



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 

 $\bigcirc\hspace{-0.07in}$  Número de publicación: 2~359~826

(51) Int. Cl.:

C12N 15/85 (2006.01)

| (12) | TRADUCCIÓN DE PATENTE EUROPEA |
|------|-------------------------------|
|      |                               |

Т3

- 96 Número de solicitud europea: **07803195 .2**
- 96 Fecha de presentación : **04.09.2007**
- 97 Número de publicación de la solicitud: 2066794 97 Fecha de publicación de la solicitud: 10.06.2009
- 🗿 Título: Modelo animal para la selección y validación de agentes activos contra el enfisema pulmonar y el cáncer colorrectal.
- (30) Prioridad: **15.09.2006 EP 06120714**
- 73 Titular/es: FRANKGEN BIOTECHNOLOGIE AG. Wilhelm-Bonn-Strasse 8F 61476 Kronberg/Taunus, DE
- (45) Fecha de publicación de la mención BOPI: 27.05.2011
- (72) Inventor/es: Melchner, Harald Von; Wempe, Frank y De-Zolt, Silke
- (45) Fecha de la publicación del folleto de la patente: 27.05.2011
- (74) Agente: Carpintero López, Mario

ES 2 359 826 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

## **DESCRIPCIÓN**

Modelo animal para la selección y validación de agentes activos contra el enfisema pulmonar y el cáncer colorrectal

La presente invención se refiere a un modelo animal de roedor, a cultivos celulares y tisulares obtenidos del mismo, que no producen o que producen sólo niveles subóptimos de una o más sestrinas funcionales y que, además, no producen o producen sólo niveles subóptimos de proteína de unión al factor de crecimiento transformante  $\beta$  latente 4 (ltbp4). Además, la presente invención se refiere a un procedimiento para seleccionar agentes para tratar el enfisema pulmonar y/o el cáncer colorrectal mostrado utilizando el modelo animal, cultivo celular o tisular de la invención. El modelo animal de roedor, cultivo celular o tisular es adecuado para el ensayo preclínico de la eficacia, toxicidad y biodisponibilidad de agentes potenciales.

## Antecedentes de la invención

10

15

20

25

30

35

40

45

50

55

La enfermedad pulmonar obstructiva crónica con enfisema pulmonar (EPOC) es una enfermedad altamente prevalente que tiene un gran impacto sobre la calidad de vida de los pacientes y sus familias y que mata a millones de personas en todo el mundo. Aunque el factor de riesgo principal para la EPOC es la inhalación de partículas y gases tóxicos que se generan principalmente, pero no exclusivamente, en el humo del tabaco, también están implicadas anomalías primarias (genéticas) de las vías respiratorias, ya que sólo una fracción de los fumadores desarrollan EPOC. La EPOC está asociada con costes muy importantes de atención sanitaria, en gran parte debido a tratamientos costosos tales como la terapia con oxígeno a largo plazo y las admisiones hospitalarias, así como costes indirectos incluyendo la pérdida de capacidad laboral. Además, el tratamiento de la EPOC se limita a los síntomas, ya que no se ha demostrado hasta ahora que ninguna intervención farmacológica modifique la historia natural de la enfermedad (Vestbo J. y Hogg, J. C. Thorax. 61: 86-8, 2006; Fabbri L. M., y col. Am J Respir Crit Care Med. 173: 1056-65, 2006).

El cáncer colorrectal es una de las neoplasias más comunes en el hemisferio Occidental y representa un desafío de salud pública muy importante a pesar de los progresos en la detección y la terapia. La mortalidad total a los 5 años es de aproximadamente el 40%. Aunque la enfermedad en fase temprana puede curarse mediante cirugía, sólo está disponible un tratamiento paliativo para pacientes con cáncer metastásico no resecable cuya tasa de supervivencia está entre 7-24 meses (Shaheen N. J., y col. Am J Gastroenterol. 2006).

De lo anterior se hace evidente que son altamente deseables nuevos compuestos farmacéuticos para el tratamiento de ambas afecciones y que podrían identificarse con el modelo animal de la invención, que muestra tanto enfisema pulmonar como cáncer colorrectal como resultado de mutaciones de pérdida de función en los genes de sestrina 2 y proteína de unión a factor de crecimiento transformante beta latente 4.

Los factores de crecimiento transformante β (TGF-β) pertenecen a una superfamilia de proteínas cuyos miembros controlan el crecimiento y la diferenciación celular en una diversidad de tejidos adultos y están implicados en una amplia variedad de respuestas inflamatorias e inmunes (Shi Y. y Massague, J. Cell. 113: 685-700, 2003; Sheppard D. Proc Am Thorac Soc. 3: 413-7, 2006). La mayoría de las células secretan TGF-β como una citocina latente funcionalmente inactiva, que forma un complejo con su propéptido asociado a latencia (LAP), que interacciona con sus receptores sólo después de su activación por escisión proteolítica. Hay dos complejos latentes estructuralmente diferentes conocidos de TGF-β. El complejo latente pequeño consiste en un dímero de TGF-β maduro unido a la parte N-terminal del propéptido TGF-β-LAP. El complejo latente grande contiene, además de TGF-β-LAP, una de las tres proteínas de unión a TGF-β latentes (ltbp 1, 3 y 4). A menos que se desplace de las ltbp después de la secreción, el TGF-β se deposita habitualmente en la matriz extracelular (MEC) como un complejo de alto peso molecular con Itbp y LAP (Annes J. P., y col. J Cell Sci. 116: 217-24, 2003). Las 4 isoformas existentes de Itbp (Itbp 1-4) se han inactivado por mutación en el ratón (Dabovic B., y col. J Cell Biol. 56: 227-232, 2002; Sterner-Kock A., y col. Genes Dev. 16: 2264-2273, 2002; Shipley J. M., y col. Mol Cell Biol. 20: 4879-87, 2000). Aunque los fenotipos de los ratones knock out variaban entre isoformas, tanto los mutantes ltbp3 como ltbp4 desarrollan enfisema pulmonar debido a defectos en la señalización de TGF-β. Sin embargo, al contrario que los ratones ltbp3 mutantes que desarrollan enfisema, que es relativamente leve y estrictamente evolutivo (Dabovic B., y col. J Cell Biol. 56: 227-232, 2002), los enfisemas en los ratones ltbp4 (*ltbp4*) mutantes empeoran con la edad y progresivamente adquieren las características de los enfisemas de inicio tardío que se desarrollan en el contexto de la EPOC en seres humanos (Sterner-Kock A., y col. Genes Dev. 16: 2264-2273, 2002; WO 03/015505). La relevancia potencial de Itbp4 en la patogénesis de la EPOC se ha subrayado recientemente por un estudio clínico que describe una correlación altamente significativa entre síntomas de EPOC específicos y un polimorfismo de un solo nucleótido (SNP) en Itbp4 (Hersh C. P., y col. Am J Respir Crit Care Med. 173: 977-84, 2006). Además del enfisema, los ratones Itbp4 mutantes desarrollan cáncer colorrectal invasivo (Sterner-Kock A., y col. Genes Dev. 16: 2264-2273, 2002; documento WO 03/015505). También se ha descrito recientemente una relación entre la expresión de Itbp4 y la progresión del cáncer en un estudio clínico de pacientes con cáncer colorrectal (Bertucci F., y col. Oncogene. 23: 1377-91, 2004).

La sestrina 2 pertenece a una familia de proteínas altamente conservadas descubiertas inicialmente como proteínas inducibles por p53 (Velasco-Miguel S., y col. Oncogene. 18: 127-37, 1999; Peeters H., y col. Hum Genet. 112: 573-80, 2003; Budanov A. V., y col. Oncogene. 21: 6017-31, 2002; documentos WO 00/12525; US 2002/0103353). Las

células de mamífero expresan tres isoformas denominadas sestrina 1 (sestrina 1; también conocida como PA26), sestrina 2 (sestrina 2; también conocida como Hi95) y sestrina 3 (Figura 1). Se ha demostrado recientemente que dos de las sestrinas (sestrina 1 y sestrina 2) regulan los niveles de peróxido intracelular (ROS) (Budanov A. V., y col. Science. 304: 596-600, 2004; Sablina A. A., y col. Nat Med. 11: 1306-13, 2005). Más específicamente, se cree que las sestrinas regeneran (reducen) las peroxirredoxinas (Prx), que son proteínas antioxidantes altamente conservadas y expresadas ubicuamente (revisado en Georgiou G. y Masip, L. Science. 300: 592-4, 2003; Wood Z. A., y col. Trends Biochem Sci. 28: 32-40, 2003). Al reducir el H<sub>2</sub>O<sub>2</sub> a H<sub>2</sub>O, las Prx se oxidan en su denominada cisteína peroxidática (Cys-SH), que se convierte en ácido sulfénico (Cys-SOH) (Figura 2). En bacterias, cuando la Prx AhpC es la secuestrante primaria de H<sub>2</sub>O<sub>2</sub>, la AhpC oxidada se reduce posteriormente por la reductasa especializada AhpF. Sin embargo, a diferencia de AhpC, las Prx de mamífero son altamente susceptibles a la sobreoxidación produciendo ácido sulfínico (Cys-SO<sub>2</sub>H) en presencia de altas concentraciones de peróxido (Figura 2). Los ácidos sulfínicos de proteínas no pueden reducirse por reductores celulares típicos tales como glutatión y tiorredoxina y, por lo tanto, su formación se ha considerado un proceso irreversible. Una vez que la Prx se ha convertido en ácido sulfínico ya no es enzimáticamente activa, y la enzima inactiva se acumula en las células expuestas a estrés oxidativo (Wood Z. A., y col. Trends Biochem Sci. 28: 32-40, 2003). Sin embargo, más recientemente se ha observado una recuperación gradual de las Prx después de la inactivación oxidativa inicial en células eucariotas (Mitsumoto A., y col. Free Radic Biol Med. 30: 625-35, 2001; Woo H. A., y col. Science. 300: 653-6, 2003) y se ha propuesto a las sestrinas como las enzimas catalizantes debido a su homología con el homólogo de sestrina bacteriano - AhpD-, que regenera la AhpC Prx, y debido a su capacidad para reducir los niveles de ROS intracelulares (Budanov A. V., y col. Science. 304:596-600, 2004).

Se cree que en células eucariotas las Prx son tanto antioxidantes que protegen frente al estrés como reguladores de la señalización mediada por ROS (Wood Z. A., y col. Science. 300: 650-3, 2003). Se ha sabido durante algún tiempo que las interacciones de ligando/receptor generan explosiones de ROS, que actúan como segundos mensajeros en las rutas de transducción de señales, incluyendo la ruta de TGF-β (Bae Y. S., y col. J Biol Chem. 272: 217-21, 1997; Lo Y. Y. y Cruz, T. F. J Biol Chem. 270: 11727-30, 1995; Mills E. M., y col. J Biol Chem. 273: 22165-8, 1998; Sundaresan M., y col. Science. 270: 296-9, 1995; Thannickal V. J., y col. J Biol Chem. 273: 23611-5, 1998; Thannickal V. J., y col. Faseb J. 14: 1741-8, 2000). Se ha demostrado que una señalización de TGF-β defectuosa está implicada en la patología del enfisema pulmonar y del cáncer colorrectal tanto en modelos animales (incluyendo el documento WO 03/015505 A3) como en humanos (Morris D. G., y col. Nature. 422: 169-73, 2003; Neptune E. R., y col. Nat Genet. 33: 407-11, 2003; Sterner-Kock A., y col. Genes Dev. 16: 2264-2273, 2002; Massague J., y col. Cell. 103: 295-309, 2000; Zhu Y., y col. Cell. 94: 703-14, 1998).

La asociación entre ROS y TGF-β es compleja y se produce a diferentes niveles de la cascada de señalización. En primer lugar, se ha demostrado que ROS activa el TGF-β1 latente tanto in vitro como in vivo (Annes J. P., y col. J Cell Sci. 116: 217-24, 2003; Barcellos-Hoff M. H. y Dix, T. A. Mol Endocrinol. 10: 1077-83, 1996). En línea con esto, Fatma y col. han descrito recientemente que células epiteliales lenticulares obtenidas de ratones knock out para Prx6 son altamente susceptibles al estrés oxidativo y desarrollan un fenotipo indistinguible de la estimulación por TGF-β. Los inventores podían atribuir este fenotipo a una activación mediada por ROS de TGF-β latente que era fácilmente reversible por antioxidantes (Fatma N., y col. Cell Death Differ. 12: 734-50, 2005). En segundo lugar, el TGF-β requiere de ROS para la inducción de diversos genes diana tales como PAI-1, CTGF y genes de la matriz extracelular (Jiang Z., y col. Biochem Biophys Res Commun. 309: 961-6, 2003; Park S. K., y col. Biochem Biophys Res Commun. 284: 966-71, 2001). Estudios recientes han demostrado que la fosforilación de smad2,3 inducida por TGF-β también es parcialmente dependiente de ROS (Cucoranu I., y col. Circ Res. 97: 900-7, 2005), presumiblemente mediante la inactivación de una fosfatasa especializada. Se ha sabido durante algún tiempo que las fosfatasas son susceptibles a la inactivación por ROS (Seo J. H., y col. Mol Biol Cell. 16:348-57, 2005; Chiarugi P. y Cirri, P. Trends Biochem Sci. 28:509-14, 2003) y se ha descubierto recientemente una fosfatasa smad2,3 (PPM1A) capaz de terminar la señalización de TGF-β (Lin X., y col. Cell. 125: 915-28, 2006. Third, TGF-β itself induces superoxide production by activating NADPH oxidases presumably by the transcriptional upregulation of Nox4 (Sturrock A., y col. Am J Physiol Lung Cell Mol Physiol. 290: L661-L673, 2006).

## Descripción de la invención

10

15

20

25

30

35

40

45

60

Se ha descubierto ahora que la ablación genética de una sestrina, en particular la sestrina 2, del modelo animal (modelo de ratón *ltbp4*<sup>-/-</sup>) descrito en el documento WO 03/015505 daba como resultado una recuperación significativa de las patologías (véanse los ejemplos), indicando que esta familia de proteínas podría proporcionar dianas moleculares para el tratamiento de la EPOC y del cáncer colorrectal. Se cree que la ablación de la sestrina 2 en el modelo animal del documento WO 03/015505 reactivaba la señalización de TGF-β, presumiblemente por aumento de los niveles de segundos mensajeros intracelulares ROS. Esto a su vez mejoró significativamente ambas patologías como se ilustra por los ejemplos, sugiriendo que el enfisema pulmonar y el cáncer colorrectal pueden tratarse por antagonismo de la función de la sestrina. La presente invención se refiere por lo tanto a

(1) un modelo animal de roedor, que no produce una o más sestrinas funcionales, o que produce niveles de traducción reducidos al menos el 50% de una o más sestrinas, preferentemente la sestrina 2, y además no produce proteína de unión al factor de crecimiento transformante  $\beta$  latente 4 (en lo sucesivo "ltbp4") o produce niveles de traducción reducidos al menos el 50% de ltbp4;

- (2) un modelo animal de roedor, que no expresa una o más sestrinas funcionales, o que expresa niveles de traducción reducidos al menos el 50% de una o más sestrinas;
- (3) un cultivo celular o tisular aislado de los modelos animales de roedor que se han definido en (1) o (2) anteriormente, en el que los niveles de expresión en la célula o en las células del tejido de las proteínas sestrina y ltbp4 son como se han definido en (1) o (2);
- (4) un procedimiento para preparar el modelo animal de roedor de (1) anterior, que comprende alterar el gen de sestrina y/o ltbp4 en una célula germinal de un animal roedor de partida;
- (5) un procedimiento para seleccionar un agente para tratar un síntoma que aparece en el modelo animal de roedor del (1) anterior, que comprende:
  - (i) aplicar uno o más agentes a ensayar ha dicho modelo animal de roedor,
  - (ii) determinar si uno o más síntomas que aparecen en dicho modelo animal de roedor han cambiado como resultado de la aplicación de dicho agente o agentes;
- (6) un procedimiento para seleccionar un agente que interfiera con la producción de ROS y la señalización de TGF-β, que comprende:
  - (i) aplicar uno o más agentes a ensayar al cultivo celular o tisular de (3) anterior,
  - (ii) determinar si los niveles de ROS celulares y la señalización de TGF-β han cambiado como resultado de la aplicación de dicho agente o agentes;
- (7) un procedimiento para analizar si el cáncer y/o enfisema pulmonar está causado por una expresión proteica o génica de ltbp4 y sestrina o un nivel de expresión diferencial o por un defecto en el gen de ltbp4 y sestrina, que comprende:
  - (i) caracterizar la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina de un individuo que tiene cáncer o enfisema pulmonar,
  - (ii) caracterizar la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina de un individuo de control, indicando una diferencia en la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina que el cáncer y/o el enfisema pulmonar y/o la cardiomiopatía está relacionada con una expresión proteica o génica de ltbp4 y sestrina o un nivel de expresión diferencial o por un defecto en los genes de ltbp4 y sestrina;

En conclusión, la presente invención proporciona un modelo animal de roedor de enfermedad humana que pone de manifiesto algunas funciones cruciales de las proteínas sestrinas. A la vista de estas funciones, el modelo animal de roedor de la invención puede usarse para desarrollar nuevos tratamientos para el enfisema pulmonar y el cáncer que se dirijan a proteínas sestrinas y a su papel en el metabolismo de ROS y en la señalización de TGF-β.

#### Descripción de las figuras

5

10

15

20

25

30

- <u>Figura 1:</u> Secuencia de aminoácidos de las sestrinas de ratón y homología entre isoformas. Las secuencias de las isoformas se muestra adicionalmente en las SEC ID Nº: 1 a 3.
- Figura 2: Oxidación de la cisteína peroxidática de peroxirredoxinas (Prx) por superóxidos. Las Prx reducidas forman dímeros mediante un enlace disulfuro (1). Las Prx oxidadas forman ácido sulfénico (2), que se reduce por tiorredoxina o glutatión en una reacción inversa (1). Las Prx sobreoxidadas forman ácido sulfínico, que no puede reducirse por tiorredoxina o glutatión (3). Se cree que las sestrinas regeneran las Prx sobreoxidadas. Para una explicación adicional véase el texto.
- 40 <u>Figura 3:</u> Inserción de trampa de genes pT1βgeo en el último intrón del gen de sestrina 2 (Ensembl Id: *ENSMUSG00000028893*) y posición de los cebadores específicos de alelo (flechas). La proteína de fusión resultante carece de 27 aminoácidos de la sestrina 2.
  - Figura 4: Montaje completo de embrión E7.5 teñido con X-Gal.
- Figura 5: Análisis de la expresión génica de sestrina 2 en ratones mutantes W077E04. A. qRT-PCR del ARN total extraído de pulmones de ratones tipo silvestre (WT), heterocigotos (+/-) y homocigotos (-/-). B. Análisis de transferencia de Western de la expresión de proteína sestrina 2 en fibroblastos aislados de colon (carriles 1, 2) y pulmón (carriles 3, 4) de ratón usando anticuerpos policlonal anti-sestrina 2 de ratón (PTG Inc., Chicago, IL) y antitubulina. Las bandas minoritarias que reaccionan con el anticuerpo policlonal anti-sestrina 2 son muy probablemente inespecíficas.
- 50 Figura 6: Moldes de silicona traqueobronquiales de ratones de tipo silvestre de 5,5 meses de edad, simples

mutantes ltbp4 y dobles mutantes ltbp4/sesn2.

- <u>Figura 7:</u> Enfisema pulmonar de ratones simples mutantes *ltbp4* y dobles mutantes *ltbp4/sesn2* de la misma edad. Tinción con HE a 40x aumentos.
- <u>Figura 8:</u> Contenido de elastina y colágeno en pulmones de simples mutantes *ltbp4* y dobles mutantes *ltbp4*/sesn2.
   A. Elastina (negro) teñida con resorcina-fucsina de Weigert a 200x aumentos. B. Colágeno (azul) teñido con tinción tricrómica de Masson a 200x aumentos.
  - Figura 9: Molde de silicona traqueobronquial de un pulmón *ltbp4*<sup>-/-</sup> heterocigoto para alelos nulos de sesn2.
  - <u>Figura 10:</u> Deposición de colágeno en pulmones mutantes *Itbp4* heterocigotos ( $sesn^{+/-}$ ) y homocigotos ( $sesn^{-/-}$ ) para el alelo nulo de sesn2. Colágeno (azul) teñido con tinción tricrómica de Masson a 200x aumentos.
- 10 <u>Figura 11:</u> Adenoma colorrectal en ratones simples mutantes (*Itbp4*<sup>-/-</sup>) y dobles mutantes (*Itbp4*<sup>-/-</sup>) de la misma edad.
  - <u>Figura 12:</u> Niveles de P-smad2 en el colon de ratones simples mutantes ( $ltbp4^{-/-}$ ) y dobles mutantes ( $ltbp4^{-/-}$ ) sesn2 $^{-/-}$ ) de la misma edad. Las células positivas son de color marrón rojizo.
- Figura 13: Niveles de P-smad2 en pulmones mutantes sesn2. Se tiñeron secciones pulmonares con anticuerpo policional anti-P-smad2. Las células positivas eran de color marrón rojizo.
  - <u>Figura 14:</u> Deposición de tejido conectivo aumentada en pulmones mutantes *sesn2*. Tinción con HE a 200x (parte superior) y 400x (parte inferior) aumentos.
- Figura 15: Niveles de ROS en MLF. A. Cantidades de ROS inducidas por H<sub>2</sub>O<sub>2</sub> (200 μM, 3 horas) y basales mediats mediante FACS (530 nm) después del tratamiento con DCF. FL1-H, intensidad de fluorescencia. B. Cantidades de ROS inducidas por H<sub>2</sub>O<sub>2</sub> y basales que se acumulan en MLF expresadas como intensidad media de la fluorescencia celular ± DT de los dos experimentos independientes mostrados en A.

#### Descripción detallada de la invención

45

50

Los términos y abreviaturas particulares utilizadas para definir la presente invención se definen adicionalmente en lo siguiente.

- Las expresiones "no produce sestrinas funcionales" "no produce Itbp4 funcional" indican la ausencia de expresión eficaz de sestrina y Itbp4, respectivamente. Una "ausencia de expresión eficaz de sestrina y Itbp4" también incluye la expresión de proteínas sestrinas no funcionales (es decir, truncadas) y Itbp4 que no están ejerciendo la función de la proteína nativa.
- Las expresiones "produce niveles subóptimos de sestrinas" y "produce niveles subóptimos de Itbp4" abarcan el nivel de traducción de las proteínas sestrina y Itbp4, que es insuficiente para ejercer su función. Preferentemente, el nivel se reduce al menos el 50%, más preferentemente el 70% y, más preferentemente, el 100%.
  - La expresión "interrupción homocigota" se refiere a una mutación idéntica en ambos alelos de un gen.
  - La expresión "interrupción heterocigota" se refiere a una mutación en solo un alelo de un gen. El término "mutación" se refiere a un cambio de uno o más pares de nucleótidos de una molécula de ADN.
- El término "inserción" se refiere a una mutación identificada por la presencia de uno o más pares de bases adicionales en el ADN. El término "deleción" se refiere a una mutación generada por eliminación de una secuencia de ADN (uno o más pares de bases), uniéndose entre sí las regiones en cada lado. La expresión "mutación por sustitución" se refiere a un intercambio de nucleótido. La mutación por sustitución puede dar como resultado un cambio de aminoácido o puede introducir un codón de terminación de la traducción prematuro. Además, una mutación por sustitución puede afectar al corte y empalme o a la expresión del gen cuando se produce en sitios necesarios para el corte y empalme o la regulación génica.
  - La expresión "direccionamiento génico" se refiere a un tipo de recombinación homóloga que se produce cuando un fragmento de ADN genómico se introduce en una célula y ese fragmento se recombina con secuencias homólogas en el genoma. La expresión "integración de trampa de genes" se refiere a la inserción de un vector, que comprende un gen indicador y que se activa tras su inserción en una unidad de transcripción activa del genoma. El término "mutagénesis" indica un tratamiento químico o físico que cambia nucleótidos en el genoma de un organismo. Un ejemplo de una mutagénesis química es la mutagénesis por *N*-etil-*N*-nitrosurea (ENU).
  - El término "exón" incluye un segmento de un gen que está codificado para dar un producto de ARNm. Los exones individuales pueden contener ADN codificante de proteína y/o ADN no codificante. El término "intrón" indica ADN no codificante, que separa exones vecinos en un gen. Durante la expresión génica, tanto los intrones como los exones se transcriben en ARN pero las secuencias intrónicas transcritas se eliminan posteriormente por corte y empalme del

ARN y no están presentes en el ARNm. La expresión "región reguladora" se refiere a la secuencia de nucleótidos que comprende regiones que son necesarias para la regulación de la transcripción génica. Estas regiones comprenden, por ejemplo, promotores y potenciadores y pueden localizarse en regiones no traducidas 5', exones, intrones y UTR 3'. La expresión "sitio de corte y empalme" incluye los nucleótidos al comienzo y al final del intrón que son necesarios para la unión de dos exones por eliminación del intrón intercalado durante el procesamiento del transcrito primario a ARNm funcional.

La expresión "enfisema pulmonar" indica un síntoma de enfermedad pulmonar obstructiva crónica (EPOC) caracterizado por un aumento de tamaño más allá de lo normal de los espacios aéreos distales a los bronquiolos terminales y por infiltrados inflamatorios.

10 El término "cardiomiopatía" designa una enfermedad no inflamatoria primaria del músculo cardiaco que es el resultado de una hipertensión pulmonar que complica la EPOC. El término "cáncer" se refiere a una proliferación descontrolada de las células epiteliales que revisten las criptas colónicas.

El "metabolismo de ROS" se refiere a la producción y neutralización (reducción) de especies de oxígeno reactivo intracelulares tales como peróxido de hidrogeno y aniones de oxígeno. La expresión "cambios profibróticos" se refiere a una deposición tisular aumentada de colágeno asociada con una multiplicación de fibroblastos.

La expresión "selección de un agente para tratar un síntoma" incluye escoger una composición para el tratamiento de la afección.

La expresión "aplicación de uno o más agentes" se refiere a administrar compuestos individuales o combinaciones de compuestos por vía oral, por inhalación, por vía parenteral, por ejemplo, por vía intravenosa, subcutánea, intraperitoneal o intramuscular, o por vía tópica, por ejemplo, por vía oftálmica, vaginal, rectal o intranasal.

La invención se describe en lo sucesivo en más detalle por referencia a las Figuras y Ejemplos adjuntos.

15

20

25

30

35

50

En una realización preferida del aspecto (1) de la invención, el genoma del roedor comprende una interrupción homocigota de los genes sesn2 y ltbp4. Preferentemente, esta interrupción homocigota se ha generado por una mutación y esta mutación puede ser una mutación por inserción, deleción o sustitución. Además, preferentemente, dicha mutación se genera por direccionamiento génico, atrapamiento génico o mutagénesis química y se ha producido en un exón, intrón, región reguladora o sitio de corte y empalme del gen de sestrina 2, preferentemente en el último intrón (es decir, el 9º intrón) del gen de sestrina 2, y en un exón, intrón, región reguladora o sitio de corte y empalme del gen ltbp4, preferentemente el 5º intrón de ltbp4. También se prefiere que los sitios de mutación den origen a una expresión de un gen indicador detectable tal como proteínas fluorescentes (tales como GFP y sus derivados), enzimas (tales como LacZ) o marcadores de selección (tales como βgeo). Se prefiere particularmente que:

- (i) el gen de sestrina 2 se interrumpa en el  $9^{\circ}$  intrón por inserción de un vector de trampa de genes, preferentemente pT1 $\beta$ geo (SEC ID N°: 10); y/o
- (ii) el gen de ltbp4 se interrumpa en el 5º intrón por inserción de un vector de trampa de genes, preferentemente U3Cre (SEC ID №: 16).

En una realización preferida adicional, dicho roedor comprende una interrupción heterocigota del gen de sens2 y una interrupción homocigota del gen de ltbp4 o una interrupción homocigota del gen de sestrina 2 y una interrupción heterocigota del gen de ltbp4.

En otro aspecto de la invención, el modelo animal de roedor presenta enfisema pulmonar y/o cardiomiopatía y/o cáncer colorrectal. Además, el roedor es preferentemente un ratón o rata.

En una realización preferida adicional, el modelo animal de roedor presenta defectos en el metabolismo de ROS y/o cambios profibróticos en uno o más órganos principales, preferentemente en el pulmón o colon.

En una realización preferida adicional, el modelo animal de roedor desarrolla síntomas que son menos graves que los presentados por el modelo animal descrito en el documento WO 03/015505.

La realización (3) de la invención se refiere a un cultivo celular o tisular aislado de un modelo animal de roedor de (1) o (2). Preferentemente, la célula procede del pulmón o del colon.

En un aspecto preferido de esta realización, el cultivo celular o tisular se aísla de un modelo animal de roedor cuyo genoma comprende una interrupción homocigota de uno o más genes de sestrina, de modo que dichos genes no producen sestrinas funcionales, preferentemente sestrina 2, y una interrupción homocigota del gen de Itbp4, de modo que dicho gen no produce Itbp4 funcional.

En otro aspecto preferido de esta realización, el cultivo celular o tisular se aísla de un modelo animal de roedor cuyo genoma comprende una interrupción heterocigota de uno o más genes de sestrina, de modo que dichos genes producen sólo el 50% o menos de sestrinas funcionales, preferentemente sestrina 2, y una interrupción homocigota

del gen de ltbp4, de modo que dicho gen no produce ltbp4 funcional.

10

15

30

35

40

45

50

55

En otro aspecto preferido de esta realización, el cultivo celular o tisular se aísla de un modelo animal de roedor cuyo genoma comprende una interrupción homocigota de uno o más genes de sestrina, preferentemente sestrina 2, y una interrupción heterocigota de ltbp4, de modo que dicho gen produce sólo el 50% o menos de ltbp4 funcional. Se prefiere particularmente que el cultivo celular o tisular proceda del pulmón o del colon. La realización (4) de la invención se refiere a un procedimiento para preparar el modelo animal de roedor de las realizaciones (1) y (2), que comprende interrumpir el gen de sestrina y/o ltbp4 en una célula germinal de un animal no humano de partida. En un aspecto preferido de esta realización, la célula germinal es una célula ES. El procedimiento puede comprender además introducir las células ES resultantes en blastocistos, inyectar los blastocistos obtenidos en madres adoptivas de roedor respectivas y cruzar entre sí las quimeras resultantes.

La realización (5) de la invención se refiere a un procedimiento para seleccionar un agente o agentes para tratar un síntoma que aparece en el modelo animal de roedor de la invención, que comprende: (i) aplicar uno o más agentes a ensayar al modelo animal de la invención; y (ii) determinar si uno o más síntomas que aparecen en el modelo animal de roedor de la presente invención han cambiado como resultado de la aplicación de dicho agente o agentes. En una realización preferida, el síntoma se selecciona de un grupo que consiste en enfisema pulmonar, cardiomiopatía y cáncer. El agente, que es adecuado para tratar un síntoma que aparece en el modelo animal de roedor de la invención, puede ser un producto farmacéutico. El agente, que es adecuado para tratar un síntoma que aparece en el modelo animal de la invención, puede ser adecuado para la preparación de una composición farmacéutica para el tratamiento del enfisema pulmonar.

- 20 La realización (6) de la invención se refiere a un procedimiento para seleccionar un agente que interfiera con la producción de ROS y la señalización de TGF-β, que comprende:
  - (i) aplicar uno o más agentes a ensayar al cultivo celular o tisular del (3) anterior,
  - (ii) determinar si los niveles de ROS celulares y la señalización de TGF-β han cambiado como resultado de la aplicación de dicho agente o agentes.
- 25 Se prefiere particularmente en dicho procedimiento que el cultivo celular o tisular sea de pulmón o colon.

La realización (7) de la invención es un procedimiento para analizar si el enfisema pulmonar y/o cáncer esta causado por una expresión proteica o génica de ltbp4 y sestrina o un nivel de expresión diferencial o por un defecto en los genes de ltbp4 y sestrina, que comprende la (i) caracterización de la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina de un individuo que tiene enfisema pulmonar y/o cáncer, y la (ii) caracterización de la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina o el nivel de expresión o en el estado alélico del gen de ltbp4 y sestrina indica que un defecto en los genes de ltbp4 y sestrina está implicado en la patogénesis del enfisema pulmonar y/o del cáncer.

El procedimiento descrito en (7) puede usarse para diagnosticar el enfisema pulmonar o el cáncer, que comprende la (i) caracterización de la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina de un individuo, y la (ii) caracterización de la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina de un individuo de control. Una diferencia en la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o en el estado alélico del gen de ltbp4 y sestrina indica la presencia de enfisema pulmonar y/o cáncer en dicho individuo. Entre los niveles de expresión determinados está el nivel de expresión de ltbp4, que es un indicador de la gravedad del enfisema pulmonar o del cáncer, mientras que el nivel de expresión de sestrina es un marcador para la progresión de la enfermedad, de modo que bajos niveles de expresión son beneficiosos para la progresión de la enfermedad.

El término "individuo" usado en relación con la realización (7) se refiere a un individuo con un estado alélico de gen de Itbp4 y sestrina anormal sospechoso, es decir, un paciente. La expresión "individuo de control" se refiere a un individuo sano que tiene un estado alélico de Itbp4 y sestrina normal.

En una realización preferida de los procedimientos para analizar si el enfisema pulmonar y/o el cáncer están relacionados con ltbp4 y sestrina, y para diagnosticar el enfisema pulmonar y el cáncer, el estado alélico del gen de ltbp4 y sestrina y la expresión o el nivel de expresión de ltbp4 y sestrina se detectan por PCR genómica, RT-PCR, análisis de Northern, análisis de micromatrices (microplacas de ADN) o anticuerpos dirigidos contra las proteínas ltbp4 y sestrina.

Los procedimientos de las realizaciones (5) a (7) son adecuados para realizarse in vivo e in vitro.

El modelo animal de roedor de la presente invención puede usarse para analizar minuciosamente los mecanismos moleculares que controlan la ruta de sestrina/TGF-β, y para la identificación y clonación de genes modificadores capaces de modificar, agravar, reducir o inhibir el fenotipo asociado con el enfisema pulmonar y el cáncer u otras afecciones que aparecen en el modelo animal de la invención. Además, el modelo animal de roedor puede usarse para la identificación de marcadores de diagnóstico tempranos para el cáncer y/o el enfisema pulmonar u otras

afecciones que aparecen en el modelo animal de la invención. Además, el modelo animal de roedor de la presente invención puede usarse para el control de la actividad de agentes útiles en la prevención o tratamiento del cáncer y/o del enfisema pulmonar u otras afecciones que aparecen en el modelo animal de roedor de la invención, y como sistema de modelo de ensayo para agentes sospechosos de promover o agravar el cáncer y/o el enfisema pulmonar u otras afecciones que aparecen en el modelo animal de la invención.

La invención se explica adicionalmente en los ejemplos siguientes que, sin embargo, no deben interpretarse como una limitación de la invención.

#### **Ejemplos**

40

## Procedimientos

- Cultivos celulares: Células ES obtenidas de la cepa [129/SvPas] se cultivaron sobre capas alimentadoras de MEF irradiadas (32 Gy) en DMEM complementado con suero fetal de ternera inactivado por calor y preseleccionado al 15% (v/v) (FCS) (Linaris, Bettingen, Alemania), aminoácidos no esenciales 100 mM (Gibco), mercaptoetanol 0,1mM (Sigma), 1000 U/ml de factor inhibidor de leucemia (LIF) (Esgro<sup>R</sup>; Gibco/BRL), como se describe (De-Zolt S., y col. Nucleic Acids Res. 34: e25, 2006). Se establecieron cultivos de fibroblastos de pulmón y colon a partir de ratones adultos de tipo silvestre y sens-/- de acuerdo con protocolos convencionales como se ha descrito anteriormente (Koli K., y col. J Cell Biol. 167: 123-33, 2004) y se cultivaron en medio de Eagle modificado por Dulbecco (DMEM) complementado con suero fetal de ternera al 10% (Life Technologies), penicilina 100 Ul/ml y estreptomicina 50 μg/ml. Durante las dos primeras semanas en cultivo se produjo una inmortalización espontánea, generando líneas celulares
- 20 RACE 5' y secuenciación: Se prepararon ADNc de líneas celulares ES que expresaban trampa de genes a partir del ARN poliadenilado usando un dispositivo robótico RoboAmp (MWG Biotech, Ebersberg, Alemania) con una capacidad de procesamiento de 96 muestras/día. Se lisaron muestras de 2 x 10<sup>5</sup> células en 1 ml de tampón de lisis que contenía Tris/HCl 100 mM pH 8,0, LiCl 500 mM, EDTA 10 mM, LiDS al 1% y DTT 5 mM. Se capturó el ARN poliadenilado a partir de los lisados mediante cebadores oligo-d(T) marcados con biotina, de acuerdo con las instrucciones de los fabricantes (Roche Diagnostics Corp., Indianápolis, IN, Estado Unidos) y se pusieron en placas 25 de 96 pocillos revestidas con estreptavidina (AB Gene, Surrey, Reino Unido). Después del lavado, se realizó la síntesis de ADNc en fase sólida in situ usando hexámeros aleatorios y SuperScript II RT (Invitrogen, Karlsruhe, Alemania). Para eliminar el exceso de cebadores los ADNc se filtraron a través de placas de PCR Multiscreen (Millipore Corp. Bedford, MA, Estados Unidos). Los extremos 5' de los ADNc purificados se confeccionaron con dCTP usando transferasa terminal -TdT- (Invitrogen, Karlsruhe, Alemania), siguiendo las instrucciones del fabricante. 30 Para la amplificación por PCR de las secuencias celulares adjuntas a los transcritos de la trampa de genes se usaron los cebadores específicos de vector siguientes: 5'-CTA CTA CTA GGC CAC GCG TCG ACT AGT ACG GGI IGG GII GGG IIG-3' (SEC ID Nº: 4) y 5'-GCC AGG GTT TTC CCA GTC ACG A-3' (SEC ID Nº: 5); y para la PCR anidada: 5'-CTA CTA CTA CTA GGC CAC GCG TCG ACT AGT AC-3' (SEC ID Nº: 6) y 5'-TGT AAA ACG ACG GCC AGT GTG AAG GCT GTG CGA GGC CG-3' (SEC ID Nº: 7). Los productos de amplificación se secuenciaron 35 directamente usando las máquinas de secuenciación AB377 o ABI3700 (Applied Biosystems ABI, Foster City, Estados Unidos).
  - Inyecciones de células ES, reproducción y genotipado: Se generaron quimeras derivadas de células ES W077E06 (TBV-2; 129SvPas) por inyección de blastocistos C57Bl/6. Las quimeras macho resultantes se cruzaron con hembras C57Bl/6, y la descendencia agutí F1 que contenía el transgén interrumpido se cruzó entre sí para obtener ratones F2 homocigotos. Se realizó el genotipado en ADN de cola de ratón por PCR genómica usando cebadores contra las secuencias que flanquean la inserción de la trampa de genes previamente identificada en células ES por PCR inversa y secuenciación.
- Histología, histoquímica e inmunohistoquímica: Se prepararon secciones de parafina de tejidos de ratón y se tiñeron usando procedimientos de histología convencionales. Para visualizar fibras de elastina y de colágeno, se tiñeron portaobjetos microscópicos con resorcina-fucsina de Weigert o tinción tricrómica de Masson como se ha descrito anteriormente (Sterner-Kock A., y col. Genes Dev. 16: 2264-2273, 2002). Se realizaron inmunotinciones usando anticuerpos policionales de conejo anti-P-Smad2 como se ha descrito en Sterner-Kock y col (Sterner-Kock A., y col. Genes Dev. 16: 2264-2273, 2002).
- Plastinaciones: Tráqueas de pulmones preparados a partir de ratones mutantes y de tipo silvestre se inyectaron a temperatura ambiente con 1-2 ml de silicona E RTV (Dow Corning, Midland, Ml, Estados Unidos) usando una jeringa de 2 ml. Se añadió agente de curado a una proporción de 1:10 al polímero de silicona inmediatamente antes de la inyección. La inyección se interrumpió cuando la silicona era visible bajo la superficie de ambos pulmones. Después de la inyección, se dejó que la silicona se endureciera durante 24-48 horas, después de lo cual los especímenes se pusieron en solución de hidróxido de potasio al 10% durante 5-7 días, y después se dejaron en agua en ebullición durante 8-12 horas para separar el tejido del polímero. Después de la maceración en agua en ebullición, los especímenes se pusieron en peróxido de hidrógeno al 5% durante aproximadamente 2 horas para completar la eliminación de tejidos residuales. Después, los moldes se aclararon en agua corriente durante una noche.

Aislamiento de ARN, RT-PCR y análisis de proteína: Se aisló el ARN celular total usando el kit RNeasy Mini (Qiagen) de acuerdo con las instrucciones del fabricante. Se determinaron espectrofotométricamente (Ultrospec 3000, Amersham) las concentraciones y purezas del ARN, así como por electroforesis en gel de agarosa seguida de tinción con bromuro de etidio. Se realizaron RT-PCR de acuerdo con protocolos convencionales usando 75 ng de ARN total sometido a transcripción inversa en un volumen total de 50 μl. Se realizó un análisis de RT-PCR a tiempo real de la expresión del gen de sestrina 2 en células ES usando química de verde de SYBR (ABgene, Epsom, Reino Unido) y una máquina iCycler (Biorad). Se sintetizó el ADNc a partir del ARN total usando cebado aleatorio y la transcriptasa inversa Supercript II (Invitrogen). Las reacciones de PCR se procesaron como triplicados en volúmenes de 25 μl en placas de 96 pocillos, conteniendo cada reacción ADNc derivado de 15 ng de ARN total, mezcla de fluoresceína SYBR ABsolute 1x (ABgene) y 5 pmol de cada uno de los cebadores siguientes: 5'-CCTGGAACGGAACCTCAAAATC-3' (SEC ID Nº: 8) y 5'-GGGCTTCAAGGAG-CAGCAAG-3'(SEC ID Nº: 9). Se dejó que las reacciones de amplificación se desarrollaran durante 35 ciclos a 94°C durante 15 s, 61°C durante 30 s y 72°C durante 30 s. Para los lisados de transferencia de Western de fibroblastos de pulmón y colon, se resolvieron por SDS-PAGE, se transfirieron a membranas de nitrocelulosa y se hicieron reaccionar con anticuerpo policlonal de conejo anti-sestrina 2 (PTG Inc., Chicago, IL).

10

15

20

25

30

35

40

50

55

<u>Determinación de los niveles de peróxido intracelular:</u> Se trataron con tripsina  $3 \times 10^5$  fibroblastos de pulmón o de colon de ratones de tipo silvestre  $sesn2^{-7}$  sembrados en placas de Petri de 6 cm un día antes, se lavaron en DMEM sin suero y se resuspendieron en 5 ml de DMEM sin suero. Se añadió  $H_2O_2$  a algunos cultivos a una concentración final de 200 μM. Después de una incubación durante 3 horas, se añadió diclorodihidrofluoresceína (DCF) a las células a una concentración final de 30 μM y se incubó durante otra hora. Después de que las células se lavaran en PBS, se trataron con tripsina y se resuspendieron en 300 μl de PBS que se sometieron a análisis de FACS.

Ejemplo 1: Una inserción de trampa de genes pT1βgeo en el gen de sestrina 2 induce una mutación nula en ratones transgénicos.

La línea celular ES de trampa de genes W077E06 se obtuvo por electroporación del vector de trampa de genes pT1βgeo mostrado en la SEC ID Nº: 10 en células ES TBV-2 (129SvPas) como se ha descrito anteriormente (Floss, T. y Wurst, W. Methods Mol Biol 185, 347-79, 2002). Se seleccionaron clones de células ES que expresaban trampa de genes en G418 200 μg/ml (Gibco/BRL), se escogieron manualmente, se expandieron y se almacenaron congelados en nitrógeno líquido. La inserción de la trampa de genes en el 9º intrón del gen de sestrina 2 (sesn2) se identificó entre los genes recuperados por RACE 5', como se describe en la sección de Procedimientos, y por análisis de la base de datos de secuencias (Genbank en http://www.ncbi.nlm.nih.gov) usando el algoritmo BlastN. La inserción de la trampa de genes en la línea celular W077E06 se verificó por PCR genómica (véanse los Procedimientos) usando los cebadores siguientes complementarios a las secuencias de la trampa de genes y del 5'-CAGCCTTGAGCCTCTGGAGC-3' arriba adyacente: (SEC ID Nº: 11) y CTACCCTGAGAAGACGACCCG-3' (SEC ID Nº: 12). Las células ES W077E06 verificadas se convirtieron después en ratones mediante inyección de blastocistos. Los ratones F1 que llevaban el alelo de la trampa de genes se cruzaron entre sí y la descendencia F2 se emparejó con ratones ltbp4/- (documento WO 03/015505 A3) para obtener ratones doblemente knock out.

La Figura 3 muestra la estrategia de genotipado para los ratones W077E06 (sesn2). Se amplificó por PCR ADN de la cola en reacciones en paralelo usando un cebador directo en el 9º exón (5'-CTACCCTGAGAAGACGACCCG-3'; SEC ID Nº: 13) y dos cebadores inversos; uno en el 9º intrón para detectar el alelo de tipo silvestre (5'-GGACAAATCAAGGTTACACAGAAAAAAGTC-3'; SEC ID Nº: 14) y el otro en el sitio aceptor de corte y empalme de la trampa de genes para detectar el alelo de la trampa de genes (5'-CAGCCTTGAGCCTCTGGAGC-3'; SEC ID Nº: 15). Se dejó que las reacciones de amplificación se desarrollaran durante 30 ciclos a 94°C durante 15 s, 61°C durante 30 s y 72°C durante 30s.

45 El cruzamiento de la descendencia heterocigota F1 entre sí produjo una descendencia homocigota a una frecuencia que concuerda con un patrón de herencia mendeliana del transgén interrumpido, indicando que el sesn2 no es necesario para el desarrollo. Los ratones mutantes se desarrollaron normalmente después del nacimiento y eran sumamente indistinguibles de sus hermanos de camada heterocigotos y de tipo silvestre.

La inserción de la trampa de genes en el 9º intrón del gen sesn2 induce un transcrito de fusión en el que los exones cadena arriba de la inserción se cortan y empalman en fase de lectura respecto a βgeo. Debido a que la transcripción se termina en el sitio de poliadenilación de la trampa de genes, el transcrito de fusión procesado codifica una versión truncada de sesn2 y el indicador βgeo (Figura 3). La Figura 4 muestra una expresión débil de esta proteína en un embrión heterocigoto temprano teñido con X-Gal.

Los transcritos de *sesn2* de tipo silvestre se perdieron completamente de pulmones de ratones W077E06 homocigotos, mientras que los pulmones heterocigotos expresaban aproximadamente el 50% de los niveles de tipo silvestre (Figura 5A). Además, en fibroblastos aislados de pulmón (MLF) y colon (CLF), que expresan ambos altos niveles de sesn2 (Figura 5B), no se detectó proteína en las células de ratones W077E06 homocigotos, sugiriendo que la inserción de la trampa de genes había inducido una mutación nula (Figura 5B). De acuerdo con la débil expresión de β-galactosidasa en los embriones tempranos (Figura 4), los MLF mutantes expresaban sólo cantidades

vestigiales de la proteína de fusión sesn2/geo, insinuando que la proteína relativamente grande es inestable (Figura 5B). Dada su baja expresión, es poco probable que esta proteína tenga un efecto negativo dominante incluso si la proteína truncada conservase cierta función residual.

**Ejemplo 2**: Los alelos nulos de sesn2 mejoran el enfisema pulmonar en ratones ltb4<sup>-/-</sup>.

25

30

35

40

45

50

55

60

Células ES 129/Sv (D3) con una inserción de vector de trampa de genes U3Cre (SEC ID Nº: 16) en el 5º intrón del gen de ltbp4 se inyectaron en blastocistos C57BL/6 como se ha descrito anteriormente (documento WO 03/015505, Thorey, I. S. y col. Mol Cell Biol 18, 3081-3088, 1998). Las quimeras macho resultantes se cruzaron con hembras C57BL/6 y la descendencia aqutí se ensayó para determinar la transmisión del transgén por transferencia de material de la cola. Se escindió ADN de cola de ratón con BgIII que no corta provirus. El ADN se fraccionó en geles 10 de agarosa al 1%, se transfirió sobre filtros de nylon Hybond N (Amersham/Pharmacia, Piscataway, NJ) y se hibridó con una sonda de secuencia flanqueante de provirus marcada con <sup>32</sup>P. Los animales heterocigotos para la inserción de la trampa de genes se retrocruzaron con ratones C57BL/6 durante al menos seis generaciones antes de analizar los fenotipos en la descendencia heterocigota y homocigota. Para obtener cepas dobles mutantes, los ratones ltbp4\*/- heterocigotos se cruzaron con ratones sesn2\*/- homocigotos y la descendencia se genotipó por PCR de ADN de cola como se ha descrito en el Ejemplo 1, usando los cebadores específicos de alelo siguientes: alelo de tipo 15 silvestre de ltbp4 = 5'-CCAATCTTGCTTGCTGAGC-3' (SEC ID Nº: 17) y 5'-GGC-TCATGCTTGAATGTTTCAG-Nº: 22); trampa de genes de sesn2 (alelo mutante) = 5'-CTACCCTGAGAAGACGACCCG-3' (SEC ID Nº: 23) y 5'-20 CAGCCTTGAGCCTCTGGAGC-3' (SEC ID Nº: 24).

La Figura 6B muestra un pulmón enfisematoso típico de un ratón *ltbp4*<sup>-/-</sup> adulto (documento WO 03/015505). Muestra alvéolos masivamente dilatados rodeados por paredes de los septos delgadas, displásicas y frecuentemente rotas. El tejido conectivo lobular está significativamente reducido y los pulmones muestran áreas atelectásicas multifocales. De acuerdo con una recuperación parcial, los espacios alveolares en los hermanos de camada dobles mutantes *ltbp4*<sup>-/-</sup> sesn<sup>-/-</sup> eran más numerosos, de un tamaño reducido y estaban separados por paredes más gruesas (Figura 6D).

Para detectar el grado de daño de los bronquiolos, conductos alveolares y alvéolos, los inventores visualizaron los árboles traqueobronquiales de estos animales por plastinación. La plastinación implica la instilación de silicona en las tráqueas del pulmón aislado. Puesto que los conductos alveolares impiden que la silicona entre en los sacos alveolares, la técnica proporciona una imagen tridimensional informativa del árbol traqueobronquial (Perry S. F., y col. Exp Lung Res. 26: 27-39, 2000). La Figura 7 (paneles izquierdos) muestra el árbol traqueobronquial de dos ratones de tipo silvestre de 5.5 meses de edad con ramificaciones hacia abaio hasta los bronquiolos terminales y los conductos alveolares. En hermanos de camada Itbp4 mutantes, estas ramificaciones estaban casi completamente ocultas por espacios aéreos aumentados de tamaño rellenos con silicona, sugiriendo que los bronquiolos terminales y los conductos alveolares estaban aumentados de tamaño y con fugas (Figura 7, paneles del medio). Sin embargo, se observó una mejora espectacular en la arquitectura traqueobronquial en ratones Itbp4<sup>7-</sup> que llevaban dos alelos nulos sesn2 ( $ltbp4^{-/2}$  sens2 $^{-/2}$ ) (Figura 7, paneles derechos). Al contrario que una arquitectura traqueobronquial casi invisible en ratones  $ltbp4^{-/2}$ , el árbol traqueobronquial de los dobles mutantes estaba de nuevo próximo a la normalidad, insinuando una regeneración de los bronquiolos terminales y de los conductos alveolares. Estas modificaciones eran mucho más espectaculares que los cambios paranquimales que presumiblemente reflejan una regeneración desigual de fibras de colágeno y elastina, que son los componentes principales de la MEC pulmonar (Suki B., y col. J Appl Physiol. 98: 1892-9, 2005). Aunque ambos forman redes de fibras densas por todo el pulmón, las fibras de elastina se distribuyen uniformemente, mientras que las fibras de colágeno tienden a condensarse alrededor de los bronquiolos terminales y de los conductos alveolares (Toshima M., y col. Arch Histol Cytol. 67: 31-40, 2004). Basándose en esto, los inventores especularon que la recuperación preferente del árbol traqueobronquial en los ratones Itbp4<sup>-/-</sup> sens2<sup>-/-</sup> podía ser el resultado de un exceso de deposición de colágeno en la MEC pulmonar.

Para ensayar esto, Los inventores visualizaron la elastina y el colágeno en secciones de tejido pulmonar usando tinciones histoquímicas específicas. La Figura 8A muestra que la red de elastina de pulmones  $ltbp4^{-/-}$  y  $ltbp4^{-/-}$  ses $n2^{-/-}$  aparecía fragmentada, discontinua y condensada en ambos. Por el contrario, la deposición de colágeno se aumentaba espectacularmente en los pulmones de dobles mutantes (Figura 8B). Puesto que el TGF- $\beta$  es uno de los inductores de colágeno más potentes, la deposición excesiva de colágeno sugería una reactivación de la señalización de TGF- $\beta$  en los pulmones  $ltbp4^{-/-}$  ses $n2^{-/-}$ . Puesto que también se observó recuperación traqueobronquial y deposición aumentada de colágeno en ratones  $ltbp4^{-/-}$  heterocigotos para sesn2 ( $ltbp4^{-/-}$  ses $n2^{-/-}$ ) (Figuras 9, 10), la mutación sesn2 podría ser haploinsuficiente.

Ejemplo 3: Los alelos nulos de sesn2 mejoran el prolapso rectal y los adenomas colorrectales en ratones Itbp4<sup>7</sup>.

La Figura 13 muestra un adenoma colorrectal típico de ratón  $Itbp4^{-/-}$  (documento WO 03/015505 A3) de 3 meses de edad. Microscópicamente, la región mostraba focos de criptas aberrantes que contenían células epiteliales en regeneración y un número aumentado de células caliciformes. Aunque los hermanos de camada dobles mutantes  $Itbp4^{-/-}$  ses $n2^{-/-}$  también mostraban adenomas, estos eran de un tamaño significativamente menor y contenían menos

células caliciformes (Figura 11), sugiriendo un rescate fenotípico parcial. Puesto que el fenotipo ltbp4-/- está esencialmente causado por una activación de TGF- $\beta$  defectuosa (Sterner-Kock A., y col. Genes Dev. 16: 2264-2273, 2002), los inventores ensayaron si el rescate parcial estaba asociado con una reactivación de la señalización de TGF- $\beta$ . Con este fin, los inventores determinaron los niveles de smad2 fosforilado en secciones tisulares por inmunohistoquímica. De acuerdo con una activación de la señalización de TGF- $\beta$  en ratones  $ltbp4^{f/-}$  sesn2-f/-, los niveles de p-smad2 eran muy elevados en comparación con los ratones simples mutantes  $ltbp4^{f/-}$ , que no tenían P-smad2 detectable en su colon (Figura 12).

**<u>Ejemplo 4</u>**: Los pulmones sesn2<sup>-/-</sup> muestran una señalización de TGF-β aumentada.

5

25

30

La deposición de colágeno aumentada en el pulmón y los niveles de P-smad2 aumentados en el colon de ratones \$\$10\$\$ \$\$Itbp4^\(\text{r}\) sesn2^\(\text{r}\) sugerían que la ruta del TGF-\(\beta\) podría estar activada de forma similar en los ratones \$\$sesn2^\(\text{r}\) a pesar de su fenotipo sumamente normal. Para ensayar esto, los inventores visualizaron el P-smad2 en secciones tisulares de pulmón como se ha descrito anteriormente. En un experimento preliminar, los inventores encontraron que los niveles de P-smad2 en pulmones \$\$sesn2^\(\text{r}\) superaban significativamente los niveles de tipo silvestre, sugiriendo que la pérdida de sestrina 2 activa el TGF-\(\beta\) (Figura 13). Además, aunque no se podía detectar una deposición de colágeno aumentada mediante la tinción tricrómica de Mason (no se muestran los datos), los pulmones \$\$sesn2^\(\text{r}\) mostraban un tejido conectivo más abundante, espacios aéreos más pequeños y paredes intraalveolares más gruesas, concordando todo con una fibrosis inducida por TGF-\(\beta\) incipiente (Figura 14) (Sime P. J., y col. J Clin Invest. 100: 768-76, 1997; Lee M. S., y col. Am J Pathol. 147: 42-52, 1995; Sanderson N., y col. Proc Natl Acad Sci U S A. 92: 2572-6, 1995).

20 <u>Ejemplo 5:</u> Acumulación de peróxido aumentada en fibroblastos de pulmón de ratón (MLF) obtenidos de ratones sesn2<sup>-/-</sup>.

Experimentos publicados recientemente han demostrado que la inhibición de la expresión de sesn2 por ARNhc compromete la capacidad de la célula para procesar ROS, conduciendo a la acumulación de ROS y a estrés oxidativo (Budanov A. V., y col. Science 304: 596-600, 2004). En línea con esto, los inventores esperaban que las funciones antioxidantes estuvieran comprometidas de forma similar en células obtenidas de ratones *knock out* para sesn2. Para ensayar esto, los inventores cuantificaron los niveles de ROS inducidos por H<sub>2</sub>O<sub>2</sub> y basales en MLF usando el procedimiento de fluorescencia de diclorodihidrofluoresceína (DCF). La Figura 15 muestra que los MLF sesn2. Se acumulaban significativamente más ROS que las células de tipo silvestre correspondientes, independientemente del pretratamiento con H<sub>2</sub>O<sub>2</sub> 200 mM. Los resultados son equivalentes a los obtenidos en los experimentos de reducción de la expresión (*knock down*) con ARNhc y concuerdan con una pérdida de función de sesn2 en los MLF mutantes.

## Listado de Secuencias, Texto Libre

SEC ID Nº: 1-9 Cebador

SEC ID Nº: 10 Elementos del plásmido pTβgeo de vector de trampa de genes:

- Aceptor de corte y empalme En-2 2284-4163  $\beta$ Geo 4164-8053 - SV40 pA 8054-8496 - cadena principal del plásmido 8497-2283

SEC ID Nº: 11-15 Cebador

SEC ID Nº: 16 Elementos del plásmido U3Cre de vector de trampa de genes:

- LTR 1-1475 y 3046-4520 - Cre 3-1090 y 3074-4133 - gag/env: 1475-3045

SEC ID Nº: 17-24 Cebador

### LISTADO DE SECUENCIAS

5 <110> FrankGen Biotechnologie AG

<120> Modelo animal para la selección y validación de agentes activos contra el enfisema pulmonar y el cáncer colorrectal

10 <130> 071673wo/JH

<150> EP 06120714.8 <151> 15-09-2006

15 <160> 24

<170> PatentIn versión 3.3

<210> 1 20 <211> 492 <212> PRT

<213> Mus musculus

<400> 1

25

| Met<br>1   | Arg        | Leu        | Ala        | Ala<br>5  | Ala        | Ser        | Asn        | Glu              | Ala<br>10 | Tyr        | Ala        | Ala        | Ser        | Leu<br>15 | Ala        |
|------------|------------|------------|------------|-----------|------------|------------|------------|------------------|-----------|------------|------------|------------|------------|-----------|------------|
| Val        | Ser        | Glu        | Leu<br>20  | Leu       | Ser        | Cys        | His        | Gln<br>25        | Cys       | Gly        | Gly        | Asp        | Arg<br>30  | Gly       | Gln        |
| Asp        | Glu        | Glu<br>35  | Leu        | Gly       | Ile        | Arg        | Ile<br>40  | Pro              | Arg       | Pro        | Leu        | Gly<br>45  | His        | Gly       | Pro        |
| Ser        | Arg<br>50  | Phe        | Ile        | Pro       | Glu        | Lys<br>55  | Glu        | Met              | Leu       | Gln        | Val<br>60  | Gly        | Ser        | Glu       | Asp        |
| Ala<br>65  | Gln        | Met        | His        | Ala       | Leu<br>70  | Phe        | Ala        | Asp              | Ser       | Phe<br>75  | Ala        | Ala        | Leu        | Gly       | Arg<br>80  |
| Leu        | Asp        | Asn        | Ile        | Thr<br>85 | Leu        | Val        | Met        | Val <sub>.</sub> | Phe<br>90 | His        | Pro        | Gln        | Tyr        | Leu<br>95 | Glu        |
| Ser        | Phe        | Leu        | Lys<br>100 | Thr       | Gln        | His        | Tyr        | Leu<br>105       | Leu       | Gln        | Met        | Asp        | Gly<br>110 | Pro       | Leu        |
| Pro        | Leu        | His<br>115 | Tyr        | Arg       | His        | Tyr        | Ile<br>120 | Gly              | Ile       | Met        | Ala        | Ala<br>125 | Ala        | Arg       | His        |
| Gln        | Cys<br>130 | Ser        | Tyr        | Leu       | Val        | Asn<br>135 | Leu        | His              | Val       | Ser        | Asp<br>140 | Phe        | Leu        | His       | Val        |
| Gly<br>145 | Gly        | Asp        | Pro        | Lys       | Trp<br>150 | Leu        | Asn        | Gly              | Leu       | Glu<br>155 | Asn        | Ala        | Pro        | Gln       | Lys<br>160 |

| Leu        | Gln        | Asn        | Leu        | Gly<br>165 | Glu        | Leu        | Asn        | Lys        | Val<br>170 | Leu        | Ala        | His        | Arg        | Pro<br>175 | Trp        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Ile        | Thr        | Lys<br>180 | Glu        | His        | Ile        | Glu        | Gly<br>185 | Leu        | Leu        | Lys        | Ala        | Glu<br>190 | Glu        | His        |
| Ser        | Trp        | Ser<br>195 | Leu        | Ala        | Glu        | Leu        | Val<br>200 | His        | Ala        | Val        | Val        | Leu<br>205 | Leu        | Thr        | His        |
| Tyr        | His<br>210 | Ser        | Leu        | Ala        | Ser        | Phe<br>215 | Thr        | Phe        | Gly        | Cys        | Gly<br>220 | Ile        | Ser        | Pro        | Glu        |
| Ile<br>225 | His        | Cys        | Asp        | Gly        | Gly<br>230 | His        | Thr        | Phe        | Arg        | Pro<br>235 | Pro        | Ser        | Val        | Ser        | Asn<br>240 |
| Tyr        | Cys        | Ile        | Cys        | Asp<br>245 | Ile        | Thr        | Asn        | Gly        | Asn<br>250 | His        | Ser        | Val        | Asp        | Glu<br>255 | Met        |
| Gln        | Val        | Asn        | Ser<br>260 | Ala        | Gly        | Asn        | Ala        | Ser<br>265 | Val        | Ser        | Asp        | Ser        | Phe<br>270 | Phe        | Glu        |
| Val        | Glu        | Ala<br>275 | Leu        | Met        | Glu        | Lys        | Met<br>280 | Arg        | Gln        | Leu        | Gln        | Glu<br>285 | Cys        | Arg        | Glu        |
| Glu        | Glu<br>290 | Glu        | Ala        | Ser        | Gln        | Glu<br>295 | Glu        | Met        | Ala        | Ser        | Arg<br>300 | Phe        | Glu        | Met        | Glu        |
| Lys<br>305 | Arg        | Glu        | Ser        | Met        | Phe<br>310 | Val        | Phe        | Ser        | Ser        | Asp<br>315 | Asp        | Asp        | Glu        | Val        | Thr<br>320 |
| Pro        | Ala        | Arg        | Asp        | Val<br>325 | Ser        | Arg        | His        | Phe        | Glu<br>330 | Asp        | Thr        | Ser        | Tyr        | Gly<br>335 | Tyr        |
| Lys        | Asp        | Phe        | Ser<br>340 | Arg        | His        | Gly        | Met        | His<br>345 | Val        | Pro        | Thr        | Phe        | Arg<br>350 | Val        | Gln        |
| Asp        | Tyr        | Cys<br>355 | Trp        | Glu        | Asp        | His        | Gly<br>360 | Tyr        | Ser        | Leu        | Val        | Asn<br>365 | Arg        | Leu        | Tyr        |
| Pro        | Asp<br>370 | Val        | Gly        | Gln        | Leu        | Ile<br>375 | Asp        | Glu        | Lys        | Phe        | His<br>380 | Ile        | Pro        | Tyr        | Asn        |
| Leu<br>385 | Thr        | Tyr        | Asn        | Thr        | Met<br>390 | Ala        | Met        | His        | Lys        | Asp<br>395 | Val        | Asp        | Thr        | Ser        | Met<br>400 |
| Leu        | Arg        | Arg        | Ala        | Ile<br>405 | Trp        | Asn        | Tyr        | Ile        | His<br>410 | Cys        | Met        | Phe        | Gly        | Ile<br>415 | Arg        |

Tyr Asp Asp Tyr Asp Tyr Gly Glu Ile Asn Gln Leu Leu Asp Arg Ser 420 425 430

Lys Arg Met Tyr Asp Ser Phe Trp Arg Gln Phe Lys His Ser Glu Lys 450 455 460

Val His Val Asn Leu Leu Leu Ile Glu Ala Arg Met Gln Ala Glu Leu 465 470 475 480

Leu Tyr Ala Leu Arg Ala Ile Thr Arg Tyr Met Thr 485 490

<210> 2

<211> 492

<212> PRT

5

<213> Mus musculus

<400> 2

Met Asn Arg Gly Gly Ser Ser Ala Ser Ala Ser Ala Asn Tyr Leu Leu 1 5 10 15

Cys Thr Asn Cys Arg Lys Val Leu Arg Lys Asp Lys Arg Ile Arg Val 20 25 30

Ser Gln Pro Leu Thr Arg Gly Pro Ser Ala Phe Ile Pro Glu Lys Glu 35 40 45

Val Val Gln Ala Asn Thr Ala Asp Glu Arg Thr Asn Phe Leu Val Glu 50 55 60

Glu Tyr Ser Thr Ser Gly Arg Leu Asp Asn Ile Thr Gln Val Met Ser 65 70 75 80

Leu His Thr Gln Tyr Leu Glu Ser Phe Leu Arg Ser Gln Phe Tyr Met 85 90 95

Leu Arg Met Asp Gly Pro Leu Pro Leu Pro Asp Arg His Tyr Ile Ala 100 105 110

Ile Met Ala Ala Ala Arg His Gln Cys Ser Tyr Leu Ile Asn Met His 115 120 125

Val Asp Glu Phe Leu Lys Thr Gly Gly Ile Ala Glu Trp Leu Asn Gly 130 135 140

| Leu<br>145 | Glu        | Tyr        | Val        | Pro        | Gln<br>150 | Arg        | Leu        | Arg        | Asn        | Leu<br>155 | Asn        | Glu        | Ile        | Asn        | Lys<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Leu        | Ala        | His        | Arg<br>165 | Pro        | Trp        | Leu        | Ile        | Thr<br>170 | Lys        | Glu        | His        | Ile        | Gln<br>175 | Lys        |
| Leu        | Val        | Lys        | Thr<br>180 | Gly        | Glu        | Asn        | Asn        | Trp<br>185 | Ser        | Leu        | Pro        | Glu        | Leu<br>190 | Val        | His        |
| Ala        | Val        | Val<br>195 | Leu        | Leu        | Ala        | His        | Tyr<br>200 | His        | Ala        | Leu        | Ala        | Ser<br>205 | Phe        | Val        | Phe        |
| Gly        | Ser<br>210 | Gly        | Ile        | Asn        | Pro        | Glu<br>215 | Arg        | Asp        | Pro        | Gly        | Ile<br>220 | Ala        | Asn        | Gly        | Phe        |
| Arg<br>225 | Leu        | Ile        | Ser        | Val        | Ser<br>230 | Ser        | Phe        | Cys        | Val        | Cys<br>235 | Asp        | Leu        | Ala        | Asn        | Asp<br>240 |
| Asn        | Ser        | Ile        | Glu        | Asn<br>245 | Thr        | Ser        | Leu        | Ala        | Gly<br>250 | Ser        | Asn        | Phe        | Gly        | Ile<br>255 | Val        |
| Asp        | Ser        | Leu        | Gly<br>260 | Glu        | Leu        | Glu        | Ala        | Leu<br>265 | Met        | Glu        | Arg        | Met        | Lys<br>270 | Arg        | Leu        |
| Gln        | Glu        | Asp<br>275 | Arg        | Glu        | Asp        | Asp        | Glu<br>280 | Thr        | Thr        | Arg        | Glu        | Glu<br>285 | Met        | Thr        | Thr        |
| Arg        | Phe<br>290 | Glu        | Lys        | Glu        | Lys        | Lys<br>295 | Glu        | Ser        | Leu        | Phe        | Val<br>300 | Val        | Pro        | Gly        | Glu        |
| Thr<br>305 | Leu        | His        | Ala        | Phe        | Pro<br>310 | His        | Ser        | Asp        | Phe        | Glu<br>315 | Asp        | Asp        | Val        | Ile        | Val<br>320 |
| Thr        | Ala        | Asp        | Val        | Ser<br>325 | Arg        | Tyr        | Ile        | Glu        | Asp<br>330 | Pro        | Ser        | Phe        | Gly        | Tyr<br>335 | Glu        |
| Asp        | Phe        | Ala        | Arg<br>340 | Arg        | Gly        | Glu        | Glu        | His<br>345 | Leu        | Pro        | Thr        | Phe        | Arg<br>350 | Ala        | Gln        |
| Asp        | Tyr        | Thr<br>355 | Trp        | Glu        | Asn        | His        | Gly<br>360 | Phe        | Ser        | Leu        | Val        | Asn<br>365 | Arg        | Leu        | Tyr        |
| Ser        | Asp<br>370 | Ile        | Gly        | His        | Leu        | Leu<br>375 | Asp        | Glu        | Lys        | Phe        | Arg<br>380 | Met        | Val        | Tyr        | Asn        |
| Leu        | Thr        | Tvr        | Asn        | Thr        | Met        | Ala        | Thr        | His        | Glu        | Asp        | Val        | Asp        | Thr        | Thr        | Thr        |

395 385 390 400 Leu Arg Arg Ala Leu Phe Asn Tyr Val His Cys Met Phe Gly Ile Arg 405 410 Tyr Asp Asp Tyr Asp Tyr Gly Glu Val Asn Gln Leu Leu Glu Arg Ser 420 425 Leu Lys Val Tyr Ile Lys Thr Val Thr Cys Tyr Pro Glu Arg Thr Thr Lys Arg Met Tyr Asp Ser Tyr Trp Arg Gln Phe Thr His Ser Glu Lys Val His Val Asn Leu Leu Met Glu Ala Arg Met Gln Ala Glu Leu 465 470 475 Leu Tyr Ala Leu Arg Ala Ile Thr Arg His Leu Thr 485

<210> 3

<211> 480

<212> PRT

<213> Mus musculus

<400> 3

| Met | Ile | Val | Ala | Asp | Ser | Glu | Cys | His | Ser | Glu | Ile | Lys | Gly | Tyr | Leu |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |

Pro Phe Thr Arg Gly Gly Val Ala Gly Pro Glu Thr Arg Glu Glu His 20 25 30

Arg Glu Gly Gln Ala Arg Arg Gly Ser Arg Gly Pro Ser Ala Phe Ile 35 40 45

Pro Val Glu Glu Ile Leu Arg Glu Gly Ala Glu Ser Leu Glu Gln His 50 60

Leu Gly Leu Glu Ala Leu Met Ser Ser Gly Arg Val Asp Asn Leu Ala 65 70 75 80

Val Val Met Gly Leu His Pro Asp Tyr Leu Ser Ser Phe Trp Arg Leu 85 90 95

His Tyr Leu Leu His Thr Asp Gly Pro Leu Ala Ser Ser Trp Arg 100 105 110

His Tyr Ile Ala Ile Met Ala Ala Ala Arg His Gln Cys Ser Tyr Leu

|            |            | 115        |            |            |            |            | 120        |            |            |            |            | 125        |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val        | Gly<br>130 | Ser        | His        | Met        | Thr        | Glu<br>135 | Phe        | Leu        | Gln        | Thr        | Gly<br>140 | Gly        | Asp        | Pro        | Glu        |
| Trp<br>145 | Leu        | Leu        | Gly        | Leu        | His<br>150 | Arg        | Ala        | Pro        | Glu        | Lys<br>155 | Leu        | Arg        | Lys        | Leu        | Ser<br>160 |
| Glu        | Val        | Asn        | Lys        | Leu<br>165 | Leu        | Ala        | His        | Arg        | Pro<br>170 | Trp        | Leu        | Ile        | Thr        | Lys<br>175 | Glu        |
| His        | Ile        | Gln        | Ala<br>180 | Leu        | Leu        | Lys        | Thr        | Gly<br>185 | Glu        | His        | Ser        | Trp        | Ser<br>190 | Leu        | Ala        |
| Glu        | Leu        | Ile<br>195 | Gln        | Ala        | Leu        | Val        | Leu<br>200 | Leu        | Thr        | His        | Cys        | His<br>205 | Ser        | Leu        | Ala        |
| Ser        | Phe<br>210 | Val        | Phe        | Gly        | Суѕ        | Gly<br>215 | Ile        | Leu        | Pro        | Glu        | Gly<br>220 | Asp        | Ala        | Glu        | Gly        |
| Ser<br>225 | Pro        | Ala        | Ser        | Gln        | Ala<br>230 | Pro        | Ser        | Pro        | Pro        | Ser<br>235 | Glu        | Gln        | Gly        | Thr        | Pro<br>240 |
| Pro        | Ser        | Gly        | Asp        | Pro<br>245 | Leu        | Asn        | Asn        | Ser        | Gly<br>250 | Gly        | Phe        | Glu        | Ala        | Ala<br>255 | Arg        |
| Asp        | Val        | Glu        | Ala<br>260 | Leu        | Met        | Glu        | Arg        | Met<br>265 | Arg        | Gln        | Leu        | Gln        | Glu<br>270 | Ser        | Leu        |
| Leu        | Arg        | Asp<br>275 | Glu        | Gly        | Ala        | Ser        | Gln<br>280 | Glu        | Glu        | Met        | Glu        | Asn<br>285 | Arg        | Phe        | Glu        |
| Leu        | Glu<br>290 | Lys        | Ser        | Glu        | Ser        | Leu<br>295 | Leu        | Val        | Thr        | Pro        | Ser<br>300 | Ala        | Asp        | Ile        | Leu        |
| Glu<br>305 | Pro        | Ser        | Pro        | His        | Pro<br>310 | Asp        | Ile        | Leu        | Cys        | Phe<br>315 | Val        | Glu        | Asp        | Pro        | Ala<br>320 |
| Phe        | Gly        | Tyr        | Glu        | Asp<br>325 | Phe        | Thr        | Arg        | Arg        | Gly<br>330 | Thr        | Gln        | Ala        | Pro        | Pro<br>335 | Thr        |
| Phe        | Arg        | Ala        | Gln<br>340 | Asp        | Tyr        | Thr        | Trp        | Glu<br>345 | Asp        | His        | Gly        | Tyr        | Ser<br>350 | Leu        | Ile        |
| Gln        | Arg        | Leu<br>355 | Tyr        | Pro        | Glu        | Gly        | Gly<br>360 | Gln        | Leu        | Leu        | Asp        | Glu<br>365 | Lys        | Phe        | Gln        |

```
Val Ala Cys Ser Leu Thr Tyr Asn Thr Ile Ala Met His Ser Gly Val
                                          375
                                                                380
                   370
              Asp Thr Ser Met Leu Arg Arg Ala Ile Trp Asn Tyr Ile His Cys Val
              385
                                     390
                                                            395
                                                                                  400
              Phe Gly Ile Arg Tyr Asp Asp Tyr Asp Tyr Gly Glu Val Asn Gln Leu
                                 405
                                                       410
              Leu Glu Arg Asn Leu Lys Ile Tyr Ile Lys Thr Val Ala Cys Tyr Pro
                            420
                                                   425
              Glu Lys Thr Thr Arg Arg Met Tyr Asn Leu Phe Trp Arg His Phe Arg
                                                                    445
                       435
                                              440
              His Ser Glu Lys Val His Val Asn Leu Leu Leu Glu Ala Arg Met
                   450
                                          455
              Gln Ala Ala Leu Leu Tyr Ala Leu Arg Ala Ile Thr Arg Tyr Met Thr
                                    470
                                                            475
        <210> 4
        <211>48
5
        <212> ADN
        <213> Artificial
        <220>
        <223> cebador
10
        <220>
        <221> misc feature
        <222> (36)..(47)
        <223> n = inosina
15
        <400> 4
        ctactactac taggccacgc gtcgactagt acgggnnggg nngggnng
                                                        48
        <210>5
20
        <211> 22
        <212> ADN
        <213> Artificial
        <220>
25
        <223> cebador
        <400> 5
        gccagggttt tcccagtcac ga
                                22
30
        <210>6
        <211> 32
        <212> ADN
        <213> Artificial
35
        <220>
        <223> cebador
```

|    | <400> 6 ctactactac taggccacgc gtcgactagt ac 32                    |     |
|----|-------------------------------------------------------------------|-----|
| 5  | <210> 7<br><211> 38<br><212> ADN<br><213> Artificial              |     |
| 10 | <220><br><223> cebador                                            |     |
|    | <400> 7<br>tgtaaaacga cggccagtgt gaaggctgtg cgaggccg 38           |     |
| 15 | <210> 8<br><211> 21<br><212> ADN<br><213> Artificial              |     |
| 20 | <220><br><223> cebador                                            |     |
|    | <400> 8<br>cctggaacgg aacctcaaaa t 21                             |     |
| 25 | <210> 9<br><211> 20<br><212> ADN                                  |     |
| 30 | <213> Artificial <220> <223> cebador                              |     |
| 35 | <400> 9<br>gggcttcaag gagcagcaag 20                               |     |
|    | <210> 10<br><211> 8950<br><212> ADN                               |     |
| 40 | <213> Artificial <220>                                            |     |
|    | <223> vector de trampa génica pTbetageo                           |     |
| 45 | <400> 10                                                          | -   |
|    | tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt | 60  |
|    | tecatagget eegeeeeet gaegageate acaaaaateg aegeteaagt eagaggtgge  | 120 |
|    | gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct | 180 |
|    | ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg | 240 |
|    | tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca | 300 |

| agctgggctg | tgtgcacgaa | cccccgttc  | agcccgaccg | ctgcgcctta | tccggtaact | 360  |
|------------|------------|------------|------------|------------|------------|------|
| atcgtcttga | gtccaacccg | gtaagacacg | acttatcgcc | actggcagca | gccactggta | 420  |
| acaggattag | cagagcgagg | tatgtaggcg | gtgctacaga | gttcttgaag | tggtggccta | 480  |
| actacggcta | cactagaaga | acagtatttg | gtatctgcgc | tctgctgaag | ccagttacct | 540  |
| tcggaaaaag | agttggtagc | tcttgatccg | gcaaacaaac | caccgctggt | agcggtggtt | 600  |
| tttttgtttg | caagcagcag | attacgcgca | gaaaaaaagg | atctcaagaa | gatcctttga | 660  |
| tcttttctac | ggggtctgac | gctcagtgga | acgaaaactc | acgttaaggg | attttggtca | 720  |
| tgagattatc | aaaaaggatc | ttcacctaga | tccttttaaa | ttaaaaatga | agttttaaat | 780  |
| caatctaaag | tatatatgag | taaacttggt | ctgacagtta | ccaatgctta | atcagtgagg | 840  |
| cacctatctc | agcgatctgt | ctatttcgtt | catccatagt | tgcctgactc | cccgtcgtgt | 900  |
| agataactac | gatacgggag | ggcttaccat | ctggccccag | tgctgcaatg | ataccgcgag | 960  |
| acccacgctc | accggctcca | gatttatcag | caataaacca | gccagccgga | agggccgagc | 1020 |
| gcagaagtgg | tcctgcaact | ttatccgcct | ccatccagtc | tattaattgt | tgccgggaag | 1080 |
| ctagagtaag | tagttcgcca | gttaatagtt | tgcgcaacgt | tgttgccatt | gctacaggca | 1140 |
| tcgtggtgtc | acgctcgtcg | tttggtatgg | cttcattcag | ctccggttcc | caacgatcaa | 1200 |
| ggcgagttac | atgatccccc | atgttgtgca | aaaaagcggt | tagctccttc | ggtcctccga | 1260 |
| tcgttgtcag | aagtaagttg | gccgcagtgt | tatcactcat | ggttatggca | gcactgcata | 1320 |
| attctcttac | tgtcatgcca | tccgtaagat | gcttttctgt | gactggtgag | tactcaacca | 1380 |
| agtcattctg | agaatagtgt | atgcggcgac | cgagttgctc | ttgcccggcg | tcaatacggg | 1440 |
| ataataccgc | gccacatagc | agaactttaa | aagtgctcat | cattggaaaa | cgttcttcgg | 1500 |
| ggcgaaaact | ctcaaggatc | ttaccgctgt | tgagatccag | ttcgatgtaa | cccactcgtg | 1560 |
| cacccaactg | atcttcagca | tcttttactt | tcaccagcgt | ttctgggtga | gcaaaaacag | 1620 |
| gaaggcaaaa | tgccgcaaaa | aagggaataa | gggcgacacg | gaaatgttga | atactcatac | 1680 |
| tcttcctttt | tcaatattat | tgaagcattt | atcagggtta | ttgtctcatg | agcggataca | 1740 |
| tatttgaatg | tatttagaaa | aataaacaaa | taggggttcc | gcgcacattt | ccccgaaaag | 1800 |
| tgccacctga | cgtctaagaa | accattatta | tcatgacatt | aacctataaa | aataggcgta | 1860 |
| tcacgaggcc | ctttcgtctc | gcgcgtttcg | gtgatgacgg | tgaaaacctc | tgacacatgc | 1920 |
| agctcccgga | gacggtcaca | gcttgtctgt | aagcggatgc | cgggagcaga | caagcccgtc | 1980 |
| agggcgcgtc | agcgggtgtt | ggcgggtgtc | ggggctggct | taactatgcg | gcatcagagc | 2040 |
| agattgtact | gagagtgcac | catatgcggt | gtgaaatacc | gcacagatgc | gtaaggagaa | 2100 |
| aataccgcat | caggcgccat | tcgccattca | ggctgcgcaa | ctgttgggaa | gggcgatcgg | 2160 |
| tgcgggcctc | ttcgctatta | cgccagctgg | cgaaaggggg | atgtgctgca | aggcgattaa | 2220 |

| gttgggtaac | gccagggttt | tcccagtcac | gacgttgtaa | aacgacggcc | agtgccaagc | 2280 |
|------------|------------|------------|------------|------------|------------|------|
| ttggaattca | tgggaagagg | aaccgaaagt | atgtttttca | gatgttcttt | ctcagaaata | 2340 |
| ggagtttgcg | gaggttggag | tgtgtgttgt | aggacacgaa | ccccagggtg | gaggagactg | 2400 |
| gaggacagag | ccctctttcc | cagggaggga | aggaggagag | tttgagatcc | gctccggaag | 2460 |
| tcggggttca | ggtttgagca | ggccaggcct | ctcccgtggt | ctcgccctct | tgtcctagaa | 2520 |
| gcctcactgg | ccaggtgtaa | gccaggtcgt | gggtgccgag | ccctgctccc | tcatcctcag | 2580 |
| catggatgtg | aagaggactg | tatggcgtgc | gggtgtgtgt | gaccgtgggt | acacttaaaa | 2640 |
| caccgggttt | tggatctgca | ctgtcccgga | tgtcctctgg | tgctcaaaga | cccttttggg | 2700 |
| tttgcccttt | ggtaagagcg | ccgggatcta | cttgtctgga | ggccagggag | tcctcagccg | 2760 |
| aggcttgccg | cccctgactg | cactgcactg | agtagtggat | gggagagtct | ggtaccgcac | 2820 |
| tgccggtttc | ctccaccatc | cccgcagcgc | agggcagtgc | attccgtcct | ggctgcgaag | 2880 |
| ggggatggtc | gggccttctc | cagcctcttc | cgcttctagc | ggaaggggcc | ttgatggaag | 2940 |
| ggcccgcatg | tctccaaagt | tgattcatgc | ttcttgcaca | gagaaagacc | agaaagaagg | 3000 |
| tctcaagttt | tagccggtag | cccggatggc | ctttcctgca | cggcaccata | tgaaccttgt | 3060 |
| gaccctgaca | aagagacccc | tctaacccaa | gacccctacc | acttaccctt | tccctttgaa | 3120 |
| ggctttccca | caccaccctc | cacacttgcc | ccaaacactg | ccaactatgt | aggaggaagg | 3180 |
| ggttgggact | aacagaagaa | cccgttgtgg | ggaagctgtt | gggagggtca | ctttatgttc | 3240 |
| ttgcccaagg | tcagttgggt | ggcctgcttc | tgatgaggtg | gtcccaaggt | ctggggtaga | 3300 |
| aggtgagagg | gacaggccac | caaggtcagc | cccccccc   | tatcccatag | gagccaggtc | 3360 |
| cctctcctgg | acaggaagac | tgaaggggag | atgccagaga | ctcagtgaag | cctggggtac | 3420 |
| cctattggag | tccttcaagg | aaacaaactt | ggcctcacca | ggcctcagcc | ttggctcctc | 3480 |
| ctgggaactc | tactgccctt | gggatcccct | tgtagttgtg | ggttacatag | gaagggggac | 3540 |
| gggattcccc | ttgactggct | agcctactct | tttcttcagt | cttctccatc | tcctctcacc | 3600 |
| tgtctctcga | ccctttccct | aggatagact | tggaaaaaga | taaggggaga | aaacaaatgc | 3660 |
| aaacgaggcc | agaaagattt | tggctgggca | ttccttccgc | tagcttttat | tgggatcccc | 3720 |
| tagtttgtga | taggcctttt | agctacatct | gccaatccat | ctcattttca | cacacacaca | 3780 |
| caccactttc | cttctggtca | gtgggcacat | gtccagcctc | aagtttatat | caccaccccc | 3840 |
| aatgcccaac | acttgtatgg | ccttgggcgg | gtcatccccc | ccccacccc  | cagtatctgc | 3900 |
| aacctcaagc | tagcttgggt | gcgttggttg | tggataagta | gctagactcc | agcaaccagt | 3960 |
| aacctctgcc | ctttctcctc | catgacaacc | aggtcccagg | tcccgaaaac | caaagaagaa | 4020 |
| gaaccctaac | aaagaggaca | agcggcctcg | cacagccttc | actgctgagc | agctccagag | 4080 |

| gctcaaggct | gagtttcaga | ccaacaggta | cctgacagag | cagcggcgcc | agagtctggc | 4140 |
|------------|------------|------------|------------|------------|------------|------|
| acaggagete | ggtacccgga | agatctggac | tctagaggat | cccgtcgttt | tacaacgtcg | 4200 |
| tgactgggaa | aaccctggcg | ttacccaact | taatcgcctt | gcagcacatc | cccctttcgc | 4260 |
| cagctggcgt | aatagcgaag | aggcccgcac | cgatcgccct | tcccaacagt | tgcgcagcct | 4320 |
| gaatggcgaa | tggcgctttg | cctggtttcc | ggcaccagaa | gcggtgccgg | aaagctggct | 4380 |
| ggagtgcgat | cttcctgagg | ccgatactgt | cgtcgtcccc | tcaaactggc | agatgcacgg | 4440 |
| ttacgatgcg | cccatctaca | ccaacgtgac | ctatcccatt | acggtcaatc | cgccgtttgt | 4500 |
| tcccacggag | aatccgacgg | gttgttactc | gctcacattt | aatgttgatg | aaagctggct | 4560 |
| acaggaaggc | cagacgcgaa | ttatttttga | tggcgttaac | tcggcgtttc | atctgtggtg | 4620 |
| caacgggcgc | tgggtcggtt | acggccagga | cagtcgtttg | ccgtctgaat | ttgacctgag | 4680 |
| cgcattttta | cgcgccggag | aaaaccgcct | cgcggtgatg | gtgctgcgct | ggagtgacgg | 4740 |
| cagttatctg | gaagatcagg | atatgtggcg | gatgagcggc | attttccgtg | acgtctcgtt | 4800 |
| gctgcataaa | ccgactacac | aaatcagcga | tttccatgtt | gccactcgct | ttaatgatga | 4860 |
| tttcagccgc | gctgtactgg | aggctgaagt | tcagatgtgc | ggcgagttgc | gtgactacct | 4920 |
| acgggtaaca | gtttctttat | ggcagggtga | aacgcaggtc | gccagcggca | ccgcgccttt | 4980 |
| cggcggtgaa | attatcgatg | agcgtggtgg | ttatgccgat | cgcgtcacac | tacgtctgaa | 5040 |
| cgtcgaaaac | ccgaaactgt | ggagcgccga | aatcccgaat | ctctatcgtg | cggtggttga | 5100 |
| actgcacacc | gccgacggca | cgctgattga | agcagaagcc | tgcgatgtcg | gtttccgcga | 5160 |
| ggtgcggatt | gaaaatggtc | tgctgctgct | gaacggcaag | ccgttgctga | ttcgaggcgt | 5220 |
| taaccgtcac | gagcatcatc | ctctgcatgg | tcaggtcatg | gatgagcaga | cgatggtgca | 5280 |
| ggatatcctg | ctgatgaagc | agaacaactt | taacgccgtg | cgctgttcgc | attatccgaa | 5340 |
| ccatccgctg | tggtacacgc | tgtgcgaccg | ctacggcctg | tatgtggtgg | atgaagccaa | 5400 |
| tattgaaacc | cacggcatgg | tgccaatgaa | tcgtctgacc | gatgatccgc | gctggctacc | 5460 |
| ggcgatgagc | gaacgcgtaa | cgcgaatggt | gcagcgcgat | cgtaatcacc | cgagtgtgat | 5520 |
| catctggtcg | ctggggaatg | aatcaggcca | cggcgctaat | cacgacgcgc | tgtatcgctg | 5580 |
| gatcaaatct | gtcgatcctt | cccgcccggt | gcagtatgaa | ggcggcggag | ccgacaccac | 5640 |
| ggccaccgat | attatttgcc | cgatgtacgc | gcgcgtggat | gaagaccagc | ccttcccggc | 5700 |
| tgtgccgaaa | tggtccatca | aaaaatggct | ttcgctacct | ggagagacgc | gcccgctgat | 5760 |
| cctttgcgaa | tacgcccacg | cgatgggtaa | cagtcttggc | ggtttcgcta | aatactggca | 5820 |
| ggcgtttcgt | cagtatcccc | gtttacaggg | cggcttcgtc | tgggactggg | tggatcagtc | 5880 |
| gctgattaaa | tatgatgaaa | acggcaaccc | gtggtcggct | tacggcggtg | attttggcga | 5940 |
| tacgccgaac | gatcgccagt | tctgtatgaa | cggtctggtc | tttgccgacc | gcacgccgca | 6000 |

| tccagcgctg | acggaagcaa | aacaccagca | gcagttttc  | cagttccgtt | tatccgggca | 6060 |
|------------|------------|------------|------------|------------|------------|------|
| aaccatcgaa | gtgaccagcg | aatacctgtt | ccgtcatagc | gataacgagc | tcctgcactg | 6120 |
| gatggtggcg | ctggatggta | agccgctggc | aagcggtgaa | gtgcctctgg | atgtcgctcc | 6180 |
| acaaggtaaa | cagttgattg | aactgcctga | actaccgcag | ccggagagcg | ccgggcaact | 6240 |
| ctggċtcaca | gtacgcgtag | tgcaaccgaa | cgcgaccgca | tggtcagaag | ccgggcacat | 6300 |
| cagcgcctgg | cagcagtggc | gtctggcgga | aaacctcagt | gtgacgctcc | ccgccgcgtc | 6360 |
| ccacgccatc | ccgcatctga | ccaccagcga | aatggatttt | tgcatcgagc | tgggtaataa | 6420 |
| gcgttggcaa | tttaaccgcc | agtcaggctt | tctttcacag | atgtggattg | gcgataaaaa | 6480 |
| acaactgctg | acgccgctgc | gcgatcagtt | cacccgtgca | ccgctggata | acgacattgg | 6540 |
| cgtaagtgaa | gcgacccgca | ttgaccctaa | cgcctgggtc | gaacgctgga | aggcggcggg | 6600 |
| ccattaccag | gccgaagcag | cgttgttgca | gtgcacggca | gatacacttg | ctgatgcggt | 6660 |
| gctgattacg | accgctcacg | cgtggcagca | tcaggggaaa | accttattta | tcagccggaa | 6720 |
| aacctaccgg | attgatggta | gtggtcaaat | ggcgattacc | gttgatgttg | aagtggcgag | 6780 |
| cgatacaccg | catccggcgc | ggattggcct | gaactgccag | ctggcgcagg | tagcagagcg | 6840 |
| ggtaaactgg | ctcggattag | ggccgcaaga | aaactatccc | gaccgcctta | ctgccgcctg | 6900 |
| ttttgaccgc | tgggatctgc | cattgtcaga | catgtatacc | ccgtacgtct | tcccgagcga | 6960 |
| aaacggtctg | cgctgcggga | cgcgcgaatt | gaattatggc | ccacaccagt | ggcgcggcga | 7020 |
| cttccagttc | aacatcagcc | gctacagtca | acagcaactg | atggaaacca | gccatcgcca | 7080 |
| tctgctgcac | gcggaagaag | gcacatggct | gaatatcgac | ggtttccata | tggggattgg | 7140 |
| tggcgacgac | tcctggagcc | cgtcagtatc | ggcggaattc | cagctgagcg | ccggtcgcta | 7200 |
| ccattaccag | ttggtctggt | gtcaggggat | cccccgggct | gcagccaata | tgggatcggc | 7260 |
| cattgaacaa | gatggattgc | acgcaggttc | tccggccgct | tgggtggaga | ggctattcgg | 7320 |
| ctatgactgg | gcacaacaga | caatcggctg | ctctgatgcc | gccgtgttcc | ggctgtcagc | 7380 |
| gcagggggg  | ccggttcttt | ttgtcaagac | cgacctgtcc | ggtgccctga | atgaactgca | 7440 |
| ggacgaggca | gcgcggctat | cgtggctggc | cacgacgggc | gttccttgcg | cagctgtgct | 7500 |
| cgacgttgtc | actgaagcgg | gaagggactg | gctgctattg | ggcgaagtgc | cggggcagga | 7560 |
| tctcctgtca | tctcaccttg | ctcctgccga | gaaagtatcc | atcatggctg | atgcaatgcg | 7620 |
| gcggctgcat | acgcttgatc | cggctacctg | cccattcgac | caccaagcga | aacatcgcat | 7680 |
| cgagcgagca | cgtactcgga | tggaagccgg | tcttgtcgat | caggatgatc | tggacgaaga | 7740 |
| gcatcagggg | ctcgcgccag | ccgaactgtt | cgccaggctc | aaggcgcgca | tgcccgacgg | 7800 |
| cgaggatctc | gtcgtgaccc | atggcgatgc | ctgcttgccg | aatatcatgg | tggaaaatgg | 7860 |

| ccgcttttct ggattcatc | g actgtggccg | gctgggtgtg | gcggaccgct | atcaggacat | 7920 |
|----------------------|--------------|------------|------------|------------|------|
| agcgttggct acccgtgat | a ttgctgaaga | gcttggcggc | gaatgggctg | accgcttcct | 7980 |
| cgtgctttac ggtatcgcc | g ctcccgattc | gcagcgcatc | gccttctatc | gccttcttga | 8040 |
| cgagttcttc tgagcggga | c tctggggttc | gaaatgaccg | accaagcgac | gcccaacctg | 8100 |
| ccatcacgag atttcgatt | c caccgccgcc | ttctatgaaa | ggttgggctt | cggaatcgtt | 8160 |
| ttccgggacg ccggctgga | t gatcctccag | cgcggggatc | tcatgctgga | gttcttcgcc | 8220 |
| cacccccgg atctaagct  | c tagataagta | atgatcataa | tcagccatat | cacatctgta | 8280 |
| gaggttttac ttgctttaa | a aaacctccca | cacctccccc | tgaacctgaa | acataaaatg | 8340 |
| aatgcaattg ttgttgtta | a cttgtttatt | gcagcttata | atggttacaa | ataaagcaat | 8400 |
| agcatcacaa atttcacaa | a taaagcattt | ttttcactgc | attctagttg | tggtttgtcc | 8460 |
| aaactcatca atgtatctt | a tcatgtctgg | atccgggggt | accgagctcg | aattcgtaat | 8520 |
| catgtcatag ctgtttcct | g tgtgaaattg | ttatccgctc | acaattccac | acaacatacg | 8580 |
| agccggaagc ataaagtgt | a aagcctgggg | tgcctaatga | gtgagctaac | tcacattaat | 8640 |
| tgcgttgcgc tcactgccc | g ctttccagtc | gggaaacctg | tcgtgccagc | tgcattaatg | 8700 |
| aatcggccaa cgcgcgggg | a gaggcggttt | gcgtattggg | cgctcttccg | cttcctcgct | 8760 |
| cactgactcg ctgcgctcg | g tcgttcggct | gcggcgagcg | gtatcagctc | actcaaaggc | 8820 |
| ggtaatacgg ttatccaca | g aatcagggga | taacgcagga | aagaacatgt | gagcaaaagg | 8880 |
| ccagcaaaag gccaggaac | c gtaaaaaggc | cgcgttgctg | gcgtttttcc | ataggctccg | 8940 |
| ccccctgac            |              |            |            |            | 8950 |

```
<210> 11
          <211> 20
<212> ADN
 5
          <213> Artificial
          <220>
          <223> cebador
10
          <400> 11
          cagcettgag cetetggage
                                      20
          <210> 12
15
          <211> 21
          <212> ADN
          <213> Artificial
          <220>
20
          <223> cebador
          <400> 12
           ctaccetgag aagaegaeee g
                                         21
```

<210> 13 <211> 21 <212> ADN

25

|    | <213> Artificial                                                                  |     |
|----|-----------------------------------------------------------------------------------|-----|
| 5  | <220> <223> cebador  <400> 13  ctaccetgag aagacgacce g 21                         |     |
| 10 | <210> 14<br><211> 30<br><212> ADN<br><213> Artificial                             |     |
| 15 | <220><br><223> cebador                                                            |     |
|    | <400> 14<br>ggacaaatca aggttacaca gaaaaaagtc 30                                   |     |
| 20 | <210> 15<br><211> 20<br><212> ADN<br><213> Artificial                             |     |
| 25 | <220><br><223> cebador                                                            |     |
| 30 | <400> 15 cagcettgag cetetggage 20  <210> 16 <211> 4520 <212> ADN <213> Artificial |     |
| 35 | <220> <223> vector de trampa génica U3Cre                                         |     |
| 40 | <400> 16  aatgaaagac cccacctgta ggtttggcaa gctagcatgc ccaagaagaa gaggaaggtg       | 60  |
|    | tocaatttac tgaccgtaca ccaaaatttg cotgoattac cggtcgatgc aacgagtgat                 | 120 |
|    | gaggttcgca agaacctgat ggacatgttc agggatcgcc aggcgttttc tgagcatacc                 | 180 |
|    | tggaaaatgc ttctgtccgt ttgccggtcg tgggcggcat ggtgcaagtt gaataaccgg                 | 240 |
|    | aaatggtttc ccgcagaacc tgaagatgtt cgcgattatc ttctatatct tcaggcgcgc                 | 300 |
|    | ggtctggcag taaaaactat ccagcaacat ttgggccagc taaacatgct tcatcgtcgg                 | 360 |
|    | teegggetge caegaceaag tgacageaat getgttteae tggttatgeg geggateega                 | 420 |
|    | aaagaaaacg ttgatgccgg tgaacgtgca aaacaggctc tagcgttcga acgcactgat                 | 480 |
|    | ttcgaccagg ttcgttcact catggaaaat agcgatcgct gccaggatat acgtaatctg                 | 540 |

| gcatttctgg ggattgctta | taacaccctg | ttacgtatag | ccgaaattgc | caggatcagg | 600  |
|-----------------------|------------|------------|------------|------------|------|
| gttaaagata tctcacgtac | tgacggtggg | agaatgttaa | tccatattgg | cagaacgaaa | 660  |
| acgctggtta gcaccgcagg | tgtagagaag | gcacttagcc | tgggggtaac | taaactggtc | 720  |
| gagcgatgga tttccgtctc | tggtgtagct | gatgatccga | ataactacct | gttttgccgg | 780  |
| gtcagaaaaa atggtgttgc | cgcgccatct | gccaccagcc | agctatcaac | tcgcgccctg | 840  |
| gaagggattt ttgaagcaac | tcatcgattg | atttacggcg | ctaaggatga | ctctggtcag | 900  |
| agatacctgg cctggtctgg | acacagtgcc | cgtgtcggag | ccgcgcgaga | tatggcccgc | 960  |
| gctggagttt caataccgga | gatcatgcaa | gctggtggct | ggaccaatgt | aaatattgtc | 1020 |
| atgaactata tccgtaacct | ggatagtgaa | acaggggcaa | tggtgcgcct | gctggaagat | 1080 |
| ggcgattagg ctagcttaag | taacgccatt | ttgcaaggca | tggaaaaata | cataactgag | 1140 |
| aatagagaag ttcagatcaa | ggtcaggaac | agatggaaca | gctagagaac | catcagatgt | 1200 |
| ttccagggtg ccccaaggac | ctgaaatgac | cctgtgcctt | atttgaacta | accaatcagt | 1260 |
| tcgcttctcg cttctgttcg | cgcgcttctg | ctccccgagc | tcaataaaag | agcccacaac | 1320 |
| ccctcactcg gggcgccagt | cctccgattg | actgagtcgc | ccgggtaccc | gtgtatccaa | 1380 |
| taaaccctct tgcagttgca | tccgacttgt | ggtctcgctg | ttccttggga | gggtctcctc | 1440 |
| tgagtgattg actacccgtc | agcgggggtc | tttcatttgg | gggctcgtcc | gggatcggga | 1500 |
| gacccctgcc cagggaccac | cgacccacca | ccgggaggta | agctggccag | caacttatct | 1560 |
| gtgtctgtcc gattgtctag | tgtctatgac | tgattttatg | cgcctgcgtc | ggtactagtt | 1620 |
| agctaactag ctctgtatct | ggcggacccg | tggtggaact | gacgagttcg | gaacacccgg | 1680 |
| ccgcaaccct gggagacgtc | ccagggactt | cgggggccgt | ttttgtggcc | cgacctgagt | 1740 |
| ccaaaaatcc cgatcgtttt | ggactctttg | gtgcaccccc | cttagaggag | ggatatgtgg | 1800 |
| ttctggtagg agacgagaac | ctaaaacagt | tecegeetee | gtctgaattt | ttgctttcgg | 1860 |
| tttgggaccg aagccgcgcc | gcgcgtcttg | tctgctgcag | catcgttctg | tgttgtctct | 1920 |
| gtctgactgt gtttctgtat | ttgtctgaga | atatgggcca | gactgttacc | actcccttaa | 1980 |
| gtttgacctt aggtcactgg | aaagatgtcg | agcggatcgc | tcacaaccag | tcggtagatg | 2040 |
| tcaagaagag acgttgggtt | accttctgct | ctgcagaatg | gccaaccttt | aacgtcggat | 2100 |
| ggccgcgaga cggcaccttt | aaccgagacc | tcatcaccca | ggttaagatc | aaggtctttt | 2160 |
| cacctggccc gcatggacac | ccagaccagg | tcccctacat | cgtgacctgg | gaagccttgg | 2220 |
| cttttgaccc ccctccctgg | gtcaagccct | ttgtacaccc | taagcctccg | cctcctctc  | 2280 |
| ctccatccgc cccgtctctc | ccccttgaac | ctcctcgttc | gaccccgcct | cgatcctccc | 2340 |
| tttatccagc cctcactcct | tctctaggcg | ccaaacctaa | acctcaagtt | ctttctgaca | 2400 |
| gtggggggcc gctcatcgac | ctacttacag | aagacccccc | gccttatagg | gacccaagac | 2460 |

| caccccttc cgacagggac  | ggaaatggtg | gagaagcgac | ccctgcggga | gaggcaccgg | 2520  |
|-----------------------|------------|------------|------------|------------|-------|
| accectecce aattgeatet | cgcctacgtg | ggagacggga | gccccctgtg | gccgactcca | 2580  |
| ctacctcgca ggcattcccc | ctccgcgcag | gaggaaacgg | acagcttcaa | tactggccgt | 2640  |
| tctcctcttc tgacctttac | aactggaaaa | ataataaccc | ttcttttct  | gaagatccag | 2700  |
| gtaaactgac agctctgatc | gagtctgttc | tcatcaccca | tcagcccacc | tgggacgact | 2760  |
| gtcagcagct gttggggact | ctgctgaccg | gagaagaaaa | acaacgggtg | ctcttagagg | 2820  |
| ctagaaaggc ggtgcggggc | gatgatgggc | gccccactca | actgcccaat | gaagtcgatg | 2880  |
| ccgcttttcc cctcgaggga | tccatcgtag | tccaatttgt | taaagacagg | atatcagtgg | 2940  |
| tccaggctct agttttgact | caacaatatc | accagctgaa | gcctatagag | tacgagccat | 3000  |
| agataaaata aaagatttta | tttagtctcc | agaaaaaggg | gggaatgaaa | gaccccacct | 3060  |
| gtaggtttgg caagctagca | tgcccaagaa | gaagaggaag | gtgtccaatt | tactgaccgt | 3120  |
| acaccaaaat ttgcctgcat | taccggtcga | tgcaacgagt | gatgaggttc | gcaagaacct | 3180  |
| gatggacatg ttcagggatc | gccaggcgtt | ttctgagcat | acctggaaaa | tgcttctgtc | 3240  |
| cgtttgccgg tcgtgggcgg | catggtgcaa | gttgaataac | cggaaatggt | ttcccgcaga | 3300  |
| acctgaagat gttcgcgatt | atcttctata | tcttcaggcg | cgcggtctgg | cagtaaaaac | 3360  |
| tatccagcaa catttgggcc | agctaaacat | gcttcatcgt | cggtccgggc | tgccacgacc | 3420  |
| aagtgacagc aatgctgttt | cactggttat | gcggcggatc | cgaaaagaaa | acgttgatgc | 3480  |
| cggtgaacgt gcaaaacagg | ctctagcgtt | cgaacgcact | gatttcgacc | aggttcgttc | 3540  |
| actcatggaa aatagcgatc | gctgccagga | tatacgtaat | ctggcatttc | tggggattgc | 3600  |
| ttataacacc ctgttacgta | tagccgaaat | tgccaggatc | agggttaaag | atatctcacg | 3660  |
| tactgacggt gggagaatgt | taatccatat | tggcagaacg | aaaacgctgg | ttagcaccgc | 3720  |
| aggtgtagag aaggcactta | gcctgggggt | aactaaactg | gtcgagcgat | ggatttccgt | 3780. |
| ctctggtgta gctgatgatc | cgaataacta | cctgttttgc | cgggtcagaa | aaaatggtgt | 3840  |
| tgccgcgcca tctgccacca | gccagctatc | aactcgcgcc | ctggaaggga | tttttgaagc | 3900  |
| aactcatcga ttgatttacg | gcgctaagga | tgactctggt | cagagatacc | tggcctggtc | 3960  |
| tggacacagt gcccgtgtcg | gagccgcgcg | agatatggcc | cgcgctggag | tttcaatacc | 4020  |
| ggagatcatg caagctggtg | gctggaccaa | tgtaaatatt | gtcatgaact | atatccgtaa | 4080  |
| cctggatagt gaaacagggg | caatggtgcg | cctgctggaa | gatggcgatt | aggctagctt | 4140  |
| aagtaacgcc attttgcaag | gcatggaaaa | atacataact | gagaatagag | aagttcagat | 4200  |
| caaggtcagg aacagatgga | acagctagag | aaccatcaga | tgtttccagg | gtgccccaag | 4260  |
| gacctgaaat gaccctgtgc | cttatttgaa | ctaaccaatc | agttcgcttc | tcgcttctgt | 4320  |

|    | tcgcgcgctt                                            | ctgctccccg | agctcaataa | aagagcccac | aacccctcac | tcggggcgcc | 4380 |
|----|-------------------------------------------------------|------------|------------|------------|------------|------------|------|
|    | agtcctccga                                            | ttgactgagt | cgcccgggta | cccgtgtatc | caataaaccc | tcttgcagtt | 4440 |
|    | gcatccgact                                            | tgtggtctcg | ctgttccttg | ggagggtctc | ctctgagtga | ttgactaccc | 4500 |
|    | gtcagcgggg                                            | gtctttcatt |            |            |            |            | 4520 |
| 5  | <210> 17<br><211> 23<br><212> ADN<br><213> Artificial |            |            |            |            |            |      |
|    | <220><br><223> cebador                                |            |            |            |            |            |      |
| 10 | <400> 17<br>ccaatcttgc ttctttgct                      | g agc 23   |            |            |            |            |      |
| 15 | <210> 18<br><211> 22<br><212> ADN<br><213> Artificial |            |            |            |            |            |      |
| 20 | <220><br><223> cebador                                |            |            |            |            |            |      |
|    | <400> 18<br>ggctcatgct tgaatgtt                       | tc ag 22   |            |            |            |            |      |
| 25 | <210> 19<br><211> 23<br><212> ADN<br><213> Artificial |            |            |            |            |            |      |
| 30 | <220><br><223> cebador                                |            |            |            |            |            |      |
| 35 | <400> 19<br>ccaatcttgc ttctttgct                      | g agc 23   |            |            |            |            |      |
| 33 | <210> 20<br><211> 20<br><212> ADN                     |            |            |            |            |            |      |
| 40 | <213> Artificial<br><220><br><223> cebador            |            |            |            |            |            |      |
| 45 | <400> 20<br>atcatgcaag ctggtg                         | gctg 20    |            |            |            |            |      |
| 50 | <210> 21<br><211> 21<br><212> ADN<br><213> Artificial |            |            |            |            |            |      |
|    | <220><br><223> cebador                                |            |            |            |            |            |      |
| 55 | <400> 21<br>ctaccctgag aagacg                         | gaccc g 2  | 1          |            |            |            |      |

| 5  | <210> 22<br><211> 30<br><212> ADN<br><213> Artificial |        |    |  |  |
|----|-------------------------------------------------------|--------|----|--|--|
|    | <220><br><223> cebador                                |        |    |  |  |
| 10 | <400> 22<br>ggacaaatca aggttacaca gaaa                | aaagtc | 30 |  |  |
| 15 | <210> 23<br><211> 21<br><212> ADN<br><213> Artificial |        |    |  |  |
|    | <220><br><223> cebador                                |        |    |  |  |
| 20 | <400> 23<br>ctaccctgag aagacgaccc g                   | 21     |    |  |  |
| 25 | <210> 24<br><211> 20<br><212> ADN<br><213> Artificial |        |    |  |  |
| 30 | <220><br><223> cebador                                |        |    |  |  |
| 55 | <400> 24 cagcettgag cetetggage                        | 20     |    |  |  |

### REIVINDICACIONES

- 1. Un modelo animal de roedor que no expresa una o más sestrinas funcionales o que expresa niveles de traducción reducidos al menos el 50% de una o más sestrinas, y que no expresa proteína de unión al factor de crecimiento transformante β latente 4 (ltbp4) o que expresa niveles de traducción reducidos al menos el 50% de ltbp4.
- 5 2. El modelo animal de roedor de la reivindicación 1, en el que
  - (i) el genoma del roedor comprende una interrupción homocigota o heterocigota de un gen de sestrina, seleccionándose preferentemente el gen de sestrina interrumpido de sestrina 1, sestrina 2 y sestrina 3, y siendo más preferentemente sestrina 2; y/o
  - (ii) el genoma del roedor comprende una interrupción homocigota o heterocigota del gen de ltbp4.
- 3. El modelo animal de roedor de la reivindicación 2, en el que la interrupción se genera por una mutación, y preferentemente dicha mutación
  - (i) es una mutación por inserción, deleción o sustitución; y/o
  - (ii) se genera por direccionamiento génico, atrapamiento génico o mutagénesis química; y/o
  - (iii) se ha producido en un exón, intrón, región reguladora o sitio de corte y empalme de los genes de sestrina y ltbp4; y/o
  - (iv) da origen a la expresión de un gen indicador; y/o
  - (v) se ha producido en el 9º intrón del gen de sestrina 2; y/o
  - (vi) se ha producido en el 5º intrón del gen de ltpb4.
  - 4. El modelo de animal roedor de la reivindicación 2 ó 3, en el que
- 20 (i) el gen de sestrina 2 se interrumpe en el 9º intrón por inserción de un vector de trampa de genes, preferentemente pT1bgeo (SEC ID Nº: 10); y/o
  - (ii) el gen de ltbp4 se interrumpe en el 5º intrón por inserción de un vector de trampa de genes, preferentemente U3Cre (SEC ID Nº: 16).
  - 5. El modelo animal de roedor de una cualquiera de las reivindicaciones 1 a 4, en el que
- 25 (i) dicho roedor es un ratón o rata; y/o

15

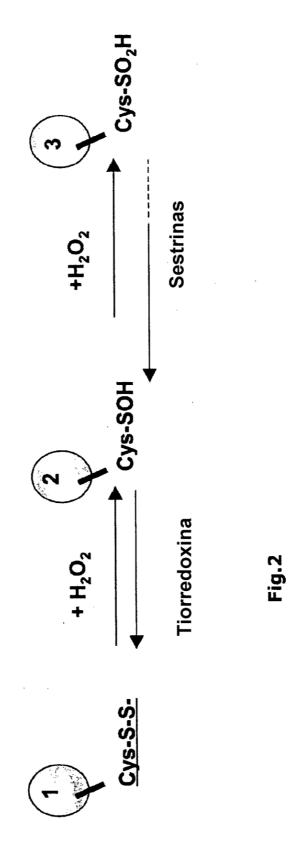
40

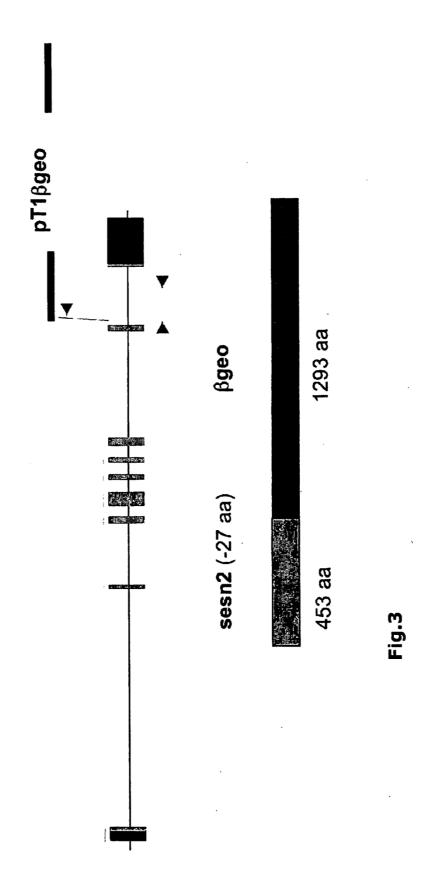
45

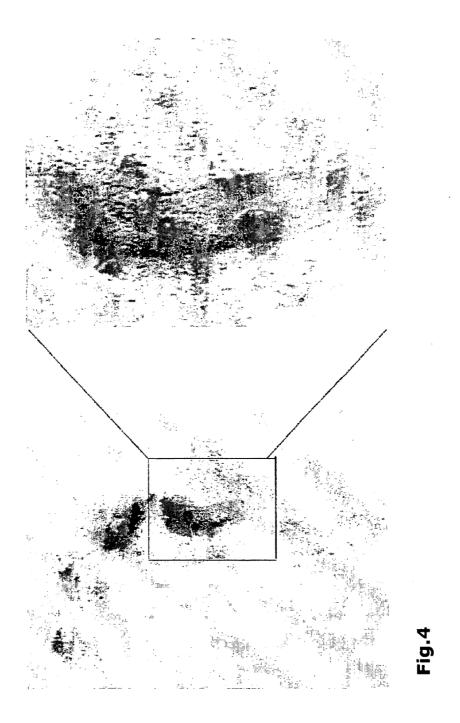
- (ii) dicho roedor muestra enfisema pulmonar y cáncer, preferentemente el cáncer es un cáncer de colon.
- 6. Un modelo animal de roedor que no expresa una o más sestrinas funcionales o que expresa niveles de traducción reducidos al menos el 50% de una o más sestrinas, siendo preferentemente dicho modelo animal de roedor como se define en las reivindicaciones 1 a 5.
- 30 7. Un cultivo celular o tisular aislado de los modelos animales de roedor de las reivindicaciones 1 a 6, en el que los niveles de expresión en la célula o en las células del tejido, de las proteínas sestrina y ltbp4 son como se define en las reivindicaciones 1 a 6.
  - 8. El cultivo celular o tisular de la reivindicación 7, en el que el cultivo celular o tisular es de pulmón o colon.
- 9. Un procedimiento para preparar el modelo animal de roedor de las reivindicaciones 1 a 6, que comprende interrumpir el gen de sestrina y/o ltbp4 en una célula germinal de un roedor de partida.
  - 10. El procedimiento de la reivindicación 9, en el que la célula germinal es una célula ES.
  - 11. Un procedimiento para seleccionar un agente para tratar un síntoma que aparece en el modelo animal de roedor de la reivindicación 1, que comprende:
    - (i) aplicar uno o más agentes a ensayar a dicho modelo animal de roedor,
    - (ii) determinar si uno o más síntomas que aparecen en dicho modelo animal de roedor han cambiado como resultado de la aplicación de dicho agente o agentes.
  - 12. El procedimiento de la reivindicación 11, en el que el síntoma se selecciona de un grupo que consiste en cáncer y enfisema pulmonar.
  - 13. Un procedimiento de selección de un agente que interfiere con la producción de ROS y la señalización de TGFβ, que comprende:
    - (i) aplicar uno o más agentes a ensayar al cultivo celular o tisular de la reivindicación 7,
    - (ii) determinar si los niveles de ROS celulares y la señalización de TGF-β han cambiado como resultado de la aplicación de dicho agente o agentes.
    - 14. El procedimiento de la reivindicación 13, en el que el cultivo celular o tisular es de pulmón o colon.

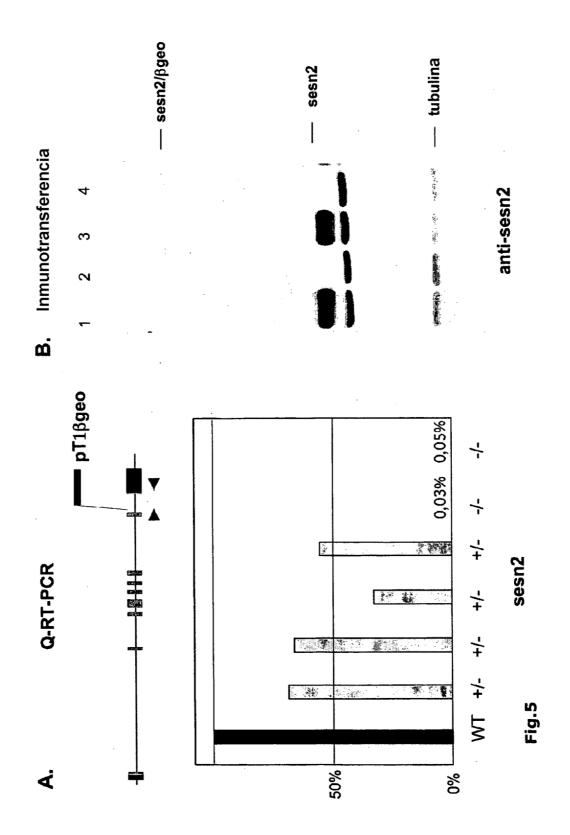
- 15. Un procedimiento para analizar si el cáncer y/o enfisema pulmonar está causado por una expresión proteica o génica de Itbp4 y sestrina o un nivel de expresión diferencial o por un defecto en el gen de Itbp4 y sestrina, que comprende:
  - (i) caracterizar la expresión proteica o génica de ltbp4 y sestrina o el nivel de expresión o el estado alélico del gen de ltbp4 y sestrina de un individuo que tiene cáncer o enfisema pulmonar,
  - (ii) caracterizar la expresión proteica o génica de Itbp4 y sestrina o el nivel de expresión o el estado alélico del gen de Itbp4 y sestrina de un individuo de control, indicando una diferencia en la expresión proteica o génica de Itbp4 y sestrina o el nivel de expresión o el estado alélico del gen de Itbp4 y sestrina que el cáncer y/o el enfisema pulmonar y/o la cardiomiopatía está relacionada con una expresión proteica o génica de Itbp4 y sestrina o un nivel de expresión diferencial o por un defecto en los genes de Itbp4 y sestrina.
- 16. El procedimiento de la reivindicación 15, en el que

5


10


15


- (i) la expresión de ltbp4 y sestrina o el nivel de expresión se detecta por RT-PCR, análisis de Northern, análisis de micromatrices o anticuerpos dirigidos contra las proteínas ltbp4 y sestrina; y/o
- (ii) la expresión génica de ltbp4 y sestrina o el nivel de expresión se detecta por RT-PCR, análisis de Northern, análisis de micromatrices o anticuerpos dirigidos contra las proteínas ltbp4 y sestrina; y/o
- (iii) el estado alélico del gen de ltbp4 y sestrina se detecta por exploración de mutaciones.


| sestrina 1               | MRLAAASNEAYAASLAVSELLSCHQCGGD-RGQDEELGIRIPRPLGHGPS 49  |   |
|--------------------------|--------------------------------------------------------|---|
| sestrina 2               | MNRGGSSASASANYLLCTNCRKV-LRKDKRIRVSQPLTRGPS 41          |   |
| sestrina 3               | MIVADSECHSEIKGYLPFTRGGVAGPETREEHREGQARRGSRGPS 45       |   |
| sestima 3                | * . : . : * , : : : : : : : : : : : : : : : : :        |   |
|                          | *                                                      |   |
|                          | RETPEKEMLOVGSEDAOMHALFADSFAALGRIDNITLVMVFHPOYLESFL 99  |   |
| sestrina 1               | 16 11 11 11 11 11 11 11 11 11 11 11 11 1               |   |
| sestrina 2               | AFIPEKEVVQANTADERTN-FLVEEYSTSGRLDNITQVMSLHTQYLESFL 90  |   |
| sestrina 3               | AFIPVEEILREGAESLEQH-LGLEALMSSGRVDNLAVVMGLHPDYLSSFW 94  |   |
|                          | *** :*::: .: . : : : : **:**:: ** :*.:**.**            |   |
|                          |                                                        |   |
| sestrina 1               | KTQHYLLQMDGPLPLHYRHYIGIMAAARHQCSYLVNLHVSDFLHVGGDPK 149 | • |
| sestrina 2               | RSQFYMLRMDGPLPLPDRHYIAIMAAARHQCSYLINMHVDEFLKTGGIAE 140 | ) |
| sestrina 3               | RLHYLLLHTDGPLASSWRHYIAIMAAARHQCSYLVGSHMTEFLQTGGDPE 144 | į |
| sestina v                | : : : *: ****                                          |   |
|                          |                                                        |   |
| sestrina 1               | WLNGLENAPQKLQNLGELNKVLAHRPWLITKEHIEGLLKAEEHSWSLAEL 199 | • |
| sestrina 2               | WINGLEYVPORLRNINEINKLIAHRPWLITKEHIQKIVKTGENNWSIPEL 190 |   |
| sestrina 2<br>sestrina 3 | WLIGLHRAPEKLRKLSEVNKLLAHRPWLITKEHIQALIKTGEHSWSLAEL 194 | - |
| sestrina 3               | ** ***::*:*.*:************* *:*: *:.***.**             | ż |
|                          | ** ***::*:*,*;**:*************                         |   |
|                          |                                                        |   |
| sestrina 1               | VHAVVLLTHYHSLASFTFGCGISPEIHCDGGHTFRPPSVSNYCICDITNG 249 |   |
| sestrina 2               | VHAVVLLAHYHALASFVFGSGINPERDPGIANGFRLISVSSFCVCDLAN- 239 |   |
| sestrina 3               | IQALVLLTHCHSLASFVFGCGILPEGDAEGSPASQAPSPPSEQ 237        | 7 |
|                          | ::*:***:*                                              |   |
|                          |                                                        |   |
| sestrina 1               | NHSVDEMQVNSAGNASVSDSFFEVEALMEKMRQLQECREEEE-ASQEEMA 298 | 3 |
| sestrina 2               | DNSIENTSLAGS-NFGIVDSLGELEALMERMKRLQEDREDDE-TTREEMT 287 |   |
| sestrina 3               | GTPPSGDPLNNSGGFEAARDVEALMERMRQLQESLLRDEGASQEEME 284    |   |
| Sesciina o               |                                                        | • |
|                          |                                                        |   |
| sestrina l               | SRFEMEKRESMFVFSSDDDEVTPARDVSRHFEDTSYGYKD 338           | 2 |
| sestrina 1<br>sestrina 2 |                                                        |   |
|                          | TRFEKEKKESLFVVPGETLHAFPHSDFEDDVIVTADVSRYIEDPSFGYED 33  |   |
| sestrina 3               | NRFELEKSESLLVTPSADILEPSPHPDILCFVEDPAFGYED 325          | ) |
|                          | .*** ** **::* : *:**.::**:*                            |   |
|                          | 1                                                      | _ |
| sestrina l               | FSRHG-MHVPTFRVQDYCWEDHGYSLVNRLYPDVGQLIDEKFHIPYNLTY 38  | 7 |
| sestrina 2               | FARRGEEHLPTFRAQDYTWENHGFSLVNRLYSDIGHLLDEKFRMVYNLTY 38  | 7 |
| sestrina 3               | FTRRGTQAPPTFRAQDYTWEDHGYSLIQRLYPEGGQLLDEKFQVACSLTY 375 | 5 |
|                          | *:*:*                                                  |   |
|                          |                                                        |   |
| sestrina 1               | NTMAMHKDVDTSMLRRAIWNYIHCMFGIRYDDYDYGEINQLLDRSFKVYI 43  | 7 |
| sestrina 2               | NTMATHEDVDTTTLRRALFNYVHCMFGIRYDDYDYGEVNQLLERSLKVYI 43  | 7 |
| sestrina 3               | NTIAMHSGVDTSMLRRAIWNYIHCVFGIRYDDYDYGEVNQLLERNLKIYI 425 |   |
| SCSCIIII V               | **:* * * * * * * * * * * * * * * * *                   |   |
|                          |                                                        |   |
|                          | KTVVCTPEKVTKRMYDSFWRQFKHSEKVHVNLLLIEARMQAELLYALRAI 48  | 7 |
| sestrina 1               | KTVTCYPERTTKRMYDSYWRQFTHSEKVHVNLLLMEARMQAELLYALRAI 48° |   |
| sestrina 2               | KTVACYPEKTTRRMYNLFWRHFRHSEKVHVNLLLLEARMOAALLYALRAI 47  |   |
| sestrina 3               |                                                        | ر |
|                          | *** * **: * * * * * * * * * * * * * * *                |   |
|                          |                                                        |   |
| sestrina l               | TRYMT 492                                              |   |
| sestrina 2               | TRHLT 492                                              |   |
| sestrina 3               | TRYMT 480                                              |   |
|                          | **::*                                                  |   |
|                          |                                                        |   |

# Fig.1









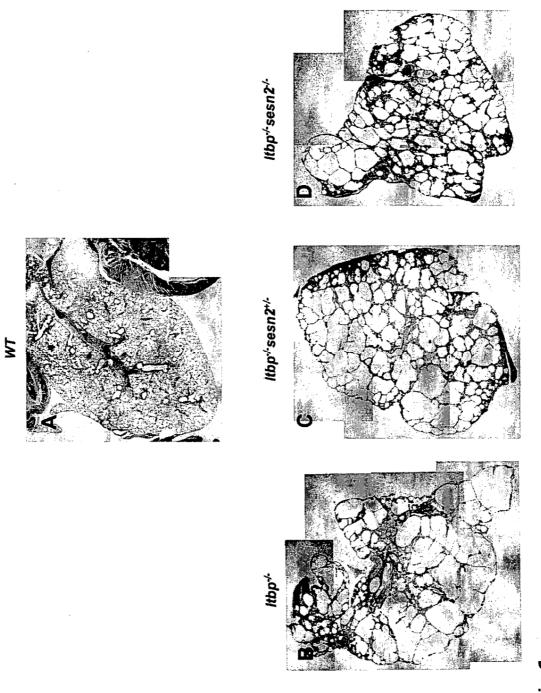
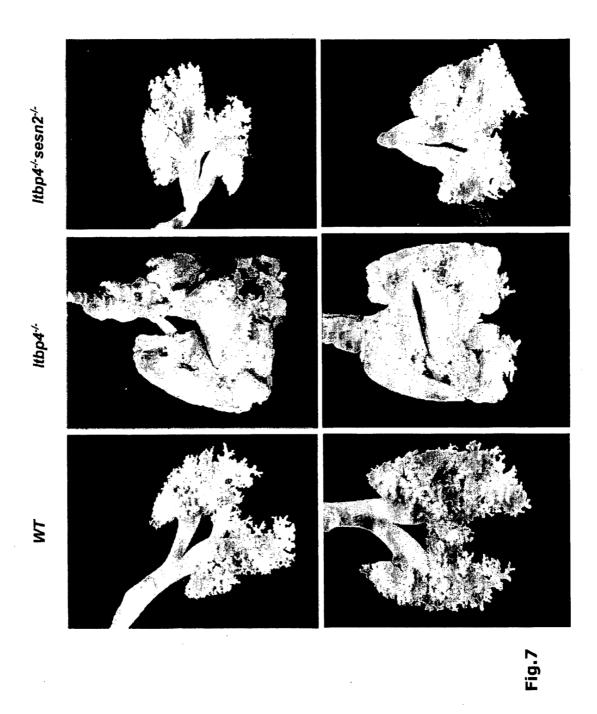
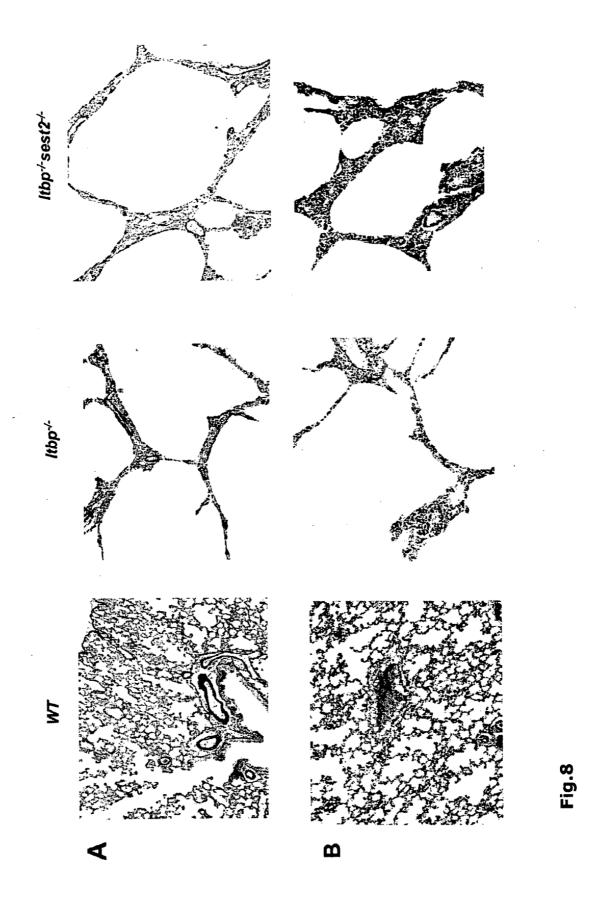
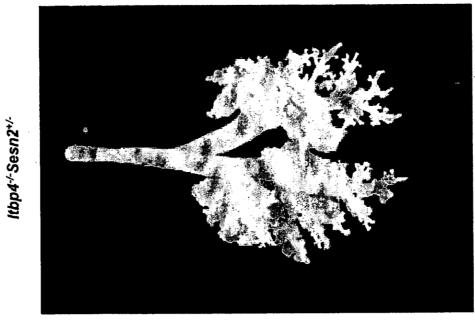
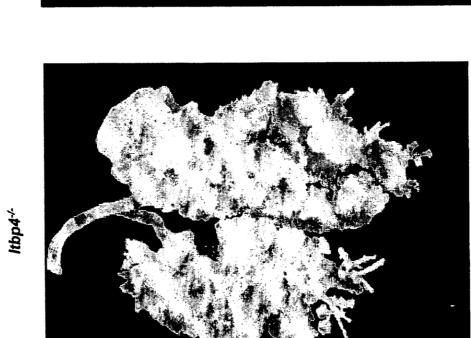







Fig.6









. g

Fig. 1(

Itbp4-'-sesn\*/+

Itbp4"-sesn"



ig.11

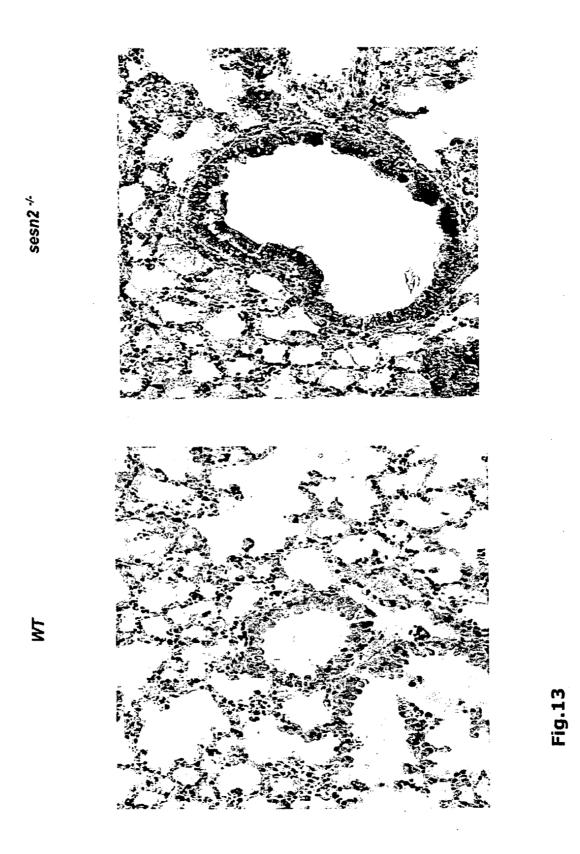
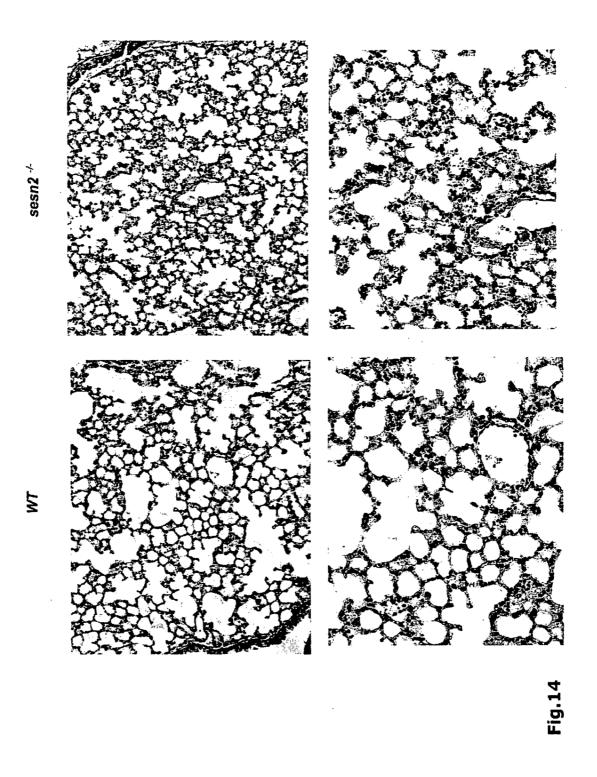





Fig.12





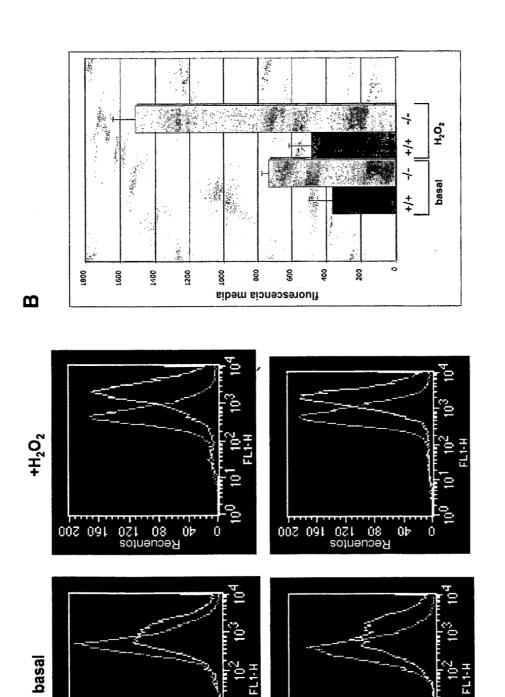



Fig. 15

80 120 160 200

40

80 150 160 200 Becneutos

40

0