

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

 \bigcirc Número de publicación: $2\ 364\ 550$

(51) Int. Cl.:

 C07D 213/82 (2006.01)
 C07D 231/40 (2006.01)

 C07D 333/38 (2006.01)
 C07D 403/12 (2006.01)

 C07D 401/14 (2006.01)
 C07D 409/12 (2006.01)

 C07D 213/81 (2006.01)
 C07D 413/12 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA

Т3

- 96 Número de solicitud europea: 02723322 .0
- 96 Fecha de presentación : 28.02.2002
- Número de publicación de la solicitud: 1373210

 Fecha de publicación de la solicitud: 02.01.2004
- (54) Título: Agentes de control de plagas de invertebrados de diamidas heterocíclicas.
- (30) Prioridad: **05.03.2001 US 273474 P**

73) Titular/es:

E.I. DU PONT DE NEMOURS AND COMPANY 1007 Market Street Wilmington, Delaware 19898, US

- Fecha de publicación de la mención BOPI: 06.09.2011
- (2) Inventor/es: Annis, Gary, David y Finkelstein, Bruce, Lawrence
- (45) Fecha de la publicación del folleto de la patente: 06.09.2011
- (74) Agente: Elzaburu Márquez, Alberto

ES 2 364 550 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Agentes de control de plagas de invertebrados de diamidas heterocíclicas

Antecedentes de la invención

5

10

15

25

Esta invención se refiere a ciertas diamidas heterocíclicas, a sus *N*-óxidos, a sales adecuadas y composiciones, y a un método para su uso para controlar plagas de invertebrados tanto en medios agronómicos como no agronómicos.

El control de plagas de invertebrados es extremadamente importante para conseguir una alta eficacia en los cultivos. Los daños ocasionados por las plagas de invertebrados en los cultivos agronómicos en crecimiento y almacenados pueden producir una reducción significativa de la productividad y, por lo tanto, pueden ocasionar un aumento en los costes para el consumidor. También es importante el control de las plagas de invertebrados en la silvicultura, cultivos de invernadero, plantas ornamentales, cultivos de viveros, productos de fibra y alimentarios almacenados, en la ganadería, en artículos domésticos y en la salud pública y de los animales. Muchos productos están disponibles en el mercado para estos fines, pero sigue existiendo la necesidad de nuevos compuestos que sean más eficaces, menos costosos, menos tóxicos, más seguros desde el punto de vista medioambiental o que tengan diferentes modos de acción.

El documento NL 9202078 describe derivados del ácido N-acilantranílico de Fórmula I como insecticidas

$$R^3$$
 R^4
 R^5
 R^6
 R^7
 R^8
 R^8

en la que, entre otros, X es un enlace directo; Y es H o alquilo C_1 - C_6 ; Z es NH_2 , NH(alquilo C_1 - C_3) o N(alquilo C_1 - C_3) $_2$; Y R^1 a R^9 son independientemente H, halógeno, alquilo C_1 - C_6 , fenilo, hidroxi, alcoxi C_1 - C_6 o aciloxi C_1 - C_7 .

El documento WO 01/070671 describe derivados del ácido N-acil antranílico de Fórmula I que actúan como artropodicidas.

en la que, entre otros, A y B son independientemente O o S; J es un anillo de fenilo opcionalmente sustituido, un anillo heteroaromático de 5 ó 6 miembros, un sistema de anillo naftilo o un sistema de anillo heterobicíclico condensado aromático de 8, 9 ó 10 miembros; R^1 y R^3 son independientemente H o alquilo C_1 - C_6 opcionalmente sustituido; R^2 es H o alquilo C_1 - C_6 ; cada R^4 es independientemente H, alquilo C_1 - C_6 , haloalquilo C_1 - C_6 , halógeno o CN; y R^3 or R^4 es independientemente R^4

Compendio de la invención

Esta invención se refiere a compuestos de Fórmula I, y a sus N-óxidos o sales adecuadas,

$$(R^4)_n$$
 R^1
 R^2
 R^3

en la que

5

A y B son los dos O;

J se selecciona entre el grupo que consiste en J-6, J-7, J-8, J-9, J-10, J-11, J-12 y J-13

$$R^7$$
 N
 R^9
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^7
 R^7

 R^9 R^7 R^7 R^9 R^9 R^5 R^5

selecciona entre el grupo que consiste en K-1, K-14, K-15, K-18, K-23, K-28, K-29, K-30, K-31 y K-33, donde el enlace superior derecho está unido a través del átomo de carbono de unión disponible con el átomo de nitrógeno de la parte NR¹C(=A)J de Fórmula I y el enlace inferior derecho está unido a través del átomo de carbono de unión disponible con el átomo de carbono de la parte C(=B)NR²R³ de fórmula I.

$$(R^{4})_{n} = (R^{4})_{n} =$$

n es de 1 a 3;

5

10

15

20

 R^2

R³ es

R¹ es H; o alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 o cicloalquilo C_3 - C_6 , cada uno opcionalmente sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en halógeno, CN, NO₂, hidroxi, alcoxi C_1 - C_4 , alquiltilo C_1 - C_4 , alquilsulfinilo C_1 - C_4 , alquilsulfinilo C_1 - C_4 , alquilamino C_1 - C_4 , dialquilamino C_2 - C_6 ; o

 $R^1 \ es \qquad \text{alquilcarbonilo} \ C_2\text{-}C_6, \ \text{alcoxicarbonilo} \ C_2\text{-}C_6, \ \text{alquilaminocarbonilo} \ C_2\text{-}C_6, \ \text{dialquillaminocarbonilo} \ C_3\text{-}C_8 \ \text{o} \ C(=A)J;$

es H, alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , cicloalquilo C_3 - C_6 , alcoxi C_1 - C_4 , alquilamino C_1 - C_4 , dialquilamino C_2 - C_8 , cicloalquilamino C_3 - C_6 , alcoxicarbonilo C_2 - C_6 o alquilcarbonilo C_2 - C_6 ;

H; G; o alquilo C₁-C₆, alquenilo C₂-C₆, alquinilo C₂-C₆, cicloalquilo C₃-C₆, cada uno opcionalmente sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en G, halógeno, CN, NO₂, hidroxi, alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquiltio C₁-C₄, alquilsulfinilo C₁-C₄, alquilsulfonilo C₁-C₄, alcoxicarbonilo C₂-C₆, alquilcarbonilo C₂-C₆, trialquilsililo C₃-C₆, y un anillo de fenilo, fenoxi o un anillo heteroaromático de 5 ó 6 miembros, cada anillo opcionalmente sustituido con uno a tres sustituyentes seleccionados independientemente entre R⁶: o

R² y R³ pueden tomarse junto con el nitrógeno al que están unidos para formar un anillo que contiene de 2 a 6 átomos de carbono y opcionalmente un átomo adicional de nitrógeno, azufre u oxígeno, y dicho anillo puede estar opcionalmente sustituido con uno a cuatro sustituyentes seleccionados entre R¹²; y

G es un anillo carbocíclico o heterocíclico no aromático de 5 ó 6 miembros, incluyendo opcionalmente uno o dos miembros de anillo seleccionados entre el grupo que consiste en C(=O), SO o S(O)₂ y opcionalmente sustituido con uno a cuatro sustituyentes seleccionados entre R¹²;

cada R^4 es independientemente alquilo C_1 - C_4 , haloalquilo C_1

25 R⁵ es H, alquilo C₁-C₄, haloalquilo C₁-C₄, o

V es N, CH, CF, CCl, CBr o Cl;

cada R^6 y R^7 es independientemente H, alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , haloalquilo C_1 - C_6 , haloalquilo C_1 - C_6 , haloalquiltio C_1 - C_4 ; y

5 R^9 es H, alquilo C_1 - C_6 , haloalquilo C_3 - C_6 , haloalquenilo C_3 - C_6 , alquinilo C_3 - C_6 , alq

cada R¹² es independientemente alquilo C₁-C₂, halógeno, CN, NO₂ o alcoxi C₁-C₂.

Esta invención también se refiere a un método para controlar una plaga de invertebrados que comprende poner en contacto la plaga de invertebrados o su medio con una cantidad biológicamente eficaz de un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del compuesto (por ejemplo, una composición descrita en la presente memoria), con la condición de que el método no sea un método de tratamiento del cuerpo del ser humano o animal mediante terapia. Esta invención también se refiere a un método en el que la plaga de invertebrados o su medio se pone en contacto con una cantidad biológicamente eficaz de un compuesto de Fórmula I o una composición que comprende un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del compuesto y una cantidad biológicamente eficaz de al menos un compuesto o agente adicional para controlar plagas de invertebrados.

Esta invención también se refiere a una composición para controlar una plaga de invertebrados que comprende una cantidad biológicamente eficaz de un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del compuesto y al menos un componente adicional seleccionado entre el grupo que consiste en tensioactivos, diluyentes sólidos y diluyentes líquidos. Esta invención también se refiere a una composición que comprende una cantidad biológicamente eficaz de un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del compuesto y una cantidad eficaz de al menos un compuesto o agente biológicamente activo adicional.

Detalles de la invención

10

15

20

25

30

35

40

45

50

En las indicaciones anteriores, el término "alquilo", usado sólo o en palabras compuestas tales como "alquiltio" o "haloalquilo" incluye alquilo de cadena lineal o ramificada, tal como metilo, etilo, n-propilo, i-propilo, o los diferentes isómeros de butilo, pentilo o hexilo. "Alquenilo" incluye alquenos de cadena lineal o ramificados tales como etenilo, 1-propenilo, 2-propenilo, y los diferentes isómeros de butenilo, pentenilo y hexenilo. "Alquenilo" también incluye polienos tales como 1,2-propadienilo y 2,4-hexadienilo. "Alquinilo" incluye alquinos de cadena lineal o ramificados tales como etinilo, 1-propinilo, 2-propinilo y los diferentes isómeros de butinilo, pentinilo y hexinilo. "Alquinilo" también puede incluir restos compuestos por múltiples triples enlaces tales como 2,5-hexadiinilo. "Alcoxii incluye, por ejemplo, metoxi, n-propiloxi, isopropiloxi y los diferentes isómeros de butoxi, pentoxi y hexiloxi. "Alcoxialquilo" se refiere a una sustitución alcoxi sobre alquilo. Los ejemplos de "alcoxialquilo" incluyen CH₃OCH₂, CH₃OCH₂CH₂CH₂CH₂COCH₂ y CH₃CH₂COH₂CH₂. "Alquilitio" incluye restos alquiltio ramificados o de cadena lineal tales como metiltio, etiltio, y los diferentes isómeros de propiltio y butiltio. "Alquilsulfinilo" incluye ambos enantiómeros de un grupo alquil-sulfinilo. Los ejemplos de "alquilsulfinilo" incluyen CH₃S(O), CH₃CH₂CH₂S(O), CH₃CH₂CH₂S(O), CH₃CH₂CH₂CO), CH₃CH₂CO), CH₃CH₂

"Aromático" indica que cada uno de los átomos del anillo está básicamente en el mismo plano y tiene un orbital p perpendicular al plano del anillo, y en el que (4n+2) electrones π , donde n es 0 o un número entero positivo, están asociados con el anillo para cumplir con la regla de Hückel. La expresión "sistema de anillos aromáticos" se refiere a carbociclos y heterociclos totalmente insaturados en los que al menos un anillo de un sistema de anillos policíclicos es aromático. La expresión "anillo o sistema de anillos carbocíclicos aromáticos" incluye carbociclos y carbociclilos totalmente aromáticos en los que al menos un anillo de un sistema de anillos policíclicos es aromático (por ejemplo, fenilo y naftilo). La expresión "anillo o sistema de anillos carbocíclicos no aromáticos" representa carbociclos saturados así como carbociclos parcial o completamente insaturados en los que ninguno de los anillos del sistema de anillos satisface la regla de Hückel. El término "hetero" con respecto a anillos o sistemas de anillos se refiere a un anillo o sistema de anillos en los que al menos un átomo del anillo no es carbono y que puede contener de 1 a 4 heteroátomos seleccionados independientemente entre el grupo que consiste en nitrógeno, oxígeno y azufre, con la condición de que cada anillo contenga no más de 4 nitrógenos, no más de 2 oxígenos y no más de 2 azufres. Las

expresiones "anillo o sistema de anillos heteroaromáticos" y "sistema de anillos heterobicíclicos, condensados, aromáticos" incluyen heterociclos totalmente aromáticos y heterociclos en los que al menos un anillo de un sistema de anillos policíclicos es aromático (donde aromático indica que se satisface la regla de Hückel). La expresión "sistema de anillos o anillo heterocíclico no aromático" denota heterociclos completamente saturados así como heterociclos parcial o completamente insaturados en los que ninguno de los anillos del sistema de anillos satisface la regla de Hückel. El anillo o sistema de anillos heterocíclicos puede unirse a través de cualquier carbono o nitrógeno disponible por reemplazo de un hidrógeno sobre dicho carbono o nitrógeno.

El término "halógeno", sólo o en palabras compuestas tales como "haloalquilo", incluye flúor, cloro, bromo o yodo. Además, cuando se usa en palabras compuestas tales como "haloalquilo", dicho alquilo puede estar parcial o totalmente sustituido con átomos de halógeno que pueden ser iguales o diferentes. Los ejemplos de "haloalquilo" incluyen F₃C, CICH₂, CF₃CH₂ y CF₃CCl₂. Los términos "haloalquenilo", "haloalquinilo", "haloalcoxi", "haloalquiltio" y similares, se definen de forma análoga al término "haloalquilo". Los ejemplos de "haloalquenilo" incluyen (CI)₂C=CHCH₂ y CF₃CH₂CH=CHCH₂. Los ejemplos de "haloalquinilo" incluyen HC=CCHCI, CF₃C≡C, CCI₃C≡C y FCH₂C≡CCH₂. Los ejemplos de "haloalcoxi" incluyen CF₃O, CCI₃CH₂O, HCF₂CH₂CH₂O y CF₃CH₂O. Los ejemplos de "haloalquiltio" incluyen CCI₃S-, CF₃S-, CCI₃CH₂S- y CICH₂CH₂CH₂S-. Los ejemplos de "haloalquilsulfinilo" incluyen CF₃S(O)-, CCI₃S(O)-, CF₃CH₂S(O)- y CF₃CF₂S(O)-. Los ejemplos de "haloalquilsulfonilo" incluyen CF₃S(O)₂-, CCI₃S(O)₂-, CF₃CH₂S(O)₂- y CF₃CF₂S(O)₂-.

10

15

20

35

40

45

50

55

El número total de átomos de carbono en un grupo sustituyente se indica mediante el sufijo "C_i-C_j" en el que i y j son números de 1 a 6. Por ejemplo, alquilsulfonilo C₁-C₃ designa de metilsulfonilo a propilsulfonilo. Alcoxialquilo C₂ indica CH₃OCH₂; alcoxialquilo C₃ indica, por ejemplo, CH₃CH(OCH₃), CH₃OCH₂CH₂ o CH₃CH₂OCH₂; y alcoxialquilo C₄ indica los diversos isómeros de un grupo alquilo sustituido con un grupo alcoxi que contiene un total de cuatro átomos de carbono, donde los ejemplos incluyen CH₃CH₂CH₂OCH₂ y CH₃CH₂OCH₂CH₂.

En las indicaciones anteriores, cuando un compuesto de Fórmula I está comprendido por uno o más anillos heterocíclicos, todos los sustituyentes están unidos a estos anillos a través de cualquier carbono o nitrógeno disponible por reemplazo de un hidrógeno en dicho carbono o nitrógeno.

Cuando un compuesto está sustituido con un sustituyente que tiene un subíndice que indica que el número de dichos sustituyentes puede superar 1, dichos sustituyentes (cuando superan 1) se seleccionan independientemente entre el grupo de sustituyentes definidos. Además, cuando el subíndice indica un intervalo, por ejemplo (R)_{i-j}, entonces el número de sustituyentes puede seleccionarse entre los números enteros comprendidos entre i y j, inclusive.

La expresión "opcionalmente sustituido con uno a tres sustituyentes", y similares, indica que de una a tres de las posiciones disponibles en el grupo pueden estar sustituidas. Cuando un grupo contiene un sustituyente que puede ser hidrógeno, por ejemplo R¹ o R⁵, entonces, cuando este sustituyente se toma como hidrógeno, se reconoce que esto es equivalente a que dicho grupo no está sustituido.

Los compuestos de esta invención pueden existir como uno o más estereoisómeros. Los diversos estereoisómeros incluyen enantiómeros, diastereómeros, atropisómeros e isómeros geométricos. Un experto en la materia apreciará que un estereoisómero puede ser más activo y/o puede mostrar efectos beneficiosos cuando está enriquecido con respecto al otro u otros estereoisómeros o cuando se separa del otro u otros estereoisómeros. Además, el especialista sabe como separar, enriquecer y/o preparar de forma selectiva dichos estereoisómeros. Por lo tanto, la presente invención comprende compuestos seleccionados de Fórmula I, *N*-óxidos y sales agrícolas adecuadas del mismo. Los compuestos de la invención pueden estar presentes como una mezcla de estereoisómeros, estereoisómeros individuales, o como una forma ópticamente activa.

Un experto en la materia apreciará que no todos los heterociclos que contienen nitrógeno pueden formar *N*-óxidos, ya que el nitrógeno requiere un par de electrones disponible para la oxidación hasta el óxido; un experto en la materia reconocerá que los heterociclos que contienen nitrógeno pueden formar *N*-óxidos. Un experto en la materia también reconocerá que las aminas terciarias pueden formar *N*-óxidos. Los métodos sintéticos para la preparación de N-óxidos de heterociclos y aminas terciarias se conocen muy bien por los expertos en la materia, incluyendo la oxidación de heterociclos y aminas terciarias con peroxiácidos tales como ácido peracético y m-cloroperbenzoico (MCPBA), peróxido de hidrógeno, hidroperóxidos de alquilo tales como hidroperóxido de t-butilo, perborato sódico y dioxiranos tales como dimetildioxirano. Estos métodos para la preparación de N-óxidos se han descrito y revisado exhaustivamente en la bibliografía, véase, por ejemplo: T. L. Gilchrist en Comprehensive Organic Syntesis, vol. 7, pp. 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler y B. Stanovnik en Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton y A. McKillop, Eds., Pergamon Press; M. R. Grimmett y B. R. T. Keene en Advances in

Heterocyclic Chemistry, vol. 43, págs. 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler y B. Stanovnik en Advances in Heterocyclic Chemistry, Vol. 9, págs. 285-291, A. R. Katritzky y A. J. Boulton, Eds., Academic Press; y G. W. H. Cheeseman y E. S. G. Werstiuk en Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky y A. J. Boulton, Eds., Academic Press.

Las sales de los compuestos de la invención incluyen sales de adición de ácidos con ácidos inorgánicos u orgánicos tales como ácido bromhídrico, clorhídrico, nítrico, fosfórico, sulfúrico, acético, butírico, fumárico, láctico, maleico, malónico, oxálico, propiónico, salicílico, tartárico, 4-toluenosulfónico o valérico. Las sales de los compuestos de la invención también incluyen las formadas con bases orgánicas (por ejemplo, piridina, amoniaco o trietilamina) o bases inorgánicas (por ejemplo, hidruros, hidróxidos o carbonatos de sodio, potasio, litio, calcio, magnesio o bario) cuando el compuesto contiene un grupo ácido tal como un ácido carboxílico o fenol.

El Objeto 1 a continuación ilustra diversos sistemas de anillos opcionalmente sustituidos. A pesar de que los grupos R^{ν} se muestran en las estructuras U-1 a U-85, debe apreciarse que no necesitan estar presentes ya que son sustituyentes opcionales. Nótese que, cuando R^{ν} es H al estar unido a un átomo, es lo mismo que si dicho átomo no está sustituido. Los átomos de nitrógeno que requieren sustitución para completar su valencia están sustituidos con H o R^{ν} . Debe apreciarse que algunos grupos U sólo pueden estar sustituidos con menos de 4 grupos R^{ν} (por ejemplo, U-14, U-15, U-18 a U-21 y U-32 a U-34 sólo pueden estar sustituidos con un R^{ν}). Debe apreciarse que cuando el punto de unión entre $(R^{\nu})_r$ y el grupo U se ilustra como flotante, $(R^{\nu})_r$ puede unirse a cualquier átomo de carbono disponible del grupo U. Debe apreciarse que cuando el punto de unión en el grupo U se ilustra en forma flotante, el grupo U puede estar unido a través de cualquier carbono disponible del grupo U por reemplazo de un átomo de hidrógeno.

Objeto 1

15

20

8

U-45

U-46

U-47

5

U-43

U-44

Como se ha indicado anteriormente, K se selecciona entre K-1, K-14, K-15, K-18, K-23, K-28, K-29, K-30, K-31 y K-33. En los grupos K ejemplificados, en enlace superior derecho está unido a través del átomo de carbono de unión disponible con el átomo de nitrógeno de la parte NR¹C(=A)J de Fórmula I y el enlace inferior derecho está unido a través del átomo de carbono de unión disponible con el átomo de carbono de la parte C(=B)NR²R³ de Fórmula I. La línea ondulada indica que el anillo K está unido al resto de la Fórmula I como se ilustra a continuación.

$$(\mathbb{R}^{4})_{n}$$

$$\circ \qquad (\mathbb{R}^{4})_{n}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

10

15

Los anillos K más preferidos son K-28, K-31 y K-33.


Como se ha indicado anteriormente, R^3 puede ser (entre otros) alquilo C_1 - C_6 , alquenilo C_2 - C_6 , cicloalquilo C_3 - C_6 ,, cada uno opcionalmente sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un anillo de fenilo, o un anillo heteroaromático de 5 ó 6 miembros, estando cada anillo opcionalmente sustituido con uno a tres sustituyentes seleccionados independientemente entre R^6 . Los ejemplos de dichos anillos

incorporados a dichos grupos R^3 incluyen los anillos ilustrados como U-1 a U-53 y U-86 ilustrados en el Objeto 1, con la excepción de que dichos anillos están opcionalmente sustituidos con 1 a 3 sustituyentes seleccionados independientemente entre R^6 en lugar de $(R^{\nu})_r$ y están unidos a un grupo R^3 seleccionado entre la lista indicada justo antes.

Como se ha indicado anteriormente, R³ puede ser (entre otros) G o alquilo C₁-C₆, alquenilo C₂-C₆, alquinilo C₂-C₆, 5 cicloalquilo C₃-C₆, cada uno opcionalmente sustituido con G; donde G es un anillo carbocíclico o heterocíclico no aromático de 5 ó 6 miembros, incluyendo opcionalmente uno o dos miembros de anillo seleccionados entre el grupo que consiste en C(=O), SO o S(O)₂, y opcionalmente sustituido con 1 a 4 sustituyentes seleccionados entre R¹². La expresión "opcionalmente sustituido" en relación a estos grupos G se refiere a grupos que están sin sustituir o tienen 10 al menos un sustituyente no hidrógeno que no suprime la actividad biológica poseída por el análogo no sustituido. Debe apreciarse que el punto de unión en el grupo G se ilustra de forma flotante, el grupo G puede estar unido al resto de la Fórmula I a través de cualquier carbono disponible del grupo G por reemplazo de un átomo de hidrógeno. Los sustituyentes opcionales pueden unirse a cualquier carbono disponible reemplazando un átomo de hidrógeno. Los ejemplos de anillos carbocíclicos no aromáticos de 5 ó 6 miembros como G incluyen los anillos ilustrados como 15 G-1 a G-8 del Objeto 2. Los ejemplos de anillos heterocíclicos no aromáticos de 5 ó 6 miembros como G incluyen los anillos ilustrados como G-9 a G-48 del Objeto 2. Debe apreciarse que cuando G comprende un anillo seleccionado entre G-31 a G-34, G-37 y G-38, Q1 se selecciona entre O, S o N. Debe apreciarse que cuando G es G-11, G13, G-14, G16, G-23, G-24, G-30 a G-34, G-37 y G-38 y Q1 es N, el átomo de nitrógeno puede completar su valencia por sustitución con H o alquilo C₁-C₂.

Objeto 2

20

$$G-24$$
 $G-25$
 $G-26$
 $G-27$
 $G-28$
 $G-29$
 $G-28$
 $G-29$
 $G-29$
 $G-24$
 $G-25$
 $G-26$
 $G-27$
 $G-28$
 $G-29$
 $G-28$
 $G-29$
 $G-28$
 $G-29$
 $G-28$
 $G-29$
 $G-28$
 $G-29$
 $G-30$
 $G-31$
 $G-32$
 $G-33$
 $G-34$
 $G-35$
 $G-36$
 $G-37$
 $G-38$

Son compuestos preferidos por razones de mejor actividad y/o facilidad de síntesis:

5 Preferencia 1. Compuestos de Fórmula I anterior, y N-óxidos y sales adecuadas de los mismos, donde V es N.

Preferencia 2. Compuestos de Fórmula I en la que V es CH, CF, CCI o CBr.

Preferencia 3. Compuestos de la Preferencia 1 o la Preferencia 2 en la que

R1 es H:

R² es H o CH₃:

10 R³ es alquilo C₁-C₄ opcionalmente sustituido con uno o más sustituyentes seleccionados independientemente entre halógeno, CN, OCH₃ o S(O)_PCH₃;

cada R⁴ es independientemente CH₃, CF₃, CN o halógeno, y un grupo R⁴ está unido al anillo K en el átomo adyacente al resto NR¹C(=A)J;

R⁶ es H, alquilo C₁-C₄, haloalquilo C₁-C₄, halógeno o CN;

R⁷ es H, CH₃, CF₃, OCH₂CF₃, OCHF₂ o halógeno; y

p es 0, 1 ó 2.

15

25

Preferencia 4. Compuestos de la Preferencia 3 en la que R^3 es alquilo C_1 - C_4 ; un grupo R^4 es independientemente CH_3 , CI, Br o I y está unido al anillo K en el átomo adyacente al resto $NR^1C(=A)J$; y un segundo R^4 opcional es F, CI, Br, I o CF_3 .

Preferencia 5. Compuestos de la Preferencia 4 en la que J es J-6; R⁶ es Cl o Br; y R⁷ es halógeno, OCH₂CF₃ o CHF₂

Preferencia 6. Compuestos de la Preferencia 5 en la que V es N; R³ es metilo, etilo, isopropilo o butilo terciario; y R⁷ es Br, Cl, OCH₂CF₃ o CF₃.

Preferencia 7. Compuestos de la Preferencia 4 en la que J es J-7; R⁶ es Cl o Br; y R⁹ es CF₃, CHF₂, CH₂CF₃ o CF₂CHF₂.

Preferencia 8. Compuestos de la Preferencia 4 en la que J es J-8; R⁶ es Cl o Br; y R⁷ es halógeno, OCH₂CF₃ o CF₃.

Preferencia 9. Compuestos de la Preferencia 4 en la que J es J-9; R⁶ es Cl o Br; y R⁷ es OCH₂CF₃ o CF₃.

Preferencia 10. Compuestos de la Preferencia 4 en la que J es J-10; R⁶ es Cl o Br; y R⁹ es CF₃, CHF₂, CH₂CF₃ o CF₂CHF₂.

Preferencia 11. Compuestos de la Preferencia 4 en la que J es J-11; R⁶ es Cl o Br; y R⁷ es halógeno, OCH₂CF₃ o CF₃.

Preferencia 12. Compuestos de la Preferencia 4 en la que J es J-12; R^6 es Cl o Br; R^7 es H, halógeno o CF_3 , y R^9 es H, CF_3 , CH_2 , CH_2 CF $_3$ o CF_2 CHF $_2$.

10 Preferencia 13. Compuestos de la Preferencia 4 en la que J es J-13;

5

35

R6 es Cl o Br; R⁷ es H, halógeno o CF₃, y R⁹ es H, CF₃, CHF₂, CH₂CF₃ o CF₂CHF₂.

Se prefiere más el compuesto de Fórmula I seleccionado entre el grupo que consiste en:

- 4-[[[1-(2-Clorofenil)-3-(trifluorometil)-1*H*-pirazol-5-il]carbonil]amino]-5-metil-*N*-1-metiletil)-3-piridincarboxamida,
- 4-Metil-N-(1-metiletil)-3-[[2-metil-4-(trifluorometil)benzoil]amino]-2-tiofencarboxamida.
- 15 1-Metil-*N*-(1-metiletil)-5-[[4-(trifluorometil)benzoil]amino]-1*H*-pirazol-4-carboxamida;
 - 4-[[[3-Bromo-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-5-cloro-*N*-metil-3-piridincarboxamida;
 - 3-[[[3-Bromo-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-2,6-dicloro-*N*-metil-4-piridincarboxamida;
 - 2,6-dicloro-3-[[[1-(3-cloro-2-piridinil)-3-(trifluorometil)-1 H-pirazol-5-il]carbonil]amino]-N-(1-metiletil)-4-piridincarboxamida;
- 20 3-[[[3-Bromo-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-6-cloro-*N*,4-dimetil-2-piridincarboxamida;
 - 3-[[[3-Bromo-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-4,6-dicloro-*N*-metil- 2-piridincarboxamida;
 - 5-[[[3-Cloro-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-*N*,6-dimetil-4-pirimidincarboxamida; y
 - 5-[[[3-Bromo-1-(3-cloro-2-piridinil)-1 H-pirazol-5-il]carbonil]amino]-N,N,2,6-tetrametil-4-piridincarboxamida.

Esta invención también se refiere a a una composición para controlar una plaga de invertebrados que comprende una cantidad biológicamente eficaz de un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del mismo y al menos un componente adicional seleccionado entre el grupo que consiste en tensioactivos, diluyentes sólidos y diluyentes líquidos. Esta invención también se refiere a una composición que comprende una cantidad biológicamente eficaz de un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del mismo y una cantidad eficaz de al menos un compuesto o agente biológicamente activo adicional. Las composiciones preferidas de la presente invención son aquellas que comprenden los compuestos preferidos anteriores.

Esta invención también se refiere a un método para controlar una plaga de invertebrados que comprende poner en contacto la plaga de invertebrados o su medio con una cantidad biológicamente eficaz de un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del mismo (por ejemplo, una composición descrita en la presente memoria), con la condición de que el método no sea un método de tratamiento del cuerpo del ser humano o animal mediante terapia. Esta invención también se refiere a un método en el que la plaga de invertebrados o su medio se pone en contacto con una cantidad biológicamente eficaz de un compuesto de Fórmula I o una composición que comprende un compuesto de Fórmula I, un *N*-óxido del mismo o una sal adecuada del mismo y una cantidad biológicamente eficaz de al menos un compuesto o agente adicional para controlar plagas de invertebrados. Los métodos preferidos de uso son aquellos que implican los compuestos preferidos anteriores.

Los compuestos de la Fórmula I se pueden preparar mediante uno o más de los siguientes métodos y variaciones descritos en los Esquemas 1-19. Las definiciones de A, B, J, K, R¹, R², R³, R⁴, R⁵ y n en los compuestos de Fórmulas I y 2-7 y 13-41 que se muestran a continuación son como se han definido anteriormente en el Compendio de la Invención. Los compuestos de Fórmulas Ia-c, 2a-b y 4b-g son varios subconjuntos de los compuestos de Fórmula I, 2 y 4, respectivamente. Son de interés compuestos de Fórmulas I, 2, 5, 6, 6a, 13, 14, 15, 40 y 41 en las que K es K-1, K-14, K-15, K-18, K-23, K-28, K-29, K-30, K-31 y K-33. Son de particular interés compuestos de Fórmulas 1, 2, 5, 6, 6a, 13, 14, 15, 40 y 41 en las que K es K-28, K-31 y K-33.

Los compuestos de Fórmula I pueden prepararse por los procedimientos resumidos en los Esquemas 1-4 y 10-19. Un procedimiento típico se detalla en el Esquema 1 e implica el acoplamiento de una amida del ácido orto-amino-carboxílico de Fórmula 2 con un cloruro de ácido de Fórmula 3 en presencia de un eliminador de ácido para

proporcionar el compuesto de Fórmula la. Los eliminadores de ácido típicos incluyen bases de amina tales como trietilamina, diisopropiletilamina y piridina; otros eliminadores incluyen hidróxidos tales como hidróxido sódico y potásico y carbonatos tales como carbonato sódico y carbonato potásico. En ciertos casos, es útil usar eliminadores de ácidos con soporte de polímero tales como diisopropiletilamina unida a polímero y dimetilaminopiridina unida a polímero.

5

10

15

20

Esquema 1

$$(R^4)_n \xrightarrow{N}_{R^3} + O \xrightarrow{\text{eliminador ácido}} (R^4)_n \xrightarrow{N}_{R^1} Ia \quad (A \text{ es O})$$

Un procedimiento alternativo para la preparación de compuestos de Fórmula la implica el acoplamiento de una amida de Fórmula 2 con un ácido de Fórmula 4 en presencia de un agente de deshidratación tal como diciclohexilcarbodiimida (DCC). Los reactivos soportados sobre polímeros son útiles en la presente invención, tales como ciclohexilcarbodiimida unida a polímero. Los procedimientos de síntesis de los Esquemas 1 y 2 son sólo ejemplos representativos de métodos útiles para la preparación de compuestos de Fórmula I ya que la bibliografía de síntesis es extensa para este tipo de reacción.

Esquema 2

Un experto en la materia también advertirá que pueden prepararse cloruros de ácido de fórmula 3 a partir de ácidos de fórmula 4 por numerosos métodos bien conocidos.

Un procedimiento alternativo para la preparación de compuestos de Fórmula la implica el acoplamiento de un éster del ácido orto-amino-carboxílico de Fórmula 5 con un cloruro de ácido de Fórmula 3 por un método similar al descrito en el Esquema 1, seguido de transformación del grupo éster en una funcionalidad amida. Esta transformación puede realizarse por una aminación con una amina de Fórmula 7. Un ácido de Lewis tal como trimetilalumino como se muestra en el Esquema 3 puede catalizar esta reacción.

Esquema 3

Como alternativa, el éster 6 puede transformarse en una amida (6a) como se muestra en el Esquema 4 por saponificación con una base tal como hidróxido sódico acuoso seguido de acoplamiento deshidratante con una amina de Fórmula 7 por un procedimiento similar al descrito en el Esquema 2.

También pueden prepararse amidas del ácido orto-amino-carboxílico intermedias de Fórmula 2a y 2b a partir de anhídridos isatoicos de Fórmula 13 y 14 (Esquema 10). Los procedimientos típicos implican la combinación de cantidades equimolares de la amina 7 con el anhídrido isatoico en disolventes polares apróticos tales como piridina y dimetilformamida a temperaturas en el intervalo de la temperatura ambiente a 100 °C. Los sustituyentes R¹ tales como alquilo y alquilo sustituido se pueden introducir mediante la alquilación catalizada por bases del anhídrido isatoico 13 con reactivos alquilantes conocidos R¹-Lg (en los que Lg es un grupo saliente tal como halógeno, sulfonatos de alquilo o arilo o sulfatos de alquilo) para proporcionar los intermedios sustituidos con alquilo 14. Los anhídridos isatoicos de Fórmula 13 pueden prepararse por los métodos descritos en Coppola, Synthesis 1980, 505 y Fabis et al Tetrahedron, 1998, 10789.

5

10

15

Esquema 10

$$(R^4)_n$$
 $(R^4)_n$
 $(R^4$

Un procedimiento alternativo para la preparación de compuestos específicos de Fórmula I (en la que A es O, B es O y R¹ es H) implica reacción de una amina 7 con una oxazinona heterocíclica condensada de Fórmula 15. Los procedimientos típicos implican la combinación de la amina con la oxazinona en disolventes tales como tetrahidrofurano o piridina a temperaturas en el intervalo de la temperatura ambiente a la temperatura de reflujo del disolvente. Las oxazinonas están bien documentadas en la bibliografía química y están disponibles a través de métodos conocidos que implican el acoplamiento de un ácido orto-amino-carboxílico con un cloruro de ácido. Para referencias a la síntesis y química de oxazinonas heterocíclicas condensadas véase Jakobsen et al, Biorganic and Medicinal Chemistry, 2000, 8, 2803-2812 y referencias citadas en ese documento.

$$(R^4)_n$$

$$K$$

$$0$$

$$R^2$$

$$R^3$$

$$R^3$$

$$R^2$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^2$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^3$$

Los ácidos heterocíclicos de Fórmula 4 pueden prepararse por los procedimientos resumidos en los Esquemas 12-17. Pueden encontrarse referencias generales y específicas a una gran diversidad de ácidos heterocíclicos incluyendo tiofenos, furanos, piridinas, pirimidinas, triazoles, imidazoles, pirazoles, tiazoles, oxazoles, isotiazoles, tiadiazoles, oxadiazoles, triazinas, pirazinas, piridazinas e isoxazoles en los siguientes compendios: Rodd's Chemistry of Chemistry of Carbon Compounds, Vol. IVa a IVI., S. Coffey editor, Elsevier Scientific Publishing, New York, 1973; Comprehensive Heterocyclic Chemistry, Vol. 1-7, A. R. Katritzky y C. W. Rees editors, Pergamon Press, New York, 1984; Comprehensive Heterocyclic Chemistry II, Vol. 1-9, A. R. Katritzky, C. W. Rees, y E. F. Scriven editors, Pergamon Press, New York, 1996; y la serie The Chemistry of Heterocyclic Compounds, E. C. Taylor, editor, Wiley, New York. Los ácidos heterocíclicos particularmente útiles de esta invención incluyen ácidos de piridina, ácidos de pirimidina y ácidos de pirazol. Los procedimientos para la síntesis de ejemplos representativos de cada uno de ellos se detallan en los Esquemas 12-17. Puede encontrarse una diversidad de ácidos heterocíclicos y métodos generales para su síntesis en la Publicación de Solicitud de Patente Mundial WO 98/57397.

5

10

15

20

La síntesis de ácidos de piridina representativos (4b) se representa en el Esquema 12. Este procedimiento implica la síntesis conocida de piridinas a partir de β-cetoésteres y 4-aminobutenonas (19). Los grupos sustituyentes R⁵(a) y R⁵(b) incluyen, por ejemplo, alguilo y haloalguilo.

Esquema 12

$$+ R^{5(a)} \xrightarrow{Piridina} CH_{2}CI_{2}$$

$$+ R^{5(a)} \xrightarrow{R^{5}(a)} R^{5(a)}$$

La síntesis de ácidos de pirimidina representativos (4c) se representa en el Esquema 13. Este procedimiento implica la síntesis conocida de pirimidinas a partir de viniliden- β -cetoésteres (22) y amidinas. Los grupos sustituyentes $R^5(a)$ y $R^5(b)$ incluyen, por ejemplo, alquilo y haloalquilo.

$$R^{5}(b)$$

$$R^{5}(b)$$

$$21$$

$$R^{5}(b)$$

$$R^{5}(b)$$

$$R^{5}(b)$$

$$R^{5}(b)$$

$$R^{5}(a)$$

$$R^{5}(a)$$

$$R^{5}(b)$$

$$R^{5}(a)$$

$$R^{5}(b)$$

$$R^{5}(a)$$

$$R^{5}(b)$$

La síntesis de ácidos de pirazol representativos (4d-4g) se representa en los Esquemas 14-17. Los pirazoles 4d se describen en el Esquema 14. La síntesis del Esquema 14 implica como etapa clave la introducción del sustituyente $R^5(b)$ por alquilación del pirazol. El agente de alquilación $R^5(b)$ -Lg (en el que Lg es un grupo saliente tal como Cl, Br, I, sulfonatos tales como p-toluenosulfonato o metanosulfonato o sulfatos tales como -SO₂OR⁷(b)) incluye grupos $R^7(b)$ tales como alquilo C_1 -C₆, alquenilo C_2 -C₆, alquinilo C_2 -C₆, cicloalquilo C_3 -C₆, haloalquilo C_1 -C₆, haloalquilo C_3 -C₆, haloalquilo C_3 -C₆, alquilcarbonilo C_2 -C₆, alcoxicarbonilo C_2 -C₆, dialquilaminocarbonilo C_3 -C₈, trialquilsililo C_3 -C₆; o fenilo, bencilo, bencilo, anillo heteroaromático de 5 ó 6 miembros o un sistema de anillos heterobicíclicos condensados de 8, 9 ó 10 miembros, estando cada anillo o sistema de anillos opcionalmente sustituido. La oxidación del grupo metilo produce el ácido pirazol carboxílico. Algunos de los grupos $R^5(a)$ más preferidos incluyen haloalquilo.

5

10

15

Esquema 14

$$R^{5}(a)$$
 $R^{5}(b)$ -Lg

 $R^{5}(b)$ -Lg

 $R^{5}(a)$
 $R^{5}(a)$

Los pirazoles 4e se describen en el Esquema 15. Estos ácidos de pirazol pueden prepararse por metilación y carboxilación de pirazoles de fórmula 28 como etapa clave. El grupo $R^5(b)$ se introduce de una manera similar a la del Esquema 14, es decir, por alquilación con un agente de alquilación $R^5(b)$. Los grupos $R^5(a)$ representativos incluyen, por ejemplo, ciano y haloalquilo.

Los pirazoles 4f se describen en el Esquema 16. Éstos pueden prepararse por reacción de una fenil hidrazina opcionalmente sustituida 29 con un piruvato 30 para producir los ésteres de pirazol 31. La hidrólisis del éster proporciona los ácidos de pirazol 4f. Este procedimiento es particularmente útil para la preparación de compuestos en los que R^5 (b) es fenilo opcionalmente sustituido y R^5 (a) es haloalquilo.

5

10

Esquema 16

$$R^{5}(a)$$
 $CO_{2}Et$
 $R^{5}(b)-NHNH_{2}$
 $CO_{2}Et$
 $R^{5}(b)-NHNH_{2}$
 $CO_{2}Et$
 $CO_{2}Et$
 $R^{5}(a)$
 $CO_{2}Et$
 $CO_{2}Et$
 $CO_{2}Et$
 $R^{5}(b)$
 $R^{5}(b)$
 $R^{5}(b)$
 $R^{5}(b)$
 $R^{5}(b)$
 $R^{5}(b)$

Los ácidos de pirazol de Fórmula 4g se describen en el Esquema 17. Éstos pueden prepararse por cicloadición 3+2 de una nitrilimina apropiadamente sustituida (32) con propiolatos sustituidos (33) o acrilatos sustituidos (36). La cicloadición con acrilatos requiere una oxidación adicional de la pirazolina intermedia para dar el pirazol. La hidrólisis del éster proporciona los ácidos de pirazol 4g. Los haluros de imino preferidos para esta reacción incluyen el iminocloruro (38) y el iminodibromuro (39) de trifluorometilo. Compuestos tales como 38 son conocidos (J. Heterocycl. Chem. 1985, 22(2), 565-8). Compuestos tales como 39 están disponibles por métodos conocidos (Tetrahedron Letters 1999, 40, 2605). Estos procedimientos son particularmente útiles para la preparación de compuestos en los que R⁵(b) es fenilo opcionalmente sustituido y R⁵(a) es haloalquilo o bromo.

$$R^{5}(a)$$
 $R^{5}(a)$
 $R^{5}(b)$
 $R^{5}(b)$

Los ésteres del ácido *orto-amino*-carboxílico de Fórmula 5 en la que R¹ es H pueden prepararse a partir de monoésteres de ácidos orto-dicarboxílicos de Fórmula 40 por redisposición de la acil azida correspondiente e hidrólisis del isocianato resultante (o, como alternativa, por purga del isocianato con un alcohol y escisión del carbamato resultante) como se muestra en el Esquema 18.

5

Esquema 18

Como alternativa, los ésteres del ácido orto-amino-carboxílico de Fórmula 5 pueden prepararse a partir de ésteres *orto*-carboxamida-carboxílicos de Fórmula 41 por redisposición de Hoffman con reactivos tales como hidróxido y bromuro sódico como se muestra en el Esquema 19.

$(R^4)_n \xrightarrow{CONH_2} (R^4)_n \xrightarrow{NaOH} (R^4)_n \xrightarrow{NH}_{R^1} CO_2 \text{alkyl}$ $Br_2 \xrightarrow{5 (R^1 \text{es H})}$

Los compuestos de Fórmulas 40 y 41 son conocidos en la técnica o pueden prepararse fácilmente a partir de compuestos conocidos en la técnica. (Por ejemplo, véase Tetrahedron, 1997, 53, 14497; J. Chem. Soc., Perkin Trans. 1, 1996, 10, 1035; documentos WO 92/08724 y EP 418667).

Se aprecia que algunos reactivos y condiciones de reacción descritos anteriormente para preparar compuestos de fórmula I pueden no ser compatibles con ciertas funcionalidades presentes en los intermedios. En estos casos, la incorporación de secuencias de protección/desprotección o interconversiones de grupos funcionales en la síntesis ayudará a obtener los productos deseados. El uso y elección de los grupos protectores será evidente para un especialista en la síntesis química (véase, por ejemplo, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Syntesis, 2ª ed.; Wiley: New York, 1991). Un experto en la materia reconocerá que, en algunos casos, después de la introducción de un reactivo dado como se representa en cualquier esquema individual, puede ser necesario realizar etapas sintéticas rutinarias adicionales no descritas en detalle para completar la síntesis de compuestos de fórmula I. Un experto en la materia también reconocerá que puede ser necesario realizar una combinación de las etapas ilustradas en los esquemas anteriores en un orden distinto al supuesto por la secuencia particular presentada para preparar los compuestos de fórmula I.

El experto en la materia reconocerá también que los compuestos de Fórmula I y los intermedios descritos en la presente memora se pueden someter a diversas reacciones electrófilas, nucleófilas, radicálicas, organometálicas, de oxidación, y de reducción para añadir sustituyentes o modificar los sustituyentes existentes.

Se cree que el experto en la materia, usando la descripción anterior, puede utilizar la presente invención sin elaboración adicional en su alcance más completo. Por lo tanto, los siguientes Ejemplos pretenden ser únicamente ilustrativos y no limitantes de la descripción de ningún modo. Los porcentajes están en peso excepto para los de disolventes cromatográficos o cuando se indique de otro modo. Las partes y porcentajes para las mezclas de disolventes cromatográficos están en volumen a menos que se indique de otro modo. Los espectros de ¹H RMN se informan en ppm campo abajo de tetrametilsilano; s es singlete, d es doblete, t es triplete, q es cuarteto, m es multiplete, dd es doblete de dobletes, dt es doblete de tripletes, sa es singlete ancho.

EJEMPLO 1

20

25

40

<u>Preparación de 5-[[[3-Cloro-1-(3-cloro-2-piridinil)-1*H-*pirazol-5-il]carbonil]amino]-*N*,6-dimetil-4-pirimidincarboxamida</u>

Etapa A: Preparación de 4-etil-2-acetil-3-amino-2-butenodioato de 1-(1,1-dimetiletilo)

A una mezcla de 17,15 g (108 mmol) de acetoacetato de t-butilo y 12,8 ml (130 mmol) de cianoformiato de etilo en 25 ml de diclorometano se le añadieron 1,64 g de acetilacetonato de cinc hidrato. Después de agitar durante una noche, los volátiles se retiraron con un evaporador rotatorio. El residuo se disolvió en acetato de etilo y se filtró a través de celite. El disolvente se retiró con un evaporador rotatorio para proporcionar 29,9 g del compuesto del título en forma de un sólido de color blanco como una mezcla de isómeros E/Z.

¹H RMN (CDCl₃) δ 1,33 (t, 3H), 1,52 (s, 9H), 2,35 (s, 3H) [isómero secundario 2,40 (s, 3H)], 4,33 (m, 2H).

Etapa B: Preparación de hidrogeno-6-metil-4,5-pirimidindicarboxilato de 5-(1,1-dimetiletilo)

A una solución de 11,6 g (45 mmol) del material de la Etapa A en 55 ml de etanol se le añadieron 10,9 g (135 mmol) de hidrocloruro de formamidina. La mezcla de reacción se enfrió en un baño de hielo y se añadieron gota a gota 17 ml (135 mmol) de 1,1,3,3-tetrametilguanidina. Después de que la mezcla se agitara durante una noche, el disolvente se retiró con un evaporador rotatorio. El residuo se repartió entre acetato de etilo y agua. La capa acuosa se enfrió en un baño de hielo, se acidificó con HCl concentrado y se extrajo tres veces con acetato de etilo. La capa orgánica se secó (sulfato sódico) y el disolvente se retiró con un evaporador rotatorio para proporcionar 9,12 g del compuesto del título en forma de un sólido de color amarillo.

¹H RMN (CDCl₃) δ 1,65 (s, 9H), 2,68 (s, 3H), 9,19 (s, 1H).

Etapa C: Preparación de 4-metil-6-metil-4,5-pirimidindicarboxilato de 5-(1,1-dimetiletilo)

A una solución de 9,12 g (38 mmol) del material de la Etapa B en 100 ml de *N,N*-dimetilformamida (DMF) se le añadieron 3,1 ml (50 mmol) de yodometano y 3,7 g (50 mmol) de carbonato de litio. La mezcla de reacción se calentó a 60 °C durante 3 horas. Después de la refrigeración, la mezcla de reacción se repartió entre diclorometano y agua. La capa orgánica se secó (sulfato sódico) y el disolvente se retiró con un evaporador rotatorio y después en una bomba de vacío. El residuo se purificó por MPLC con un gradiente de acetato de etilo al 20-30% en hexanos como eluyente para proporcionar 7,58 g del compuesto del título en forma de un sólido de color blanquecino.

¹H RMN (CDCl₃) δ 1,63 (s, 9H), 2,67 (s, 3H), 4,01 (s, 3H), 9,19 (s, 1H).

Etapa D: Preparación de 5-[[(1,1-dimetiletoxi)carbonil]amino]-6-metil-4-pirimidincarboxilato de metilo

Se disolvieron 7,55 g del material de la Etapa C en 40 ml de diclorometano. Se añadieron 20 ml de ácido trifluoroacético. Después de dos días, la mezcla de reacción se calentó a reflujo durante 6 horas. Después de un día más, los volátiles se retiraron con un evaporador rotatorio. Se añadió tolueno y el disolvente se retiró con un evaporador rotatorio. Este material (9,2 g) se disolvió en 100 ml de t-butanol. Se añadieron 9,2 ml (66 mmol) de trietilamina y se añadieron 14 ml (66 mmol) de difenilfosforil azida. La reacción se calentó a reflujo 3 horas. Después de la refrigeración, el disolvente se retiró con un evaporador rotatorio. El residuo se repartió entre acetato de etilo y agua. La capa orgánica se secó (sulfato sódico) y el disolvente se retiró con un evaporador rotatorio. El residuo se purificó por MPLC con un gradiente de acetato de etilo al 40-100% en hexanos como eluyente para proporcionar 5,81 g del compuesto del título en forma de un sólido de color amarillo.

¹H RMN (CDCl₃) δ 1,52 (s, 9H), 2,60 (s, 3H), 4,03 (s, 3H), 8,07 (a, 1H), 8,98 (s, 1H).

20 <u>Etapa E: Preparación de 5-amino-6-metil-4-pirimidincarboxilato de metilo</u>

Se disolvieron 5,8 g del material de la Etapa D en 25 ml de ácido trifluoroacético. Después de agitar durante 90 minutos, el disolvente se retiró con un evaporador rotatorio. Se añadió bicarbonato sódico acuoso saturado. La capa acuosa se extrajo cinco veces con diclorometano. La capa orgánica se secó (sulfato sódico) y el disolvente se retiró con un evaporador rotatorio para proporcionar 3,78 g del compuesto del título con una pequeña cantidad de una impureza.

¹H RMN (CDCl₃) δ 2,50 (s, 3H), 4,00 (s, 3H), 5,76 (a, 2H), 8,56 (s, 1H).

Etapa F: Preparación de sal monosódica del ácido 5-amino-6-metil-4-pirimidincarboxílico

Se disolvieron 2,0 g (12 mmol) del material de la Etapa E en 24 ml de metanol. Se añadieron 12 ml de una solución 1 N de hidróxido sódico. Después de 1 hora, el disolvente se retiró con un evaporador rotatorio. El residuo se secó en una estufa de vacío durante una noche para proporcionar 2,39 g del compuesto del título en forma de un sólido de color castaño.

¹H RMN (D₂O) δ 2,45 (s, 3H), 8,37 (s, 1H).

25

30

35

40

Etapa G: Preparación de 3-cloro-N,N-dimetil-1H-pirazol-1-sulfonamida

A una solución de *N*-dimetilsulfamoilpirazol (188,0 g, 1,07 mol) en tetrahidrofurano seco (1500 ml) a -78 °C se le añadió gota a gota una solución de n-butil litio 2,5 M (472 ml, 1,18 mol) en hexano mientras se mantenía la temperatura por debajo de -65 °C. Después de que se completara la adición, la mezcla de reacción se mantuvo a -78 °C durante 45 minutos más, tiempo después del cual se añadió gota a gota una solución de hexacloroetano (279 g, 1,18 mol) en tetrahidrofurano (120 ml). La mezcla de reacción se mantuvo durante una hora a -78 °C, se calentó a -20 °C y después se inactivó con agua (1 l). La mezcla de reacción se extrajo con cloruro de metileno (4 x 500 ml); los extractos orgánicos se secaron sobre sulfato de magnesio y se concentraron. El producto en bruto se purificó adicionalmente por cromatografía en gel de sílice usando cloruro de metileno como eluyente para proporcionar el compuesto producto del título como un aceite amarillo (160 g).

¹H RMN (CDCl₃) δ 3,07 (d, 6H), 6,33 (s, 1H), 7,61 (s, 1H).

Etapa H: Preparación de 3-cloropirazol

A ácido trifluoroacético (290 ml) se le añadió gota a gota el producto de cloropirazol (160 g) de la Etapa G y la mezcla de reacción se agitó a temperatura ambiente durante 1,5 horas y después se concentró a presión reducida. El residuo se recogió en hexano, los sólidos insolubles se retiraron por filtración y el hexano se concentró para proporcionar el producto en bruto como un aceite. El producto en bruto se purificó adicionalmente por cromatografía en gel de sílice usando éter/hexano (40:60) como eluyente para proporcionar el producto del título como un aceite amarillo (64,44 g).

¹H RMN (CDCl₃) δ 6,39 (s, 1H), 7,66 (s, 1H), 9,6 (s a, 1H).

Etapa I: Preparación de 3-cloro-2-(3-cloro-1*H*-pirazol-1-il)piridina

A una mezcla de 2,3-dicloropiridina (92,60 g, 0,629 mol) y 3-cloropirazol (64,44 g, 0,629 mol) en *N,N*-dimetilformamida (400 ml) se le añadió carbonato potásico (147,78 g, 1,06 mol) y después la mezcla de reacción se calentó a 100 °C durante 36 horas. La mezcla de reacción se enfrió a temperatura ambiente y se vertió lentamente en hielo y agua. Los sólidos precipitados se filtraron y se lavaron con agua. La pasta sólida del filtro se recogió después en acetato de etilo, se secó sobre sulfato de magnesio y se concentró. El sólido en bruto se sometió a una cromatografía en gel de sílice usando 20% de acetato de etilo/hexano como eluyente para proporcionar el compuesto del título como un sólido blanco (39,75 g).

¹H RMN (CDCl₃) δ 6,43 (s, 1H), 7,26 (m, 1H), 7,90 (d, 1H), 8,09 (s, 1H), 8,41 (d, 1H).

10 Etapa J: Preparación de ácido 3-cloro-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-carboxílico

A una solución del producto de pirazol de la Etapa I (39,75 g, 186 mmol) en tetrahidrofurano seco (400 ml) a -78 °C se le añadió gota a gota una solución de diisopropilamida de litio 2,0 M (93 ml, 186 mmol) en tetrahidrofurano. Se burbujeó dióxido de carbono a través de la solución ámbar durante 14 minutos, tiempo después del cual la disolución se volvió pardusca-amarilla pálida. La reacción se hizo básica con una solución acuosa 1 N de hidróxido sódico y se extrajo con éter (2 x 500 ml). Los extractos acuosos se acidularon con ácido clorhídrico 6 N y se extrajeron con acetato de etilo (3 x 500 ml). Los extractos de acetato de etilo se secaron sobre sulfato de magnesio y se concentraron para proporcionar el producto del título como un sólido blanquecino (42,96 g). (El producto de otra realización siguiendo un procedimiento similar se funde a 198-199 °C).

¹H RMN (DMSO-*d*₆) δ 6,99 (s, 1H), 7,45 (m, 1H), 7,93 (d, 1H), 8,51 (d, 1H).

20 Etapa K: Preparación de 2-[3-cloro-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]-8-metil-4*H*-pirimido[5,4-d][1,3]oxazin-4-ona

A una solución de 0,26 ml (3,3 mmol) de cloruro de metanosulfonilo en 18 ml de acetonitrilo a 0 °C se le añadieron 0,77 g (3,0 mmol) del ácido 3-cloro-1-(3-cloro-2-piridinil)-1*H* pirazol-5-carboxílico de la Etapa J. Se añadieron gota a gota 0,42 ml (3,0 mmol) de trietilamina en 9 ml de acetonitrilo. Después de 20 minutos a 0 °C, se añadieron 0,525 g (3.0 mmol) del material de la Etapa F. Después de 15 minutos, se añadieron gota a gota 0,42 ml (3.0 mmol) de trietilamina. Después de 2 horas, se añadieron 0,26 ml (3,3 mmol) de cloruro de metanosulfonilo. Después de agitar durante una noche, la mezcla de reacción se vertió en agua. La filtración proporcionó 0,27 g del compuesto del título.

¹H RMN (CDCl₃) δ 2,20 (s, 3H), 7,23 (s, 1H), 7,54 (dd, 1H), 8,01 (dd, 1H), 8,57 (dd, 1H), 9,20 (s, 1H).

<u>Etapa L: Preparación de s-[[[3-Cloro-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-*N*,6-dimetil-4-pirimidincarboxamida</u>

30 Se añadieron 2 ml de una solución 2 M de metilamina en tetrahidrofurano a 0,090 g del material de la Etapa K. Después de agitar durante una noche, el disolvente se retiró con un evaporador rotatorio para proporcionar 0,071 g del compuesto del título, un compuesto de la invención, en forma de un sólido de color castaño; p.f. 205-207 °C.

 1 H RMN (CDCl₃) δ 2,48 (s, 3H), 3,04 (d, 3H), 7,06 (s, 1H), 7,41 (dd, 1H), 7,89 (dd, 1H), 8,30 (a, 1H), 8,48 (dd, 1H), 8,85 (s, 1H), 11,57 (a, 1H).

35 **EJEMPLO 2**

15

25

45

50

<u>Preparación de 2,6-dicloro-3-[[[1-(3-cloro-2-piridinil)-3-(trifluorometil)-1</u>*H-*pirazol-5-il]carbonil]amino]-*N-*(1-metiletil)-4-piridincarboxamida

Etapa A: Preparación de 3-amino-4-piridincarboxilato de etilo

A una solución de 1 g (7,25 mmol) de ácido 3-amino-4-piridincarboxílico en 5 ml de alcohol etílico se le añadieron 2 ml de ácido sulfúrico. La mezcla se calentó a reflujo durante 2 h. Se enfrió y se basificó con una solución conc. de NH₄OH a pH = 8. La solución resultante se extrajo con acetato de etilo y la capa orgánica se lavó con salmuera y agua, se secó (MgSO₄) y se concentró al vacío para dar 1,04 g del compuesto del título en forma de un sólido de color blanco (87%).

¹H RMN (CDCl₃) δ 8,19 (s, 1H), 7,93 (d, 1H, J es 5,1 Hz), 7,60 (d, 1H, J es 5,1 Hz), 5,67 (s a, 2H), 4,36 (c, 2H), 1,40 (t, 3H).

Etapa B: Preparación de 3-amino-2,6-dicloro-4-piridincarboxilato de etilo

A una solución de 1,04 g (6,27 mmol) de 3-amino-4-piridincarboxilato de etilo en 5 ml de DMF se le añadieron en una sola porción 1,67 g de *N*-clorosuccinimida (12.5 mmol) a temperatura ambiente. Después, la mezcla se agitó a la misma temperatura durante 24 horas. La mezcla resultante se concentró al vacío y se purificó mediante una columna de gel de sílice para dar 1,40 g del compuesto del título en forma de un sólido de color blanco (95%).

¹H RMN (CDCl₃) δ 7,67 (s, 1H), 6,18 (s a, 2H), 4,39 (c, 2H), 1,42 (t, 3H).

Etapa C: Preparación de sal monopotásica de 3-amino-2,6-dicloro-4-piridincarboxílico

A una solución de 1,30 g (5,54 mmol) de 3-amino-2,6-dicloro-4-piridincarboxilato de etilo en una mezcla de 5 ml de agua y 20 ml de alcohol etílico se le añadieron 622 mg (11,1 mmol) de hidróxido potásico a temperatura ambiente y la mezcla de reacción se calentó a 90 °C durante 1 hora. Después, la mezcla se concentró al vacío y se evaporó tres veces con benceno para dar 1,63 g del compuesto del título en forma de un sólido de color blanco. El producto en bruto se usó en la siguiente reacción sin purificación adicional (98%).

¹H RMN (DMSO-d₆) δ 7,31 (s, 1H), 7,14 (s a, 2H).

Etapa D: Preparación de 6,8-dicloro-2*H*-pirido[3,4-d][1,3]oxazin-2,4(1*H*)-diona

A una solución de 1,64 g (5,54 mmol) del material de la Etapa C en 20 ml de dioxano se le añadieron 2,2 g (11,1 mmol) de difosgeno a 0 °C. La mezcla se dejó calentar a temperatura ambiente y se agitó durante 24 horas. Después, la mezcla se concentró al vacío para dar 1,70 g del compuesto del título en forma de un sólido de color blanco (cuantitativo).

¹H RMN (DMSO-d₆) δ 7,99 (s, 1H).

20

15 <u>Etapa E: Preparación de 3-cloro-2-[3-(trifluorometil)-1*H*-pirazol-1-il]piridina</u>

A una mezcla de 2,3-dicloropiridina (99,0 g, 0,67 mol) y 3-trifluorometil pirazol (83 g, 0,61 mol) en *N,N*-dimetilformamida seca (300 ml) se le añadió carbonato potásico (166,0 g, 1,2 mol) y después la reacción se calentó a 110-125 °C durante 48 horas. La reacción se enfrió a 100 °C y se filtró con la ayuda de un filtro de tierras de Diatomeas de Celite® para retirar los sólidos. La *N,N*-dimetilformamida y el exceso de dicloropiridina se retiraron por destilación a presión atmosférica. La destilación del producto a presión reducida (p.e. 139-141 °C, 7 mm) produjo el intermedio deseado en forma de un aceite de color amarillo transparente (113,4 g).

¹H RMN (CDCl₃) δ 6,78 (s, 1H), 7,36 (t, 1H), 7,93 (d, 1H), 8,15 (s, 1H), 8,45 (d, 1H).

Etapa F: Preparación de ácido 1-(3-cloro-2-piridinil)-3-(trifluorometil)-1 H-pirazol-5-carboxílico

A una solución del producto de pirazol de la Etapa E (105,0 g, 425 mmol) en tetrahidrofurano seco (700 ml) a -75 °C se le añadió mediante una cánula a -30 ºC una solución e diisopropilamida de litio (425 mmol) en tetrahidrofurano 25 seco (300 ml). La solución de color rojo oscuro se agitó durante 15 minutos, tiempo después del cual se burbujeó dióxido de carbono a su través a -63 ºC hasta que la solución se volvió de color amarillo pálido y cesó la exotermia. La reacción se agitó durante 20 minutos más y después se inactivó con agua (20 ml). El disolvente se retiró a presión reducida y la mezcla de reacción se repartió entre éter y una solución acuosa de hidróxido de sodio 0,5 N. 30 Los extractos acuosos se lavaron con éter (3 x), se filtraron con la ayuda de un filtro de tierras de Diatomeas de Celite® para retirar los sólidos residuales y después se acidificaron a un valor de pH de aproximadamente 4, momento en el que se formó un aceite de color naranja. La mezcla acuosa se agitó vigorosamente y se añadió más ácido para disminuir el valor del pH a 2,5-3. El aceite de color naranja se congeló en un sólido granular, que se filtró, se lavó sucesivamente con agua y ácido clorhídrico 1 N y se secó al vacío a 50 ºC para producir el producto del título 35 en forma de un sólido de color blanquecino (130 g). (El producto de otra realización siguiendo un procedimiento similar se funde a 175-176 °C.)

¹H RMN (DMSO-*d*₆) δ 7,61 (s, 1H), 7,76 (dd, 1H), 8,31 (d, 1H), 8,60 (d, 1H).

Etapa G: Preparación de 2,6-dicloro-3-[[[1-(3-cloro-2-piridinil)-3-(trifluorometil)-1*H*-pirazol-5-il]carbonil]amino]-*N*-(1-metiletil)-4-piridincarboxamida

A una solución de 268 mg (0,92 mmol) de ácido 1-(3-cloro-2-piridinil)-3-(trifluorometil)-1H-pirazol-5-carboxílico (de la Etapa F) en 5 ml de diclorometano se le añadieron 160 μl (1,84 mmol) de cloruro de oxalilo y dos gotas de DMF en secuencia a temperatura ambiente. Después, la mezcla se agitó a la misma temperatura durante 1 hora. Después, la mezcla en bruto se concentró al vacío. La mezcla resultante se disolvió con 5 ml de acetonitrilo seguido de adiciones de 280 mg (0,92 mmol) del compuesto preparado en la Etapa D y 298 μl (3,68 mmol) de piridina en secuencia. La mezcla de reacción se calentó a 70 °C durante 2 horas y se dejó enfriar a temperatura ambiente. A la mezcla se le añadió una solución de 157 μl (1,84 mmol) de isopropilamina en 1 ml de acetonitrilo y se calentó a 60 °C durante 1 hora. La reacción se dejó enfriar a temperatura ambiente y se interrumpió con agua. La capa acuosa se extrajo con acetato de etilo y la capa orgánica se secó con MgSO₄ y se concentró al vacío. La mezcla resultante se purificó con una columna de gel de sílice para dar 250 mg del compuesto del título, un compuesto de la invención, en forma de un sólido de color blanco (52%). p.f. 240-242 °C.

 ^{1}H RMN (CDCl₃) δ 9,85 (s, 1H), 8,53 (dd, 1H), 7,90 (dd, 1H), 7,56 (s, 1H), 7,42 (dd, 1H), 7,22 (s, 1H), 6,08 (d a, 1H), 4,13 (m, 1H), 1,14 (d, 6H).

Mediante los procedimientos descritos en la presente memoria, junto con métodos conocidos en la técnica, se pueden preparar los siguientes compuestos de las Tablas 1 a 17. En las Tablas se usan las siguientes abreviaturas: t es terciario, s es secundario, s es normal, s es iso, s es secundario, s es normal, s es iso, s es secundario, s es metilo, s es metilo

Tabla 1

5

		(R ⁴) _n		W X H	R ⁷		
K	R^3	(R ⁴) _n	H ⁷	R ³	Х	Υ	Z
K-1	<i>i</i> -Pr	4-Me	CF ₃	CMe	N	CH	СН
K-1	<i>i</i> -Pr	4-Cl	CF ₃	CMe	N	CH	CH
K-18	<i>i</i> -Pr	4-Me	CF ₃	CMe	N	CH	CH
K-18	<i>i</i> -Pr	4-Cl	CF ₃	CMe	N	CH	CH
K-14	<i>i</i> -Pr	1-Me	CF ₃	CMe	Ν	CH	CH
K-28	<i>i</i> -Pr	4-Me	CF ₃	CMe	Ν	CH	CH
K-28	<i>i</i> -Pr	4-Cl	CF ₃	CMe	Ν	CH	CH
K-30	<i>i</i> -Pr	5-Me	CF ₃	CMe	Ν	CH	CH
K-30	<i>i</i> -Pr	5-Cl	CF ₃	CMe	Ν	CH	CH
K-31	<i>i</i> -Pr	2-Me	CF ₃	CMe	N	CH	CH
K-31	<i>i</i> -Pr	2-Cl	CF ₃	CMe	N	CH	CH
K-33	<i>i</i> -Pr	6-Me	CF ₃	CMe	N	CH	CH
K-33	<i>i</i> -Pr	6-CI	CF ₃	CMe	N	CH	CH
K-1	<i>t</i> -Bu	4-Me	CF ₃	CMe	N	CH	CH
K-1	<i>t</i> -Bu	4-CI	CF ₃	CMe	N	CH	CH
K-18	<i>t</i> -Bu	4-Me	CF ₃	CMe	N	CH	CH
K-18	<i>t</i> -Bu	4-Cl	CF ₃	CMe	N	CH	СН
K-14	<i>t</i> -Bu	1-Me	CF ₃	CMe	N	CH	CH
K-28	<i>t</i> -Bu	4-Me	CF ₃	CMe	N	CH	CH
K-28	<i>t</i> -Bu	4-Cl	CF ₃	CMe	N	СН	CH

K-30	<i>t</i> -Bu	5-Me	CF ₃	CMe	N	СН	CH
K-30	<i>t</i> -Bu	5-CI	CF ₃	CMe	N	СН	СН
K-31	<i>t</i> -Bu	2-Me	CF ₃	CMe	N	СН	СН
K-31	<i>t</i> -Bu	2-Cl	CF ₃	CMe	N	СН	СН
K-33	<i>t</i> -Bu	6-Me	CF ₃	CMe	N	СН	СН
K-33	<i>t</i> -Bu	6-CI	CF ₃	CMe	N	СН	CH
K-1	<i>i</i> -Pr	4-Me	OCF ₃	CMe	N	CH	СН
K-1	<i>i</i> -Pr	4-Cl	OCF ₃	CMe	N	CH	СН
K-18	<i>i</i> -Pr	4-Me	OCF ₃	CMe	N	CH	СН
K-18	<i>i</i> -Pr	4-CI	OCF ₃	CMe	N	CH	СН
K-14	<i>i</i> -Pr	1-Me	OCF ₃	CMe	N	CH	СН
K-28	<i>i</i> -Pr	4-Me	OCF ₃	CMe	N	CH	СН
K-28	<i>i</i> -Pr	4-Cl	OCF ₃	CMe	N	СН	CH
K-30	<i>i</i> -Pr	5-Me	OCF ₃	CMe	N	СН	СН
K-30	<i>i</i> -Pr	5-CI	OCF ₃	CMe	N	СН	CH
K-31	<i>i</i> -Pr	2-Me	OCF ₃	CMe	N	СН	CH
K-31	<i>i</i> -Pr	2-Cl	OCF ₃	CMe	N	СН	СН
K-33	<i>i</i> -Pr	6-Me	OCF ₃	CMe	N	СН	СН
K-33	<i>i</i> -Pr	6-CI	OCF ₃	CMe	N	СН	СН
K-1	<i>i</i> -Pr	4-Me	OCF ₃	CH	N	CH	CH
K-1	<i>i</i> -Pr	4-CI	OCF ₃	CH	N	CH	CH
K-18	<i>i</i> -Pr	4-Me	OCF ₃	CH	N	CH	CH
K-18	<i>i</i> -Pr	4-CI	OCF ₃	CH	N	СН	СН
K-14	<i>i</i> -Pr	1-Me	OCF ₃	CH	N	СН	CH
K-28	<i>i</i> -Pr	4-Me	OCF ₃	CH	N	CH	CH
K-28	<i>i</i> -Pr	4-CI	OCF ₃	CH	N	CH	CH
K-30	<i>i</i> -Pr	5-Me	OCF ₃	CH	N	CH	CH
K-30	<i>i</i> -Pr	5-Cl	OCF ₃	CH	N	CH	CH
K-31	<i>i</i> -Pr	2-Me	OCF ₃	CH	N	CH	CH
K-30	<i>i</i> -Pr	5-Cl	OCF ₃	CH	N	CH	СН
K-31	<i>i</i> -Pr	2-Me	OCF ₃	CH	Ν	СН	CH
K-31	<i>i</i> -Pr	2-Cl	OCF ₃	CH	Ν	СН	CH
K-33	<i>i</i> -Pr	6-Me	OCF ₃	CH	Ν	СН	CH
K-33	<i>i</i> -Pr	6-CI	OCF ₃	CH	Ν	CH	CH

Tabla 2

$$(R^4)_n$$
 $(R^4)_n$
 $(R^4$

		K	D3 -	- : D.	
K	$(R^4)_n$	Q	X X	es <i>i</i> -Pr Y	Z
K-1	4-Me	NCHF ₂	CMe	N	CH
K-1	4-CI	NCHF ₂	CMe	N	CH
K-18	4-Me	NCHF ₂	CMe	N	CH
K-18	4-Cl	NCHF ₂	CMe	N	CH
K-14	1-Me	NCHF ₂	CMe	N	CH
K-28	4-Me	NCHF ₂	CMe	N	CH
K-28	4-Cl	NCHF ₂	CMe	N	CH
K-31	2-Me	NCHF ₂	CMe	N	СН
K-31	2-Cl	NCHF ₂	CMe	N	СН
K-33	6-Me	NCHF ₂	CMe	N	СН
K-33	6-CI	NCHF ₂	CMe	N	СН
K-1	4-Me	NCHF ₂	CH	N	CMe
K-1	4-CI	NCHF ₂	CH	N	CMe
K-18	4-Me	NCHF ₂	CH	N	CMe
K-18	4-CI	NCHF ₂	CH	N	CMe
K-14	1-Me	NCHF ₂	CH	N	CMe
K-28	4-Me	NCHF ₂	CH	N	CMe
K-28	4-CI	NCHF ₂	CH	N	CMe
K-30	5-Me	NCHF ₂	CH	N	CMe
K-30	5-CI	NCHF ₂	CH	N	CMe
K-31	2-Me	NCHF ₂	CH	N	CMe
K-31	2-Cl	NCHF ₂	CH	N	CMe
K-33	6-Me	NCHF ₂	CH	N	CMe
K-33	6-CI	NCHF ₂	CH	N	CMe
K-1	4-Me	NCF ₂ CHF ₂	CMe	N	CH
K-1	4-Cl	NCF ₂ CHF ₂	CMe	N	CH
K-18	4-Me	NCF ₂ CHF ₂	CMe	N	CH

K-18	4-CI	NCF ₂ CHF ₂	CMe	N	CH
K-14	1-Me	NCF ₂ CHF ₂	CMe	N	CH
K-28	4-Me	NCF ₂ CHF ₂	CMe	N	СН
K-28	4-CI	NCF ₂ CHF ₂	CMe	N	СН
K-30	5-Me	NCF ₂ CHF ₂	CMe	N	СН
K-30	5-CI	NCF ₂ CHF ₂	CMe	N	CH
K-31	2-Me	NCF ₂ CHF ₂	CMe	N	CH
K-31	2-Cl	NCF ₂ CHF ₂	CMe	N	CH
K-33	6-Me	NCF ₂ CHF ₂	CMe	N	СН
K-33	6-CI	NCF ₂ CHF ₂	CMe	N	СН
K-1	4-Me	NCH ₂ CF ₃	CMe	N	CH
K-1	4-Cl	NCH ₂ CF ₃	CMe	N	CH
K-18	4-Me	NCH ₂ CF ₃	CMe	N	CH
K-18	4-Cl	NCH ₂ CF ₃	CMe	N	CH
K-14	1-Me	NCH ₂ CF ₃	CMe	N	CH
K-28	4-Me	NCH ₂ CF ₃	CMe	Ν	CH
K-28	4-Cl	NCH ₂ CF ₃	CMe	Ν	CH
K-30	5-Me	NCH ₂ CF ₃	CMe	Ν	CH
K-30	5-CI	NCH ₂ CF ₃	CMe	Ν	CH
K-31	2-Me	NCH ₂ CF ₃	CMe	N	CH
K-31	2-Cl	NCH ₂ CF ₃	CMe	N	CH
K-33	6-Me	NCH ₂ CF ₃	CMe	N	CH
K-33	6-CI	NCH ₂ CF ₃	CMe	N	CH
K-1	4-Me	NCH ₂ CF ₃	CH	Ν	CMe
K-1	4-Cl	NCH ₂ CF ₃	CH	N	CMe
K-18	4-Me	NCH ₂ CF ₃	CH	N	CMe
K-18	4-Cl	NCH ₂ CF ₃	CH	N	CMe
K-14	1-Me	NCH ₂ CF ₃	CH	N	CMe
K-28	4-Me	NCH ₂ CF ₃	CH	N	CMe
K-28	4-Cl	NCH ₂ CF ₃	CH	N	CMe
K-30	5-Me	NCH ₂ CF ₃	CH	N	CMe
K-30	5-Cl	NCH ₂ CF ₃	CH	N	CMe
K-31	2-Me	NCH ₂ CF ₃	CH	N	CMe
K-31	2-Cl	NCH ₂ CF ₃	CH	N	CMe
K-33	6-Me	NCH ₂ CF ₃	CH	N	CMe
K-33	6-Cl	NCH ₂ CF ₃	CH	N	CMe

		R ³ es	<u>t-Bu</u>		
K	(R ⁴)n	Q	Χ	Υ	Z
K-1	4-Me	NCHF ₂	CMe	N	CH
K-1	4-Cl	NCHF ₂	CMe	N	CH
K-18	4-Me	NCHF ₂	CMe	N	CH
K-18	4-CI	NCHF ₂	CMe	N	CH
K-14	1-Me	NCHF ₂	CMe	N	CH
K-28	4-Me	NCHF ₂	CMe	N	CH
K-28	4-Cl	NCHF ₂	CMe	N	CH
K-30	5-Me	NCHF ₂	CMe	N	CH
K-30	5-Cl	NCHF ₂	CMe	N	CH
K-31	2-Me	NCHF ₂	CMe	N	CH
K-31	2-Cl	NCHF ₂	CMe	N	CH
K-33	6-Me	NCHF ₂	CMe	N	CH
K-33	6-CI	NCHF ₂	CMe	N	CH
K-1	4-Me	NCHF ₂	CH	N	CMe
K-1	4-CI	NCHF ₂	CH	N	CMe
K-18	4-Me	NCHF ₂	CH	N	CMe
K-18	4-CI	NCHF ₂	CH	N	CMe
K-14	1-Me	NCHF ₂	CH	N	CMe
K-28	4-Me	NCHF ₂	CH	N	CMe
K-28	4-CI	NCHF ₂	CH	N	CMe
K-30	5-Me	NCHF ₂	CH	N	CMe
K-30	5-CI	NCHF ₂	CH	N	CMe
K-31	2-Me	NCHF ₂	CH	N	CMe
K-31	2-Cl	NCHF ₂	CH	N	CMe
K-33	6-Me	NCHF ₂	CH	N	CMe
K-33	6-CI	NCHF ₂	CH	N	CMe
K-1	4-Me	NCF ₂ CHF ₂	CMe	N	CH
K-1	4-CI	NCF ₂ CHF ₂	CMe	N	CH
K-18	4-Me	NCF ₂ CHF ₂	CMe	N	CH
K-18	4-CI	NCF ₂ CHF ₂	CMe	N	CH
K-14	1-Me	NCF ₂ CHF ₂	CMe	N	CH
K-28	4-Me	NCF ₂ CHF ₂	CMe	N	CH
K-28	4-Cl	NCF ₂ CHF ₂	CMe	N	CH
K-30	5-Me	NCF ₂ CHF ₂	CMe	N	CH
K-30	5-Cl	NCF ₂ CHF ₂	CMe	N	CH

K-31	2-Me	NCF ₂ CHF ₂	CMe	N	CH
K-31	2-Cl	NCF ₂ CHF ₂	CMe	N	СН
K-33	6-Me	NCF ₂ CHF ₂	CMe	N	СН
K-33	6-CI	NCF ₂ CHF ₂	CMe	N	СН
K-1	4-Me	NCH ₂ CF ₃	CMe	N	СН
K-1	4-CI	NCH ₂ CF ₃	CMe	N	СН
K-18	4-Me	NCH ₂ CF ₃	CMe	N	СН
K-18	4-CI	NCH ₂ CF ₃	CMe	N	СН
K-14	1-Me	NCH ₂ CF ₃	CMe	N	СН
K-28	4-Me	NCH ₂ CF ₃	CMe	N	СН
K-28	4-Cl	NCH ₂ CF ₃	CMe	N	СН
K-30	5-Me	NCH ₂ CF ₃	CMe	N	CH
K-30	5-CI	NCH ₂ CF ₃	CMe	N	CH
K-31	2-Me	NCH ₂ CF ₃	CMe	N	CH
K-31	2-Cl	NCH ₂ CF ₃	CMe	N	CH
K-33	6-Me	NCH ₂ CF ₃	CMe	N	CH
K-33	6-CI	NCH ₂ CF ₃	CMe	N	СН
K-1	4-Me	NCH ₂ CF ₃	СН	N	CMe
K-1	4-CI	NCH ₂ CF ₃	СН	N	CMe
K-18	4-Me	NCH ₂ CF ₃	СН	N	CMe
K-18	4-CI	NCH ₂ CF ₃	CH	N	CMe
K-14	1-Me	NCH ₂ CF ₃	СН	N	CMe
K-28	4-Me	NCH ₂ CF ₃	СН	N	CMe
K-28	4-CI	NCH ₂ CF ₃	CH	N	CMe
K-30	5-Me	NCH ₂ CF ₃	CH	N	CMe
K-30	5-CI	NCH ₂ CF ₃	CH	N	CMe
K-31	2-Me	NCH ₂ CF ₃	CH	N	CMe
K-31	2-Cl	NCH ₂ CF ₃	СН	N	CMe
K-33	6-Me	NCH ₂ CF ₃	СН	N	CMe
K-33	6-Cl	NCH ₂ CF ₃	СН	N	CMe

Tabla 3

K-1	CH	CH	СН	N	<i>t</i> -Bu	4-Cl	CF ₃	Me
K-1	CH	CH	СН	N	<i>i</i> -Pr	4-Me	CF ₃	F
K-1	CH	CH	СН	N	<i>t</i> -Bu	4-Me	CF ₃	F
K-1	CH	CH	СН	N	<i>i</i> -Pr	4-Cl	CF ₃	F
K-1	CH	CH	СН	N	<i>t</i> -Bu	4-Cl	CF ₃	F
K-1	CH	CH	СН	N	<i>i</i> -Pr	4-Me	CF ₃	CI
K-1	CH	CH	СН	N	<i>t</i> -Bu	4-Me	CF ₃	CI
K-1	CH	CH	СН	N	<i>i</i> -Pr	4-Cl	CF ₃	CI
K-1	CH	CH	СН	N	<i>t</i> -Bu	4-Cl	CF ₃	CI
K-1	СН	CH	CH	N	<i>i</i> -Pr	4-Me	CF ₃	Br
K-1	CH	CH	СН	N	<i>t</i> -Bu	4-Me	CF ₃	Br
K-1	СН	CH	CH	N	<i>i</i> -Pr	4-Cl	CF ₃	Br
K-1	СН	CH	CH	N	<i>t</i> -Bu	4-Cl	CF ₃	Br
K-1	СН	CH	CH	N	<i>i</i> -Pr	4-Me	CF ₃	CN
K-1	СН	CH	CH	N	<i>t</i> -Bu	4-Me	CF ₃	CN
K-1	СН	CH	CH	N	<i>i</i> -Pr	4-Cl	CF ₃	CN
K-1	CH	CH	СН	N	<i>t</i> -Bu	4-Cl	CF ₃	CN
K-18	CH	CH	СН	СН	<i>i</i> -Pr	4-Me	CF ₃	Me
K-18	СН	CH	CH	CH	<i>i</i> -Bu	4-Me	CF ₃	Me
K-18	СН	CH	CH	CH	<i>i</i> -Pr	4-Cl	CF ₃	Me
K-18	СН	CH	СН	СН	<i>t</i> -Bu	4-Cl	CF ₃	Me
K-18	CH	CH	СН	СН	<i>i</i> -Pr	4-Me	CF ₃	F
K-18	CH	CH	СН	СН	<i>t</i> -Bu	4-Me	CF ₃	F
K-18	CH	СН	СН	СН	<i>i</i> -Pr	4-Cl	CF ₃	F
K-18	CH	CH	СН	СН	<i>t</i> -Bu	4-Cl	CF ₃	F
K-18	CH	CH	CH	СН	<i>i</i> -Pr	4-Me	CF ₃	CI
K-18	CH	CH	CH	СН	<i>t</i> -Bu	4-Me	CF ₃	CI
K-18	CH	CH	CH	СН	<i>i</i> -Pr	4-Cl	CF ₃	CI
K-18	CH	CH	СН	СН	<i>t</i> -Bu	4-Cl	CF ₃	CI
K-18	CH	CH	СН	СН	<i>i</i> -Pr	4-Me	CF ₃	Br
K-18	CH	CH	СН	СН	<i>t</i> -Bu	4-Me	CF ₃	Br
K-18	CH	CH	СН	СН	<i>i</i> -Pr	4-Cl	CF ₃	Br
K-18	CH	CH	СН	СН	<i>t</i> -Bu	4-Cl	CF ₃	Br
K-18	СН	CH	СН	СН	<i>i</i> -Pr	4-Me	CF ₃	CN
K-18	СН	СН	CH	СН	<i>t</i> -Bu	4-Me	CF ₃	CN
K-18	СН	CH	СН	СН	<i>i</i> -Pr	4-Cl	CF ₃	CN

K-18	СН	СН	CH	СН	<i>t</i> -Bu	4-Cl	CF ₃	CN
K-18	СН	СН	CH	Ν	<i>i</i> -Pr	4-Me	CF ₃	Me
K-18	СН	СН	CH	Ν	<i>t</i> -Bu	4-Me	CF ₃	Me
K-18	СН	СН	CH	Ν	<i>i</i> -Pr	4-Cl	CF ₃	Me
K-18	СН	СН	CH	Ν	<i>t</i> -Bu	4-Cl	CF ₃	Me
K-18	СН	СН	CH	Ν	<i>i</i> -Pr	4-Me	CF ₃	F
K-18	СН	СН	CH	Ν	<i>t</i> -Bu	4-Me	CF ₃	F
K-18	СН	СН	CH	Ν	<i>i</i> -Pr	4-Cl	CF ₃	F
K-18	СН	СН	CH	Ν	<i>t</i> -Bu	4-Cl	CF ₃	F
K-18	СН	СН	CH	Ν	<i>i</i> -Pr	4-Me	CF ₃	CI
K-18	СН	СН	CH	N	<i>t</i> -Bu	4-Me	CF ₃	CI
K-18	СН	СН	CH	N	<i>i</i> -Pr	4-Cl	CF ₃	CI
K-18	СН	СН	CH	Ν	<i>t</i> -Bu	4-Cl	CF ₃	CI
K-18	СН	СН	CH	Ν	<i>i</i> -Pr	4-Me	CF ₃	Br
K-18	СН	СН	CH	Ν	<i>t</i> -Bu	4-Me	CF ₃	Br
K-18	СН	СН	CH	Ν	<i>i</i> -Pr	4-Cl	CF ₃	Br
K-18	CH	СН	СН	Ν	<i>t</i> -Bu	4-Cl	CF ₃	Br
K-18	CH	СН	СН	Ν	<i>i</i> -Pr	4-Me	CF ₃	CN
K-18	CH	СН	СН	Ν	<i>t</i> -Bu	4-Me	CF ₃	CN
K-18	CH	СН	СН	Ν	<i>i</i> -Pr	4-Cl	CF ₃	CN
K-18	CH	CH	СН	Ν	<i>t</i> -Bu	4-Cl	CF ₃	CN
K-14	CH	CH	CH	СН	<i>i</i> -Pr	1-Me	CF ₃	Me
K-14	CH	CH	CH	СН	t-Bu	1-Me	CF ₃	Me
K-14	CH	CH	CH	СН	<i>i</i> -Pr	1-Me	CF ₃	F
K-14	CH	CH	CH	СН	t-Bu	1-Me	CF ₃	F
K-14	CH	CH	CH	СН	<i>i</i> -Pr	1-Me	CF ₃	CI
K-14	CH	CH	CH	СН	t-Bu	1-Me	CF ₃	CI
K-14	CH	CH	CH	СН	<i>i</i> -Pr	1-Me	CF ₃	Br
K-14	CH	CH	CH	СН	t-Bu	1-Me	CF ₃	Br
K-14	CH	CH	CH	СН	<i>i</i> -Pr	1-Me	CF ₃	CN
K-14	CH	CH	CH	СН	t-Bu	1-Me	CF ₃	CN
K-14	CH	CH	CH	N	<i>i</i> -Pr	1-Me	CF ₃	Me
K-14	CH	CH	СН	N	<i>t</i> -Bu	1-Me	CF ₃	Me
K-14	CH	CH	CH	N	<i>i</i> -Pr	1-Me	CF ₃	F
K-14	CH	CH	СН	N	<i>t</i> -Bu	1-Me	CF ₃	F
K-14	CH	СН	СН	Ν	<i>i</i> -Pr	1-Me	CF ₃	CI

K-14	CH	CH	СН	Ν	<i>t</i> -Bu	1-Me	CF ₃	CI
K-14	СН	CH	CH	Ν	<i>i</i> -Pr	1-Me	CF ₃	Br
K-14	CH	СН	СН	Ν	<i>t</i> -Bu	1-Me	CF ₃	Br
K-14	СН	CH	CH	Ν	<i>i</i> -Pr	1-Me	CF ₃	CN
K-14	CH	СН	СН	Ν	<i>t</i> -Bu	1-Me	CF ₃	CN
K-28	CH	СН	СН	СН	<i>i</i> -Pr	4-Me	CF ₃	Me
K-28	CH	СН	СН	СН	<i>t</i> -Bu	4-Me	CF ₃	Me
K-28	CH	СН	СН	СН	<i>i</i> -Pr	4-Cl	CF ₃	Me
K-28	CH	СН	СН	СН	<i>t</i> -Bu	4-Cl	CF ₃	Me
K-28	СН	СН	CH	CH	<i>i</i> -Pr	4-Me	CF ₃	F
K-28	СН	СН	CH	CH	<i>t</i> -Bu	4-Me	CF ₃	F
K-28	СН	СН	CH	CH	<i>i</i> -Pr	4-Cl	CF ₃	F
K-28	СН	СН	CH	CH	<i>t</i> -Bu	4-Cl	CF ₃	F
K-28	СН	СН	CH	CH	<i>i</i> -Pr	4-Me	CF ₃	CI
K-28	СН	СН	CH	CH	<i>t</i> -Bu	4-Me	CF ₃	CI
K-28	СН	СН	CH	CH	<i>i</i> -Pr	4-Cl	CF ₃	CI
K-28	CH	СН	СН	СН	<i>t</i> -Bu	4-Cl	CF ₃	CI
K-28	CH	СН	СН	СН	<i>i</i> -Pr	4-Me	CF ₃	Br
K-28	CH	СН	СН	СН	<i>t</i> -Bu	4-Me	CF ₃	Br
K-28	CH	СН	СН	СН	<i>i</i> -Pr	4-Cl	CF ₃	Br
K-28	CH	СН	СН	СН	<i>t</i> -Bu	4-Cl	CF ₃	Br
K-28	CH	CH	CH	СН	<i>i</i> -Pr	4-Me	CF ₃	CN
K-28	CH	CH	CH	СН	t-Bu	4-Me	CF ₃	CN
K-28	CH	CH	CH	СН	<i>i</i> -Pr	4-Cl	CF ₃	CN
K-28	CH	CH	CH	СН	t-Bu	4-Cl	CF ₃	CN
K-28	CH	CH	CH	N	<i>i</i> -Pr	4-Me	CF ₃	Me
K-28	CH	CH	СН	Ν	<i>t</i> -Bu	4-Me	CF ₃	Me
K-28	CH	CH	CH	N	<i>i</i> -Pr	4-Cl	CF ₃	Me
K-28	CH	CH	CH	N	t-Bu	4-Cl	CF ₃	Me
K-28	СН	CH	СН	N	<i>i</i> -Pr	4-Me	CF ₃	F
K-28	CH	CH	CH	N	t-Bu	4-Me	CF ₃	F
K-28	CH	CH	CH	N	<i>i</i> -Pr	4-Cl	CF ₃	F
K-28	CH	CH	СН	N	<i>t</i> -Bu	4-CI	CF ₃	F
K-28	CH	CH	CH	N	<i>i</i> -Pr	4-Me	CF ₃	CI
K-28	CH	CH	СН	N	<i>t</i> -Bu	4-Me	CF ₃	CI
K-28	CH	СН	СН	Ν	<i>i</i> -Pr	4-Cl	CF ₃	CI

K-28	СН	СН	СН	Ν	<i>t</i> -Bu	4-Cl	CF ₃	CI
K-28	СН	СН	CH	N	<i>i</i> -Pr	4-Me	CF ₃	Br
K-28	СН	СН	CH	N	<i>t</i> -Bu	4-Me	CF ₃	Br
K-28	СН	СН	CH	Ν	<i>i</i> -Pr	4-Cl	CF ₃	Br
K-28	СН	СН	CH	Ν	<i>t</i> -Bu	4-Cl	CF ₃	Br
K-28	СН	СН	CH	Ν	<i>i</i> -Pr	4-Me	CF ₃	CN
K-28	СН	СН	CH	Ν	t-Bu	4-Me	CF ₃	CN
K-28	СН	СН	CH	Ν	<i>i</i> -Pr	4-Cl	CF ₃	CN
K-28	СН	СН	CH	N	<i>t</i> -Bu	4-Cl	CF ₃	CN
K-30	СН	СН	CH	СН	<i>i</i> -Pr	Me	CF ₃	Me
K-30	СН	СН	CH	СН	<i>t</i> -Bu	Me	CF ₃	Me
K-30	СН	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	Me
K-30	СН	СН	CH	СН	<i>t</i> -Bu	5-CI	CF ₃	Me
K-30	СН	СН	CH	СН	<i>i</i> -Pr	Me	CF ₃	F
K-30	СН	СН	CH	СН	<i>t</i> -Bu	Me	CF ₃	F
K-30	СН	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	F
K-30	СН	СН	CH	СН	<i>t</i> -Bu	5-Cl	CF ₃	F
K-30	СН	СН	СН	СН	<i>i</i> -Pr	Me	CF ₃	С
K-30	СН	СН	CH	СН	<i>t</i> -Bu	Me	CF ₃	CI
K-30	СН	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	CI
K-30	СН	СН	СН	СН	<i>t</i> -Bu	5-Cl	CF ₃	CI
K-30	СН	СН	CH	СН	<i>i</i> -Pr	Me	CF ₃	Br
K-30	СН	СН	CH	СН	<i>t</i> -Bu	Me	CF ₃	Br
K-30	СН	CH	СН	СН	<i>i</i> -Pr	5-CI	CF ₃	Br
K-30	СН	СН	CH	СН	<i>t</i> -Bu	5-Cl	CF ₃	Br
K-30	СН	СН	CH	СН	<i>i</i> -Pr	Me	CF ₃	CN
K-30	СН	CH	СН	СН	<i>t</i> -Bu	Me	CF ₃	CN
K-30	СН	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	CN
K-30	СН	СН	CH	СН	<i>t</i> -Bu	5-Cl	CF ₃	CN
K-30	СН	CH	СН	Ν	<i>i</i> -Pr	Me	CF ₃	Me
K-30	СН	СН	CH	Ν	<i>t</i> -Bu	Me	CF ₃	Me
K-30	СН	CH	СН	Ν	<i>i</i> -Pr	5-Cl	CF ₃	Me
K-30	СН	СН	CH	Ν	<i>t</i> -Bu	5-Cl	CF ₃	Me
K-30	СН	СН	СН	Ν	<i>i</i> -Pr	Me	CF ₃	F
K-30	СН	СН	СН	Ν	<i>t</i> -Bu	Me	CF ₃	F
K-30	СН	СН	СН	Ν	<i>i</i> -Pr	5-CI	CF ₃	F

K-30 CH CH CH N t-Bu 5-Cl CF3 F K-30 CH CH CH CH N t-Pr Me CF3 CI K-30 CH CH CH CH N t-Bu Me CF3 CI K-30 CH CH CH CH N t-Bu 5-Cl CF3 CI K-30 CH CH CH CH N t-Bu Me CF3 Br K-30 CH CH CH CH N t-Bu Me CF3 Br K-30 CH CH CH CH N t-Bu 5-Cl CF3 CN K-30 CH CH CH CH N t-Bu Me CF3 CN K-30 CH CH CH CH N t-Bu Me CF3 CN K-30 CH									
K-30 CH CH CH N rBu Me CF3 CI K-30 CH CH CH CH N rPr 5-CI CF3 CI K-30 CH CH CH CH N rPr Me CF3 Br K-30 CH CH CH N rPr Me CF3 Br K-30 CH CH CH N rPr S-CI CF3 Br K-30 CH CH CH N rPr Me CF3 Br K-30 CH CH CH N rPr Me CF3 CN K-30 CH CH CH N rPr Me CF3 CN K-30 CH CH CH CH N rPr Me CF3 Me K-30 CH CH CH CH rPr Me <t< td=""><td>K-30</td><td>СН</td><td>СН</td><td>CH</td><td>Ν</td><td><i>t</i>-Bu</td><td>5-Cl</td><td>CF₃</td><td>F</td></t<>	K-30	СН	СН	CH	Ν	<i>t</i> -Bu	5-Cl	CF ₃	F
K-30 CH CH CH CH N PPr 5-CI CF3 CI K-30 CH CH CH CH N PPr Me CF3 Br K-30 CH CH CH CH N PPr Me CF3 Br K-30 CH CH CH CH N PPr 5-CI CF3 Br K-30 CH CH CH CH N PPr Me CF3 Br K-30 CH CH CH CH N PPr Me CF3 CN K-30 CH CH CH CH N PPr 5-CI CF3 CN K-30 CH CH CH CH N PPr Me CF3 Me K-30 CH CH CH CH PPr Me CF3 Me K-30 CH	K-30	СН	СН	CH	Ν	<i>i</i> -Pr	Me	CF ₃	CI
K-30 CH CH CH N #Bu 5-CI CF3 Br K-30 CH CH CH CH N #Pr Me CF3 Br K-30 CH CH CH CH N #Pr 5-CI CF3 Br K-30 CH CH CH CH N #Pr Me CF3 CN K-30 CH CH CH CH N #Pr Me CF3 CN K-30 CH CH CH CH N #Pr Me CF3 CN K-30 CH CH CH CH N #Pr 5-CI CF3 CN K-30 CH CH CH CH CH Pr Me CF3 Me K-30 CH CH CH CH PPr Me CF3 Me K-30 CH CH	K-30	СН	СН	CH	Ν	<i>t</i> -Bu	Me	CF ₃	CI
K-30 CH CH CH N PPr Me CF3 Br K-30 CH CH CH CH N PBu Me CF3 Br K-30 CH CH CH CH N PPr 5-CI CF3 Br K-30 CH CH CH CH N PPr Me CF3 CN K-30 CH CH CH CH N PPr 5-CI CF3 CN K-30 CH CH CH CH N PPr 5-CI CF3 CN K-30 CH CH CH CH CH N PPr 5-CI CF3 CN K-30 CH CH CH CH CH PPr Me CF3 Me K-30 CH CH CH CH PPr 5-CI CF3 Me K-30 CH	K-30	СН	СН	CH	Ν	<i>i</i> -Pr	5-Cl	CF ₃	CI
K-30 CH CH CH N t-Bu Me CF3 Br K-30 CH CH CH N t-Pr 5-CI CF3 Br K-30 CH CH CH CH N t-Pr Me CF3 CN K-30 CH CH CH CH N t-Pr Me CF3 CN K-30 CH CH CH CH N t-Pr 5-CI CF3 CN K-30 CH CH CH CH N t-Pr 5-CI CF3 CN K-30 CH CH CH CH CH HPr Me CF3 Me K-30 CH CH CH CH CH t-Pr 5-CI CF3 Me K-30 CH CH CH CH t-Pr 5-CI CF3 F K-30 CH CH CH<	K-30	СН	СН	CH	Ν	<i>t</i> -Bu	5-Cl	CF ₃	CI
K-30 CH CH CH CH N i-Pr 5-CI CF3 Br K-30 CH CH CH N i-Pr Me CF3 CN K-30 CH CH CH CH N i-Pr Me CF3 CN K-30 CH CH CH CH N i-Pr 5-CI CF3 CN K-30 CH CH CH CH N i-Pr 5-CI CF3 CN K-30 CH CH CH CH CH We CF3 Me K-30 CH CH CH CH CH HBu Me CF3 Me K-30 CH CH CH CH CH i-Pr 5-CI CF3 Me K-30 CH CH CH CH i-Pr Me CF3 F K-30 CH CH CH <td>K-30</td> <td>СН</td> <td>СН</td> <td>CH</td> <td>Ν</td> <td><i>i</i>-Pr</td> <td>Me</td> <td>CF₃</td> <td>Br</td>	K-30	СН	СН	CH	Ν	<i>i</i> -Pr	Me	CF ₃	Br
K-30 CH CH CH N t-Bu 5-Cl CF3 Br K-30 CH CH CH N t-Pr Me CF3 CN K-30 CH CH CH CH N t-Bu Me CF3 CN K-30 CH CH CH CH N t-Bu 5-Cl CF3 CN K-30 CH CH CH CH CH CH CF3 Me K-30 CH CH CH CH CH CH CF3 Me K-30 CH CH CH CH CH CF3 Me K-30 CH CH CH CH t-Bu Me CF3 Me K-30 CH CH CH CH t-Bu Me CF3 F K-30 CH CH CH CH t-Bu Me CF3 CI	K-30	СН	СН	СН	Ν	<i>t</i> -Bu	Me	CF ₃	Br
K-30 CH CH CH N i-Pr Me CF3 CN K-30 CH CH CH N i-Bu Me CF3 CN K-30 CH CH CH CH N i-Pr 5-Cl CF3 CN K-30 CH CH CH CH CH i-Pr Me CF3 Me K-30 CH CH CH CH CH i-Pr Me CF3 Me K-30 CH CH CH CH CH i-Pr 5-Cl CF3 Me K-30 CH CH CH CH i-Pr 5-Cl CF3 Me K-30 CH CH CH CH i-Pr Me CF3 F K-30 CH CH CH CH i-Pr 5-Cl CF3 CI K-30 CH CH CH CH i	K-30	СН	СН	СН	Ν	<i>i</i> -Pr	5-Cl	CF ₃	Br
K-30 CH CH CH N t-Bu Me CF₃ CN K-30 CH CH CH CH N t-Bu 5-CI CF₃ CN K-30 CH CH CH CH CH t-Bu 5-CI CF₃ Me K-30 CH CH CH CH CH t-Bu Me CF₃ Me K-30 CH CH CH CH CH t-Bu Me CF₃ Me K-30 CH CH CH CH CH t-Bu 5-CI CF₃ Me K-30 CH CH CH CH t-Bu Me CF₃ F K-30 CH CH CH CH t-Bu Me CF₃ F K-30 CH CH CH CH t-Bu 5-CI CF₃ CI K-30 CH CH CH	K-30	СН	СН	CH	Ν	<i>t</i> -Bu	5-CI	CF ₃	Br
K-30 CH CH CH N i-Pr 5-CI CF₃ CN K-30 CH CH CH CH N t-Bu 5-CI CF₃ CN K-30 CH CH CH CH CH t-Bu Me CF₃ Me K-30 CH CH CH CH CH t-Bu Me CF₃ Me K-30 CH CH CH CH CH CH CF₃ Me K-30 CH CH CH CH CH H-Bu 5-CI CF₃ Me K-30 CH CH CH CH t-Bu Me CF₃ F K-30 CH CH CH CH t-Bu Me CF₃ F K-30 CH CH CH CH t-Bu Me CF₃ CI K-30 CH CH CH CH t-Bu	K-30	СН	СН	СН	Ν	<i>i</i> -Pr	Me	CF ₃	CN
K-30 CH CH CH N t-Bu 5-Cl CF3 CN K-30 CH CH CH CH CH t-Pr Me CF3 Me K-30 CH CH CH CH CH t-Bu Me CF3 Me K-30 CH CH CH CH CH t-Bu 5-Cl CF3 Me K-30 CH CH CH CH CH t-Bu 5-Cl CF3 F K-30 CH CH CH CH t-Bu Me CF3 F K-30 CH CH CH CH t-Bu Me CF3 F K-30 CH CH CH CH t-Bu 5-Cl CF3 Cl K-30 CH CH CH CH t-Bu Me CF3 Cl K-30 CH CH CH CH t	K-30	СН	СН	CH	Ν	<i>t</i> -Bu	Me	CF ₃	CN
K-30 CH CH CH CH i-Pr Me CF3 Me K-30 CH CH CH CH i-Pr 5-CI CF3 Me K-30 CH CH CH CH i-Pr 5-CI CF3 Me K-30 CH CH CH CH i-Pr Me CF3 F K-30 CH CH CH CH i-Pr Me CF3 F K-30 CH CH CH CH i-Pr Me CF3 F K-30 CH CH CH CH i-Pr 5-CI CF3 F K-30 CH CH CH CH i-Pr Me CF3 CI K-30 CH CH CH CH i-Pr Me CF3 CI K-30 CH CH CH CH i-Pr Me CF3 Br	K-30	СН	СН	CH	Ν	<i>i</i> -Pr	5-CI	CF ₃	CN
K-30 CH CH CHF CH t-Bu Me CF3 Me K-30 CH CH CH CH CH CH CF3 Me K-30 CH CH CH CH CH CH CH CF3 Me K-30 CH CH CH CH CH CH CH CF3 F K-30 CH CH CH CH CH CH CH CF3 F K-30 CH CH CH CH CH CH CF3 F K-30 CH CH CH CH CH CH CF3 CI K-30 CH CH CH CH HBu Me CF3 CI K-30 CH CH CH CH HBu 5-CI CF3 GI K-30 CH CH CH CH HBu 5-CI	K-30	СН	СН	CH	Ν	<i>t</i> -Bu	5-CI	CF ₃	CN
K-30 CH CH CH CH i-Pr 5-Cl CF3 Me K-30 CH CH CH CH t-Bu 5-Cl CF3 Me K-30 CH CH CH CH CH i-Pr Me CF3 F K-30 CH CH CH CH CH i-Pr 5-Cl CF3 F K-30 CH CH CH CH CH i-Pr 5-Cl CF3 F K-30 CH CH CH CH i-Pr Me CF3 Cl K-30 CH CH CH CH i-Pr Me CF3 Cl K-30 CH CH CH CH i-Pr 5-Cl CF3 Cl K-30 CH CH CH CH i-Pr Me CF3 Br K-30 CH CH CH CH i-Pr	K-30	СН	СН	CH	СН	<i>i</i> -Pr	Me	CF ₃	Me
K-30 CH CH CH CH t-Bu 5-Cl CF3 Me K-30 CH CH CH CH t-Pr Me CF3 F K-30 CH CH CH CH t-Bu Me CF3 F K-30 CH CH CH CH t-Bu 5-Cl CF3 F K-30 CH CH CH CH t-Bu 5-Cl CF3 F K-30 CH CH CH CH t-Bu Me CF3 Cl K-30 CH CH CH CH t-Bu Me CF3 Cl K-30 CH CH CH CH t-Bu 5-Cl CF3 Br K-30 CH CH CH CH t-Bu Me CF3 Br K-30 CH CH CH CH t-Bu 5-Cl CF3 CN <td>K-30</td> <td>СН</td> <td>СН</td> <td>CHF</td> <td>СН</td> <td><i>t</i>-Bu</td> <td>Me</td> <td>CF₃</td> <td>Me</td>	K-30	СН	СН	CHF	СН	<i>t</i> -Bu	Me	CF ₃	Me
K-30 CH CH CH CH PPr Me CF3 F K-30 CH CH CH CH PPr 5-CI CF3 F K-30 CH CH CH CH CH PPr 5-CI CF3 F K-30 CH CH CH CH CH PPr Me CF3 CI K-30 CH CH CH CH CH PPr Me CF3 CI K-30 CH CH CH CH PPr 5-CI CF3 CI K-30 CH CH CH CH PPr 5-CI CF3 Br K-30 CH CH CH CH PPr Me CF3 Br K-30 CH CH CH CH PPr 5-CI CF3 Br K-30 CH CH CH CH PPr Me <td>K-30</td> <td>СН</td> <td>СН</td> <td>CH</td> <td>СН</td> <td><i>i</i>-Pr</td> <td>5-CI</td> <td>CF₃</td> <td>Me</td>	K-30	СН	СН	CH	СН	<i>i</i> -Pr	5-CI	CF ₃	Me
K-30 CH CH CH CH t-Bu Me CF3 F K-30 CH CH CH CH t-Pr 5-CI CF3 F K-30 CH CH CH CH CH t-Pr Me CF3 CI K-30 CH CH CH CH CH t-Pr Me CF3 CI K-30 CH CH CH CH t-Bu Me CF3 CI K-30 CH CH CH CH t-Pr 5-CI CF3 CI K-30 CH CH CH CH t-Pr Me CF3 Br K-30 CH CH CH CH t-Bu Me CF3 Br K-30 CH CH CH CH t-Pr 5-CI CF3 Br K-30 CH CH CH CH t-Pr Me <td< td=""><td>K-30</td><td>СН</td><td>СН</td><td>CH</td><td>СН</td><td><i>t</i>-Bu</td><td>5-CI</td><td>CF₃</td><td>Me</td></td<>	K-30	СН	СН	CH	СН	<i>t</i> -Bu	5-CI	CF ₃	Me
K-30 CH CH CH CH i-Pr 5-Cl CF3 F K-30 CH CH CH CH t-Bu 5-Cl CF3 F K-30 CH CH CH CH CH t-Pr Me CF3 Cl K-30 CH CH CH CH CH i-Pr 5-Cl CF3 Cl K-30 CH CH CH CH i-Pr 5-Cl CF3 Cl K-30 CH CH CH CH i-Pr Me CF3 Br K-30 CH CH CH CH i-Pr Me CF3 Br K-30 CH CH CH CH i-Pr 5-Cl CF3 Br K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH i-Pr 5-Cl	K-30	СН	СН	CH	СН	<i>i</i> -Pr	Me	CF ₃	F
K-30 CH CH CH CH t-Bu 5-CI CF3 F K-30 CH CH CH CH CH CH CF3 CI K-30 CH CH CH CH CH CH CF3 CI K-30 CH CH CH CH CH CH CF3 CI K-30 CH CH CH CH CH CF3 CI K-30 CH CH CH CH CH CF3 Br K-30 CH CH CH CH t-Bu Me CF3 Br K-30 CH CH CH CH t-Bu 5-CI CF3 Br K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-30 CH </td <td>K-30</td> <td>СН</td> <td>СН</td> <td>СН</td> <td>СН</td> <td><i>t</i>-Bu</td> <td>Me</td> <td>CF₃</td> <td>F</td>	K-30	СН	СН	СН	СН	<i>t</i> -Bu	Me	CF ₃	F
K-30 CH CH CH CH i-Pr Me CF3 CI K-30 CH CH CH CH CH CH Me CF3 CI K-30 CH CH CH CH CH CH CF3 CI K-30 CH CH CH CH CH i-Pr Me CF3 Br K-30 CH CH CH CH i-Pr Me CF3 Br K-30 CH CH CH CH i-Pr 5-CI CF3 Br K-30 CH CH CH CH i-Pr 5-CI CF3 Br K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH i-Pr 5-CI CF3 CN K-30 CH CH CH CH i-Pr 5-CI <td< td=""><td>K-30</td><td>СН</td><td>СН</td><td>СН</td><td>СН</td><td><i>i</i>-Pr</td><td>5-Cl</td><td>CF₃</td><td>F</td></td<>	K-30	СН	СН	СН	СН	<i>i</i> -Pr	5-Cl	CF ₃	F
K-30 CH CH CH CH t-Bu Me CF3 CI K-30 CH CH CH CH CH CH CF3 CI K-30 CH CH CH CH CH CH CF3 CI K-30 CH CH CH CH CH CH CF3 Br K-30 CH CH CH CH CH CF3 Br K-30 CH CH CH CH t-Bu 5-CI CF3 Br K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-30 CH CH CH CH t-Bu Me CF3 CN K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-3	K-30	СН	СН	CH	СН	<i>t</i> -Bu	5-Cl	CF ₃	F
K-30 CH CH CH CH i-Pr 5-Cl CF ₃ Cl K-30 CH CH CH CH t-Bu 5-Cl CF ₃ Cl K-30 CH CH CH CH t-Pr Me CF ₃ Br K-30 CH CH CH CH t-Bu Me CF ₃ Br K-30 CH CH CH CH t-Bu 5-Cl CF ₃ Br K-30 CH CH CH CH i-Pr Me CF ₃ CN K-30 CH CH CH CH i-Pr 5-Cl CF ₃ CN K-30 CH CH CH CH i-Pr 5-Cl CF ₃ CN K-30 CH CH CH CH i-Pr Me CF ₃ CN K-30 CH CH CH N i-Pr Me CF ₃	K-30	СН	СН	СН	СН	<i>i</i> -Pr	Me	CF ₃	CI
K-30 CH CH CH CH t-Bu 5-CI CF3 CI K-30 CH CH CH CH CH CF3 Br K-30 CH CH CH CH t-Bu Me CF3 Br K-30 CH CH CH CH t-Bu 5-CI CF3 Br K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-30 CH CH CH CH t-Bu Me CF3 CN K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-30 CH CH CH CH t-Bu 5-CI CF3 CN K-30 CH CH CH N t-Pr Me CF3 Me K-30 CH CH CH N t-Pr Me CF3 Me <	K-30	СН	СН	СН	СН	<i>t</i> -Bu	Me	CF ₃	CI
K-30 CH CH CH CH i-Pr Me CF3 Br K-30 CH CH CH CH i-Pr 5-Cl CF3 Br K-30 CH CH CH CH i-Pr 5-Cl CF3 Br K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH N i-Pr Me CF3 Me K-30 CH CH CH N i-Pr Me CF3 Me K-30 CH CH CH N i-Pr Me CF3 Me	K-30	СН	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	CI
K-30 CH CH CH CH t-Bu Me CF3 Br K-30 CH CH CH CH t-Pr 5-Cl CF3 Br K-30 CH CH CH CH t-Bu 5-Cl CF3 CN K-30 CH CH CH CH t-Bu Me CF3 CN K-30 CH CH CH CH t-Bu 5-Cl CF3 CN K-30 CH CH CH CH t-Bu 5-Cl CF3 CN K-30 CH CH CH N t-Pr Me CF3 Me K-30 CH CH CH N t-Pr Me CF3 Me K-30 CH CH CH N t-Bu Me CF3 Me	K-30	СН	СН	СН	СН	<i>t</i> -Bu	5-Cl	CF ₃	CI
K-30 CH CH CH CH i-Pr 5-Cl CF3 Br K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH N i-Pr Me CF3 Me K-30 CH CH CH N i-Pr Me CF3 Me K-30 CH CH CH N i-Bu Me CF3 Me	K-30	СН	СН	СН	СН	<i>i</i> -Pr	Me	CF ₃	Br
K-30 CH CH CH CH t-Bu 5-Cl CF3 Br K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH N i-Pr Me CF3 Me K-30 CH CH CH N i-Bu Me CF3 Me K-30 CH CH CH N i-Bu Me CF3 Me	K-30	СН	СН	CH	СН	<i>t</i> -Bu	Me	CF ₃	Br
K-30 CH CH CH CH i-Pr Me CF3 CN K-30 CH CH CH CH t-Bu Me CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH N i-Pr Me CF3 Me K-30 CH CH CH N i-Bu Me CF3 Me K-30 CH CH CH N i-Bu Me CF3 Me	K-30	СН	СН	СН	СН	<i>i</i> -Pr	5-Cl	CF ₃	Br
K-30 CH CH CH CH t-Bu Me CF3 CN K-30 CH CH CH CH i-Pr 5-Cl CF3 CN K-30 CH CH CH CH t-Bu 5-Cl CF3 CN K-30 CH CH CH N i-Pr Me CF3 Me K-30 CH CH CH N t-Bu Me CF3 Me	K-30	СН	CH	CH	СН	<i>t</i> -Bu	5-Cl	CF ₃	Br
K-30 CH CH CH CH i-Pr 5-Cl CF ₃ CN K-30 CH CH CH CH t-Bu 5-Cl CF ₃ CN K-30 CH CH CH N i-Pr Me CF ₃ Me K-30 CH CH CH N t-Bu Me CF ₃ Me	K-30	СН	СН	СН	СН	<i>i</i> -Pr	Me	CF ₃	CN
K-30 CH CH CH CH t-Bu 5-Cl CF ₃ CN K-30 CH CH CH N i-Pr Me CF ₃ Me K-30 CH CH CH N t-Bu Me CF ₃ Me	K-30	СН	СН	СН	СН	<i>t</i> -Bu	Me	CF ₃	CN
K-30 CH CH CH N <i>i</i> -Pr Me CF ₃ Me K-30 CH CH CH N <i>t</i> -Bu Me CF ₃ Me	K-30	СН	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	CN
K-30 CH CH CH N t-Bu Me CF ₃ Me	K-30	СН	СН	СН	СН	<i>t</i> -Bu	5-Cl	CF ₃	CN
	K-30	СН	СН	СН	Ν	<i>i</i> -Pr	Me	CF ₃	Me
K-30 CH CH CH N i-Pr 5-Cl CF ₃ Me	K-30	СН	СН	CH	Ν	<i>t</i> -Bu	Me	CF ₃	Me
	K-30	СН	СН	CH	Ν	<i>i</i> -Pr	5-Cl	CF ₃	Me

СН	CH	СН	Ν	<i>t</i> -Bu	5-CI	CF ₃	Me
CH	СН	СН	Ν	<i>i</i> -Pr	Me	CF ₃	F
CH	СН	СН	Ν	<i>t</i> -Bu	Me	CF ₃	F
СН	CH	CH	Ν	<i>i</i> -Pr	5-CI	CF ₃	F
CH	СН	СН	Ν	<i>t</i> -Bu	5-CI	CF ₃	F
СН	СН	СН	Ν	<i>i</i> -Pr	Me	CF ₃	CI
СН	СН	CH	Ν	<i>t</i> -Bu	Me	CF ₃	CI
СН	СН	CH	Ν	<i>i</i> -Pr	5-Cl	CF ₃	CI
СН	СН	CH	Ν	<i>t</i> -Bu	5-Cl	CF ₃	CI
СН	СН	CH	Ν	<i>i</i> -Pr	Me	CF ₃	Br
СН	СН	CH	Ν	<i>t</i> -Bu	Me	CF ₃	Br
СН	СН	CH	Ν	<i>i</i> -Pr	5-Cl	CF ₃	Br
СН	СН	CH	Ν	<i>t</i> -Bu	5-Cl	CF ₃	Br
СН	СН	CH	Ν	<i>i</i> -Pr	Me	CF ₃	CN
СН	СН	CH	Ν	<i>t</i> -Bu	Me	CF ₃	CN
СН	СН	CH	Ν	<i>i</i> -Pr	5-Cl	CF ₃	CN
СН	СН	CH	Ν	<i>t</i> -Bu	5-Cl	CF ₃	CN
CH	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	Me
СН	СН	CH	СН	<i>t</i> -Bu	2-Me	CF ₃	Me
СН	СН	CH	СН	<i>i</i> -Pr	2-Cl	CF ₃	Me
СН	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	Me
CH	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	F
CH	СН	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	F
CH	СН	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	F
CH	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	F
CH	CH	CH	СН	<i>i</i> -Pr	2-Me	CF ₃	CI
CH	CH	CH	СН	t-Bu	2-Me	CF ₃	CI
CH	CH	CH	СН	<i>i</i> -Pr	2-Cl	CF ₃	CI
CH	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	CI
CH	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	Br
CH	СН	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	Br
CH	СН	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	Br
CH	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	Br
СН	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	CN
СН	СН	CH	СН	<i>t</i> -Bu	2-Me	CF ₃	CN
СН	СН	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	CN
	CH C	CH CH CH <	CH CH CH CH CH CH	CH CH CH N CH CH CH CH CH CH CH CH CH CH CH C	CH CH CH N i-Pr CH CH CH N t-Bu CH CH CH N i-Pr CH CH CH I-Pr CH CH CH I-Pr CH C	CH CH CH N i-Pr Me CH CH CH N i-Bu Me CH CH CH N i-Pr 5-Cl CH CH CH N i-Pr 5-Cl CH CH CH N i-Pr Me CH CH CH N i-Pr 5-Cl CH CH CH N i-Pr 5-Cl CH CH CH N i-Pr Me CH CH CH N i-Pr 2-Me CH CH CH N i-Pr 2-Me CH CH CH	CH CH CH N I-Pr Me CF3 CH CH CH N I-Pr 5-CI CF3 CH CH CH N I-Pr 5-CI CF3 CH CH CH N I-Pr Me CF3 CH CH CH N I-Pr Me CF3 CH CH CH N I-Pr Me CF3 CH CH CH N I-Pr 5-CI CF3 CH CH CH N I-Pr Me CF3 CH CH CH N I-Pr </td

K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	CN
K-31	СН	CH	СН	Ν	<i>i</i> -Pr	2-Me	CF ₃	Me
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	Me
K-31	СН	CH	СН	Ν	<i>i</i> -Pr	2-Cl	CF ₃	Me
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Cl	CF ₃	Me
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Me	CF ₃	F
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	F
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	F
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Cl	CF ₃	F
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Me	CF ₃	CI
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	CI
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	CI
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Cl	CF ₃	CI
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Me	CF ₃	Br
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	Br
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	Br
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Cl	CF ₃	Br
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Me	CF ₃	CN
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	CN
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	CN
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Cl	CF ₃	CN
K-31	СН	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	Me
K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	Me
K-31	СН	СН	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	Me
K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	Me
K-31	СН	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	F
K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	F
K-31	СН	СН	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	F
K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	F
K-31	СН	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	CI
K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	CI
K-31	СН	СН	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	CI
K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	CI
K-31	СН	СН	СН	СН	<i>i</i> -Pr	2-Me	CF ₃	Br
K-31	СН	СН	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	Br
K-31	CH	СН	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	Br

K-31	CH	CH	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	Br
K-31	СН	CH	CH	СН	<i>i</i> -Pr	2-Me	CF ₃	CN
K-31	СН	CH	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	CN
K-31	СН	CH	СН	СН	<i>i</i> -Pr	2-Cl	CF ₃	CN
K-31	СН	CH	СН	СН	<i>t</i> -Bu	2-Cl	CF ₃	CN
K-31	СН	CH	СН	N	<i>i</i> -Pr	2-Me	CF ₃	Me
K-31	СН	CH	СН	N	<i>t</i> -Bu	2-Me	CF ₃	Me
K-31	СН	CH	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	Me
K-31	СН	CH	СН	N	<i>t</i> -Bu	2-Cl	CF ₃	Me
K-31	СН	CH	CH	N	<i>i</i> -Pr	2-Me	CF ₃	F
K-31	СН	CH	СН	N	<i>t</i> -Bu	2-Me	CF ₃	F
K-31	СН	CH	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	F
K-31	СН	CH	CH	N	<i>t</i> -Bu	2-Cl	CF ₃	F
K-31	СН	CH	CH	N	<i>i</i> -Pr	2-Me	CF ₃	CI
K-31	СН	CH	CH	N	<i>t</i> -Bu	2-Me	CF ₃	CI
K-31	СН	CH	CH	N	<i>i</i> -Pr	2-Cl	CF ₃	CI
K-31	СН	CH	CH	N	<i>t</i> -Bu	2-Cl	CF ₃	CI
K-31	СН	CH	СН	N	<i>i</i> -Pr	2-Me	CF ₃	Br
K-31	СН	CH	CH	N	<i>t</i> -Bu	2-Me	CF ₃	Br
K-31	СН	CH	CH	N	<i>i</i> -Pr	2-Cl	CF ₃	Br
K-31	СН	CH	СН	N	<i>t</i> -Bu	2-Cl	CF ₃	Br
K-31	СН	CH	CH	N	<i>i</i> -Pr	2-Me	CF ₃	CN
K-31	СН	CH	CH	N	<i>t</i> -Bu	2-Me	CF ₃	CN
K-31	СН	CH	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	CN
K-31	СН	CH	CH	N	<i>t</i> -Bu	2-Cl	CF ₃	CN
K-33	СН	CH	CH	CH	<i>i</i> -Pr	6-Me	CF ₃	Me
K-33	CH	СН	СН	СН	<i>t</i> -Bu	6-Me	CF ₃	Me
K-33	СН	CH	CH	CH	<i>i</i> -Pr	6-CI	CF ₃	Me
K-33	СН	CH	CH	CH	<i>t</i> -Bu	6-CI	CF ₃	Me
K-33	СН	CH	CH	CH	<i>i</i> -Pr	6-Me	CF ₃	F
K-33	СН	CH	CH	CH	<i>t</i> -Bu	6-Me	CF ₃	F
K-33	СН	CH	CH	CH	<i>i</i> -Pr	6-CI	CF ₃	F
K-33	СН	СН	CH	СН	<i>t</i> -Bu	6-CI	CF ₃	F
K-33	СН	СН	CH	СН	<i>i</i> -Pr	6-Me	CF ₃	CI
K-33	СН	СН	CH	СН	<i>t</i> -Bu	6-Me	CF ₃	CI
K-33	СН	СН	CH	СН	<i>i</i> -Pr	6-Cl	CF ₃	CI

K-33	CH	СН	CH	CH	t-Bu	6-CI	CF ₃	CI
K-33	СН	CH	СН	CH	<i>i</i> -Pr	6-Me	CF ₃	Br
K-33	СН	СН	СН	CH	<i>t</i> -Bu	6-Me	CF ₃	Br
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-CI	CF ₃	Br
K-33	СН	СН	СН	CH	<i>t</i> -Bu	6-CI	CF ₃	Br
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-Me	CF ₃	CN
K-33	СН	СН	СН	CH	<i>t</i> -Bu	6-Me	CF ₃	CN
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-CI	CF ₃	CN
K-33	СН	СН	СН	CH	<i>t</i> -Bu	6-CI	CF ₃	CN
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-Me	CF ₃	Me
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-Me	CF ₃	Me
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	Me
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-CI	CF ₃	Me
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-Me	CF ₃	F
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-Me	CF ₃	F
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	F
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-CI	CF ₃	F
K-33	CH	СН	CH	N	<i>i</i> -Pr	6-Me	CF ₃	CI
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-Me	CF ₃	CI
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	CI
K-33	CH	СН	CH	N	t-Bu	6-CI	CF ₃	CI
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-Me	CF ₃	Br
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-Me	CF ₃	Br
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	Br
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-CI	CF ₃	Br
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-Me	CF ₃	CN
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-Me	CF ₃	CN
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	CN
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-CI	CF ₃	CN
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-Me	CF ₃	Me
K-33	СН	СН	СН	CH	<i>t</i> -Bu	6-Me	CF ₃	Me
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-CI	CF ₃	Me
K-33	СН	СН	СН	СН	<i>t</i> -Bu	6-CI	CF ₃	Me
K-33	СН	СН	СН	СН	<i>i</i> -Pr	6-Me	CF ₃	F
K-33	СН	СН	СН	СН	<i>t</i> -Bu	6-Me	CF ₃	F
K-33	СН	СН	СН	СН	<i>i</i> -Pr	6-CI	CF ₃	F

K-33	СН	СН	СН	СН	<i>t</i> -Bu	6-CI	CF ₃	F
K-33	СН	СН	СН	СН	<i>i</i> -Pr	6-Me	CF ₃	CI
K-33	СН	СН	СН	СН	<i>t</i> -Bu	6-Me	CF ₃	CI
K-33	СН	СН	СН	СН	<i>i</i> -Pr	6-CI	CF ₃	CI
K-33	СН	CH	СН	СН	<i>t</i> -Bu	6-CI	CF ₃	CI
K-33	СН	СН	СН	СН	<i>i</i> -Pr	6-Me	CF ₃	Br
K-33	СН	СН	СН	СН	<i>i</i> -Bu	6-Me	CF ₃	Br
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-CI	CF ₃	Br
K-33	СН	СН	СН	CH	t-Bu	6-CI	CF ₃	Br
K-33	СН	СН	CH	CH	<i>i</i> -Pr	6-Me	CF ₃	CN
K-33	СН	СН	CH	CH	t-Bu	6-Me	CF ₃	CN
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-CI	CF ₃	CN
K-33	СН	СН	СН	CH	t-Bu	6-CI	CF ₃	CN
K-33	СН	СН	CH	N	<i>i</i> -Pr	6-Me	CF ₃	Me
K-33	СН	СН	CH	N	t-Bu	6-Me	CF ₃	Me
K-33	СН	СН	CH	N	<i>i</i> -Pr	6-CI	CF ₃	Me
K-33	СН	СН	CH	N	t-Bu	6-CI	CF ₃	Me
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-Me	CF ₃	F
K-33	СН	СН	СН	N	t-Bu	6-Me	CF ₃	F
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	F
K-33	СН	СН	СН	N	t-Bu	6-CI	CF ₃	F
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-Me	CF ₃	CI
K-33	СН	СН	СН	N	t-Bu	6-Me	CF ₃	CI
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	CI
K-33	СН	СН	СН	N	t-Bu	6-CI	CF ₃	CI
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-Me	CF ₃	Br
K-33	СН	СН	СН	N	t-Bu	6-Me	CF ₃	Br
K-33	СН	СН	СН	N	<i>i</i> -Pr	6-CI	CF ₃	Br
K-33	СН	СН	СН	N	t-Bu	6-CI	CF ₃	Br
K-33	СН	CH	СН	N	<i>i</i> -Pr	6-Me	CF ₃	CN
K-33	СН	CH	СН	N	<i>t</i> -Bu	6-Me	CF ₃	CN
K-33	СН	CH	СН	N	<i>i</i> -Pr	6-CI	CF ₃	CN
K-33	СН	СН	CH	Ν	<i>t</i> -Bu	6-CI	CF ₃	CN

Tabla 4

R⁷ es Cl

R ² e	s H, R³ es	Ме	R ²	es H. R³ e	s Et	R ² es	s H, R ³ es	i-Pr	R ² es	s Me. R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	НЗ	Н	CI	CH₃ H		CI	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH₃	1	CI	CH ₃	I	CI	CH₃	1	CI
CH ₃	1	Br	CH₃	1	Br	CH ₃	I	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH₃	F	Br	CH ₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	Cl	CI	CH₃	CI	CI	CH₃	CI	CI	CH₃	CI	CI
CH ₃	Cl	Br	CH₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	I	CI	CI	I	CI	CI	1	CI
CI	I	Br	CI	I	Br	CI	I	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	Cl	CI	Cl	CI	CI	CI	Cl	CI	CI	CI

-	$R^2 \epsilon$	es H, R ³ es	Ме	R ²	es H. R³ e	s Et	R ² e	s H, R³ es	i-Pr	R ² e	s Me. R³ e	s Me
_	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
_	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	Cl	Br
	Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
	Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
	Br	1	CI	Br	I	CI	Br	1	CI	Br	I	CI
	Br	1	Br	Br	I	Br	Br	1	Br	Br	I	Br
	Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
	Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	Cl
	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
				1			I					

 R^7 es Br

R ² e	s H, R ³ es	Ме	R ²	es H, R³ e	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me. R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	Cl	CH₃	Н	CI	CH ₃	Н	CI	CH₃	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI
CH ₃	1	Br	CH₃	1	Br	CH ₃	1	Br	CH ₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Bar	CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	CI	CI	CH₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	CI	Br	CH₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	I	CI	CI	I	CI	CI	I	CI
CI	I	Br	CI	I	Br	CI	I	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
			I			I			I		

R ² e	es H, R ³ es	Ме	R ²	es H, R ³ es	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	R ² es Me. R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br	
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	
CI	Cl	CI	CI	Cl	CI	CI	CI	CI	CI	CI	CI	
CI	Cl	Br	CI	Cl	Br	CI	CI	Br	CI	CI	Br	
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI	
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br	
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	
Br	Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	
			ı		R ⁷ e	s CF ₃			ı			
R2 6	es H, R3 es	s Me	R ²	es H, R ³ e	s Et	R ² e	s H, R³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me	
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH₃	Н	CI	
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br	
CH₃	1	CI	CH₃	1	CI	CH ₃	1	CI	CH₃	1	CI	
CH ₃	1	Br	CH₃	1	Br	CH ₃	1	Br	CH₃	1	Br	
CH ₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH₃	F	CI	
CH ₃	F	Br	CH₃	F	Br	CH ₃	F	Br	CH₃	F	Br	
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI	
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br	
CH ₃	Br	CI	CH₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI	
CH ₃	Br	Br	CH₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	
CH ₃	CI	CI	CH₃	CI	CI	CH ₃	CI	CI	CH₃	CI	CI	
CH ₃	CI	Br	CH₃	CI	Br	CH ₃	CI	Br	CH₃	CI	Br	
			I			1			I			

R2 6	es H, R3 es	s Me	R ²	es H, R³ e	s Et	R ² e	es H, R³ es	<i>i</i> -Pr	R² e	s Me, R³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
Cl	Н	CI	Cl	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	I	CI	CI	I	CI	CI	I	CI
CI	I	Br	CI	I	Br	CI	I	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI Br		CI	CI	Br	CI	Cl Br	
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
			I		7	I			I		

R⁷ es OCH₂CF₃

-	R ² e	s H, R³ es	Ме	R ² es H, R ³ es Et			R ² e	s H, R³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me		s Me
-	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl	CH₃	Н	CI
	CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br
	CH ₃	1	CI	CH₃	1	CI	CH₃	1	CI	CH₃	I	CI
	CH ₃	1	Br	CH₃	1	Br	CH₃	1	Br	CH₃	I	Br
	CH ₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH₃	F	CI
	CH ₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH₃	F	Br
	CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI
				I			I			l		

R ² e	R ² es H, R ³ es Me		R ²	es H, R ³ es	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	CF ₃	Br	CH ₃	CH3	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	Cl
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	CI	CI	CH ₃	Cl	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH₃	Cl	Br	CH ₃	CI	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	Cl
Cl	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
Cl	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
Cl	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	C1
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	Cl	CI
Cl	CI	Br	CI	CI	Br	CI	Cl	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br		CI	Br	CF ₃	CI	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	Cl	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br

Tabla 5

R⁹ es CHF₂

R ² e	es H, R ³ es	Me	R ² e	s H, R) es	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ⁶ R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH ₃	I	CI	CH ₃	1	CI	CH ₃	1	CI
CH ₃	1	Br	CH ₃	I	Br	CH ₃	1	Br	CH ₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH₃	CI	Cl
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	Cl
Cl	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
Cl	1	CI	CI	I	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	Cl
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
Cl	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	Cl	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br

R^2	es H, R ³ e	es Me	R ²	es H, R)	es Et	R ²	es H, R ³ e	es <i>i</i> -Pr	R ² (es Me, R ³	es Me
R ^{4a}	R ^{4b}	R ⁶	R ⁶ R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
Br	Н	CI	Br	Н	Cl	Br	Н	Cl	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	1	CI	Br	1	CI	Br	I	CI
Br	I	Br	Br	1	Br	Br	1	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
5 2			 D ²	II D3	R ⁹ es	CH ₂ CF ₃		10	 D 2		
	es H, R ³ (es H, R ³			es H, R³ e			es Me, R ³	
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R⁵	R ^{4a}	R ^{4b}	R ⁶
H ₃	Н	Cl	CH₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	I	CI	CH ₃	I	CI	CH ₃	1	Cl	CH ₃	1	CI
CH ₃	1	Br	CH ₃	1	Br	CH ₃	1	Br	CH ₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	Cl	CH ₃	CF ₃	CI
CH ₂	CF ₂	Br	CH ₂	CF ₂	Br	CH ₂	CF ₂	Br	CH ₂	CF ₂	Br

CH₃ CF₃ CH₃ CF₃ CH₃ CF₃ CH₃ CF₃ Br Br Br Br CH₃ CH_3 Br CI CH_3 Br CI Br CI CH_3 Br CI CH₃ Br Br CH₃ Br Br CH₃ Br Br CH_3 Br Br CH₃ CI CI CH₃ CI CI CH₃ CI CI CH_3 CI CI CH₃ CH₃ CH₃ CI Br CH₃ CI Br CI Br CI Br CI CI Н Н CI CI Н CI Н CI CI CI CI CI Н Br CI Н Br Н Br CI Н Br CI CI 1 CI CI 1 CI CI CI 1 CI CI Br CI 1 Br CI Br CI 1 Br CI F CI CI F CI CI F CI CI F CI CI F F F F Br CI Br CI Br CI Br CF₃ CI CI CF_3 CF₃ CI CI CI CF_3 CI CI CI

R	es H, R ³	es Me	R	² es H, R ³	es Et	R ²	es H, R ³	es <i>i</i> -Pr	R ²	es Me, R	es Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	CI	Br	I	CI	Br	I	CI
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
	2 =3		 	2 =3	R ⁹ es	CF ₂ CHF ₂	!				
	es H, R ³			es H, R ³			es H, R ³			es Me, R	
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH₃	Н	CI	CH₃	Н	CI
CH ₃	H	Br	CH ₃	Н	Bi	CH ₃	Н	Br	CH ₃	H	Br
CH ₃		CI	CH ₃		CI	CH₃	l	Cl	CH ₃		CI
CH ₃	I	Br	CH₃	I	Br	CH₃	I	Br	CH₃	I	Br
CH ₃	F	Cl	CH₃	F	CI	CH₃	F	Cl	CH₃	F	Cl
CH ₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	Cl	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br

ES 2 364 550 T3

R	² es H, R ³	es Me	F	R ² es H, R ³	es Et	R	² es H, R ³	es <i>i</i> -Pr	R ²	es Me, R	³ es Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	I	Cl	Cl	I	CI	CI	I	Cl	CI		CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F		Br Cl	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	Cl	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	Cl	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI
Cl	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	Cl	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	I	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	Cl	Br	CI	CI	Br	CI	Cl	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br

Tabla 6

R⁷ es Cl

R ² e	s H, R³ es	Ме	R ² e	es H, R³ es	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH₃	1	CI	CH₃	1	CI	CH₃	1	Cl
CH ₃	1	Br	CH₃	1	Br	CH₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	CI	CI	CH₃	CI	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CH ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI

R ² e	es H, R³ es	Me	R ²	es H, R³ es	s Et	R ² es H, R ³ es <i>i-</i> Pr			R ² es Me, R ³ es Me		s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	I	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	I	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
			I		R ⁷ e	s Br			ļ		

R² e	s H, R ³ es	Ме	R ² es H, R ³ es Et			R ² es H, R ³ es <i>i-</i> Pr			R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH ₃	1	CI	CH ₃	I	CI	CH₃	1	CI
CH ₃	1	Br	CH ₃	1	Br	CH ₃	I	Br	CH₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	Cl	Br	CH ₃	CI	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	I	Br	CI	I	Br	CI	I	Br	Cl	I	Br

R² e	es H, R ³ es	Ме	R ² e	es H, R³ e	s Et	R ² e	s H, R³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	I	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	I	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
D ²	II D ³	Ma	D2	II D ³	R ⁷ e	s CF ₃	- II D ³	: D.:	D2 -	- M - D ³ -	- 14-
R ^{4a}	es H, R ³ es	R ⁶	R ^{4a}	es H, R ³ es	s ⊑ι R ⁶	R ^{4a}	es H, R ³ es	R ⁶	R ^{4a}	s Me, R³ e R⁴b	R ⁶
CH ₃	H	Cl	CH ₃	H	Cl	CH ₃	H	Cl	CH ₃	H	CI
CH₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	Cl	CH ₃	1	Cl	CH ₃	1	Cl	CH ₃	1	CI
CH ₃	' 	Br	CH ₃	ı	Br	CH ₃	ı	Br	CH ₃	· I	Br
CH ₃	F	Cl	CH ₃	F	CI	CH ₃	F	Cl	CH ₃	F	CI
				, E			, E			F	
CH₃	F CF₃	Br	CH₃		Br	CH₃		Br	CH₃		Br
CH₃		Cl	CH₃	CF₃	Cl	CH₃	CF₃	Cl	CH₃	CF₃	Cl
CH₃	CF₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF₃	Br
CH₃	Br Br	Cl	CH₃	Br Br	Cl	CH₃	Br Br	Cl	CH₃	Br Br	Cl
CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	Cl	CH ₃	Cl	CI	CH ₃	Cl	CI	CH₃	CI	CI

R ² e	s H, R ³ es	ме	R ² e	es H, R³ es	s Et	R ² es	s H, R ³ es	<i>i</i> -Pr	R ² es	Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	I	Br	CI	1	Br	CI	I	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	Cl	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	CI	Br	I	CI	Br	I	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	I	Br
Br	F		Cl Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	Cl	CI
Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br
R ² e	es H, R ³ es	s Me	R ² e	es H, R³ es	R ⁷ es O	CH ₂ CF ₃	es H, R ³ es	<i>i</i> -Pr	R ² e	s Me, R³ e	es Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH₃	Н	CI	CH₃	Н	CI	CH ₃	Н	CI
CH₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br
CH₃	1	CI	CH ₃	 I	CI	CH ₃	 I	CI	CH ₃	1	Cl
CH ₃	·	Br	CH ₃	i I	Br	CH ₃	·	Br	CH ₃	·	Br
CH₃	· F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	Cl
CH₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
0		•					-		5		

R ² es	H, R ³ es	Me	R ² es	s H, R ³ es	s Et	R ² es	H, R ³ es <i>i</i> -	-Pr	R ² es	Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CH ₃	CI
CH ₃ CF ₃		Br	CH ₃ CF ₃			Br CH₃ CF₃		Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH ₃	Br	CI
CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH₃	CI	CI	CH ₃	CI	CI
CH₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br	CH ₃	CI	Br
Cl	Н	CI	CI	Н	Cl	CI	Н	CI	CI	Н	Cl
Cl	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
Cl	1	CI	CI	1	Cl	CI	I	CI	CI	1	Cl
Cl	1	Br	CI	1	Br	CI	I	Br	CI	1	Br
Cl	F	CI	CI	F	Cl	CI	F	CI	CI	F	CI
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
Cl	Br	CI	CI	Br	Cl	CI	Br	CI	CI	Br	CI
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	Cl	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	Cl	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	1	Br	Br	I	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	Cl	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br	CI	Br

R⁹ es CHF₂

R ²	es H, R³ es	Ме	R ²	es H, R³ es	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	Cl
CH ₃	1	Br	CH₃	1	Br	CH₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH₃	F	Cl
CH₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	Cl
CH ₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH₃	Cl	CI	CH₃	CI	Cl
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	Cl
Cl	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
Cl	I	CI	CI	1	CI	CI	1	CI		1	Cl
CI	I	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	Cl
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	Cl	CI	CI	Cl	CI	CI	CI

R ² e	es H, R³ es	Ме	R^2	es H, R³ e	s Et	R² €	es H, R³ es	<i>i</i> -Pr	R ² e	s Me, R³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
CI	CI	Br	CI	Cl	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	CI	Br	1	CI	Br	1	Cl
Br	I	Br	Br	I	Br	Br	1	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	Cl
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
			I		D ⁹ as (I		

R° es	
-------	--

R² e	s H, R ³ es	Ме	R ² es H, R ³ es Et		R ² es H, R ³ es <i>i-</i> Pr			R ² es Me, R ³ es Me			
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br
CH ₃	1	CI	CH₃	1	CI	CH ₃	1	CI	CH ₃	1	CI
CH ₃	1	Br	CH₃	1	Br	CH ₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH₃	Cl	CI	CH ₃	Cl	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH₃	Cl	Br	CH ₃	Cl	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
			I			I			I		

R ² e	es H, R³ es	з Ме	R ² (es H, R³ e	s Et	R² e	s H, R³ es	<i>i</i> -Pr	R² e	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	CF ₃	Cl	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	Cl
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	Cl
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	Cl
CI	CI	Br	CI	CI	Br	CI	Cl	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	Cl	Cl
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br
P ² 6	es H, R³ es	. Mo	R ² /	es H, R ³ es	R ⁹ es C	F ₂ CHF ₂	es H, R³ es	i ₋ Dr	R ² o	s Me, R ³ e	s Mo
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	CH₃	Н	Cl
CH ₃	н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	н	Br
CH ₃	 I	CI	CH₃	1	CI	CH ₃	1	Cl	CH ₃	1	Cl
CH ₃	i	Br	CH₃	·	Br	CH₃	·	Br	CH₃	·	Br
CH ₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH₃	F	Cl
CH ₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH₃	F	Br
CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI
CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br
CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH₃	CI	CI	CH₃	CI	CI	CH₃	Cl	CI	CH₃	CI	CI
CH₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br
Cl	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI

ES 2 364 550 T3

R ² es H, R ³ es Me		Ме	R ² es H, R ³ es Et			R ² e	s H, R ³ es	<i>i</i> -Pr	R ² e	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	I	CI	CI	1	CI	CI	I	CI
CI	1	Br	CI	I	Br	CI	1	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	Cl
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	CI	Br
Br	CI	CI	Br	CI	CI	Br	Cl	CI	Br	CI	CI
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

Tabla 8

R⁷ es Cl

R ² es H, R ³ es Me		R ² es H, R ³ es Et			R ² es H, R ³ es <i>i</i> -Pr		R ² es Me, R ³ es Me				
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br
CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI	CH₃	I	CI
CH ₃	I	Br	CH ₃	1	Br	CH ₃	I	Br	CH ₃	I	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br,
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	I	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI

R	² es H, R ³	es Me	R	² es H, R ³	es Et	R			es Me, R	³ es Me	
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	Cl	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
	2 II D ³	M-	 	² - 11 D ³		es Br	2 a a 11 D ³	<i>i</i> D::		as Ma Di	3 14-
R ^{4a}	² es H, R ³		R ^{4a}	² es H, R ³		R ^{4a}	es H, R ³		R ^{4a}	es Me, R	
		R ⁶			R ⁶		R ^{4b}	R ⁶			R ⁶
CH₃	Н	CI	CH ₃	Н	CI	CH₃	Н	CI	CH ₃	Н	CI
CH₃	H	Br	CH₃	H	Br	CH₃	H	Br	CH₃	H	Br
CH₃		CI	CH₃		CI	CH₃		CI	CH ₃		CI
CH₃	I	Br	CH₃	ı	Br	CH₃	I	Br	CH ₃	I	Br
CH₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH ₃	F	CI
CH₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH ₃	F	Br
CH₃	CF ₃	CI	CH₃	CF₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	CI
CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br
CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH ₃	Br	Cl
CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH ₃	Br	Br
CH₃	CI	CI	CH₃	CI	CI	CH₃	CI	CI	CH ₃	CI	CI
CH₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br	CH₃	CI	Br
CI	Н	Cl	CI	Н	CI	CI	Н	CI	CI	Н	Cl
CI	H	Br	CI	Н	Br	CI	H	Br	CI	H	Br
CI	I	Cl	CI	l	CI	CI	I	CI	CI	l	Cl
CI	I	Br	CI	I	Br	CI	I	Br	CI	l	Br
CI	F	Cl	CI	F	Cl	CI	F	Cl	CI	F	Cl
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br

R	² es H, R ³	es Me	R	² es H, R ³	es Et	R ²	es H, R ³	es <i>i</i> -Pr	R ²	es Me, R	es Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	1	CI	Br	I	CI	Br	1	CI
Br	I	Br	Br	1	Br	Br	I	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br
	² es H, R ³	os Mo	 	² es H, R ³	R ⁷	es CF ₃	es H, R ³	os i Pr	 P ²	es Me, R	3 os Mo
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	 H	Cl	CH ₃	H	Cl	CH ₃	H	Cl	CH ₃	H	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	ı	Cl	CH ₃	ı	Cl	CH ₃	ı	Cl	CH ₃	ı	Cl
CH ₃	i I	Br	CH ₃	'	I Br	CH ₃	i I	Br	CH ₃	i	Br
CH ₃	· F	CI	CH ₃	F	CI	CH ₃	· F	Cl	CH ₃	· F	CI
CH ₃	· F	Br	CH ₃	· F	Br	CH ₃	· F	Br	CH ₃	· F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	OF ₃	Br	CH ₃	CF ₃	Br	CH ₃	OF ₃	Br
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	Cl	CH ₃	CI	Cl	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	Cl	CI	Н	Cl	CI	Н	A
<u></u>		51			51			51			/ \

R	² es H, R ³	es Me	R ² es H, R ³ es Et		R ² es H, R ³ es <i>i</i> -Pr			R ² es Me, R ³ es Me			
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	Н	Br	Cl	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	I	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	Cl	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	Cl	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	I	Br	Br	1	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
	² es H, R ³	oo Mo	 D	² es H, R ³	R ⁷ es (OCH ₂ CF ₃	es H, R ³	oo i Dr	 D ²	es Me, R	3 00 Mo
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	H	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl
CH₃	н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH₃	i.	CI	CH ₃	 I	Cl	CH ₃	1	Cl	CH ₃	1	CI
CH₃	i I	Br	CH ₃	i I	Br	CH ₃	i	Br	CH ₃	i I	Br
CH₃	F	CI	CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	CI
CH₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH₃	CF₃	Cl	CH ₃	CF₃	Cl	CH ₃	CF₃	Cl	CH ₃	CF₃	CI
CH₃	CF₃	Br	CH ₃	CF₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
0	3	_,	-7.5	3			3			3	

R ²	es H, R ³	es Me	R	² es H, R ³	es Et	R ²	es H, R ³	es <i>i</i> -Pr	R ²	es Me, R	es Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CH ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br

R⁹ es CHF₂

R ² e	s H, R ³ es	Ме	R ² es H, R ³ es Et		R ² es H, R ³ es <i>i</i> -Pr			R ² es Me, R ³ es Me			
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH₃	1	CI	CH₃	1	CI	CH₃	1	CI
CH ₃	1	Br	CH₃	1	Br	CH ₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	Cl	CI	CH₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	Cl	Br	CH₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	I	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
Cl	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI	CI
Cl	CI	Br	CI	CI	Br	CI	Cl	Br	CI	CI	Br
			•			•			•		

R^2	es H, R³ es	Ме	R^2	es H, R³ e	s Et	$R^2 \epsilon$	es H, R³ es	<i>i</i> -Pr	R² e	s Me, R³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	1	CI	Br	I	CI
Br	1	Br	Br	I	Br	Br	1	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	Cl	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	Cl	Br	Br	CI	Br	Br	CI	Br

R⁹ es CH₂CF₃

R² e	es H, R ³ es	Ме	R² (es H, R³ e	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH₃	I	CI	CH ₃	I	CI	CH ₃ 3	1	CI
CH ₃	1	Br	CH₃	1	Br	CH₃	1	Br	CH ₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	Cl	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	Cl	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	I	CI	CI	1	CI	CI	1	CI
CI	I	Br	CI	I	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI

R ² 6	es H, R ³ es	Ме	R ²	es H, R ³ e	s Et	R² e	s H, R ³ es	<i>i</i> -Pr	R² e	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CH ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	CI	Br	Cl	CI	Br	CI	CI	Br	CI	CI
Br	Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
			I		- 9 -	_			I		

R⁹ es CF₂CHF₂

R ² es H, R ³ es Me		R ² es H, R ³ es Et			R² e	es H, R³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me			
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI
CH ₃	1	Br	CH ₃	1	Br	CH₃	1	Br	CH₃	I	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH ₃	F CH₃ CF₃	Br Cl	CH ₃ CH ₃ CF ₃	F	Br Cl	CH₃	F CH₃ CF₃	Br Cl	CH ₃ CH ₃ CF ₃	F	Br Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	Cl	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	Cl	Н	Br

ES 2 364 550 T3

R^2	R ² es H, R ³ es Me		R² e	s H, R ³ es	Et	R² e	es H, R ³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
Cl	I	Cl	CI	I	CI	CI	I	Cl	CI	I	Cl
CI	1	Br	CI	1	Br	CI	I	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	Cl	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	CI	Br	1	CI	Br	1	CI
Br	I	Br	Br	I	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI		Cl Br	CI	CI
Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br	CI	Br

Tabla 10

R⁷ es Cl

R ² es H, R ³ es Me		R² es H, R³ es Et			R ² es H, R ³ es <i>i</i> -Pr			R ² es Me. R ³ es Me			
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	Cl	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH₃	1	CI	CH ₃	1	CI	CH ₃	1	CI
CH ₃	I	Br	CH₃	1	Br	CH ₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH₃	F	Br	CH ₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	CI	CI	CH ₃	CI	CI	CH₃	CI	CI
CH₃ CI		Br	CH₃	Cl	Br	CH₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	I	Br	CI	I	Br	CI	I	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br

R ² es H, R ³ es Me		R ² (es H, R³ e	s Et	R ² es H, R ³ es <i>i-</i> Pr			R ² es Me. R ³ es Me			
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	Cl	Cl	Cl	Cl	CI	Cl	Cl	CI	Cl	Cl	Cl
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
$ \mathbb{D}^2$	es H, R ³ es	- Ma	l D2 .	es H, R ³ es	R ⁷ €	es Br	- II D ³	: D.,	I Поделения	s Me, R ³ e	- 14-
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	es H, R³ es R⁴b	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH₃	Н	Cl	CH₃	Н	Cl	CH₃	Н	Cl	CH₃	Н	Cl
CH₃	H	Br	CH₃	Н	Br	CH₃	Н	Br	CH₃	Н	Br
CH₃	I	Cl	CH₃	1	CI	CH₃	1	Cl	CH₃	1	CI
CH₃	ı	Br	CH₃	ı	Br	CH₃	ı	Br	CH₃	ı	Br
CH₃	F	Cl	CH₃	F	Cl	CH₃	F	Cl	CH₃	F	Cl
CH₃	F	Br	CH₃	F	Br	CH₃	F	Br Cl	CH₃	F	Br
CH₃	CF ₃	Cl	CH₃	CF₃	Cl	CH₃	CF₃		CH₃	CF₃	Cl
CH₃	CF₃	Br Cl	CH₃ CH₃	CF ₃	Br	CH₃ CH₃	CF₃	Br	CH₃ CH₃	CF₃	Br
CH₃	Br Br			Br Br	Cl		Br Br	Cl		Br Br	Cl
CH₃ CH₃	Cl	Br Cl	CH₃	Br	Br	CH₃	Br	Br	CH₃ CH₃	Cl	Br
			CH₃	Cl	Cl	CH₃	CI CI	Cl	CH ₃	Cl	Cl
CH₃	Cl	Br	CH₃	Cl	Br	CH₃		Br			Br
CI CI	H H	Cl	CI CI	H H	Cl	CI CI	H H	Cl	CI CI	Н	Cl
Cl		Br Cl	CI		Br Cl	CI		Br	CI	Н	Br
Cl	I		CI	I		CI	I	Cl	Cl	I	Cl
	I	Br			Br			Br			Br
CI	F	CI	CI	F	CI	CI	F	Cl	CI	F	CI

R ² es H, R ³ es Me			R ²	es H, R ³ e	s Et	R ² e	R ² es H, R ³ es <i>i</i> -Pr			s Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br	
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	1	CI	Br	I	CI	Br	1	CI	Br	1	CI	
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br	
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	
P^2 o	es H, R³ es	Mo	D ²	R^7 es CF_3 R^2 es H, R^3 es Et R^2 es H. R^3 es <i>i-</i> Pr					D ² o	s Me, R³ e	s Mo	
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	
CH₃ CH₃	Н	Cl	CH₃	Н	Cl	CH₃	Н	Cl	CH₃	Н	Cl	
	Н	Br	CH₃	Н	Br	CH₃	Н	Br	CH₃	Н	Br	
CH₃	1	Cl	CH₃	I	Cl	CH₃	1	Cl	CH₃	1	Cl	
CH₃	ı	Br	CH₃	I	Br	CH₃	ı	Br	CH₃	ı	Br	
CH₃	F	Cl	CH₃	F	CI	CH₃	F	Cl	CH₃	F	Cl	
CH₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH₃	F	Br	
CH₃	CH₃	Cl	CH₃	CF₃	Cl	CH₃	CF₃	Cl	CH₃	CF₃	Cl	
CH₃	CF ₃	Br	CH₃	CF₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	
CH₃	Br	Cl	CH₃	Br Br	Cl	CH₃	Br	Cl	CH₃	Br	Cl	
CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	
CH₃	CI	Cl	CH₃	CI	Cl	CH₃	Cl	Cl	CH₃	CI	Cl	
CH₃	CI	Br	CH₃	Cl	Br	CH₃	Cl	Br	CH₃	CI	Br	

R^2 e	R ² es H, R ³ es Me		R ² es H, R ³ es Et			R ² e	s H. R³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	Н	Cl	CI	Н	CI	CI	Н	CI	CI	Н	Cl
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	I	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	I	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	1	CI	Br	1	CI
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br
R ² e	s H, R ³ es	s Me	B ² (es H, R ³ e	R ⁷ es C s Et	CH ₂ CF ₃	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl	CH ₃	Н	CI
CH₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH₃	1	CI	CH₃	1	CI	CH ₃	1	CI	CH₃	1	CI
CH₃	·	Br	CH₃	·	Br	CH ₃	·	Br	CH ₃	1	Br
CH₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH₃	F	Br	CH₃	F	Br	CH ₃	F	Br	CH₃	F	Br
CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF₃	CI
· ·	Ü			J			Ü			ŭ	

R ² es H, R ³ es Me		R ²	R ² es H, R ³ es Et			s H, R ³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me			
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	Cl	CI	CH ₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
Cl	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
Cl	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
Cl	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
Cl	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	I	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	Cl	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	Cl	CI	Br	Cl	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br

Tabla 11

V es CH

R	² es H, R ³ es N	Ле	R	² es H, R ³ es	Et	R ²	es H. R³ es <i>i</i> -	-Pr	R ²	es Me, R³ es	Me
R ⁴	R'	R ⁶	R ⁴	R'	R ⁶	R ⁴	R'	R ⁶	R ⁴	R'	R ⁶
CI	Br	CI	CI	Br	Cl	CI	Br	CI	CI	Br	Cl
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	Br	CN	CI	Br	CN	CI	Br	CN	CI	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
CI	CI	CN	CI	CI	CN	CI	CI	CN	CI	CI	CN
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN
CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI
CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br
CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
Br	CI	CN	Br	CI	CN	Br	CI	CN	Br	CI	CN
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
			I			1			I		

R ²	es H, R ³ es N	Иe	R	es H, R ³ es	Et	R ²	es H. R ³ es <i>i</i> -	-Pr	R ² 6	es Me, R ³ es	Me
R⁴	R'	R ⁶	R ⁴	R ⁷	R^6	R ⁴	R ⁷	R^6	R ⁴	R'	R ⁶
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br
CH ₃	Br	CN	CH ₃	Br		CN CH₃	Br		CN CH₃	Br	CN
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI		CI CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI		Br CH₃	CI	Br
CH ₃	CI	CN	CH ₃	CI	CN	CH ₃	CI	CN	CH₃	CI	CN
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH₃	CF ₃	CN
CH ₃	OCH ₂ CF ₃	CI	CH₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH₃	OCH ₂ CF ₃	CI
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH₃	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH₃	OCH ₂ CF ₃	CN
CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CH₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI
CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br
CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN
CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃ .	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN
	II D ³ N	10	l D	2 II D ³		s N	II D ³ :	D.,	I D ²	es Me, R ³ es	Ma
R ⁴	es H, R ³ es N	vie R ⁶	R ⁴	es H, R ³ es	⊨τ R ⁶	R ⁴	es H, R ³ es i-	·Pr R ⁶	R ⁴		R ⁶
	R ⁷			R ⁷			R ⁷			R ⁷	
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	Br	CN	CI	Br	CN	CI	Br	CN	CI	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	Cl	Br
CI	CI	CN	Cl	CI	CN	Cl	CI	CN	CI	CI	CN

R ²	es H, R³ es l	Иe	R^2 es H, R^3 es Et		R ²	es H, R ³ es i-	-Pr	R ² es Me, R ³ es Me			
R ⁴	R'	R ⁶	R⁴	R'	R ⁶	R⁴	R'	R ⁶	R ⁴	R'	R ⁶
Cl	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN
CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI
CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br
CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
Br	CI	CN	Br	CI	CN	Br	CI	CN	Br	CI	CN
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	Cl	Br	CH ₃	CI	Br	CH ₃	Cl	Br
CH ₃	CI	CN	CH ₃	CI	CN	CH₃	CI	CN	CH ₃	CI	CN
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	CF ₃	CN	CH₃	CF ₃	CN	CH₃	CF ₃	CN	CH ₃	CF ₃	CN
CH ₃	OCH ₂ CF ₃	CI	CH₃	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	CI	CH₃	OCH ₂ CF ₃	CI
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	CH₃	OCH ₂ CF ₃	CN	CH₃	OCH ₂ CF ₃	CN	CH₃	OCH ₂ CF ₃	CN
CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI

R ²	es H, R ³ es N	VIe	R ² es H, R ³ es Et		R ² es H, R ³ es i-Pr			R ² es Me, R ³ es Me			
R⁴	R'	R^6	R⁴	R'	R^6	R⁴	R ⁷	R^6	R⁴	R'	R^6
CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br
CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN
CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN

Tabla 12

V es CH

R²	² es H. R ³ es N	VIe	R ² es H. R ³ es Et			R ² es H, R ³ es i-Pr			R ² es Me, R ³ es Me			
R⁴	R'	R ⁶	R⁴	R^7	R ⁶	R⁴	R^7	R ⁶	R ⁴	R^7	R ⁶	
CI	Br	CI	Cl	Br	CI	CI	Br	CI	CI	Br	Cl	
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	
CI	Br	CN	CI	Br	CN	CI	Br	CN	CI	Br	CN	
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	
CI	CI	CN	CI	CI	CN	CI	CI	CN	CI	CI	CN	
CI	CF3	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	
CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN	
CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	

R ²	² es H. R ³ es N	R^6 R^4 R'			Et	R ²	es H, R ³ es i-	-Pr	R ²	es Me, R ³ es	Me
R ⁴	R'	R ⁶	R ⁴	R'	R ⁶	R⁴	R'	R ⁶	R ⁴	R'	R ⁶
CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br
CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
Br	CI	CN	Br	CI	CN	Br	CI	CN	Br	CI	CN
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH ₃	Br	Br
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN
CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	Cl
CH₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br
CH₃	CI	CN	CH₃	CI	CN	CH₃	CI	CN	CH₃	CI	CN
CH₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	Cl
CH₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN
CH₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	Cl
CH₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br
CH₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN
CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI
CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br
CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN
CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF₃	CF ₃	Br	CF ₃	CF ₃	Br

R^2	es H. R³ es l	Me	R	² es H. R ³ es	Et	R ²	es H, R ³ es i	·Pr	R ²	es Me, R ³ es	Me
R ⁴	R'	R ⁶	R ⁴	R'	R ⁶	R⁴	R'	R ⁶	R ⁴	R'	R ⁶
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN
			l 	2 53		s N	53		l - 52	N 53	
	es H, R³ es N			es H. R ³ es			es H. R ³ es <i>i</i>			es Me. R ³ es	
R⁴	R ⁷	R^6	R⁴	R ⁷	R ⁶	R⁴	R ⁷	R ⁶	R⁴	R ⁷	R^6
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	Cl
CI	Br	Br	Cl	Br	Br	CI	Br	Br	CI	Br	Br
CI	Br	CN	CI	Br	CN	CI	Br	CN	CI	Br	CN
CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	Cl	Cl
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	Cl	Br
CI	CI	CN	CI	CI	CN	CI	CI	CN	CI	Cl	CN
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN
CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI
CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br
CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
Br	CI	CN	Br	CI	CN	Br	CI	CN	Br	CI	CN
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN
			l						l		

ES 2 364 550 T3

R^2	es H, R ³ es N	Ле	R	² es H. R ³ es	Et	R ²	es H. R ³ es <i>i</i>	-Pr	R^2 es Me. R^3 es Me		Me
R⁴	R ⁷	R ⁶	R⁴	R ⁷	R^6	R⁴	R'	R^6	R⁴	R'	R^6
CH ₃	Cl	CI	CH ₃	Cl	CI	CH ₃	Cl	CI	CH ₃	Cl	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br
CH ₃	CI	CN	CH ₃	CI	CN	CH ₃	CI	CN	CH ₃	CI	CN
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN
CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN
CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI
CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br
CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN
CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN
			l			l			l		

Tabla 13

V es CH

R	² es H. R ³ es I	Me	R	² es H. R ³ es	Et	R ²	es H. R ³ es i	-Pr	R ²	es Me, R ³ es	Me
R ⁴	R'	R^6	R ⁴	R'	R^6	R ⁴	R'	R^6	R ⁴	R'	R ⁶
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	Br	CN	CI	Br	CN	CI	Br	CN	CI	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
CI	CI	CN	CI	CI	CN	CI	CI	CN	CI	CI	CN
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN
CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI
CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br
CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
Br	CI	CN	Br	CI	CN	Br	CI	CN	Br	Cl	CN
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br

R^2	es H. R³ es N	Ле	R	² es H. R ³ es	Et	R ²	es H. R ³ es i-	-Pr	R ²	es Me, R³ es	Me
R ⁴	R'	R ⁶	R⁴	R'	R^6	R⁴	R ⁷	R^6	R⁴	R'	R ⁶
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	CI	CH₃	Br	CI	CH ₃	Br	CI	CH₃	Br	Cl
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN
CH ₃	CI	CI	CH₃	CI	CI	CH ₃	CI	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	CI	Br	CH ₃	CI	Br	CH₃	CI	Br
CH ₃	CI	CN	CH ₃	CI	CN	CH ₃	CI	CN	CH ₃	CI	CN
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN
CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN
CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	Cl	CI	CF ₃	CI	CI
CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br
CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN	CF ₃	CI	CN
CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	CI	CF ₃	CF ₃	Cl
CF ₃	CF ₃	Br	CF ₃	CH3	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN
V es N									I		

R² es H, R³ es Me R² es H, R³ es Et R² es H, R³ es i-Pr R² es Me, R³ es Me R^4 R^{\prime} R^6 R^4 R^{\prime} R^6 R^4 R^{\prime} R^6 R^4 R' R^6 CI Br CI CI Br CI CI Br CI CI Br CI CI Br Br CI Br Br CI Br Br CI Br Br CI CI CI Br CN Br CN Br CN CI Br CN

CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
CI	CI	CN	CI	CI	CN	CI	CI	CN	CI	CI	CN
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br
CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN	CI	CF ₃	CN
CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	CI
CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br
CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
Br	CI	CN	Br	CI	CN	Br	CI	CN	Br	CI	CN
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	Br	CN	CH ₃	Br	CN	CH₃	Br	CN	CH₃	Br	CN
CH ₃	CI	CI	CH ₃	CI		CI CH ₃	CI	CI	CH₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH₃	CI	Br
CH ₃	CI	CN	CH ₃	CI	CN	CH₃	CI	CN	CH₃	CI	CN
CH ₃	CF ₃	CI	СНЗ	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH₃	CF ₃	CN
CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH₃	OCH ₂ CF ₃	CI
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH₃	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH₃	OCH ₂ CF ₃	CN
CF ₃	Br		CI CF ₃	Br		CI CF ₃	Br		CI CF₃ Br		CI
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF₃	Br	CN
			1						Ì		

CF ₃	CI	CI									
CF ₃	CI	Br									
CF ₃	CI	CN									
CF ₃	CF ₃	CI									
CF ₃	CF ₃	Br									
CF ₃	CF ₃	CN									
CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI	CF ₃	OCH ₂ CF ₃	CI
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN

Tabla 14

R⁴ es CHF₂

R ² es H. R ³	es Me	R ² es H,	R³ es Et	R ² es H, R ³	es <i>i</i> -Pr	R ² es Me, R ³	es Me
R'	R ⁶	R'	R ⁶	R'	R ⁶	R ⁷	R^6
Br	Cl	Br	Cl	Br	Cl	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI
CI	Br	CI	Br	CI	Br	CI	Br
CI	CN	CI	CN	CI	CN	CI	CN
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃ .	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	CI	Br	CI	Br	CI	Br	Cl

R ² es H. R ³	es Me	R ² es H,	R³ es Et	R ² es H, R ³	es <i>i</i> -Pr	R ² es Me, R ³	es Me
R'	R ⁶	R'	R^6	R'	R^6	R ⁷	R ⁶
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI
Cl	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	CI	CN
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	CI	Br	CI	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	CI	CI	CI	CI	CI	CI	CI
Cl	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	CI	CN
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	CI	Br	CI	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	CI	CI	CI	CI	CI	CI	CI
Cl	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	CI	CN
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH₂CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br

R ² es H. F	R ³ es Me	R ² es H, I	R³ es Et	R ² es H,	R³ es <i>i</i> -Pr	R ² es Me, R ³ es Me		
R'	R^6	R'	R^6	R ⁷	R^6	R'	R ⁶	
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	
		I	R ⁴ es	I s CH₃				
R ² es H, R	³ es Me	R ² es H, F	R³ es Et	R ² es H. R ³	es i-Pr	R ² es Me, R	³ es Me	
R ⁷	R ⁶	R'	R ⁶	R ⁷	R^6	R [/]	R^6	
Br	Cl	Br	Cl	Br	CI	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN	Br	CN	
CI	CI	CI	CI	CI	CI	CI	CI	
CI	Br	CI	Br	CI	Br	CI	Br	
CI	CN	CI	CN	CI	CN	CI	CN	
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃	CI	
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN	
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	
Br	Cl	Br	CI	Br	CI	Br	CI	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN	Br	CN	
CI	CI	CI	CI	CI	CI	Cl	Cl	
CI	Br	CI	Br	CI	Br	Cl	Br	
CI	CN	CI	CN	CI	CN	Cl	CN	
CF ₃	Cl	CF ₃	CI	CF ₃	CI	CF ₃	CI	
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF₃	CN	
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	
Br	CI	Br	CI	Br	CI	Br	CI	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN	Br	CN	
CI	CI	CI	Cl	CI	Cl	Cl	Cl	
CI	Br	Cl	Br	CI	Br	Cl	Br	
CI	CN	CI	CN	CI	CN	Cl	CN	
		•		•		i		

R ² es H, R ³ es Me		R² es H, R	³ es Et	R ² es H. R ³	es i-Pr	R ² es Me, R ³ es Me		
R'	R^6	R ⁷	R ⁶	R′	R ⁶	R'	R ⁶	
CF ₃	Cl	CF ₃	CI	CF ₃	CI	CF ₃	CI	
CF ₃	Br	CF₃	Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN	
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	Cl	
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	
Br	CI	Br	CI	Br	CI	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN	Br	CN	
CI	CI	CI	CI	CI	CI	CI	Cl	
CI	Br	CI	Br	CI	Br	CI	Br	
CI	CN	CI	CN	CI	CN	CI	CN	
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃	CI	
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN	
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	
		l	R ⁴ es	CF ₃	I			
R ² es H, R	³ es Me	R ² es H, F	R³ es Et	R ² es H, F	R³ es <i>i</i> -Pr	R ² es Me, R ³ es Me		
R'	R^6	R ⁷	R^6	R'R ⁶		R'	R ⁶	
Br	Cl	Br	CI	Br	CI	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN	Br	CN	
CI	CI	CI	CI	CI	CI	CI	CI	
CI	Br	CI	Br	CI	Br	CI	Br	
CI	CN	CI	CN	CI	CN	CI	CN	
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃	CI	
CF ₃	Br CF ₃		Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN	
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	
		1		1		1		

Br

CN

CI

OCH₂CF₃

OCH₂CF₃

Br

 OCH_2CF_3

 $\mathsf{OCH}_2\mathsf{CF}_3$

Br

Br

CN CI

Br

CN

CI

 OCH_2CF_3

 $\mathsf{OCH}_2\mathsf{CF}_3$

Br

 OCH_2CF_3

OCH₂CF₃

Br

Br

CN

CI

R ² es H, R ³	es Me	R ² es H, R	es Et	R ² es H, R ³	es <i>i-</i> Pr	R ² es Me, R ³ es Me	
R'	R^6	R'	R^6	R ⁷ R ⁶		R ⁷	R^6
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	CI	CI	CI	CI	CI	CI	CI
Cl	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	Cl	CN
CF ₃	CI	CF ₃	Cl	CF ₃	CI	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	CI	Br	CI	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	CI	CI	CI	CI	CI	CI	CI
Cl	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	CI	CN
CF ₃	CI	CF ₃	Cl	CF ₃	CI	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	CI	Br	CI	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	CI	CI	CI	CI	CI	CI	CI
Cl	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	CI	CN
CF ₃	Cl	CF ₃	CI	CF ₃	Cl	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
		1		I		I	

R ² es H, R	R ² es H, R ³ es Me		R³ es Et	R ² es H,	R³ es <i>i</i> -Pr	R ² es Me, R ³ es Me	
R ⁷	R^6	R'	R^6	R ⁷ R ⁶		R ⁷	R^6
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
	3	=2=	R ⁴ es 0	CH ₂ CF ₃ R ² es H, R	3	=2 =	3
R ² es H, R		R ² es H, F	R° es Et	R' es H, R	° es <i>i</i> -Pr	R ² es Me, F	
R ⁷	R^6	R ⁷	R^6	R ⁷	R^6	R ⁷	R^6
Br	Cl	Br	Cl	Br	CI	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	CI	CI	CI	CI	CI	CI	CI
Cl	Br	Cl	Br	Cl	Br	CI	Br
Cl	CN	CI	CN	Cl	CN	Cl	CN
CF ₃	Cl	CF ₃	Cl	CF₃	Cl	CF₃	Cl
CF ₃	Br	CF ₃	Br	CF₃	Br	CF₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	CI	Br	Cl	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI
CI	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	CI	CN
CF ₃	CI	CF ₃	CI	CF ₃	CI	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	CI	Br	CI	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI
CI	Br	CI	Br	CI	Br	Cl	Br
CI	CN	CI	CN	CI	CN	Cl	CN
		I		l		l	

R ² es H, R	³ es Me	R ² es H, F	R ³ es Et	R² es H, R	³ es <i>i</i> -Pr	R ² es Me, F	R ³ es Me
R'	R ⁶	R ⁷	R ⁶	R'	R ⁶	R ⁷	R ⁶
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	Cl	Br	CI	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
CI	CI	CI	CI	CI	CI	CI	CI
CI	Br	CI	Br	CI	Br	CI	Br
Cl	CN	CI	CN	CI	CN	CI	CN
CF ₃	Cl	CF ₃	CI	CF₃	CI	CF ₃	CI
CF ₃	Br	CF ₃	Br	CF₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF₃	CN	CF ₃	CN
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
		1		1			

| <u>Tabla 15</u>

R^{5b} es CF₃

	R ² es H, R ³ es Me			R ² es H, R ³ es Et			R ² e	s H, R³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me		
_	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
	CH ₃	Н	Cl	CH₃	Н	CI	CH ₃	Н	CI	CH₃	Н	CI
	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
	CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI
	CH ₃	1	Br	CH ₃	1	Br	CH ₃	1	Br	CH ₃	1	Br
	CH ₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH₃	F	CI
				I			l			1		

R ² e	s H, R ³ es	ме	R ²	es H, R ³ e	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	НЗ	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH₃	CI	CI	CH ₃	CI	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	Cl	Br	CH ₃	CI	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br Cl Br Br Cl Br				Br	Br	CI	Br	Br	CI	Br	
			I		R ^{5b} es (CF(CF ₃) ₂			I		
R ² es H, R ³ es Me R ² es H, R ³ es Et					R ² e	s H, R ³ es	<i>i</i> -Pr	R² e	s Me, R ³ e	s Me	
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6

$R^2 \epsilon$	R ² es H, R ³ es Me		R ² e	es H, R³ es	s Et	R ² es H, R ³ es <i>i-</i> Pr			R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH₃ I		CI	CH ₃	1	CI	CH₃	1	CI
CH ₃	1	Br	CH₃	1	Br	CH₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	Cl
CH ₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	Cl	CI	CH₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	Cl	Br	CH ₃	Cl	Br	CH₃	Cl	Br
Cl	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
Cl	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
Cl	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	Cl	CI	F	CI	Cl	F	Cl
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	Cl
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
Cl	CI	CI	CI	CI	CI	CI	Cl	CI	CI	Cl	Cl
CI	CI	Br	CI	CI	Br	CI	Cl	Br	CI	Cl	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	CI	Br	I	CI	Br	I	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br

R ² es H, R ³ es Me			R ² es H, R ³ es Et			R² e	s H, R ³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me				
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶		
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	Cl		
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br		
	Tabla 16												

R⁴a O CH₃
NHC N R⁵b

R^{5b} es CHF₂

R ² es H, R ³ es Me			R ² e	es H, R³ es	s Et	R ² es H, R ³ es <i>i</i> -Pr			R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R⁵	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	Cl	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br	CH₃	Н	Br
CH ₃	1	CI	CH ₃	1	CI	CH ₃	I	CI	CH ₃	1	CI
CH ₃	1	Br	CH ₃	1	Br	CH ₃	I	Br	CH ₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH ₃	Cl	CI	CH ₃	CI	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	Cl	Br	CH ₃	CI	Br	CH ₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
Cl	1	Br	CI	1	Br	CI	1	Br	Cl	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br

R ² e	R ² es H, R ³ es Me			R ² es H, R ³ es Et			s H, R³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R⁵	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	Cl	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	Cl	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
			I		R ^{5b} es	l CH₂CF₃			ļ		

	- 00	<u> </u>	<u> </u>		
es Et			R²	es	F

R² e	R ² es H, R ³ es Me			R ² es H, R ³ es Et			R ² es H, R ³ es <i>i</i> -Pr			R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	
CH ₃	Н	CI	CH₃	Н	Cl	CH ₃	Н	CI	CH₃	Н	Cl	
CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	
CH ₃	1	CI	CH₃	1	CI	CH ₃	1	CI	CH ₃	1	CI	
CH ₃	1	Br	CH₃	1	Br	CH₃	1	Br	CH₃	1	Br	
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	
CH ₃	CI	CI	CH₃	CI	CI	CH ₃	CI	CI	CH ₃	CI	CI	
CH ₃	CI	Br	CH₃	CI	Br	CH ₃	Cl	Br	CH₃	CI	Br	
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI	
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br	
Cl	1	Cl	CI	1	Cl	CI	1	Cl	CI	1	CI	

R ² e	R ² es H, R ³ es Me			R ² es H, R ³ es Et			R ² es H, R ³ es <i>i</i> -Pr			R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	
Cl	I	Br	CI		Br	Cl	I	Br	CI	I	Br	
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI	
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br	
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	CI	Br	I	CI	Br	I	CI	Br	1	CI	
Br	I	Br	Br	I	Br	Br	I	Br	Br	1	Br	
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	
			I		R ^{5b} e	s CF₃			I			

R² es H, R³ es Me R² es H, R³ es Et R² es H, R³ es i-Pr R² es Me, R³ es Me R^{4b} R^{4a} R^{4b} R⁶ R^{4a} R^{4b} R⁶ R^{4a} R⁶ R^{4a} R^{4b} R⁶ CH₃ CI Н CI CI Н CH₃ CH₃ Н CI CH₃ Н CH_3 Н CH₃ Н CH_3 Н Br Н Br CH₃ Br Br CH_3 CH_3 CH_3 1 CI 1 CI CH₃ 1 CI 1 CI CH_3 I CH_3 CH₃ I Br Br Br Br CH_3 CH_3 F F CH₃ F F CI CI CH₃ CI CI CH_3 CH₃ F Br F CH₃ F Br CH_3 F Br CH₃ Br CF_3 CF₃ CI CH₃ CF₃ CI CH₃ CF₃ CI CH₃ CI CH₃ CF_3 CH₃ CF₃ Br CH₃ CF₃ Br CH₃ Br CH_3 CF₃ Br CH₃ CI CI CI CI Br CH_3 Br CH₃ Br CH_3 Br CH₃ CH₃ CH₃ Br Br Br Br Br Br CH₃ Br Br

R ² e	s H, R³ es	Ме	R ² (es H, R³ e	s Et	R ² es H, R ³ es <i>i</i> -Pr					
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	CI	CI	CH ₃	Cl	CI	CH ₃	Cl	CI	CH ₃	CI	CI
CH ₃	CI	Br	CH ₃	Cl	Br	CH₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	I	CI	CI	I	CI	CI	I	CI
CI	I	Br	CI	I	Br	CI	I	Br	CI	I	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	Cl	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	I	CI	Br	1	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
			ļ		R ^{5b} es 0	I CF ₂ CHF ₂			ļ		
R ² e	s H, R ³ es	Me	R ²	es H, R ³ e	s Et	R ² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH ₃	I	CI	CH₃	1	CI	CH ₃	1	CI
CH ₃	1	Br	CH ₃	I	Br	CH₃	1	Br	CH ₃	1	Br
CH₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH₃	F	CI

R ² e	es H, R³ es	Ме	R ² es H, R ³ es Et			R ² es H, R ³ es <i>i</i> -Pr			R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6
CH ₃	F	Br	CH₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	Cl	CI	CH₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	Cl	Br	CH₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
Cl	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
Cl	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
Cl	CI	CI	CI	Cl	CI	CI	Cl	CI	CI	CI	CI
Cl	CI	Br	CI	Cl	Br	CI	Cl	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	I	CI	Br	I	CI
Br	1	Br	Br	1	Br	Br	I	Br	Br	I	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br

Tabla 17

R ² es H. R ³ es Me		Me	R ² es H. R ³ es Et			R ² es H, R ³ es <i>i</i> -Pr			R ² es Me. R ³ es Me		
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	1	CI	CH ₃	I	CI	CH ₃	1	CI	CH ₃	1	CI
CH ₃	1	Br	CH ₃	I	Br	CH ₃	1	Br	CH ₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br
CH₃	CI	CI	CH ₃	CI	CI	CH ₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	CI	Br	CH ₃	CI	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	I	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	I	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CH ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
			ı			1			ı		

R ² e	es H. R ³ es	в Ме	R ²	es H. R³ e	s Et	R ² es H, R ³ es <i>i-</i> Pr			R ² es Me. R ³ es Me		s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl	Cl
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	CI	Br	I	CI	Br	I	CI
Br	I	Br	Br	I	Br	Br	I	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	Cl	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
			ļ.		9 es C	H ₂ CF ₃			l		
R ² 6	es H, R ³ es	з Ме	R ²	es H, R ³ e	s Et	R² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me. R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH₃	Н	Br	CH₃	Н	Br	CH₃	Н	Br
CH ₃	1	CI	CH₃	1	CI	CH₃	1	CI	CH₃	1	CI
CH ₃	1	Br	CH₃	1	Br	CH₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH₃	F	Br	CH₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH₃	CI	CI	CH₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	CI	Br	CH₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
			I			I			I		

R ² e	es H, R³ es	Ме	R ²	es H, R³ e	s Et	R² e	s H, R³ es			R ² es Me. R ³ es M	
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI	CI
CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	CI	Br	I	CI	Br	1	CI
Br	1	Br	Br	I	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	Cl	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br
			ı		R ⁹ es	s CF ₃			I		
R ² e	es H, R ³ es	Ме	R ²	es H, R ³ e	s Et	R² e	s H, R ³ es	<i>i</i> -Pr	R ² es	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6	R ^{4a}	R ^{4b}	R^6
CH ₃	Н	Cl	CH₃	Н	CI	CH ₃	Н	Cl	CH₃	Н	Cl
CH ₃	Н	Br	CH₃	Н	Br	CH ₃	Н	Br	CH₃	Н	Br
CH ₃	I	CI	CH₃	I	CI	CH ₃	I	CI	CH₃	1	CI
CH ₃	1	Br	CH ₃	I	Br	CH ₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH₃	F	CI	CH ₃	F	CI	CH₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH₃	CF ₃	CI
CH ₃	CF ₃	Br	CH₃	CF ₃	Br	CH ₃	CF ₃	Br	CH₃	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH₃	Br	Br
CH ₃	CI	CI	CH ₃	Cl	CI	CH ₃	Cl	CI	CH₃	CI	CI
CH ₃	CI	Br	CH ₃	CI	Br	CH ₃	CI	Br	CH₃	CI	Br

R ² e	es H, R ³ es	s Me	R ²	es H, R ³ e	s Et	R ² es H, R ³ es <i>i-</i> Pr			R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R^6
Cl	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	1	CI	CI	1	CI	CI	1	CI	CI	1	CI
CI	I	Br	CI	I	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	Cl	CI	CI	Cl	CI	CI	CI	CI	CI	CI	CI
CI	Cl	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	CI	Br	1	CI	Br	1	CI	Br	1	CI
Br	I	Br	Br	I	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br
	es H, R ³ es	: Me	R ²	es H, R³ e	R ⁹ es C	F ₂ CHF ₂	s H, R³ es	<i>i</i> -Pr	B ² e	s Me, R ³ e	s Me
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH₃	Н	Br	CH₃	Н	Br	CH₃	Н	Br
CH ₃	1	CI	CH ₃	1	CI	CH ₃	1	CI	CH₃	1	CI
CH ₃	1	Br	CH ₃	1	Br	CH ₃	1	Br	CH₃	1	Br
CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI

R ² 6	R ² es H, R ³ es Me		R ² (es H, R³ e	s Et	R ² e	s H, R³ es	<i>i</i> -Pr	R ² es Me, R ³ es Me		
R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶	R ^{4a}	R ^{4b}	R ⁶
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI	CH ₃	Br	CI
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	CI	CI	CH₃	CI	CI	CH₃	CI	CI	CH₃	CI	CI
CH ₃	CI	Br	CH₃	CI	Br	CH₃	Cl	Br	CH₃	CI	Br
CI	Н	CI	CI	Н	CI	CI	Н	CI	CI	Н	CI
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
CI	I	CI	CI	I	CI	CI	I	CI	CI	1	CI
CI	1	Br	CI	1	Br	CI	1	Br	CI	1	Br
CI	F	CI	CI	F	CI	CI	F	CI	CI	F	CI
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	CI
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
CI	Br	CI	CI	Br	CI	CI	Br	CI	CI	Br	CI
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	CI	CI	CI	CI	CI	CI	Cl	CI	CI	CI	Cl
CI	CI	Br	CI	CI	Br	CI	Cl	Br	CI	CI	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	1	Cl	Br	1	CI	Br	1	CI
Br	1	Br	Br	1	Br	Br	1	Br	Br	1	Br
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	Cl	CI	Br	CI	CI
Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br

Formulación/Utilidad

Los compuestos de esta invención se usarán generalmente como una formulación o composición con un vehículo agrícola adecuado que comprende al menos uno de un diluyente líquido, un diluyente sólido o un tensioactivo. Los ingredientes de la formulación o composición se seleccionan para que sean coherentes con las propiedades físicas del ingrediente activo, modo de aplicación y factores medioambientales tales como tipo de tierra, humedad y temperatura. Las formulaciones útiles incluyen líquidos tales como soluciones (incluyendo concentrados emulsionables), suspensiones, emulsiones (incluyendo microemulsiones y/o suspoemulsiones) y similares, que

opcionalmente pueden estar espesadas en geles. Las formulaciones útiles incluyen adicionalmente sólidos tales como polvos finos, polvos, gránulos, aglomerados, comprimidos, películas y similares, que pueden ser dispersables en agua ("humectables") o solubles en agua. El ingrediente activo puede estar (micro)encapsulado y formando una suspensión o formulación sólida; como alternativa, la formulación entera del ingrediente activo puede estar encapsulada (o "recubierta"). La encapsulación puede controlar o retrasar la liberación del ingrediente activo. Las formulaciones pulverizables pueden extenderse en medios adecuados y usarse en volúmenes de pulverización de aproximadamente uno a varios cientos de litros por hectárea. Las composiciones de alta concentración se usan principalmente como intermedios para la formulación adicional.

Las formulaciones contendrán típicamente cantidades eficaces de ingrediente activo, diluyente y tensoactivo, dentro de los siguientes intervalos aproximados que constituyen 100 por ciento en peso.

10

15

20

25

30

35

Porcenta	ia	on	Daca
ruicenta	JE	CII	L 620

	Ingrediente activo	Diluyente	Tensioactivo	
Gránulos, Comprimidos y Polvos Dispersables en Agua o Solubles en Agua.	5-90	0-94	1-15	
Suspensiones, Emulsiones, Soluciones (incluyendo Concentrados Emulsionables)	5-50	40-95	0-15	
Polvos de Espolvoreo	1-25	70-99	0-5	
Gránulos y Aglomerados	0,01-99	5-99,99	0-15	
Composiciones a Alta Concentración	90-99	0-10	0-2	

Se describen diluyentes sólidos típicos en Watkins, *et al.*, Handbook de Insecticide Dust Diluents and Carriers, 2ª Ed., Dorland Books, Caldwell, New Jersey. Los diluyentes líquidos típicos se describen en Marsden, Solvents Guide, 2ª Ed., Interscience, New York, 1950. Los manuales McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, así como Sisely y Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, mencionan tensioactivos y usos recomendados. Todas las formulaciones pueden contener cantidades menores de aditivos para reducir la espuma, el apelmazamiento, la corrosión, el crecimiento microbiológico y similares, o espesantes para aumentar la viscosidad.

Los tensioactivos incluyen, por ejemplo, alcoholes polietoxilados, alquilfenoles polietoxilados, ésteres de ácidos grasos de sorbitán polietoxilados, dialquil sulfosuccinatos, alquil sulfatos, alquilbenceno sulfonatos, organosiliconas, N,N-dialquiltauratos, sulfonatos de lignina, condensados de naftaleno sulfonato y formaldehído, policarboxilatos y copolímeros de bloque de polioxietileno/polioxipropileno. Los diluyentes sólidos incluyen, por ejemplo, arcillas tales como bentonita, montmorillonita, atapulgita y caolín, almidón, azúcar, sílice, talco, tierras diatomeas, urea, carbonato de calcio, carbonato y bicarbonato de sodio, y sulfato de sodio. Los diluyentes líquidos incluyen, por ejemplo, agua, N,N-dimetilformamida, dimetilsulfóxido, N-alquilpirrolidona, etilenglicol, polipropilenglicol, parafinas, alquilbencenos, alquilnaftalenos, aceites de oliva, ricino, linaza, tungsteno, sésamo, maíz, cacahuete, semilla de algodón, semilla de soja, colza y coco, ésteres de ácidos grasos, cetonas tales como ciclohexanona, 2-heptanona, isoforona y 4-hidroxi-4-metil-2-pentanona, y alcoholes tales como metanol, ciclohexanol, decanol y alcohol tetrahidrofurfurílico.

Las soluciones, que incluyen concentrados emulsionables, se pueden preparar por simple mezcla de los ingredientes. Los polvos finos y polvos normales pueden prepararse por mezclado y, habitualmente, por molido en un molinillo de martillos o molinillo de energía de fluidos. Las suspensiones se preparan habitualmente por molido húmedo; véase, por ejemplo, el documento U.S. 3,060,084. Los gránulos y aglomerados pueden prepararse por pulverización del material activo sobre vehículos granulares preformados o por técnicas de aglomeración. Véase Browning, "Agglomeration", Chemical Engineering, 4 de diciembre de 1967, pp. 147-48, Perry's Chemical Engineer's Handbook, 4ª Ed., McGraw-Hill, New York, 1963, páginas 8-57 y siguientes, y la Publicación PCT WO 91/13546. Los aglomerados pueden prepararse como se describe en el documento U.S. 4.172.714. Los gránulos dispersables en agua y solubles en agua pueden prepararse como se muestra en los documentos U.S. 4.144.050, U.S. 3.920.442 y DE 3.246.493. Los comprimidos pueden prepararse como se muestra en los documentos U.S. 5.180.587, U.S. 5.232.701 y U.S. 5.208.030. Las películas pueden prepararse como se muestra en los documentos GB 2.095.558 y U.S. 3.299.566.

Para información adicional respecto a la técnica de la formulación, véanse T. S. Woods, "The Formulator's Toolbox-Product Forms for Modem Agriculture" en Pesticide Chemistry and Bioscience, The Food-Environment Challenge, T. Brooks y T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120-133. Véanse también los documentos U.S. 3,235,361, de la Col. 6, línea 16 a la Col. 7, línea 19 y los Ejemplos 10-41; el documento U.S. 3.309.192, Col. 5, línea 43 a Col. 7, línea 62 y los Ejemplos 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 y 169-182; el documento U.S. 2,891,855, Col. 3, línea 66 a Col. 5, línea 17 y los Ejemplos 1-4; Klingman, Weed Control as a Science, John Wiley y Sons, Inc.,

New York, 1961, pp. 81-96; y Hance et al., Weed Control Handbook, 8ª Ed., Blackwell Scientific Publications, Oxford, 1989.

En los siguientes Ejemplos, todos los porcentajes están en peso y todas las formulaciones se preparan por las rutas convencionales. Los números de compuesto se refieren a los compuestos de la Tabla de Índice A.

5 Ejemplo A

Ejemplo A		
	Polvo Humectable	
	Compuesto 1	65,0%
	Dodecilfenol polietilenglicol éter	2,0%
	Ligninsulfonato de sodio	4,0%
	Silicoaluminato de sodio	6,0%
	Montmorillonita (calcinada)	23,0%.
Ejemplo B		
	Gránulo	
	Compuesto 1	10,0%
	gránulos de atapulgita (materia poc	o volátil,
	0,71/0,30 mm; Tamices U.S.S. Nº 2	25-50) 90,0%.
Ejemplo C		
	Aglomerado Extruido	
	Compuesto 1	25,0%
	Sulfato de sodio anhidro	10,0%
	Ligninsulfonato de calcio en bruto	5,0%
	Alquilnaftalenosulfonato de sodio	1,0%
	Bentonita de calcio/magnesio	59,0%.
Ejemplo D		
	Concentrado Emulsionable	
	Compuesto 1	20,0%
	Mezcla de sulfonatos de aceites so	olubles y
	éteres polioxietilénicos	10,0%
	Isoforona	70,0%.
Ejemplo E		
	Gránulo	
	Compuesto 1	0,5%
	celulosa	2,5%
	la sta a a	4.00/

Los compuestos de esta invención se caracterizan por patrones metabólicos y/o residuales en suelo favorables y muestran actividad en el control de un espectro de plagas agronómicas y no agronómicas de invertebrados. (En el contexto de esta descripción, "control de plagas de invertebrados" significa inhibición del desarrollo de plagas de invertebrados (incluyendo la mortalidad) lo que causa una reducción significativa de la alimentación u otras lesiones

lactosa

harina de maíz

4,0%

93,0%.

10

15

20

25

30

35

40

45

50

55

60

65

o daños causados por la plaga; las expresiones relacionadas se definen de manera análoga.) Cuando se menciona en esta descripción, la expresión "plaga de invertebrados" incluye artrópodos, gasterópodos y nematodos de interés económico como plagas. El término "artrópodo" incluye insectos, ácaros, arañas, escorpiones, ciempiés, milpiés, cochinillas y sínfilos. El término "gasterópodo" incluye caracoles, babosas y otros estilomatóforos. El término "nemátodo" incluye todos los helmintos, tales como: lombrices, gusanos del corazón y nematodos fitófagos (Nematoda), duelas (Tematoda), acantocéfalos y tenias (Cestoda). Los expertos en la materia reconocerán que no todos los compuestos son igualmente eficaces contra todas las plagas. Los compuestos de esta invención muestran actividad contra plagas agronómicas y no agronómicas económicamente importantes. El término "agronómico" se refiere a la producción de cultivos de campo tales como cultivos para alimentación o para la obtención de fibras e incluyen el desarrollo de cultivos de cereales (por ejemplo, trigo, avena, cebada, centeno, arroz, maíz), soja, cultivos de hortalizas (por ejemplo, lechuga, coles, tomates, judías), patatas, batatas, uvas, algodón y frutales (por ejemplo, frutales de pepita, frutales de hueso y cítricos). La expresión "no agronómico" se refiere a otras plagas o aplicaciones hortícolas (por ejemplo, plantas forestales, de invernadero o de vivero u ornamentales que no crecen en el campo), relacionadas con la salud pública (humana) y de los animales, estructuras domésticas y comerciales, dentro de las casas y en productos almacenados. Debido al espectro de control de las plagas de invertebrados y a la importancia económica, son realizaciones preferidas de la invención la protección (frente al daño o lesiones producidas por plagas de invertebrados) de cultivos agronómicos de algodón, maíz, soja, arroz, cultivos hortícolas, patata, batata, uvas y árboles frutales por medio del control de las plagas de invertebrados. Las plagas agronómicas o no agronómicas incluyen larvas del orden Lepidoptera, tales como orugas militares, gusanos cortadores, gusanos medidores y heliotinos de la familia Noctuidae (por ejemplo, oruga militar tardía (Spodoptera fugiperda J. E. Smith), oruga militar de la remolacha (Spodoptera exigua Hübner), gusano cortador negro (Agrotis ipsilon Hufnagel), falso medidor de la col (Trichoplusia ni Hübner), gusano del capullo del tabaco (Heliothis virescens Fabricius)); perforadores, barrenadores, gusanos del césped, gusanos de coníferas, gusanos de coles y polillas de la familia Piralidae (por ejemplo, perforador del maíz europeo (Ostrinia nubilalis Hübner), gusano de la naranja navel (Amyelois transitella Walker), oruga de la raíz del maíz (Crambus caliginosellus Clemens), gusano peludo del césped (Herpetogramma licarsisalis Walker)); enrolladores de hojas, gusanos de los brotes, gusanos de las semillas y gusanos de las frutas de la familia Tortricidae (por ejemplo, polilla de la manzana verde (Cydia pomonella Linnaeus), polilla del racimo (Endopiza viteana Clemens), polilla oriental de la fruta (Grapholita molesta Busck)); y muchos otros lepidópteros importantes desde el punto de vista económico (por ejemplo, polilla de dorso de diamante (Plutella xylostella Linnaeus), gusano rosado (Pectinophora gossypiella Saunders), polilla gitana (Lymantria dispar Linnaeus)); ninfas y adultos del orden Blattodea incluyendo cucarachas de las familias Blattellidae y Blattidae (por ejemplo, cucaracha oriental (Blatta orientalis Linnaeus), cucaracha asiática (Blatella asahinai Mizukubo), cucaracha alemana (Blattella germanica Linnaeus), cucaracha de banda marrón (Supella longipalpa Fabricius), cucaracha americana (Periplaneta americana Linnaeus), cucaracha de color castaño (Periplaneta brunnea Burmeister), cucaracha de Madeira (Leucophaea maderae Fabricius)); larvas y adultos que se alimentan de las hojas del orden Coleoptera incluyendo gorgojos de las familias Anthribidae, Bruchidae y Curculionidae (por ejemplo, gorgojo del algodón (Anthonomus grandis Boheman), gorgojo acuático del arroz (Lissorhoptrus oryzophilus Kuschel), gorgojo del trigo (Sitophilus granarius Linnaeus), gorgojo del arroz (Sitophilus oryzae Linnaeus)); pulgones, escarabajos del pepino, gusanos de las raíces, escarabajos foliares, escarabajos de la patata y minadores de la familia Chrysomelidae (por ejemplo, escarabajo de la patata de Colorado (Leptinotarsa decemlineata Say), gusano de la raíz del maíz occidental (Diabrotica virgifera virgifera LeConte)); gusanos blancos y otros escarabajos de la familia Scaribaeidae (por ejemplo, escarabajo japonés (Popillia japonica Newman) y gusano blanco europeo (Rhizotrogus majalis Razoumowsky)); escarabajos de las alfombras de la familia Dermestidae; gusanos alambre de la familia Elateridae; escarabajos de la corteza de la familia Scolytidae y escarabajos de la harina de la familia Tenebrionidae. Otras plagas agronómicas y no agronómicas incluyen: adultos y larvas del orden Dermaptera incluyendo tijeretas de la familia Forficulidae (por ejemplo, tijereta europea (Forficula auricularia Linnaeus), tijereta negra (Chelisoches morio Fabricius)); adultos y ninfas de los órdenes Hemiptera y Homoptera tales como chinches de plantas de la familia Miridae, cícadas de la familia Cicadidae, saltahojas (por ejemplo, Empoasca spp.) de la familia Cicadellidae, chicharritas de las familias Fulgoroidae y Delphacidae, membrácidos de la familia Membracidae, psílidos de la familia Psyllidae, moscas blancas de la familia Aleyrodidae, áfidos de la familia Aphididae, filoxeras de la familia Phylloxeridae, piojos harinosos de la familia Pseudococcidae, cochinillas de las familias Coccidae, Diaspididae y Margarodidae, chinches de encaje de la familia Tingidae, chinches hediondas de la familia Pentatomidae, chinche de los pastos (por ejemplo, Blissus spp.) y otras chinches que se alimentan de semillas de la familia Lygaeidae, chinches escupidoras de la familia Cercopidae, chinche de la calabaza de la familia Coreidae y chinches rojas y tintoreras del algodón de la familia Pirrhocoridae. Se incluyen también adultos y larvas del orden Acari (ácaros) tales como ácaros araña y ácaros rojos de la familia Tetranychidae (por ejemplo, ácaro rojo europeo (Panonychus ulmi Koch), ácaro araña de dos manchas (Tetranychus urticae Koch), ácaro McDaniel (Tetranychus mcdanieli McGregor)), ácaros planos de la familia Tenuipalpidae (por ejemplo, ácaro plano de los cítricos (Brevipalpus lewisi McGregor)), ácaros de la herrumbre y de las yemas de la familia Eriophyidae y ácaros de alimentación foliar y ácaros importantes en la salud humana y animal, es decir, ácaros del polvo de la familia Epidermoptidae, ácaros foliculares de la familia Demodicidae, ácaros de los cereales de la familia Glycyphagidae, garrapatas del orden Ixodidae (por ejemplo, garrapata del venado (Ixodes scapularis Say), garrapata paralizante australiana (Ixodes holociclus Neumann), garrapata americana del perro (Dermacentor variabilis Say), garrapata estrella solitaria (Amblyomma americanum Linnaeus) y aradores de la sarna y ácaros que provocan prurito de las familias Psoroptidae, Pyemotidae y Sarcoptidae, adultos e inmaduros del orden Orthoptera incluyendo saltamontes, langostas y grillos (por ejemplo, saltamontes migratorios (por ejemplo, Melanoplus sanguinipes Fabricius, M.

differentialis Thomas), saltamontes americanos (por ejemplo, Schistocerca americana Drury), langosta del desierto (Schistocerca gregaria Forskal), langosta migratoria (Locusta migratoria Linnaeus), grillo doméstico (Acheta domesticus Linnaeus), grillo topo (Gryllotalpa spp.)); adultos y ejemplares inmaduros del orden Diptera que incluyen barrenadores de hojas, quirnómidos, moscas de la fruta (Tephritidae), moscas frit (por ejemplo, Oscinella frit Linnaeus), larvas de tierra, moscas domésticas (por ejemplo, Musca domestica Linnaeus), moscas domésticas menores (por ejemplo, Fannia canicularis Linnaeus, F. femoralis Stein), moscas de los establos (por ejemplo, Stomoxis calcitrans Linnaeus), moscas de la cara, mosca del cuerno, moscas azules de la carne (por ejemplo, Chrysomya spp., Phormia spp.), y otras plagas de moscas muscoides, moscas del venado (por ejemplo, Tabanus spp.), estros (por ejemplo, Gastrophilus spp., Oestrus spp.), larvas que afectan al ganado (por ejemplo, Hypoderma spp.), tábanos (por ejemplo, Chrysops spp.), melófagos (por ejemplo, Melophagus ovinus Linnaeus) y otros Brachycera, mosquitos (por ejemplo, Aedes spp., Anopheles spp., Culex spp.), moscas negras (por ejemplo, Prosimulium spp., Simulium spp.), quirnómidos mordedores, moscas de la arena, sciarida, y otros Nematocera; adultos e inmaduros del orden Thysanoptera incluyendo trips de la cebolla (Thrips tabaci Lindeman) y otros trips que se alimentan de las hojas; plagas de insectos del orden Hymenoptera que incluyen hormigas (por ejemplo, hormiga carpintera roja (Camponotus ferrugineus Fabricius), hormiga carpintera negra (Camponotus pennsylvanicus De Geer), hormiga faraón (Monomorium pharaonis Linnaeus), hormiga de fuego pequeña (Wasmannia auropunctata Roger), hormiga de fuego (Solenopsis geminata Fabricius), hormiga de fuego roja importada (Solenopsis invicta Buren), hormiga argentina (Iridomyrmex humilis Mayr), hormiga loca (Paratrechina longicornis Latreille), hormiga del pavimento (Tetramorium caespitum Linnaeus), hormiga del maizal (Lasius alienus Förster), hormiga doméstica olorosa (Tapinoma sessile Say)), abejas (que incluyen las abejas carpinteras), avispones, véspulas y avispas; plagas de insectos del orden Isoptera incluyendo la termita subterránea oriental (Reticulitermes flavipes Kollar), termita subterránea occidental (Reticulitermes hesperus Banks), termita subterránea de Formosa (Coptotermes formosanus Shiraki), termita de la madera seca de la India Oriental (Incisitermes immigrans Snyder) y otras termitas de importancia económica; plagas de insectos del orden Thysanura tales como pececillo de plata (Lepisma saccharina Linnaeus) e insecto de fuego (Thermobia domestica Packard); plagas de insectos del orden Mallophaga y que incluyen el piojo de la cabeza (Pediculus humanus capitis De Geer), piojo del cuerpo (Pediculus humanus humanus Linnaeus), piojo del cuerpo del pollo (Menacanthus straminaus Nitszch), piojo mordedor del perro (Trichodectes canis De Geer), piojo del plumón (Goniocotes gallinae De Geer), piojo del cuerpo de la oveja (Bovicola ovis Schrank), piojo del ganado de hocico corto (Haematopinus eurysternus Nitzsch), piojo del ganado de hocico largo (Linognathus vituli Linnaeus) y otros piojos parásitos chupadores y mordedores que atacan al ser humano y a los animales; plagas de insectos del orden Siphonoptera incluyendo la pulga de la rata oriental (Xenopsylla cheopis Rothschild), pulga del gato (Ctenocephalides felis Bouche), pulga del perro (Ctenocephalides canis Curtis), pulga de la gallina (Ceratophyllus gallinae Schrank), pulga pegajosa (Echidnophaga gallinacea Westwood), pulga humana (Pulex irritans Linnaeus) y otras pulgas que afectan a los mamíferos y a las aves. Otras plagas de artrópodos contempladas incluyen: arañas del orden Araneae tales como la araña solitaria marrón (Loxosceles reclusa Gertsch & Mulaik) y la viuda negra (Latrodectus mactans Fabricius), y ciempiés del orden Scutigeromorfa tales como ciempiés de las casas (Scutigera coleoptrata Linnaeus). Los compuestos de la presente invención tienen también actividad en miembros de las clases Nematoda, Cestoda, Trematoda, y Acanthocephala que incluyen miembros económicamente importantes de los órdenes Strongylida, Ascaridida, oxiurida, Rhabditida, Spirurida, y Enoplida tales como, pero no limitados a, plagas agrícolas económicamente importantes (es decir, nematodos de los nudos de la raíz del género Meloidogyne, nematodos de los prados del género Pratylenchus, nematodos de raíz achaparrada del género Trichodorus, etc.) y plagas para la salud animal y humana (es decir, todos los trematodos, tenias, y lombrices económicamente importantes, tales como Strongylus vulgaris en caballos, Toxocara canis en perros, Haemonchus contortus en ovejas, Dirofilaria immitis Leidy en perros, Anoplocephala perfoliata en caballos, Fasciola hepatica Linnaeus en rumiantes, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

Los compuestos de la invención muestran una actividad particularmente alta contra plagas del orden Lepidoptera (por ejemplo, Alabama argillacea Hübner (gusano de la hoja del maíz), Archips argyrospila Walker (enrollador de las hojas de los frutales), A. rosana Linnaeus (enrollador de las hojas europeo) y otras especies del género Archips, Chilo suppressalis Walker (perforador del tallo del arroz), Cnaphalocrosis medinalis Guenee (enrollador de las hojas del arroz), Crambus caliginosellus Clemens (oruga de la raíz del maíz), Crambus teterrellus Zincken (oruga del césped), Cydia pomonella Linnaeus (polilla de la manzana verde), Earias insulana Boisduval (oruga espinosa del algodón), Earias vittella Fabricius (gusano moteado), Helicoverpa armigera Hübner (oruga americana), Helicoverpa zea Boddie (gusano del maíz), Heliothis virescens Fabricius (gusano del tabaco), Herpetogramma licarsisalis Walker (gusano del césped), Lobesia botrana Denis & Schiffermüller (polilla de los racimos de uvas), Pectinophora gossypiella Saunders (gusano rosa), Phyllocnistis citrella Stainton (minador de las hojas de los cítricos), Pieris brassicae Linnaeus (mariposa de la col), Pieris rapae Linnaeus (blanquita de la col), Plutella xylostella Linnaeus (polilla de dorso de diamante), Spodoptera exigua Hübner (oruga militar de la remolacha), Spodoptera litura Fabricius (gusano gris del tabaco, oruga del racimo), Spodoptera frugiperda J. E. Smith (oruga militar tardía), Trichoplusia ni Hübner (gusano medidor de la col) y Tuta absoluta Meyrick (minador de las hojas del tomate)). Los compuestos de la invención también tienen una actividad significativa desde el punto de vista comercial sobre miembros del orden Homoptera incluyendo: Acyrthisiphon pisum Harris (áfido verde del guisante), Aphis craccivora Koch (áfido del guisante pinto), Aphis fabae Scopoli (áfido negro de la judía), Aphis gossypii Glover (áfido del algodón, áfido del melón), Aphis pomi De Geer (áfido del manzano), Aphis spiraecola Patch (áfido espirea), Aulacorthum solani Kaltenbach (áfido de la declalera), Chaetosiphon fragaefolii Cockerell (áfido del fresal), Diuraphis noxia Kurdjumov/Mordvilko (áfido ruso del trigo), Dysaphis plantaginea Paaserini (áfido rosado del manzano),

Eriosoma lanigerum Hausmann (áfido lanudo de la manzana), Hyalopterus pruni Geoffroy (áfido arinoso del ciruelo), Lipaphis erysimi Kaltenbach (áfido del nabo), Metopolophium dirrhodum Walker (áfido de los cereales), Macrosipum euphorbiae Thomas (áfido de la patata), Myzus persicae Sulzer (áfido del melocotonero, áfido verde), Nasonovia ribisnigri Mosley (áfido de la lechuga), Pemphigus spp. (áfidos de las raíces y áfidos productores de agallas), Rhopalosiphum maidis Fitch (áfido de la hoja del maíz), Rhopalosiphum padi Linnaeus (áfido del cerezo negro americano-avena), Schizaphis graminum Rondani (chinche verde), Sitobion avenae Fabricius (áfido de las espigas), Therioaphis maculata Buckton (pulgón manchado de la alfalfa), Toxoptera aurantii Boyer de Fonscolombe (áfido negro de los cítricos), y Toxoptera citricida Kirkaldy (áfido pardo de los cítricos); Adelges spp. (adélgidos); Philloxera devastatrix Pergande (filoxera de los pecanos); Bemisia tabaci Gennadius (mosca blanca del tabaco, mosca blanca de la batata), Bemisia argentifolii Bellows & Perring (mosca blanca de la hoja plateada), Dialeurodes citri Ashmead (mosca blanca de los cítricos) y Trialeurodes vaporariorum Westwood (mosca blanca de los invernaderos); Empoasca fabae Harris (saltahojas de la patata), Laodelphax striatellus Fallen (saltahojas pardo pequeño), Macrolestes quadrilineatus Forbes (saltahojas del aster), Nephotettix cinticeps Uhler (saltahojas verde), Nephotettix nigropictus Stål (saltahojas del arroz), Nilaparvata lugens Stål (saltahojas pardo), Peregrinus maidis Ashmead (saltahojas del maíz), Sogatella furcifera Horvath (saltahojas de dorso blanco), Sogatodes orizicola Muir (chicharritas del arroz), Typhlocyba pomaria McAtee (saltahojas del manzano blanco), Erythroneoura spp. (saltahojas de la vid); Magicidada septendecim Linnaeus (cigarra periódica); Icerya purchasi Maskell (cochinilla algodonosa), Quadraspidiotus perniciosus Comstock (piojo de San José); Planococcus citri Risso (gorgojo algodonoso de los cítricos); Pseudococcus spp. (otro grupo de gorgojos); Cacopsilla piricola Foerster (psila del peral), Trioza diospiri Ashmead (psila del caqui). Estos compuestos también tienen actividad sobre miembros del orden Hemiptera incluyendo: Acrosternum hilare Say (chinche hedionda verde), Anasa tristis De Geer (chinche de la calabaza), Blissus leucopterus leucopterus Say (chinche común), Corythuca gossypii Fabricius (chinche de encaje del algodonero), Cyrtopeltis modesta Distant (chinche del tomate), Dysdercus suturellus Herrich-Schäffer (chinche tintórea), Euchistus servus Say (chinche hedionda marrón), Euschistus variolarius Palisot de Beauvois (chinche hedionda de una mancha), Graptosthetus spp. (grupo de chinches de semillas), Leptoglossus corculus Say (chinche de las piñas), Lygus lineolaris Palisot de Beauvois (chinche manchador), Nezara viridula Linnaeus (chinche hediondo verde del sur). Oebalus pugnax Fabricius (chinche hediondo del arroz), Oncopeltus fasciatus Dallas (chinche grande de las asclepias), Pseudatomoscelis seriatus Reuter (saltahojas pulguilla del algodonero). Otros órdenes de insectos controlados por los compuestos de la invención incluyen Thysanoptera (por ejemplo, Frankliniella occidentalis Pergande (trip occidental de las flores), Scirtotrips citri Moulton (trips de los cítricos), Sericotrips variabilis Beach (trips de la soja) y Thrips tabaci Lindeman (trip de la cebolla); y el orden Coleoptera (por ejemplo, Leptinotarsa decemlineata Say (escarabajo de la patata de colorado), Epilachna varivestis Mulsant (escarabajo del frijol) y gusanos alambre del género Agriotes, Atous o Limonius.

10

15

20

25

30

35

40

45

50

55

60

65

Los compuestos de esta invención se pueden mezclar también con uno o más de otros compuestos o agentes biológicamente activos que incluyen insecticidas, fungicidas, nematocidas, bactericidas, acaricidas, reguladores del crecimiento tales como estimulantes del enraizamiento, quimioesterilizantes, productos semioquímicos, repelentes, atrayentes, feromonas, estimulantes del apetito, otros compuestos biológicamente activos o bacterias entomopatógenas, virus u hongos para formar un pesticida multicomponente que proporciona un espectro incluso más amplio de utilidad agrícola. De esta forma, las composiciones de la presente invención pueden comprender además una cantidad biológicamente eficaz de al menos un compuesto o agente biológicamente activo adicional. Ejemplos de tales compuestos o agentes biológicamente activos con los que se pueden formular los compuestos de esta invención son: insecticidas tales como abamectina, acefato, acetamiprid, avermectina, azadiractina, azinfosmetilo, bifentrina, binfenazato, buprofezina, carbofurano, clorfenapir, clorfluazuron, clorpirifos, clorpirifos-metilo, cromafenozida, clotianidina, ciflutrin, beta-ciflutrin, cihalotrin, lambda-cihalotrin, cipermetrin, ciromazina, deltametrin, diafentiuron, diazinon, diflubenzuron, dimetoato, diofenolan, emamectina, endosulfan, esfenvalerato, etiprol, fenoticarb, fenoxicarb, fenpropatrin, fenproximato, fenvalerato, fipronilo, flonicamid, flucitrinato, tau-fluvalinato. flufenoxuron, fonofos, halofenozida, hexaflumuron, imidacloprid, indoxacarb, isofenfos, lufenuron, malation, metaldehído, metamidofos, metidation, metomilo, metopreno, metoxiclor, monocrotofos, metoxifenozida, nitiazina, novaluron, oxamilo, paration, paration-metilo, permetrin, forato, fosalona, fosmet, fosfamidon, pirimicarb, profenofos, pimetrozina, piridalilo, piriproxifen, rotenona, spinosad, sulprofos, tebufenozida, teflubenzuron, teflutrin, terbufos, tetraclorvinfos, tiacloprid, tiametoxam, tiodicarb, tiosultap-sodio, tralometrin, triclorfon y triflumuron; fungicidas tales como acibenzolar, azoxistrobin, benomilo, blasticidin-S, mezcla de Bordeaux (sulfato de cobre tribásico), bromuconazol, carpropamid, captafol, captan, carbendazim, cloroneb, clorotalonil, oxicloruro de cobre, sales de cobre, ciflufenamid, cimoxanil, ciproconazol, ciprodinil, (S)-3,5-dicloro-N-(3-cloro-1-etil-1-metil-2-oxopropil)-4-metilbenzamida (RH 7281), diclocimet (S-2900), diclomezina, dicloran, difenoconazol, (S)-3,5-dihidro-5-metil-2-(metiltio)-5-fenil-3-(fenilamino)-4H-imidazol-4-ona (RP 407213), dimetomorf, dimoxistrobin, diniconazol, diniconazol-M, dodine, edifenfos, epoxiconazol, famoxadona, fenamidona, fenarimol, fenbuconazol, fencaramid (SZX0722), fenpiclonil, fenpropidin, fenpropimorf, fentin acetato, fentin hidróxido, fluazinam, fludioxonil, flumetover (RPA 403397), fluquinconazol, flusilazol, flutolanil, flutriafol, folpet, fosetil-aluminio, furalaxil, furametapir (S-82658), hexaconazol, ipconazol, iprobenfos, iprodiona, isoprotiolano, kasugamicina, kresoxim-metilo, mancozeb, maneb, mefenoxam, mepronil, metalaxil, metconazol, metominostrobin/fenominostrobin (SSF-126), miclobutanil, neo-asozin (metanoarsonato férrico), oxadixil, penconazol, pencicuron, probenazol, procloraz, propamocarb, propiconazol, pirifenox, piraclostrobin, pirimetanil, piroquilon, quinoxifen, espiroxamina, azufre, tebuconazol, tetraconazol, tiabendazol, tifluzamida, tiofanato-metilo, tiram, tiadinil, triadimefon, triadimenol, triciclazol, trifloxistrobin, triticonazol, validamicina y vinclozolin; nematocidas tales como aldicarb, oxamilo y fenamifos; bactericidas tales como

estreptomicina; acaricidas tales como amitraz, quinometionato, clorobencilato, cihexatina, dicofol, dienoclor, etoxazol, fenazaquina, óxido de fenbutatina, fenpropatrina, fenpiroximato, hexitiazox, propargita, piridabeno y tebufenpirad; y agentes biológicos tales como *Bacillus thuringiensis* que incluyen las ssp. *aizawai y kurstaki*, la endotoxina delta de *Bacillus thuringiensis*, baculovirus, y bacterias entomopatógenas, virus y hongos. Los compuestos de esta invención y sus composiciones se pueden aplicar a plantas transformadas genéticamente para expresar proteínas tóxicas para plagas de invertebrados (tales como la toxina del *Bacillus thuringiensis*). El efecto de los compuestos y composiciones de control de plagas de invertebrados exógenas puede ser sinérgico con las proteínas de toxinas expresadas.

Una referencia general para estos protectores agrícolas es The Pesticide Manual, 12ª Edición, C. D. S. Tomlin, Ed., British Crop Protection Councilo, Farnham, Surrey, R.U., 2000.

10

15

20

25

30

35

55

60

Los insecticidas y acaricidas preferidos para mezclar con compuestos de esta invención incluyen piretroides tales como cipermetrina, cihalotrina, ciflutrina, beta-ciflutrina, esfenvalerato, fenvalerato y tralometrina; carbamatos tales como fenoticarb, metomil, oxamil y tiodicarb; neonicotinoides tales como clotianidin, imidacloprid y tiacloprid; bloqueantes de los canales de sodio neuronales tales como indoxacarb; lactonas macrocíclicas insecticidas tales como espinosad, abamectina, avermectina y emamectina; antagonistas del ácido γ-aminobutírico (GABA) tales como endosulfan, etiprol y fipronil; ureas insecticidas tales como flufenoxuron y triflumuron; miméticos de hormonas juveniles tales como diofenolan y piriproxifen; pimetrozina; y amitraz. Los agentes biológicos preferidos para mezclar con compuestos de esta invención incluyen *Bacillus thuringiensis* y la endotoxina delta de *Bacillus thuringiensis* así como insecticidas víricos que se dan de forma natural y modificados genéticamente que incluyen miembros de la familia Baculoviridae así como hongos entomófagos.

Las mezclas más preferidas incluyen una mezcla de un compuesto de esta invención con cihalotrina; una mezcla de un compuesto de esta invención con beta-ciflutrina; una mezcla de un compuesto de esta invención con esfenvalerato; una mezcla de un compuesto de esta invención con metomilo; una mezcla de un compuesto de esta invención con tiacloprida; una mezcla de un compuesto de esta invención con tiacloprida; una mezcla de un compuesto de esta invención con abamectina; una mezcla de un compuesto de esta invención con etiprol; una mezcla de un compuesto de esta invención con etiprol; una mezcla de un compuesto de esta invención con flufenoxurón; una mezcla de un compuesto de esta invención con piriproxifeno; una mezcla de un compuesto de esta invención con piriproxifeno; una mezcla de un compuesto de esta invención con pimetrozina; una mezcla de un compuesto de esta invención con amitraz; una mezcla de un compuesto de esta invención con la endotoxina delta de Bacillus thuringiensis.

En ciertos casos, serán particularmente ventajosas para el tratamiento de la resistencia las combinaciones con otros compuestos o agentes para el control de plagas de invertebrados que tengan un espectro de control similar, pero diferente modo de acción. Por lo tanto, las composiciones de la presente invención pueden comprender además una cantidad biológicamente eficaz de al menos un compuesto o agente adicional de control de plagas de invertebrados que tenga un espectro de control similar, pero un modo de acción diferente. La puesta en contacto de una planta modificada genéticamente para expresar un compuesto fitoprotector (por ejemplo, una proteína) o el locus de la planta con una cantidad biológicamente eficaz de un compuesto de la invención también puede proporcionar un mayor espectro fitoprotector y puede ser ventajoso para el tratamiento de la resistencia.

Las plagas de invertebrados se controlan en aplicaciones agronómicas y no agronómicas aplicando uno o más de los compuestos de esta invención, en una cantidad eficaz, en el entorno de las plagas que incluye el lugar agronómico o no agronómico de infestación, en el área a proteger, o directamente en las plagas a controlar. Por lo tanto, la presente invención comprende además un método para el control de invertebrados en aplicaciones agronómicas y/o no agronómicas, que comprende poner en contacto los invertebrados o su medio con una cantidad biológicamente eficaz de uno o más de los compuestos de la invención, o con una composición que comprende al menos uno de estos compuestos y una cantidad eficaz de al menos un compuesto o agente biológicamente activo adicional. Los ejemplos de composiciones adecuadas que comprenden un compuesto de la invención y una cantidad eficaz de al menos un compuesto o agente biológicamente activo adicional incluyen composiciones granulares en las que el compuesto biológicamente activo adicional está presente en el mismo gránulo que el compuesto de la invención, o en gránulos distintos de los del compuesto activo de esta invención.

Un método de contacto preferido es por pulverización. Como alternativa, una composición granular que comprende un compuesto de la invención puede aplicarse al follaje de las plantas o al sustrato. Los compuestos de esta invención se suministran también de forma eficaz a través de la captación de la planta, poniendo en contacto la planta con una composición que comprende un compuesto de esta invención aplicado como un rociado de una formulación líquida en el terreno, de una formulación granular en el terreno, un tratamiento en una caja de vivero o una inmersión de los trasplantes. Los compuestos son también eficaces por aplicación tópica de una composición que comprende un compuesto de esta invención en el lugar de infestación. Otros métodos de contacto incluyen la aplicación de un compuesto o una composición de la invención por pulverizaciones directas y residuales, pulverizaciones aéreas, geles, revestimientos de semillas, microencapsulaciones, captación sistémica, cebos, crotales, bolos, nebulizadores, fumigantes, aerosoles, polvo fino y muchos otros. Los compuestos de esta invención

pueden también impregnar materiales para fabricar dispositivos de control de invertebrados (por ejemplo redes antiinsectos).

Los compuestos de esta invención se pueden incorporar en cebos que consumen los invertebrados o dentro de dispositivos tales como trampas y similares. Los gránulos o cebos que comprenden entre 0,01-5% de ingrediente activo, 0,05-10% de uno o más agentes que retienen la humedad y 40-99% de harina vegetal son eficaces para combatir insectos del sustrato en proporciones de aplicación muy bajas, particularmente a dosis de ingrediente activo que son letales por ingestión en lugar de por contacto directo.

Los compuestos de esta invención se pueden aplicar en su estado puro, pero la aplicación más frecuente será la de una formulación que comprende uno o más compuestos con vehículos, diluyentes y tensoactivos adecuados y posiblemente en combinación con un alimento dependiendo del uso final contemplado. Un método de aplicación preferido implica pulverizar una dispersión acuosa o una solución en aceite refinado de los compuestos. Las combinaciones con aceites de pulverización, concentraciones con aceite de pulverización, esparcidores, adyuvantes, otros disolventes y agentes sinérgicos tales como butóxido de piperonilo a menudo mejoran la eficacia del compuesto.

La tasa de aplicación necesaria para un control eficaz (es decir la "cantidad biológicamente eficaz") dependerá de factores tales como la especie de invertebrado a controlar, el ciclo de vida de la plaga, la fase de la vida, su tamaño, localización, momento del año, cultivo o animal hospedador, comportamiento de alimentación, comportamiento de apareamiento, humedad ambiental, temperatura y similares. En circunstancias normales, son suficientes proporciones de aplicación de aproximadamente 0,01 a 2 kg de ingrediente activo por hectárea para combatir plagas en ecosistemas agronómicos, pero puede ser suficiente una cantidad de tan sólo 0,0001 kg/hectárea o puede necesitarse una cantidad de hasta 8 kg/hectárea. Para aplicaciones no agronómicas, las proporciones de uso eficaces variarán entre aproximadamente 1,0 a 50 mg/metro cuadrado, pero puede ser suficiente una cantidad de tan sólo 0,1 mg/metro cuadrado o puede necesitarse una cantidad de hasta 150 mg/metro cuadrado. Un experto en la materia puede determinar fácilmente la cantidad biológicamente eficaz necesaria para el nivel deseado de control de plagas de invertebrados.

Los siguientes ensayos demuestran la eficacia de control de los compuestos de esta invención en plagas específicas. La "eficacia del control" representa la inhibición del desarrollo de la plaga de invertebrados (que incluye la mortalidad) que causa una alimentación reducida de forma significativa. Sin embargo, la protección de control de plagas producida por los compuestos no se limita a estas especies. Véanse las descripciones de compuestos en las Tablas de Índice A a K y L. En las Tablas de Índices que se muestran a continuación se usan las siguientes abreviaturas: t es terciario, n es normal, i es iso, c es ciclo, s es secundario, Me es metilo, Et es etilo, Pr es propilo, i-Pr es isopropilo, c-Pr es ciclopropilo, Bu es butilo, s-Bu es butilo secundario, Pent es pentilo, OMe es metoxi, OEt es etoxi, SMe es metiltio, SEt es etiltio, CN es ciano, y NO₂ es nitro. La abreviatura "Ej." significa "Ejemplo" y va seguida de un número que indica en qué ejemplo se prepara el compuesto.

TABLA DE ÍNDICE A

5

10

30

35

Compuestos	R ²	R ³	(R ⁴) _n	J	p.f. ºC.
19	Н	i-Pr	4-Me	2-Me-6-CF ₃ -3-piridinilo	*
20	Н	t-Bu	4-Me	2-Me-6-CF ₃ -3-piridinilo	*
21	Н	i-Pr	4-Me	1-Ph-3-Me-5-pirazolilo	*
22	Н	t-Bu	4-Me	1-Ph-3-Me-5-pirazolilo	*

Compuestos	R^2	\mathbb{R}^3	(R ⁴) _n	J	p.f. ºC.
23	Н	i-Pr	4-Me	2-Me-6-CI-3-piridinilo	*
24	Н	t-Bu	4-Me	2-Me-6-Cl-3-piridinilo	*
30	Н	Me	4-Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	214-215
31	Н	i-Pr	4-Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	159-161
32	Н	i-Pr	4-Me	1-(2-Cl-Ph)-3-CF₃-5-pirazolilo	198-202
33	Н	Me	4-Me	$1\hbox{-}(2\hbox{-Cl-3-piridinil})\hbox{-}3\hbox{-}CF_3\hbox{-}5\hbox{-pirazolilo}$	188-190
34	Н	i-Pr	4-Me	$1\hbox{-}(2\hbox{-}Cl\hbox{-}3\hbox{-}piridinil)\hbox{-}3\hbox{-}CF_3\hbox{-}5\hbox{-}pirazolilo$	170-174
35	Н	Me	4-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	201-203
36	Н	Me	4,5-Cl ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	238-240
37	Н	i-Pr	4,5-Cl ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	240
38	Н	i-Pr	4,5-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	208-210
39	Н	Me	4,5-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	208
40	Н	i-Pr	4-Me-5-Cl	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	234-236
41	Н	Me	4-Me-5-Cl	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	229-231
42	Н	i-Pr	4-Me-5-Cl	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	222-223
43	Н	Me	4-Me-5-Cl	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	226-228

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE B

Compuesto	R³	J	p.f. ºC
B5	i-Pr	2-Me-6-CF ₃ -3-piridinilo	221-5-222,5
B6	i-Pr	1-Ph-3-Me-5-pirazolilo	*
В7	t-Bu	1-Ph-3-Me-5-pirazolilo	*
B8	t-Bu	2-Me-6-CF ₃ -3-piridinilo	*
B10	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	266-270
B11	i-Pr	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	232-236
B12	Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	233-236
B13	i-Pr	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	220-222

Compuesto	R ³	J	p.f. ºC	
B14	Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	235-238	
B15	i-Pr	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	198-200	

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE C

Compuesto	R^2	\mathbb{R}^3	R^4	J	p.f. ºC	
C14	Н	i-Pr	Me	3-piridinilo		
C23	Н	Et	Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	253-255	
C24	Н	i-Pr	Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	214-216	
C25	Н	Me	Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	230-232	
C26	Н	Me	Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	234-236	
C27	Н	i-Pr	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	218-220	
C28	Н	i-Pr	Me	1-(2-Cl-Ph)-3-Br-5-pirazolilo	170-173	
C30	Н	Et	CH ₂ CF ₃	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	236-238	
C31	Н	i-Pr	CH ₂ CF ₃	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	216-218	
C32	Н	Me	Et	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	238-240	
C33	Н	Et	Et	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	216-218	
C34	Н	i-Pr	Et	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	198-201	
C35	Н	Me	CH ₂ CF ₃	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	260-262	
C36	Н	Me	CH ₂ CF ₃	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	253-256	
C37	Н	Et	CH ₂ CF ₃	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	220-223	
C38	Н	i-Pr	CH ₂ CF ₃	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	188-190	
C39	Н	Me	Et	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	221-223	
C40	Н	Et	Et	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	182-184	
C41	Н	i-Pr	Et	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	172-175	

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE D

Compuesto	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	J	p.f. ºC
D6	Н	i-Pr	2-Me	2-Me-6-CF ₃ -3-piridinilo	240-243
D7	Н	i-Pr	2-Me	1-Ph-3-CF ₃ -5-pirazolilo	215-220 (desc.)
D8	Н	i-Pr	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	140-144
D10	Н	i-Pr	2-Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	207-209*
D11	Me	Me	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	172-175
D12	Н	Me	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	193-195
D13	Н	i-Pr	2-Cl	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	175-179
D14	Н	i-Pr	2-Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	156-158
D15	Н	i-Pr	2-Cl	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	160-165
D16	Н	Me	2-Cl	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	178-180
D17	Н	Me	2-Cl	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	118-125
D18	Н	Me	2-Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	207-209
D19	Н	Me	2-Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	216-218
D20	Н	alilo	Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	187
D21	Н	alilo	Me	1-(2-Cl-3-piridinil-3-Br-5-pirazolilo	199-201

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE E

	Compuesto	\mathbb{R}^2		R ³	J	p.f. ºC
_	E5	Н	i-Pr	2-Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	138-140

ES 2 364 550 T3

Compuesto	\mathbb{R}^2		\mathbb{R}^3	J	p.f. ºC
E6	Н	i-Pr	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	170-173
E7	Н	i-Pr	2-Me	1-(2-CI-Ph)-3-Br-5-pirazolilo	*
E8	Н	i-Pr	2-Me	1-(2-Cl-3-piridinil)-3-CN-5-pirazolilo	*
E9	Н	i-Pr	2-Me	1-(2-Cl-3-piridinil)-3-Hr-5-pirazolilo	112-115
E10	Н	Et	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	147-150
E11	Н	Me	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	223-224
E12	Н	i-Pr	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	142-145
E13	Н	Me	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	238-240
E14	Н	Et	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	207-209
E15 (Ej. 5)	Н	i-Pr	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	240-242
E16	Me	Me	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	153-155
E17	Me	Me	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	224-226
E19	Н	Et	2,6-Br ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	223-225
E20	Н	i-Pr	2,6-Br ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	>240
E21	Et	Et	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	231-233
E22	Н	i-Pr	2-Cl-6-Br	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	224-226
E23	Н	NMe ₂	2,6-Br ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	*
E24	Н	Н	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	*
E25	Н	NMe ₂	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	*
E26	Me	Me	2-CI-6- NMe ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	*
E27	Н	Me	2,6-Br ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	*
E28	Н	Et	2,6-Br ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	*
E29	Н	Me	2,6-Br ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	*
E30	Н	Et	2,6-Br ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	*
E31	Н	Me	2,6-Br ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	*
E32	Н	i-Pr	2,6-Br ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	*
E33	Н	NMe ₂	2,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	*
E34	Н	i-Pr	2,6-Br ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	*

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE G

Compuesto	R ²	R^3	(R ⁴) _n	J	p.f. ºC
G2	Н	i-Pr	4-Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	183-184
G3	Н	S-CH(Ph)Me	Н	3-piridinilo	
G4	Н	i-Pr	4-Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	172-175
G5	Н	i-Pr	4-Me	1-(2-Cl-3-Ph)-3-Br-5-pirazolilo	
G6	Н	i-Pr	4-Me-6-CI	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	175-177
G7	Н	Me	4-Me-6-CI	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	230-235
G8	Me	Me	4,6-Cl ₂	1 -(2-Cl-3-piridinil)-3-Br-5-pirazolilo	225-227
G9	Н	NMe ₂	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	125-130
G10	Н	Н	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	130-135
G11	Н	Me	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	214-216
G12	Н	Et	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	210-212
G13	Н	i-Pr	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	208-210
G16	Н	Н	4,6-Br ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	>240
G17	Н	Me	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G18	Н	Et	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G19	Н	i-Pr	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G20	Н	Н	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G21	Et	Et	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G22	Н	Me	4,6-Cl2	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	
G23	Н	Et	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo)	
G24	Н	i-Pr	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	
G25	Н	NMe ₂	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G26	Me	Me	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G27	Me	Me	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	
G28	Н	Н	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	
G29	Н	NMe ₂	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	
G30	Et	Et	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	

Compuesto	R^2	R^3	$(R^4)_n$	J	p.f. ºC
G31	Н	Me	4,5,6-Cl ₃	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G32	Н	Et	4,5,6-Cl ₃	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
G33	Н	CH ₂ CH ₂ SMe	4,6-Cl ₂	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE I

$$(R^4)_{\overline{n}}$$
 6
 R^2
 NH
 O
 NH
 O
 R^2
 R^3

Compuesto	R^2	R^3	$(R^4)_n$	J	p.f. ºC
11	Me	Me	4,6-Me ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	244-245*
12	Н	i-Pr	4,6-Me ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	
13	Н	Me	4,6-Me ₂	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	195-197
14	Me	Me	4,6-Me ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	243-244
15	Н	Me	4,6-Me ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	202-204
16 (Ej. 4)	Me	Me	4-Me	1-(2-Cl-3-piridinil)-3-Cl-S-pirazolilo	232-236
17	Н	i-Pr	4-Me	1-(2-Cl-3-piridinil)-3-Cl-5-pirazolilo	87-90
18	Н	i-Pr	4,6-Me ₂	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	81-83
19	Н	Me	4-Me	1-(2-CI-3-piridinil)-3-CI-5-pirazolilo	205-207

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE J

5

Compuesto	R^2	R^3	R⁴	J	p.f. ºC
J1	Н	i-Pr	Me	1-(2-CI-Ph)-3-CF ₃ -5-pirazolilo	174-176*
J2	Н	i-Pr	Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	206-208
J3	Н	Me	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	166-168
J4	Н	Me	Me	1-(2-Cl-3-piridinil)-3-CF ₃ -5-pirazolilo	176-178
J5	Н	Me	Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	227-229
J8	Н	i-Pr	Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	172-174

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE K

Compuesto	R^2	R^3	R⁴	J	p.f. ºC
K1	Н	Me	Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	224-226*
K2	Н	i-Pr	Me	1-(2-Cl-3-piridinil)-3-Br-5-pirazolilo	168-172
K3	Н	Me	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	185-190
K4	Н	i-Pr	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pirazolilo	160-162
K5	Н	Me	Me	$\hbox{1-(2-Cl-3-piridinil)-3-CF}_3\hbox{-5-pirazolilo}$	176-179
K6	Н	i-Pr	Me	$1\hbox{-}(2\hbox{-Cl-3-piridinil})\hbox{-}3\hbox{-}CF_3\hbox{-}5\hbox{-pirazolilo}$	180-182

^{*}Véase la Tabla de Índice L para los datos de ¹H RMN

TABLA DE ÍNDICE L

Comp. Nº	Datos de Espectro Parcial de ¹ H RMN (solución de CDCl ₃ a menos que se indique otra cosa) ^a
D10	12,2 (s a, 1H), 6,0 (s, 1H)
E7	7,75 (d, 1H), 7,67 (s, 1H)
E8	8,23 (s, 1H), 7,77 (d, 1H)
E23	(DMSO-d ₆) 10,8 (m, 1H), 9,5 (s, 1H)
E24	(DMSO-d ₆) 10,5 (s, 1H)
E25	(DMSO-d ₆) 10,9 (s, 1H)
E26	(DMSO-d ₆) 13,4 (s a, 1H)

E27	9,0 (s, 1H), 6,2 (m, 1H)
E28	9,25 (s, 1H), 6,18 (m, 1H)
E29	(DMSO-d ₆) 10,9 (m, 1H), 8,55 (m, H)
E30	9,3 (s, 1H), 6,25 (t, 1H)
E31	(DMSO-d ₆) 10,75 (s, 1H), 8,55 (m, 1H)
E32	(DMSO- <i>d</i> ₆) 13,5 (s a, 1H)
E33	(DMSO-d ₆) 10,9 (m, 1H), 9,6 (s, 1H)
E34	9,5 (s a, 1H), 6,05 (d, 1H)

Los espectros de ¹H RMN se informan en ppm campo abajo de tetrametilsilano; Los acoplamientos están nombrados como (s)-singlete, (d)-doblete, (t)-triplete, (q)-cuartete, (m)-multiplete, (dd)-doblete de dobletes, (dt)-doblete de tripletes, (s ancho)-singlete ancho.

EJEMPLOS BIOLÓGICOS DE LA INVENCIÓN

ENSAYO A

Para evaluar el control de la polilla de dorso de diamante (*Plutella xilostella*) la unidad de ensayo consistía en un pequeño recipiente abierto con una planta de rábano de 12-14 días en su interior. Esta planta se había preinfestado con 10-15 larvas recién nacidas en una pieza de material de alimentación de insectos mediante el uso de un muestreador para retirar un trozo de una lámina de material de alimentación de insectos endurecida que tenía muchas larvas creciendo sobre ella y la transferencia del trozo que contiene las larvas y el material de alimentación a la unidad de ensayo. Las larvas se trasladaron a las plantas de ensayo cuando se secó el trozo de material de alimentación.

- Los compuestos de ensayo se formularon usando una solución que contenía 10% de acetona, 90% de agua y 300 ppm de tensioactivo no iónico X-77® Spreader Lo-Foam Formula que contenía alquilarilpolioxietileno, ácidos grasos libres, glicoles e isopropanol (Loveland Industries, Inc.), a menos que se indique de otro modo. Los compuestos formulados se aplicaron en 1 ml de líquido a través de una boquilla atomizadora SUJ2 con un cuerpo normal 1/8 JJ (Spraying Systems Co.) colocado 1,27 cm (0,5 pulgadas) por encima de la parte superior de cada unidad de ensayo.
 Se pulverizaron a 250 ppm todos los compuestos experimentales de estos ensayos y se repitió la aplicación tres veces. Después de la pulverización del compuesto de ensayo formulado, cada unidad de ensayo se dejó secar durante 1 hora y después se puso encima una tapa negra reticulada. Las unidades de ensayo se mantuvieron durante 6 días en una cámara de crecimiento a 25 °C y 70% de humedad relativa. Después se estudió visualmente el daño por alimentación en las plantas basándose en el follaje consumido.
- De los compuestos ensayados, los siguientes proporcionaron niveles de protección de muy buenos a excelentes para las plantas (calificaciones de 0-1, 10% o menos de daño por alimentación): 19, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 36, 37, 38, B5, B11, B12, B15, C24, D6, D7, D8, D10, D11, D12, D13, D14, D18, D19, D20, D21, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E19, E20, E21, E22, G1, G2, G4, G5, G6, G7, G8, G9, G10, G11, G12, G13, J6, K1 y K2.

25 ENSAYO B

Para evaluar el control de la oruga militar tardía (*Spodoptera frugiperda*), la unidad de ensayo consistía en un pequeño recipiente abierto con una planta de cereal (maíz) de 4-5 días de edad en su interior. Esta planta se había preinfestado (mediante el uso de un muestreador) con larvas de 10-15 días en una pieza de material de alimentación de insectos.

30 Se formularon los compuestos de ensayo y se pulverizaron 250 ppm como se describió para el Ensayo A. Las aplicaciones se repitieron tres veces. Después de la pulverización, las unidades de ensayo se mantuvieron en una cámara de crecimiento y después se evaluaron visualmente como se ha descrito en el Ensayo A.

De los compuestos probados, los siguientes mostraron unos niveles excelentes de protección de la planta (10% o menos de daño por alimentación): 30, 31, 32, 33, 34, 35, 36, B10, B 11, H 12, B 13, B 14, D7,D8, D10,D11, D14, D15, E5, E6, E7, E9, E10, E11, E12, E13, E22, G2, G4, G5, G6, G7, G9, G10, G11, G12, G13, J6 y K2.

ENSAYO C

35

Para evaluar el control del gusano de los brotes del tabaco (*Heliothis virescens*), la unidad de ensayo consistía en un pequeño recipiente abierto con una planta de algodón de 6-7 días de edad en su interior. Esta planta se había

preinfestado (mediante el uso de un muestreador) con 8 larvas de 2 días en una pieza de material de alimentación de insectos.

Se formularon los compuestos de ensayo y se pulverizaron 250 ppm como se describió para el Ensayo A. Las aplicaciones se repitieron tres veces. Después de la pulverización, las unidades de ensayo se mantuvieron en una cámara de crecimiento y después se evaluaron visualmente como se ha descrito en el Ensayo A.

De los compuestos ensayados, los siguientes proporcionaron niveles de protección de muy buenos a excelentes para las plantas (20% o menos de daño por alimentación): 31,32,33,34,35,36,37,B12,B13,B14, B15, D1, D4, D5, D6, D8, D10, D11, D12, D13, D14, D15, D18, D19, D20, D21, E5, E6, E7, E9, E10, E12, E15, E20, E21, E22, G2, G5, G6, G7, G8, G9, G10, G11, G12 y G13

10 ENSAYO D

Para evaluar el control del gusano verde cogollero (*Spodoptera exigua*) la unidad de ensayo consistió en un pequeño recipiente abierto con una planta de maíz de 4-5 días de edad en el interior. Esta planta se había preinfestado (mediante el uso de un muestreador) con larvas de 10-15 días en una pieza de material de alimentación de insectos.

Se formularon los compuestos de ensayo y se pulverizaron 250 ppm como se describió para el Ensayo A. Las aplicaciones se repitieron tres veces. Después de la pulverización, las unidades de ensayo se mantuvieron en una cámara de crecimiento y después se evaluaron visualmente como se ha descrito en el Ensayo A.

De los compuestos ensayados, los siguientes proporcionaron niveles de protección de muy buenos a excelentes para las plantas (20% o menos de daño por alimentación): 31 , 32, 34, B13, B15, D7, D8, D10, D11 , D14, D19, E5, E6, E7, E9, E10, E15, E22, G2, G4, G5, G6, G7, G9, G10, G11, G12, G13, D20, J6 y K2.

ENSAYO E

20

25

30

35

Para evaluar el control del áfido verde del melocotonero (*Myzus persicae*) a través de medios de contacto y/o sistémicos, la unidad de ensayo consistió en un pequeño recipiente abierto con una planta de rábano de 12-15 días en el interior. Ésta se pre-infestó (usando el método de hoja cortada) con 30-40 insectos en capa pieza de hoja, y el sustrato se cubrió con una capa de arena.

Se formularon los compuestos de ensayo y se pulverizaron 250 ppm como se describió para el Ensayo A. Las aplicaciones se repitieron tres veces. Después de la pulverización, las unidades de ensayo se mantuvieron en una cámara de crecimiento y después se evaluaron visualmente con respecto a la mortalidad de los insectos.

De los compuestos probados, los siguientes dieron como resultado al menos 80% de mortalidad: C48, E13, E14, E16, G4, G9, G10, G11 y G13.

ENSAYO F

Para evaluar el control del áfido del melón algodonero (*Aphis gossypii*) a través de medios de contacto y/o sistémicos, la unidad de ensayo consistió en un pequeño recipiente abierto con una planta de algodón de 6-7 días en el interior. Ésta se pre-infestó (usando el método de hoja cortada) con 30-40 insectos en capa pieza de hoja, y el sustrato se cubrió con una capa de arena.

Se formularon los compuestos de ensayo y se pulverizaron 250 ppm como se describió para el Ensayo A. Las aplicaciones se repitieron tres veces. Después de la pulverización, las unidades de ensayo se mantuvieron en una cámara de crecimiento y entonces se estimó visualmente como se describió para el Ensayo E.

De los compuestos probados, los siguientes dieron como resultado al menos 80% de mortalidad: E9.

40

REIVINDICACIONES

1. Un compuesto de Fórmula I, un N-óxido del mismo o una sal adecuada del mismo

$$(\mathbb{R}^4)_n$$
 \mathbb{R}^1
 \mathbb{R}^2
 \mathbb{R}^3

en la que

10

5 A y B son los dos O;

J se selecciona entre el grupo que consiste en J-6, J-7, J-8, J-9, J-10, J-11, J-12 y J-13

K selecciona entre el grupo que consiste en K-1, K-14, K-15, K-18, K-23, K-29, K30, K-31 y K-33, donde el enlace superior derecho está unido a través del átomo de carbono de unión disponible con el átomo de nitrógeno de la parte $NR^1C(=A)J$ de Fórmula I y el enlace inferior derecho está unido a través del átomo de carbono de unión disponible con el átomo de carbono de la parte $C(=B)NR^2R^3$ de fórmula I.

$$(R^4)_n$$
 $(R^4)_n$ $(R^4$

$$(R^4)_n$$
 $(R^4)_n$
 $(R^4$

n es de 1 a 3;

5

15

20

25

30

R¹ es H; o alquilo C₁-C₆, alquenilo C₂-C₆, alquinilo C₂-C₆ o cicloalquilo C₃-C₆, cada uno opcionalmente sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en halógeno, CN, NO₂, hidroxi, alcoxi C₁-C₄, alquiltio C₁-C₄, alquilsulfinilo C₁-C₄, alquilsulfonilo C₁-C₄, alcoxicarbonilo C₂-C₄, alquilamino C₃-C₆; o

 R^1 es alquilcarbonilo C_2 - C_6 , alcoxicarbonilo C_2 - C_6 , alquilaminocarbonilo C_2 - C_6 ; dialquilaminocarbonilo C_3 - C_8 o C(=A)J:

C(=A)J; $R^2 \text{ es H, alquilo } C_1\text{-}C_6, \text{ alquenilo } C_2\text{-}C_6, \text{ alquinilo } C_2\text{-}C_6, \text{ cicloalquilo } C_3\text{-}C_6, \text{ alcoxi } C_1\text{-}C_4, \text{ alquilamino } C_1\text{-}C_4, \text{ dialquilamino } C_2\text{-}C_8, \text{ cicloalquilamino } C_3\text{-}C_6, \text{ alcoxicarbonilo } C_2\text{-}C_6 \text{ o alquilcarbonilo } C_2\text{-}C_6;$

 R^3 es H; G; o alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , cicloalquilo C_3 - C_6 , cada uno opcionalmente sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en G, halógeno, CN, NO_2 , hidroxi, alcoxi C_1 - C_4 , haloalcoxi C_1 - C_4 , alquilsulfinilo C_1 - C_4 , alquilsulfonilo C_1 - C_4 , alquilsulfonilo C_2 - C_6 , alquilcarbonilo C_2 - C_6 , trialquilsililo C_3 - C_6 , y un anillo de fenilo, fenoxi o un anillo heteroaromático de 5 ó 6 miembros, cada anillo opcionalmente sustituido con uno a tres sustituyentes seleccionados independientemente

entre R⁶; o R² y R³ pueden tomarse junto con el nitrógeno al que están unidos para formar un anillo que contiene de 2 a 6 átomos de carbono y opcionalmente un átomo adicional de nitrógeno, azufre u oxígeno, y dicho anillo puede estar opcionalmente sustituido con uno a cuatro sustituyentes seleccionados entre R¹²; y

G es un anillo carbocíclico o heterocíclico no aromático de 5 ó 6 miembros, incluyendo opcionalmente uno o dos miembros de anillo seleccionados entre el grupo que consiste en C(=O), SO o $S(O)_2$ y opcionalmente sustituido con uno a cuatro sustituyentes seleccionados entre R^{12} ;

cada R^4 es independientemente alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , halógeno, CN, NO₂ o alcoxi C_1 - C_4 , y un grupo R^4 está unido al anillo K en el átomo adyacente al resto $NR^1C(=A)J$ o al resto $C(=B)NR^2R^3$; y R^5 es H, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , o

R6

V es N, CH, CF, CCI, CBr o CI;

cada R^6 y R^7 es independientemente H, alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , haloalquilo C_1 - C_6 , haloalquilo C_1 - C_6 , haloalquiltio C_1 - C_4 , y

 R^9 es H, alquilo C_1 - C_6 , haloalquilo C_1 - C_6 , alquenilo C_3 - C_6 , haloalquenilo C_3 - C_6 , alquinilo C_3 - C_6 o haloalquinilo C_3 - C_6 ; con la condición de que R^7 y R^9 no sean los dos H; y cada R^{12} es independientemente alquilo C_1 - C_2 , halógeno, CN, NO_2 o alcoxi C_1 - C_2 .

, , ,

- 2. El compuesto de la reivindicación 1 en el que V es N.
- 35 3. El compuesto de la reivindicación 1 en el que V es CH, CF, CCI o CBr.
 - 4. El compuesto de la reivindicación 2 o la reivindicación 3 en el que

R¹ es H; R² es H o CH₃;

- R3 es alquilo C1-C4 opcionalmente sustituido con uno o más sustituyentes seleccionados independientemente entre halógeno, CN, OCH3 o S(O)PCH3;
- cada R⁴ es independientemente CH₃, CF₃, CN o halógeno, y un grupo R⁴ está unido al anillo K en el átomo advacente al resto $NR^1C(=A)J$;
- R⁶ es H, alquilo C₁-C₄, haloalquilo C₁-C₄, halógeno o CN; R⁷ es H, CH₃, CF₃, OCH₂CF₃, OCHF₂ o halógeno; y p es 0, 1 ó 2.

5

25

30

40

- 5. El compuesto de la reivindicación 4 en la que R³ es alquilo C₁-C₄; un grupo R⁴ es independientemente CH₃, Cl, Br o I y está unido al anillo K en el átomo adyacente al resto NR¹C(=A)J; y un segundo R⁴ opcional es F, Cl, Br, I o CF₃.
- 6. El compuesto de la reivindicación 5 en el que J es J-6; R⁶ es Cl o Br; y R⁷ es halógeno, OCH₂CF₃ o CF₃.
- 7. El compuesto de la reivindicación 6 en el que V es N; R³ es metilo, etilo, isopropilo o butilo terciario; y R⁷ es Br, Cl, 10 OCH₂CF₃ o CF₃.
 - 8. El compuesto de la reivindicación 5 en el que J es J-7; R⁶ es Cl o Br; y R⁹ es CF₃, CHF₂, CH₂CF₃ o CF₂CHF₂.
 - 9. El compuesto de la reivindicación 5 en el que J es J-8; R⁶ es Cl o Br; y R⁷ es halógeno, OCH₂CF₃ o CF₃.
 - 10. El compuesto de la reivindicación 5 en el que J es J-9; R⁶ es Cl o Br; y R⁷ es OCH₂CF₃ o CF₃.
- 11. El compuesto de la reivindicación 5 en el que J es J-10; R⁶ es Cl o Br; y R⁹ es CF₃, CHF₂, CH₂CF₃ o CF₂CHF₂. 15
 - 12. El compuesto de la reivindicación 5 en el que J es J-11; R⁶ es Cl o Br; y R⁷ es halógeno, OCH₂CF₃ o CF₃.
 - 13. El compuesto de la reivindicación 5 en el que J es J-12; R⁶ es Cl o Br; R⁷ es H, halógeno o CF₃, y R⁹ es H, CF₃, CHF₂, CH₂CF₃ o CF₂CHF₂.
- 14. El compuesto de la reivindicación 5 en el que J es J-13; R⁶ es Cl o Br; y R⁹ es H, CF₃, CHF₂, CH₂CF₃ o 20 CF₂CHF₂.
 - 15. El compuesto de la reivindicación 1 seleccionado entre el grupo que consiste en:
 - 4-[[[1-(2-Clorofenil)-3-(trifluorometil)-1*H*-pirazol-5-il]carbonil]amino]-5-metil-*N*-(1-metiletil)-3-piridincarboxamida,
 - 4-[[[3-Bromo-1-(3-cloro-2-piridinil)-1 H-pirazol-5-il]carbonil]amino]-5-cloro-N-metil-3-piridincarboxamida;
 - 3-[[[3-Bromo-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-2,6-dicloro-*N*-metil-4-piridincarboxamida;
 - 2,6-dicloro-3-[[[1-(3-cloro-2-piridinil)-3-(trifluorometil)-1*H*-pirazol-5-il]carbonil]amino]-*N*-(1-metiletil)-4piridincarboxamida:
 - 3-([[3-Bromo-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-6-cloro-*N*,4-dimetil-2-piridincarboxamida;
 - 3-[[[3-Bromo-1-(3-cloro-2-piridinil)-1 H-pirazol-5-il]carbonil]amino]-4,6-dicloro-N-metil-2-piridincarboxamida;
 - 5-[[[3-Cloro-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-*N*,6-dimetil-4-pirimidincarboxamida; y
 - 5-[[[3-Bromo-1-(3-cloro-2-piridinil)-1*H*-pirazol-5-il]carbonil]amino]-*N*,*N*,2,6-tetrametil-4-piridincarboxamida.
 - 16. Un método para combatir una plaga de invertebrados, que comprende poner en contacto la plaga de invertebrados o su entorno con una cantidad biológicamente eficaz de un compuesto de cualquiera de las reivindicaciones 1 a 15, o una sal adecuada del mismo desde el punto de vista agrícola, con la condición de que el método no sea un método de tratamiento del cuerpo humano o de un animal por terapia.
- 35 17. El método de la reivindicación 16 que comprende además una cantidad biológicamente eficaz de al menos un compuesto o agente adicional para combatir plagas de invertebrados.
 - 18. Una composición para combatir una plaga de invertebrado que comprende una cantidad biológicamente eficaz de un compuesto de cualquiera de las reivindicaciones 1 a 15, o una sal adecuada del mismo desde el punto de vista agrícola, y al menos un componente adicional seleccionado entre el grupo que consiste en tensioactivos, diluyentes sólidos y diluyentes líquidos.
 - 19. La composición de la reivindicación 18, que comprende además una cantidad biológicamente eficaz de al menos un compuesto o agente adicional para combatir plagas de invertebrados.