

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 362 385

(51) Int. Cl.:

C23C 4/12 (2006.01) C23C 24/04 (2006.01) **B05B** 7/14 (2006.01)

	,
(12)	TRADUCCIÓN DE PATENTE EUROPE

Т3

- 96 Número de solicitud europea: 08761417 .8
- 96 Fecha de presentación : 03.07.2008
- 97 Número de publicación de la solicitud: 2171118 97 Fecha de publicación de la solicitud: 07.04.2010
- (54) Título: Procedimiento y dispositivo de proyección de materia pulverulenta en un gas portador.
- (30) Prioridad: **05.07.2007 BE 2007/0334**
- (73) Titular/es: FIB-SERVICES INTELLECTUAL S.A. boulevard du Prince Henri, 9B 1724 Luxembourg, LU
- (45) Fecha de publicación de la mención BOPI: 04.07.2011
- (72) Inventor/es: Di Loreto, Osvaldo
- (45) Fecha de la publicación del folleto de la patente: 04.07.2011
- (74) Agente: Elzaburu Márquez, Alberto

ES 2 362 385 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimiento y dispositivo de proyección de materia polvorienta en un gas portador

La presente invención se refiere a un procedimiento de proyección de una materia polvorienta en un gas portador que presenta un caudal global, dicho procedimiento comprendiendo:

- un flujo de dicho gas portador bajo presión,

5

- una aceleración de dicho gas portador bajo presión hasta una velocidad sónica,
- una expansión de dicho gas portante bajo presión con la formación de una zona de depresión que presenta un valor inferior a dicha presión de flujo del gas portador y un arrastre de una cantidad de dicha materia polvorienta por dicho gas portador expandido, y
- una proyección de dicha materia polvorienta arrastrada por dicho gas portador.

Un procedimiento de este tipo es conocido por ejemplo a partir del documento US-6.402.050 que describe aparatos de pulverización dinámica de materiales polvorientos por gases en el ámbito de aplicación de la fabricación de revestimientos por ejemplo anticorrosión o reflectantes para superficies mecanizadas.

- Este documento describe la utilización de un cuello sónico con una relación particular de las superficies de la sección transversal entre la tobera sónica y la alimentación de materia polvorienta, a fin de mantener una presión inferior a la presión atmosférica para asegurar el transporte del polvo por un flujo de aire a la presión atmosférica. Este documento no divulga que la tobera de tipo sónico permita obtener un caudal constante de materia polvorienta.
- Por tanto en el ámbito de la reparación de paredes refractarias de horno por proyección a la llama, de gutinado, de soldadura cerámica o de proyección reactiva, la reproducibilidad de un procedimiento de proyección de materia polvorienta y todas las regulaciones correspondientes como aquellas de la cantidad de materia polvorienta, de la velocidad de proyección, de la fuerza de impacto, etc., están directamente influidas de manera nefasta por un caudal de gas portador variable no reproducible.
- Por supuesto, se conocen dispositivos que comprenden un caudalímetro que controla, a través de un regulador, una válvula para obtener un caudal de gas constante, pero tales sistemas son complejos de llevar a la práctica y solicitan elementos cuyos precios de compra y funcionamiento son una función directa de la precisión. Por lo tanto, estos sistemas son poco aplicables, sin considerar el hecho de que la precisión final (probablemente debido a la secuencia de los elementos) a menudo deja que desear.
- Además, ciertos procedimientos conocidos en el ámbito de la reparación por proyección de materia polvorienta comprenden un ajuste de la cantidad de materia polvorienta arrastrada por medio de un tornillo sin fin o de un plato giratorio de inclinación pero la utilización de tales dispositivos de arrastre requieren la utilización de motores eléctricos, lo que es poco compatible con la utilización de un gas portador y reactivo (por ejemplo oxígeno) con por lo menos un elemento de dicha materia polvorienta.
- Para poder utilizar de manera segura estos motores eléctricos, será necesario utilizar un gas inerte como por ejemplo nitrógeno, lo que no es compatible con el procedimiento según la invención puesto que el gas portador debe ser reactivo con un elemento de la materia polvorienta y solicita en todos los casos una alimentación suplementaria de nitrógeno, lo que hace el procedimiento menos flexible.

La invención por lo tanto tiene por objeto superar estos inconvenientes procurando un procedimiento en el cual el caudal de materia polyorienta sea ajustable y reproducible sin afectar al caudal del gas portador.

- Con este fin, el procedimiento según la invención está caracterizado porque comprende además una regulación de dicha presión inferior, que existe en la zona de depresión por derivación o sin derivación, antes de la expansión, de una cantidad ajustable de dicho gas portante que haya sido acelerado para reintroducir dicha cantidad ajustable en la zona de depresión anteriormente mencionada sin modificación de dicho caudal, en particular en su globalidad.
- La cantidad de materia polvorienta instantánea arrastrada deberá estar ventajosamente optimizada desde el punto de vista de la excelencia del revestimiento pero igualmente desde el punto de vista de los costes del consumo de esta materia. Aguas arriba de la caña o lanza de proyección, es importante por lo tanto poder mezclar íntimamente la materia polvorienta con el gas portador y reactivo en cantidad ajustable. Por lo tanto, las tensiones determinan igualmente el valor de este último parámetro.
- El procedimiento según la invención tal como se ha descrito antes en este documento presenta la flexibilidad deseada con relación a un procedimiento clásico que utiliza un efecto venturi. En efecto, el procedimiento de proyección según la invención comprende una etapa de regulación de dicha depresión por derivación o sin derivación, antes de que la expansión de una cantidad ajustable de gas portante haya sido acelerada que permite, sin modificar en absoluto el

caudal de salida del gas portante, modificar el valor de la presión inferior en la zona de depresión, lo que permite ajustar la cantidad de materia polvorienta arrastrada.

Si la cantidad de gas portador y reactivo trasegado y reintroducido es importante, el valor de la presión en la zona de depresión estará más próxima a la presión de compresión y la cantidad de materia polvorienta arrastrada será reducida. Por el contrario, si la cantidad de gas portador y reactivo trasegado y reintroducido es pequeña, el valor de la presión en la zona de depresión se rebajará fuertemente con relación al valor de la presión de compresión anteriormente mencionada y una cantidad de materia polvorienta importante y próxima a su valor máximo será igualmente arrastrada. Si la cantidad de gas portador derivado es nula, el valor de la depresión es máximo y presenta el valor más alejado con relación a la presión de compresión que el procedimiento puede alcanzar y es arrastrada la cantidad máxima de materia polvorienta. Por lo tanto, la cantidad de gas portador y reactivo derivada (es decir trasegada y reintroducida) permite ajustar de manera particularmente astuta la cantidad de materia polvorienta arrastrada.

10

15

2.0

25

30

40

45

50

55

La invención por lo tanto permite paliar por lo menos una parte de los inconvenientes del estado de la técnica permitiendo ajustar a un valor reproducible la cantidad de materia polvorienta arrastrada asegurando un caudal de gas portador que es constante, garantizando así una velocidad de eyección constante. En efecto, el resultado final, la reproducibilidad y la cantidad de la proyección dependen directamente de este caudal de materia polvorienta arrastrado por dicho gas portador.

Un caudal de gas portador óptimo asegura un transporte óptimo de la materia que se proyecta y puesto que la proyección se realiza por mediación de una caña o lanza de proyección, que tiene una sección de proyección bien definida, la velocidad de proyección para una temperatura determinada del gas portador estará por lo tanto condicionada por el caudal de gas portador.

Gracias a la aceleración hasta la velocidad sónica, por ejemplo obtenida creando una onda de choque en un venturi, el bloqueo sónico establece un caudal fijo que no está influido por las variaciones de pérdida de carga en el circuito aguas abajo. Por lo tanto, el caudal de gas portador se convierte en constante y la velocidad de proyección condicionada por este caudal constante es óptima. La velocidad óptima de eyección así obtenida en el gas portador aumenta considerablemente la fiabilidad y la reproducibilidad del procedimiento de proyección de materia polvorienta según la invención.

En el ámbito de la reparación de paredes de material refractario de hornos, de instalaciones de tratamiento del vidrio, de fábricas de coque, etcétera el procedimiento según la invención puede ser ventajosamente aplicado en un procedimiento de reparación por proyección reactiva que consiste en proyectar por medio de una corriente de gas portador sobre una zona determinada, una materia polvorienta (que comprende por ejemplo una carga refractaria y polvo metálico), finamente pulverizado.

En efecto, cuando una pared de material refractario presenta degradaciones superficiales o profundas, el utilizador las debe reparar lo más rápido posible para no agravar las degradaciones que están producidas por las intensas condiciones de funcionamiento.

35 En el momento de la operación de reparación por proyección reactiva, la calidad del revestimiento obtenido sobre la pared generalmente refractaria, depende de varios parámetros particularmente la temperatura del soporte y la velocidad de proyección.

En este tipo de procedimiento, el gas portador igualmente puede ser ventajosamente un gas reactivo con por lo menos uno de los elementos de la materia purulenta y, al contacto con la pared caliente, la mezcla reacciona espontáneamente y una serie de reacciones químicas conduce a la formación de un material refractario homogéneo, adherente, cuyas características son compatibles con aquellas del soporte tratado.

La velocidad de proyección es un elemento preponderante. En efecto, si esta última es demasiado débil, existe el riesgo de retorno de llama. Si es demasiado importante, la cantidad de materia puede no reaccionar (porque no participa en la reacción exotérmica) y rebotar exageradamente sobre la pared en detrimento de la calidad del magma en formación engendrado por la proyección reactiva.

El procedimiento según la invención tiene por objeto por lo tanto permitir obtener una calidad de soldadura óptima procurando una calidad de proyección y de impacto de dicha materia polvorienta sobre la superficie que se va a reparar constante a lo largo del tiempo. El procedimiento según la invención permite la obtención de un caudal de gas portador y reactivo que depende directamente de la presión de entrada pero es independiente de toda modificación de presión resultante del circuito aguas abajo.

Los granos que componen la materia polvorienta proyectada están animados una velocidad optimizada gracias a al gas portador que transporta la materia polvorienta neumáticamente y su cantidad es ajustable.

En este tipo de aplicación de la reparación por proyección reactiva, el gas portador es igualmente un gas reactivo y sirve no solamente de fluido de transporte sino que participa activamente en la reacción fisicoquímica exotérmica. La calidad final del producto proyectado depende esencialmente de los factores siguientes:

- de la entalpía global producida en el momento de la reacción exotérmica y por lo tanto de la cantidad de gas portador y reactivo utilizado así como de la temperatura, de la composición química o de la formulación de la materia polvorienta,
- de la cantidad de polvo proyectado, es decir el caudal másico de materia polvorienta,
- del caudal óptimo del gas portador y reactivo que permite obtener una velocidad óptima de eyección de los reactivos para una aplicación determinada.

Dado que el caudal de gas portador presenta según la invención ventajosamente un valor constante a la salida, exento de toda variación debido a imperfecciones, el procedimiento según la invención presenta una velocidad óptima de proyección para una aplicación determinada.

10 Ventajosamente, el procedimiento según la invención comprende además una compresión de dicho gas portador reactivo que ha estado acelerado anteriormente a la expansión, lo que permite mejorar el arrastre de la materia polvorienta anteriormente mencionada.

Otras formas de realización del procedimiento según la invención se mencionan en las reivindicaciones adjuntas.

- La invención se refiere además a un dispositivo de proyección de una materia polvorienta en un gas portador que 15 comprende:
 - una entrada de gas portador bajo presión,

5

- una tobera del tipo convergente-divergente de cuello sónico en comunicación con dicha entrada de dicho gas portador bajo presión,
- una alimentación de materia polvorienta que comunica con una zona de depresión,
- medios de expansión del gas portador unidos a dicha tobera de tipo convergente-divergente de cuello sónico que recibe el gas portador bajo presión y que desembocan en dicha zona de depresión, y
 - una salida de dicha materia polvorienta arrastrada por dicho gas portador expandido fuera de la zona de depresión.
- Desgraciadamente, un dispositivo de este tipo no permite, como se ha mencionado anteriormente, obtener una proyección de materia polvorienta óptima, lo que perjudica por una parte a la reproducibilidad del trabajo realizado por este dispositivo y por otra parte a la calidad del trabajo acabado, ni ajustar la cantidad de materia polvorienta arrastrada.

La invención tiene por objeto paliar los inconvenientes del estado de la técnica procurando un dispositivo que permita obtener una velocidad de proyección óptima para un caudal másico de polvo elegido aumentando la reproducibilidad del trabajo realizado por el utilizador del dispositivo según la invención y la precisión así como los costes de la materia polvorienta.

Para resolver este problema, según la invención está previsto un dispositivo tal como el que se ha indicado antes en este documento caracterizado porque comprende además un dispositivo de regulación del caudal de dicha materia polvorienta en dicho gas portador que comprende un circuito de derivación de dicho gas portador provisto de un órgano de ajuste de la cantidad de gas portador derivado, dicho circuito de derivación comprendiendo un orificio de separación previa del gas portador dispuesto aguas arriba de dicha zona de depresión de dicho gas portador y un orificio de reintroducción de dicho gas portador separado situado en dicha zona de depresión.

Dicha tobera de tipo convergente-divergente de cuello sónico permite mantener, más abajo, un caudal de gas portador constante que arrastra una cantidad previamente determinada de materia polvorienta que, por lo tanto, es ajustable gracias a los medios de derivación.

- De este modo, el gas portador que pasa a través de la tobera de tipo convergente-divergente de cuello sónico o también denominada de Laval sufre una aceleración hasta una velocidad sónica gracias a una onda de choque que ha estado creada dentro del venturi. El bloqueo sónico obtenido de este modo establece un caudal fijo que no está influido por la diferencia de presión entre la parte aguas arriba y aguas abajo de la tobera. Además, la cantidad de materia polvorienta ajustable se optimiza igualmente. Por lo tanto el caudal de mezcla de materia polvorienta en el gas portador es óptimo así como la reacción exotérmica. La proyección total se optimiza y el rendimiento se aumenta.
- 45 El gas portador reintroducido en la zona de depresión provoca una contra presión que actúa sobre la depresión y cuanto más es la cantidad de gas portador reintroducido en la zona de depresión es grande, tanto más es la cantidad de materia polvorienta arrastrada es pequeña. Lo contrario es igualmente de aplicación. Si el utilizador desea arrastrar la cantidad máxima de materia polvorienta, es suficiente con no separar previamente el gas portador. La cantidad de gas portador trasegado y reintroducido se ajusta con la ayuda del órgano de control.

Ventajosamente, el dispositivo según la invención comprende un inyector en comunicación por una parte con dicha tobera de tipo convergente-divergente de cuello sónico y por otra parte con dichos medios de expansión y dicha zona de depresión, dicho inyector comprendiendo por lo menos una zona de estrechamiento. La presencia del inyector mejora el arrastre de la materia polvorienta en la zona de depresión y la zona de estrechamiento permite aumentar la presión justo antes del expansión. Por lo tanto, la diferencia de presión será más importante e igualmente el rendimiento del arrastre.

De preferencia, dicho órgano de control del circuito de derivación es una válvula de aguja. Esto permite obtener todos los valores posibles entre el valor máximo de gas separado y el valor mínimo, la válvula de aguja funcionando por ajuste y no por aspillera.

Ventajosamente, dicho orificio de separación previa está dispuesto aguas arriba de dicha zona de estrechamiento de dicho inyector. De este modo, el gas portador que debe ser derivado para regular la cantidad de materia polvorienta es separado antes de la compresión y representa una contra-presión con respecto a la presión (presión inferior) que reina en la zona de depresión, permitiendo así un relaje más sensible de la cantidad de materia polvorienta aspirada.

15

25

30

35

40

45

50

En una forma de realización ventajosa, la zona de depresión está unida a un paso divergente, de preferencia de carburo de tungsteno, él mismo unido a dicho orificio de salida de dicha materia polvorienta arrastrada por el gas portador. El paso divergente es de preferencia de un material resistente a la presión como por ejemplo carburo de tungsteno y permite obtener un funcionamiento semejante a aquél de una tobera.

En una forma de realización particularmente ventajosa, dicha tobera de tipo convergente-divergente de cuello sónico presenta un diámetro inferior al diámetro de cada elemento aguas abajo de dicha tobera de tipo convergente-divergente de cuello sónico.

Por lo tanto, es dicha tobera de tipo convergente-divergente de cuello sónico la que determina el caudal constante hasta la salida del dispositivo según la invención.

En una forma de realización preferente de la invención, la salida de materia polvorienta arrastrada por dicho gas portador es un orificio tubular que comprende el paso divergente, en el cual una primera carcasa rodea por lo menos dicho orificio tubular de salida y en el cual una segunda carcasa rodea una tubería flexible que conduce a una lanza de proyección unida a dicha salida, las dos carcasas estando unidas juntas por medio de conexiones convencionales. Esto permite obtener un dispositivo de proyección de materia polvorienta en un gas portador compacto y portátil que sea suficientemente seguro. En efecto, los elementos frágiles confinados en el interior están al abrigo del medio ambiente. Las reacciones exotérmicas eventuales accidentales que se podrían producir en el momento de la proyección están igualmente confinadas dentro del dispositivo según la invención y en la segunda carcasa, lo que permite evitar herir al utilizador. La segunda carcasa es particularmente apropiada en el caso de retorno de llama para evitar que el utilizador se queme puesto que generalmente el gas portador y reactivo es oxígeno.

De preferencia, un hilo termofusible unido por una parte a una palanca del disparador que comprende una posición abierta de paso del gas portador y una posición cerrada de bloqueo del gas portador y por otra parte dentro de dicha segunda carcasa, dicho hilo termofusible estando dispuesto para mantener dicha palanca del disparador en posición abierta. De este modo, en caso de retorno de llama, el hilo termofusible se rompe instantáneamente y la palanca del disparador pasa prácticamente instantáneamente a la posición cerrada de bloqueo del gas portador (oxígeno). Esto permite evitar la propagación hacia atrás del frente de llama y por lo tanto la explosión o el incendio.

En una forma de realización particularmente segura, dichas carcasas primera y segunda están unidas una a la otra por medios de retroceso que presentan una fuerza de retroceso previamente determinada, por ejemplo resortes que mantienen juntos los medios de conexión convencionales.

La calibración de los resortes es tal que, en el momento de una sobrepresión debida a un retorno de llama en el orificio tubular de salida éste se separa de la parte divergente, permitiendo así directamente un retorno a la presión atmosférica. Por lo tanto, estos dos elementos se separan uno del otro unos instantes muy breves, lo que permite igualmente evitar la explosión o el incendio. Ventajosamente, la segunda carcasa de seguridad comprende dos dispositivos de filtrado que permiten la evacuación de los gases y de los polvos bloqueando una propagación de las llamas en el momento de un incidente de este tipo.

Otras formas de realización del dispositivo según la invención están indicadas en las reivindicaciones adjuntas.

Otras características, detalles y ventajas de la invención se pondrán de manifiesto a partir de la descripción proporcionada más adelante en este documento a título de ejemplo no limitativo y haciendo referencia a los dibujos adjuntos.

La figura 1 es una vista en corte de un dispositivo de proyección de materia polvorienta en un gas portador según la invención.

La figura 2 es una vista en corte de un conjunto completo que comprende el mismo dispositivo que aquél representado en la figura 1 en donde se pueden ver los detalles del hilo termofusible, de la segunda carcasa y de los resortes calibrados según la invención.

La figura 3 es una vista desde arriba de una variante del dispositivo de proyección de una materia polvorienta en un gas portador según la invención.

La figura 4 es una vista en corte de un conjunto completo de una variante del dispositivo ilustrado en la figura 1.

Sobre las figuras, los elementos idénticos o análogos llevan las mismas referencias.

5

50

La figura 1 ilustra un dispositivo de proyección de materia polvorienta en un gas portador para la puesta en práctica del procedimiento según la invención. Como se ha mencionado antes en este documento, el principio consiste en proyectar por medio de un gas portador, una materia polvorienta finamente pulverizada sobre una zona determinada. El gas portador es, por ejemplo, igualmente reactivo con un elemento de la materia polvorienta. El gas portador reactivo es por ejemplo oxígeno que participa en la reacción exotérmica del polvo metálico contenido en la materia polvorienta.

El dispositivo según la invención ilustrado en la figura 1 comprende una entrada 1 de oxígeno gaseoso bajo presión que proviene ya sea de una bombona, ya sea de un depósito comprimido, por ejemplo a 200 bar. La presión del oxígeno bajo presión que entra dentro del dispositivo según la invención ha estado regulada previamente por medio de un reductor de presión 2 o de varios reductores de presión 2 conectados en serie a la bombona o al depósito (no representado). Un valor de esta presión del oxígeno bajo presión proporcionado a título ejemplo es de 5,2 bar. La materia polvorienta entra dentro del dispositivo según la invención por medio de una tolva de alimentación 18 de materia polvorienta. El oxígeno gaseoso bajo presión penetra dentro del dispositivo según la invención por la entrada anteriormente mencionada 1 y alcanza una tobera 3 del tipo de Laval, es decir del tipo convergente-divergente, en la cual los factores dimensionales son tales que la tobera 3 se considera como sónica. La tobera del tipo Laval comprende una sección convergente 4, un cuello sónico 5 y una sección divergente 6.

La tobera 3, en la forma de realización ilustrada, está seguida por una cámara 7. La cámara 7 comprende ventajosamente por lo menos una toma de oxígeno que permite derivar una cantidad de oxígeno acelerado por dicha tobera 3. Una parte del oxígeno portador y reactivo es derivado por lo tanto por dos mandrinados ortogonales 8, 8' unidos a una válvula de aguja 9 que permite ajustar el valor de la cantidad de oxígeno derivado. Igualmente está previsto en la forma de realización representada medir el valor de la presión estática del oxígeno acelerado por la tobera 3 por medio de dos mandrinados ortogonales 10, 10' practicados en dicha cámara 7. La medida de esta presión estática se hará por ejemplo con la ayuda de un manómetro 11.

30 La tobera de tipo Laval o de tipo convergente-divergente 3 de cuello sónico es solidaria a un inyector 12 que estará alimentado por gas portador que ha sido acelerado (oxígeno) con un caudal, una presión y una velocidad determinados por la tobera de tipo convergente-divergente 3 anteriormente mencionada.

El inyector 12 está fabricado de preferencia de un material compatible con el paso del oxígeno. El oxígeno portador y reactivo con por lo menos un elemento de la materia polvorienta, que ha atravesado el inyector, bajo presión elevada, desemboca enseguida en una zona de depresión 19, que, en esta forma de realización, es un recinto que tiene un volumen muy superior a aquél del tubo del inyector 12 y que sirve así de medio de expansión. La expansión del gas portador crea una depresión en el recinto anteriormente mencionado que tiene por efecto arrastrar la materia polvorienta que se encuentra en la tolva de alimentación 18. Ventajosamente, el recinto está alimentado de materia polvorienta gracias a la retirada de un obturador 20 controlado por medios de control, por ejemplo, neumáticamente con la ayuda de un cilindro 21.

Los medios de expansión pueden estar constituidos por todo tipo de medios de expansión conocidos, como el recinto de volumen superior a aquél del inyector anteriormente mencionado, o la parte divergente de un venturi.

La posición del inyector 12 es ventajosamente colineal con la salida 22 de la materia polvorienta arrastrada por el oxígeno portador y reactivo. La salida está equipada de un montaje divergente 22 constituido por una materia resistente 45 a la abrasión como por ejemplo carburo de tungsteno.

El inyector 12 comprende una zona de estrechamiento que permite una compresión del gas portador acelerado antes de que éste desemboque en la zona de depresión 19.

En esta forma de realización ilustrada, la tobera de tipo Laval 3 es solidaria con un conjunto de preferencia metálico 13 que está constituido por tres subconjuntos coaxiales 12, 14, 16. El subconjunto de preferencia metálico 14 comprende sobre su diámetro exterior una garganta 17 en la cual mandrinados 15 realizados radialmente permiten el paso de una parte del caudal de oxígeno que proviene del conducto unido a la válvula de aguja 9. El subconjunto 16 es un casquillo que permite el cierre de la garganta 17 del subconjunto 14. El casquillo 16 asegura la conexión a la válvula de aguja 9 por medio de un mandrinado realizado en el casquillo 16, a la derecha de la garganta 17 anteriormente mencionada.

La válvula de aguja 9 está entonces unida al mandrinado 8 y al mandrinado 8' por un conducto 36 de naturaleza compatible con el paso del oxígeno. El cierre o la abertura de la válvula de aguja 9 permite o no la derivación (el trasiego) dentro del circuito de derivación 36 de una cantidad de oxígeno necesaria para las condiciones de trabajo. El oxígeno trasegado de ese modo en la cámara 7 (orificio de trasiego) por una abertura de la válvula de aguja 9 será entonces reintroducido a través del circuito 36 dentro del casquillo 17 (orificio de la introducción del gas portador), pasará dentro del mandrinado 15 y desembocará a continuación dentro del espacio anular 25 que existe entre el subconjunto metálico 14 y el inyector 12. De este modo, a la salida del inyector 12, el caudal de oxígeno acelerado a la salida de la tobera de tipo convergente-divergente de cuello sónico 3 se recupera. Se denomina circuito de derivación 36 al conjunto constituido por la cámara 7, los mandrinados 8, 8', la válvula de aguja 9, el orificio de reintroducción 17, el mandrinado 15 y el espacio anular 25.

10

15

20

En efecto, el oxígeno acelerado que sale de la tobera 3 presenta un caudal d_L , una velocidad v_L y una presión P_L . Cuando una parte d_D del caudal de oxígeno acelerado d_L es derivada, el caudal de oxígeno que pasa dentro del inyector es d_i . El oxígeno que pasa dentro del inyector está animado de una velocidad v_i y presenta una presión P_i . El oxígeno de la parte del caudal derivada d_D está igualmente animado de una velocidad V_D y presenta una presión P_D dentro del espacio anular 25.

A la salida del inyector 12 y del espacio anular 25, el oxígeno tendrá una presión resultante P_R y una velocidad resultante v_R . Estas presiones y velocidades resultantes condicionan la cantidad de materia polvorienta arrastrada. La abertura o el cierre de la válvula de aguja 9 provocará una variación de los caudales d_i y d_D , una variación de las presiones P_i y P_D así como de los cambios de velocidad v_i y v_D . La presión resultante P_R y la velocidad resultante v_R serán desde entonces variables. La consecuencia directa es una variación de la cantidad de materia polvorienta arrastrada, por el hecho de la variación de energía cinética y de la cantidad de movimiento. Existirá por lo tanto una modificación de importancia del efecto venturi engendrado.

Sin embargo, los valores del caudal del gas portador acelerado d_L a la salida de la tobera de Laval 3 y del caudal de oxígeno que sale del dispositivo según la invención d_R son idénticos puesto que el caudal del gas portador permanece constante en el momento de atravesar el dispositivo según la invención.

Por lo tanto, gracias a la derivación o la derivación de una parte del caudal d_D por la abertura de la válvula de aguja 9 dentro del circuito de derivación 36, el caudal que pasa dentro del inyector 12 d_i disminuye en consecuencia. Las características tales como la presión P_i , el caudal másico M_i y la velocidad v_i a la salida del inyector metálico se modificarán.

- 30 Si la válvula de aguja 9 está completamente abierta y deja pasar un caudal de oxígeno máximo que corresponda al valor máximo d_D (caudal de oxígeno derivado) que se pueda esperar, la cantidad de materia polvorienta arrastrada será la cantidad de materia polvorienta mínima que puede ser arrastrada por el dispositivo según la invención (cantidad instantánea).
- Si la válvula de aguja 9 está cerrada y no permite ninguna derivación, entonces la cantidad de materia polvorienta arrastrada está en su valor máximo. No siendo siempre necesaria la derivación, es razonable prever la posibilidad de cerrar el órgano de ajuste y en este caso la válvula de aguja 9 (cantidad instantánea).

En una variante, la garganta 17 puede formar parte integrante del cuerpo de soporte del conjunto 13. Igualmente, una persona experta en la técnica comprenderá fácilmente que las posiciones geométricas de los mandrinados radiales pueden ser muy diferentes en función de los imperativos de las condiciones del espacio.

- 40 Los mandrinados 8' y 10' están mecanizados perpendicularmente a los dos mandrinados 8 y 10, ellos mismos situados ortogonalmente al plano formado por la cámara 7, pero una persona experta en la técnica comprenderá fácilmente que estas posiciones geométricas no están determinadas más que por las limitaciones estéricas y las condiciones del espacio. No hay que decir que un único mandrinado 8, 10 puede bastar para derivar el oxígeno acelerado o para medir el valor de la presión estática y que no existe imperativo alguno de colocación para las variantes según la invención.
- 45 Los factores dimensionales de la tobera de tipo Laval son tales que la presión estática del oxígeno que atraviesa dicha tobera 3 tiene un valor igual o inferior al producto de la presión a la entrada de la tobera (presión de compresión) y de un factor de 0,528. En estas condiciones, la tobera 3 está considerada como sónica y las condiciones de funcionamiento del conjunto no dependen más que de la presión inicial del fluido aguas arriba, es decir la presión determinada por el regulador de presión 2, constituido por ejemplo por uno o varios reductores de presión 2.
- 50 La parte divergente en carburo de tungsteno 22 puede estar colocada y fijada en un bloque de soporte 23.

Los factores dimensionales del conjunto de inyector 12 y de la parte divergente 22 son tales que el principio de funcionamiento puede igualmente ser asimilado a una tobera de tipo venturi.

En una variante según la invención, aguas arriba de la tobera del tipo convergente-divergente de cuello sónico 3, se encuentra una seguridad antirretorno 24 que presenta una válvula de palanca de disparo normalmente abierta y que 55 permite evitar el retroceso del gas dentro del dispositivo según la invención. En efecto, puesto que se trata de oxígeno

caliente o de un retorno de llama, es ventajoso presentar una seguridad antirretorno que bloquee el paso en caso de calentamiento o de retorno de escorias.

La figura 2 ilustra un conjunto de reparación por proyección reactiva más completo que comprende el mismo dispositivo que aquél representado en la figura 1. En este conjunto, una tolva 18' de una capacidad mayor que la tolva de alimentación 18 anteriormente mencionada está situada por encima de aquella. La materia polvorienta compuesta de polvos refractarios y metálicos utilizada en el proceso según la invención es por lo tanto transferida de la tolva 18' a la tolva 18 por derramamiento natural y por gravedad.

En la tolva de alimentación 18 que desemboca en la zona de depresión 19, estará colocado ventajosamente un registro móvil 26 que permite un derrame regular en el recinto de mezcla de gas portador (oxígeno) y de polvo. En el caso de un retorno de llama y en el caso de un retorno gaseoso susceptible de remontar en la tolva 18, puesto que la materia polvorienta que se encuentra es reactiva (por lo menos uno de los elementos que la constituyen) con el gas portador (oxígeno), la cantidad de materia polvorienta susceptible de provocar una explosión es reducida y por consiguiente la cantidad de materia polvorienta pérdida.

- Es el dispositivo ilustrado en la figura 2 comprende igualmente, como ya se ha mencionado anteriormente, un bloque de soporte 23 que se denomina igualmente en el contexto de la presente invención la primera carcasa 23 que rodea la salida 35 de materia polvorienta arrastrada por el gas portador bajo la forma de un orificio tubular de paso divergente 22 (por ejemplo, de carburo de tungsteno antiabrasión). El dispositivo según la invención, en su forma preferente ilustrada en este documento comprende además una segunda carcasa 27. La segunda carcasa 27 rodea la lanza 28 de proyección reactiva de la materia polvorienta arrastrada por dicho gas portador y reactivo.
- 20 La primera carcasa 23 está unida a la segunda carcasa 27 con la ayuda de los medios de conexión convencionales 29 y 29' tales como un saliente roscado y un paso de tornillo, bridas y análogos. Los medios de conexión convencionales 29 y 29' se mantienen en su sitio gracias a la presión ejercida por una serie de medios de retroceso 30 que presentan una fuerza de retroceso previamente determinada. Estos medios de retroceso 30 son por ejemplo resortes 30 calibrados. La fuerza de retroceso previamente determinada o el calibrado de los resortes es tal que en el momento de una sobrepresión en la lanza de proyección 28 seguida de un retorno de llama, los dos medios de conexión convencionales se separan. Esto permite un retorno instantáneo a la presión atmosférica dentro de los recintos en los cuales reina una presión propicia a la inflamación y a la explosión.
- Como se puede igualmente ver, el dispositivo según la invención comprende igualmente un dispositivo de seguridad complementario. En efecto, además de la seguridad antirretorno 24, del registro móvil 26 en la tolva de alimentación 18 anteriormente mencionada, de las carcasas primera y segunda 23 y 27, de los medios de retorno 30, el dispositivo dispone además de un hilo termofusible 31 adecuadamente colocado. El hilo termofusible 31 se encuentra en la trayectoria del flujo gaseoso caliente. En el momento de la separación de los medios de conexión convencionales 29 y 29' bajo el efecto de una sobrepresión sobre un incidente o en el momento en que sobrevenga un retorno de llama en dicha segunda carcasa 27, el flujo de gas caliente hace fundir inmediatamente el hilo termofusible 31 el cual es entonces seccionado casi instantáneamente. Su rotura permite liberar la tensión sobre la palanca de disparo 32 de seguridad. La liberación brutal de la palanca de disparo 32 interrumpe el caudal de oxígeno y se bloquea el paso del gas.

Además, el dispositivo según la invención está equipado al nivel de la segunda carcasa 27 de dispositivos filtrantes 33 y 34 que permiten la evacuación refrigerada del gas y de los polvos en el momento de un incidente de este tipo (retorno de llama).

- 40 En la variante del dispositivo según la invención ilustrada en la figura 3, el circuito de derivación que permite ajustar la cantidad de materia polvorienta arrastrada por el gas portador y reactivo está dispuesto de forma diferente. Los otros elementos representados funcionan al igual de cómo han sido descritos por la descripción detallada de las figuras 1 y 2 comprendiendo todas las alternativas explicadas.
- El circuito de derivación 36 está compuesto de un órgano de ajuste 9 (válvula de aguja) de la cantidad de gas portador derivado, de un orificio de separación previa 7 del gas portador y de un orificio de la introducción 25 del gas derivado dentro del recinto de la zona de depresión. El orificio de separación previa o de trasiego 7 está dispuesto a la salida de la tobera de Laval 3. Por supuesto, este orificio de trasiego puede estar dispuesto también en otros lugares sin embargo si éste último está dispuesto aguas arriba de dicha zona de depresión 19 de dicho gas portador, el funcionamiento será óptimo.
- Igualmente, como variante, un hilo termofusible 31 está unido por una parte a la palanca de disparo 32 y por otra parte a un punto situado entre dicha primera carcasa 23 y dicha segunda carcasa 27. El hilo (termofusible) 31 mantiene la palanca de disparo 32 en posición abierta mientras no existe retorno de llama. Si se produce un incidente, los medios de conexión convencionales 29, 29' se separan uno del otro y el extremo del hilo (termofusible) 31 será liberado, lo que tendrá por efecto liberar la presión sobre la palanca de disparo y bloquear la alimentación de oxígeno.

La figura 4 ilustra una variante del dispositivo ilustrado en la figura 1 en la cual el circuito de derivación está todavía dispuesto de forma diferente. Los otros elementos funcionan al igual que en la forma de realización ilustrada en la figura

- El dispositivo según la invención ilustrado en la figura 4 comprende una entrada 1 de oxígeno gaseoso bajo presión. La materia polvorienta entra dentro del dispositivo según la invención por medio de una tolva de alimentación 18 de materia polvorienta. El oxígeno gaseoso bajo presión penetra dentro del dispositivo según la invención por la entrada anteriormente mencionada 1 y alcanza una tobera 3 del tipo Laval (sónica). La tobera de tipo Laval comprende una sección convergente 4, un cuello sónico 5 y una sección divergente 6.
- La tobera 3 está seguida en la forma de realización ilustrada en la figura de una cámara 7. La cámara 7 comprende 10 ventajosamente por lo menos un trasiego de oxígeno que permite derivar una cantidad de oxígeno acelerado por dicha tobera 3 por medio de un mandrinado octogonal 8 unido a una válvula de aguja 9 que permite ajustar el valor de la cantidad de oxígeno derivado. Igualmente está previsto en la forma de realización representada medir el valor de la presión estática del oxígeno acelerado por la tobera 3 por medio de un mandrinado ortogonal 10 practicado en dicha cámara 7 como por ejemplo con la ayuda de un manómetro 11.
- 15 La cámara unida a la tobera de tipo Laval es solidaria a un inyector 12 que será alimentado de gas portador acelerado (oxígeno) con un caudal, una presión y una velocidad determinadas por la tobera 3 anteriormente mencionada. La tobera 3 presenta por ejemplo un diámetro de 3,4 mm.
- El invector 12 teniendo por ejemplo un diámetro de 3,7 mm desemboca entonces en una zona de depresión 19, que es, igualmente en esta forma de realización, un recinto que tiene un volumen muy superior a aquél del tubo del inyector 12 y 20 que sirve también de medios de expansión. La expansión del gas portador crea una depresión en el recinto anteriormente mencionado que tiene por efecto arrastrar la materia polvorienta que se encuentra en la tolva de alimentación 18. Ventajosamente, el recinto está alimentado de materia polvorienta gracias al retroceso de un obturador 20 controlado por medios de control, por ejemplo, neumáticamente con la ayuda de un cilindro 21.
- La posición del inyector 12 es ventajosamente colineal con la salida 22 de la materia polvorienta arrastrada por el 25 oxigeno portador y reactivo. La salida está equipada con un conjunto divergente 22 constituido por un material resistente a la abrasión como por ejemplo, carburo de tungsteno.
 - El invector 12 comprende una zona de estrechamiento que permite una compresión del gas portador acelerado antes de que éste desemboque dentro de la zona de depresión 19.
- En esta forma de realización ilustrada, el inyector 12 es solidario con el bloque de soporte 23 que encierra dicha zona de 30 depresión 19 y el paso divergente 22 que define la salida 35.
 - El bloque de soporte 23 comprende sobre su diámetro exterior una garganta 17 y un mandrinado ortogonal 15 que permite el paso de una parte del caudal de oxígeno que proviene del conducto unido a la válvula de aguja 9.
- La válvula de aguja 9 está entonces unida al mandrinado 8 por un conducto 36 de naturaleza compatible con el paso del oxígeno. El cierre o la abertura de la válvula de aquia 9 permite o no permite la derivación (el trasiego) dentro del circuito 35 de derivación 36 de una cantidad de oxígeno necesaria para las condiciones de trabajo. El oxígeno así trasegado dentro de la cámara 7 (orificio de trasiego) por una abertura de la válvula de aguja 9 será entonces reintroducido a través del circuito 36 dentro del casquillo 17 (orificio de reintroducción del gas portador), pasará dentro del mandrinado 15 y desembocará a continuación dentro de un espacio anular al nivel de la zona de depresión 19. De este modo, a la salida del inyector 12, el caudal de oxígeno acelerado al salir de la tobera de tipo convergente-divergente de cuello sónico 3 es recuperado. Se denomina circuito de derivación 36 al conjunto constituido por la cámara 7, el mandrinado 8, la válvula de aguja 9, el orificio de reintroducción 17, el mandrinado 15.

El funcionamiento y los otros elementos son idénticos a aquellos que han sido descritos para la figura 2.

Ejemplo

40

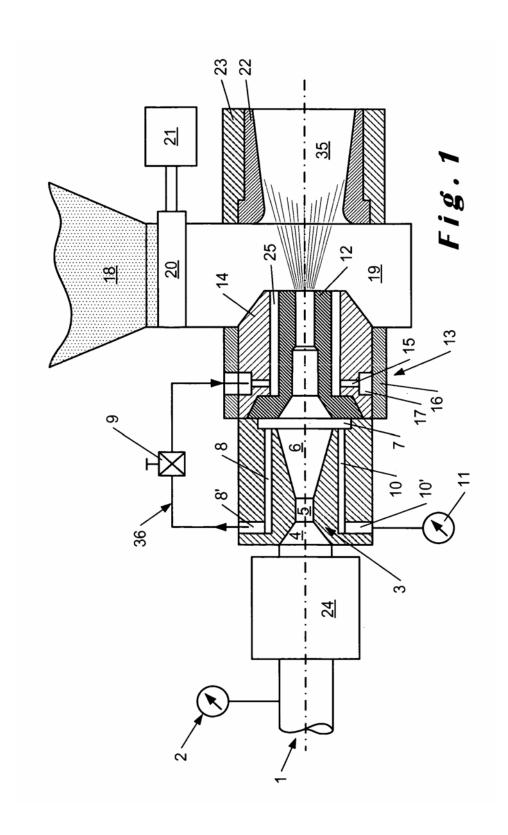
Un caudal de O₂ constante entra dentro del dispositivo según la invención con un valor de 30 Nm³/h y presenta una 45 presión a la salida del reductor de presión 2 de 5,2 bar. La presión máxima útil a la entrada del inyector (presión estática) es de 4,05 bar. La válvula de aguja, inicialmente cerrada ha sido abierta poco a poco y el caudal másico de materia polvorienta ha sido medido. Los resultados se representan más adelante en una tabla.

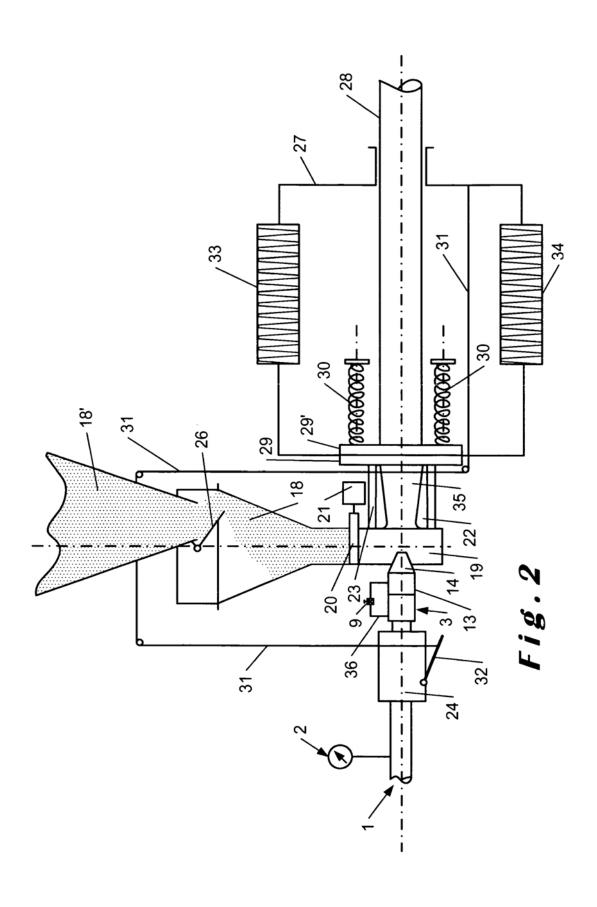
Posición de la válvula de aguja	P estática medida por el manómetro (11) (bar)	Caudal másico de salida de materia polvorienta (kg/h)
Cerrada	4,05	83,5
Abierta +	3,75	70
Abierta ++	3,5	62,7
Abierta +++	3,25	53
Abierta ++++	3	48
Abierta +++++	2,8	46
Abierta totalmente	2,55	42,3

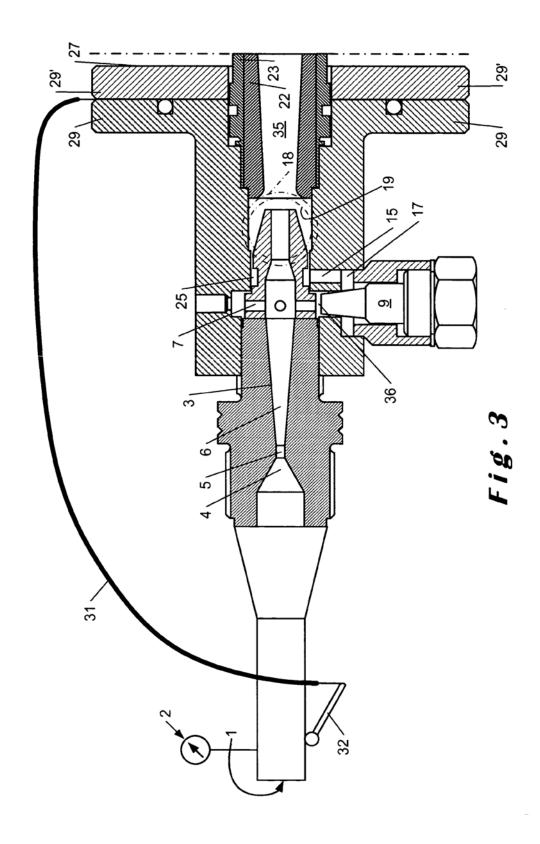
Se comprenderá que la presente invención no está en modo alguno limitada a las formas de realización descritas antes en este documento sino que se pueden aportar modificaciones sin por ello salirse del ámbito de las reivindicaciones adjuntas.

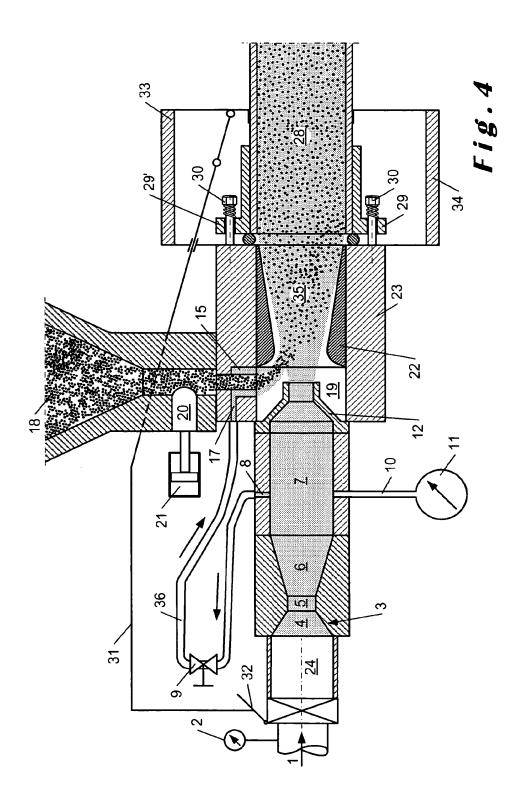
REIVINDICACIONES

- 1. Procedimiento de proyección de una materia polvorienta en un gas portador que presenta un caudal global, dicho procedimiento comprendiendo:
 - un flujo de dicho gas portador bajo presión,
- 5 una aceleración de dicho gas portador bajo presión hasta una velocidad sónica,
 - una expansión de dicho gas portante bajo presión con la formación de una zona de depresión que presenta un valor inferior a dicha presión de flujo del gas portador y un arrastre de una cantidad de dicha materia polvorienta por dicho gas portador expandido, y
 - una proyección de dicha materia polvorienta arrastrada por dicho gas portador,
- 10 caracterizado porque el procedimiento comprende además una regulación de dicha presión inferior por derivación o sin derivación, antes de la expansión, de una cantidad ajustable de dicho gas portador que ha sido acelerado para reintroducir dicha cantidad ajustable dentro de la zona de depresión anteriormente mencionada sin modificación de dicho caudal global.
- 2. Procedimiento según la reivindicación 1 comprendiendo además una compresión de dicho gas portador acelerado previamente a la expansión.
 - 3. Procedimiento según la reivindicación 2 en el cual dicho gas portador es un gas reactivo que participa en una relación exotérmica con por lo menos un elemento de dicha materia polvorienta.
 - 4. Dispositivo de proyección de una materia polvorienta en un gas portador que comprende:
 - una entrada (1) de gas portador bajo presión,


30


40


- una tobera del tipo convergente-divergente de cuello sónico (3) en comunicación con dicha entrada (1) de dicho gas portador bajo presión,
 - una alimentación (18) de materia polvorienta que comunica con una zona de depresión (19),
 - medios de expansión del gas portador unidos a dicha tobera de tipo convergente-divergente de cuello sónico (3) que recibe el gas portador bajo presión y desemboca en dicha zona de depresión (19), y
- una salida (35) de dicha materia polvorienta arrastrada por dicho gas portador expandido fuera de la zona de depresión (19),
 - caracterizado porque comprende además un dispositivo de regulación del caudal (11, 7, 8, 15, 17, 36) de dicha materia polvorienta dentro de dicho gas portador que comprende un circuito de derivación (36) de dicho gas portador provisto de un órgano de ajuste (9) de la cantidad de gas portador derivada, dicho circuito de derivación (36) comprendiendo un orificio de separación previa del gas portador (7, 8) dispuesto aguas arriba de dicha zona de depresión (19) de dicho gas portador y un dispositivo de reintroducción (15, 17) de dicho gas portador previamente separado situado dentro de dicha zona de depresión (19), dicha tobera del tipo convergente-divergente de cuello sónico (3) estando dispuesta para mantener, aguas abajo, un caudal constante de gas portador que arrastra una cantidad previamente determinada de materia polvorienta.
- 35 5. Dispositivo según la reivindicación 4 comprendiendo además un inyector (12) en comunicación por una parte con dicha tobera de tipo convergente-divergente de cuello sónico (3) y por otra parte con dichos medios de expansión y dicha zona de depresión (19), dicho inyector (12) comprendiendo por lo menos una zona de estrechamiento.
 - 6. Dispositivo según la reivindicación 4 o la reivindicación 5 en el cual dicha tobera del tipo convergente-divergente de cuello sónico (3) presenta un diámetro inferior al diámetro de cada elemento aguas abajo de dicha tobera del tipo convergente-divergente de cuello sónico (3).
 - 7. Dispositivo según cualquiera de las reivindicaciones 4 a 6 en el cual dicho órgano de ajuste es una válvula de aguja (9).
 - 8. Dispositivo según cualquiera de las reivindicaciones 4 a 7 en el cual dicho orificio de separación previa (7, 8) está dispuesto aguas arriba de dicha zona de estrechamiento de dicho inyector (12).
- 45 9. Dispositivo según cualquiera de las reivindicaciones 4 a 8 en el cual dicha zona de depresión (19) está unida a un paso divergente (22), por ejemplo de carburo de tungsteno, él mismo unido a dicha salida (35) de dicha materia polvorienta arrastrada por el gas portador.


- 10. Dispositivo según la reivindicación 9 en el cual dicha salida (35) de materia polvorienta arrastrada por dicho gas portador es un orificio tubular que comprende el paso divergente (22), en el cual una primera carcasa (23) rodea por lo menos dicho orificio tubular de salida (35) y en el cual una segunda carcasa (27) rodea una tubería flexible que conduce a una lanza de proyección (28) unida a dicha salida (35), las dos carcasas (23, 27) estando unidas juntas.
- 11. Dispositivo según la reivindicación 10 comprendiendo además un hilo termofusible (31) unido por una parte a una palanca de disparo (32) que comprende una posición abierta de paso del gas portador y una posición cerrada de bloqueo del gas portador y por otra parte en el interior de dicha segunda carcasa (27) dicho hilo termofusible (31) estando dispuesto para mantener dicha palanca de disparo (32) en posición abierta.
- 12. Dispositivo según la reivindicación 10 o la reivindicación 11 en el cual dicha primera carcasa y dicha segunda 10 carcasa (23, 27) están unidas una a la otra por medios de retorno (30) que presenta una fuerza de retorno previamente determinada.
 - 13. Dispositivo según la reivindicación 12 en cuanto depende de la reivindicación 10 comprendiendo además un hilo (31) termofusible unido por una parte a una palanca de disparo (32) que comprende una posición abierta de paso del gas portador y una posición cerrada de bloqueo del gas portador y por otra parte entre dicha primera carcasa y dicha segunda carcasa (23, 27) dicho hilo termofusible (31) estando dispuesto para mantener dicha palanca de disparo (32) en posición abierta.

15

