

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 360 791

(51) Int. Cl.:

F02D 9/16 (2006.01)

	,
(12)	TRADUCCIÓN DE PATENTE EUROPE

Т3

- 96 Número de solicitud europea: 03012339 .2
- 96 Fecha de presentación : 30.05.2003
- 97 Número de publicación de la solicitud: 1394391 97 Fecha de publicación de la solicitud: 03.03.2004
- 54 Título: Elemento de válvula y disposición de válvula.
- (30) Prioridad: **31.08.2002 DE 102 40 316**
- (73) Titular/es: PIERBURG GmbH Alfred-Pierburg-Strasse 1 41460 Neuss, DE
- Fecha de publicación de la mención BOPI: 09.06.2011
- (2) Inventor/es: Simons, Norbert
- (45) Fecha de la publicación del folleto de la patente: 09.06.2011
- (74) Agente: Carpintero López, Mario

ES 2 360 791 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCION

Elemento de válvula y disposición de válvula

25

30

35

50

55

60

- La invención se refiere a un elemento de válvula para un motor de combustión interna, con por lo menos una válvula dispuesta sobre un árbol, presentando el árbol por lo menos un punto de apoyo, así como una disposición de válvula con un elemento de válvula de este tipo y una carcasa, en particular un sistema de canal de admisión.
- Los elementos de válvula y las disposiciones de válvula, en particular en los canales de aspiración de un motor de 10 combustión interna son de conocimiento general y pueden servir por ejemplo como válvula de conmutación para modificar la longitud de un tubo de admisión, o como válvula de mariposa. En el documento DE 196 14 474 A1 se describe un sistema de canal de aspiración de aire para motores de combustión interna en el que el sistema de aspiración de aire está realizado por lo menos en dos partes, de tal modo que el árbol con las válvulas de conmutación y el apovo del árbol se enchufa en una mitad del canal de aspiración de aire, y a continuación se monta 15 la otra mitad del sistema del canal de aspiración de aire sobre la primera, con lo cual se obtiene un apoyo firme del árbol de la válvula de conmutación en el sistema de canal de admisión de aire. En el documento DE 38 33 846 A1 se describe una disposición de válvula de mariposa en la que el eje de giro de las válvulas de mariposa va encajado en rebajes del canal del tubo de admisión, que junto con la superficie del lado de junta del motor o del tubo de aspiración forman entonces después del montaje un apoyo cerrado para el eje de giro. Otra posibilidad es la de encajar el árbol en las correspondientes escotaduras o puntos de apoyo en el tubo de admisión, y a continuación 20 atornillar o soldar las válvulas en el árbol a través de los canales del tubo de aspiración.
 - Mientras que en el método de la carcasa en dos partes que forma el apoyo existen dificultades para mantener las tolerancias necesarias entre las dos piezas fabricadas, en la solución con los puntos de apoyo premontados en el árbol, que se colocan dentro de una parte de la carcasa, aparece el problema del gasto adicional de montaje que, debido a dificultades de accesibilidad, existe también cuando más adelante se fijen las válvulas en el árbol.
 - El objetivo de la invención es por lo tanto crear un elemento de válvula que se pueda introducir sin gran gasto de montaje en una carcasa que presente unos apoyos, y que al mismo tiempo se pueda mantener lo más reducido posible el gasto de mecanizado de la carcasa, de forma óptima de tal modo que se puedan utilizar máquinas de mecanizado lo más sencillas posible, con lo cual se ahorran costes.
 - Estos objetivos se resuelven por el hecho de que el árbol con su por lo menos un punto de apoyo presenta diferentes diámetros, donde el o los diámetros D del árbol situados en uno de los lados de la válvula son mayores que la extensión máxima de la válvula en dirección radial respecto al árbol. De este modo se tiene la posibilidad de deslizar la válvula en dirección axial con el árbol en una carcasa de una sola pieza, por ejemplo en un tubo de admisión.
- En una forma de realización preferente los diámetros del árbol van creciendo de forma escalonada desde un primer tramo final de la válvula hasta un segundo tramo final del elemento de válvula. Con el diámetro respectivamente menor, es decir con el primer lado del elemento de válvula por delante, se desliza entonces el elemento de válvula dentro de la carcasa, y gracias a su forma escalonada se obtiene un apoyo radial.
- En un perfeccionamiento de la invención, el árbol y la válvula están realizados de una sola pieza, por lo que desaparece el gasto adicional de montaje para unir la válvula y el árbol.
 - Se prefiere una forma de realización en la que en la zona de los puntos de apoyo del árbol están situados unos anillos de junta que sellan una parte interior de la carcasa respecto a otra zona exterior de la carcasa, con lo cual deja de ser necesaria cualquier colocación adicional de juntas dentro de la carcasa, y de este modo se reduce aun más el gasto de montaje.
 - Especialmente en el caso de válvulas ejecutadas en material plástico se prefiere inyectar directamente los anillos de junta de labio. De este modo se reduce el riesgo de que la junta se desplace durante el montaje, puesto que existe una unión firme entre el anillo de junta y el árbol.
 - De acuerdo con la realización del elemento de válvula, la carcasa debe presentar orificios para el alojamiento del elemento de válvula cuyos diámetro crezcan de forma escalonada en un sentido de acuerdo con el diámetro del árbol, de modo que se cree de este modo el correspondiente asiento de cojinete para el árbol, y el elemento de válvula se pueda introducir desde el lado del diámetro del orificio de la carcasa en sentido hacia el menor. De este modo resulta también posible efectuar el mecanizado de la carcasa para apoyo del dispositivo de válvula desde un solo lado de la carcasa en la dirección del eje de giro del árbol, con lo cual se pueden emplear máquinas de mecanizado de construcción relativamente sencilla, reduciéndose notablemente el gasto de mecanizado. Además se ahorran tiempos y costes de montaje.

En una forma de realización preferente, los orificios de la carcasa deberían presentar unas aristas de tope para el elemento de válvula, de modo que se asegure también un apoyo axial del elemento de válvula con el árbol en la carcasa.

- Correspondientemente existe la posibilidad de disponer varias válvulas sobre un mismo árbol, y realizar el ensanche escalonado del árbol y la carcasa de tal modo que resulte posible introducir todo el conjunto del elemento de válvulas en la carcasa. De este modo se realiza un apoyo de cada una de las válvulas, mientras que a pesar de ello basta con una sola fase de montaje para montar con seguridad todas las válvulas necesarias, apoyarlas y sellarlas.
- Mediante las formas de realización descritas se pueden reducir por lo tanto al mínimo los costes de fabricación y de montaje, mientras que al mismo tiempo queda asegurado el funcionamiento del elemento de válvula o de la disposición de válvulas por la forma de apoyo limpio y estanco. Un ejemplo de realización de la presente invención está representado en los dibujos y se describe a continuación.
- La figura 1 muestra un elemento de válvula conforme a la invención, en este caso una válvula de mariposa con dos puntos de apoyo, en una representación en perspectiva.

20

25

30

35

40

55

60

- La figura 2 muestra en una vista lateral una carcasa para la disposición de válvula conforma a la invención de la figura 1, en una representación esquemática.
- La figura 3 muestra en una vista lateral la disposición de válvula conforme a la invención con el elemento de válvula de la figura 1 en estado montado, en una representación esquemática.
- El elemento de válvula 1 representado en la figura 1 se compone de una válvula de mariposa 2 y de un árbol 3. Este árbol 3 presenta en el primer lado de la válvula de mariposa 2 un primer punto de apoyo 4, y en su segundo extremo un segundo punto de apoyo 5, mediante los cuales está apoyado el elemento de válvula 1 en una carcasa 6. En la zona de los dos puntos de apoyo 4 y 5 está deslizado encima o invectado un anillo de junta de labio 7, para sellar el interior de la carcasa 6 con respecto al exterior. Se puede observar que el diámetro d del punto de apoyo 4 es menor que el diámetro D del punto de apoyo 5. Además, la extensión máxima de la válvula S de la válvula de mariposa es menor que el diámetro D del segundo punto de apovo 5. La válvula de mariposa 2 presenta un perfil de válvula que favorece el flujo, que se estrecha ligeramente en sus zonas extremas. En el extremo del primer punto de apoyo 4 alejado de la válvula 2 existe otro escalón 8, de modo que el árbol se prolonga en esta dirección de forma escalonada, con un diámetro que se va reduciendo. El árbol termina aquí en un primer tramo final 9, en el que en dos lados del extremo opuestos del árbol se ha eliminado en dirección radial dos sectores de círculo parciales del árbol, que por lo demás tiene forma circular, de modo que se obtienen dos superficies extremas paralelas en la dirección del eje. Este tramo final 9 con las dos superficies paralelas 10 sobresale en estado montado del extremo de la carcasa 6, de modo que también por medio de este tramo 9 del elemento de válvula 1 se puede accionar la válvula de mariposa 2. El segundo punto de apoyo 5 presenta en la dirección alejada de la válvula un escalón 11 que se ensancha, y que prolonga el árbol 3 en esta dirección. Un segundo tramo final 12 del elemento de válvula 1 que se produce de este modo también sobresale del borde de la carcasa 6en estado del elemento de válvula instalado en la carcasa 6. En el extremo de este segundo tramo final hay una cabecilla de bola 13 que sirve para alojamiento de una varilla de acoplamiento, que no está representada, que es movida por una unidad de accionamiento que no está representada.
- En la figura 2 se reconoce la carcasa 6 que sirve para el alojamiento del elemento de válvula representado en la figura 1. Consiste en un canal 14, cuyo caudal de fluido se controla por medio del elemento de válvula 1. En dirección perpendicular al canal 14 hay un orificio que se va ensanchando desde un primer tramo final 9' a través de un primer asiento de apoyo 4' y más allá del canal 14, por un tramo de tope 15 hasta un segundo asiento de apoyo 5'. Se puede observar que mediante este diámetro creciente resulta posible realizar esta geometría de la carcasa 6 mediante un mecanizado desde un solo lado.
 - En la figura 3 volvemos a ver la carcasa 6 conocida de la figura 2, en este caso con el elemento de válvula instalado, tal como se había representado en la figura 1. Se puede observar que el tramo de tope 15 de la carcasa 6 presenta una arista de tope 16 contra la cual se empuja el elemento de válvula 1, de modo que obtiene un apoyo axial.
 - Igualmente existe la posibilidad de disponer varias válvulas 2 sobre un mismo árbol 3. Para poder seguir introduciendo el conjunto del elemento de válvulas 1 desde un lado en la carcasa 6, y que por otra parte la carcasa 6 también se tenga que mecanizar únicamente en este sentido de inserción y montaje, es necesario que manteniendo igual la geometría de las válvulas, ambos diámetros de los dos puntos de apoyo de la válvula superior han de ser mayores que la extensión máxima de la válvula S, ya que en caso contrario ya no se podría introducir en la carcasa la válvula inferior. En este caso los dos tramos extremos 9 y 12 no existen en cada una de las válvulas, sino solo una vez para cada elemento de válvula 1 que se compone de varias válvulas 2. Por lo demás, el primer punto de apoyo 4 de una válvula 2 sirve respectivamente como segundo punto de apoyo 5 de la válvula siguiente 2.

ES 2 360 791 T3

Mediante esta realización conforme a la invención se dispone de un diseño que permite crear una disposición de válvulas en la que el montaje y el mecanizado solamente han de efectuarse en un sentido, en este caso axial. De este modo se reduce notablemente el gasto de montaje y se ahorran costes de fabricación.

- 5 También forman parte de esta invención y por lo tanto están incluidas dentro del ámbito de protección de la invención, las modificaciones relativas a la ejecución y a la función del elemento de válvula, en particular del perfil pero también con relación a los respectivos tramos finales o de apoyo de la válvula, por ejemplo la supresión del tramo 9, que en particular al estar modificado el accionamiento se pueden emplear naturalmente otros dispositivos de acoplamiento distintos a la cabecilla de bola que aquí se menciona, pero también otra realización de la carcasa,
- 10 como por ejemplo con un agujero ciego en lugar del primer tramo final 9'.

REIVINDICACIONES

1. Elemento de válvula para un motor de combustión interna, presentando por lo menos una válvula dispuesta sobre un árbol, presentando el árbol por lo menos un punto de apoyo, presentando el árbol (3) con su por lo menos un punto de apoyo (4, 5), diferentes diámetros (d, D),

caracterizado porque

- el o los diámetros D del árbol (3) situados en uno de los lados de la válvula (2) son mayores que la extensión máxima S de la válvula (2) en la dirección radial respecto al árbol (3).
 - 2. Elemento de válvula según la reivindicación 1,

15 caracterizado porque

los diámetros del árbol (3) van creciendo de forma escalonada desde el primer tramo final (9) del elemento de válvula (1) hasta un segundo tramo final (12) del elemento de válvula (1).

20 3. Elemento de válvula según la reivindicación 1 o 2,

caracterizado porque

el árbol (3) y la válvula (2) están realizados de una sola pieza.

4. Elemento de válvula según una de las reivindicaciones anteriores,

caracterizado porque

25

50

- 30 en la zona de los puntos de apoyo (4, 5) del árbol están dispuestos unos anillos de junta (7), en particular anillos de junta de labio.
 - 5. Elemento de válvula según una de las reivindicaciones anteriores,

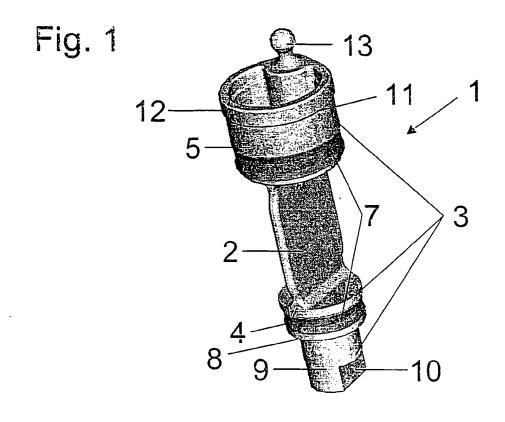
35 caracterizado porque

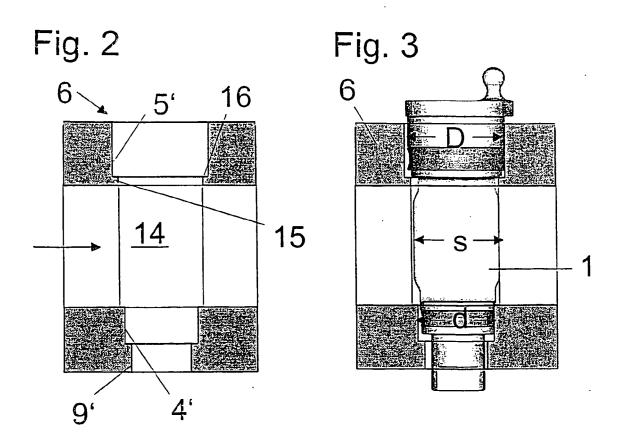
los anillos de junta (7) están inyectados sobre el árbol (3).

6. Disposición de válvula con un elemento de válvula según una de las reivindicaciones anteriores y una carcasa, 40 en particular con sistema de canal de aspiración,

caracterizada porque

- la carcasa (6) presenta orificios para el alojamiento del elemento de válvula (1), cuyos diámetros van creciendo en un sentido de forma escalonada de acuerdo con el diámetro del árbol.
 - 7. Disposición de válvula según la reivindicación 5 o 6,


caracterizada porque


los orificios de la carcasa (6) presentan aristas de tope (16) para el elemento de válvula (1).

8. Disposición de válvula según una de las reivindicaciones 5 a 7,

55 caracterizada por

estar dispuestas varias válvulas (2) sobre un mismo árbol (3), extendiéndose en la ampliación del árbol y de la carcasa sobre toda la longitud del elemento de válvula (1), de tal modo que el conjunto del elemento de válvula (1) se pueda deslizar dentro de la carcasa (6) desde un solo lado.

