

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de publicación: $2\ 360\ 107$

(51) Int. Cl.:

C03B 9/453 (2006.01)

_	
12	TRADUCCIÓN DE DATENTE EUDODEA
(12)	TRADUCCIÓN DE PATENTE EUROPEA
(-)	TIME COLON DE L'ALENTE COLOT EA

Т3

- 96 Número de solicitud europea: 06121925 .9
- 96 Fecha de presentación : **06.10.2006**
- 97 Número de publicación de la solicitud: 1772436 97 Fecha de publicación de la solicitud: 11.04.2007
- 54 Título: Método de empuje y dispositivo para transferir artículos de vidrio.
- (30) Prioridad: **07.10.2005 IT TO05A0713**

(3) Titular/es: **BOTTERO S.p.A.** Via Genova, 82

12010 Cuneo, IT

Fecha de publicación de la mención BOPI: 31.05.2011

(72) Inventor/es: Borsarelli, Gianclaudio; Sesia, Carlo y

Viada, Bruno

(45) Fecha de la publicación del folleto de la patente: 31.05.2011

(74) Agente: Carvajal y Urquijo, Isabel

ES 2 360 107 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Método de empuje y dispositivo para transferir artículos de vidrio

20

30

40

45

50

La presente invención está relacionada con un método de transferencia de artículos de vidrio en una máquina de 5 tipo I.S.

En las máquinas para fabricar artículos de vidrio huecos, en particular botellas, las botellas fabricadas en cada línea son transferidas desde el molde de acabado sobre una placa o superficie de soporte horizontal relativo, desde donde se transfieren sobre un transportador de descarga por medio de un dispositivo de empuje que desplaza las botellas a lo largo de un arco de 90°.

El dispositivo de empuje comprende un miembro de transferencia similar a un peine que tiene uno o más compartimentos, en donde cada uno alberga una botella y rodeado por una pared posterior, y una pared lateral en sentido transversal con respecto a la pared posterior. Conforme el miembro de transferencia gira a lo largo del mencionado arco, cada botella queda retenida dentro del compartimento respectivo por un flujo de aire comprimido que se proyecta desde una abertura situada normalmente en un extremo libre de la pared lateral del compartimento, y orientado para generar un flujo de aire de retención paralelo a la placa de soporte y dirigido sobre una porción inferior de la botella para forzar la misma al interior de la esquina formada por la pared posterior y la pared lateral.

Aunque se han adoptado soluciones, algunas de las mismas fallan para proporcionar la retención de la botella dentro del compartimento sin importar la forma/dimensión de la botella y la posición inicial de la botella con respecto al miembro de transferencia. Mientras tanto en otras soluciones, el aire soplado sobre la botella produce daños en la superficie exterior de la botella, reduciendo así la calidad del producto acabado. Surgen serios problemas y en particular cuando la cinta transportadora se excede de una velocidad de umbral dada, por ejemplo de cincuenta metros por minuto; en cuyo caso, el artículo es transferido a una velocidad de rotación tal que la fuerza centrífuga sobre el artículo es mayor que la fricción entre el artículo y la superficie de soporte, con el resultado de que el artículo es expulsado del miembro de transferencia.

25 El documento US 6494063 expone un empujador en donde el aire comprimido es soplado hacia abajo por medio de una boquilla enfrentada a una parte superior de un artículo de vidrio, y dispuesto en una esquina de una bolsa de recepción del artículo de vidrio.

Es un objeto de la presente invención el proporcionar un método de empuje diseñado para posicionar y retener los artículos de vidrio de forma precisa y fiable dentro de los compartimentos, conforme son transferidos sobre el transportador, sin importar las características geométricas de los artículos y por su posición sobre la placa de soporte, y para prevenir la colisión de los artículos con las paredes el miembro de transferencia en cualquier condición de transferencia.

De acuerdo con la presente invención, se proporciona un método de transferencia de artículos de vidrio desde una placa de soporte intermedia a un transportador de descarga tal como se reivindica en la reivindicación 1.

35 La presente invención está relacionada también con un dispositivo de empuje para transferir artículos de vidrio.

De acuerdo con la presente invención, se proporciona un dispositivo de empuje para transferir artículos de vidrio desde una placa de soporte intermedia a un transportador de descarga tal como se expone en la reivindicación 7.

Se describirá a modo de ejemplo una realización no limitante con referencia a los dibujos adjuntos, en donde:

La figura 1 muestra una vista en planta esquemática de una realización preferida de un dispositivo de empuje de acuerdo con lo expuesto en la presente invención;

La figura 2 muestra una sección a escala mayor a lo largo de la línea II-II en la figura 1;

La figura 3 muestra una sección a escala mayor a lo largo de la línea III-III en la figura 1;

Las figuras 4 y 5 muestran secciones con las partes retiradas para mayor claridad, de dos variaciones de un detalle de la figura 3;

Las figuras 6 y 7 muestran un detalle de la figura 1 en dos condiciones operativas diferentes.

El numero 1 en la figura 1 indica como un conjunto un dispositivo de empuje para transferir los artículos 2 de vidrio desde una placa 3 de soporte intermedia horizontal, comúnmente denominada como una "placa muerta", hacia un transportador 4 de descarga que se muestra esquemáticamente en la figura 1.

En el ejemplo descrito, el dispositivo 1 comprende un conjunto 6 de transferencia compartimentado conectado integralmente a un extremo libre de un miembro movible 7 de un accionador 8 lineal neumático conocido, para poder mover el conjunto de transferencia 6 entre una posición de retirada, y una posición de adelantamiento (Figura 1) en donde el conjunto 6 de transferencia se extiende sobre la placa de soporte 3. El accionador 8 está encajado a una mesa giratoria (no mostrada) para rotar en direcciones opuestas alrededor de un eje vertical 9, perpendicular a

la placa de soporte 3, para mover el conjunto 6 de transferencia, y por tanto los artículos 2 entre la placa 3 de soporte y el transportador 4.

Con referencia a la figura 1, el conjunto 6 de transferencia comprende dos compartimentos o asientos 10, cada uno para el respectivo artículo 2; y un miembro transversal 11 paralelo a la placa de soporte 3 y en conexión integral de una forma conocida a un extremo axial del miembro movible 7 del accionador 8 lineal. El miembro transversal 11 soporta dos miembros 12 de transferencia de lado con lado, definiendo cada uno un asiento 10 para el respectivo artículo 1, y encajado cada uno a un miembro transversal 11, ajustable a lo largo del miembro transversal 11 en forma independiente del otro miembro 12 de transferencia, mediante un cuerpo de interfaz 15 de sección en C respectiva.

Tal como se muestra en la figura 2, cada cuerpo de interfaz 15 comprende una pared 16 intermedia plana que hace contacto con el miembro 11 transversal, y localizado sobre el lado opuesto del miembro transversal 11 hacia el miembro movible 7 del accionador 8; y dos porciones 18 laterales de acoplamiento, definiendo cada una la junta deslizante 19 para una porción 20 lateral respectiva del miembro transversal 11. Cada cuerpo de interfaz 15 está bloqueado al miembro transversal 11 en una posición de referencia ajustable mediante dos pasadores de bloqueo 21 sobre la porciones laterales 18.

20

25

Con referencia a las figuras 1 y 2, cada pared intermedia 16 está montada con el miembro de transferencia relativa 12, el cual comprende un cuerpo cuadrado o en forma de L 22, que a su vez comprende una pared 24 inferior paralela y enfrentada a la pared intermedia 16, y a la pared lateral 25 perpendicular a la pared inferior 24. Cada pared 24 inferior está montada en el cuerpo 15 de interfaz mediante un conjunto 26 de retención deslizante respectivo, el cual en el ejemplo descrito comprende una guía 27 de sección en C perpendicular a la placa de soporte 3 e integral con el cuerpo 15 de interfaz; y un deslizante de sección en T 28, mostrado también parcialmente en la figura 3, que se acopla en la quía 27 y es integral con la pared inferior 24.

Con referencia a las figuras 1 y 3, cada miembro de transferencia 12 comprende también una porción de esquina 30 integral con las paredes 24 y 25, y sobre la cual se apoyan dos placas de protección conocidas 31 y 32 localizadas dentro del asiento 10 y paralelas a las respectivas paredes 24 y 25 de revestimiento.

El dispositivo de empuje 1 comprende también un circuito 33 neumático de aire comprimido para posicionar cada artículo 2 dentro del respectivo asiento interno 10, y para retener los artículos 2 dentro de los asientos 10 conforme sean transferidos desde la placa 3 de soporte intermedia hacia el transportador 4.

El circuito neumático 33 tiene una entrada 34 de aire comprimido formada en el miembro transversal 11, en el lado frente al accionador 8, y conectada a una fuente de suministro no mostrada, y para cada miembro de transferencia 12, un conducto intermedio 35 que se extiende a través del miembro transversal 11 y terminando en una ranura horizontal 36 (figura 2) formada en el cuerpo 15 de interfaz relativa, y definiendo con el miembro transversal una cámara de aire 37 formando parte del circuito neumático 33. La cámara de aire 37 se comunica, por medio del conducto 38 (figura 3) con un agujero vertical 39 formado, perpendicularmente a la placa 3, en la porción de la esquina 30 del extremo superior de la esquina 30, tal como se muestra en la figura 3. El agujero 39 tiene una entrada 40 superior roscada internamente, dentro de la cual está atornillada una porción intermedia de la barra 41 de regulación del flujo de aire. Y la barra 41 comprende también una porción del obturador 42 insertado dentro del agujero 39 para ajustar el suministro de aire; y una porción 44 extrema operativa que se extiende por fuera del agujero 39.

40 El agujero 39 se comunica con un conducto 45 de salida del flujo recto (figuras 3 y 5) que se extiende dentro de una porción 46 del extremo inferior de la parte de esquina 30 cerca de la placa de soporte 3, en una direccion 47 de suministro del aire comprimido en pendiente con respecto a la placa de soporte 3 mediante un ángulo B ajustable entre veinte y noventa grados (figura 5). La dirección 47 se sitúa en un plano P (figuras 4-6), el cual es perpendicular a la placa de soporte 3, biseccionando el ángulo diedro K formado por las placas 31 y 32, e 45 intersecciona un eje vertical de simetría 2a del artículo 2, de forma que la dirección 47 intersecciona también con el eje de simetría 2a del artículo 2. El conducto 45 tiene una salida 49, la cual está formada a través de una superficie frontal 50 de la porción 46 formando un ángulo de 45° con las placas 31 y 32 y extendiéndose en forma perpendicular a la placa 3 de soporte. En el ejemplo descrito, la salida 49 está formada a una altura H (figura 3) ajustable entre diez y cien milímetros con respecto a la placa 3 de soporte, dependiendo del tipo de articulo que se 50 esté transfiriendo. Alternativamente, en una variación mostrada en la figura 4, el aquiero 39 comunica con dos conductos separados 51 y 52, ambos en pendiente con respecto a la placa de soporte 3 en un ángulo igual al ángulo B, y teniendo las respectivas salidas 51a y 52a situadas simétricamente en los lados opuestos del plano bisector P para dirigir los respectivos flujos de aire comprimido en direcciones situadas en los planos respectivos paralelos al plano P o ejes de intersección 2a del artículo 2.

En la variación de la figura 5, cada salida 49 está formada en una porción de base 54 del miembro de transferencia relativa 12 que se proyecta desde la porción 46 hacia el articulo 2 y substancialmente en contacto con la placa de soporte 3; y cada salida 49 está diseñada para suministrar un flujo de aire comprimido en la direccion 47 en todo momento. Alternativamente, en una variación adicional no mostrada, ambas salidas 51a y 52a están formadas en la porción de base 54.

Se describirá a continuación la operación del dispositivo 1 con referencia a un miembro de transferencia 12 en aras de la simplicidad, y asumiendo solo un artículo 2 posicionado en la placa de soporte 3, y con el accionador 8 ajustado para mantener el conjunto 6 de transferencia en la posición retirada enfrentada al artículo 2.

Al igual que en la condición anterior, el accionador 8 está operado para mover el miembro de transferencia 12 en la posición hacia delante al menos parcialmente rodeando el artículo 2.

5

30

50

Una vez que el miembro 2 esté en la posición delantera, la entrada 34 del circuito neumático 33 está conectada a la fuente de aire comprimido, y la masa de aire comprimido es suministrada al asiento 10 por el circuito 35 y la salida 49 o salidas 51a y 52a.

- Con referencia a las figuras 6 y 7, el aire comprimido suministrado al asiento 10 desde la salida 49 incide en la pared 10 del artículo, y se divide en dos flujos laterales 55 y 56, que circulan entre el artículo 2 y las placas 31 y 32 respectivamente, y continuando hacia arriba y hacia fuera del asiento (figura 7) substancialmente en contacto con una superficie lateral del artículo 2. La constricción en la sección del flujo de aire en esta área genera un incremento en la velocidad del flujo de aire y una caída consecuente en la presión (efecto Ventum), succionando así el articulo 2 hacia las placas 31 y 32. Como el articulo 2 es succionado hacia las placas 31 y 32, disminuyen los dos flujos de aire laterales, y el flujo 57 de aire posterior (figura 7) se genera gradualmente, que circula dentro de una 15 chimenea posterior limitada por las placas 31 y 32 en un lado, y por el artículo 2 en el otro lado. El flujo de aire posterior ayuda a producir una depresión por detrás del artículo 2 y reteniendo además el artículo 2 dentro del asiento. En la etapa de posicionamiento, I flujo posterior 57 predomina conforme el artículo 2 es succionado hacia las placas 31 y 32, mientras que los flujos laterales disminuyen gradualmente hasta que el artículo se posiciona 20 prácticamente en el contacto con las placas 31 y 32. Con el ajuste del ángulo B se ajusta la relación entre los flujos de aire en ambos lados del artículo y el flujo de aire vertical, y se ajusta la atracción y la fuerza del posicionamiento con respecto a la fuerza de retención subsiguiente.
- En un modo operativo alternativo, la pendiente de la direccion 47 del aire entrante, la presión del aire entrante, y la altura H de la salida con respecto a la placa de soporte 3, se ajustan de acuerdo con las características del articulo para crear una condición de equilibrio en ambos flujos de aire laterales 55, 56 y el flujo de aire posterior 57 están presentes. El artículo 2 está por tanto rodeado lateralmente por un acolchamiento de aire comprimido, y puede transferirse con un mínimo de riesgo colisionando directamente con las placas 31 y 32.
 - Una vez que el artículo 2 esté posicionado y retenido dentro del asiento 10 en la posición deseada, el accionador 8 se hace rotar, en sentido antihorario en la figura 1 alrededor del eje 9 para depositar el artículo sobre el transportador 4. Una vez que el artículo esté depositado sobre el transportador, o bien con un tiempo anterior, la entrada 34 se corta con respecto a la fuente de aire comprimido, y el artículo es liberado sobre el transportador 4.

Las mismas operaciones son aplicables cuando la salida 49 está formada en la porción de base 54, y cuando la salida 49 es reemplazada por las salidas 51a y 52a; en cuyo caso, cada salida 51a, 52a producen primeramente un flujo de aire lateral respectivo, y ayudando entonces en la formación del flujo de aire posterior.

- En comparación con las soluciones conocidas, el método de empuje y el dispositivo 1 anteriormente descritos proporcionan la transferencia de cualquier tipo de seguridad del artículo a alta velocidad, sin deterioro de las características dimensionales geométricas o la apariencia de los artículos. Esto es debido substancialmente al aire comprimido, a diferencia de las soluciones conocidas que se aplican a una porción del asiento 10 cercano a un borde D del diedro formado por las placas 31 y 32 que definen el asiento 10, es decir, por detrás del artículo, pero por encima de todo en una direccion en pendiente con respecto a la placa de soporte, de forma que el aire de llegada colisione sobre una parte intermedia 2b del artículo 2 por encima de una porción inferior 2c del artículo 2 (figura 7). El posicionamiento y la retención se mejoran adicionalmente por la direccion de alimentación del aire situada en un plano que contiene también el eje de simetría del artículo que se esté transfiriendo, y por el hecho de que dos flujos substancialmente iguales de aire comprimido se generan en los lados opuestos del artículo al menos en la etapa de posicionamiento, y en donde un flujo posterior generador de la fuerza de retención está siempre presente en la etapa de transferencia para retener el artículo dentro del asiento.
 - Tal como estará claro según la anterior descripción, a diferencia de las soluciones conocidas, el aire comprimido incide directamente sobre el artículo sin generar ningún daño o cambio en la superficie lateral del artículo sobre la placa de soporte 3. Es decir, tal como se ha expuesto, tal como lo opuesto a la colisión radial o frontal sobre la superficie lateral del artículo 2, los distintos flujos de aire comprimido colisionan en una dirección en pendiente con respecto a la superficie lateral, y gradualmente se adhieren a la superficie lateral sin marcas o deformaciones locales.
- Claramente pueden realizarse cambios en el dispositivo 1 tal como se ha descrito aquí. En particular pueden hacerse cambios para transferir el conjunto 6, para definir varios asientos distintos a los mostrados a modo solo de ejemplo, y también para el circuito de suministro de aire comprimido. En particular, las salidas pueden diferir en numero y en lugar con respecto a las descritas, mientras que se mantiene el aire comprimido hacia arriba sobre la parte posterior o bien una parte posterior del artículo, y dividiendo todavía el aire comprimido entrante tal como se ha descrito.
- Finalmente, los miembros de transferencia 12 pueden no tener placas protectoras 31 y 32, y que definen en sí mismas el ángulo diedro K.

REIVINDICACIONES

1. Un método de transferir artículos de vidrio (2) desde una placa (3) de soporte intermedio hacia un transportador de descarga (4); en donde el método comprende las etapas de posicionamiento del artículo (2) dentro de un asiento (10) sobre un miembro (12) de transferencia, y reteniendo el artículo dentro del mencionado asiento conforme el miembro de transferencia se mueve entre la placa (3) de soporte intermedia y el transportador de descarga (4); posicionando y reteniendo el mencionado artículo dentro del mencionado asiento (10) comprendiendo las etapas de suministrar aire comprimido dentro del mencionado asiento a través del mencionado miembro de transferencia, en donde el mencionado aire comprimido se suministra dentro de una porción del mencionado asiento cerca de un borde (30) de un diedro formado por dos placas (31) (32) del mencionado miembro de transferencia (12); en donde el método está caracterizado porque el mencionado aire comprimido está orientado hacia arriba hacia el mencionado artículo, para dividir el aire comprimido entrante en dos flujos laterales (55) (56) lateralmente y al menos parcialmente rodeando el mencionado artículo (2), y en un flujo posterior (57) dirigido hacia arriba.

10

35

40

45

hacia arriba (57).

- 2. Un método según la reivindicación 1, caracterizado porque el mencionado aire comprimido entrante está dirigido hacia arriba, para producir flujos laterales mencionados (55) (56) al menos durante la mencionada etapa de posicionamiento del mencionado artículo dentro del mencionado asiento (10), y el mencionado flujo posterior (57) al menos durante una etapa de transferencia del artículo entre la mencionada placa (3) de soporte intermedio y el mencionado transportador (4) de descarga.
- 3. Un método según la reivindicación 1 ó 2, caracterizado porque el mencionado aire comprimido está orientado para colisionar sobre una porción intermedia (2b) del mencionado artículo por encima de una porción inferior (2c) del artículo (2).
 - 4. Un método según cualquiera de las reivindicaciones anteriores, caracterizado porque el posicionamiento y la retención del mencionado artículo dentro del asiento comprenden las etapas de suministrar al menos un flujo de aire comprimido dentro del mencionado asiento en una dirección (47) situada en un plano (P) paralelo a un plano de bisección del mencionado diedro.
- 5. Un método según la reivindicación 4, caracterizado porque el mencionado flujo de aire comprimido está suministrado en el asiento mencionado en una direccion (47) situada en un plano de bisección del mencionado diedro.
- 6. Un método según cualquiera de las reivindicaciones anteriores, caracterizado porque el posicionamiento y la retención del mencionado articulo dentro del mencionado asiento comprende las etapas de suministrar al menos un flujo de aire comprimido dentro del mencionado asiento en una dirección (47) de intersección de un eje vertical (22) de simetría del mencionado artículo (2).
 - 7. Un dispositivo de empuje (1) para transferir artículos de vidrio (2) desde una placa (3) de soporte intermedia a un transportador de descarga (4) de acuerdo con el método reivindicado en las reivindicaciones anteriores: en donde el dispositivo de empuje (1) comprende un miembro de transferencia (12) que define al menos un asiento (10) para el mencionado artículo respectivo, y unos medios de accionamiento (8) para mover el mencionado miembro de transferencia (12) entre la mencionada placa de soporte intermedia y el mencionado transportador de descarga; en donde el mencionado miembro de transferencia (12) comprende una placa inferior (31) y una placa lateral (32) que define un diedro, y un circuito de suministro (33) para suministrar un flujo de aire comprimido, y extendiéndose a través del mencionado medio de transferencia para posicionar y retener el mencionado artículo (2) dentro del mencionado asiento conforme el miembro de transferencia se desplaza entre la placa de soporte intermedia y el transportador de descarga, en donde el mencionado circuito de suministro tiene al menos una salida (49, 51a, 52a) localizada cerca de un borde (30) del mencionado diedro formado por las mencionadas placas, en donde el dispositivo está caracterizado porque el mencionado circuito de suministro comprende además unos medios de conducción (45; 51, 52) diseñados para dirigir el mencionado flujo de aire comprimido hacia arriba sobre el mencionado artículo (2) a través de la mencionada salida (49; 51a, 52a) en una direccion que forma un ángulo (B) distinto a cero con la placa de soporte intermedio mencionada, para dividir el aire comprimido entrante en dos flujos laterales (55) (56) lateralmente y al menos parcialmente rodeando el artículo (2), y en un flujo posterior dirigido
- 8. Un dispositivo según la reivindicación 7, caracterizado porque el mencionado flujo de aire comprimido incide sobre una porción intermedia (2b) del mencionado artículo por encima de una porción inferior (26) del artículo (2).
 - 9. Un dispositivo según la reivindicación 7 ú 8, caracterizado porque la mencionada direccion (B) se sitúa en un plano (P) perpendicular a la mencionada placa (3) intermedia de soporte, y paralela a un eje vertical (2a) de simetría del mencionado artículo.
- 10. Un dispositivo según la reivindicación 9, caracterizado porque la mencionada direccion (B) y el eje vertical (2a) del mencionado artículo se sitúan en un plano de bisección del mencionado diedro.
 - 11. Un dispositivo según cualquiera de las reivindicaciones 7 a 10, caracterizado porque la mencionada direccion (B) forma con la mencionada placa de soporte intermedia un ángulo ajustable entre 20 y 90 grados.

- 12. Un dispositivo según cualquiera de las reivindicaciones 7 a 11, caracterizado porque la mencionada salida (49) está formada por encima de la mencionada placa de soporte intermedia (3) y enfrentada una porción intermedia del mencionado artículo por encima de la porción inferior (26) del artículo.
- 13. Un dispositivo según cualquiera de las reivindicaciones 7 a 11, caracterizado porque el mencionado miembro de transferencia comprende una porción de base de esquina (30) enfrentada a la mencionada placa de soporte intermedia; en donde la mencionada salida está formada en la mencionada porción de base de esquina.
 - 14. Un dispositivo según cualquiera de las reivindicaciones 7 a 13, caracterizado porque el mencionado circuito de suministro de aire comprimido comprende un conducto (45) del flujo de salida coaxial con la mencionada direccion (B) y terminando con la mencionada salida (49).
- 15. Un dispositivo según la reivindicación 14, caracterizado porque el mencionado conducto del flujo de salida está formado en una porción de esquina del mencionado miembro de transferencia localizado en la esquina formada por la mencionada placa lateral (31) (32) y la mencionada placa inferior.
- 16. Un dispositivo según cualquiera de las reivindicaciones 7 a 14, caracterizado porque comprende un accionador lineal (8) que tiene un miembro movible (7) para mover el mencionado miembro de transferencia (12) entre una posición de reposo y una posición de trabajo delantera; un miembro transversal (11) fijado al mencionado miembro movible; y un miembro de conexión (15) que conecta el miembro de transferencia al mencionado miembro transversal (11), en donde el miembro de conexión (15) es ajustable en la posición a lo largo del miembro transversal; y en donde el circuito de suministro del aire comprimido se extiende a lo largo del mencionado miembro transversal (11), y a través del mencionado miembro de conexión.
- 17. Un dispositivo según la reivindicación 16, caracterizado porque comprende unos medios (21) de acoplamiento de encaje rápido liberable, interpuesto entre el mencionado miembro de conexión y el mencionado miembro de transferencia (12).
- 18. Un dispositivo según la reivindicación 16 ó 17, caracterizado porque comprende al menos dos miembros (12) mencionados de transferencia montados en el mencionado miembro transversal; en donde el mencionado miembro de transferencia comprende un miembro (15) de conexión respectivo independiente del miembro de conexión del otro miembro de transferencia (12).

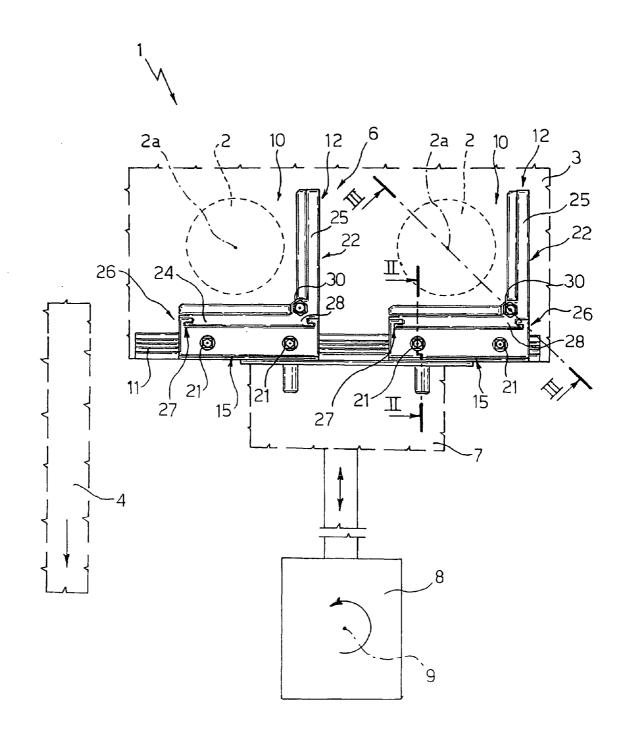
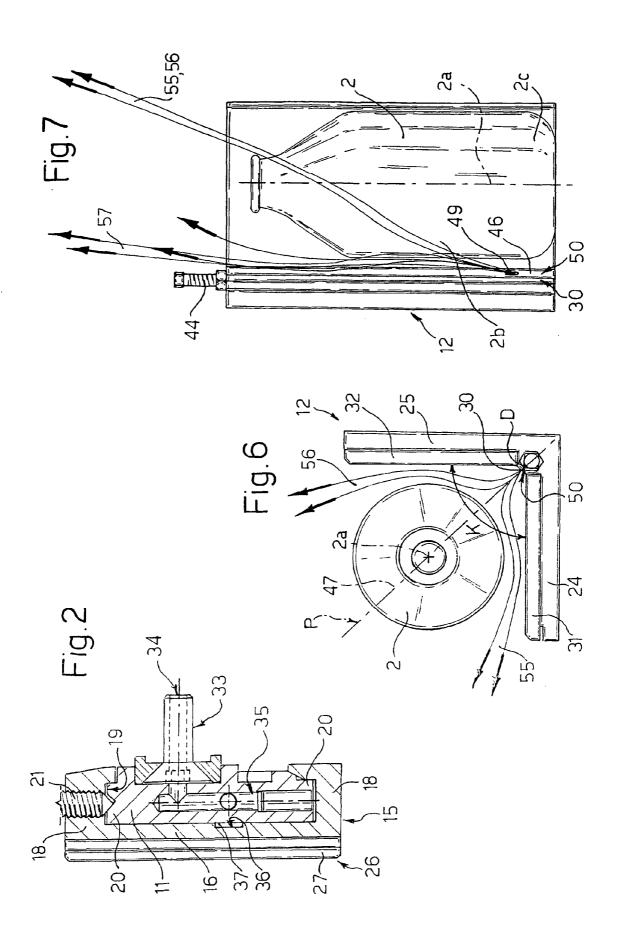
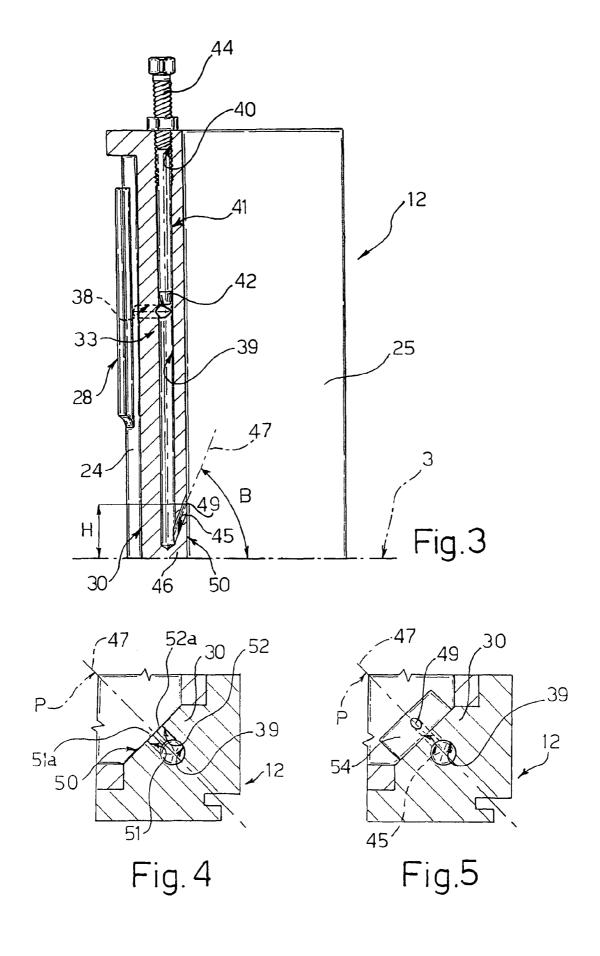




Fig.1

