

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 360 385

(51) Int. Cl.:

B60S 1/24 (2006.01)

	`	,
(12	2)	TRADUCCIÓN DE PATENTE EUROPEA
<u> </u>	_	THE DOCUMENT OF THE PORT OF THE

Т3

- 96 Número de solicitud europea: 03737294 .3
- 96 Fecha de presentación : 30.01.2003
- 97 Número de publicación de la solicitud: 1472117 97 Fecha de publicación de la solicitud: 03.11.2004
- (54) Título: Procedimiento de regulación del recorrido angular de un mecanismo de secado modificando la longitud de una manivela, y manivela que comprende un tramo deformable.
- (30) Prioridad: **04.02.2002 FR 02 01367**
- (73) Titular/es: VALEO SYSTÈMES D'ESSUYAGE Z.A. de l'Agiot, 8 rue Louis Lormand 78321 La Verrière, FR
- (45) Fecha de publicación de la mención BOPI: 03.06.2011
- (72) Inventor/es: Boissac, Jean-Paul
- 45) Fecha de la publicación del folleto de la patente: 03.06.2011
- (74) Agente: Elzaburu Márquez, Alberto

ES 2 360 385 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimiento de regulación del recorrido angular de un mecanismo de secado modificando la longitud de una manivela, y manivela que comprende un tramo deformable.

La invención propone un procedimiento descrito en el preámbulo de la reivindicación 1.

Tales articulaciones de biela y manivela se encuentran por ejemplo en dispositivos de arrastre en los cuales un motor eléctrico, eventualmente asociado a un reductor, arrastra en barrido alterno al menos un limpiaparabrisas solidario de un árbol de arrastre que está montado a rotación con respecto al vehículo.

Con la ayuda de mecanismos de biela y de manivela, es posible por ejemplo transformar un movimiento rotatorio continuo del árbol de salida del motor de arrastre en un movimiento rotatorio alterno del árbol de arrastre de cada limpiaparabrisas.

La geometría y la cinemática de este mecanismo, y especialmente la longitud de las manivelas, determinan el recorrido angular de cada limpiaparabrisas. Modificando esta geometría, es posible obtener, a partir de un mismo movimiento de salida del árbol de salida del motor, dos recorridos angulares diferentes para cada uno de los dos limpiaparabrisas.

Se deduce, por tanto, que es particularmente importante poder controlar bien la geometría del mecanismo y especialmente la longitud de las bielas y de las manivelas que están articuladas entre sí por articulaciones de rótula, pero también el posicionamiento de los diferentes elementos entre si.

Ahora bien, de un mecanismo a otro, puede que aparezcan dispersiones en las diferentes dimensiones características del mecanismo y que resulten recorridos angulares del limpiaparabrisas, no satisfactorios.

También, se ha propuesto ya, especialmente en los documentos DE 2 647 510 A y EP-A-0.904.997, poder hacer "variar" la longitud de una manivela de un mecanismo de este tipo regulando la posición de la rótula de la articulación de rótula en esta manivela.

Para esto, la rótula está fijada a través de un agujero oblongo, que forma un orificio de regulación, y su posición queda determinada por apriete en el montaje, estando así ligada la longitud en el transcurso del tiempo a la fiabilidad del sistema de apriete.

- 25 En los documentos US-A-5.619.886 y US-A-5.070.572, se ha propuesto también poder regular la posición de la rótula por una pieza intermedia de regulación que es móvil de manera regulable alrededor de un eje vertical. La rótula está montada en esta pieza intermedia de modo que el eje de la rótula queda descentrado con respecto al eje vertical de la pieza intermedia. La regulación de la posición de la rótula se obtiene entonces modificando la posición de la pieza intermedia.
- 30 Sin embargo, se ha visto que los diferentes dispositivos propuestos hasta ahora eran demasiado complejos de realizar, o sea insuficientemente fiables en cuanto al mantenimiento en el tiempo de la posición exacta de la rótula de la manivela en su agujero oblongo.
 - También, la invención tiene por objeto proponer un procedimiento de regulación simple y fiable que permita garantizar una posición precisa de la rótula en el transcurso del tiempo a pesar de los esfuerzos transmitidos y de las vibraciones soportadas por el mecanismo en el transcurso del tiempo.

Con este objetivo, la invención propone un procedimiento del tipo descrito anteriormente, caracterizado porque.

- la etapa de regulación consiste en deformar de manera permanente, simétricamente con respecto al eje longitudinal medio del cuerpo de la manivela, los ramales del cuerpo de la manivela de modo que, durante su funcionamiento normal, la manivela conserve definitivamente la regulación realizada.
- 40 De acuerdo con otras características de la invención:

10

35

- la etapa de regulación consiste en reducir la longitud del tramo del cuerpo de la manivela por aproximación de las extremidades articuladas del cuerpo de la manivela según una dirección longitudinal:
- la etapa de regulación es efectuada después de una etapa de montaje del mecanismo de secado en un banco de control.
- La invención propone también una manivela de acuerdo con la reivindicación 1.

De acuerdo con otras características de la invención:

- el citado tramo del cuerpo de la manivela comprende al menos un agujero oblongo de orientación general longitudinal que delimita dos ramales opuestos longitudinales deformables;

Otras características y ventajas de la invención se pondrán de manifiesto con la lectura de la descripción detallada que sigue, para cuya comprensión se hará referencia a las figuras anejas, en las cuales:

- la figura 1 es una representación esquemática y en perspectiva de un mecanismo de secado tradicional que comprende un mecanismo o varillaje de arrastre y de transmisión de movimiento del tipo de bielas y manivelas
- la figura 2a es una representación esquemática y a escala mayor de una manivela del mecanismo de secado representado en la figura 1, de acuerdo con la invención y tal como ésta es antes de la regulación del recorrido angular de acuerdo con la invención.
 - las figuras 2b y 2c son vistas similares a la figura 2a en las cuales la manivela está representada después de su deformación para la regulación del ángulo de barrido.
- Para la descripción de la invención, se adoptarán, a título no limitativo, las orientaciones vertical, longitudinal y transversal según el sistema de referencia V, L, T indicado en la figura 2a.
 - En la descripción que sigue, elementos idénticos, similares o análogos serán designados por las mismas cifras de referencia.
- En la figura 1 se ha representado un mecanismo de secado 20 tradicional de un parabrisas de vehículo automóvil (no representado) que comprende dos escobillas de secado 22. Cada escobilla es móvil en rotación alrededor de un eje A sensiblemente vertical. El mecanismo de secado 20 comprende un varillaje compuesto de bielas 24 y de manivelas 26 que unen las escobillas 22 a un grupo motorreductor 28 que asegura el arrastre del mecanismo de secado 20.
- De manera conocida, y como está representado en las figuras 2a a 2c, cada manivela 26 comprende un cuerpo globalmente plano 30 que se extiende longitudinalmente en un plano horizontal, y que está articulado en una primera extremidad 30a, alrededor del eje vertical de rotación de la escobilla 22 asociada.
 - El cuerpo 30 comprende, en su segunda extremidad libre 30b, una rótula de articulación 32 de la manivela 26 con una biela 24.
- Cada escobilla de secado 22 está destinada por ejemplo a quedar montada en la extremidad superior 34 de un árbol de arrastre 36 de manera que es arrastrada en un movimiento de barrido rotatorio alterno alrededor del eje A del árbol 36.

 El árbol 36 está guiado en un cuerpo de cojinete 38 (representado en la figura 1) que está destinado a estar dispuesto en la proximidad del cristal que hay que lavar, en el lado interno de un elemento de carrocería o de estructura de vehículo (no representado) a través del cual sobresale solamente la extremidad superior 34 del árbol 36.
- Para asegurar el arrastre en rotación de la escobilla de secado 22 alrededor de su eje A, y como se ha representado en las figuras 2a, 2b y 2c, el árbol de arrastre 36 se extiende verticalmente hacia arriba desde la primera extremidad 30a del cuerpo 30 de la manivela 26.
 - De acuerdo con las enseñanzas de la invención, y como se ha representado en la figura 2a, el cuerpo 30 de la manivela 26 comprende al menos un tramo 40 que es apto para ser deformado de manera permanente para que sea posible regular la distancia "D" entre las dos extremidades 30a, 30b del cuerpo 30 de la manivela 26, con miras a modificar el recorrido angular "α" de la escobilla 22.
- Para esto, el tramo 40 del cuerpo 30 comprende preferentemente un agujero oblongo 42 central de orientación general longitudinal que delimita dos ramales longitudinales 44. De acuerdo con un modo de realización preferido de la invención, el agujero oblongo 42 está posicionado y dimensionado de modo que los ramales 44 sean simétricos con respecto al eje longitudinal medio de la manivela 26.
- Las dimensiones del agujero oblongo 42 y del tramo 40 son tales que los ramales longitudinales 44 puedan ser deformados para la regulación de la distancia entre las dos extremidades 30a, 30b del cuerpo 30 de la manivela 26. Sin embargo, estos no deben deformarse durante el funcionamiento del mecanismo de secado 20.

45

- La invención propone también un procedimiento de regulación del recorrido angular "a" de cada escobilla 22 del mecanismo de secado 20. Para esto, el mecanismo de secado 20 es montado en primer lugar en un banco de control que especialmente permite determinar los desvíos entre el recorrido angular "a" de cada escobilla 22, y el recorrido angular "a" real. A partir de estos valores, es posible entonces regular el mecanismo de secado para tener un recorrido angular "a" óptimo.
- La etapa de regulación es realizada cuando la manivela 26 está montada en el mecanismo de secado 20, lo que permite suprimir etapas de desmontaje y de nuevo montaje de cada manivela 26, y por tanto reducir el tiempo de montaje del mecanismo de secado 20.

El recorrido angular " α " de la escobilla 22 depende de las dimensiones de las bielas 34 y de las manivelas 30 del varillaje, así como del motorreductor 36. Sin embargo, solo una modificación de las dimensiones de la manivela 26 permite hacer variar el recorrido angular " α " de la escobilla 22 independientemente de la otra escobilla 22.

El recorrido angular "a" de la escobilla 22 depende de la longitud de la manivela 26, y la variación del recorrido angular "a" es inversamente proporcional a la variación de la longitud del cuerpo de la manivela. Así, por ejemplo, a una longitud de manivela 26 importante corresponde un recorrido angular "a" pequeño e, inversamente, a una longitud de manivela 26 pequeña corresponde un recorrido angular "a" importante.

5

40

Así, si el recorrido angular " α " de la escobilla 22 considerada es demasiado pequeño, esto significa que la distancia entre las extremidades 30a, 30b del cuerpo 30 de la manivela 26 asociada es demasiado importante.

- Para regular el recorrido angular "α" de la escobilla 22, el procedimiento de regulación comprende una etapa de regulación del recorrido angular "α" de la escobilla 22, que consiste en hacer variar la longitud del tramo longitudinal 40 del cuerpo 30 de la manivela 26.
- Puesto que el tramo 40 es apto para ser deformado debido a la presencia del agujero oblongo 42, la regulación del recorrido angular "α" de la escobilla 22 consiste en deformar el tramo 40, es decir los ramales 44. Por otra parte, los ramales 44 son deformados de manera permanente para que la manivela 26 conserve después definitivamente la regulación para su funcionamiento normal.
 - Para aumentar el recorrido angular"α", se disminuye la distancia entre las dos extremidades 30a, 30b. Para esto, y como se ha representado en las figuras 2b y 2c, los ramales 44 son deformados simétricamente con respecto al eje longitudinal medio del cuerpo 30 de la manivela 26.
- Esta deformación puede consistir en una aproximación de los ramales 44, como está representado en la figura 2b, o bien en una separación de los ramales 44, como está representado en la figura 2c. En todos los casos, la deformación es realizada con la ayuda de una herramienta adaptada al modo de deformación deseado y a la naturaleza del cuerpo 30 de la manivela 26.
- La herramienta es por ejemplo de forma de pinza en la que cada mordaza coopera con un ramal 44 de la manivela 26 para separarle o aproximarle al otro ramal 44. Además, para evitar crear una zona de concentración de tensiones a nivel de la deformación realizada por las mordazas de la herramienta, éstas tienen preferentemente una forma redondeada.
 - La deformación consiste en deformar los ramales 44, pero no en modificar su longitud. Resulta así que las extremidades 30a, 30b del cuerpo 30 de la manivela 26 quedan aproximadas longitudinalmente.
- La deformación del tramo 40 puede consistir, como se ha representado en la figura 2b, en aproximar al menos una parte de los ramales 44 de modo que estos ocupen una parte del volumen definido por el agujero oblongo 42. El cuerpo 30 de la manivela 26 ocupa entonces un volumen reducido. Sin embargo, la amplitud de regulación del recorrido angular "α" está limitada por el volumen definido por el agujero oblongo 42.
- La deformación del tramo 40 puede consistir también, como se ha representado en la figura 2c, en separar transversalmente, y al menos en parte, los ramales 44, que se extienden entonces transversalmente más allá del borde longitudinal exterior original del cuerpo cuya dimensión transversal queda aumentada por este hecho. Sin embargo, la amplitud de regulación del recorrido angular "a" es superior a la amplitud de la regulación consistente en aproximar los ramales 44, y esta amplitud está limitada a la longitud del agujero oblongo 42.
 - A título de variante de la invención, la longitud del cuerpo de la manivela puede ser aumentada aplicando el procedimiento descrito anteriormente. Para esto, en su estado inicial, es decir antes de su deformación, la manivela 26 se presenta entonces en la forma representada en la figura 2c en la cual los ramales 44 están separados en parte,
 - Así, para aumentar la longitud del cuerpo 30 de la manivela 26, y por tanto para reducir el recorrido angular "α" de la escobilla 22, los ramales 44 son enderezados en función de la modificación que haya que obtener. La longitud máxima del cuerpo 30 se obtiene cuando los ramales quedan rectilíneos, como se ha representado en la figura 2a.
- Cuando la manivela 26 está en su estado inicial, los ramales 44 no están separados al máximo de modo que sea posible separarlos más para poder reducir la longitud del cuerpo 30 de la manivela 26.
 - A título de variante no representada, la deformación de los ramales 44 puede consistir en una curvatura idéntica de los dos ramales 44, que se extienden entonces paralelamente uno al otro.
- Una ventaja que viene del hecho de que se aproximan longitudinalmente las dos extremidades 30a, 30b del cuerpo 30 de la manivela 26 es que la modificación del recorrido angular "a" es simétrica con respecto a su bisectriz. Así, la regulación de la posición angular del brazo 22 con respecto al árbol de arrastre 26 es independiente de la regulación del recorrido angular "a", pudiendo realizarse de esta manera cada una de estas etapas de regulación sin modificar la regulación obtenida durante la otra etapa.

Un procedimiento de regulación de este tipo permite tener una regulación inmediata del recorrido angular "a" de cada escobilla 22, sin tener que desmontar y después montar de nuevo ningún elemento del mecanismo de secado 20. Esto permite suprimir eventuales desvíos de regulación debidos al movimiento relativo de dos piezas durante el nuevo montaje.

5

REIVINDICACIONES

1. Procedimiento de regulación del recorrido angular de un mecanismo de secado (20) de vehículo automóvil,

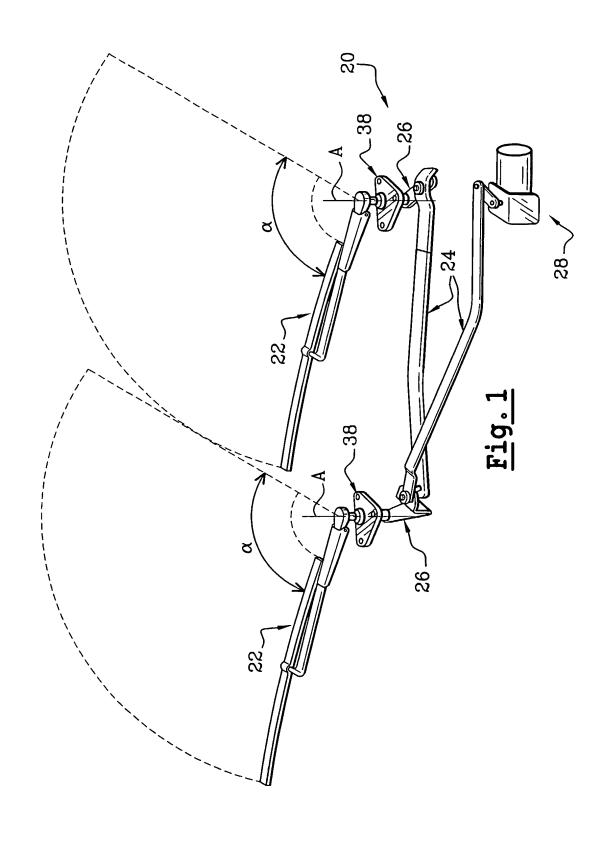
que comprende una biela (24) y una manivela (26), en el cual la manivela (26) comprende un cuerpo (30) que comprende ramales (44), que se extiende longitudinalmente en un plano sensiblemente horizontal, que está articulado en una primera extremidad (30a) alrededor de un eje (A) vertical, y que está articulado en una segunda extremidad (30b) a la biela (24),

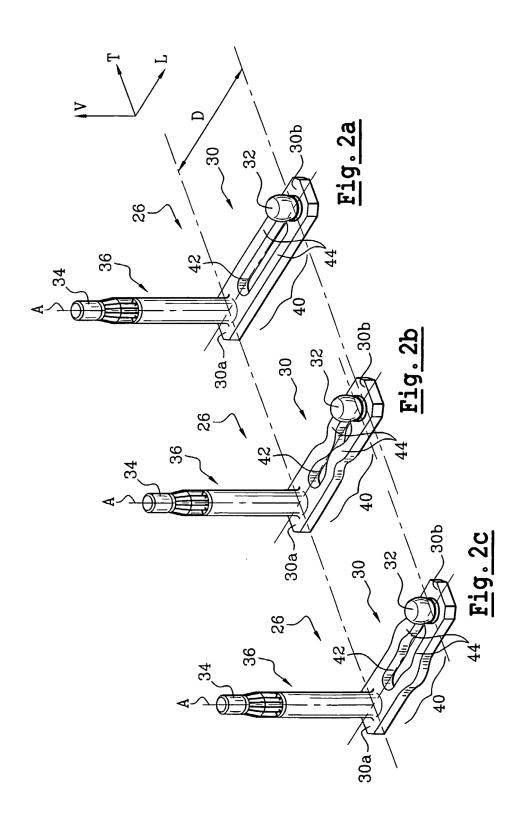
que comprende una etapa de regulación del recorrido angular (α) modificando la distancia entre la primera y la segunda extremidad (30a, 30b) articuladas de la manivela (26).

consistiendo la etapa de regulación en modificar la longitud de un tramo (40) longitudinal del cuerpo (30) de la manivela (26),

caracterizado porque

5


10


la etapa de regulación consiste en deformar de manera permanente simétricamente con respecto al eje longitudinal medio del cuerpo (30) de la manivela (26), los ramales (44) del cuerpo (30) de la manivela (26) de modo que, durante su funcionamiento normal, la manivela (26) conserve definitivamente la regulación deseada.

- 2. Procedimiento de acuerdo con la reivindicación precedente, caracterizado porque la etapa de regulación consiste en reducir la longitud del tramo (40) del cuerpo (30) de la manivela (26) por aproximación de las extremidades articuladas (30a,30b) del cuerpo (30) de la manivela (26) según una dirección longitudinal.
 - 3. Procedimiento de acuerdo con una cualquiera de las reivindicaciones precedentes, caracterizado porque la etapa de regulación es efectuada después de una etapa de montaje del mecanismo de secado (20) en un banco de control.
- 4. Manivela (26) que pertenece a un varillaje de transmisión de movimiento de un mecanismo de secado (20) de vehículo automóvil, que comprende un cuerpo (30) que se extiende longitudinalmente en un plano horizontal, y que comprende una primera extremidad longitudinal (30a) articulada a una biela (24) del varillaje, y una segunda extremidad longitudinal (30b) que está unida a un brazo de secado (22) y que está articulada alrededor de un eje vertical (A), del tipo en el cual la distancia entre las dos extremidades articuladas (30a, 30b) de la manivela (26) es regulable,
- caracterizada porque el cuerpo (30) de la manivela (26) comprende al menos un tramo (40) que comprende ramales (44) que son deformados simétricamente con respecto al eje longitudinal medio del cuerpo (30) de la manivela (26) para modificar y regular la distancia entre las dos extremidades articuladas (30a, 30b) de la manivela (26), y

porque la deformación es permanente.

- 5. Manivela (26) de acuerdo con la reivindicación 4, caracterizada porque el citado tramo (40) del cuerpo (30) de la manivela (26) comprende al menos un agujero oblongo (42) de orientación general longitudinal que delimita dos ramales opuestos longitudinales (44) deformables.
 - 6. Manivela (26) de acuerdo con la reivindicación precedente, caracterizada porque los ramales (44) de la manivela (26) son globalmente simétricos con respecto a un eje longitudinal medio de la manivela (26).

