

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 359 896

(51) Int. Cl.:

C12Q 1/04 (2006.01)

	,
(12)	TRADUCCIÓN DE PATENTE EUROPE

Т3

- 96 Número de solicitud europea: 07425143 .0
- 96 Fecha de presentación : 13.03.2007
- 97 Número de publicación de la solicitud: 1970451 97 Fecha de publicación de la solicitud: 17.09.2008
- 54 Título: Un método de diagnóstico para la determinación de Helicobacter pylori.
 - (73) Titular/es:

ABS ADVANCED BIOMEDICAL SYSTEMS S.R.L. St. Statale 11 Padana Sup., 14 20063 Cernusco S/N, IT

- (45) Fecha de publicación de la mención BOPI: 27.05.2011
- (2) Inventor/es: Giordano, Paolo
- (45) Fecha de la publicación del folleto de la patente: 27.05.2011
- 74 Agente: Justo Bailey, Mario de

ES 2 359 896 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Un método de diagnóstico para la determinación de Helicobacter pylori

10

25

- 5 La presente invención se refiere a un método y a un kit de diagnóstico para la determinación de *Helicobacter pylori* en biopsias de tejido.
 - La *Helicobacter pylori* es un agente infeccioso que es el agente causante de úlceras gástricas y duodenales y que, desde 1994, ha sido también incluido en la lista de agentes cancerígenos.
 - En la actualidad, la erradicación de la *Helicobacter pylori* es posible por medio de agentes farmacológicos, que aseguran un rango de éxito del 96%.
- La diagnosis de infección por *H. pylori* puede ser llevada a cabo por medio de diversos métodos, incluyendo una prueba respiratoria, comprobando la presencia de la bacteria en las heces, y mediante análisis de una muestra de biopsia. Aunque los dos primeros métodos son considerados por algunos autores como pruebas de referencia para la diagnosis de infección por *H. pylori* en la mucosa gástrica, la detección de la presencia de la bacteria en el tejido de biopsia es considerado aún como un método seguro, sensible y específico, en particular para los pacientes que son sometidos a examen endoscópico.
 - El ensayo en relación con la presencia de la bacteria en el material de biopsia del tejido puede ser llevado a cabo por medio de tres métodos diferentes: examen histológico, cultivo bacteriano, y determinación de la presencia de ureasa. Véase, por ejemplo, el documento US 5.439.801. La última prueba está basada en la capacidad inusual de la *H. pylori* para producir altas cantidades de ureasa, una enzima no producida por el cuerpo humano.
- Es exactamente gracias a esta característica particular que la *Helicobacter pylori* está capacitada para colonizar la mucosa gástrica, a pesar de la alta acidez del jugo gástrico. En efecto, la ureasa disocia la urea presente en el medio en NH₃ y CO₂, formando así un micro-entorno en el que los iones de amonio neutralizan el ácido clorhídrico del jugo gástrico, y evitando que la *Helicobacter pylori* sea destruida.
- De ahí el hecho de que la presencia de esta enzima en las muestras de biopsia sea altamente indicativa de la presencia de *H. pylori*.
- Los procedimientos utilizados en diversos ensayos diferentes de ureasa son esencialmente muy similares: una muestra de biopsia se añade a un medio que puede estar tanto en forma líquida como en gel o deshidratado. El medio contiene urea, un tinte indicador de pH y un regulador. La presencia de ureasa provoca la hidrólisis de la urea con la consiguiente producción de iones de amonio, y después un incremento del pH, suficiente para provocar el desarrollo del color del tinte indicador.
- 40 La principal ventaja ofrecida por la prueba de ureasa consiste en la posibilidad de diagnosticar la presencia o la ausencia de infección en menos tiempo y de una manera más simple con respecto a la detección por medio de métodos histológicos o de aislamiento de cultivo bacteriano.
- Sin embargo, las pruebas actualmente existentes en el mercado tienen límites, tanto en términos de sensibilidad como de velocidad de ejecución. En efecto, algunas pruebas comercialmente disponibles sugieren esperar hasta 24 horas para juzgar si el resultado es efectivamente negativo. En particular, cuando la carga bacteriana es muy baja, tal como en el caso de pacientes con gastritis atrófica o que han estado sometidos recientemente a tratamiento antibiótico, el tiempo necesario para desarrollo del color puede ser de horas. En efecto, la identificación de una prueba positiva es mucho más rápida cuanto mayor sea la carga bacteriana presente en la biopsia.
 - Por otra parte, esperar durante tales períodos de tiempo largos puede conducir también a resultados positivos falsos debido al crecimiento de bacterias capaces de descomponer la urea de la muestra de biopsia.
- Este problema ha sido resuelto en la técnica conocida mediante la eliminación del uso de regulador. En efecto, la ausencia de regulador provoca un incremento de la sensibilidad y de la velocidad de ejecución de la prueba, y el desarrollo del color puede ser visible incluso en un minuto, incluso algunas publicaciones de la literatura recomiendan la lectura a los 10 minutos.
- Los métodos de este tipo ("prueba de un minuto") han sido descritos en la literatura específica. Sin embargo, en las soluciones descritas, el reactivo debe ser preparado en el momento de su utilización, o ser utilizado dentro de los 5 días a lo sumo, si está almacenado en un refrigerador a 4 °C. Esto se debe a que la urea es inestable con el tiempo en ausencia de un sistema regulador, y tiende a disociarse rápidamente para dar amoniaco y dióxido de carbono. De ahí que, si el reactivo de diagnóstico libre de regulador no se utiliza de forma inmediata o se almacena en un refrigerador, se pueden obtener falsos positivos durante su uso debido a la presencia de amoniaco resultante de la descomposición natural de la urea.

Por consiguiente, si por una parte, la ausencia de agente regulador incrementa la sensibilidad y la velocidad del método de diagnóstico, por otra parte, ello influye negativamente en la estabilidad del reactivo, en particular de la urea.

- Por ello, el problema planteado por la presente invención consiste en proporcionar un método de diagnóstico para la determinación de *Helicobacter pylori* en biopsias de tejido, que sea tanto rápido como que tenga una alta sensibilidad, pero que al mismo tiempo tenga una estabilidad prolongada en el tiempo y que pueda ser potencialmente almacenado a temperatura ambiente.
- 10 Dicho problema se ha resuelto mediante un método de diagnóstico y un kit de diagnóstico según se describen en las reivindicaciones anexas.

15

30

40

- La presente invención se refiere a un método de diagnóstico perfeccionado para la detección de actividad de ureasa de *Helicobacter pylori* en una biopsia de tejido, con preferencia una biopsia de tejido gástrico.
- El sistema comprende el uso de una categoría particular de sustancias, conocidas como lactonas, capacitadas para impedir la descomposición natural de la urea que actúa como substrato para la actividad de la enzima, y un indicador de pH, tal como por ejemplo, rojo de fenol.
- 20 La presencia de lactona estabiliza la urea, pero no inhibe la ureasa, cuando está presente, en cuanto a su disociación en NH₃ y CO₂. El amoniaco provocará entonces un cambio en el pH del reactivo de diagnóstico y con ello el revelado del indicador.
- Se ha encontrado, sorprendentemente, que la lactona no solo evita la degradación de la urea sino que no influye en el resultado de la prueba. En efecto, la lactona consigue el correcto equilibrio entre la estabilización necesaria de la urea con el tiempo y la estabilización excesiva que impida su degradación enzimática por parte de la ureasa.
 - La formulación permite que se alcance una solución que sea estable con el tiempo, a temperatura ambiente, incluso en ausencia de sistemas reguladores.
 - Ejemplos de lactonas que pueden ser utilizadas en el método de la invención se eligen en el grupo constituido por gamma-butirolactona, beta-butirolactona, gamma-tiobutirolactona, delta-valerolactona, gamma-octanoilactona y épsilon-caprolactona. La lactona preferida para su uso es la gamma-valerolactona.
- La concentración de la urea en el reactivo de diagnóstico está comprendida entre 5 y 100 g/l, preferentemente entre 10 y 60 g/l, mientras que la lactona está presente en cantidades comprendidas entre 1 y 150 ml/l, con preferencia entre 3 y 100 ml/l.
 - El reactivo de diagnóstico, con preferencia, comprende también un agente conservante, por ejemplo azida de sodio.
 - La concentración de agente conservante está comprendida entre un 0,05% y un 0,5% en peso, con preferencia entre un 0,07% y un 0,2% en peso.
- Gracias a la ausencia de regulador, el método de diagnóstico de la invención está capacitado para alcanzar la máxima velocidad de detección de actividad de ureasa. Por ejemplo, pruebas realizadas sobre muestras que contienen *Helicobacter pylori* provocaron el desarrollo de color del reactivo de diagnóstico en tiempos comprendidos entre 1 minuto y 10 minutos, mientras que las muestras negativas han sido observadas durante 24 horas aproximadamente sin que mostraran ningún cambio de color. Tanto la sensibilidad como la especificidad de determinación de actividad de la ureasa se incrementaron, y equivalen a aproximadamente un 94% y aproximadamente un 100%, respectivamente.
 - Al mismo tiempo, el método de diagnóstico estabiliza la urea y permite que el reactivo de diagnóstico sea almacenado a temperatura ambiente (25 °C) durante períodos de tiempo superiores a 18 meses.
- 55 En una realización preferida de la invención, la rapidez de ejecución y la sensibilidad del método, mencionadas anteriormente, fueron obtenidas con la utilización de una relación variable de reactivo de diagnóstico / biopsia de tejido igual a 10-300 μl : 1 mm³, con preferencia igual a 10-30 μl : 1 mm³. Ventajosamente, la biopsia de tejido tiene dimensiones comprendidas entre 1 y 10 mm³.
- 60 En particular, la estabilidad del reactivo, también en la fase líquida, permite la creación de un sistema analítico en el que la cantidad de reactivo puede ser variable y limitada al mínimo necesario de modo que las muestras de biopsia estén completamente sumergidas. De este modo, se obtiene una alta concentración de amoniaco en el medio, que provoca una velocidad incrementada de cambio de pH y, de ese modo, de detección de actividad de la ureasa. En otras palabras, se ha verificado que utilizando la relación de reactivo de diagnóstico / biopsia que se ha descrito en lo que antecede, se obtiene un aumento en la velocidad de respuesta de la prueba que es mayor que la que resultaría de la eliminación de regulador solamente, utilizando volúmenes de reactivo fijos, predeterminados.

Mientras que, por una parte, la carencia de sistema regulador permite optimizar la velocidad de cambio de pH, por otra parte, esto expone el sistema al riesgo de artefactos debido a la presencia de sustancias capacitadas para modificar el pH de la solución en la muestra de biopsia. Sin embargo, si ocurre esto, es suficiente con añadir una pequeña cantidad adicional de reactivo, con el fin de obtener una solución de partida del color apropiado.

Durante el uso práctico, el operador introduce la muestra de biopsia en un contenedor transparente, preferentemente con fondo cónico, y a continuación añade el reactivo de diagnóstico por medio de un cuentagotas insertado en la botella de reactivo, o de cualquier sistema susceptible de añadir cantidades pequeñas en secuencia (unos pocos µl cada vez), hasta que la biopsia está cubierta por completo. Obviamente, el contenedor tendrá dimensiones suficientemente reducidas como para permitir que la muestra quede cubierta de reactivo mientras se mantiene en el rango de volumen de este último descrito en lo que antecede. Si el reactivo cambia de color inmediatamente, éste será muy probablemente un artefacto debido a la presencia de sustancias básicas en la muestra de biopsia. En este caso, el operador añade reactivo hasta obtener la condición inicial deseada (solución amarilla en el caso de que se utilice rojo de fenol como indicador).

En una realización particular de la invención, el reactivo de diagnóstico puede comprender también un regulador a un pH comprendido entre 5,0 y 7,0, dependiendo del indicador de pH utilizado (para el rojo de fenol el pH óptimo varía entre 5,5 y 6,8). Los reguladores que pueden ser utilizados incluyen reguladores a base de fosfato de sodio/potasio, citrato de sodio, acetato de sodio.

En una realización adicional, la presente invención se refiere a un kit de diagnóstico para determinar actividad de ureasa en una muestra de biopsia, que comprende materias primas previamente preparadas, pre-medidas y pre-envasadas, así como también materias relativas estériles, no estériles o esterilizables de un solo uso, tales como, por ejemplo, un contenedor con fondo cónico para la biopsia de tejido, recipientes de mezcla para los componentes, y pipetas o cuentagotas para añadir el reactivo de diagnóstico a la muestra de tejido.

Con ello, dicho kit podrá comprender el substrato de enzima, es decir urea, una lactona y un indicador de pH en cantidades pre-medidas. Los componentes pre-medidos pueden estar en envases separados o ya mezclados para proporcionar una solución única, acuosa, lista para su uso.

Opcionalmente, el kit puede contener también un conservante, por ejemplo azida de sodio, también en cantidades pre-medidas.

En el caso de que los componentes pre-medidos del kit estén en contenedores separados, una vez que se tenga el kit abierto, el técnico de laboratorio sólo tendrá que preparar el reactivo de diagnóstico mezclando los componentes pre-medidos, con preferencia previamente disueltos en una cantidad apropiada de agua desionizada. El reactivo así obtenido podrá ser aplicado a continuación a la biopsia de tejido, observando cualquier cambio de color dentro de un período de 1-10 minutos.

En el caso de que los componentes del kit estén ya mezclados en una solución acuosa lista para su uso, una vez que el kit está abierto, el técnico de laboratorio (utilizando una pipeta o un cuentagotas), añadirá el reactivo de diagnóstico a la muestra de biopsia, la cual habrá sido coloca en un contenedor, con preferencia con fondo cónico.

45 Ejemplos

5

20

25

30

40

55

Se ha analizado 1 mm³ de muestras de biopsia gástrica, tomadas en el seno y en el fondo de pacientes afectados por úlceras duodenales o gástricas.

- 50 Las muestras fueron colocadas en un contenedor transparente, de fondo cónico, junto con 30 μl de un reactivo de diagnóstico, obtenido mediante mezcla de los componentes que siguen, con las concentraciones siguientes, expresadas por litro de reactivo, listo para su uso:
 - 20 g de urea;
 - 6,6 ml de γ-valerolactona;
 - 16,6 mg/l de rojo de fenol;
- azida de sodio, como conservante, a una concentración final de un 0,09%.

El color inicial de la solución fue normalizado mediante el ajuste de la absorbencia a 450 nm en un valor de 0,85.

Las muestras positivas provocaron el desarrollo del color de la solución en tiempos comprendidos entre 1 minuto y 10 minutos. Las muestras que eran negativas a los 10 minutos, fueron observadas durante 24 horas, sin que mostraran ningún cambio de color.

ES 2 359 896 T3

La sensibilidad de la prueba rápida fue del 94%, mientras que la especificidad fue del 100%.

- Con el fin de evaluar la velocidad de cambio de color del reactivo, se ha llevado a cabo un estudio en solución, mediante adición de una cantidad predeterminada de ureasa, extraída del *Canavalia ensiformis* (Sigma Aldrich), al mismo volumen del reactivo de la invención y de un reactivo comercial (UFT-200, ABS Advanced Biomedical Systems Srl).
- Las cinéticas de desarrollo de los dos reactivos han sido obtenidas midiendo el OD a 540 nm a continuación de la adición de ureasa (160 mU). Los resultados obtenidos demuestran que la cinética de desarrollo de la preparación de la invención alcanzó el 50% del valor final después de 40 s, mientras que la solución regulada alcanzó el 50% del valor de estabilización después de 200 s.
- Con el fin de determinar la estabilidad del reactivo de diagnóstico, varias porciones alícuotas del mismo fueron almacenadas en viales de vidrio sellados, a una temperatura de 50 °C, durante un período total de 6 meses. Las cinéticas de desarrollo del reactivo, después de la adición de ureasa (160 mU), han sido determinadas a intervalos de siete días.
- Los resultados obtenidos muestran que el reactivo no regulado mantiene sus características de sensibilidad a la ureasa durante más de 2,5 meses, equivalente a una estabilidad superior a 18 meses a 25 °C.

REIVINDICACIONES

- 1.- Un método de diagnóstico para la determinación de Helicobacter pylori en una biopsia de tejido, que comprende la etapa de incubar una biopsia de tejido con un reactivo de diagnóstico acuoso que comprende urea y un indicador 5 de pH, y determinar cualquier cambio en el pH, que se caracteriza porque dicho reactivo de diagnóstico comprende una lactona.
 - 2.- El método de acuerdo con la reivindicación 1, en el que la relación de reactivo de diagnóstico / biopsia de tejido es igual a 10-300 μl : 1 mm³, con preferencia igual a 10-30 μl : 1 mm³.
 - 3.- El método de acuerdo con las reivindicaciones 1 ó 2, en el que dicha biopsia de tejido tiene dimensiones comprendidas entre 0,1 y 10 mm³.
- 4.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que dicha urea está comprendida entre 15 5 y 100 g/l, con preferencia entre 10 y 60 g/l, y dicha lactona está presente en cantidades comprendidas entre 1 y 150 ml/l, con preferencia entre 3 y 100 ml/l.
- 5.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 4, en el que dichas lactonas se seleccionan en el grupo constituido por gamma-butirolactona, beta-butirolactona, gamma-tiobutirolactona, 2-acetil-gamma-20 butirolactona, gamma-valerolactona, delta-valerolactona, gamma-octanoilactona, y épsilon-caprolactona, con preferencia gamma-valerolactona.
 - 6.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 5, que comprende además un conservante, con preferencia azida de sodio.
 - 7.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 6, en el que dicho indicador de pH es rojo de fenol
- 8.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 7, en el que el cambio de pH se determina 30 midiendo la absorbencia de la muestra a una longitud de onda que depende del tipo de indicador utilizado.
 - 9.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 8, en el que el tiempo de desarrollo de pH está comprendido entre 1 y 10 minutos.
- 35 10.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 9, en el que la concentración de conservante está comprendida entre un 0,05% y un 0,5% en peso, con preferencia entre un 0,07% y un 0,2% en peso.
 - 11.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 10, en el que dicho reactivo de diagnóstico comprende un regulador de acetato de sodio, citrato de sodio o fosfato de sodio/ potasio, a un pH comprendido entre 5,0 y 6,8.
 - 12.- El método de diagnóstico de acuerdo con cualquiera de las reivindicaciones 1 a 11, en el que dicho reactivo de diagnóstico se almacena a temperatura ambiente durante al menos 15 meses.
- 45 13.- El método de acuerdo con cualquiera de las reivindicaciones 1 a 12, en el que dicha biopsia de tejido es una biopsia de tejido gástrico.
 - 14.- Un kit de diagnóstico para la determinación de Helicobacter pylori en una biopsia de tejido, que comprende la urea de substrato de enzima, una lactona y un indicador de pH, en cantidades pre-medidas.
 - 15.- El kit de diagnóstico de acuerdo con la reivindicación 14, que comprende además un conservante.
 - 16.- El kit de diagnóstico de acuerdo con las reivindicaciones 14 ó 15, que comprende además un regulador de acetato de sodio, citrato de sodio o fosfato de sodio/ potasio, a un pH comprendido entre 5,0 y 6,8.
 - 17.- El kit de diagnóstico de acuerdo con cualquiera de las reivindicaciones 14 a 16, en el que dichos componentes se mantienen en envases separados o ya mezclados de manera que proporcionan una solución acuosa, lista para su uso.
- 60 18.- El kit de diagnóstico de acuerdo con cualquiera de las reivindicaciones 14 a 17, que comprende materiales de un solo uso, estériles, no estériles o esterilizables.
 - 19.- El kit de diagnóstico de acuerdo con la reivindicación 18, en el que dicho material se elige en el grupo constituido por un contenedor de fondo cónico, recipientes de mezcla de componentes y pipetas o cuentagotas.

6

10

25

40

50

55