

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 364 271

(51) Int. Cl.:

A23C 9/123 (2006.01) **A23C 9/13** (2006.01)

	12	TRADUCCIÓN DE PATENTE EUROPEA
--	----	-------------------------------

Т3

- 96 Número de solicitud europea: 06290285 .3
- 96 Fecha de presentación : 20.02.2006
- Número de publicación de la solicitud: 1820405 97 Fecha de publicación de la solicitud: 22.08.2007
- 54 Título: Cepas novedosas de Lactobacillus helveticus.
 - (73) Titular/es: COMPAGNIE GERVAIS DANONE 17, boulevard Haussmann 75009 Paris, FR
- Fecha de publicación de la mención BOPI: 30.08.2011
- (72) Inventor/es: Garault, Peggy; Pierson, Anne; Gaye, Christelle; Degivry, Marie-Christine y Saint-Denis, Thierry
- (45) Fecha de la publicación del folleto de la patente: 30.08.2011
- 74 Agente: Veiga Serrano, Mikel

ES 2 364 271 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCION

Cepas novedosas de lactobacillus helveticus

5 Sector de la técnica

10

40

45

55

La presente invención se refiere a cepas novedosas de *Lactobacillus helveticus*, así como a sus aplicaciones en el campo agroalimentario. Más particularmente, la presente invención propone cepas de *Lactobacillus helveticus* que presentan grandes capacidades de producción de péptidos antihipertensión.

Estado de la técnica

La hipertensión afecta a una parte importante de la población. El uso del péptido VPP (Val Pro Pro) y de péptidos que contienen la secuencia VPP como agentes que pueden reducir la tensión arterial mediante la inhibición de la enzima de conversión de la angiotensina (ACE) se ha descrito en el documento EP 0 583 074. También se ha descrito un efecto similar del tripéptido IPP (Ile Pro Pro) en la bibliografía. Estos péptidos inhiben la ACE bloqueando su sitio activo e impiden así que se vuelva activa la angiotensina.

- Se conoce que las dos secuencias VPP e IPP están presentes en la beta-caseína bovina y que la hidrólisis adecuada de esta caseína (o más generalmente de la leche que la contiene) permite obtener dichos tripéptidos. Numerosos estudios en animales y en el ser humano han demostrado que la ingesta diaria de algunos miligramos de estos tripéptidos permite reducir eficazmente la tensión arterial, particularmente en los sujetos hipertensos, reduciendo en la misma proporción el riesgo de accidente cardiovascular.
- Péptidos procedentes de una leche fermentada por Lactobacillus helveticus han mostrado in vivo su efecto inhibidor de la ACE (ACEI) y estos péptidos han podido encontrarse a nivel de la aorta de las ratas que participaron en el estudio (Masuda O. et al., 1996. J. Nutr. 126, 3063-8). Otros estudios también han mostrado más específicamente una disminución de la tensión arterial en ratas hipertensas tras la ingesta de péptidos procedentes de una leche fermentada por L. helveticus (Yamamoto N. et al., 1994. Biosci. Biotech. Biochem. 58, 776-8).

En el ser humano, la misma leche fermentada también ha permitido disminuir la tensión arterial sistólica (Hata. *et al.*; 1996. Am. J. Clin. Nutr., 64, 767-71). Un estudio más reciente confirma que los péptidos presentes en el producto AMEAL S® comercializado por la empresa CALPIS reducen de manera significativa la tensión arterial en sujetos que tienen una tensión arterial superior a la normal (Mizuno *et al.*, 2005. British Journal of Nutrition; vol. 94, número 1, 84-91).

En otro estudio reciente (Jauhiainen *et al.*; 2005. Am. J. of Hypertension, 18: 1600-1605) se plantea la hipótesis según la cual el mecanismo de acción mencionado anteriormente (inhibición de la ACE) para explicar el efecto antihipertensivo de una leche fermentada por un *L. helveticus* podría no obstante no ser el mecanismo de acción determinante en el ser humano.

Una gran mayoría de los *Lactobacillus helveticus* puede producir los tripéptidos IPP y VPP mediante fermentación de leche, pero las cantidades producidas pueden ser variables. El documento EP 1 016 709 describe un medio para producir los tripéptidos VPP y IPP mediante fermentación de leche con ayuda de cepas de bacterias lácticas específicas que pertenecen a la especie *Lactobacillus helveticus*.

Sin embargo, resulta útil poder disponer de cepas que presenten capacidades para producir cantidades de tripéptidos VPP y/o IPP lo más elevadas posible.

50 Objeto de la invención

La presente invención propone cepas que presentan tales capacidades. En particular, la presente invención propone cepas de *Lactobacillus helveticus* que permiten la preparación de productos alimenticios que presentan contenidos muy grandes en IPP y/o VPP.

Por cepa se entiende, en el sentido de la presente invención, cualquier cultivo, generalmente puro, de un microorganismo, obtenido a partir de una única célula o de una colonia aislada.

Por variante o mutante de una cepa X se pretende designar, en el sentido de la presente invención, cualquier cepa obtenida a partir de una cepa de referencia X. En el presente contexto, se usarán más particularmente los términos "variante" para designar una cepa obtenida principalmente mediante mutación y selección a partir de una cepa de referencia X y "mutante" para designar más específicamente una cepa obtenida mediante técnicas de mutagénesis al azar o dirigida (por ejemplo transformación genética con ayuda de vectores), aplicadas a la cepa X.

Los mutantes o variantes de las cepas según la presente invención se verán afectados evidentemente por la protección conferida por esta patente dado que conservan los aspectos esenciales de la invención, concretamente la capacidad para producir grandes cantidades de IPP y/o VPP.

5 Por cepa con "fenotipo de fructosa negativo", se entiende cualquier cepa que no tiene la capacidad para metabolizar la fructosa.

Por medio lácteo se entiende cualquier medio que contiene proteínas de la leche, por ejemplo una leche bovina normalizada al 4% en proteínas con leche bovina en polvo (desnatada o no) o con leche concentrada.

Por producto lácteo, en el sentido de la presente invención, se entiende, además de la leche, cualquier producto derivado de la leche, tal como nata, helado, mantequilla, queso, yogur, leche fermentada; los productos secundarios, como suero de la leche, caseína así como diversos alimentos preparados que contienen como ingrediente principal leche o constituyentes de la leche. Entre los productos lácteos, los productos lácteos fermentados comprenden entre otros yogures, leches fermentadas, quesos blancos, kéfires, quesos, productos lácteos probióticos y más generalmente cualquier producto lácteo que se haya sometido al menos a una etapa de fermentación. Dicha leche es generalmente leche de vaca, pero también puede ser leche de otros mamíferos, tales como cabra, oveja, yegua, camella, búfala.

Por producto alimenticio, en el sentido de la presente invención, se entiende cualquier producto destinado a la nutrición humana o animal. En particular, los productos alimenticios comprenden productos destinados a la alimentación de lactantes, de niños pequeños, de adolescentes y de adultos. Los productos alimenticios según la invención pueden contener en su totalidad o en parte, al menos un producto lácteo fermentado según la invención. Los productos alimenticios según la invención también pueden contener otros ingredientes usados habitualmente en la industria agroalimentaria, tales como aditivos, conservantes, frutas o extractos de frutas, aromas, colorantes, agentes de textura, cereales, trozos de chocolate, etc.

Por fermento se entiende, en el sentido de la presente invención, cualquier composición que contiene al menos una cepa viva de microorganismo susceptible de fermentar un medio dado. Entre los fermentos, los fermentos lácticos son composiciones que contienen al menos una cepa viva de microorganismo susceptible de fermentar un medio lácteo.

Según un modo de realización, la invención se refiere a la cepa de *Lactobacillus helveticus* I-3434 depositada el 25.05.05 en la CNCM (Colección Nacional de Cultivos de Microorganismos), 28 rue du Docteur Roux, 75724 París, Francia, según las disposiciones del Tratado de Budapest.

Según un modo de realización, la presente invención se refiere a las variantes y los mutantes de la cepa de *Lactobacillus helveticus* 1-3434 depositada el 25.05.05 en la CNCM (Colección Nacional de Cultivos de Microorganismos), 28 rue du Docteur Roux, 75724 París, Francia, según las disposiciones del Tratado de Budapest.

Según un modo de realización, la presente invención se refiere a una cepa de *Lactobacillus helveticus* que puede, mediante fermentación a una temperatura de entre 25 y 40°C, más preferiblemente entre 27 y 37°C e incluso más preferiblemente a 32°C de un medio lácteo con un contenido total en proteínas superior o igual al 2% (p/p), preferiblemente entre el 2 y el 10% (p/p), más preferiblemente entre el 2,5 y el 6% e incluso más preferiblemente igual al 4%, producir los tripéptidos de secuencia IPP y/o VPP en grandes concentraciones.

Un medio de expresar la concentración en tripéptidos de manera sencilla es expresarla en concentración equivalente de VPP [VPPeq].

Se expresa en mg/kg: $[VPPeq] = [VPP] + (9/5 \times [IPP])$

10

30

35

40

45

55

60

65

Así, según un modo de realización, las cepas de *Lactobacillus helveticus* según la invención pueden ventajosamente, mediante fermentación, producir los tripéptidos de secuencia IPP y/o VPP en una cantidad de al menos 60 mg, preferiblemente al menos 62 mg de VPPeq por kg de producto fermentado.

Tales cantidades de VPP y/o IPP se obtienen generalmente mediante fermentación por una cepa según la invención a una temperatura de entre 25 y 40°C, preferiblemente entre 26 y 39°C, preferiblemente entre 27 y 37°C, preferiblemente entre 30 y 34°C e incluso más preferiblemente a 32°C, de un medio lácteo con un contenido total en proteínas superior o igual al 2% (p/p), preferiblemente entre el 2 y el 10% (p/p), más preferiblemente entre el 2,5 y el 6% (p/p) e incluso más preferiblemente igual al 4% (p/p).

Según un modo de realización, las cepas de *Lactobacillus helveticus* según la invención presentan además un fenotipo de fructosa negativo. En efecto, la fructosa tiene un gran poder edulcorante, y es un ingrediente útil en los productos alimenticios. Así, si la fructosa no puede degradarse mediante la cepa de *Lactobacillus helveticus*, el producto alimenticio conserva excelentes propiedades organolépticas y el pH final se controlará ventajosamente

mejor en el caso en el que el producto alimenticio contiene una preparación de fruta(s), concretamente trozos y/o zumo de fruta(s).

Según un modo de realización, la presente invención se refiere a un producto alimenticio, concretamente producto lácteo fermentado, que comprende al menos una cepa de *Lactobacillus helveticus* según la invención.

De manera ventajosa, según un modo de realización, dicho producto alimenticio contiene al menos 10⁶, preferiblemente al menos 10⁷, preferiblemente al menos 10⁸ UFC/ml de bacterias *Lactobacillus helveticus* vivas. Así, el producto alimenticio según la invención contiene una biomasa importante.

Alternativamente, el producto alimenticio según la invención puede termizarse, de manera que se estabiliza su pH. Un producto alimenticio de este tipo también puede usarse posteriormente como ingrediente en otro producto alimenticio.

Además, el producto alimenticio según la invención puede contener preparaciones de fruta(s), concretamente trozos y/o zumo de fruta(s).

Según un modo de realización, dicho producto alimenticio contiene al menos 25 mg, preferiblemente al menos 30 mg, preferiblemente al menos 35 mg, preferiblemente al menos 40 mg, preferiblemente al menos 45 mg, preferiblemente al menos 50 mg, preferiblemente al menos 55 mg, preferiblemente al menos 60 mg, preferiblemente al menos 62 mg de VPPeq por kg de producto alimenticio.

Según un modo de realización, el producto alimenticio según la invención comprende además preparaciones de fruta(s), concretamente trozos y/o zumo de fruta(s).

Ventajosamente según un modo de realización, el producto alimenticio según la invención presenta propiedades antihipertensivas.

Según otro aspecto, la presente invención se refiere a un procedimiento de preparación de un producto alimenticio. Según un modo de realización, dicho procedimiento comprende las siguientes etapas:

- seleccionar una materia prima que contiene proteínas de la leche, concretamente proteínas que contienen las secuencias peptídicas IPP y/o VPP;
- seleccionar al menos una cepa de *Lactobacillus helveticus* según la invención,
- sembrar dicha materia prima con dicha cepa,
- fermentar dicha materia prima durante 12-30 horas a 25-40°C,
- opcionalmente, termizar el producto fermentado obtenido.

Según un modo de realización, el procedimiento según la invención puede carecer de cualquier etapa de termización tras la fermentación. Esto permite conservar bacterias vivas en el producto alimenticio (probiótico).

Según otro modo de realización, dicho procedimiento puede comprender una etapa de termización.

Descripción detallada de la invención

La invención se describirá adicionalmente con ayuda de los siguientes ejemplos, que no son limitativos.

EJEMPLOS DE REALIZACIÓN

10

25

30

35

45

55

50 EJEMPLO 1: Caracterización de una cepa según la invención

La cepa I-3434 ha sido objeto de depósitos en la CNCM (Colección Nacional de Cultivos de Microorganismos), 28 rue du Docteur Roux, 75724 París, Francia, según las disposiciones del Tratado de Budapest el 25.05.05. Esta cepa tiene un fenotipo de fructosa negativo.

EJEMPLO 2: Medición de las propiedades de acidificación

Las propiedades de acidificación se evalúan de la siguiente manera:

Se pasteuriza un medio que contiene 120 g de leche desnatada en polvo (LDP) en 930 ml de agua durante 10 min. a 95°C. Se siembra este medio al 0,5%, después se somete a fermentación a 32°C. Entonces se realiza un seguimiento del pH en función del tiempo.

Se usará una toma de muestras de medio fermentado realizada a las 30 h de fermentación para las mediciones de producción de los tripéptidos IPP y VPP así como para las mediciones de actividad ACEI cuyos resultados se proporcionarán a continuación.

5 Los resultados presentados en la figura 1 muestran las propiedades de acidificación de una cepa según la invención.

EJEMPLO 3: Medición de la producción de los tripéptidos IPP y VPP

Materiales y métodos

10

25

Se usa una muestra de medio lácteo (toma de muestras a las 30 horas de fermentación), tal como se describió anteriormente en el ejemplo 2, para realizar esta medición.

- El análisis del contenido en péptidos, concretamente el contenido en tripéptidos IPP y VPP, se realiza con un método de cromatografía de líquidos HPLC acoplada a un detector de tipo EM/EM tal como se describe a continuación:
- Debido a interferencias inherentes al análisis de muestras complejas, se aconseja enormemente el uso de patrones internos deuterados añadidos en una cantidad conocida y controlada en el momento de la preparación de la 20 muestra.
 - -La preparación de la muestra se realiza mediante dilución del medio fermentado en una mezcla de agua, metanol y ácido trifluoroacético (50/50/0,1%), que contiene 25 ppm de patrón interno de VPP deuterado (indicado a continuación como VPPd, de fórmula H-Val [D8]-Pro-Pro-OH, MM = 319,45 g/mol, disponible de la empresa Bachem Chemicals, Francia) y 10 ppm de patrón interno de IPP deuterado (indicado a continuación como IPPd, de fórmula H-IIe [D10 N15]-Pro-Pro-OH, MM = 336,2 g/mol, disponible de la empresa NEOMPS, Groupe SNPE, 7 rue de Boulogne, 67100 Estrasburgo, Francia) en una razón de 1 a 3 (por ejemplo, pesada precisa en un tubo Eppendorf de 600 mg de muestra en 1200 mg de mezcla de agua-metanol-TFA que contiene los patrones internos).
- 30 -A continuación se centrifuga esta muestra diluida a 14000 g durante 15 minutos. A continuación se diluye con precisión el sobrenadante claro obtenido, que contiene los péptidos generados durante la fermentación, a 1/50 en una mezcla de agua-metanol (50/50, v/v) que contiene un 0,1% de ácido trifluoroacético.
- -A continuación se analiza la disolución diluida así obtenida en un sistema cromatográfico HPLC de tipo Agilent 1100 (empresa Agilent Technologies France, 1 rue Galvani 91745 Massy cedex, Francia), equipado con una columna adaptada para el análisis de péptidos, de tipo Waters Biosuite® (3 mm 2,1 x 150 mm, C18 PA-A, WAT186002427, Waters Francia, 5, Rue Jacques Monod, 78280 Guyancourt) a la temperatura de 50°C, caudal de 0,25 ml/min. Los péptidos se eluyen de manera clásica con un gradiente creciente de disolvente B (acetonitrilo + un 0,100% de ácido fórmico) en el disolvente A (agua + un 0,106% de ácido fórmico), a lo largo de un periodo de 35 min. a 2 horas en función de la resolución cromatográfica deseada. El método adaptado a la valoración de los péptidos IPP y VPP usa el siguiente gradiente:

Tiempo	% de tampón A	% de tampón B
0	100	0
3	96	4
6	89	11
15	60	40
18	0	100
21	100	0
24	0	100
27,5	100	0
35	100	0

-La detección se realiza con ayuda de un detector específico de tipo EM/EM, por ejemplo con un aparato con trampa de iones tal como Esquire3000+ (Bruker Daltonique, rue de l'Industrie, 67166 Wissembourg Cedex), parametrizado para ionización por electrospray en modo positivo, o bien para el análisis global del contenido peptídico (modo EM-EM), o bien para la cuantificación precisa y específica de un péptido a partir de sus fragmentos característicos (modo MRM). En el caso de la valoración de los péptidos IPP y VPP, pero también de los patrones internos IPPd y VPPd, estos péptidos se aíslan a partir de su masa específica (iones monocargados de 312,2 Da para VPP; 326,2 Da para IPP; 320,2 Da para VPPd; 337,3 Da para IPPd) y se cuantifican a partir de la intensidad de sus iones específicos tras la fragmentación (fragmentos >= 85 Da).

La integración de los picos cromatográficos de cada uno de los péptidos IPP, VPP y la comparación con las áreas de pico de los patrones internos de concentraciones conocidas IPPd y VPPd permite a continuación calcular, mediante regresión lineal sencilla, el contenido inicial de la muestra en VPP y IPP (generalmente expresado en mg/kg o ppm).

5 Resultados

10

20

25

35

40

45

	VPPeq (mg/kg de medio fermentado)
Calpis CM4	51
CNRZ 244	57
I-3434	62

La figura 2 muestra una comparación de la producción de tripéptidos IPP y VPP de la cepa I-3434 con respecto a dos cepas de la técnica anterior.

La cepa CM4 de la empresa CALPIS se describe en la patente EP 1 016 709 mientras que la cepa CRNZ 244 se describe en la solicitud de patente WO 2004/060073.

Queda claro en esta figura que la cepa I-3434 (cepa según la invención) tiene una producción de tripéptidos IPP y VPP muy superior a esas dos cepas anteriores en las mismas condiciones.

EJEMPLO 4: Medición de la actividad ACEI (inhibición de la enzima de conversión de la angiotensina)

Materiales y métodos

Se usa una muestra de medio lácteo (toma de muestras a las 30 horas de fermentación), tal como se describió anteriormente en el ejemplo 2, para realizar esta medición. El presente método se basa en el método de Cushman y Cheng (Cushman *et al.* Biochem. Pharmacol. 1971. 20:1637), adaptado para hacer que sea compatible con las muestras del tipo de productos lácteos fermentados.

1. Preparación de los reactivos y disoluciones

1.1 Tampón borato de sodio 0,1 M pH 8,3, con adición de 0,3 M de NaCl

Pesar 6,1843 g de H₃BO₃ (Carlo Erba ref.: 402 766). Disolver en aproximadamente 800 ml de agua desmineralizada, ajustar a pH 8,3 con una disolución de NaOH y después añadir 12,0 g de NaCl (concentración final 0,3 M) y completar hasta 1 litro con agua desmineralizada.

1.2 Preparación del sustrato HHL: disolución de Hip-His-Leu a 5 mM en tampón borato de sodio 0,1 M pH 8.3 con 0.3 M de NaCl

Pesar exactamente 42,95 mg de péptido HHL anhidro (N-hipuril-histidil-leucina tetrahidratado PM: 501,5 g, Sigma-Aldrich ref.: 53285-250 mg) y disolver en aproximadamente 15 ml de tampón borato de sodio 0,1 M pH 8,3 con 0,3 M de NaCl y después completar hasta 20 ml con ese mismo tampón.

1.3 Preparación de la disolución de ACE a 0,1 U/ml

Se solubiliza la enzima de conversión de la angiotensina en forma de polvo liofilizado (origen: pulmones de conejo, Sigma-Aldrich ref. A6778, 0,25 unidades) en 2,5 ml de tampón borato de sodio 0,1 M pH 8,3 para obtener una disolución a 0,1 U/ml. La disolución así preparada debe usarse, almacenada a 4°C, como máximo a las 2 semanas para conservar una actividad enzimática suficiente.

2. Preparación de las muestras de leche fermentada

Es necesario acondicionar la muestra a un pH comprendido entre 8,0 y 8,5 de manera que sea próximo al pH óptimo de la ACE. En primer lugar se centrifuga la leche fermentada, a continuación se ajusta el pH del sobrenadante entre 8,0 y 8,5 (de manera ideal pH 8,3) y después se somete a ultrafiltración con ayuda de una unidad de filtración Vivaspin con un umbral de corte de 10.000 Dalton (Vivascience, Francia) con el fin de eliminar los elementos de interferencia (proteínas completas, sales de calcio).

El protocolo completo es el siguiente:

- -Depositar aproximadamente 6 ml de leche fermentada en un tubo tipo Falcon de 15 ml tras haber pesado previamente el tubo vacío. Pesar la cantidad de leche fermentada depositada en el tubo.
- -Centrifugar a 14.000 g durante 10 min. a 10°C.
 - -Recuperar el sobrenadante

6

- -Cuantificar la proporción fondo/sobrenadante lo que permite, si es necesario, determinar la CI50 equivalente al producto de origen y no únicamente a su sobrenadante.
- -Tomar una muestra de 2,0 ml de sobrenadante en un tubo de ensayo y medir el pH.
- -Añadir el volumen necesario de NaOH 2 M con el fin de obtener un pH comprendido entre 8,0 y 8,5 (objetivo: 8,3) tras la adición del tampón borato, después agitar.
- -Añadir el volumen necesario de tampón borato para diluir el sobrenadante de partida a $\frac{1}{2}$ teniendo en cuenta el volumen exacto de NaOH añadido (por ejemplo: muestra de ensayo de sobrenadante = 2 ml + 250 μ l de NaOH + 1,75 ml de tampón borato).
- -Verificar que el pH final está comprendido entre 8,0 y 8,5. Más allá de este intervalo, volver a empezar añadiendo más o menos NaOH. Se forma un precipitado: se debe a las sales de calcio.
 - -Someter la muestra a ultracentrifugación a 12.000 g durante 15 min. a 10°C con ayuda de unidades de filtración Vivaspin de 10.000 Dalton (capacidad de 4-6 ml) con el fin de obtener una muestra transparente.

3. Medición de la inhibición de la ACE mediante las muestras de leches fermentadas

Durante cada serie de análisis, deben prepararse controles (el 0 y el 100% de actividad ACE). Para cada muestra, se realizan dos ensayos independientes y un blanco de muestra para cada dilución. En efecto, debe ajustarse lo más posible (diluyendo) la cantidad de muestra necesaria para disminuir en un 50% la actividad de la ACE. Para ello:

- -Depositar 80 μ l de la muestra acondicionada a pH 8,3 en el tubo de blanco y en los tubos de ensayo.
- -Depositar 80 μ l de agua desmineralizada en los tubos de control del 0 y el 100%.
- -Añadir 200 ul de la disolución de sustrato HHL a 5 mM en todos los tubos. Agitar.
- -Colocar los tubos en un baño de agua termostatizado a 37ºC, dejar que se equilibre la temperatura.
- -Iniciar la reacción enzimática mediante la adición en cada tubo de 20 μl de la disolución de ACE a 0,1 U/ml, salvo en los blancos de muestra y de control del 0% para los cuales deben depositarse 20 μl de tampón borato pH 8,3.
 -Dejar hidrolizar durante 1 h exactamente a 37°C.
 - -Detener la reacción añadiendo a cada tubo 250 µl de la disolución de HCl 1 M. Tabla recapitulativa de la composición de los diferentes medios de reacción:

	Muestra de ensayo	Adición del sustrato	Inicio de la hidrólisis
Control del 100%	80 μl de agua	200 μl de HHL	20 μl de ACE
	desmineralizada		•
Control del 0%	80 μl de agua	200 μl de HHL	20 μl de tampón borato
	desmineralizada		
Muestra (ensayo)	80 μl de muestra	200 μl de HHL	20 μl de ACE
Blanco de	80 μl de muestra	200 μl de HHL	20 μl de tampón borato
muestra		· ·	

La lectura se realiza mediante extracción del sustrato hidrolizado (ácido hipúrico) y su cuantificación con ayuda de un espectrofotómetro, con el siguiente protocolo:

Añadir a cada tubo 1,7 ml de acetato de etilo, agitar

Centrifugar a 2000 g durante 5 min. a 10°C.

Tomar una muestra de 1 ml exactamente del sobrenadante en un microtubo Eppendorf.

Evaporar el acetato de etilo a 120°C durante 10 min. en un bloque térmico.

Añadir exactamente 1 ml de agua desmineralizada y después agitar durante 10 segundos para recoger el ácido 40 hipúrico.

Leer la absorbancia a 228 nm en cubetas adaptadas a la lectura en UV.

Expresión de los resultados:

45 El porcentaje de inhibición de la ACE se calcula de la siguiente manera:

$$\frac{(\text{Abs ctl del }100\% - \text{Abs ctl del }0\%) - (\text{Abs mue - Abs blanco mue})}{(\text{Abs ctl del }100\% - \text{Abs ctl del }0\%)} \times 100$$

Con

5

10

15

20

30

Abs = absorbancia a 228 nm tras la extracción del ácido hipúrico

ctl = control

50 mue = muestra

Para una leche fermentada, se expresa la CI50 como la cantidad de sobrenadante de esa leche fermentada que inhibe el 50% de la actividad enzimática de la ACE en el medio de reacción, es decir en microlitros de sobrenadante de leche fermentada por mililitro de medio de reacción.

7

Resultados

5

15

20

La figura 3 muestra una comparación de la actividad inhibidora de la enzima de conversión de la angiotensina de las diferentes cepas según la presente invención en comparación con cepas de la técnica anterior.

En ordenadas se expresa la concentración equivalente de leche fermentada por ml de medio de reacción necesario para inhibir el 50% de la actividad de la enzima de conversión de la angiotensina (CI50). Cuanto mayor es esta concentración, menos capacidad tiene por tanto la cepa para inhibir la enzima de conversión de la angiotensina.

10 EJEMPLO 5: Preparación de un producto lácteo (probiótico) según la invención

Se normaliza en cuanto a las proteínas (4,0%) leche a granel, previamente desnatada, prepasteurizada y enfriada a 4°C, con leche desnatada en polvo. Se somete el medio lácteo así preparado a una pasteurización (95°C - 8 min.). Tras el enfriamiento a 32°C se siembra el medio lácteo con la cepa I-3434 a razón de 10⁷ UFC/ml y se mantiene a 32°C durante toda la duración de la fermentación. Cuando se alcanza el pH 3,5, se retira la cuajada de la cuba de fermentación para someterla a un alisado (mediante su paso a través de un filtro) y se enfría hasta 10°C en un intercambiador de placas. A continuación se le añade a la cuajada alisada y enfriada una preparación de frutas (que tiene un pH de entre 4 y 4,1) a razón del 15% del producto acabado, se acondiciona en recipientes de 110 ml y se almacena a 4°C durante 28 días.

El producto así preparado contiene tripéptidos de secuencia IPP/VPP a razón de 62 mg/kg de equivalente de VPP. El contenido en péptidos del producto es estable durante todo el periodo de caducidad del producto.

REIVINDICACIONES

5	1.	Cepa de <i>Lactobacillus helveticus</i> I-3434 depositada el 25.05.05 en la CNCM (Colección Nacional de Cultivos de Microorganismos), 28 rue du Docteur Roux, 75724 París, Francia, según las disposiciones del Tratado de Budapest.			
	2.	Uso de la cepa de <i>Lactobacillus helveticus</i> según la reivindicación 1, para la preparación de un producto alimenticio o farmacéutico, concretamente de un producto lácteo fermentado.			
10	3.	Uso según la reivindicación 2, tal que dicho producto alimenticio o farmacéutico tiene propiedades antihipertensivas.			
15	4.	Producto alimenticio, concretamente producto lácteo fermentado, que comprende la cepa de <i>Lactobacillus helveticus</i> según la reivindicación 1.			
	5.	Producto alimenticio según la reivindicación 4, que contiene al menos 10 ⁶ , preferiblemente al menos 10 ⁷ , preferiblemente al menos 10 ⁸ UFC/ml de bacterias <i>Lactobacillus helveticus</i> vivas.			
20	6.	Producto alimenticio según una cualquiera de las reivindicaciones 4-5, que contiene al menos 25 mg, preferiblemente al menos 50 mg, más preferiblemente al menos 75 mg de VPPeq por kg de dicho producto alimenticio.			
25	7.	Producto alimenticio según una cualquiera de las reivindicaciones 4-6, que comprende además preparaciones de fruta(s), concretamente trozos y/o zumo de fruta(s).			
	8.	Producto alimenticio según una cualquiera de las reivindicaciones 4-7, que presenta propiedades antihipertensivas.			
30	9.	Procedimiento de preparación de un producto alimenticio que comprende las siguientes etapas:			
		seleccionar una materia prima que contiene proteínas de la leche, concretamente proteínas que contienen las secuencias peptídicas IPP y/o VPP;			
35		seleccionar la cepa de Lactobacillus helveticus según la reivindicación 1,			
		sembrar dicha materia prima con dicha cepa,			
40		■ fermentar dicha materia prima durante 12-30 horas a 25-40°C,			
		opcionalmente, termizar el producto fermentado obtenido.			

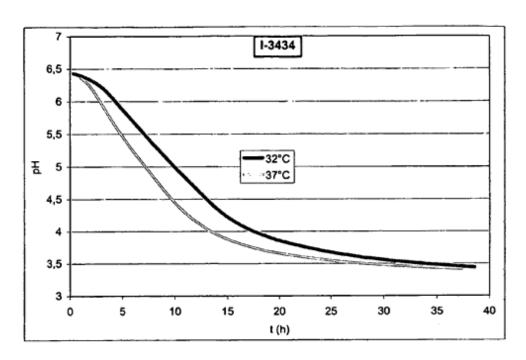


Figura 1

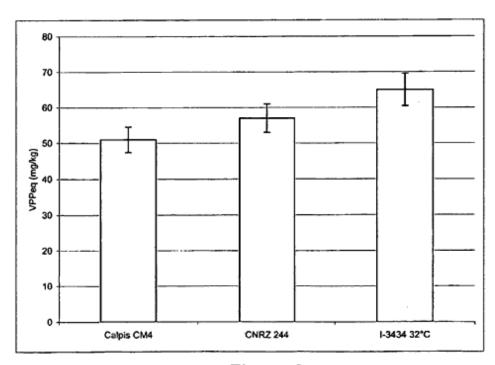


Figura 2

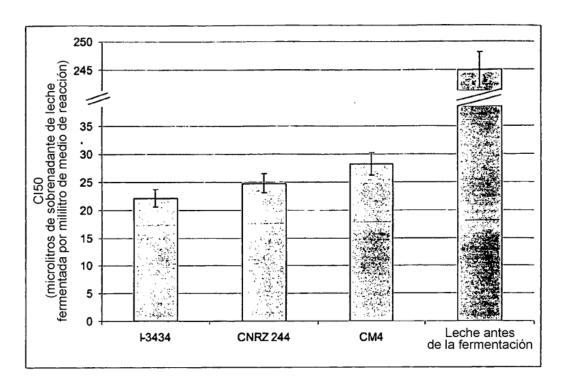


Figura 3