

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de publicación: $2\ 365\ 020$

(51) Int. Cl.:

A61B 17/28 (2006.01) A61B 18/14 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA Т3

- 96 Número de solicitud europea: 05006999 .6
- 96 Fecha de presentación : **12.08.1996**
- 97 Número de publicación de la solicitud: **1557129** 97 Fecha de publicación de la solicitud: 27.07.2005
- 54 Título: Control de presión de sellado de un tejido vascular.
- (30) Prioridad: **19.09.1995 US 530450**
- (73) Titular/es: **COVIDIEN AG.** Victor Von Bruns-Strasse 19 8212 Neuhausen AM Rheinfall, CH
- Fecha de publicación de la mención BOPI: 20.09.2011
- (72) Inventor/es: Buysse, Steven Paul; Kennedy, Jenifer S.; Lands, Michael J.; Loeffler, Donald R.; Lukianow, S. Wade y Ryan, Thomas P.
- 45) Fecha de la publicación del folleto de la patente: 20.09.2011
- (74) Agente: Elzaburu Márquez, Alberto

ES 2 365 020 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Control de presión de sellado de un tejido vascular.

5

10

50

55

- 1. <u>Campo del Invento</u> Un mecanismo para pinzar con fuerza para un instrumento permite a un usuario aplicar fuerza dentro de un margen preferido para retener tejido vascular particular de un paciente durante la aplicación de energía electroquirúrgica para sellar y/o unir el tejido particular.
- 2. Antecedentes de la Exposición El sellado y/o la unión de tejido vascular particular durante la cirugía es una parte esencial de una operación o procedimiento. Se han usado suturas, grapas y adhesivos con niveles variables de éxito. Estas técnicas anteriores y el material y el equipo usados no logran minimizar o limitar el daño al tejido particular y, lo que es más importante, no eliminan las reacciones extrañas del cuerpo del paciente al material añadido. Concretamente, la reacción del cuerpo del paciente es normalmente la de rodear el cuerpo extraño, es decir, el tejido cicatricial añadido, con células de barrera para aislar con ello la materia extraña de las células normales dentro del paciente. Por consiguiente, la cicatriz o evidencia del trauma aumenta de tamaño. El material añadido aumenta el coste de cualquier operación o procedimiento quirúrgico y las complicaciones quirúrgicas y para la cicatrización.
- El sellado y/o la unión de tejido vascular es importante para reducir al mínimo y/o eliminar el sangrado o para la reconexión de estructuras de tejido después de la eliminación quirúrgica de órganos o excrecencias no deseables. Se ha usado la electrocirugía para cortar y coagular tejido, pero el control que se necesita para sellar limpiamente y/o unir tejido cortado y coagular los vasos sangrantes no se ha conseguido, en particular para tejido muy vascularizado, es decir, lo que aquí interesa y preocupa en cuanto al tejido particular del paciente. Concretamente, se han usado varios aparatos para coagulación, fulguración, cauterización para formar escaras mínimas y/o flexibles sobre los vasos sangrantes. Diferentes formas de onda de alta frecuencia para coagulación por energía electroquirúrgica, coagulación potenciada por gas argón y electrodos electroquirúrgicos no adherentes se han diseñado, fabricado y vendido, con grados variables de éxito en cuanto al tiempo de cicatrización y a la cantidad de evidencia de intrusión quirúrgica. Todo lo que se ha dicho aumenta el coste y la complejidad de la cicatrización quirúrgica.

La Patente de EE.UU. Número 4.043.342 tiene implementos electroquirúrgicos con estructuras de electrodos sesquipolares con electrodos activo y de retorno soportados por conectadores cargados respectivamente por resortes.

- El documento WO 9313719 tiene un instrumento electroquirúrgico que incluye una estructura de soporte con dos 30 electrodos interconectados con el mismo para permitir movimiento relativo entre ellos. Un dispositivo de carga, tal como un resorte, empuja al electrodo de retorno de la corriente a contacto con el tejido cuando se sitúa el electrodo activo para cirugía. El electrodo de retorno es movible longitudinalmente y lateralmente con relación al electrodo activo. Una fuente de señales proporciona una señal de corte del tejido y una señal de coagulación. El electrodo de retorno de corriente tiene una superficie de contacto con el tejido, la cual define una interfaz plana con el tejido 35 durante la cirugía. El electrodo activo es movible transversalmente con relación a la interfaz. El mismo aumenta la superficie de contacto para reducir la probabilidad de daños en el tejido y para controlar fácilmente la profundidad del corte. En la Patente de EE.UU. Número 5.047.027 hay un instrumento electroquirúrgico bipolar diseñado para reseccionar excrecencias tumorosas del esófago, la vesícula o de otro órgano interno, en, los que se llega al lugar del tumor por medio de un endoscopio. El cortador está dimensionado para ajustar por el lumen central del 40 endoscopio. Un tubo flexible alargado tiene un resorte helicoidal conductor en voladizo desde el extremo distal del tubo, que forma un electrodo de retorno, y una anilla de alambre conductor espaciada a una distancia de separación predeterminada de la convolución más distal del resorte helicoidal, y cuyo plano es perpendicular al eje geométrico longitudinal del tubo flexible que forma el electrodo activo.
- Hilos conductores para aplicar un voltaje de alta frecuencia RF a través de los electrodos se extienden a través del lumen del tubo flexible. Al ser arrastrada la parte extrema distal del instrumento sobre el tumor a ser reseccionado, el resorte helicoidal en voladizo es desplazado lateralmente, permitiendo que la corriente de RF salga del electrodo de anilla activo para cortar a través del tejido tumorado.
 - En la Patente de EE.UU. 5.007.908 hay un instrumento con un miembro tubular flexible alargado que tiene un extremo proximal y un extremo distal y múltiples lúmenes que se extienden entre ellos. Fijado al extremo distal del tubo hay un miembro de punta de cerámica de forma de bala que tiene un ánima longitudinal dispuesta centradamente a través de la pared lateral del miembro de punta. La superficie exterior de cerámica del miembro de punta está cubierta con una capa conductora que forma un primer electrodo inactivo. Un conductor eléctrico unido a esa superficie de electrodo realimenta a través de un lumen del tubo a su extremo proximal, donde puede ser acoplado a un generador electroquirúrgico. También discurriendo a través de un lumen en el tubo hay otro conductor que puede hacerse que se proyecte hacia fuera a través de la abertura en el miembro superior. Un cubo que tiene un núcleo móvil cargado por resorte está fijado al extremo proximal del tubo con el núcleo móvil unido al hilo conductor, de modo que cuando el núcleo móvil es deprimido el extremo distal del hilo conductor se proyectará en una corta distancia más allá de la extremidad del miembro de punta. Por acoplamiento de este segundo conductor a un generador electroquirúrgico, se convierte en el electrodo activo de un par bipolar.

En la Patente de EE.UU. 5.290.286 hay un instrumento electroquirúrgico con un par bipolar de electrodos conductores para cortar tejido, de los cuales un electrodo al menos es movible con relación al otro. Los electrodos están montados con relación a un tapón aislante, el cual está asegurado al extremo distal de un miembro tubular. La presión ejercida sobre una anilla para el pulgar desplaza la posición de un electrodo con relación a la del otro. Al aplicarse el voltaje de RF, la distancia a la cual se sitúan los electrodos controla la cantidad de formación de arco que se producirá entre los electrodos, cuando se pongan dentro de un alcance apropiado. A los electrodos se les suministra potencia desde una fuente de energía de RF normal, controlada por un interruptor de pedal o para la mano. El tapón aislante puede incluir además trazas metálicas dispuestas en la superficie periférica. Cuando son excitadas, estas trazas funcionan como un par bipolar de electrodos para efectuar la electrocoagulación del tejido y la sangre. El instrumento es para inserción en un trocar laparoscópico o endoscopio para recortar los pequeños pólipos de la pared del colon y para retirar el tejido, y coagular áreas de tejido vascular particulares.

En la Patente de EE.UU. 5.342.357 hay un sistema de cauterización con una fuente de energía de radiofrecuencia que incluye una unidad de control conectada a la fuente de energía, y una sonda electroquirúrgica. La sonda tiene un mango con un miembro alargado que se extiende desde el mango. El extremo distal del miembro alargado tiene conicidad e incluye una punta de cauterización y un electrodo de corte retráctil. La sonda incluye un conducto para la transmisión de fluido de refrigeración al extremo distal. La temperatura del electrodo en el extremo distal de la sonda es vigilada y se usa para controlar el caudal de fluido de refrigeración que va a la punta. Un generador suministra energía eléctrica a los electrodos y se vigila la impedancia del tejido entre los electrodos para evitar daños a los tejidos debidos a las altas temperaturas. El sistema controla la transferencia de calor al tejido durante la cirugía e impide que el tejido o el coagulante se suelden al electrodo que suministra la energía.

En el documento WO-A-85/07662 se describe un instrumento quirúrgico que comprende un conjunto de mango con un conjunto de útil desprendible. El conjunto de útil comprende mordazas pivotables. Las mordazas están acopladas al extremo distal de una varilla interior, la cual es trasladable longitudinalmente dentro de un manguito exterior. Cuando se traslada la varilla interior, un miembro de guía en el extremo distal del manguito exterior hace contacto con las mordazas de tal modo que cada mordaza gire. El conjunto de mango comprende un disparador que se aplica a un miembro de traslación en la varilla interior. Al ser hecho girar el disparador, el miembro de traslación lleva a la varilla interior hacia atrás y hacia delante para accionar las mordazas. El miembro de traslación está acoplado a la varilla interior por medio de un acoplador que tiene un resorte que limita la fuerza de cierre aplicada a las mordazas. El instrumento incluye también una función de característica de trinquete la cual permite aplicar fuerza de cierre a las mordazas por incrementos y permite también que las mordazas sean retenidas en una posición de cerradas con una fuerza de cierre deseada.

Ninguno de los equipos antes mencionados ha ofrecido al cirujano el nivel de control que necesita para remodelar y reformar el tejido con energía electroquirúrgica. No se ha hallado ningún mecanismo para la aplicación de presión de pinzado, energía electroquirúrgica y temperatura para sellar y/o unir el tejido vascularizado. El tejido del paciente incluye colágeno, el cual se ha visto que cierra una herida o un daño, quirúrgico o de otro tipo, al ser sometido a presión y temperatura adecuadas. El colágeno puede ser fundido y vuelto a solidificar en un coagulante de tejido natural resistente a la carga, de modo que la estructura reformada es capaz de soportar cargas similares a las que soporta un tejido no cortado. No es conocido ningún mecanismo para la aplicación adecuada y apropiada de la temperatura y la presión.

40 En los párrafos que siguen se describen varios métodos. Estos métodos son realizables con la materia sujeto del presente invento. Para evitar dudas, se afirma aquí que las reivindicaciones no están dirigidas a la materia sujeto dentro del alcance del artículo 53 (c) de la EPC.

Sumario del Invento

10

15

20

25

30

35

55

60

El invento se define en la reivindicación 1 que sigue. Las reivindicaciones subordinadas están dirigidas a características opcionales o preferidas. Un mecanismo para pinzado con fuerza para un instrumento electroquirúrgico de pinzar permite a un usuario sellar y/o unir tejido vascular particular de un paciente. El mecanismo para pinzar con fuerza incluye un soporte alargado que tiene extremos del usuario y del paciente. Un actuador está en el extremo del usuario y un par de efectores finales están en el extremo del paciente, de modo que el par de efectores finales, al ser conectados al actuador, operan desde el extremo del usuario para controlar el movimiento de los efectores finales. Cada uno del par de efectores finales tiene una cara opuesta de un área para contacto con el tejido vascular particular del paciente.

Entre los efectores finales y el actuador hay una conexión de movimiento perdido para transferir la manipulación del usuario del actuador a los efectores finales y para mantener aplicaciones de fuerza de pinzado predeterminada durante el recorrido y/o sellar el tejido vascular particular del paciente. En la conexión de movimiento perdido está incluido un miembro que cede, de modo que las caras opuestas pinzan el tejido particular del paciente entre ellas con fuerza procedente del miembro que cede. El miembro que cede puede incluir en la realización preferida un resorte situado cerca del actuador en el extremo del usuario.

Una varilla de transferencia alargada en la conexión de movimiento perdido está preferiblemente entre el resorte cerca del actuador y los efectores finales en el extremo del paciente, para movimiento de los mismos entre una posición de abiertos para recibir el tejido particular del paciente y una posición de pinzado para mantener la fuerza

predeterminada sobre el tejido particular del paciente entre los efectores finales. Una transmisión articulada de bloqueo acoplada al actuador y al miembro que cede retiene las caras opuestas sujetas contra el tejido particular del paciente entre ellos, con la fuerza procedente del miembro que cede para conseguir la fuerza predeterminada. Posiciones de enganche escalonadas en el actuador permiten al usuario establecer selectivamente la articulación de bloqueo y el miembro que cede estableciendo diferentes niveles de fuerza para el tejido vascular particular sellado para retener la fuerza establecida, de acuerdo con el tejido particular que esté siendo sellado. Las posiciones de enganche escalonadas están asociadas con diferentes tejidos vasculares particulares, incluyendo las arterias y las venas y, opcionalmente, el mesenterio.

- Un electrodo activo está soportado en uno de los efectores finales. También está incluido un electrodo de retorno para hacer contacto con el tejido del paciente. Un suministro de energía electroquirúrgica conecta a través del electrodo activo y del electrodo de retorno para entregar energía electroquirúrgica entre y a través de los electrodos activos y el electrodo de retorno cuando el tejido particular del paciente está retenido por los efectores finales. El suministro de energía electroquirúrgica puede incluir un generador electroquirúrgico.
- Un circuito de realimentación puede estar en el generador electroquirúrgico y en circuito con los electrodos activo y de retorno para responder a los parámetros indicadores de la entrega de energía a través del tejido vascular particular del paciente, interpuesto entre los electrodos activo y de retorno.
 - También puede estar un sensor de la temperatura en el circuito de realimentación y preferiblemente soportado sobre una de las caras opuestas; el sensor para responder a la temperatura del tejido vascular particular del paciente entre las caras opuestas durante la entrega de energía electroquirúrgica. Un monitor de la impedancia en el circuito de realimentación puede también estar enganchado eléctricamente al generador electroquirúrgico para responder a los cambios de impedancia del tejido vascular particular del paciente entre los electrodos activo y de retorno durante la entrega de energía electroquirúrgica.

20

- Un control asociado con el suministro de energía electroquirúrgica aplica lo más preferiblemente energía electroquirúrgica al tejido particular retenido del paciente en respuesta a la aplicación de la fuerza predeterminada para el sellado de tejido particular entre los efectores finales.
 - Alternativamente, en un circuito bipolar el electrodo de retorno podría estar en uno del par de efectores finales opuesto al electrodo activo. Opcionalmente, el electrodo de retorno podría estar en uno del par de efectores extremos que lleve el electrodo activo, con un aislador eléctrico dispuesto entre esos electrodos activo y de retorno. Análogamente, el electrodo de retorno puede ser una almohadilla conectada al tejido del paciente y ese es un circuito monopolar.
 - El miembro que cede podría ser un acoplamiento hidráulico como parte de la conexión de movimiento perdido entre los efectores finales. El acoplamiento hidráulico puede estar situado próximo al actuador. El miembro que cede podría ser un embrague deslizante dentro de la conexión de movimiento perdido cerca del actuador en el extremo del usuario.
- 35 El par de efectores finales pueden tener caras opuestas, cada una de un área igual y previamente establecida, para pinzar el tejido particular del paciente entre ellas con la fuerza procedente del miembro que cede, de modo que se aplique una fuerza al tejido particular en un margen preferido.
- Un método permite a un usuario pinzar y aplicar fuerza y energía electroquirúrgica para sellar y/o unir tejido vascular particular de un paciente, con el mecanismo de pinzar con fuerza para el instrumento. Los pasos del método pueden incluir la transferencia de la manipulación del usuario del actuador al par de efectores finales con la conexión de movimiento perdido, manteniendo con la conexión de movimiento perdido una aplicación de fuerza de pinzado predeterminada durante el sellado del tejido particular entre los efectores finales y aplicando energía electroquirúrgica para sellar el tejido particular retenido del paciente en respuesta al pinzado del mismo entre los efectores finales, con un control asociado con el suministro de energía electroquirúrgica.
- El paso del método de aplicación de energía electroquirúrgica puede incluir responder al parámetro de la temperatura del tejido particular del paciente entre los efectores finales durante la entrega de energía electroquirúrgica con el circuito de realimentación que incluye el sensor de temperatura llevado en una de las caras opuestas.
- El paso del método de aplicación de energía electroquirúrgica puede estar limitado por la impedancia del tejido particular del paciente entre los electrodos activo y de retorno durante la entrega de energía electroquirúrgica con el monitor de la impedancia.
 - El paso del método de mantener la fuerza de pinzado predeterminada durante el sellado del tejido particular puede ser puesto en práctica cambiando para ello el miembro que cede de modo que las caras opuestas pincen el tejido particular del paciente entre ellas con la fuerza del miembro que cede.
- El paso del método de desplazar asegura preferiblemente la fuerza de pinzado predeterminada durante el sellado del tejido particular por la carga elástica procedente del miembro que cede y, lo más preferiblemente, incluyendo el paso de empujar con el resorte.

El paso del método de desplazar podría como alternativa asegurar la fuerza de pinzado predeterminada durante el sellado del tejido particular por el miembro que cede con el paso de mover los efectores extremos entre su posición de abiertos para recibir el tejido particular y la posición de pinzado con la varilla de transferencia alargada.

El paso del método de desplazar con el actuador puede asegurar la fuerza de pinzado predeterminada durante el sellado del tejido particular del paciente mediante la carga elástica del miembro que cede con el paso alternativo de empujar con el acoplamiento hidráulico.

El paso del método de desplazar con el actuador puede asegurar la fuerza de pinzado predeterminada durante el sellado del tejido particular mediante la carga elástica del miembro que cede con el paso de empujar con el embrague deslizante.

El paso del método de mantener la presión de pinzado predeterminada durante el sellado de un tejido particular, con el paso de usar la fuerza procedente del miembro que cede de modo que las presiones queden dentro de un margen preferido, puede conseguirse con la transmisión articulada de bloqueo.

Breve Descripción de los Dibujos

La Figura 1 es una vista esquemática de un suministro y circuito electroquirúrgico para un mecanismo de pinzar con fuerza para permitir a un usuario aplicar fuerza dentro de un margen preferido para retener tejido vascular particular de un paciente durante la aplicación de energía electroquirúrgica para sellar y/o unir tejido vascular particular.

La Figura 2 es una vista lateral en corte transversal parcial dado a lo largo de las líneas 2-2 de la Figura 1 y que muestra el mecanismo de fuerza de pinzado en el que se usa un resorte como una conexión de movimiento perdido entre el usuario y los efectores finales, aquí representados en una posición de completamente abiertos.

20 La Figura 3 es una vista lateral en corte transversal parcial dado a lo largo de las líneas 3-3 de la Figura 1 y en la que se muestra el mecanismo de fuerza de pinzar en el que los efectores finales se han representado en la posición de cerrados.

La Figura 4 es una vista lateral en corte transversal parcial dado a lo largo de las líneas 4-4 de la Figura 1 y que muestra el mecanismo de pinzar con fuerza en el que los efectores finales están en posición de parcialmente comprimidos.

La Figura 5 es una vista lateral en corte transversal parcial dado a lo largo de las líneas 5-5 de la Figura 1 y que ilustra el mecanismo de pinzado con fuerza, en el que los efectores finales están en la posición de comprimidos totalmente cerrados, el actuador y el par de efectores finales.

La Figura 6 es una vista esquemática parcial del acoplamiento hidráulico para la conexión de movimiento perdido.

30 La Figura 7 es una vista esquemática parcial del embrague deslizante para la conexión de movimiento perdido.

Descripción Detallada del Invento

25

35

40

45

Un mecanismo 10 de pinzado con fuerza de un instrumento permite a un usuario pinzar y aplicar fuerza y energía electroquirúrgica para sellar y/o unir tejido vascular particular de un paciente 11, en la Figura 1. El mecanismo 10 para pinzar con fuerza incluye un soporte alargado 12, particularmente adecuado para procedimientos endoscópicos, que tiene un extremo del usuario 13 y un extremo del paciente 14. Un actuador 15 está en el extremo del usuario 13 o de operación por el usuario. Un par de los efectores finales 16 están en el extremo del paciente 14 y el par de efectores finales 16 conectan con el actuador 15 para operación con ellos y desde el extremo 13 del usuario para controlar el movimiento del par de efectores finales 16. El par de efectores finales 16 tienen cada uno una cara opuesta 17 de un área para contacto con el tejido particular del paciente 11, como se ha ilustrado en las Figuras 2, 3, 4 y 5.

Una conexión 18 de movimiento perdido está situada entre el par de efectores finales 16 en el extremo 14 del paciente y el actuador 15 en el extremo 13 del usuario, en las Figuras 2, 3, 4 y 5. La conexión de movimiento perdido 18 transfiere la manipulación por el usuario del actuador 15 al par de efectores finales 16 para mantener una aplicación de fuerza de pinzado predeterminada durante el sellado del tejido particular del paciente 11 entre el par de efectores finales 16. Un miembro que cede 19 está en la conexión 18 de movimiento perdido, de modo que las caras opuestas 17 pinzan el tejido vascular particular del paciente 11 entre ellas, con fuerza procedente del miembro que cede 19. El miembro que cede 19 incluye un resorte 20, como parte de la conexión de movimiento perdido 18, entre el par de efectores finales 16 en el extremo 14 del paciente y el actuador 15 en el extremo 13 del usuario. El resorte 20 está situado próximo al actuador 15 en el extremo 13 del usuario.

Una varilla de transferencia alargada 21 conectada a la conexión 18 de movimiento perdido está situada entre el resorte 20 próximo al actuador 15 y el par de efectores finales 16 en el extremo 14 del paciente, en las Figuras 2, 3, 4 y 5. La varilla 21 se acopla al par de efectores finales 16 para movimiento de los mismos entre una posición de abiertos, en la Figura 2, para recibir el tejido particular del paciente 11, y una posición de pinzado para mantener la fuerza predeterminada sobre el tejido particular del paciente 11 entre el par de los efectores finales 16.

En las Figuras 2, 3, 4 y 5, una transmisión articulada de bloqueo 22 acoplada al actuador 15 y al miembro que cede 19 retiene las caras opuestas 17 sujetas contra el tejido particular del paciente 11 entre ellas con la fuerza del miembro que cede 19 para conseguir fuerzas de compresión predeterminadas. En las Figuras 3, 4 y 5 se han representado diferentes niveles de compresión, es decir, con fuerza nula, con compresión parcial y con compresión completa. Esto se consigue con el fiador 22a y las muescas 22b, como se ha ilustrado, pero es aceptable cualquier forma de disposición de enganche escalonado que retenga al actuador 15 en una posición previamente establecida. Las posiciones de enganche escalonado en el actuador 15 permiten al usuario establecer selectivamente la transmisión articulada de bloqueo 22 y el miembro que cede 19 estableciendo la fuerza para que el tejido vascular particular sellado retenga la fuerza predeterminada de acuerdo con el tejido vascular particular que esté siendo sellado. Las posiciones de enganche escalonado están asociadas con diferentes tejidos vasculares particulares, incluyendo las arterias y las venas y. opcionalmente, el mesenterio si se desea. Por ejemplo, para las arterias se requerirá una fuerza mayor que para las venas. Se ha comprobado que una fuerza de cierre de más de 1.500 gramos es efectiva para sellar arterias. Una fuerza de cierre de menos de 500 gramos es efectiva para sellar venas.

- En uno del par de efectores finales 16 va un electrodo activo 23, en la Figura 1, pero podría estar en ambos efectores finales 16. Un electrodo de retorno 24 está en contacto con el tejido del paciente 11. Un suministro 25 de energía electroquirúrgica conecta a través del electrodo activo 23 del par de efectores finales 16 y el electrodo de retorno 24. El suministro 25 de energía electroquirúrgica proporciona electrocirugía entre y a través del electrodo activo 23 y el electrodo de retorno 24 cuando el tejido particular del paciente 11 está retenido por el par de efectores finales 16. El suministro 25 de energía electroquirúrgica incluye un generador electroquirúrgico 26.
- 20 En el generador electroquirúrgico 26 está un circuito de realimentación 27. El circuito de realimentación 27 está en circuito con el electrodo activo 23 y con el electrodo de retorno 24 y responde a los parámetros indicadores de entrega de energía a través del tejido particular del paciente 11 interpuesto entre el electrodo activo 23 y el electrodo de retorno 24.
- Un sensor 28 de la temperatura, en la Figura 2, está conectado al circuito de realimentación 27 soportado en una de las caras opuestas 17 y que responde al parámetro de la temperatura del tejido particular del paciente 11 entre el par de efectores finales 16 durante la entrega de energía electroquirúrgica. Un monitor de la impedancia 29 en el circuito de realimentación 27 está enganchado eléctricamente al generador electroquirúrgico 26. El monitor 29 de la impedancia responde al parámetro de la impedancia del tejido particular del paciente 11 entre el electrodo activo 23 y el electrodo de retorno 24 durante la entrega de energía electroquirúrgica.
- 30 Un control 30, en la Figura 1, asociado con el suministro 25 de energía electroquirúrgica, aplica energía electroquirúrgica al tejido particular retenido del paciente 11 en respuesta a la aplicación de la fuerza predeterminada para el sellado del tejido particular entre el par de efectores finales 16.
- El electrodo de retorno 24 se ha representado alternativamente en la Figura 1 en uno del par de efectores finales 16 opuesto al electrodo activo 23. El electrodo de retorno 24, cuando está en uno del par de efectores extremos 16 que lleva el electrodo activo, tiene un aislador eléctrico, que está dispuesto entre el electrodo activo y el electrodo de retorno representados en la Figura 3. El electrodo de retorno es específicamente una almohadilla conectada al tejido del paciente 11, como se ha representado en la Figura 1.
- El miembro que cede 19 puede ser un acoplamiento hidráulico, que puede verse mejor en la Figura 6, como parte de la conexión de movimiento perdido entre 18 y está situado entre el par de efectores finales 16 en el extremo 14 del paciente y el actuador 15 en el extremo 13 del usuario. El acoplamiento hidráulico está preferiblemente situado próximo al actuador 15 en el extremo 13 del usuario, pero puede estar en cualquier otro lugar. El acoplamiento hidráulico puede incluir un émbolo 31 unido a la varilla 21 de transferencia alargada. El fluido es comprimido y dosificado por la válvula 33 a un tapón flotante 34 que está cargado por un resorte 35 y así se usa principalmente la naturaleza compresiva del fluido para añadir la carga elástica.
- 45 El miembro que cede 19 podría ser alternativamente un embrague deslizante 36 dentro de la conexión 18 de movimiento perdido situada entre el par de efectores finales 16 en el extremo 14 del paciente y el actuador 15 en el extremo 13 del usuario, como se ha representado en la Figura 7. El embrague deslizante 36 es lo más preferible que esté situado próximo al actuador 15 en el extremo del usuario, pero podría estar en cualquier otro lugar.
- El embrague deslizante 36, en la Figura 7, está conectado a la varilla de transferencia alargada 21 e incluye una rueda 37 apoyada para giro, para girar cuando la varilla 21 se desplaza con movimiento alternativo. Hay una banda 38 de freno montada a pivotamiento en 39 para ser hecha girar contra la rueda 37. La conexión de la función entre la rueda 37 y la banda de freno 38 actúa como el miembro que cede 19 en este embrague deslizante 36. Aunque se ha representado un resorte 40, lo que cede es principalmente la carga de fricción del freno.
- El par de efectores finales 16 tienen caras opuestas cada una de las cuales es de un área igual y previamente establecida. Las caras opuestas pinzan el tejido particular del paciente 11 entre ellas, como se ve en la Figura 1, con la fuerza debida al miembro 19 que cede, de modo que se aplica una presión preferida en el tejido particular.
 - Un método permite a un usuario pinzar y aplicar fuerza y energía electroquirúrgica para sellar y/o unir tejido vascular particular de un paciente 11 con el mecanismo 10 para pinzar con fuerza del instrumento, aquí descrito en lo que

antecede. Los pasos del método incluyen manipulación de transferencia por el usuario del actuador 15 al par de efectores finales 16 con la conexión 18 de movimiento perdido, manteniéndose una aplicación de fuerza de pinzado predeterminada durante el sellado y/o la unión del tejido particular del paciente 11 entre el par de efectores finales 16 con la conexión de movimiento perdido 18, y aplicar energía electroquirúrgica para sellar y/o unir el tejido particular retenido del paciente 11 en respuesta al pinzado del mismo entre el par de efectores finales 16, con el control asociado con el suministro de energía electroquirúrgica 25.

5

10

20

25

El paso del método de aplicación de energía electroquirúrgica incluye responder al parámetro de la temperatura del tejido particular del paciente 11 entre el par de efectores finales 16 durante la entrega de energía electroquirúrgica. con el circuito de realimentación 27 incluyendo el sensor de temperatura 28 llevado en una de las caras opuestas 17.

El paso del método de aplicación de energía electroquirúrgica incluye responder a la impedancia del tejido particular del paciente 11 entre el electrodo activo y el electrodo de retorno durante la entrega de energía electroquirúrgica, con el monitor de impedancia 29.

El paso del método de mantener la aplicación de fuerza de pinzado predeterminada durante el sellado y/o la unión del tejido particular del paciente 11, desplazando para ello el miembro que cede 19 en la conexión 18 de movimiento perdido con el actuador 15, de modo que las caras opuestas pincen el tejido particular del paciente 11 entre ellas con una fuerza procedente del miembro que cede 19.

El paso del método de desplazar con el actuador 15 asegura la aplicación de la fuerza de pinzado predeterminada durante el sellado del tejido particular del paciente 11 mediante la carga elástica del miembro que cede 19 e incluyendo el paso de empujar con el resorte 20.

El paso del método de desplazar con el actuador 15 asegura la aplicación de una fuerza de pinzado predeterminada durante el sellado del tejido particular del paciente 11 mediante el miembro que cede 19 e incluyendo el paso de mover el par de efectores finales 16 entre sus posiciones de abiertos para recibir el tejido particular del paciente 11 y la posición de pinzado con la varilla alargada de transferencia 21 situada entre el resorte 20 próximo al actuador 15 y el par de efectores finales 16 en el extremo 14 del paciente.

El paso del método de desplazar con el actuador 15 asegura la aplicación de la fuerza de pinzado predeterminada durante el sellado del tejido particular del paciente 11 mediante la carga elástica del miembro que cede 19, e incluyendo el paso de empujar con el acoplamiento hidráulico como parte de la misma.

El paso del método de desplazar con el actuador 15 asegura la aplicación de la fuerza de pinzado predeterminada durante el sellado del tejido particular del paciente 11 mediante la carga elástica del miembro que cede 19 e incluyendo el paso de empujar con el embrague deslizante 36 como parte de la misma.

El paso del método de mantener la aplicación de fuerza de pinzado predeterminada durante el sellado del tejido particular del paciente 11 y mediante el paso de uso de la fuerza procedente del miembro que cede 19, de modo que se aplique presión al tejido particular.

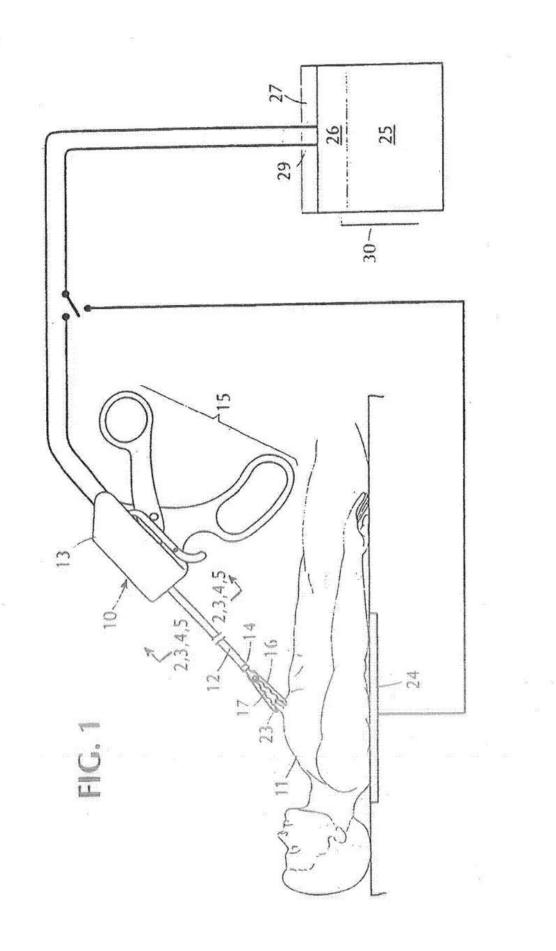
REIVINDICACIONES

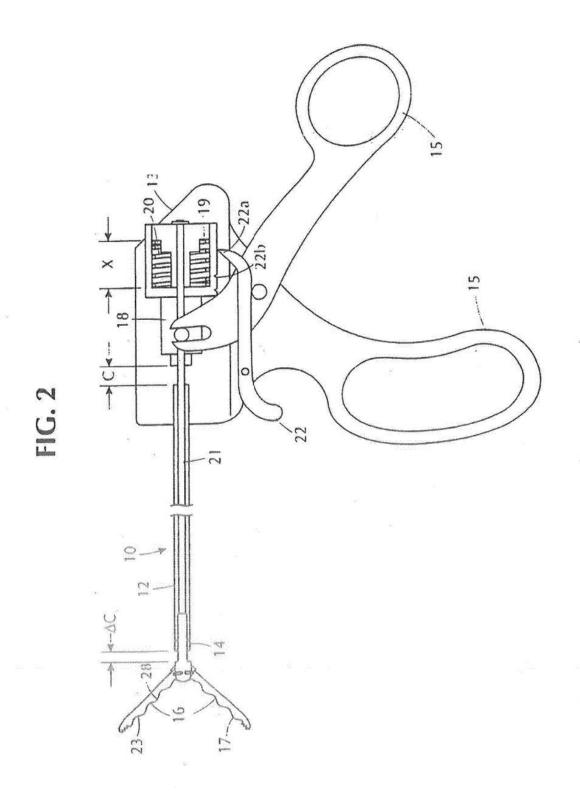
1. Un instrumento para permitir a un usuario pinzar y aplicar fuerza y energía electroquirúrgica para sellar y/o unir tejido vascular particular de un paciente, que comprende:

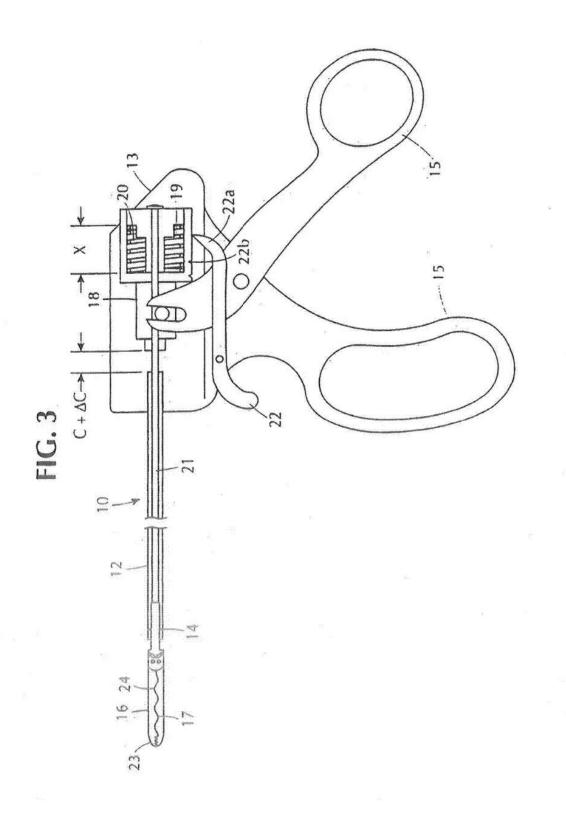
un soporte alargado (12) que tiene un extremo del usuario (13) y un extremo del paciente (14);

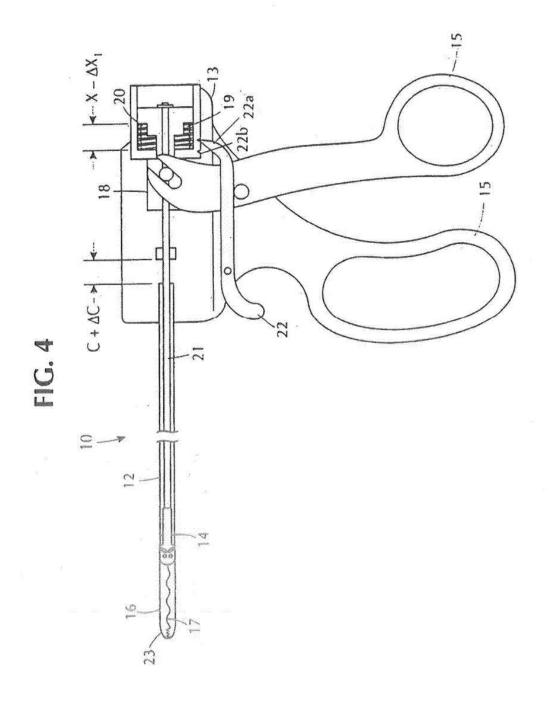
un actuador (15) en el extremo (13) del usuario para operación por parte del usuario;

- un par de efectores finales (16) en el extremo 14 del paciente, con uno al menos del par de efectores finales (16) conectado al actuador (15) para operación con el mismo y desde el extremo (13) del usuario para controlar el movimiento relativo entre el par de efectores finales (16), teniendo cada uno del par de efectores finales (16) una cara opuesta (17) de un área para contacto con el tejido particular del paciente;
- una conexión de movimiento perdido (18) entre al menos uno del par de efectores finales (16) en el extremo del paciente y el actuador (15) en el extremo del usuario (13), la conexión de movimiento perdido (18) para transferir la manipulación del usuario del actuador (15) a al menos uno del par de efectores finales (16) para transferir la manipulación del usuario del actuador para mantener una fuerza de pinzado predeterminada dentro de un margen preferido durante el sellado del tejido dispuesto entre el par de efectores finales,
 - un electrodo activo (23) soportado en uno del par de efectores finales (16),


20


- un electrodo de retorno (24) el cual, en uso, está en contacto con el tejido del paciente para formar un circuito electroquirúrgico entre los electrodos activo y de retorno (24);
 - un suministro de energía electroquirúrgica (25) conectado a través del electrodo activo del par de efectores finales (16) y el electrodo de retorno (24), el suministro de energía electroquirúrgica (25) para entrega de energía electroquirúrgica a través del circuito electroquirúrgico entre y a través del electrodo activo y el electrodo de retorno (24) cuando el tejido particular del paciente está retenido por el par de efectores finales (16),
 - un control (30) asociado con el suministro (25) de energía electroquirúrgica para aplicar energía electroquirúrgica al tejido particular retenido del paciente en respuesta a la aplicación de la fuerza de pinzado para sellar el tejido particular entre el par de efectores finales (16),
- en que la conexión de movimiento perdido entre el actuador (15) y el par de efectores finales (16) incluye un miembro que cede (19), y las caras opuestas (17) pinzan el tejido particular del paciente entre ellas con la fuerza procedente del miembro que cede (19) sobre el área de la cara, para conseguir una fuerza predeterminada durante el pinzado y mientras se sella; y
- una transmisión articulada de bloqueo (22) acoplada al actuador (15) y al miembro que cede (19) retiene las caras opuestas (17) sujetas contra el tejido particular del paciente entre ellas, con la fuerza procedente del miembro que cede (19) sobre el área de la cara para conseguir la fuerza predeterminada, y las posiciones de enganche escalonadas en el actuador (15) permiten al usuario establecer selectivamente la transmisión articulada de bloqueo (22) acoplada con los mismos, de modo que el miembro que cede (19) establece la fuerza seleccionada sobre el área de la cara con relación al tejido vascular particular sellado para retener la fuerza predeterminada de acuerdo con el tejido particular que esté siendo sellado, en que las posiciones de enganche están asociadas con la fuerza predeterminada que es mayor que 1.500 gramos para sellar arterias y la fuerza predeterminada que es menor que 500 gramos para sellar venas.
 - 2. El instrumento según la reivindicación 1, en que el suministro de energía electroquirúrgica (25) incluye un generador electroquirúrgico (26) que tiene un circuito de realimentación (27) en circuito con el electrodo activo y el electrodo de retorno (24), respondiendo el circuito de realimentación (27) a los parámetros indicadores de la entrega de energía a través del tejido particular del paciente interpuesto entre los efectores finales (16).
 - 3. El instrumento según la reivindicación 2, en que el circuito de realimentación (27) incluye un monitor de la impedancia (29), enganchado eléctricamente el monitor de la impedancia (29) al generador electroquirúrgico (26), respondiendo el circuito de impedancia al parámetro de la impedancia del tejido particular del paciente entre el electrodo activo y el electrodo de retorno (24) durante la entrega de energía electroquirúrgica.
- 4. El instrumento según la reivindicación 2 o 3, en que el circuito de realimentación (27) incluye un sensor de la temperatura (28) soportado sobre uno del par de efectores finales (16), el sensor de la temperatura (28) responde al parámetro de la temperatura del tejido particular del paciente entre el par de efectores finales (16) durante la entrega de energía electroquirúrgica.
- 5. El instrumento según una cualquiera de las reivindicaciones precedentes, en que el miembro que cede (19) es un resorte (20) como parte de la conexión de movimiento perdido (18) entre el par de efectores finales (16) en el extremo del paciente (14).


6. El instrumento según la reivindicación 5, en que la conexión de movimiento perdido (18) incluye una varilla de transferencia alargada (21) entre el resorte (20) próximo al actuador (15) y el par de efectores finales (16) en el extremo del paciente (14), acoplada la varilla al par de efectores finales (16) para movimiento de los mismos entre una posición de abiertos, para recibir el tejido particular del paciente, y una posición de pinzado para mantener la fuerza predeterminada en el tejido particular del paciente entre el par de los efectores finales (16) y el electrodo de retorno (24) está en uno del par de efectores finales (16) opuesto al electrodo activo.


5

- 7. El instrumento según una cualquiera de las reivindicaciones 1 a 4, en que el miembro que cede (19) es un acoplamiento hidráulico como parte de la conexión de movimiento perdido (18) entre el par de efectores finales (16) en el extremo del paciente (14) y el actuador (15) en el extremo del usuario (13), situado el acoplamiento hidráulico próximo al actuador (15) en el extremo del usuario (13).
- 8. El instrumento según una cualquiera de las reivindicaciones 1 a 4, en el que el miembro que cede (19) es un embrague deslizante (36) dentro de la conexión de movimiento perdido (18) entre el par de efectores finales (16) en el extremo del paciente (14) y el actuador (15) en el extremo del usuario (13), situado el embrague deslizante (36) próximo al actuador (15) en el extremo del usuario (13).
- 9. El instrumento según la reivindicación 1, en el que el par de efectores finales (16) tienen caras opuestas (17) cada una de un área igual y previamente establecida, el actuador (15) aplica una primera fuerza para agarrar el tejido particular del paciente entre ellas, y el actuador (15), cuando es hecho avanzar por el usuario, aplica una segunda fuerza mayor desde el miembro que cede (19), de modo que se aplica presión al tejido particular para pinzar entre las caras opuestas (17) con una fuerza de cierre comprendida en el margen desde 300 hasta 2.500 gramos.

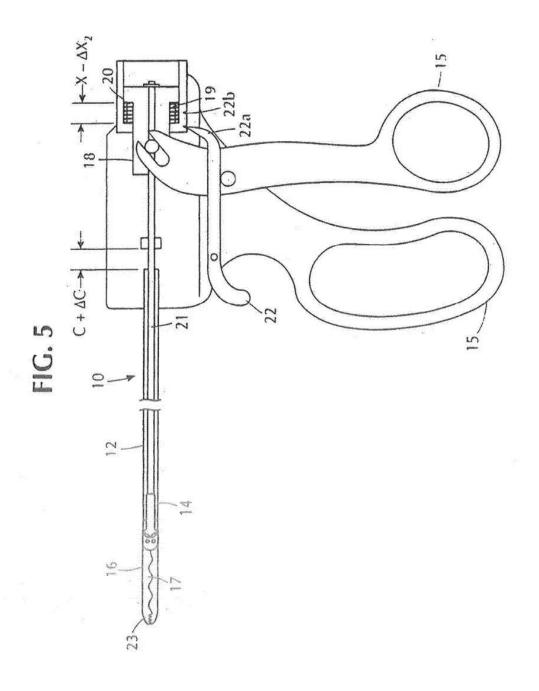


FIG. 6

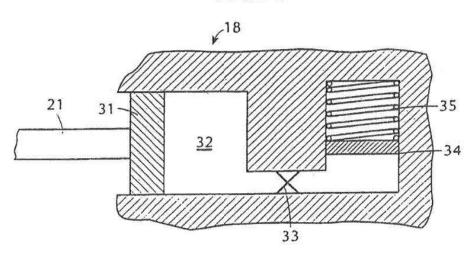
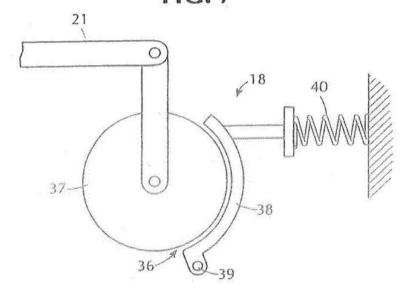



FIG. 7

