor promedio de los valores de todas las otras 14 plantas transgénicas a cuyo genoma no se integra el ORF, y a los valores de los 5 controles de tipo silvestre (Factor 2).

En las siguientes tablas se listan estos valores de dos experimentos realizados independientemente uno de otro para las plantas en cuo genoma se integra el ORF YEL046C de Saccharomyces cerevisiae.

Analito	Factor 1	Factor 2	GC/LC
Metionina	3,46-3,58	3,31-3,4	LC
Treonina	0,45-0,15	0,61-0,15	LC
Treonina	0,17-0,16	0,18-0,16	GC
Metionina	3,31-3,67	3,5-3,53	GC

Por consiguiente, aquellas plantas transgénicas a cuyo genoma se ha integrado el ORF YEL046C que codifica para la treoninan-aldolasa tienen un contenido distintivamente elevado de metionina y un contenido distintivamente reducido de treonina. Esto se aplica tanto para la comparación con plantas de tipo silvestre (Factor 1) como también para la comparación con las restantes plantas transgénicas de la población investigada a cuyo genoma se ha integrado el dicho ORF (factor 2).

REIVINDICACIONES

- 1. Población de plantas transgénicas que comprende un grupo de plantas transgénicas donde al genoma de cada planta transgénica del grupo se ha integrado un segmento codogénico del gel de un organismo donante pero ningún otro segmento codogénico del gen del organismo donante, y la población puede obtenerse:
- 5 a) suministrando un segmento codogénico del gen del organismo donante;

10

15

20

25

40

- b) integrando este segmento codogénico del gen en el genoma de una planta; y
- c) realizando los pasos a) y b) para al menos el 50 % de todos los segmentos codogénicos del gen del organismo donante en una cantidad correspondiente de plantas de tal modo que cada una de estas plantas tenga un segmento codogénico del gen pero no otro, y el organismo donante se selecciona de entre Acetobacter (subgen. Acetobacter) aceti; Acidithiobacillus ferrooxidans; Acinetobacter sp.; Actinobacillus sp; Aeromonas salmonicida; Agrobacterium tumefaciens; Aquifex aeolicus; Arcanobacterium pyogenes; Aster yellows phytoplasma; Bacillus sp.; Bifidobacterium sp.; Borrelia burgdorferi; Brevibacterium linens; Brucella melitensis; Buchnera sp.; Butyrivibrio fibrisolvens; Campylobacter jejuni; Caulobacter crescentus; Chlamydia sp.; Chlamydophila sp.; Chlorobium limicola, Citrobacter rodentium; Clostridium sp.; Comamonas testosteroni; Corynebacterium sp.; Coxiella burnetii; Deinococcus radiodurans; Dichelobacter nodosus; Edwardsiella ictaluri; Enterobacter sp.; Erysipelothrix rhusiopathiae; Escherichia coli; Flavobacterium sp.; Francisella tularensis; Frankia sp. Cpl1; Fusobacterium nucleatum; Geobacillus stearothermophilus; Gluconobacter oxydans; Haemophilus sp.; Helicobacter pylori; Klebsiella pneumoniae; Lactobacillus sp.; Lactococcus lactis; Listeria sp.; Mannheimia haemolytica; Mesorhizobium loti; Methylophaga thalassica; Microcystis aeruginosa; Microscilla sp. PRE1; Moraxella sp. TA144; Mycobacterium sp.; Mycoplasma sp.; Neisseria sp.; Nitrosomonas sp.; Nostoc sp. PCC 7120; Novosphingobium aromaticivorans; Oenococcus oeni; Pantoea citrea; Pasteurella multocida; Pediococcus pentosaceus; Phormidium foveolarum; Phytoplasma sp.; Plectonema boryanum; Prevotella ruminicola; Propionibacterium sp.; Proteus vulgaris; Pseudomonas sp.; Ralstonia sp.; Rhizobium sp.; Rhodococcus equi; Rhodothermus marinus; Rickettsia sp.; Riemerella anatipestifer; Ruminococcus flavefaciens; Saccharomyces cerevisiae; Salmonella sp.; Selenomonas ruminantium; Serratia entomophila; Shigella sp.; Sinorhizobium meliloti; Staphylococcus sp.; Streptococcus sp.; Streptomyces sp.; Synechococcus sp.; Synechocystis sp. PCC 6803; Thermotoga maritima; Treponema sp.; Ureaplasma urealyticum; Vibrio cholerae; Vibrio parahaemolyticus; Xylella fastidiosa; Yersinia sp.; Zymomonas mobilis.
 - 2. Población según la reivindicación 1, caracterizada porque los segmentos codogénicos del gen se integran al genoma nuclear.
- 30 3. Población según la reivindicación 1 o 2, caracterizada porque se integran 1 a 5 copias por células de planta transgénica.
 - 4. Población según una de las reivindicaciones 1 a 3, caracterizada porque los segmentos codogénicos del gen están flanqueados por secuencias de ADN-T, por uno o por ambos lados.
- 5. Población según una de las reivindicaciones precedentes, caracterizada porque los segmentos codogénicos del gen están conectados funcionalmente con secuencias regulatorias.
 - 6. Población según la reivindicación 5, caracterizada porque las secuencias regulatorias contienen secuencias que codifican péptido de señal y/o de tránsito.
 - 7. Población según una de las reivindicaciones precedentes, caracterizada porque la población comprende al menos otra planta en cuyo genoma se integra un segmento codogénico del gen en combinación con otro segmento codogénico del gen o varios otros segmentos codogénicos del gen del organismo donante.
 - 8. Población según una de las reivindicaciones precedente, caracterizada porque las plantas transgénicas pertenecen al género Arabidopsis.
 - 9. Población según una de las reivindicaciones 1 a 7, caracterizada porque las plantas transgénicas pertenecen al género Oryza.
- 45 10. Método para la generación de una población de plantas transgénicas en el cual
 - a) se suministra un segmento codogénico del gen de un organismo donante;

- b) se integra este segmento codogénico del gen en el genoma de una planta; y
- c) se realizan los pasos a) y b) para al menos el 50 % de todos los sementos codogénicos del gen del organismo donante en una cantidad correspondiente de plantas, de tal modo que cada una de estas plantas tiene un segmento codogénico del gen, pero no otro, en cuyo caso el organismo donante se selecciona de entre Acetobacter (subgen. Acetobacter) aceti; Acidithiobacillus ferrooxidans; Acinetobacter sp.; Actinobacillus sp; Aeromonas salmonicida; Agrobacterium tumefaciens; Aquifex aeolicus; Arcanobacterium pyogenes; Aster yellows phytoplasma; Bacillus sp.; Bifidobacterium sp.; Borrelia burgdorferi; Brevibacterium linens; Brucella melitensis; Buchnera sp.; Butyrivibrio fibrisolvens; Campylobacter jejuni; Caulobacter crescentus; Chlamydia sp.; Chlamydophila sp.; Chlorobium limicola; Citrobacter rodentium; Clostridium sp.; Comamonas testosteroni; Corynebacterium sp.; Coxiella burnetii: 10 Deinococcus radiodurans; Dichelobacter nodosus; Edwardsiella ictaluri; Enterobacter sp.; Erysipelothrix rhusiopathiae; Escherichia coli; Flavobacterium sp.; Francisella tularensis; Frankia sp. Cpl1; Fusobacterium nucleatum; Geobacillus stearothermophilus; Gluconobacter oxydans; Haemophilus sp.; Helicobacter pylori; Klebsiella pneumoniae; Lactobacillus sp.; Lactococcus lactis; Listeria sp.; Mannheimia haemolytica; Mesorhizobium loti; Methylophaga thalassica; Microcystis aeruginosa; Microscilla sp. PRE1; Moraxella sp. TA144; Mycobacterium sp.; 15 Mycoplasma sp.; Neisseria sp.; Nitrosomonas sp.; Nostoc sp. PCC 7120; Novosphingobium aromaticivorans; Oenococcus oeni; Pantoea citrea; Pasteurella multocida; Pediococcus pentosaceus; Phormidium foveolarum; Phytoplasma sp.; Plectonema boryanum; Prevotella ruminicola; Propionibacterium sp.; Proteus vulgaris; Pseudomonas sp.; Ralstonia sp.; Rhizobium sp.; Rhodococcus equi; Rhodothermus marinus; Rickettsia sp.; Riemerella anatipestifer, Ruminococcus flavefaciens; Saccharomyces cerevisiae; Salmonella sp.; Selenomonas 20 ruminantium; Serratia entomophila; Shigella sp.; Sinorhizobium meliloti; Staphylococcus sp.; Streptococcus sp.; Streptomyces sp.; Synechococcus sp.; Synechococsus sp.; Synechococsus sp.; Synechococsus sp.; Synechococcus Ureaplasma urealyticum; Vibrio cholerae; Vibrio parahaemolyticus; Xylella fastidiosa; Yersinia sp.; Zymomonas mobilis.
- 11. Método según la reivindicación 10, caracterizado porque para suministrar el segmento codogénico del gen se transforman bacterias del género Agrobacterium con el segmento codogénico del gen.
 - 12. Método según la reivindicación 11, caracterizado porque la bacteria Agrobacterium tumefaciens.
 - 13. Método según la reivindicación 10, caracterizado porque el segmento codogénico del gen se integra al genoma de una planta
- b1) dejando actuar agrobacterias que se transforman con el segmento codogénico del gen sobre las plantas o el material biológico adecuado de las mismas; y
 - b2) obteniendo las plantas transgénicas o material biológico adecuado de las mismas.
 - 14. Método según la reivindicación 13, caracterizado porque se deja actuar las agrobacterias in planta.
- 15. Método según la reivindicación 13, caracterizado porque para la obtención de las plantas transgénicas o del material biológico adecuado de las mismas primero se obtienen las semillas de las plantas tratadas con agrobacterias, se siembran y se someten a condiciones selectivas y se obtienen las plantas transformadas o el material biológico adecuado de las mismas.
 - 16. Material transgénico biológico que puede obtenerse de manera conocida de por sí a partir de una población de plantas transgénicas según una de las reivindicaciones 1 a 9 y comprende al menos el 50 % de todos los segmentos codogénicos del gen del organismo donante.
- 40 17. Colección de constructos de plásmidos que comprende un grupo de constructos de plásmidos donde en cada constructo del grupo se ha integrado un segmento codogénico del gen de un organismo donante, pero no otro segmento codogénico del gen del organismo donante; la colección puede obtenerse
 - a) suministrando un segmento codogénico del gen del organismo donante;
 - b) integrando este segmento codogénico del gen en un constructo de plásmido; y
- c) realizando los pasos a) y b) para al menos el 50 % de todos los segmentos codogénicos del gen del organismo donante en un una cantidad correspondiente de constructos de plásmidos, de tal modo que cada uno de estos constructos tiene un segmento codogénico del gen, pero no otro, y el organismo donante se selecciona entre Acetobacter (subgen. Acetobacter) aceti; Acidithiobacillus ferrooxidans; Acinetobacter sp.; Actinobacillus sp;

Aeromonas salmonicida; Agrobacterium tumefaciens: Aquifex aeolicus; Arcanobacterium pyogenes; Aster yellows phytoplasma; Bacillus sp.; Bifidobacterium sp.; Borrelia burgdorferi; Brevibacterium linens; Brucella melitensis; Buchnera sp.; Butyrivibrio fibrisolvens; Campylobacter jejuni; Caulobacter crescentus; Chlamydia sp.; Chlamydophila sp.; Chlorobium limicola; Citrobacter rodentium; Clostridium sp.; Comamonas testosteroni; Corynebacterium sp.; Coxiella burnetii; Deinococcus radiodurans; Dichelobacter nodosus; Edwardsiella ictaluri; Enterobacter sp.; Erysipelothrix rhusiopathiae: Escherichia coli; Flavobacterium sp.; Francisella tularensis; Frankia sp. Cpl1; Fusobacterium nucleatum; Geobacillus stearothermophilus; Gluconobacter oxydans; Haemophilus sp.; Helicobacter pylori; Klebsiella pneumoniae; Lactobacillus sp.; Lactococcus lactis; Listeria sp.; Mannheimia haemolytica; Mesorhizobium loti; Methylophaga thalassica; Microcystis aeruginosa; Microscilla sp. PRE1; Moraxella sp. TA144; 10 Mycobacterium sp.; Mycoplasma sp.; Neisseria sp.; Nitrosomonas sp.; Nostoc sp. PCC 7120; Novosphingobium aromaticivorans; Oenococcus oeni; Pantoea citrea; Pasteurella multocida; Pediococcus pentosaceus; Phormidium foveolarum; Phytoplasma sp.; Plectonema boryanum; Prevotella ruminicola; Propionibacterium sp.; Proteus vulgaris; Pseudomonas sp.; Ralstonia sp.; Rhizobium sp.; Rhodococcus equi; Rhodothermus marinus; Rickettsia sp.; Riemerella anatipestifer: Ruminococcus flavefaciens: Saccharomyces cerevisiae: Salmonella sp.: Selenomonas 15 ruminantium; Serratia entomophila; Shigella sp.; Sinorhizobium meliloti; Staphylococcus sp.; Streptococcus sp.; Streptomyces sp.; Synechococcus sp.; Synechocystis sp. PCC 6803; Thermotoga maritima; Treponema sp.; Ureaplasma urealyticum; Vibrio cholerae; Vibrio parahaemolyticus; Xylella fastidiosa; Yersinia sp.; Zymomonas mobilis.

- 18. Colección según la reivindicación 17, caracterizada porque los segmentos codogénicos del gen están conectados funcionalmente con secuencias regulatorias.
 - 19. Colección según la reivindicación 18, caracterizada porque las secuencias regulatorias son vegetales.
 - 20. Colección según una de las reivindicaciones 17 a 19, caracterizada porque los constructos se basan en vectores binarios.
- 21. Población de un organismo huésped que contiene la colección de constructos de plásmidos según una de las reivindicaciones 17 a 20.
 - 22. Método para la investigación funcional de una población según una de las reivindicaciones 1 a 9, en el cual
 - a) se suministra la población;
 - b) opcionalmente se someten las plantas a condiciones de estrés; y
- c) se compara un rasgo fenotípico o el metabolismo de cada una de las plantas de la población con el fenotipo o el metabolismo de una planta de referencia, en cuyo caso en el genoma de la planta no se ha integrado ninguno de los segmentos codogénicos del gen del organismo donante, comprendidos por la población.
 - 23. Método según la reivindicación 22, donde el rasgo fenotípico se selecciona entre crecimiento, color, morfología y comportamiento al florecer de las plantas.
 - 24. Método según una de las reivindicaciones 22 o 23, donde el estrés es abiótico o biótico.
- 35 25. Método según una de las reivindicaciones 22 a 24, donde el estrés es estrés al frío o estrés a la sequía.
 - 26. Uso de una población de plantas trnasgénicas según una de las reivindicaciones 1 a 9 o de un material biológico derivado de las mismas según la reivindicación 16, para la determinación de la función de los segmentos codogénicos del gen.

Fig. 1

YAL002W	YAL044C	YAR027W	YBL019W	YBL065W
YAL003W	YAL045C	YAR028W	YBL021C	YBL066C
YAL005C	YAL046C	YAR029W	YBL022C	YBL067C
YAL007C	YAL047C	YAR030C	YBL025W	YBL069W
YAL008W	YAL048C	YAR031W	YBL026W	YBL070C
YAL009W	YAL049C	YAR033W	YBL027W	YBL071C
YAL010C	YAL051W	YAR035W	YBL028C	YBL072C
YAL011W	YAL053W	YAR042W	YBL030C	YBL073W
YAL012W	YAL054C	YAR044W	YBL031W	YBL074C
YAL013W	YAL055W	YAR047C	YBL032W	YBL075C
YAL014C	YAL056W	YAR053W	YBL033C	YBL076C
YAL015C	YAL058C-A	YAR060C	YBL035C	YBL077W
YAL016W	YAL058W	YAR061W	YBL036C	YBL078C
YAL018C	YAL059W	YAR062W	YBL037W	YBL080C
YAL019W	YAL060W	YAR064W	YBL038W	YBL082C
YAL020C	YAL061W	YAR066W	YBL039C	YBL083C
YAL022C	YAL062W	YAR068W	YBL041W	YBL086C
YAL023C	YAL064W	YAR069C	YBL043W	YBL087C
YAL025C	YAL064W-B	YAR070C	YBL044W	YBL089W
YAL027W	YAL065C	YAR071W	YBL045C	YBL090W
YAL028W	YAL066W	YAR073W	YBL046W	YBL091C
YAL030W	YAL067C	YAR075W	YBL048W	YBL091C-A
YAL031C	YAL068C	YBL001C	YBL049W	YBL092W
YAL032C	YAL069W	YBL002W	YBL050W	YBL093C
YAL033W	YAR002W	YBL003C	YBL053W	YBL094C
YAL034C	YAR003W	YBL005W-A	YBL054W	YBL095W
YAL034W-A	YAR007C	YBL006C	YBL055C	YBL096C
YAL035C-A	YAR008W	YBL007C	YBL056W	YBL097W
YAL036C	YAR010C	YBL008W	YBL057C	YBL098W
YAL037W	YAR014C	YBL010C	YBL059W	YBL099W
YAL038W	YAR015W	YBL011W	YBL060W	YBL100C
YAL039C	YAR018C	YBL012C	YBL061C	YBL101C
YAL040C	YAR019C	YBL013W	YBL062W	YBL101W-A
YAL041W	YAR020C	YBL016W	YBL063W	YBL102W
YAL042W	YAR023C	YBL018C	YBL064C	YBL103C

YBL104C	YBR029C	YBR066C	YBR110W	YBR149W
YBL106C	YBR030W	YBR067C	YBR111C	YBR151W
YBL107C	YBR031W	YBR068C	YBR112C	YBR152W
YBL107W-A	YBR032W	YBR069C	YBR113W	YBR153W
YBL108W	YBR033W	YBR071W	YBR114W	YBR154C
YBL109W	YBR034C	YBR072W	YBR115C	YBR155W
YBL111C	YBR035C	YBR074W	YBR116C	YBR156C
YBL112C	YBR036C	YBR075W	YBR117C	YBR157C
YBL113C	YBR037C	YBR076W	YBR118W	YBR158W
YBR001C	YBR038W	YBR077C	YBR119W	YBR159W
YBR002C	YBR039W	YBR083W	YBR120C	YBR160W
YBR003W	YBR040W	YBR084C-A	YBR121C	YBR161W
YBR004C	YBR041W	YBR084W	YBR122C	YBR162C
YBR005W	YBR042C	YBR085W	YBR123C	YBR162W-A
YBR006W	YBR043C	YBR086C	YBR124W	YBR163W
YBR007C	YBR044C	YBR087W	YBR125C	YBR164C
YBR009C	YBR045C	YBR088C	YBR126C	YBR166C
YBR010W	YBR046C	YBR089C-A	YBR127C	YBR167C
YBR011C	YBR047W	YBR089W	YBR128C	YBR168W
YBR012C	YBR048W	YBR090C	YBR129C	YBR169C
YBR012W-A	YBR049C	YBR091C	YBR130C	YBR170C
YBR013C	YBR050C	YBR092C	YBR131W	YBR171W
YBR014C	YBR051W	YBR093C	YBR132C	YBR173C
YBR015C	YBR052C	YBR094W	YBR133C	YBR174C
YBR016W	YBR053C	YBR095C	YBR134W	YBR175W
YBR017C	YBR054W	YBR096W	YBR135W	YBR176W
YBR018C	YBR055C	YBR098W	YBR137W	YBR177C
YBR019C	YBR056W	YBR099C	YBR138C	YBR178W
YBR020W	YBR057C	YBR100W	YBR139W	YBR181C
YBR021W	YBR058C	YBR101C	YBR141C	YBR182C
YBR022W	YBR059C	YBR102C	YBR142W	YBR183W
YBR023C	YBR060C	YBR103W	YBR143C	YBR184W
YBR024W	YBR061C	YBR104W	YBR144C	YBR185C
YBR025C	YBR062C	YBR106W	YBR145W	YBR186W
YBR026C	YBR063C	YBR107C	YBR146W	YBR187W
YBR027C	YBR064W	YBR108W	YBR147W	YBR188C
YBR028C	YBR065C	YBR109C	YBR148W	YBR189W

YBR190W	YBR236C	YBR274W	YCL014W	YCL074W
YBR191W	YBR237W	YBR276C	YCL016C	YCL075W
YBR192W	YBR238C	YBR277C	YCL017C	YCL076W
YBR193C	YBR239C	YBR278W	YCL018W	YCR001W
YBR194W	YBR240C	YBR279W	YCL019W	YCR002C
YBR195C	YBR241C	YBR280C	YCL020W	YCR003W
YBR196C	YBR242W	YBR281C	YCL022C	YCR004C
YBR197C	YBR243C	YBR282W	YCL023C	YCR005C
YBR198C	YBR244W	YBR283C	YCL024W	YCR006C
YBR199W	YBR245C	YBR284W	YCL025C	YCR007C
YBR200W	YBR246W	YBR285W	YCL027W	YCR008W
YBR204C	YBR247C	YBR286W	YCL029C	YCR009C
YBR205W	YBR248C	YBR287W	YCL031C	YCR010C
YBR206W	YBR249C	YBR288C	YCL032W	YCR012W
YBR207W	YBR250W	YBR289W	YCL034W	YCR013C
YBR209W	YBR251W	YBR290W	YCL038C	YCR014C
YBR210W	YBR252W	YBR291C	YCL039W	YCR015C
YBR211C	YBR253W	YBR292C	YCL040W	YCR016W
YBR213W	YBR254C	YBR293W	YCL043C	YCR019W
YBR214W	YBR255W	YBR294W	YCL048W	YCR020C
YBR217W	YBR256C	YBR295W	YCL049C	YCR020C-A
YBR218C	YBR257W	YBR296C	YCL050C	YCR020W-B
YBR219C	YBR258C	YBR297W	YCL051W	YCR021C
YBR221C	YBR259W	YBR298C	YCL052C	YCR022C
YBR222C	YBR260C	YBR299W	YCL054W	YCR023C
YBR223C	YBR261C	YBR300C	YCL055W	YCR024C
YBR225W	YBR262C	YBR301W	YCL056C	YCR024C-A
YBR226C	YBR263W	YBR302C	YCL057W	YCR025C
YBR227C	YBR264C	YCL001W-A	YCL058C	YCR027C
YBR228W	YBR265W	YCL002C	YCL059C	YCR028C
YBR229C	YBR266C	YCL005W	YCL064C	YCR028C-A
YBR230C	YBR268W	YCL006C	YCL065W	YCR030C
YBR231C	YBR269C	YCL007C	YCL066W	YCR034W
YBR232C	YBR270C	YCL008C	YCL067C	YCR035C
YBR233W	YBR271W	YCL009C	YCL068C	YCR037C
YBR234C	YBR272C	YCL011C	YCL069W	YCR039C
YBR235W	YBR273C	YCL012W	YCL073C	YCR041W

YCR043C	YCR097W	YDL037C	YDL085W	YDL130W
YCR044C	YCR099C	YDL040C	YDL086W	YDL130W-A
YCR045C	YCR100C	YDL041W	YDL088C	YDL131W
YCR046C	YCR101C	YDL043C	YDL089W	YDL132W
YCR047C	YCR102C	YDL045C	YDL090C	YDL133C-A
YCR048W	YCR102W-A	YDL045W-A	YDL091C	YDL133W
YCR049C	YCR103C	YDL047W	YDL092W	YDL134C
YCR050C	YCR104W	YDL048C	YDL093W	YDL135C
YCR051W	YCR105W	YDL049C	YDL094C	YDL136W
YCR053W	YCR107W	YDL050C	YDL096C	YDL137W
YCR054C	YDL001W	YDL051W	YDL097C	YDL139C
YCR059C	YDL002C	YDL052C	YDL098C	YDL142C
YCR060W	YDL003W	YDL053C	YDL100C	YDL143W
YCR061W	YDL004W	YDL054C	YDL101C	YDL144C
YCR062W	YDL005C	YDL055C	YDL103C	YDL146W
YCR063W	YDL006W	YDL056W	YDL104C	YDL147W
YCR064C	YDL008W	YDL057W	YDL105W	YDL148C
YCR065W	YDL009C	YDL059C	YDL106C	YDL149W
YCR066W	YDL010W	YDL060W	YDL107W	YDL150W
YCR069W	YDL011C	YDL062W	YDL108W	YDL151C
YCR071C	YDL013W	YDL064W	YDL109C	YDL152W
YCR072C	YDL014W	YDL065C	YDL110C	YDL153C
YCR073W-A	YDL015C	YDL066W	YDL111C	YDL154W
YCR077C	YDL016C	YDL067C	YDL115C	YDL155W
YCR079W	YDL017W	YDL068W	YDL116W	YDL156W
YCR083W	YDL018C	YDL069C	YDL117W	YDL157C
YCR084C	YDL019C	YDL070W	YDL118W	YDL158C
YCR085W	YDL020C	YDL071C	YDL119C	YDL159W
YCR086W	YDL023C	YDL072C	YDL120W	YDL160C
YCR087C-A	YDL024C	YDL076C	YDL122W	YDL161W
YCR088W	YDL025C	YDL078C	YDL123W	YDL162C
YCR090C	YDL026W	YDL079C	YDL124W	YDL163W
YCR091W	YDL027C	YDL080C	YDL125C	YDL164C
YCR092C	YDL029W	YDL081C	YDL126C	YDL165W
YCR094W	YDL033C	YDL082W	YDL127W	YDL166C
YCR095C	YDL034W	YDL083C	YDL128W	YDL167C
YCR096C	YDL036C	YDL084W	YDL129W	YDL168W

YDL169C	YDL212W	YDR007W	YDR048C	YDR089W
YDL170W	YDL213C	YDR008C	YDR049W	YDR090C
YDL172C	YDL215C	YDR009W	YDR050C	YDR091C
YDL173W	YDL216C	YDR010C	YDR051C	YDR092W
YDL174C	YDL217C	YDR012W	YDR052C	YDR094W
YDL177C	YDL218W	YDR013W	YDR053W	YDR095C
YDL178W	YDL219W	YDR016C	YDR054C	YDR096W
YDL179W	YDL220C	YDR018C	YDR055W	YDR098C-A
YDL180W	YDL221W	YDR019C	YDR056C	YDR100W
YDL181W	YDL222C	YDR020C	YDR057W	YDR101C
YDL182W	YDL223C	YDR021W	YDR058C	YDR103W
YDL183C	YDL224C	YDR022C	YDR060W	YDR104C
YDL184C	YDL226C	YDR024W	YDR061W	YDR106W
YDL186W	YDL227C	YDR025W	YDR062W	YDR108W
YDL187C	YDL228C	YDR026C	YDR063W	YDR109C
YDL188C	YDL230W	YDR027C	YDR064W	YDR110W
YDL190C	YDL233W	YDR029W	YDR065W	YDR112W
YDL191W	YDL234C	YDR030C	YDR066C	YDR116C
YDL192W	YDL235C	YDR031W	YDR067C	YDR118W
YDL193W	YDL236W	YDR032C	YDR068W	YDR120C
YDL195W	YDL237W	YDR033W	YDR070C	YDR122W
YDL196W	YDL238C	YDR034C	YDR071C	YDR123C
YDL197C	YDL239C	YDR034C-A	YDR072C	YDR125C
YDL198C	YDL240W	YDR034C-C	YDR073W	YDR128W
YDL199C	YDL241W	YDR034W-B	YDR074W	YDR130C
YDL200C	YDL242W	YDR035W	YDR075W	YDR131C
YDL201W	YDL243C	YDR036C	YDR077W	YDR132C
YDL202W	YDL244W	YDR037W	YDR078C	YDR134C
YDL203C	YDL246C	YDR038C	YDR079W	YDR136C
YDL204W	YDL247W	YDR040C	YDR080W	YDR137W
YDL205C	YDL248W	YDR041W	YDR082W	YDR138W
YDL206W	YDR001C	YDR042C	YDR083W	YDR139C
YDL207W	YDR002W	YDR043C	YDR084C	YDR141C
YDL208W	YDR003W	YDR044W	YDR085C	YDR142C
YDL209C	YDR004W	YDR045C	YDR086C	YDR143C
YDL210W	YDR005C	YDR046C	YDR087C	YDR144C
YDL211C	YDR006C	YDR047W	YDR088C	YDR145W

YDR146C	YDR205W	YDR252W	YDR297W	YDR340W
YDR148C	YDR206W	YDR253C	YDR298C	YDR341C
YDR149C	YDR207C	YDR254W	YDR299W	YDR342C
YDR152W	YDR208W	YDR255C	YDR300C	YDR343C
YDR156W	YDR209C	YDR256C	YDR302W	YDR344C
YDR158W	YDR210W	YDR258C	YDR303C	YDR346C
YDR160W	YDR210W-A	YDR259C	YDR304C	YDR347W
YDR161W	YDR210W-C	YDR260C	YDR305C	YDR348C
YDR162C	YDR211W	YDR261C	YDR307W	YDR349C
YDR163W	YDR212W	YDR261C-C	YDR308C	YDR350C
YDR165W	YDR214W	YDR261W-A	YDR310C	YDR351W
YDR167W	YDR215C	YDR262W	YDR311W	YDR353W
YDR168W	YDR216W	YDR266C	YDR312W	YDR354W
YDR169C	YDR217C	YDR269C	YDR313C	YDR355C
YDR170W-A	YDR218C	YDR270W	YDR314C	YDR357C
YDR173C	YDR219C	YDR271C	YDR315C	YDR358W
YDR174W	YDR220C	YDR272W	YDR316W	YDR359C
YDR175C	YDR222W	YDR273W	YDR316W-A	YDR360W
YDR178W	YDR223W	YDR274C	YDR317W	YDR363W-A
YDR179C	YDR224C	YDR275W	YDR318W	YDR364C
YDR179W-A	YDR225W	YDR276C	YDR319C	YDR365W-A
YDR183W	YDR230W	YDR277C	YDR320C	YDR367W
YDR185C	YDR232W	YDR278C	YDR321W	YDR368W
YDR187C	YDR235W	YDR279W	YDR322C-A	YDR370C
YDR188W	YDR236C	YDR280W	YDR322W	YDR371W
YDR189W	YDR238C	YDR281C	YDR324C	YDR372C
YDR190C	YDR239C	YDR282C	YDR325W	YDR373W
YDR191W	YDR240C	YDR284C	YDR327W	YDR374C
YDR193W	YDR242W	YDR286C	YDR328C	YDR375C
YDR194C	YDR243C	YDR287W	YDR329C	YDR376W
YDR195W	YDR244W	YDR288W	YDR330W	YDR377W
YDR196C	YDR245W	YDR289C	YDR331W	YDR378C
YDR197W	YDR246W	YDR290W	YDR332W	YDR379W
YDR198C	YDR247W	YDR292C	YDR333C	YDR380W
YDR199W	YDR248C	YDR294C	YDR336W	YDR382W
YDR200C	YDR249C	YDR295C	YDR337W	YDR383C
YDR202C	YDR250C	YDR296W	YDR338C	YDR384C

YDR385W	YDR439W	YDR481C	YDR521W	YEL016C
YDR386W	YDR440W	YDR482C	YDR522C	YEL017C-A
YDR387C	YDR441C	YDR483W	YDR523C	YEL017W
YDR388W	YDR442W	YDR484W	YDR524C	YEL018W
YDR389W	YDR444W	YDR485C	YDR525W-A	YEL019C
YDR390C	YDR445C	YDR486C	YDR526C	YEL020C
YDR391C	YDR446W	YDR487C	YDR527W	YEL020W-A
YDR392W	YDR447C	YDR488C	YDR528W	YEL021W
YDR394W	YDR448W	YDR489W	YDR529C	YEL024W
YDR395W	YDR449C	YDR490C	YDR530C	YEL026W
YDR396W	YDR450W	YDR491C	YDR531W	YEL027W
YDR397C	YDR451C	YDR492W	YDR532C	YEL028W
YDR399W	YDR453C	YDR493W	YDR533C	YEL029C
YDR400W	YDR454C	YDR494W	YDR534C	YEL030W
YDR401W	YDR455C	YDR496C	YDR535C	YEL032W
YDR402C	YDR456W	YDR497C	YDR536W	YEL033W
YDR403W	YDR458C	YDR498C	YDR537C	YEL034W
YDR404C	YDR459C	YDR499W	YDR538W	YEL035C
YDR405W	YDR460W	YDR500C	YDR539W	YEL036C
YDR408C	YDR461W	YDR501W	YDR540C	YEL037C
YDR410C	YDR462W	YDR502C	YDR541C	YEL038W
YDR411C	YDR463W	YDR503C	YDR542W	YEL039C
YDR412W	YDR465C	YDR504C	YDR543C	YEL040W
YDR413C	YDR467C	YDR506C	YDR544C	YEL041W
YDR414C	YDR468C	YDR508C	YEL001C	YEL042W
YDR415C	YDR469W	YDR509W	YEL002C	YEL044W
YDR417C	YDR470C	YDR510W	YEL003W	YEL045C
YDR418W	YDR471W	YDR511W	YEL004W	YEL046C
YDR423C	YDR472W	YDR512C	YEL005C	YEL047C
YDR425W	YDR473C	YDR513W	YEL008W	YEL048C
YDR427W	YDR474C	YDR514C	YEL009C	YEL049W
YDR428C	YDR475C	YDR515W	YEL010W	YEL050C
YDR429C	YDR476C	YDR516C	YEL011W	YEL051W
YDR431W	YDR477W	YDR517W	YEL012W	YEL052W
YDR435C	YDR478W	YDR518W	YEL013W	YEL053C
YDR437W	YDR479C	YDR519W	YEL014C	YEL054C
YDR438W	YDR480W	YDR520C	YEL015W	YEL055C

YEL056W	YER019W	YER062C	YER113C	YER152C
YEL057C	YER020W	YER063W	YER115C	YER153C
YEL058W	YER021W	YER065C	YER116C	YER154W
YEL059C-A	YER022W	YER067W	YER117W	YER156C
YEL059W	YER023W	YER068W	YER118C	YER157W
YEL061C	YER025W	YER071C	YER119C	YER158C
YEL062W	YER026C	YER072W	YER119C-A	YER159C
YEL064C	YER027C	YER074W	YER120W	YER159C-A
YEL065W	YER028C	YER075C	YER121W	YER161C
YEL066W	YER029C	YER076C	YER122C	YER163C
YEL067C	YER030W	YER077C	YER123W	YER165W
YEL068C	YER031C	YER078C	YER124C	YER167W
YEL069C	YER034W	YER081W	YER125W	YER168C
YEL070W	YER036C	YER082C	YER126C	YER169W
YEL071W	YER037W	YER083C	YER127W	YER170W
YEL072W	YER038C	YER084W	YER128W	YER171W
YEL073C	YER039C	YER085C	YER130C	YER173W
YEL074W	YER039C-A	YER086W	YER131W	YER174C
YEL075C	YER040W	YER087C-A	YER133W	YER175C
YEL076C	YER042W	YER087W	YER134C	YER176W
YEL076C-A	YER043C	YER089C	YER135C	YER177W
YEL076W-C	YER044C	YER090W	YER136W	YER178W
YER001W	YER044C-A	YER091C	YER137C	YER179W
YER003C	YER046W	YER091C-A	YER137C-A	YER180C
YER004W	YER048C	YER092W	YER138W-A	YER181C
YER005W	YER048W-A	YER093C-A	YER139C	YER182W
YER006W	YER049W	YER094C	YER140W	YER183C
YER007C-A	YER050C	YER096W	YER141W	YER184C
YER007W	YER051W	YER097W	YER142C	YER185W
YER009W	YER052C	YER099C	YER143W	YER186C
YER010C	YER053C	YER100W	YER144C	YER187W
YER012W	YER055C	YER101C	YER145C	YER187W-A
YER014W	YER056C-A	YER102W	YER146W	YER188W
YER015W	YER058W	YER104W	YER147C	YER189W
YER016W	YER059W	YER106W	YER148W	YFL001W
YER018C	YER060W	YER107C	YER149C	YFL002C
YER019C-A	YER060W-A	YER112W	YER150W	YFL002W-B

YFL003C	YFL042C	YFR012W	YFR049W	YGL032C
YFL004W	YFL043C	YFR013W	YFR050C	YGL033W
YFL005W	YFL044C	YFR014C	YFR051C	YGL035C
YFL006W	YFL045C	YFR015C	YFR052W	YGL036W
YFL009W	YFL046W	YFR017C	YFR053C	YGL037C
YFL010C	YFL047W	YFR018C	YFR054C	YGL038C
YFL010W-A	YFL048C	YFR020W	YFR055W	YGL039W
YFL011W	YFL049W	YFR021W	YFR056C	YGL040C
YFL012W	YFL050C	YFR022W	YFR057W	YGL040C
YFL012W	YFL050C	YFR023W	YGL001C	YGL041C
YFL013C				
	YFL052W	YFR024C	YGL002W	YGL043W
YFL014W	YFL053W	YFR025C	YGL003C	YGL044C
YFL015C	YFL054C	YFR026C	YGL004C	YGL045W
YFL016C	YFL055W	YFR027W	YGL005C	YGL046W
YFL017C	YFL056C	YFR028C	YGL006W	YGL047W
YFL017W-A	YFL057C	YFR029W	YGL007W	YGL048C
YFL018C	YFL058W	YFR030W	YGL008C	YGL050W
YFL019C	YFL059W	YFR031C	YGL009C	YGL051W
YFL020C	YFL060C	YFR031C-A	YGL010W	YGL052W
YFL021W	YFL061W	YFR032C	YGL011C	YGL053W
YFL022C	YFL062W	YFR032C-A	YGL012W	YGL054C
YFL023W	YFL063W	YFR033C	YGL015C	YGL055W
YFL025C	YFL064C	YFR034C	YGL016W	YGL056C
YFL026W	YFL065C	YFR035C	YGL017W	YGL057C
YFL027C	YFL066C	YFR036W	YGL018C	YGL058W
YFL028C	YFL067W	YFR037C	YGL019W	YGL059W
YFL029C	YFL068W	YFR038W	YGL020C	YGL060W
YFL030W	YFR001W	YFR039C	YGL021W	YGL061C
YFL031W	YFR002W	YFR040W	YGL023C	YGL062W
YFL032W	YFR003C	YFR041C	YGL024W	YGL063W
YFL034C-B	YFR005C	YFR042W	YGL025C	YGL064C
YFL034W	YFR006W	YFR043C	YGL026C	YGL065C
YFL036W	YFR007W	YFR044C	YGL027C	YGL066W
YFL038C	YFR008W	YFR045W	YGL028C	YGL067W
YFL039C	YFR009W	YFR046C	YGL029W	YGL068W
YFL040W	YFR010W	YFR047C	YGL030W	YGL069C
YFL041W	YFR011C	YFR048W	YGL031C	YGL070C

YGL071W	YGL112C	YGL168W	YGL214W	YGL258W
YGL072C	YGL113W	YGL169W	YGL217C	YGL259W
YGL074C	YGL114W	YGL170C	YGL218W	YGL260W
YGL075C	YGL115W	YGL171W	YGL219C	YGL262W
YGL076C	YGL116W	YGL172W	YGL220W	YGL263W
YGL077C	YGL117W	YGL174W	YGL221C	YGR001C
YGL078C	YGL118C	YGL175C	YGL222C	YGR002C
YGL079W	YGL119W	YGL176C	YGL223C	YGR003W
YGL080W	YGL120C	YGL177W	YGL224C	YGR004W
YGL081W	YGL121C	YGL179C	YGL225W	YGR005C
YGL082W	YGL122C	YGL180W	YGL226C-A	YGR006W
YGL083W	YGL123W	YGL181W	YGL226W	YGR007W
YGL085W	YGL124C	YGL182C	YGL227W	YGR008C
YGL086W	YGL125W	YGL183C	YGL228W	YGR009C
YGL087C	YGL126W	YGL184C	YGL230C	YGR010W
YGL088W	YGL127C	YGL185C	YGL231C	YGR011W
YGL089C	YGL130W	YGL186C	YGL232W	YGR012W
YGL090W	YGL132W	YGL187C	YGL233W	YGR013W
YGL091C	YGL134W	YGL188C	YGL234W	YGR014W
YGL093W	YGL135W	YGL189C	YGL235W	YGR015C
YGL094C	YGL138C	YGL190C	YGL236C	YGR016W
YGL095C	YGL141W	YGL191W	YGL237C	YGR018C
YGL096W	YGL143C	YGL193C	YGL239C	YGR019W
YGL097W	YGL146C	YGL194C	YGL240W	YGR020C
YGL098W	YGL147C	YGL196W	YGL242C	YGR021W
YGL099W	YGL148W	YGL198W	YGL243W	YGR022C
YGL100W	YGL149W	YGL199C	YGL244W	YGR023W
YGL101W	YGL151W	YGL200C	YGL245W	YGR024C
YGL102C	YGL152C	YGL202W	YGL246C	YGR025W
YGL103W	YGL153W	YGL204C	YGL247W	YGR026W
YGL104C	YGL154C	YGL205W	YGL248W	YGR027C
YGL105W	YGL155W	YGL207W	YGL250W	YGR027W-A
YGL106W	YGL159W	YGL208W	YGL252C	YGR028W
YGL108C	YGL161C	YGL210W	YGL253W	YGR029W
YGL109W	YGL162W	YGL211W	YGL254W	YGR030C
YGL110C	YGL165C	YGL212W	YGL255W	YGR031W
YGL111W	YGL166W	YGL213C	YGL256W	YGR033C

YGR034W	YGR070W	YGR113W	YGR150C	YGR187C
YGR035C	YGR072W	YGR114C	YGR151C	YGR188C
YGR036C	YGR073C	YGR116W	YGR152C	YGR190C
YGR037C	YGR074W	YGR117C	YGR153W	YGR191W
YGR038C-A	YGR075C	YGR118W	YGR154C	YGR192C
YGR038C-B	YGR076C	YGR119C	YGR155W	YGR193C
YGR038W	YGR077C	YGR120C	YGR156W	YGR194C
YGR039W	YGR078C	YGR121C	YGR157W	YGR195W
YGR040W	YGR079W	YGR122C-A	YGR158C	YGR196C
YGR041W	YGR081C	YGR122W	YGR159C	YGR197C
YGR042W	YGR082W	YGR123C	YGR160W	YGR198W
YGR043C	YGR083C	YGR124W	YGR161C	YGR200C
YGR044C	YGR084C	YGR125W	YGR161C-C	YGR201C
YGR045C	YGR086C	YGR126W	YGR161W-A	YGR202C
YGR046W	YGR087C	YGR127W	YGR162W	YGR203W
YGR047C	YGR088W	YGR128C	YGR163W	YGR204W
YGR048W	YGR091W	YGR129W	YGR164W	YGR205W
YGR049W	YGR092W	YGR130C	YGR165W	YGR206W
YGR050C	YGR093W	YGR131W	YGR166W	YGR207C
YGR051C	YGR094W	YGR132C	YGR167W	YGR208W
YGR053C	YGR095C	YGR133W	YGR168C	YGR209C
YGR054W	YGR096W	YGR134W	YGR169C	YGR210C
YGR055W	YGR097W	YGR135W	YGR170W	YGR211W
YGR056W	YGR099W	YGR136W	YGR171C	YGR212W
YGR057C	YGR100W	YGR137W	YGR172C	YGR213C
YGR058W	YGR101W	YGR138C	YGR173W	YGR214W
YGR059W	YGR102C	YGR139W	YGR174C	YGR215W
YGR060W	YGR103W	YGR140W	YGR175C	YGR216C
YGR061C	YGR104C	YGR141W	YGR176W	YGR218W
YGR062C	YGR106C	YGR142W	YGR177C	YGR219W
YGR063C	YGR107W	YGR143W	YGR178C	YGR220C
YGR064W	YGR108W	YGR144W	YGR179C	YGR221C
YGR065C	YGR109C	YGR145W	YGR180C	YGR222W
YGR066C	YGR109W-A	YGR146C	YGR181W	YGR223C
YGR067C	YGR110W	YGR147C	YGR182C	YGR224W
YGR068C	YGR111W	YGR148C	YGR183C	YGR226C
YGR069W	YGR112W	YGR149W	YGR185C	YGR227W

YGR228W	YGR267C	YHL015W	YHR005C	YHR049W
YGR229C	YGR268C	YHL016C	YHR005C-A	YHR050W
YGR230W	YGR269W	YHL017W	YHR006W	YHR051W
YGR231C	YGR270W	YHL018W	YHR010W	YHR052W
YGR232W	YGR272C	YHL019C	YHR011W	YHR053C
YGR233C	YGR273C	YHL020C	YHR012W	YHR054C
YGR234W	YGR274C	YHL021C	YHR013C	YHR055C
YGR235C	YGR275W	YHL022C	YHR014W	YHR056C
YGR236C	YGR277C	YHL023C	YHR015W	YHR057C
YGR237C	YGR278W	YHL024W	YHR016C	YHR058C
YGR238C	YGR279C	YHL025W	YHR017W	YHR059W
YGR239C	YGR280C	YHL026C	YHR018C	YHR060W
YGR241C	YGR282C	YHL027W	YHR019C	YHR061C
YGR242W	YGR283C	YHL028W	YHR020W	YHR062C
YGR243W	YGR284C	YHL029C	YHR021C	YHR063C
YGR244C	YGR285C	YHL031C	YHR021W-A	YHR065C
YGR246C	YGR286C	YHL032C	YHR022C	YHR066W
YGR247W	YGR287C	YHL033C	YHR025W	YHR067W
YGR248W	YGR288W	YHL034C	YHR026W	YHR068W
YGR249W	YGR290W	YHL036W	YHR029C	YHR070W
YGR250C	YGR291C	YHL037C	YHR030C	YHR071W
YGR251W	YGR293C	YHL038C	YHR031C	YHR072W
YGR252W	YGR294W	YHL039W	YHR032W	YHR072W-A
YGR253C	YGR295C	YHL040C	YHR033W	YHR074W
YGR254W	YHL001W	YHL041W	YHR034C	YHR076W
YGR255C	YHL002W	YHL042W	YHR036W	YHR077C
YGR256W	YHL004W	YHL043W	YHR037W	YHR078W
YGR257C	YHL005C	YHL044W	YHR038W	YHR079C-A
YGR258C	YHL006C	YHL045W	YHR040W	YHR081W
YGR259C	YHL007C	YHL046C	YHR041C	YHR083W
YGR260W	YHL009C	YHL047C	YHR043C	YHR084W
YGR261C	YHL009W-A	YHL048W	YHR044C	YHR085W
YGR262C	YHL010C	YHL049C	YHR045W	YHR086W
YGR263C	YHL011C	YHR001W	YHR046C	YHR087W
YGR264C	YHL012W	YHR001W-A	YHR047C	YHR088W
YGR265W	YHL013C	YHR002W	YHR048W	YHR090C
YGR266W	YHL014C	YHR003C	YHR049C-A	YHR091C

YHR093W	YHR133C	YHR173C	YHR214W	YIL031W
	YHR134W	YHR174W		YIL032C
YHR094C			YHR214W-A	
YHR095W	YHR135C	YHR175W	YHR215W	YIL033C
YHR096C	YHR136C	YHR176W	YHR216W	YIL034C
YHR097C	YHR137W	YHR177W	YHR218W	YIL035C
YHR099W	YHR138C	YHR178W	YHR219W	YIL036W
YHR100C	YHR139C	YHR179W	YIL001W	YIL037C
YHR101C	YHR139C-A	YHR180W	YIL002C	YIL038C
YHR103W	YHR140W	YHR181W	YIL003W	YIL039W
YHR104W	YHR141C	YHR183W	YIL004C	YIL040W
YHR105W	YHR142W	YHR184W	YIL005W	YIL041W
YHR106W	YHR143W	YHR185C	YIL006W	YIL042C
YHR107C	YHR143W-A	YHR188C	YIL007C	YIL043C
YHR108W	YHR144C	YHR189W	YIL008W	YIL044C
YHR109W	YHR145C	YHR190W	YIL009C-A	YIL045W
YHR110W	YHR147C	YHR191C	YIL009W	YIL046W
YHR111W	YHR148W	YHR192W	YIL010W	YIL047C
YHR112C	YHR149C	YHR193C	YIL011W	YIL048W
YHR113W	YHR150W	YHR195W	YIL012W	YIL049W
YHR114W	YHR151C	YHR196W	YIL014W	YIL050W
YHR115C	YHR152W	YHR197W	YIL015C-A	YIL051C
YHR116W	YHR153C	YHR198C	YIL015W	YIL052C
YHR117W	YHR154W	YHR199C	YIL016W	YIL053W
YHR118C	YHR155W	YHR200W	YIL017C	YIL054W
YHR119W	YHR157W	YHR202W	YIL018W	YIL055C
YHR120W	YHR158C	YHR203C	YIL019W	YIL056W
YHR121W	YHR159W	YHR204W	YIL020C	YIL057C
YHR122W	YHR160C	YHR205W	YIL021W	YIL058W
YHR123W	YHR162W	YHR206W	YIL022W	YIL059C
YHR124W	YHR163W	YHR207C	YIL023C	YIL060W
YHR125W	YHR165C	YHR208W	YIL024C	YIL061C
YHR126C	YHR166C	YHR209W	YIL025C	YIL062C
YHR127W	YHR168W	YHR210C	YIL026C	YIL063C
YHR129C	YHR169W	YHR211W	YIL027C	YIL064W
YHR130C	YHR170W	YHR212C	YIL028W	YIL065C
YHR131C	YHR171W	YHR213W	YIL029C	YIL066C
YHR132C	YHR172W	YHR214C-C	YIL030C	YIL067C

YIL069C	YIL108W	YIL156W	YIR020C	YJL018W
YIL070C	YIL109C	YIL157C	YIR020W-B	YJL019W
YIL071C	YIL110W	YIL158W	YIR021W	YJL020C
YIL072W	YIL111W	YIL159W	YIR022W	YJL021C
YIL073C	YIL112W	YIL160C	YIR023W	YJL022W
YIL074C	YIL113W	YIL162W	YIR024C	YJL023C
YIL075C	YIL114C	YIL163C	YIR025W	YJL024C
YIL076W	YIL116W	YIL164C	YIR026C	YJL025W
YIL077C	YIL120W	YIL165C	YIR027C	YJL026W
YIL078W	YIL121W	YIL166C	YIR028W	YJL027C
YIL079C	YIL122W	YIL167W	YIR029W	YJL028W
YIL080W	YIL123W	YIL168W	YIR030C	YJL029C
YIL082W	YIL124W	YIL169C	YIR031C	YJL030W
YIL083C	YIL125W	YIL170W	YIR034C	YJL031C
YIL084C	YIL127C	YIL171W	YIR035C	YJL032W
YIL085C	YIL128W	YIL172C	YIR036C	YJL033W
YIL086C	YIL131C	YIL173W	YIR037W	YJL034W
YIL087C	YIL132C	YIL174W	YIR038C	YJL035C
YIL088C	YIL133C	YIL175W	YIR039C	YJL036W
YIL089W	YIL134W	YIL176C	YIR040C	YJL037W
YIL090W	YIL136W	YIR001C	YIR041W	YJL038C
YIL091C	YIL138C	YIR002C	YIR042C	YJL041W
YIL092W	YIL139C	YIR003W	YIR043C	YJL043W
YIL093C	YIL140W	YIR004W	YIR044C	YJL044C
YIL094C	YIL142W	YIR005W	YJL001W	YJL045W
YIL095W	YIL143C	YIR007W	YJL002C	YJL046W
YIL096C	YIL144W	YIR008C	YJL003W	YJL047C
YIL097W	YIL145C	YIR009W	YJL004C	YJL048C
YIL098C	YIL146C	YIR010W	YJL006C	YJL049W
YIL099W	YIL147C	YIR011C	YJL007C	YJL050W
YIL100W	YIL148W	YIR012W	YJL009W	YJL051W
YIL102C	YIL150C	YIR013C	YJL011C	YJL052W
YIL103W	YIL151C	YIR014W	YJL012C	YJL053W
YIL104C	YIL152W	YIR015W	YJL013C	YJL054W
YIL105C	YIL153W	YIR016W	YJL015C	YJL055W
YIL106W	YIL154C	YIR017C	YJL016W	YJL056C
YIL107C	YIL155C	YIR018W	YJL017W	YJL057C

YJL058C	YJL098W	YJL142C	YJL181W	YJL222W
YJL059W	YJL099W	YJL143W	YJL182C	YJL223C
YJL060W	YJL100W	YJL144W	YJL183W	YJR001W
YJL061W	YJL101C	YJL145W	YJL184W	YJR002W
YJL062W	YJL102W	YJL147C	YJL185C	YJR003C
YJL063C	YJL103C	YJL148W	YJL186W	YJR004C
YJL064W	YJL104W	YJL149W	YJL187C	YJR005W
YJL065C	YJL105W	YJL150W	YJL188C	YJR006W
YJL066C	YJL106W	YJL151C	YJL189W	YJR007W
YJL067W	YJL107C	YJL152W	YJL190C	YJR008W
YJL068C	YJL108C	YJL153C	YJL191W	YJR009C
YJL069C	YJL110C	YJL154C	YJL192C	YJR010C-A
YJL070C	YJL111W	YJL155C	YJL193W	YJR011C
YJL071W	YJL112W	YJL156C	YJL194W	YJR012C
YJL072C	YJL115W	YJL157C	YJL195C	YJR013W
YJL073W	YJL116C	YJL158C	YJL197W	YJR014W
YJL074C	YJL117W	YJL160C	YJL199C	YJR015W
YJL075C	YJL118W	YJL161W	YJL200C	YJR016C
YJL077C	YJL119C	YJL162C	YJL201W	YJR017C
YJL078C	YJL120W	YJL163C	YJL202C	YJR018W
YJL079C	YJL121C	YJL164C	YJL203W	YJR019C
YJL080C	YJL122W	YJL165C	YJL204C	YJR020W
YJL081C	YJL123C	YJL166W	YJL206C	YJR021C
YJL082W	YJL124C	YJL167W	YJL208C	YJR022W
YJL083W	YJL125C	YJL168C	YJL209W	YJR024C
YJL084C	YJL126W	YJL169W	YJL210W	YJR025C
YJL085W	YJL127C	YJL170C	YJL211C	YJR026W
YJL086C	YJL128C	YJL171C	YJL212C	YJR028W
YJL087C	YJL129C	YJL172W	YJL213W	YJR032W
YJL088W	YJL131C	YJL173C	YJL214W	YJR033C
YJL089W	YJL133W	YJL174W	YJL215C	YJR034W
YJL090C	YJL134W	YJL175W	YJL216C	YJR036C
YJL091C	YJL135W	YJL176C	YJL217W	YJR037W
YJL093C	YJL137C	YJL177W	YJL218W	YJR038C
YJL094C	YJL138C	YJL178C	YJL219W	YJR043C
YJL096W	YJL139C	YJL179W	YJL220W	YJR044C
YJL097W	YJL140W	YJL180C	YJL221C	YJR046W

YJR047C	YJR087W	YJR127C	YKL009W	YKL053C-A
YJR048W	YJR088C	YJR128W	YKL010C	YKL053W
YJR049C	YJR089W	YJR129C	YKL011C	YKL055C
YJR050W	YJR091C	YJR131W	YKL012W	YKL056C
YJR051W	YJR093C	YJR132W	YKL013C	YKL057C
YJR052W	YJR094W-A	YJR133W	YKL015W	YKL058W
YJR053W	YJR095W	YJR134C	YKL016C	YKL059C
YJR054W	YJR096W	YJR135C	YKL017C	YKL060C
YJR055W	YJR097W	YJR135W-A	YKL018W	YKL061W
YJR056C	YJR098C	YJR136C	YKL019W	YKL062W
YJR057W	YJR099W	YJR139C	YKL021C	YKL063C
YJR058C	YJR100C	YJR141W	YKL023W	YKL065C
YJR059W	YJR101W	YJR142W	YKL024C	YKL066W
YJR060W	YJR102C	YJR144W	YKL025C	YKL067W
YJR062C	YJR103W	YJR145C	YKL026C	YKL069W
YJR063W	YJR104C	YJR146W	YKL027W	YKL070W
YJR064W	YJR105W	YJR147W	YKL028W	YKL071W
YJR065C	YJR106W	YJR148W	YKL029C	YKL072W
YJR067C	YJR107W	YJR149W	YKL031W	YKL073W
YJR068W	YJR108W	YJR150C	YKL033W	YKL074C
YJR069C	YJR109C	YJR152W	YKL033W-A	YKL075C
YJR070C	YJR110W	YJR153W	YKL034W	YKL076C
YJR071W	YJR111C	YJR154W	YKL035W	YKL077W
YJR072C	YJR112W	YJR155W	YKL036C	YKL078W
YJR073C	YJR113C	YJR156C	YKL037W	YKL079W
YJR074W	YJR114W	YJR157W	YKL039W	YKL080W
YJR075W	YJR115W	YJR159W	YKL040C	YKL081W
YJR076C	YJR116W	YJR162C	YKL041W	YKL082C
YJR077C	YJR117W	YKL001C	YKL043W	YKL084W
YJR078W	YJR118C	YKL002W	YKL044W	YKL085W
YJR079W	YJR119C	YKL003C	YKL045W	YKL086W
YJR080C	YJR120W	YKL004W	YKL046C	YKL087C
YJR082C	YJR121W	YKL005C	YKL047W	YKL088W
YJR083C	YJR122W	YKL006C-A	YKL048C	YKL090W
YJR084W	YJR124C	YKL006W	YKL049C	YKL091C
YJR085C	YJR125C	YKL007W	YKL051W	YKL092C
YJR086W	YJR126C	YKL008C	YKL052C	YKL093W

YKL094W	YKL137W	YKL176C	YKL220C	YKR035W-A
YKL095W	YKL138C	YKL177W	YKL221W	YKR036C
YKL096W	YKL139W	YKL178C	YKL222C	YKR037C
YKL096W-A	YKL140W	YKL179C	YKL223W	YKR038C
YKL097C	YKL141W	YKL180W	YKL224C	YKR039W
YKL098W	YKL143W	YKL181W	YKR001C	YKR041W
YKL099C	YKL144C	YKL183W	YKR002W	YKR042W
YKL100C	YKL145W	YKL184W	YKR003W	YKR043C
YKL102C	YKL146W	YKL185W	YKR004C	YKR044W
YKL103C	YKL147C	YKL186C	YKR005C	YKR045C
YKL104C	YKL148C	YKL187C	YKR006C	YKR046C
YKL105C	YKL149C	YKL188C	YKR007W	YKR047W
YKL106W	YKL150W	YKL189W	YKR008W	YKR048C
YKL107W	YKL151C	YKL190W	YKR009C	YKR049C
YKL109W	YKL153W	YKL191W	YKR010C	YKR050W
YKL110C	YKL154W	YKL192C	YKR011C	YKR051W
YKL111C	YKL155C	YKL193C	YKR012C	YKR052C
YKL112W	YKL156W	YKL194C	YKR013W	YKR053C
YKL113C	YKL157W	YKL195W	YKR014C	YKR055W
YKL114C	YKL158W	YKL196C	YKR015C	YKR056W
YKL115C	YKL159C	YKL197C	YKR016W	YKR058W
YKL116C	YKL160W	YKL202W	YKR017C	YKR059W
YKL117W	YKL161C	YKL204W	YKR018C	YKR060W
YKL118W	YKL162C	YKL205W	YKR020W	YKR061W
YKL119C	YKL162C-A	YKL206C	YKR021W	YKR062W
YKL120W	YKL163W	YKL207W	YKR022C	YKR063C
YKL122C	YKL164C	YKL208W	YKR024C	YKR064W
YKL123W	YKL165C	YKL209C	YKR025W	YKR065C
YKL124W	YKL166C	YKL210W	YKR026C	YKR066C
YKL125W	YKL167C	YKL211C	YKR028W	YKR067W
YKL127W	YKL168C	YKL212W	YKR029C	YKR068C
YKL128C	YKL169C	YKL213C	YKR030W	YKR069W
YKL130C	YKL170W	YKL214C	YKR031C	YKR070W
YKL131W	YKL171W	YKL216W	YKR032W	YKR071C
YKL132C	YKL172W	YKL217W	YKR033C	YKR072C
YKL133C	YKL174C	YKL218C	YKR034W	YKR073C
YKL134C	YKL175W	YKL219W	YKR035C	YKR074W

YKR075C	YLL010C	YLL050C	YLR021W	YLR059C
YKR076W	YLL011W	YLL051C	YLR022C	YLR060W
YKR077W	YLL012W	YLL052C	YLR023C	YLR061W
YKR078W	YLL013C	YLL053C	YLR024C	YLR062C
YKR079C	YLL014W	YLL054C	YLR025W	YLR063W
YKR080W	YLL016W	YLL055W	YLR026C	YLR064W
YKR081C	YLL017W	YLL056C	YLR027C	YLR065C
YKR082W	YLL018C	YLL057C	YLR028C	YLR066W
YKR083C	YLL018C-A	YLL058W	YLR029C	YLR067C
YKR084C	YLL019C	YLL059C	YLR030W	YLR068W
YKR085C	YLL020C	YLL060C	YLR031W	YLR069C
YKR086W	YLL021W	YLL061W	YLR033W	YLR070C
YKR087C	YLL022C	YLL062C	YLR034C	YLR071C
YKR088C	YLL023C	YLL064C	YLR035C	YLR072W
YKR089C	YLL024C	YLL065W	YLR035C-A	YLR073C
YKR090W	YLL025W	YLL066C	YLR036C	YLR074C
YKR091W	YLL026W	YLL067C	YLR037C	YLR075W
YKR092C	YLL027W	YLR001C	YLR038C	YLR076C
YKR093W	YLL028W	YLR002C	YLR040C	YLR077W
YKR094C	YLL029W	YLR003C	YLR041W	YLR078C
YKR096W	YLL030C	YLR004C	YLR042C	YLR079W
YKR097W	YLL031C	YLR005W	YLR043C	YLR080W
YKR098C	YLL032C	YLR006C	YLR044C	YLR081W
YKR099W	YLL033W	YLR007W	YLR045C	YLR082C
YKR100C	YLL034C	YLR008C	YLR046C	YLR083C
YKR101W	YLL035W	YLR009W	YLR047C	YLR085C
YKR104W	YLL036C	YLR010C	YLR048W	YLR088W
YKR105C	YLL037W	YLR011W	YLR049C	YLR089C
YKR106W	YLL038C	YLR012C	YLR050C	YLR090W
YLL001W	YLL041C	YLR013W	YLR051C	YLR091W
YLL002W	YLL042C	YLR014C	YLR052W	YLR093C
YLL003W	YLL043W	YLR015W	YLR053C	YLR094C
YLL004W	YLL044W	YLR016C	YLR054C	YLR095C
YLL005C	YLL045C	YLR017W	YLR055C	YLR097C
YLL006W	YLL046C	YLR018C	YLR056W	YLR098C
YLL007C	YLL047W	YLR019W	YLR057W	YLR099C
YLL009C	YLL049W	YLR020C	YLR058C	YLR100W

YLR101C	YLR144C	YLR181C	YLR224W	YLR266C
YLR102C	YLR145W	YLR182W	YLR225C	YLR267W
YLR103C	YLR146C	YLR183C	YLR226W	YLR268W
YLR104W	YLR147C	YLR184W	YLR227C	YLR269C
YLR105C	YLR148W	YLR185W	YLR227W-A	YLR270W
YLR107W	YLR149C	YLR186W	YLR228C	YLR271W
YLR108C	YLR150W	YLR187W	YLR230W	YLR273C
YLR109W	YLR151C	YLR188W	YLR231C	YLR274W
YLR110C	YLR152C	YLR190W	YLR232W	YLR275W
YLR111W	YLR153C	YLR191W	YLR233C	YLR276C
YLR112W	YLR154C	YLR192C	YLR235C	YLR277C
YLR113W	YLR155C	YLR193C	YLR236C	YLR279W
YLR116W	YLR156W	YLR194C	YLR237W	YLR280C
YLR118C	YLR157C	YLR195C	YLR238W	YLR281C
YLR119W	YLR157C-A	YLR196W	YLR239C	YLR282C
YLR120C	YLR158C	YLR197W	YLR240W	YLR283W
YLR121C	YLR159W	YLR198C	YLR241W	YLR284C
YLR122C	YLR160C	YLR199C	YLR242C	YLR285W
YLR123C	YLR161W	YLR201C	YLR243W	YLR286C
YLR124W	YLR162W	YLR203C	YLR244C	YLR287C
YLR125W	YLR163C	YLR204W	YLR245C	YLR287C-A
YLR126C	YLR164W	YLR205C	YLR246W	YLR288C
YLR127C	YLR165C	YLR207W	YLR248W	YLR289W
YLR128W	YLR166C	YLR208W	YLR250W	YLR290C
YLR130C	YLR167W	YLR209C	YLR251W	YLR291C
YLR132C	YLR168C	YLR210W	YLR252W	YLR292C
YLR133W	YLR170C	YLR212C	YLR253W	YLR293C
YLR134W	YLR171W	YLR213C	YLR254C	YLR294C
YLR135W	YLR172C	YLR214W	YLR255C	YLR295C
YLR136C	YLR173W	YLR215C	YLR256W-A	YLR296W
YLR137W	YLR174W	YLR216C	YLR257W	YLR297W
YLR138W	YLR175W	YLR217W	YLR258W	YLR298C
YLR139C	YLR176C	YLR218C	YLR261C	YLR299W
YLR140W	YLR177W	YLR219W	YLR262C	YLR300W
YLR141W	YLR178C	YLR220W	YLR263W	YLR301W
YLR142W	YLR179C	YLR221C	YLR264W	YLR302C
YLR143W	YLR180W	YLR222C	YLR265C	YLR303W

YLR304C	YLR345W	YLR387C	YLR428C	YML008C
YLR306W	YLR346C	YLR388W	YLR429W	YML009C
YLR307W	YLR347C	YLR389C	YLR431C	YML010C-B
YLR308W	YLR348C	YLR390W	YLR432W	YML010W-A
YLR309C	YLR349W	YLR390W-A	YLR434C	YML011C
YLR310C	YLR350W	YLR392C	YLR435W	YML012W
YLR311C	YLR351C	YLR393W	YLR437C	YML013C-A
YLR312C	YLR352W	YLR394W	YLR438C-A	YML013W
YLR312W-A	YLR353W	YLR395C	YLR438W	YML014W
YLR313C	YLR354C	YLR396C	YLR439W	YML015C
YLR314C	YLR355C	YLR397C	YLR440C	YML018C
YLR315W	YLR356W	YLR398C	YLR441C	YML019W
YLR316C	YLR357W	YLR399C	YLR443W	YML020W
YLR317W	YLR358C	YLR400W	YLR444C	YML021C
YLR319C	YLR359W	YLR401C	YLR445W	YML022W
YLR321C	YLR360W	YLR402W	YLR446W	YML023C
YLR322W	YLR361C	YLR404W	YLR447C	YML024W
YLR323C	YLR362W	YLR405W	YLR448W	YML025C
YLR324W	YLR363C	YLR406C	YLR449W	YML026C
YLR325C	YLR364W	YLR407W	YLR451W	YML027W
YLR326W	YLR365W	YLR408C	YLR452C	YML028W
YLR327C	YLR366W	YLR409C	YLR453C	YML029W
YLR328W	YLR367W	YLR410W-A	YLR455W	YML030W
YLR329W	YLR369W	YLR411W	YLR456W	YML031W
YLR330W	YLR370C	YLR412W	YLR457C	YML032C
YLR331C	YLR372W	YLR413W	YLR458W	YML035C
YLR332W	YLR373C	YLR414C	YLR459W	YML035C-A
YLR333C	YLR374C	YLR415C	YLR460C	YML036W
YLR334C	YLR375W	YLR416C	YLR461W	YML037C
YLR335W	YLR376C	YLR417W	YLR462W	YML038C
YLR336C	YLR377C	YLR418C	YLR463C	YML040W
YLR338W	YLR378C	YLR420W	YLR465C	YML041C
YLR339C	YLR379W	YLR421C	YML001W	YML042W
YLR340W	YLR382C	YLR424W	YML004C	YML043C
YLR341W	YLR383W	YLR425W	YML005W	YML045W
YLR343W	YLR385C	YLR426W	YML006C	YML045W-A
YLR344W	YLR386W	YLR427W	YML007W	YML046W

YML047C	YML087C	YML124C	YMR033W	YMR072W
YML048W	YML088W	YML125C	YMR034C	YMR073C
YML048W-A	YML089C	YML126C	YMR035W	YMR074C
YML050W	YML090W	YML127W	YMR036C	YMR075C-A
YML051W	YML091C	YML128C	YMR037C	YMR075W
YML052W	YML092C	YML129C	YMR038C	YMR076C
YML053C	YML094W	YML130C	YMR039C	YMR077C
YML054C	YML095C	YML131W	YMR040W	YMR079W
YML055W	YML095C-A	YML132W	YMR041C	YMR081C
YML056C	YML096W	YMR001C	YMR042W	YMR082C
YML058C-A	YML097C	YMR002W	YMR043W	YMR083W
YML058W	YML098W	YMR003W	YMR044W	YMR084W
YML058W-A	YML099C	YMR004W	YMR046C	YMR085W
YML059C	YML100W	YMR005W	YMR046W-A	YMR086C-A
YML060W	YML100W-A	YMR008C	YMR048W	YMR086W
YML063W	YML101C	YMR009W	YMR049C	YMR087W
YML064C	YML102C-A	YMR010W	YMR051C	YMR088C
YML065W	YML102W	YMR011W	YMR052C-A	YMR090W
YML066C	YML104C	YMR013C	YMR052W	YMR091C
YML067C	YML105C	YMR014W	YMR053C	YMR092C
YML068W	YML106W	YMR015C	YMR054W	YMR093W
YML069W	YML107C	YMR016C	YMR055C	YMR094W
YML070W	YML108W	YMR017W	YMR056C	YMR095C
YML071C	YML109W	YMR018W	YMR058W	YMR096W
YML073C	YML110C	YMR020W	YMR059W	YMR097C
YML074C	YML112W	YMR021C	YMR060C	YMR098C
YML075C	YML113W	YMR022W	YMR061W	YMR099C
YML077W	YML114C	YMR023C	YMR062C	YMR100W
YML078W	YML115C	YMR024W	YMR063W	YMR101C
YML079W	YML116W	YMR025W	YMR064W	YMR102C
YML080W	YML117W-A	YMR026C	YMR065W	YMR103C
YML081C-A	YML118W	YMR027W	YMR066W	YMR104C
YML082W	YML119W	YMR028W	YMR067C	YMR105C
YML083C	YML120C	YMR029C	YMR068W	YMR106C
YML084W	YML121W	YMR030W	YMR069W	YMR107W
YML085C	YML122C	YMR031C	YMR070W	YMR108W
YML086C	YML123C	YMR031W-A	YMR071C	YMR110C

YMR111C	YMR151W	YMR189W	YMR232W	YMR274C
YMR112C	YMR152W	YMR191W	YMR233W	YMR276W
YMR113W	YMR153C-A	YMR192W	YMR234W	YMR277W
YMR115W	YMR153W	YMR193C-A	YMR235C	YMR278W
YMR116C	YMR154C	YMR193W	YMR236W	YMR279C
YMR117C	YMR155W	YMR194C-A	YMR237W	YMR280C
YMR118C	YMR156C	YMR194W	YMR238W	YMR281W
YMR119W	YMR157C	YMR195W	YMR239C	YMR282C
YMR119W-A	YMR158C-B	YMR197C	YMR240C	YMR283C
YMR120C	YMR158W	YMR198W	YMR241W	YMR284W
YMR121C	YMR158W-A	YMR199W	YMR242C	YMR285C
YMR122C	YMR159C	YMR200W	YMR243C	YMR286W
YMR123W	YMR160W	YMR201C	YMR244C-A	YMR287C
YMR124W	YMR163C	YMR202W	YMR244W	YMR289W
YMR125W	YMR166C	YMR204C	YMR245W	YMR290C
YMR126C	YMR167W	YMR206W	YMR246W	YMR290W-A
YMR127C	YMR168C	YMR208W	YMR250W	YMR291W
YMR129W	YMR169C	YMR209C	YMR251W	YMR292W
YMR130W	YMR170C	YMR210W	YMR251W-A	YMR293C
YMR131C	YMR171C	YMR211W	YMR252C	YMR294W
YMR132C	YMR172C-A	YMR212C	YMR253C	YMR294W-A
YMR134W	YMR173W	YMR213W	YMR254C	YMR295C
YMR135C	YMR173W-A	YMR214W	YMR255W	YMR296C
YMR135W-A	YMR174C	YMR215W	YMR256C	YMR297W
YMR137C	YMR175W	YMR216C	YMR257C	YMR298W
YMR138W	YMR177W	YMR217W	YMR258C	YMR299C
YMR139W	YMR178W	YMR218C	YMR260C	YMR300C
YMR140W	YMR179W	YMR220W	YMR262W	YMR301C
YMR141C	YMR180C	YMR221C	YMR263W	YMR302C
YMR143W	YMR181C	YMR222C	YMR264W	YMR303C
YMR144W	YMR182C	YMR223W	YMR267W	YMR304C-A
YMR145C	YMR183C	YMR224C	YMR268C	YMR304W
YMR146C	YMR184W	YMR225C	YMR269W	YMR305C
YMR147W	YMR185W	YMR226C	YMR270C	YMR306C-A
YMR148W	YMR186W	YMR227C	YMR271C	YMR307W
YMR149W	YMR187C	YMR228W	YMR272C	YMR308C
YMR150C	YMR188C	YMR231W	YMR273C	YMR309C

YMR310C	YNL023C	YNL062C	YNL104C	YNL148C
YMR311C	YNL024C	YNL063W	YNL105W	YNL149C
YMR312W	YNL025C	YNL064C	YNL107W	YNL150W
YMR313C	YNL026W	YNL065W	YNL108C	YNL151C
YMR314W	YNL027W	YNL066W	YNL109W	YNL152W
YMR315W	YNL028W	YNL067W	YNL110C	YNL153C
YMR316C-A	YNL029C	YNL068C	YNL111C	YNL154C
YMR316C-B	YNL030W	YNL069C	YNL113W	YNL155W
YMR316W	YNL031C	YNL070W	YNL114C	YNL156C
YMR318C	YNL032W	YNL072W	YNL117W	YNL157W
YMR319C	YNL033W	YNL073W	YNL118C	YNL158W
YMR320W	YNL034W	YNL074C	YNL119W	YNL159C
YMR321C	YNL035C	YNL075W	YNL120C	YNL160W
YMR322C	YNL036W	YNL076W	YNL121C	YNL161W
YMR323W	YNL037C	YNL077W	YNL122C	YNL162W
YMR324C	YNL038W	YNL078W	YNL123W	YNL164C
YMR325W	YNL039W	YNL079C	YNL124W	YNL165W
YMR326C	YNL040W	YNL080C	YNL125C	YNL166C
YNL001W	YNL041C	YNL081C	YNL126W	YNL167C
YNL003C	YNL042W	YNL082W	YNL127W	YNL168C
YNL004W	YNL043C	YNL084C	YNL128W	YNL169C
YNL005C	YNL044W	YNL085W	YNL129W	YNL170W
YNL007C	YNL045W	YNL086W	YNL130C	YNL171C
YNL008C	YNL046W	YNL087W	YNL131W	YNL172W
YNL009W	YNL048W	YNL089C	YNL133C	YNL173C
YNL010W	YNL049C	YNL090W	YNL134C	YNL174W
YNL011C	YNL050C	YNL092W	YNL135C	YNL175C
YNL012W	YNL051W	YNL093W	YNL136W	YNL176C
YNL013C	YNL052W	YNL094W	YNL137C	YNL177C
YNL014W	YNL053W	YNL095C	YNL138W	YNL178W
YNL015W	YNL054W-A	YNL096C	YNL140C	YNL179C
YNL017C	YNL055C	YNL097C	YNL141W	YNL180C
YNL018C	YNL056W	YNL099C	YNL142W	YNL181W
YNL019C	YNL057W	YNL100W	YNL143C	YNL182C
YNL020C	YNL058C	YNL101W	YNL144C	YNL183C
YNL021W	YNL059C	YNL102W	YNL145W	YNL184C
YNL022C	YNL061W	YNL103W	YNL147W	YNL185C

YNL186W	YNL230C	YNL276C	YNL315C	YNR020C
YNL187W	YNL231C	YNL277W	YNL316C	YNR021W
YNL188W	YNL232W	YNL278W	YNL317W	YNR022C
YNL189W	YNL233W	YNL279W	YNL319W	YNR023W
YNL190W	YNL234W	YNL280C	YNL320W	YNR024W
YNL191W	YNL235C	YNL281W	YNL321W	YNR025C
YNL193W	YNL236W	YNL282W	YNL322C	YNR026C
YNL194C	YNL237W	YNL283C	YNL323W	YNR027W
YNL195C	YNL238W	YNL284C	YNL324W	YNR028W
YNL196C	YNL239W	YNL284C-A	YNL325C	YNR029C
YNL198C	YNL240C	YNL285W	YNL326C	YNR030W
YNL199C	YNL241C	YNL286W	YNL327W	YNR032C-A
YNL200C	YNL243W	YNL287W	YNL328C	YNR032W
YNL202W	YNL244C	YNL288W	YNL329C	YNR033W
YNL203C	YNL245C	YNL289W	YNL330C	YNR034W
YNL204C	YNL246W	YNL290W	YNL331C	YNR035C
YNL206C	YNL248C	YNL291C	YNL332W	YNR036C
YNL207W	YNL249C	YNL292W	YNL333W	YNR038W
YNL208W	YNL252C	YNL293W	YNL334C	YNR039C
YNL209W	YNL253W	YNL294C	YNL335W	YNR041C
YNL210W	YNL254C	YNL295W	YNL336W	YNR042W
YNL211C	YNL255C	YNL296W	YNL337W	YNR045W
YNL212W	YNL256W	YNL299W	YNL338W	YNR046W
YNL213C	YNL257C	YNL300W	YNR001C	YNR047W
YNL214W	YNL258C	YNL301C	YNR002C	YNR048W
YNL217W	YNL259C	YNL303W	YNR003C	YNR049C
YNL218W	YNL260C	YNL304W	YNR005C	YNR050C
YNL219C	YNL261W	YNL305C	YNR006W	YNR051C
YNL220W	YNL263C	YNL306W	YNR007C	YNR052C
YNL221C	YNL264C	YNL307C	YNR008W	YNR054C
YNL222W	YNL265C	YNL308C	YNR009W	YNR055C
YNL223W	YNL266W	YNL309W	YNR010W	YNR056C
YNL224C	YNL268W	YNL310C	YNR014W	YNR057C
YNL225C	YNL269W	YNL311C	YNR015W	YNR058W
YNL226W	YNL270C	YNL312W	YNR017W	YNR059W
YNL228W	YNL274C	YNL313C	YNR018W	YNR060W
YNL229C	YNL275W	YNL314W	YNR019W	YNR061C

YNR062C	YOL026C	YOL065C	YOL103W	YOL144W
YNR063W	YOL027C	YOL066C	YOL103W-A	YOL146W
YNR066C	YOL028C	YOL067C	YOL105C	YOL147C
YNR067C	YOL029C	YOL068C	YOL106W	YOL148C
YNR068C	YOL030W	YOL069W	YOL107W	YOL149W
YNR069C	YOL031C	YOL070C	YOL108C	YOL150C
YNR071C	YOL032W	YOL071W	YOL109W	YOL151W
YNR072W	YOL033W	YOL072W	YOL110W	YOL152W
YNR073C	YOL034W	YOL073C	YOL111C	YOL153C
YNR074C	YOL035C	YOL075C	YOL112W	YOL154W
YNR075W	YOL036W	YOL076W	YOL114C	YOL155C
YNR076W	YOL037C	YOL077C	YOL115W	YOL156W
YNR077C	YOL038W	YOL077W-A	YOL116W	YOL157C
YOL001W	YOL039W	YOL078W	YOL117W	YOL158C
YOL002C	YOL040C	YOL079W	YOL118C	YOL159C
YOL003C	YOL041C	YOL080C	YOL119C	YOL160W
YOL005C	YOL042W	YOL082W	YOL120C	YOL161C
YOL007C	YOL043C	YOL083W	YOL121C	YOL162W
YOL008W	YOL044W	YOL084W	YOL123W	YOL163W
YOL009C	YOL046C	YOL085C	YOL124C	YOL164W
YOL010W	YOL047C	YOL086C	YOL125W	YOL165C
YOL011W	YOL048C	YOL087C	YOL126C	YOL166C
YOL012C	YOL050C	YOL088C	YOL127W	YOR001W
YOL013C	YOL051W	YOL089C	YOL128C	YOR002W
YOL013W-A	YOL052C	YOL090W	YOL129W	YOR003W
YOL014W	YOL052C-A	YOL091W	YOL130W	YOR005C
YOL015W	YOL053W	YOL092W	YOL131W	YOR006C
YOL016C	YOL054W	YOL093W	YOL132W	YOR007C
YOL017W	YOL055C	YOL094C	YOL133W	YOR009W
YOL018C	YOL056W	YOL095C	YOL134C	YOR010C
YOL019W	YOL057W	YOL096C	YOL135C	YOR013W
YOL020W	YOL058W	YOL097C	YOL136C	YOR014W
YOL021C	YOL059W	YOL098C	YOL137W	YOR015W
YOL022C	YOL060C	YOL099C	YOL139C	YOR016C
YOL023W	YOL062C	YOL100W	YOL140W	YOR017W
YOL024W	YOL063C	YOL101C	YOL141W	YOR018W
YOL025W	YOL064C	YOL102C	YOL142W	YOR019W

YOR020C	YOR063W	YOR110W	YOR150W	YOR195W
YOR021C	YOR066W	YOR111W	YOR152C	YOR196C
YOR022C	YOR067C	YOR112W	YOR154W	YOR197W
YOR023C	YOR068C	YOR114W	YOR155C	YOR198C
YOR024W	YOR069W	YOR115C	YOR156C	YOR199W
YOR025W	YOR070C	YOR117W	YOR157C	YOR200W
YOR026W	YOR072W	YOR118W	YOR159C	YOR201C
YOR029W	YOR073W	YOR119C	YOR160W	YOR202W
YOR030W	YOR074C	YOR120W	YOR161C	YOR203W
YOR031W	YOR076C	YOR121C	YOR162C	YOR204W
YOR032C	YOR077W	YOR122C	YOR163W	YOR205C
YOR033C	YOR079C	YOR123C	YOR164C	YOR206W
YOR034C	YOR080W	YOR124C	YOR166C	YOR209C
YOR035C	YOR081C	YOR125C	YOR167C	YOR210W
YOR036W	YOR082C	YOR126C	YOR168W	YOR212W
YOR038C	YOR083W	YOR128C	YOR169C	YOR213C
YOR039W	YOR084W	YOR129C	YOR171C	YOR214C
YOR040W	YOR085W	YOR130C	YOR173W	YOR215C
YOR041C	YOR087W	YOR131C	YOR174W	YOR216C
YOR043W	YOR088W	YOR132W	YOR175C	YOR217W
YOR044W	YOR089C	YOR133W	YOR176W	YOR218C
YOR045W	YOR090C	YOR134W	YOR177C	YOR219C
YOR046C	YOR091W	YOR135C	YOR178C	YOR220W
YOR047C	YOR092W	YOR136W	YOR179C	YOR221C
YOR048C	YOR094W	YOR137C	YOR180C	YOR222W
YOR049C	YOR095C	YOR138C	YOR181W	YOR223W
YOR050C	YOR096W	YOR139C	YOR182C	YOR224C
YOR051C	YOR097C	YOR140W	YOR184W	YOR225W
YOR052C	YOR098C	YOR141C	YOR185C	YOR226C
YOR053W	YOR099W	YOR142W	YOR186W	YOR227W
YOR054C	YOR100C	YOR142W-A	YOR187W	YOR228C
YOR055W	YOR102W	YOR144C	YOR188W	YOR229W
YOR057W	YOR103C	YOR145C	YOR190W	YOR230W
YOR058C	YOR104W	YOR146W	YOR192C	YOR231W
YOR060C	YOR105W	YOR147W	YOR192C-A	YOR232W
YOR061W	YOR106W	YOR148C	YOR193W	YOR233W
YOR062C	YOR107W	YOR149C	YOR194C	YOR234C

YOR235W	YOR273C	YOR311C	YOR355W	YPL004C
YOR236W	YOR274W	YOR312C	YOR357C	YPL005W
YOR237W	YOR275C	YOR313C	YOR358W	YPL007C
YOR238W	YOR276W	YOR314W	YOR359W	YPL008W
YOR239W	YOR277C	YOR315W	YOR360C	YPL009C
YOR240W	YOR278W	YOR316C	YOR361C	YPL010W
YOR241W	YOR279C	YOR317W	YOR362C	YPL011C
YOR242C	YOR280C	YOR318C	YOR364W	YPL013C
YOR243C	YOR281C	YOR319W	YOR365C	YPL015C
YOR244W	YOR282W	YOR320C	YOR366W	YPL017C
YOR245C	YOR283W	YOR321W	YOR367W	YPL018W
YOR246C	YOR284W	YOR322C	YOR368W	YPL019C
YOR247W	YOR285W	YOR323C	YOR369C	YPL020C
YOR248W	YOR286W	YOR325W	YOR370C	YPL021W
YOR249C	YOR287C	YOR327C	YOR371C	YPL023C
YOR250C	YOR288C	YOR329C	YOR372C	YPL024W
YOR251C	YOR289W	YOR330C	YOR374W	YPL025C
YOR252W	YOR292C	YOR332W	YOR375C	YPL026C
YOR253W	YOR294W	YOR333C	YOR376W	YPL027W
YOR254C	YOR295W	YOR334W	YOR377W	YPL028W
YOR255W	YOR296W	YOR335C	YOR378W	YPL029W
YOR256C	YOR297C	YOR338W	YOR379C	YPL030W
YOR257W	YOR298C-A	YOR339C	YOR383C	YPL031C
YOR258W	YOR298W	YOR340C	YOR384W	YPL032C
YOR259C	YOR299W	YOR342C	YOR385W	YPL033C
YOR260W	YOR300W	YOR343C	YOR386W	YPL034W
YOR261C	YOR301W	YOR343C-A	YOR387C	YPL035C
YOR262W	YOR302W	YOR344C	YOR388C	YPL036W
YOR263C	YOR303W	YOR345C	YOR389W	YPL037C
YOR264W	YOR304C-A	YOR347C	YOR390W	YPL038W
YOR265W	YOR304W	YOR348C	YOR391C	YPL039W
YOR266W	YOR305W	YOR349W	YOR392W	YPL040C
YOR268C	YOR306C	YOR350C	YOR393W	YPL041C
YOR269W	YOR307C	YOR351C	YOR394W	YPL042C
YOR270C	YOR308C	YOR352W	YPL001W	YPL043W
YOR271C	YOR309C	YOR353C	YPL002C	YPL044C
YOR272W	YOR310C	YOR354C	YPL003W	YPL045W

YPL046C	YPL087W	YPL125W	YPL167C	YPL208W
YPL047W	YPL088W	YPL126W	YPL168W	YPL210C
YPL048W	YPL089C	YPL127C	YPL169C	YPL211W
YPL049C	YPL091W	YPL128C	YPL170W	YPL212C
YPL050C	YPL092W	YPL129W	YPL171C	YPL213W
YPL051W	YPL093W	YPL131W	YPL172C	YPL214C
YPL052W	YPL094C	YPL132W	YPL173W	YPL215W
YPL053C	YPL095C	YPL133C	YPL174C	YPL218W
YPL054W	YPL096W	YPL134C	YPL175W	YPL219W
YPL055C	YPL097W	YPL136W	YPL176C	YPL220W
YPL056C	YPL098C	YPL137C	YPL177C	YPL221W
YPL057C	YPL099C	YPL139C	YPL178W	YPL222W
YPL059W	YPL100W	YPL140C	YPL179W	YPL223C
YPL060C-A	YPL101W	YPL141C	YPL180W	YPL224C
YPL061W	YPL102C	YPL142C	YPL181W	YPL225W
YPL062W	YPL103C	YPL143W	YPL182C	YPL226W
YPL063W	YPL104W	YPL144W	YPL183W-A	YPL227C
YPL064C	YPL105C	YPL145C	YPL185W	YPL229W
YPL065W	YPL106C	YPL146C	YPL186C	YPL230W
YPL066W	YPL107W	YPL147W	YPL188W	YPL231W
YPL067C	YPL108W	YPL148C	YPL189W	YPL232W
YPL068C	YPL109C	YPL149W	YPL190C	YPL233W
YPL069C	YPL110C	YPL150W	YPL191C	YPL234C
YPL070W	YPL111W	YPL151C	YPL192C	YPL235W
YPL071C	YPL112C	YPL154C	YPL193W	YPL236C
YPL072W	YPL113C	YPL155C	YPL194W	YPL237W
YPL073C	YPL114W	YPL156C	YPL196W	YPL238C
YPL074W	YPL115C	YPL157W	YPL197C	YPL239W
YPL076W	YPL116W	YPL158C	YPL198W	YPL240C
YPL077C	YPL117C	YPL159C	YPL199C	YPL241C
YPL078C	YPL118W	YPL160W	YPL200W	YPL243W
YPL079W	YPL119C	YPL161C	YPL201C	YPL244C
YPL080C	YPL120W	YPL162C	YPL202C	YPL245W
YPL081W	YPL121C	YPL163C	YPL203W	YPL246C
YPL083C	YPL122C	YPL164C	YPL205C	YPL247C
YPL084W	YPL123C	YPL165C	YPL206C	YPL249C
YPL086C	YPL124W	YPL166W	YPL207W	YPL249C-A

YPL250C	YPR006C	YPR047W	YPR085C	YPR130C
YPL251W	YPR007C	YPR048W	YPR086W	YPR131C
YPL252C	YPR008W	YPR049C	YPR088C	YPR132W
YPL253C	YPR009W	YPR050C	YPR089W	YPR133C
YPL254W	YPR010C	YPR051W	YPR091C	YPR133W-A
YPL255W	YPR011C	YPR052C	YPR092W	YPR134W
YPL256C	YPR012W	YPR053C	YPR093C	YPR136C
YPL257W	YPR013C	YPR054W	YPR094W	YPR137C-A
YPL257W-A	YPR014C	YPR055W	YPR095C	YPR137W
YPL258C	YPR015C	YPR056W	YPR096C	YPR138C
YPL259C	YPR016C	YPR057W	YPR097W	YPR139C
YPL260W	YPR017C	YPR058W	YPR098C	YPR140W
YPL261C	YPR018W	YPR059C	YPR099C	YPR141C
YPL262W	YPR019W	YPR060C	YPR100W	YPR142C
YPL263C	YPR020W	YPR061C	YPR101W	YPR143W
YPL264C	YPR022C	YPR062W	YPR102C	YPR144C
YPL265W	YPR023C	YPR063C	YPR103W	YPR145W
YPL267W	YPR024W	YPR064W	YPR105C	YPR147C
YPL268W	YPR025C	YPR065W	YPR107C	YPR148C
YPL269W	YPR027C	YPR066W	YPR108W	YPR149W
YPL270W	YPR028W	YPR067W	YPR109W	YPR150W
YPL271W	YPR029C	YPR068C	YPR110C	YPR151C
YPL272C	YPR030W	YPR069C	YPR111W	YPR152C
YPL273W	YPR031W	YPR070W	YPR112C	YPR153W
YPL275W	YPR032W	YPR071W	YPR113W	YPR154W
YPL276W	YPR033C	YPR072W	YPR114W	YPR155C
YPL277C	YPR034W	YPR073C	YPR116W	YPR156C
YPL278C	YPR035W	YPR074C	YPR118W	YPR157W
YPL279C	YPR036W	YPR075C	YPR119W	YPR158C-C
YPL280W	YPR037C	YPR077C	YPR121W	YPR158W
YPL282C	YPR038W	YPR078C	YPR123C	YPR158W-A
YPR001W	YPR039W	YPR079W	YPR124W	YPR159W
YPR002C-A	YPR040W	YPR080W	YPR125W	YPR161C
YPR002W	YPR043W	YPR081C	YPR126C	YPR162C
YPR003C	YPR044C	YPR082C	YPR127W	YPR163C
YPR004C	YPR045C	YPR083W	YPR128C	YPR165W
YPR005C	YPR046W	YPR084W	YPR129W	YPR166C

YPR167C	YPR175W	YPR183W	YPR193C	YPR202W	
YPR168W	YPR176C	YPR185W	YPR194C	YPR203W	
YPR169W	YPR177C	YPR186C	YPR195C	YBL059C-A	
YPR170C	YPR178W	YPR187W	YPR196W	YHR132W-A	
YPR171W	YPR179C	YPR188C	YPR197C	YCL027C-A	
YPR172W	YPR180W	YPR190C	YPR198W	YCL021W-A	
YPR173C	YPR181C	YPR191W	YPR199C		
YPR174C	YPR182W	YPR192W	YPR200C		

Fig. 2

	•				
araD	eutH	bglG	envZ	b1339	yhaO
araA	eutG	rbsK	ompR	b1384	yhbM
araB	eutJ	rbsR	spoT	b1422	b3226
araC	eutE	rhaD	phoU	b1439	b3243
	eutl	rhaA	•	b1497	yhdM
gcd			gppA		yhfR
sfsA	b2550	rhaB	cyaA	b1512	,
yagG	srID	rhaS	срхА	b1526	yhgB
b0271	gutM	rhaR	cytR	b1595	yhhX
cynR	srlR	frwC	oxyR	rstA	yhhM
lacA	gutQ	frwB	lexA	gusR	yhh i
lacZ	ascG	frwD	soxS	ydhB	yhil
laci	ascB	malM	soxR	b1770	b3515
mhpB	b2787	rpiB	creB	b1799	yhiX
b0349	b2788	melR	creC	b1827	yhjB
mhpE	b2789	melA	arcA	uvrY	yhjC
b0352	fucO	b4198	yaaC	cbl	yiaJ
araJ	fucA	treC	yaeG	nac	yiaU
malZ	fucl		yafC	b2015	yicM
		yjgT		b2013 b2056	yidF
pgm	fucK	gntV	perR		
b0713	fucU	yjhF	yagl	b20 <u>6</u> 1	b3680
ybgB	fucR	uxuA	yagL	yegE	yidP
galK	galR	uxuB	yagW	yohl	yidU
galT	kdul	uxuR	b0294	yeiE	b3694
galE	bgIA	lytB	ykgA	yeiL	yidY
poxB	ygfF	phoB	ykgD	yojN	yidZ
focA	glcG	phoR	b0316	atoS	yifl
b1106	glcD	lon	b0318	b2248	yihW
galU	glcC	fur	b0330	b2299	cpxR
uxaB	icc	kdpE	b0346	b2326	yiiT
mlc	ebgR	kdpD	b0417	b2380	yijO
manA	ebgA	phoQ	b0447	b2382	b3995
uidA	ebgC	phoP	b0504	b2409	adiY
mall	uxaA	b1320	b0506	b2412	yjdG
malY	uxaC	fnr	b0538	b2428	yjdH
celF	exuR	relB	b0570	b2537	yjfQ
			b0570 b0571	b2556	yjgS
celD	yhaU	rspB			
b1772	agaZ	rspA	b0603	yfiE	yjhl
amyA	nlp	rstB	b0619	ygaE	yjhJ
b2045	gph	osmE	criR	oraA	yjiE
gatR_1	malQ	suhB	b0705	ygaA	yjiR
gatR_2	maiP	era	ybhD	hypF	yjjQ
gatD	malT	rseC	b0805	b2734	yjjR
gatZ	treF	rseB	b0836	b2735	yi81_1
gatY	kdgK	rseA	b0853	b2768	insB_1
bglX	xylB	rpoE	b0900	b2847	insA_1
galS	xylA	csrA	ycbE	b2852	yafZ
yeil	xylR	relA	b0986	b2855	tra8_1
fruA	malS	barA	b1119	b2921	b0257
yeiQ	lyxK	rpoN	b1162	yggD	yi52_1
•	aldB	arcB	b1201	b3025	insB_2
pta	mtlD		b1284	b3026	insA_2
glk		sspB			
eutC	mtlR	sspA	b1314	b3060	insB_3
eutB	bglB	crp	b1328	yhaJ	insA_3

b0281	alpA	dacA	yeeC	rfaF	ychP
b0299	b2633	mrdB	rfc	rfaC	yciF
tra5_1	emrR	mrdA	rfbX	rfaL	b1368
ybaÑ	yi22_4	rlpB	b2059	rfaK	b1376
intD	yi21_4	pal	b2062	rfaZ	b1505
b0539	yi52_9	b0795	yehA	rfaY	b1835
tra5_2	yi21_5	ompX	yehD	rfaJ	b1999
yi52_2	yi22_5	dacC	pbpG	rfal	b2004
nmpC	yi52_10	b0869	ompC	rfaB	b2007
nohB	insA 6	b0874	rcsB	rfaS	b2175
nfrA	insB_6	kdsB	rcsC	rfaP	b2291
nfrB	yi52_11	ompF	b2253	rfaG	yfcA
yi81_2	yi5B	b0938	mepA	rfaQ	b2338
yi52_3	hfq	b0940	b2333	kdtA	b2438
tolQ	intB	b0941	b2335	kdtB	b2506
toIR	b4273	b0942	b2339	rfe	yfhG
tolA	tra8_3	b0943	b2351	b3785	yfiB
tolB	b4285	ompA	amiA	rffT	b2879
insB_4	insA_7	b0983	b2505	rffM	yggE
tra5_3	creD	csgG	yfgA	rfaH	b2954
lit	murE	csgF	b2519	murl	yggM
b1140	murF	csgE	smpA	murB	b3051
b1145	mraY	csgD	mltB	amiB	yhfK
b1157	murD	csgB	mltA	yjfG	yibH
pin	murG	csgA	b2817	fimB	yicC
pspF	murC	dsbB	b2865	fimE	yigN
pspA	ddlB	kdsA	dsbC	fimA	yjbB
pspB	lpxC	yciD	ygiL	fiml	yjdA
pspC	hofC	b1377	b3046	fimC	yjeP
pspD	hofB	b1424	b3047	fimD	yjfJ via A
pspE	htrE	b1433	glgS	fimF	yjgA
yi52_4	ecpD	b1471	yraH	fimG fimH	ујјА ујјР
b1345	mrcB	b1502	yraJ	slt	yaaJ
racC	fhuA	hipA	yraK dacB	yaeE	nhaA
sieB	hlpA	hipB	murA	b0489	nhaR
b1362	lpxD	lpp flb A	yrbM	rlpA	IspA
yi52_5	lpxA	flhA flhC	nanT	b0786	yaaU
b1372 b1374	lpxB rcsF	flhD	nanA	b1202	kefC
tra8_2	yaeC	fliA	mreD	b1472	secA
nohA	gmhA	fliC	mreC	gusC	aroP
b1579	crl	fliD	mreB	nlpC	fhuC
insB_5	phoE	fliS	acrE	vacJ	fhuD
insA_5	yagD	fliT	mrcA	nlpB	fhuB
yi52_7	b0363	fliE	glgP	nlpD	abc
ogrK	ddlA	fliF	glgA	nlpA	betT
tra5_4	yajB	fliG	glgC	blc	codB
yi52_8	bolA	fliH	glgX	yabC	cynX
b2292	b0453	fliL	glgB	yaeH	lacY
cvpA	acrA	fliM	slp	eaeH	brnQ
yfdB	b0532	fliN	yiaD	b0357	secD
b2394	fimZ	fliO	yiaN	b0465	secF
b2430	b0558	fliP	yiaT	ybbB	tsx
b2442	ompT	fliQ	yibP	ybeL	mdlA
grpE	envY	fliR	yibD	ь0780	mdlB
intA	b0612	rcsA	rfaD	ь0878	ybaL

b0484 chaB hisM gntT rhaT ybe ybbA chaC hisJ gntU_2 kdgT b06 pheP narK argT gntU_1 sbp b07 fepA oppA fadL ugpC glpF b07 fes oppB b2387 ugpE ptsA b07 fepE oppC nupC ugpA btuB b07 fepC oppD xapB ugpB secE b08 fepG oppF ptsH livF xylE b08 fepD kch ptsI livG malG b08 fepB tonB crr livM malF yca gltL sapF cysA livH malE b08 gltJ sapC cysU livJ lamB b09
pheP narK argT gntU_1 sbp b07 fepA oppA fadL ugpC glpF b07 fes oppB b2387 ugpE ptsA b07 fepE oppC nupC ugpA btuB b07 fepC oppD xapB ugpB secE b08 fepG oppF ptsH livF xylE b08 fepD kch ptsI livG malG b08 fepB tonB crr livM malF yca gltL sapF cysA livH malE b08 gltK sapD cysW livK malK b09
fepA oppA fadL ugpC glpF b07 fes oppB b2387 ugpE ptsA b07 fepE oppC nupC ugpA btuB b07 fepC oppD xapB ugpB secE b08 fepG oppF ptsH livF xylE b08 fepD kch ptsI livG malG b08 fepB tonB crr livM malF yca gltL sapF cysA livH malE b08 gltK sapD cysW livK malK b09
fepE oppC nupC ugpA btuB b07 fepC oppD xapB ugpB secE b08 fepG oppF ptsH livF xylE b08 fepD kch ptsI livG malG b08 fepB tonB crr livM malF yca gltL sapF cysA livH malE b08 gltK sapD cysW livK malK b09
fepC oppD xapB ugpB secE b08 fepG oppF ptsH livF xylE b08 fepD kch ptsI livG malG b08 fepB tonB crr livM malF yca gltL sapF cysA livH malE b08 gltK sapD cysW livK malK b09
fepG oppF ptsH livF xylE b08 fepD kch ptsl livG malG b08 fepB tonB crr livM malF yca gltL sapF cysA livH malE b08 gltK sapD cysW livK malK b09
fepD kch ptsl livG malG b08 fepB tonB crr livM malF yca gltL sapF cysA livH malE b08 gltK sapD cysW livK malK b09
fepBtonBcrrlivMmalFycagltLsapFcysAlivHmalEb08gltKsapDcysWlivKmalKb09
gltL sapF cysA livH malE b08 gltK sapD cysW livK malK b09
gltK sapD cysW livK malK b09
3
Int sapB cysP nikA gltP ycc
nagE sapA bcp nikB phnE ych
potE tyrR uraA nikC phnD b12
kdpC b1329 lepB nikD phnC b13
kdpB trkG kgtP nikE proP b13
kdpA b1453 ffh pitA melB b13
b0709 b1483 gabP yhiP dcuB yda
pnuC b1484 proV dctA cadB b14
modE b1485 proW dppF dcuA b14
modA b1486 srIA_1 dppD cycA b14
modB uidB srlA_2 dppC treB b14
modC malX srlB dppB mgtA b14
glnQ b1634 ascF dppA fecE b14
glnP btuD sdaC xylF fecD ydc
gInH btuE fucP xyIG fecC b14
b0829 btuC ptsP xylH fecB ydd b0830 celC araE mtlA fecA b15
b0830 celC araE mtlA fecA b15 b0831 celB cmtA lldP fecR b15
b0832 celA cmtB secB fecl b15
potF manX galP gltS yjhN b15
potG manY nupG uhpT gntP b15
potH manZ b2968 uhpC yabJ ydh
potl araH b2970 uhpB yabK b16
artJ araG pitB uhpA yabM b16
artM araF exbD glvG yacC b17
artQ ftn exbB glvB yadG b17
artl tyrP exuT glvC yadQ b18
artP gatC tdcC tnaB yaeM yee
aqpZ gatB mtr bglF b0263 b20
cydC gatA secG pstB ykgG b20
cydD moIR_1 ptsN pstA b0353 b20 IoIA moIR 2 ptsO pstC b0365 yeh
loIA moIR_2 ptsO pstC b0365 yeh msbA moIR_3 panF pstS b0367 yeh
putP mgIC trkA kup b0486 yeh
msyB mgIA hofF rbsD b0490 yoh
ptsG mglB hofG rbsA b0491 yoh
fhuE cirA hofH rbsC b0511 yei.
potD lysP pshM rbsB b0513 yeil
potC fruB bfr corA b0572 yei
potB yejE kefB trkH b0574 yojl
potA yejF hofQ frvR ybdE b22
nhaB glpT feoA frvB ybdG b22
chaA hisP feoB frvA ybdA b23

yfdC	b4115	b0533	sodB	ftsX	adhC
dsdX	b4130	ybcG	katE	ftsE	cyoE
b2372	yjeH	nfnB	b1828	ftsY	
					cyoD
b2492	yjeM	ahpC	htpX	uspA	cyoC
b2546	ptxA	ahpF	b1840	arsR	cyoB
b2547	ytfQ	ybgD	msbB	arsB	cyoA
b2681	ytfR	dps	cutC	arsC	b0492
b2771	ytfS	mdaA	b1880	yhiU	b0604
b2775	ytfT	b0867	cheZ	yhi∨	b0617
b2832	yjfF	cspD	cheY	yhjX	fldA
b2845	yjiO	ftsK	cheB	cspA	gltA
b2882	b4356	mukB	cheR	radC	sdhC
b2888	htgA	sulA			
			tap	emrD	sdhD
ygfD	dnaK	cspG	tar	hsIS	sdhA
yggB	dnaJ	cbpA	cheW	hslT	sdhB
b2950	gefL	mdoG	cheA	thdF	sucA
b2952	caiF	mdoH	motB	sodA	sucB
b2966	caiE	htrB	motA	hslU	sucC
b29 7 5	caiD	mviM	otsA	ftsN	sucD
ygjU	caiC	mviN	otsB	katG	farR
b3195	caiB	flgN	sdiA	htrC	cydA
yhbG	caiA	flgM	fliY	yjcR	cydB
yhcL	caiT	flgA	flil	yjcT	gpmA
yhdW	ksgA	flgB	fliJ	cutA	b0872
yhdX	imp	flgC	fliK	mopB	dmsA
yhdY	ftsL	flgD	b1981	mopA	dmsB
yhdZ	ftsl	flgE	sanA		
priA	ftsW			ampC	dmsC
	ftsQ	flgF	bcr	treR	pflA
yhfC		flgG	inaA	yjiY	pflB
yhfM	ftsA	flgH	pmrD	tsr	hyaA
yhfN_	ftsZ _	flgl	usg	mdoB	hyaB
yhgE	ampD	flgJ	div	osmY	hyaC
b3469	ampE	figK	emrY	b0531	hyaD
yhhS	yadC	flgL	emrK	b0717	hyaE
b3486	yadK	minE	acrD	b0939	hyaF
yhiD	yadL	minD	hscA	ycbF	appC
yhjE	yadM	minC	b2630	yegD	аррВ
yhjV	yadN	treA	b2639	yehC	torS
yiaO	mesJ	osmB	proX	b2336	torT
yiaV	cutF	tpx	emrA	yral	torR
yicE	fhiA	hslJ	emrB	yhcA	torC
yicJ	mbhA	trg	b2830	talB	torA
yicL	ykgC	tehA	ygeD	fixA	torD
yidK	betA	tehB			
			ygeA	fixB	b1017
yidE	betB	b1448	sufl	fixX	ndh
yidT	beti	osmC	toIC	fruL	icdA
yieG	sbmA	ydeA	bacA	fruR	narL
yieO	b0427	marR	air	pdhR	narX
yifK	ampG	marA	yraP	aceE	narG
yihN	tig	marB	hflB	aceF	narH
b3876	acrB	cspB	ftsJ	lpdA	narJ
yihP	acrR	relF	cafA	acnB	narl
yjbK	htpG	dicC	envR	IdcC	adhE
yjcV	fsr	dicA	acrF	dniR	acnA
yjcW	b0487	dicB	mscL	b0288	aldH
yjcX	b0530	sodC	fic	b0328	IdhA
,,,,,,	20000	5500		50020	iui i/

b1392	nuoH	yhal	frdB	alkA	hsdS
aldA	nuoG	yhaA	frdA	yejH	hsdM
gapC_2	nuoF	yraM	cybC	alkB	mrr
gapC_1	nuoE	mdh	yjjW	ada	dnaC
cybB	nuoB	nirB	polB		dnaT
narV		nirD		gyrA	
	nuoA		yacE	b2271	holD
narW	IrhA	nirC	dksA	lig	rob
narY	ackA	rpe	rnhB	b2496	hepA
narZ	tktB	glpR	dnaE	recO	pcnB
narU	narQ	glpG	rnhA	rnc	hrpB
fdnG	yffE	glpE	dnaQ	ung	yi22_1
fdnH	b2482	glpD	b0247	recN	sbcC
fdnl	b2483	yhjA	b0354	b2623	sbcD
b1587	b2486	yiaS	hupB	b2644	nusB
b1588	b2487	IctR	priC	stpA	xseB
b1590	b2488	lctD	dnaX	recA	uvrB
fumC	b2489	gpsA	recR	mutS	rhIE
fumA	fdx	atpC	rna	mutH	mcrA
b1650	hmpA	atpD	holA	xerD	dbpA
pykF	yfiD	atpG	b0650	iciA	recE
b1697	yfiG	atpA	seqA	mutY	hrpA
b1698	hydN	atpH	ybfD	parC	nth
pfkB	hycH	atpF	phrB	parE	xthA
b1758	hycG	atpE	nei	dnaG	uvrC
b1773	hycF	atpB	modF	fis	vsr
gapA	hycE	atpl	dinG	yrdD	sbcB
zwf	hycD	ubiB	ycaJ	pinO	baeS
pykA	hycC	fdhE	himD	dam	baeR
b1873	hycB	fdol	helD	tag	nfo
gnd	hycA	fdoH	me	mutM	evgA
dld	hypA	fdoG	holB	dfp	
fruK		fdhD	mfd		evgS
narP	hypB			rph	xseA
	hypC	pfkA	umuD	dinD	srmB
ccmH	hypD	tpiA	umuC	recG	yfiA
dsbE	hypE	fpr	tpr	gyrB	rpoS
ccmF	fhlA	talC	hnr	recF	exo
ccmE	ygbE	pflD	hns	dnaN	recD
ccmD	b2769	pflC	topA	dnaA	recB
ccmC	b2770	ррс	rnb	rnpA	recC
ccmB	eno ·	hydH	ogt	gidB	recJ
ccmA	b2886	hydG	lar	gidA	endA
napC	fldB	pgi	recT	mioC	rpoD
napB	rpiA	qor	b1360	rep	deaD
napH	fba	nrfA	tus	xerC	pnp
napG	pgk	nrfB	rnt	uvrD	nusA
napA	tktA	nrfC	lhr	recQ	rpoA
		nrfD			•
napF	hybG		himA	polA	greB
glpA	hybF	nrfE 	topB	priA	rpoH
glpB	hybE	nrfF	rnd	hupA	rpoZ
glpC	hybD	nrfG	b1808	dnaB	spoU
nuoN	hybC	fdhF	holE	uvrA	rhiB
nuoM	hybB	yjcU	ruvB	ssb	rhoL
nuoL	hybA	rpiR	ruvA	mutL	rho
nuoK	ttdA	fumB	ruvC	aidB	nusG
nuoJ	ttdB	frdD	dcm	priB	rpoB
nuol	yhaH	frdC	b2002	holC	rpoC
	, .	· 			

basS	rplT	rpsD	pepE	trpE	ilvN
basR	rpml	rpsK	İysU	trpL	ilvB
mcrD	infC	rpsM	efp	cysB	tnaL
mcrC	thrS	rpmJ	miaA	tynA	tnaA
mcrB	selD	rplO	hflX	b1605	asnC
hsdR	sppA	rpmD	hfiK	aroD	asnA
rpsT	prc	rpsE	hflC	aroH	ilvL
ileS	ptrB	rplR	rpsF	b1748	ilvG_1
yadB	aspS	rplF	rpsR	gdhA	ilvG_2
htrA	argS	rpsH	rpil	ansA	ilvO_2
map	metG	rpsN	fkIB	b1800	ilvE
rpsB	rplY	rplE	msrA	sdaA	ilvD
tsf	yejO	rplX	pmbA	hisL	
frr	eco	rplN	valS	hisG	ilvA ilvY
proS	truA				ilvC
prfH	b2385	rpsQ rpmC	pepA iadA	hisD	
pepD	gltX	rpIP	riml	hisC hisB	dapF
b0296	b2490	rpsC	prfC		metR
queA	hisS	rplV		hisH	metE
tgt	lepA	rpsS	lpIA	hisA	ginG
clpP	cipB	rplB	sms	hisF	glnL
clpX	rpiS	rplW	thrL	hisl	glnA
b0441			thrA	wcaB	metJ
	trmD	rpID	thrB	aroC	metB
hha nniB	rpsP b2647	rpiC	thrC	dsdC	metL
ppiB		rpsJ hofD	dapB	dsdA	argE
cysS bos46	alaS		leuD	cysK	argC
b0546 leuS	pcm	tufA	leuC	cysM	argB
b0648	iap	fusA	leuB	yffG	argH
	ygcA	rpsG	leuA	dapE	metA
ybeK	ptr	rpsL	leuL	dapA	metH
gInS	lysS prfB	fkpA	leuO	glyA	lysC
hrsA rimK	pepP	slyD ppiA	ilvl ilvH	glnB	air
clpA	b3020	trpS		pheL	tyrB
infA	gInE	priC	dapD	pheA	adi
aat	cca	yhjS	glnD	tyrA	cadA
serS	ygjD	glyS	proB proA	aroF sdaB	cadC
rpsA	rpsU	glyQ			argl
mukF	ygjH	seiB	yagF	argA	serB
asnS	sohA	selA	argF	lysA lysB	trpR
pepN	yhbU	rpmG	proC aroL	lysR serA	carA carB
rmf	rpsO	rpmB	aroM	ansB	apaH
b1031	truB	rpmH	asnB	metC	mutT
rimJ	rbfA	yifB	aroG	tdcB	guaC
rpmF	infB	ppiC	ybiK	tdcB	
pepT	greA	pepQ	serC	tdcA	hpt
pth	rpmA	dsbA	aroA		gpt
prfA	rplU	yihK	aspC	argG	codA
sohB	rpsl	hslV	wrbA	argR	apt
rimL	rpiM	rpmE	putA	aroE	adk gsk
rpsV	hhoA	trmA	dadA	argD aroB	
dcp	hhoB	tufB	dadX	aroK	purK
tyrS	prmA	rplK	trpA	asd	purE
pheT	def	rpIA	trpB	asu avtA	deoR trxB
pheS	fmt	rpIJ			
pheM	rpiQ	rpiL	trpC trpD	cysE tdh	cmk
P.10111	. P. oz.	, P.I.	PD	ton.	pyrD

pyrC	рдрВ	glnK	cpsB	agaA	tbpA
tmk	fabl	amtB	udk	agaS	nadC
purB	b1395	ushA	mrp	agaY	panD
prsA	b1397	b0482	yeiG	agaB	panC
purU	b1409	gcl	yejM	agaC	panB
tdk	acpD	gip	glpQ	agaD	folK
pyrF	cfa	b0512	b2302	agal	hemL
add	fadD	b0517	hisQ	mrsA	hemB
purR	pgsA	ybcF	b2342	gltB	ribD
purT	atoC	appY	b2379	gltD	ribH
amn	accD	ybdH	b2383	gltF	ispA
dcd	fabB	b0600	xapR	prkB	hemH
cdd	b2341	b0608	харА	damX	folD
nrdA	acpS	rnk	cysZ	pckA	entD
nrdB	pssA	nagD	b2463	gntK	entF
purF	İgt	nagC	b2464	gntR	entC
purC	aas	nagA	gcvR	ugpQ	entE
upp	b2844	nagB	b2484	gadA	entB
purM	sbm	b0689	b2491	kbl	entA
purN	plsC	speF	ppk	glmS	lipA
guaA	accB	b0711	ррх	glmU	lipB
guaB	accC	b0712	sseA	rffE	phpB
ndk	yhjY	b0718	yfhl	rffD	nadA
purL	pssR	galM	b2530	rffG	bioA
thyA	fadA	ybhA	b2536	rffH	bioB
dut	fadB	ybhE	b2538	aslB	bioF
pyrE	cdh	ybhC	b2539	aslA	bioC
gmk	arp	b0789	b2540	pldA	bioD
udp	plsB	b0825	yfhA	pldB	moaA
purD	dgkA	lrp	gabD	glpK	moaB
purH	acs	yccK	gabT	metF	moaC
purA	psd	appA	nrdE	gldA	moaD
cpdB	yjgI	agp	nrdF	aceB	moaE
nrdD	speD	b1009	cysC	aceA	moeB
pyrl	speE	phoH	cysN	aceK	moeA
pyrB	dgt	goaG	cysD	iclR	grxA
pyrL	pyrH	sfcA	cysH	phnP	pncB
deoC	yaeD	gadB	cysl	phnO	grxB
deoA	yafB	speG	cysJ	phnN	pabC
deoB	b0217	pntB	b2765	phnM	hemM
deoD	b0219	pntA	pyrG	phnL	hemA
cdsA	b0221	hdhA	gcvA	phnK	hemK
fabZ	yafJ	ydiD	kduD	phnJ	btuR
accA	ykfD	ppsA	gcvP	phnl	ribA
tesB	yagC	b1757	gcvH	phnH	gst
ybaC	yagE	b1759	gcvT	phnG	pdxH
tesA	yagT	eda	epd	phnF	ribE
fabA	b0331	edd	speB	dsbD	nadE
plsX fab.u	b0333	ntpA	speA	aspA	pabB
fabH	cynT	bisZ	metK	cysQ	cobT
fabD fabC	cynS 50255	rfbC	speC	ppa	cobS
fabG	b0355	rfbA	glcB	fbp	cobU
acpP	b0366	rfbD	gsp	nrdG	folE
fabF	phoA	rfbB	agaR	mog	ubiG
fadR	psiF	galF	agaV	folA	menE
cls	b0419	cpsG	agaW	pdxA	menC

menB	b0485	b1338	b2298	b3011	yjcQ
menD	ь0493	b1378	b2304	yqiB	ýjfC
menF	b0496	b1385	b2324	ygiC	ytfL
b2303	b0509	b1393	yfcB	b3050	ýjgU
ubiX	b0516	b1394	b2355	b3052	ýjg∨
folC	b0518	ydbC	b2373	ygjG	yjgB
pdxB	b0520	b1408	yfeN	ygjl	yjhC
hemF	b0615	b1411	yfeH	ygjL	yjhG
pdxJ	b0616	b1435	b2418	yqjG	yjhM
nadB	b0618	b1444	yfeF	yhaE	yjhP
gshA	b0626	b1449	b2429	yhaG	yjhR
ubiH	b0646	b1454	b2495	yhbW	yjiL
gshB	b0658	b1463	b2511	yhbX	yjjN
b2955	ybiB	b1478	b2512	yrbH	ýjjπ
ribB	ybiC	b1498	yfgB	yhcl	yjjG
folP	b0804	b1501	b2532	b3223	surA
ispB	b0815	b1524	b2534	yhcQ	ppdD
pabA	b0823	b1525	b2541	yhdH	dinJ
cysG	b0824	ydfG	b2542	yhdG	cspE
bioH	b0837	b1542	b2545	yhdJ	Aipq
ggt	b0838	b1680	yfhD	b3279	pqiB
gor	b0847	ydiB	yfhC	yheB	b0989
bisC	b0859	b1695	sfhB	yhfQ	dinl
grxC	b0865	b1746	b2657	yhfV	xasA
trxA	b0868	b1774	b2668	yhfW	cspF
hemY	b0870	b1776	b2710	yrfF	asr
hemX	b0877	b1781	ygbD	yrfG	cspC
hemD	усаН	b1803	b2736	b3468	sbmC
hemC	ycbB	b1919	b2738	yhhU	ais
mobA	b0955	b1971	b2740	yhjL	sseB
hemN	ycbG	b2016	b2774	yhjM	surE
menG	b0982	yefJ	ygcE	yiaE	chpA
menA	b1006	yefH	b2867	b3575	chpR
birA	b1011	b2044	b2868	yiaL	ppdC
coaA	b1033	b2047	b2869	yiaY	ppdB
thiH	b1059	yefA	b2871	b3592	ppdA
thiG	yceG	b2054	b2872	yicF	mdaB
thiF	b1118	b2055	b2874	yidJ	yhbZ
thiE	b1134	yegA	b2875	yidX	sugE
thiC	b1168	b2070	b2878	b3715	chpS
hemE	b1180	b2100	b2881	yieK	chpB
ubiC	ycgC	b2104	b2885	yieL	b0005
ubiA	b1199	yohF	b2887	yifJ	yaaA
nadR	b1200	b2146	b2889	yigB	yaaH
ь0011	b1266	yeiA	b2899	b3830	yaal
yabF	yciK	yeiC	ygfA	yigZ	yi82_1
yadF	b1287	atoD	b2919	yìhG	b0024
yadl	b1297	atoA	b2920	yihQ	yaaD
yafE	b1298	b2224	b2931	yihR	yaaF
ь0323	ordL	b2247	b2972	yihT	fixC
b0324	b1309	b2254	b2974	yihU	apaG
b0325	b1313	b2255	b2978	yih∨	yabH
ь0350	b1315	yfbB	b2997	yihX	yabP
b0374	b1321	b2269	b3001	yiiD	yabQ
b0420	b1325	b2290	b3003	udhA	yabO
yajG	b1326	b2293	b3010	yjcP	yabl

yabN	yagK	b0395	b0561	b0762	b0946
yabB	b0279	b0402	b0562	b0769	b0947
yacA	b0280	yajC	b0563	b0771	b0948
b0100					b0952
	yagP	yajD	ybcH	ybhB	
yacG	yagQ	yajl_	b0573	b0787	b0959
yacF	yagR	ybaD	ybdF	b0788	b0960
b0105	yagS	b0418	b0580	b0790	yccF
yacH	yagU	b0423	b0581	b0791	yccG
yacL	yagV	thiJ	ybdB	b0792	b0964
yacK	yagX	apbA	b0598	b0793	b0965
yadH	yagY	b0426	b0601	ybiH	b0966
yadE	yagZ	b0442	b0602	ybiA	b0967
yadD	b0295	b0443	b0607	ybiJ	b0968
yadP	b0298	b0444	b0609	ybil	yccC
yadR	ykgB	ybaE	b0613	b0806	b0984
yadS	b0302	cof	b0614	b0807	b0985
yadT	b0303	b0454	b0621	b0808	b0987
pfs	ykgE	ybaA	ybeG	ybiF	sfa
yael	ykgF	b0457	ybel	b0816	b0992
b0165	b0309	b0458	ybeH	b0817	yccD
b0174	ykgH	b0459	ybeC	b0818	yccE
	yahA	γbaJ	ybeF		yccJ
yaeL	•	•		b0819	•
b0177	b0317	ybaM	ybeD	b0821	b1005
b0187	b0319	ybaB	ybeA	b0822	b1007
yaeO	b0320	b0481	ybeB	b0833	b1008
yaeQ	b0321	b0483	b0639	b0834	b1010
yaeJ	b0322	b0488	b0644	b0835	b1012
yaeF	b0326	rhsD	b0645	b0841	b1013
yaeB	b0327	ybbC	b0647	b0843	b1016
yafD	b0329	b0499	b0649	b0844	b1018
b0212	b0332	ybbD	b0659	b0845	ycdB
b0213	b0334	b0501	b0661	b0846	b1021
b0218	b0335	b0502	b0662	b0848	b1022
b0220	b0333	b0502 b0505	b0663	ybjC	b1022
				• •	
yafK	b0358	b0510	b0667	b0858	b1024
yafQ	ь0359	b0514	b0669	b0866	b1025
yafL	yi21_1	b0515	b0671	b0873	b1027
yafM	b0362	b0519	b0681	b0876	b1028
dinP	b0364	ybbF	b0682	b0881	b1029
yafN	b0368	ybcl	b0685	ycaC	b1030
yafO	b0370	ybcJ	b0686	ycaK	b1034
yafP	b0371	b0540	ybfG	b0905	b1035
b0235	b0373	b0542	ybfH	b0906	b1036
yafA	b0375	b0543	ybfA	b0909	b1043
b0245			•		b1044
	yaiH 50278	b0544	rhsC	ycal 50016	
yafW	b0378	b0545	ybfB	b0916	b1045
yafX	b0379	b0547	b0703	b0917	b1046
b0249	b0380	b0548	ybfC	b0919	b1047
ykfB	yaiB	b0549	ybgA	ycbC	yceK
yafY	yaiC	b0550	b0710	smtA	b1052
ykfA	yail	b0551	b0716	mukE	yceE
b0255	yaiA	b0554	b0725	b0926	yceA
ykfC	yaiE	b0555	ybgE	b0927	ycel
yagB	b0392	b0556	ybgC	b0935	b1057
· · · · ·				b0936	b1058
yagA	yaiD	b0557	ybgF		
yagJ	yajF	b0559	b0753	b0937	b1060

yceB	b1177	b1346	b1458	b1566	b1672
b1065	b1178	ydaC	b1459	b1567	b1673
yceH	b1179	ydaD	ydcE	b1568	b1674
b1085	b1181	b1354	b1462	ydfA	b1675
yceC	b1182	b1355	yddE	ydfB	b1678
yceF	ycgB	b1356	b1470	ydfC	b1679
•					
yceD	b1191	b1357	yddG	ydfD	b1681
ycfH	b1192	b1358	b1477	ydfE	b1682
ycfF	b1193	b1359	b1481	b1578	b1683
b1104	b1194	b1361	b1488	b1582	b1684
b1105	b1195	b1364	b1489	b1583	b1685
b1107	b1196	b1365	b1490	b1585	b1686
b1108	ychF	b1366	b1491	b1586	b1687
ycfJ	ychH	b1367	yddC	b1589	b1688
b1111	ychM	b1369	yddB	b1591	b1689
b1112	ychB	b1371	b1499	b1593	ydiF
b1113	b1213	b1373			b1696
			b1500	b1596	
b1115	ychA	b1375	b1503	b1598	b1699
b1116	ychN	b1381	b1504	b1599	b1700
b1117	b1228	b1382	b1506	b1600	ydiA
b1120	ychJ	b1383	b1509	b1601	ydiE
b1121	ychK	b1387	ydeK	b1604	b1706
b1122	ychG	b1388	b1511	b1606	b1707
ycfD	b1240	b1389	b1516	b1607	b1720
ycfC	b1248	b1390	b1517	b1614	b1721
ycfB	ycil	b1391	b1518	b1624	b1722
b1135	yciA	b1396	b1519	b1625	b1724
b1137	yciB	b1398	b1520	b1626	b1725
b1138					
	yciC	b1399	b1522	b1627	b1726
b1141	yciE	b1400	b1523	b1628	b1727
b1142	yciG	ydbA_1	b1527	b1629	b1728
b1143	yciO	yi22_2	ydeB	b1630	b1730
b1144	yciQ	yi21_2	ydeD	b1631	b1731
b1146	yciL	ydbA_2	ydeF	b1632	ydjC
b1147	yciN	ydbD	ydeH	b1636	b1741
b1148	b1279	b1410	ydel	ydhA	b1742
b1149	yciM	ydcF	ydeJ	b1640	b1743
b1150	yciH	b1419	b1540	b1641	b1744
b1151	b1285	b1420	b1541	b1642	b1745
b1152	ycjD	b1423	b1544	b1643	b1747
b1153	b1295	b1425	b1545	b1644	b1750
ycfK	ycjC	ydcH	b1546	b1645	b1751
b1155	b1310	b1428	b1547	b1647	b1752
ycfA	b1316			b1648	
		b1431	b1549		b1753
b1160	b1317	b1432	b1550	b1649	b1754
b1161	b1319	b1434	b1551	b1651	b1755
b1163	ycjF	b1436	b1552	ydhD	b1760
b1164	b1327	b1437	b1553	b1655	b1762
b1165	b1330	b1438	b1554	b1657	ydjA
b1166	b1332	b1445	b1555	ydhE	ydjB
b1167	ydaA	b1446	b1556	b1664	ydjE
b1169	b1337	b1447	b1559	b1667	b1771
b1170	b1340	b1450	b1560	b1668	b1775
b1171	b1341	b1455	rem	b1669	b1777
b1172	b1342	rhsE	relE	b1670	b1778
	b1344				
b1173	J 1074	ydcD	b1565	b1671	b1780

.

L 4700	L4070	L0000		1.0000	F0404
b1782	b1870	b2000	yohH	b2332	b2461
b1783	b1871	b2001	yohJ	b2334	b2462
b1784	b1875	b2003	b2145	b2337	b2466
b1785	b1877	b2005	yeiB	b2340	yffH
b1786	b1878	b2006	yeiH	b2343	yffB
b1787	yecG	yeeA	yeiK	b2345	b2473
b1788	b1899	yeeD	yeiN	b2350	b2474
b1789	yecl	yeeE	yeiP	b2352	b2475
b1790	b1903	yefM	yeiR	b2353	b2485
b1791	b1904	b2027	b2174	b2354	b2493
b1792	yecH	b2028	b2176	b2356	b2494
b1793	yecA	yefl	yejA	b2357	b2503
b1794	yecF	yefG	yejB	b2358	b2504
b1795	b1917	yefE	yejG	b2359	b2510
b1796	yecC	b2043	yejD	b2360	b2513
b1797	fliZ	b2046	yejK	b2361	gcpE
b1798	yedD	yefD	yejL	b2362	b2520
b1802	yedE	yefC	b2191	b2363	yfhJ
b1806	yedF	yefB	yojF	b2371	yfhE
b1807	yedG	b2057	yojH	b2374	yfhF
b1809	b1932	b2060	yojL	b2375	b2529
b1810	b1933	b2063	atoB	b2376	b2531
b1811		b2071	b2225	b2377	csiE
	b1934				
yeaB	b1935	b2072	b2226	b2378	b2543
b1815	b1936	b2073	b2227	b2381	b2544
b1816	dsrB	b2075	b2228	b2384	b2548
b1820	b1953	b2076	b2229	b2386	b2549
b1821	b1955	b2080	yfaA	b2389	yfhB
yebH	b1956	b2081	yfaL	b2390	yfhH
b1824	b1957	b2083	yfaE	b2391	b2562
b1825		b2084		b2392	yfiC
	yedi		yfaH		
b1826	yedA	b2085	b2244	yfeA	yfiK
yebJ	yedJ	b2086	b2245	yfeC	yfiF
b1832	b1963	b2097	b2249	yfeD	b2583
b1833	b1964	b2099	b2250	b2419	b2584
b1834	b1965	b2101	b2251	b2420	yfiM
b1836	b1966	b2102	b2256	b2427	yfiH
b1837	b1967	b2103	b2257	b2431	b2595
b1838	b1968	b2105	b2266	b2432	b2596
b1839	b1969	b2106	b2267	b2433	yfiL
b1841	b1970	b2107	b2268	b2434	b2603
b1843	b1972	yehB	b2270	yfeG	yfiN
b1844	b1973	yehE	b2272	b2439	yfjA
yebE	b1974	yehl	b22 73	b2443	b2611
yebF	b1976	yehL	b2274	b2444	b2612
yebG	b1978	b2120	b2275	b2445	yfjD
				b2446	
yebK	b1979	yehP	b2286		yfjB
yebA	b1980	yehQ	b2294	b2447	b2618
yebL	b1983	yehR	b2295	b2448	b2619
b1858	b1985	yehS	b2300	b2449	smpB
yebl	erfK	yehT	b2301	b2450	b2625
yebB	yi52 6	yehU	b2305	b2451	b2626
yebC	b1995	yehV	dedD	cchB	b2627
yecD	yi22_3	yehY	dedA	cchA	b2628
yecE	yi21_3	yohC	b2325	b2459	b2629
b1869	b1998	yohD	b2331	b2460	b2631

L0000	L0770	D	!!	ladad	
b2632	b2772	yqgD	ygjK	yhbL	yhfY
b2634	b2773	sprT	ygjM	yhcC	yhfZ
b2635	b2777	yggJ	ygjN	yhcD	yrfA
b2636	b2778	b2948	ygjO	yhcE	yrfB
b2637	mazG	b2949	ygjP	b3219	yrfC
b2638	b2790	b2951	ygjQ	yhcG	yrfD
b2640	b2791	b2953	ygjR	b3221	yrfE
b2641	b2792	yggN	ygjT	yhcM	yrfH
b2642	syd	yggL	ygjV	yhcB	yrfl
b2643	b2794	yggH	b3095	b3238	yhgF
b2645	ygdH	b2962	yqjB	b3239	yhgG
b2646	ygdE	yggZ	yqjC	yhcP	yhgA
b2648	ygdD	b2969	yqjD	b3242	yhgH
b2649	b2809	b2971	yqjE	tldD	yhgl
b2650	b2810	b2973	b3100	b3245	yhgJ
b2651	b2811	b2981	yqjF	yhdR	yhgK
b2653	b2812	b2983	yhaK	yhdE	yhgL
b2654	ygdB	b2984	yhaL	yhdA	yzgL
					b3434
b2655	b2833	b2985	yhaM	b3254	
b2656	b2834	b2986	yhaN	yhdT	yhhW
b2658	b2846	b2989	yhaP	b3263	b3441
b2659	b2848	b2998	yhaQ	yhdV	yhhZ.
ygaF	b2849	b2999	yhaR	yrdB	b3443
b2665	b2850	b3000	yhaS	yrdC	yrhB
b2666	b2851	b3002	yhaB	smg	yhhA
b2667	b2853	b3004	yhaC	smf_1	yhhK
b2670	b2854	b3007	b3122	smf_2	yhhF
ygaC	b2856	yghB	yhaD	fmu	b3466
b2672	b2857	b3012	yhaF	yhdN	yhhP
b2673	b2858	b3013	yhaV	yheD	yhhQ
b2674	b2859	b3014	yraL	yheE	b3472
b2680	b2862	b3015	yraN	yheF	yhhT
b2682	b2863	b3016	· ·	yheG	yhhG
	b2866	b3021	yraO		rhsB
ygaH			yraQ	yheH	
ygaG	b2870	b3022	yraR	yhel	yhhH
b2689	b2873	b3023	yhbO	yheJ	yhhJ
b2690	b2876	b3024	yhbP	yheK	yhiJ
ygaD	b2877	b3027	yhbQ	yheA	yhiK
hycl	b2880	ygiN	b3156	yheL	yhiL
ygbA	b2883	yqiA	yhbT	b3344	yhiM
b2737	b2884	b3034	yhbV	yheN	yhiN
	b2896		yhbC	b3346	yhiO
b2739		ygiA			
b2745	b2897	ygiB	yhbY	slyX	yhiQ
ygbB	b2898	ygiD	yhbE	yheR	yhiR
b2747	b2900	ygiE	yrbA	yheS	yhiS
b2748	visC	b3042	yrbB	yheT	yhiF
ygbF	ygfB	b3048	yrbC	yheU	hdeB
b2755	ygfE	ygiF	b3193	b3356	hdeA
b2756	b2915	ygi l M	yrbE	yhfG	hdeD
b2757		ygiivi ygiiG			yhiE
	yggA	ygiG	yrbG	yhfL	
b2758	yggC	ygiH	yrbl	yhfO	yhjD
b2759	yggF	ygjE	yrbK	yhfP	b3524
b2760	b2932	b3068	yhbN	yhfS	yhjH
ygcB	yggG	b3070	yhbH	yhfT	yhjJ
b2766	yqgB	b3071	b3205	yhfU	yhjK
b2767	yqgC	ygjJ	b3207	yhfX	yhjN
26101	,490	, a) ₂	20201	<i>y</i> .	3

b3533	yieN	yiiU	yjeK	yjgY	rrlH
b3534	yieP	yiiX	yjeA	yjgZ	rrfH
b3535	yifA	yijE	yjeN	yi41	aspU
b3537	yifE	yijF	yjeO	yjhB	aspV
yhjU	b3776	yijl	yjeQ	yjhD	thrW
yhjW	b3777	yijP	yjeR	yjhE	ffs
yiaC	yifH	yijC	yjeS	yi91	argU
yiaF	cyaY	yijD	yjeF	b4286	glnX
yiaG	0161	b3975	yjeE	yjhU	glnV
yi5A	yigA	yjaD	b4176	yjhH	metU
yiaH	b3814	yjaF	yjeB	yjhK	glnW
yiaA	yigE	yjaG yjaG	vacB	yjhL	glnU
yiaB	yigF	yjaH	yjfH	yjhO	leuW
b3570	yigG	yjal	yjfl	yjhQ	metT
b3573	rarD	yjaA	yjfK	yjhS	lysT
yiaM	yigl	yjaB	yjfL	yjhT	valT
yiaQ	yigJ	yjbC	yjfM	yjhA	lysW
yiaR	yigK	yjbD	yjfN	yjiC	valZ
yiaW	yigL	yjbE	yjfO	ýjiD	lysY
rhsA	yigM	yjbF	yjfP	yjiG	lysZ
yibA	yigO	yjbG	yjfR	ýjiH	lýsQ
yibJ	yigP	yjbH	yjfS	yjil	serW
yibG	b3835	yjbA	yjfT	yjiJ	serT
yibl	b3836	yjbl	yjf∨	yjiK	serX
yibL	b3837	dinF	yjfW	yjiM	tyr∨
yibK	b3838	b4045	yjfY	yjiN	tyrT
yibN	yigU	yjbL	yjfZ	yjiP	dicF
yibO	yigW_1	yjbM	ytfA	yjiQ	valV
yibQ	yigW_2	yjbN	b4206	b4341	valW
b3618	yigC	yjbO	b4209	yjiT	leuZ
ttk	b3850	yjbP	ytfF	b4343	cysT
yicG	b3856	yjbQ	ytfG	yjiW	glyW
yicH	yihD	yjbR	b4212	yjiA	dsrA
yicl	yihE	yjcB	b4215	yjiX	serU
yicK	yihF	yjcC	ytfJ	yjjM	asnT
yicN	b3865	yjcD	ytfK	ујјВ	asnW
yic <u>O</u>	yihl	yjcE	ytfM	yjjS	asnU
yicP	b3872	yjcF	ytfN	yjjU	asnV
b3672	yihM	yjcG	ytfP	yjjV	proL
yidG	b3875	yjcH	yjfA	yjjl	argW
yidH o149	yihS	yjcO	yjgF	Lijy	alaX
	yihY	yjcS	yjgG viaU	smp	alaW
0135	yihZ	phnQ b4103	yjgH 54250	yjjK	valU
yidR vidS	yiiE		b4250	yjjX anmB	valX valY
yidS vidV	yiiF	phnB	b4251	gpmB	iysV
yidV yidW	yìiG frvX	phnA	yjgK vial	creA yjjY	rrfG
yidA yidA	yiiL	yjcZ yjdB	yjgL viaD	lasT	rrlG
b3698	yiiM	yjdb yjdF	yjgD b4256	b0701	gltW
yidC	b3913	yjdl yjdl	b4257	b2088	rrsG
yieE	b3914	yjdJ	yjgP	b4404	ssrA
b3713	yiiP	yjd3 yjdK	yjgr yjgQ	b4405	ileY
yiel	yiiQ yiiQ	yjdK yjdC	yjg Q yjgR	54400	argQ
yieJ	yiiR yiiR	b4140	b4272	rrsH	argZ
yieC	yiiS	b4144	yjgW	ileV	argY
b3745	glpX	yjeJ	yjgX yjgX	alaV	argV
-01 10	317/	,,00	719"		٠. ي ٠

|--|