

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

 \bigcirc Número de publicación: $2\ 365\ 534$

(51) Int. Cl.:

C12N 15/10 (2006.01) **C07B 61/00** (2006.01) **C07H 21/00** (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA Т3

- 96 Número de solicitud europea: 06784718 .6
- 96 Fecha de presentación : **09.06.2006**
- 97 Número de publicación de la solicitud: 1910538 97) Fecha de publicación de la solicitud: 16.04.2008
- 54) Título: Procedimientos para la síntesis de bibliotecas codificadas.
- (30) Prioridad: **09.06.2005 US 689466 P** 28.10.2005 US 731041 P
- (73) Titular/es: Praecis Pharmaceuticals Inc. 830 Winter Street Waltham, Massachusetts 02451-1420, US
- Fecha de publicación de la mención BOPI: 06.10.2011
- (72) Inventor/es: Morgan, Barry; Hale, Stephen; Arico-Muendel, Christopher C.; Clark, Matthew; Wagner, Richard; Kavarana, Malcolm J.; Creaser, Steffen, Phillip; Franklin, George J.; Centrella, Paolo A.; Israel, David I.; Gefter, Malcolm L.; Benjamin, Dennis; Hansen, Nils Jakob Vest y
- 45) Fecha de la publicación del folleto de la patente: 06.10.2011
- (74) Agente: Elzaburu Márquez, Alberto

Acharya, Raksha A.

ES 2 365 534 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimientos para la síntesis de bibliotecas codificadas

Antecedentes de la invención

5

45

50

La búsqueda de procedimientos más eficientes para identificar compuestos que tienen actividades biológicas útiles ha llevado al desarrollo de procedimientos para la selección de vastas cantidades de compuestos distintos, presentes en las colecciones denominadas como bibliotecas combinatorias. Tales bibliotecas pueden incluir 105 o más compuestos distintos. Existe una variedad de procedimientos para producir bibliotecas combinatorias, y se ha informado la síntesis combinatoria de péptidos, peptidomiméticos y moléculas orgánicas pequeñas.

El documento WO 2004/039825 se refiere a codificación enzimática. El documento describe un procedimiento para 10 obtener un complejo bifuncional que comprende un parte de molécula de despliegue y una parte codificadora, en el que un complejo bifuncional naciente que comprende un sitio de reacción químico y un sitio de activación para la adición enzimática de una marca reacciona en el sitio de reacción química con uno o más reactivos, y siempre que las marcas respectivas identifiquen los reactantes en el sitio de activación por medio de una o más enzimas. En una variedad de pocillos, se dispensa un complejo bifuncional naciente que tiene un grupo reactivo (Rx) unido a un 15 oligonucleótido (línea horizontal). En una primera etapa, el grupo reactivo de cada compartimiento reacciona con un reactante, en una segunda etapa un oligonucleótido del codón y una férula se añaden juntos con una ligasa para ligar de modo covalente el oligonucleótido del codón al compleio bifuncional naciente reaccionado, y en una tercera etapa se recupera el producto de ligamiento. El contenido de los pocillos se puede combinar posteriormente y usar como una biblioteca de complejos bifuncionales o se recicla para otra ronda de reacción y adicción de marca. Opcionalmente, el ligamiento se produce entre dos oligonucleótidos de cadena doble, es decir, un oligonucleótido 20 del armazón de cadena doble con una proyección ("extremo adhesivo") se liga a un oligonucleótido bicatenario del codón provisto con una proyección complementaria. El tipo de ligamiento depende de la enzima seleccionada. El ligamiento de la cadena doble es más rápido debido al efecto guía del oligonucleótido que complementan los extremos. El oligonucleótido de complementación también se denomina como la férula oligonucleótido. Después, 25 antes o en forma simultánea con el ligamiento del oligonucleótido del codón al oligonucleótido del armazón ocurre una reacción entre el reactivo libre y el armazón. Se puede usar ligamiento enzimático o químico único (sin un oligonucleótido férula o formador de puente) o bicatenario (usando T4 ligasa).

El documento WO 93/20242 se refiere a bibliotecas químicas combinatorias codificadas. El documento describe un procedimiento para sintetizar el complejo bifuncional que tiene una molécula codificada y un polinucleótido identificador capaz de identificar entidades químicas que participan en la síntesis de la molécula codificada, donde la molécula codificada se genera por la reacción de al menos dos de varias entidades químicas asociadas con un polinucleótido identificador, y las entidades químicas se proporcionan por bloques de construcción separados. La biblioteca de complejos bifuncionales comprende 1.000 o más miembros diferentes, tales como 105 o 1012 miembros diferentes.

- 35 El documento WO 2004/083427 se refiere a la codificación por ligamiento de moléculas pequeñas. El documento describe una biblioteca de moléculas bifuncionales que proporciona un repertorio de diversidad química tal que cada resto químico se liga a una marca genética que facilita la identificación de una estructura química. La biblioteca se puede usar para identificar una estructura química que participa en una unión preseleccionada o reacción de catálisis con una molécula biológicamente activa.
- 40 Li Xiaoyu et al., J. American Chemical Soc., 126, 5090-5092, (2004) se refiere a la traducción del ADN en N-aciloxazolidinas sintéticas. El documento describe la traducción del ADN en N-aciloxazolidinas sintéticas, en que se sintetizan moléculas químicas intermedias de fórmula (YCF)(DAX)(ZBE)S.
 - Gartner Zev et al., Science, 305, 1601-1605, (2004) se refiere a la síntesis orgánica templada por ADN y la selección de una biblioteca de macrociclos. El documento describe la síntesis orgánica templada por ADN para traducir bibliotecas de secuencias de ADN, cada una contiene tres "codones", en bibliotecas de macrociclos de molécula pequeña sintética programada por la secuencia. Los conjugados de ADN-macrociclo resultantes se sometieron a selecciones in vitro para la afinidad de proteínas.
 - Kanan et al., Nature, 431, 545-549, (2004) se refiere al descubrimiento de la reacción permitida por la síntesis templada por ADN y selección in vitro. El documento describe un método de descubrimiento de reacción que usa la síntesis orgánica templada por ADN y la selección in vitro para evaluar simultáneamente muchas combinaciones de sustratos diferentes para las reacciones de formación de enlaces en una solución única.
 - Calderone et al., Current Opinion in Chemical Biology, 8, 645-653, (2004) se refiere a la síntesis templada con ácido nucleico como sistema modelo para traducción antigua. El documento describe la traducción de ácidos nucleicos en estructuras sintéticas con potencial funcional expandido.
- Calderone et al., Angewandte Cheinic Int Ed., 41, 4104-4108, (20) [*Ilegible*] que dirige de otro modo reacciones incompatibles en una solución única por medio de la síntesis orgánica templada con ADN.

El documento WO 2004/016767 se refiere al desarrollo de la nueva función molecular. El documento describe procedimientos para realizar síntesis templada por ácidos nucleicos (NAT), aumentar la selectividad de las reacciones NAT, realizar reacciones NAT estereoselectivas, seleccionar productos de reacción resultantes de la síntesis de NAT e identificar nuevas reacciones guímicas basadas en la síntesis de NAT.

5 Gryaznov et al., J. Amer. Chem. Soc., 115, 3808-3809, (1993) y Czlapinski et al., 123, 8618-8619, (2001) describe el ligamiento químico de los oligonucleótidos en presencia y ausencia de un molde.

El documento WO 2005/026387 se refiere a un procedimiento para obtener información estructural concerniente a una molécula codificada. El documento describe un procedimiento para identificar (MI) la molécula de despliegue que tiene afinidad con el blanco molecular, por la mezcla del blanco molecular asociado con los oligonucleótidos blanco, con una biblioteca de complejo bifuncionales que tiene moléculas de despliegue unido a los oligonucleótidos del identificador, acoplamiento de identificadores de complejos, con oligonucleótidos blanco, y deducir la identidad de las moléculas de despliegue y/o blancos moleculares de unión a partir de productos acoplados de identificadores y oligonucleótidos blanco.

Los dos mayores desafíos en el uso de métodos combinatorios para el descubrimiento de fármaco son la síntesis de bibliotecas de suficiente complejidad y la identificación de moléculas que son activas en las pruebas usadas. En general se reconoce que a mayor grado de complejidad de una biblioteca, es decir, el número de estructuras distintas presentes en la biblioteca, mayor probabilidad de que la biblioteca contenga moléculas con la actividad de interés. En consecuencia, las reacciones químicas empleadas en la síntesis de la biblioteca deben ser capaces de producir grandes cantidades de compuestos en un marco de tiempo razonable. Sin embargo, para una concentración formal o global determinada, el aumento de la cantidad de miembros diferentes dentro de la biblioteca reduce la concentración de cualquier miembro de biblioteca particular. Esto complica la identificación de moléculas activas de las bibliotecas de alta complejidad.

Un método para vencer estos obstáculos ha sido el desarrollo de bibliotecas codificadas, y en particular bibliotecas en las que cada compuesto incluye una marca amplificable. Tales bibliotecas incluyen bibliotecas codificadas por ADN, en las que una marca de ADN que identifica un miembro de la biblioteca se puede amplificar por medio de técnicas de biología molecular, tales como la reacción en cadena de polimerasa. Sin embargo, el uso de tales procedimientos para producir bibliotecas muy grandes ya está demostrado, y es claro que se requieren mejores procedimientos para producir tales bibliotecas para la realización del potencial de este método para el descubrimiento del fármaco.

30 Compendio de la invención

10

25

35

40

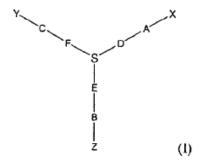
45

50

55

60

La presente invención proporciona un procedimiento de sintetizar moléculas definidas en las reivindicaciones anexas. El procedimiento utiliza un abordaje "dividir y mezclar" en el que una solución que comprende un iniciador, que comprende un primer bloque de construcción ligado a un oligonucleótido codificador, se reparte ("dividir") en múltiples fracciones. En cada fracción, el iniciador se hace reaccionar con un segundo bloque de construcción único y un segundo oligonucleótido único que identifica el segundo bloque de construcción. Estas reacciones pueden ser simultáneas o secuenciales y, si es secuencial, cualquier reacción puede preceder a la otra. Las moléculas diméricas producidas en cada una de las fracciones se combinan ("mezclan") y posteriormente se dividen otra vez en múltiples fracciones. Cada una de estas fracciones posteriormente se hacen reaccionar con un tercer bloque de construcción único (específico de fracción) y un tercer oligonucleótido único que codifica el bloque de construcción. La cantidad de moléculas únicas presentes en la biblioteca producto es una función de (1) la cantidad de diferentes bloques de construcción usados en cada etapa de síntesis, y (2) la cantidad de veces que se repite el proceso de mezcla y división.


En una realización, la invención proporciona un procedimiento de sintetizar una molécula que comprende o que consiste en un resto funcional que está unido operativamente a un oligonucleótido codificador. El procedimiento incluye las etapas de: (a) proporcionar un compuesto iniciador que consiste en un resto funcional inicial que comprende n bloques de construcción, donde n es un número entero de 1 o mayor, en el que el resto funcional inicial comprende al menos un grupo reactivo, y está unido operativamente a un oligonucleótido inicial, en el que el resto funcional inicial comprende al menos un grupo reactivo, y está unido operativamente a un oligonucleótido inicial; en el que el resto funcional inicial y el oligonucleótido inicial se unen con a resto ligador y en el que el oligonucleótido inicial es bicatenario y el resto ligador se acopla covalentemente al resto funcional inicial y a ambas cadenas del oligonucleótido inicial; (b) hacer reaccionar el compuesto iniciador con un bloque de construcción deseado que comprende al menos un grupo reactivo complementario, en el que al menos un grupo reactivo complementario es complementario con el grupo reactivo de la etapa (a), en condiciones adecuadas para la reacción del grupo reactivo complementario para formar un enlace covalente; (c) hacer reaccionar el oligonucleótido inicial con un oligonucleótido entrante que identifica el bloque de construcción de la etapa (b) en presencia de una enzima que cataliza el ligamiento del oligonucleótido inicial y el oligonucleótido entrante, en condiciones adecuadas para el ligamiento del oligonucleótido entrante y el oligonucleótido inicial para formar un oligonucleótido codificador, en el que el último de dichos oligonucleótidos entrantes comprenden una secuencia capuchón, dicha secuencia capuchón que comprende una secuencia de nucleótidos que contiene nucleótidos degenerados; de este modo se produce una molécula que comprende un resto funcional que comprende n+1 bloques de construcción que están unidos

operativamente a un oligonucleótido codificador que identifica la estructura de el resto funcional. El resto funcional de la etapa (c) comprende un grupo reactivo, las etapas (a)-(c) se repiten una o más veces, de este modo forman los ciclos 1 a i, donde i es un número entero de 2 o mayor, con el producto de la etapa (c) de un ciclo s, donde s es un número entero de i-1 o menos, que es el compuesto iniciador del ciclo s + 1.

En una realización, la invención proporciona un procedimiento de sintetizar una biblioteca de compuestos, en la que los compuestos comprenden un resto funcional que comprende dos o más bloques de construcción que están unidos operativamente a un oligonucleótido que identifica la estructura del resto funcional. El procedimiento comprende las etapas de (a) proporcionar una solución que comprende m iniciadores del compuesto de la reivindicación 1, en el que m es un número entero de 1 o mayor; (b) dividir la solución de la etapa (a) en r recipientes de reacción, en el que r es un número entero de 2 o mayor, de este modo se producen r alícuotas de la solución: (c) hacer reaccionar los iniciadores del compuesto en cada recipiente de reacción con uno de los r bloques de construcción, dichos bloques de construcción que comprenden al menos un grupo reactivo complementario, en el que al menos un grupo reactivo complementario es complementario con el grupo reactivo de la etapa (a), en condiciones adecuadas para reacción del grupo reactivo complementario para formar un enlace covalente, de este modo se producen r alícuotas que comprende compuestos que consiste en a resto funcional que comprende n+1 bloques de construcción unido operativamente al oligonucleótido inicial; y (d) hacer reaccionar el oligonucleótido inicial en cada alícuota con uno de un conjunto de r oligonucleótidos entrantes distintos correspondientes al bloque de construcción de la etapa (c) en presencia de una enzima que cataliza el ligamiento del oligonucleótido entrante y el oligonucleótido inicial, en condiciones adecuadas para el ligamiento enzimático del oligonucleótido entrante y el oligonucleótido inicial para formar un oligonucleótido codificador, en el que el último de dichos r oligonucleótidos entrantes distintos comprende una secuencia capuchón, dicha secuencia capuchón que comprende una secuencia de nucleótidos que contiene nucleótidos degenerados; de este modo se producen r alícuotas que comprenden moléculas que consiste en un resto funcional que comprende n+1 bloques de construcción unidos operativamente a un oligonucleótido codificador que identifica la estructura de el resto funcional que comprende los n+1 bloques de construcción. Opcionalmente, el procedimiento también puede incluir la etapa de (e) recombinar las r fracciones producidas en la etapa (d), de este modo se produce una solución que comprende compuestos que consisten en un resto funcional que comprende n + 1 bloques de construcción, que están unidos operativamente a un oligonucleótidos alargado. Las etapas (a) a (e) se pueden realizar una o más veces para producir los ciclos 1 a i, donde i es un número entero de 2 o mayor. En el ciclo s+1, donde s es un número entero de i-1 o menor, la solución que comprende m iniciadores del compuesto de la etapa (a) es la solución de la etapa (e) del ciclo s. Asimismo, los iniciadores del compuesto de la etapa (a) del ciclo s+1 son los compuestos de la etapa (e) del ciclo s.

En una realización preferida, los bloques de construcción se acoplan en cada etapa por medio del uso de reacciones químicas convencionales. Los bloques de construcción se pueden acoplar para producir polímeros u oligómeros lineales o ramificados, tales como péptidos, peptidomiméticos, y peptoides, o moléculas no oligoméricas, tales como moléculas que comprenden una estructura del armazón la que se que unen uno o más restos químicos adicionales. Por ejemplo, si los bloques de construcción son residuos de aminoácidos, los bloques de construcción se pueden acoplar por medio de abordajes de síntesis de péptidos estándar, tales como síntesis en fase de solución o fase sólida por medio de abordajes de protección/desprotección adecuadas que son conocidos en el campo. Preferiblemente, los bloques de construcción se acoplan por medio de reacciones químicas que usan reacciones químicas en fase de solución. Los oligonucleótidos codificadores son oligonucleótidos de monocatenarios o bicatenarios, preferiblemente oligonucleótidos bicatenario. Los oligonucleótidos codificadores son preferiblemente oligonucleótidos de 4 a 12 bases o pares de bases por bloque de construcción; los oligonucleótidos codificadores se pueden acoplar por medio de metodología estándar de síntesis de oligonucleótidos fase en solución y fase sólida, pero preferiblemente se acoplan por medio de un proceso enzimático en fase de solución. Por ejemplo, los oligonucleótidos se pueden acoplar por medio de una topoisomerasa, una ligasa, o una ADN polimerasa, si la secuencia de oligonucleótidos codificadores incluye una secuencia de iniciación para el ligamiento con una de estas enzimas. El acoplamiento enzimático de los oligonucleótidos codificadores ofrece las ventajas de (1) mayor precisión de la adición en comparación con el acoplamiento de síntesis estándar (no enzimático); y (2) el uso de un abordaje más simple de protección/desprotección.

Los compuestos que tiene la Fórmula I se describen en la presente memoria.

5

10

15

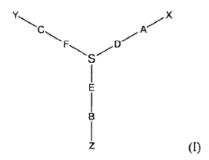
20

25

30

35

40


45

50

donde X es un resto funcional que comprende uno o más bloques de construcción; Z es un oligonucleótido unido a su extremo 3' terminal a B; Y es un oligonucleótido unido a su extremo 5' terminal a C; A es un grupo funcional que forma un enlace covalente con X; B es un grupo funcional que forma un enlace con el extremo 3' de Z; C es un grupo funcional que forma un enlace con el extremo 5' de Y; D, F y E son cada uno, de modo independiente, un grupo de unión bifuncional; y S un átomo o un armazón molecular. Tales compuestos incluyen los que se sintetizan por medio de los procedimientos de la invención.

En la presente memoria se describe una biblioteca de compuestos que comprende compuestos que comprenden un resto funcional que comprende dos o más bloques de construcción que están unidos operativamente a un oligonucleótido que codifica la estructura del resto funcional. Tales bibliotecas pueden comprender de aproximadamente 102 a aproximadamente 1012 o más miembros distintos, por ejemplo, 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012 o más miembros distintos, es decir, distintas estructuras moleculares.

La biblioteca de compuestos puede comprender compuestos que son de modo independiente de Fórmula I:

5

10

15

40

45

donde X es un resto funcional que comprende uno o más bloques de construcción; Z es un oligonucleótido unido a su extremo 3' terminal a B; Y es un oligonucleótido unido a su extremo 5' terminal a C; A es un grupo funcional que forma un enlace covalente con X; B es un grupo funcional que forma un enlace con el extremo 3' de Z; C es un grupo funcional que forma un enlace con el extremo 5' de Y; D, F y E son cada uno de modo independiente, un grupo de unión bifuncional; y S un átomo o un armazón molecular. Tales bibliotecas incluyen las que se sintetizan por medio de los procedimientos de la invención.

En otro aspecto, la invención proporciona un procedimiento para identificar un compuesto que se une a un blanco biológico, dicho procedimiento que comprende las etapas de: (a) poner en contacto con el blanco biológico con una biblioteca de compuestos preparada por el procedimiento de la invención, donde la biblioteca de compuestos incluye compuestos que comprenden un resto funcional que comprende dos o más bloques de construcción que están unidos operativamente a un oligonucleótido que codifica la estructura del resto funcional. Esta etapa se realiza en condiciones adecuadas para al menos un miembro de la biblioteca de compuestos que une al blanco; (2) eliminar miembros de la biblioteca que no se unen al blanco; (3) amplificar los oligonucleótidos codificadores del al etapa (3); y usar las secuencias determinadas en la etapa (5) para determinar la estructura de los restos funcionales de los miembros de la biblioteca de compuestos que se unen al blanco biológico.

La presente invención proporciona varias ventajas en la identificación de moléculas que tienen una propiedad deseada. Por ejemplo, los procedimientos de la invención permiten el uso de una variedad de reacciones químicas para construir las moléculas en presencia de la marca del oligonucleótido. Los procedimientos de la invención también proporcionan un medio de alta fidelidad para incorporar marcas de oligonucleótido en las estructuras químicas así producidas. Además, ellos permiten la síntesis de bibliotecas que tienen una gran cantidad de copias de cada miembro, de este modo permiten múltiples rondas de selección contra un blanco biológico mientras que deja una cantidad suficiente de moléculas después de la ronda final de amplificación y secuencia de las marcas de oligonucleótido.

Breve descripción de los dibujos

La Figura 1 es una representación esquemática del ligamiento de oligonucleótidos bicatenarios, en los que el oligonucleótido inicial tiene una proyección que es complementaria con la proyección del oligonucleótido entrante. La cadena inicial se representa como libre, conjugada con un ligador aminohexilo o conjugada con un residuo de fenilalanina por medio de un ligador aminohexilo.

La Figura 2 es una representación esquemática del ligamiento de oligonucleótido por medio de la cadena férula. En esta realización, la férula es un oligonucleótido de 12-mer con secuencias complementarias con el oligonucleótidos monocatenario inicial y el oligonucleótido entrante.

La Figura 3 es una representación esquemática del ligamiento de un oligonucleótido inicial y un oligonucleótido entrante, cuando el oligonucleótido inicial es bicatenario con cadenas unidas en forma covalente, y el oligonucleótido entrante es bicatenario.

La Figura 4 es una representación esquemática de la elongación del oligonucleótido por medio de una polimerasa. La cadena inicial está representada como libre, conjugada con un ligador aminohexilo o conjugada con un residuo de fenilalanina por medio de un ligador aminohexilo.

La Figura 5 es una representación esquemática del ciclo de síntesis de una realización de la invención.

5 La Figura 6 es una representación esquemática de un proceso de selección de múltiples rondas por medio del uso de las bibliotecas de la invención.

La Figura 7 es un gel resultante de la electroforesis de los productos de cada uno de los ciclos 1 a 5 descritos en el Ejemplo 1 y el posterior ligamiento del cebador de cierre. Los estándares de peso molecular se muestran en la calle 1, y las cantidades indicadas de un marcador hyperladder, para la cuantificación de ADN se muestran en las calles 9 a 12

La Figura 8 es una representación esquemática del acoplamiento de los bloques de construcción por medio de la cicloadición de azida-alquino.

Las Figuras 9 y 10 ilustran el acoplamiento de los bloques de construcción por medio de la sustitución aromática nucleófila en una triazina clorada.

La Figura 11 muestra estructuras heteroaromáticas cloradas representativas adecuadas para usar en la síntesis de restos funcionales.

La Figura 12 ilustra la ciclación de un péptido lineal por medio de la reacción de cicloadición de azida/alguino.

La Figura 13a es un cromatograma de la biblioteca producida como se describe en el Ejemplo 2 siguiendo el I Ciclo 4.

20 La Figura 13b es un espectro de masa de la biblioteca producida como se describe en el Ejemplo 2 siguiendo el Ciclo 4.

Descripción detallada de la invención

10

25

30

45

50

La presente invención se refiere a procedimientos de producir compuestos y bibliotecas combinatorias de compuestos y procedimientos de uso de las bibliotecas para identificar compuestos que tienen una propiedad deseada, tal como una actividad biológica deseada.

Se ha adoptado una variedad de abordajes para producir y seleccionar bibliotecas químicas combinatorias. Los ejemplos incluyen procedimientos en los que los miembros individuales de la biblioteca están separados físicamente entre sí, tales como cuando se sintetiza un compuesto individual en cada uno de una multitud de recipientes de reacción. Sin embargo, estas bibliotecas normalmente seleccionan un compuesto por vez o a lo sumo, varios compuestos por vez y en consecuencia, no producen el proceso de selección más eficiente. En otros procedimientos, los compuestos se sintetizan en soportes sólidos. Tales soportes sólidos incluyen chip en los que los compuestos específicos ocupan regiones específicas del chip o membrana ("posición accesible"). En otros procedimientos, los compuestos se sintetizan en microesferas, cada microesfera contiene una estructura química diferente.

Dos dificultades que surgen del análisis de las bibliotecas grandes son (1) el número de compuestos distintos que se pueden analizar; y (2) la identificación de compuestos que son activos en la prueba. En un procedimiento, los compuestos que son activos en la prueba se identifican por la reducción de la biblioteca original en fracciones y subfracciones más pequeñas, en cada caso la selección de la fracción o subfracción que contiene compuestos activos y la posterior subdivisión hasta obtener una subfracción activa que contiene un conjunto de compuestos que es suficientemente pequeño para que todos los miembros del subconjunto se puedan sintetizar y evaluar individualmente en cuanto a la actividad deseada. Esta es una actividad tediosa y que lleva mucho tiempo.

Otro procedimiento de dilucidar los resultados de una prueba de biblioteca combinatoria es utilizar bibliotecas en la que los miembros de la biblioteca estén marcados con una marca identificatoria, es decir, cada marca presente en la biblioteca se asocia con una estructura del compuesto discreta presente en la biblioteca, de modo que la identificación de la marca indique la estructura de la molécula marcada. Un abordaje de las bibliotecas marcadas utiliza marcas de oligonucleótidos, como se describe, por ejemplo, en Patentes US Núm. 5.573.905; 5.708.153; 5.723.598, 6.060.596 solicitudes PCT publicadas WO 93/06121; WO 93/20242; WO 94/13623; WO 00/23458; WO 02/074929 y WO 02/103008, y por Brenner y Lerner (Prot. Nall. Acad. Sci. USA 89, 5381-5383 (1992); Nielsen y Janda (Procedimientos: A Companion to Methods in Enzymology 6, 361-371 (1994); y Nielsen, Brenner y Janda (J. Am. Chem. Soc. 115, 9812-9813 (1993)). Tales marcas se pueden amplificar, por medio del uso de, por ejemplo, la reacción en cadena de polimerasa, para producir cualquier copia de la marca e identificar la marca por secuenciación. La secuencia de la marca por lo tanto identifica la estructura de la molécula de unión, que se puede sintetizan en forma pura y analizar. La presente invención proporciona una mejora en los procedimientos para producir bibliotecas codificadas por ADN, así como los primeros ejemplos de bibliotecas grandes (105 miembros o

más) de moléculas codificadas por ADN en el que el resto funcional se sintetiza por medio de procedimientos de síntesis en fase de solución.

La presente invención proporciona procedimientos que permiten la síntesis fácil de las bibliotecas combinatorias codificadas por oligonucleótidos, y permiten una medio eficiente y de alta fidelidad de añadir tal marca de oligonucleótido a cada miembro de una vasta colección de moléculas.

5

10

35

40

45

50

Los procedimientos de la invención incluyen procedimientos para sintetizar moléculas bifuncionales que comprenden un primer resto ("resto funcional") que está constituido de bloques de construcción, y un segundo resto unido operativamente al primer resto, que comprende una marca de oligonucleótido que identifica la estructura del primer resto, es decir, la marca de oligonucleótido indica cuáles bloques de construcción se usaron en la construcción del primer resto, así como el orden en que se ligaron los bloques de construcción. En general, la información provista por la marca de oligonucleótido es suficiente para determinar los bloques de construcción usados para construir el resto activo. En ciertas realizaciones, la secuencia de la marca de oligonucleótido es suficiente para determinar la disposición de los bloques de construcción en el resto funcional, por ejemplo, para los restos peptídicos, la secuencia de aminoácidos.

El término "resto funcional" como se usa en la presente memoria, se refiere a un resto químico que comprende uno o más bloques de construcción. Preferiblemente, los bloques de construcción del resto funcional no son ácidos nucleicos. El resto funcional puede ser un polímero u oligómero lineal o ramificado o cíclico o una molécula orgánica pequeña.

El término "bloque de construcción", como se usa en la presente memoria, es una unidad estructural química que está ligada a otras unidades estructurales químicas o se puede ligar a otras de estas unidades. Cuando el resto funcional es polimérico u oligomérico, los bloques de construcción son las unidades monoméricas del polímero u oligómero. Los bloques de construcción también pueden incluir una estructura de armazón ("bloque de construcción del armazón") al que se une o puede unir una o más estructuras adicionales ("bloques de construcción periféricos").

Se entiende que el término "bloque de construcción" se usa en la presente memoria para referirse una unidad estructural química ya que existe en un resto funcional y también en la forma reactiva usada para la síntesis del resto funcional. Dentro del resto funcional, un bloque de construcción existirá sin que se pierda ninguna porción del bloque de construcción como consecuencia de la incorporación del bloque de construcción en el resto funcional. Por ejemplo, en casos en que la reacción formadora de enlace libera una molécula pequeña (ver a continuación), el bloque de construcción que existe en el resto funcional es un "residuo del bloque de construcción", es decir, el resto del bloque de construcción usado en la síntesis después de la pérdida de los átomos que contribuye a la molécula liberada.

Los bloques de construcción pueden ser compuestos químicos que son complementarios, es decir, los bloques de construcción deben poder reaccionar entre sí para formar una estructura que comprende dos o más bloques de construcción. Normalmente, el total de los bloques de construcción usados tendrán al menos dos grupo reactivos, si bien es posible que algunos de los bloques de construcción (por ejemplo, el último bloque de construcción es un resto funcional oligomérico) usados tengan solo un grupo reactivo cada uno. Los grupos reactivos en dos bloques de construcción diferentes deben ser complementarios, es decir, capaces de reaccionar entre sí para formar un enlace covalente, opcionalmente con la pérdida concomitante de una molécula pequeña, tal como agua, HCl, HF, y demás.

Para los presentes propósitos, dos grupo reactivos son complementarios si ellos son capaces de reaccionar entre sí para formar un enlace covalente. En una realización preferida, las reacciones formadoras de enlace ocurren rápidamente en las condiciones ambientales sin sustancial formación de productos secundarios. Preferiblemente, un grupo reactivo determinado reaccionará con un grupo reactivo complementario dado exactamente una vez. En una realización, los grupos reactivos complementarios de dos bloques de construcción reaccionan, por ejemplo, por medio de sustitución nucleófila, para formar un enlace covalente. En una realización, un miembro de un par de los grupos reactivos complementarios es un grupo electrófilo y el otro miembro del par es un grupo nucleófilo.

Los grupos electrófilos y nucleófilos complementarios incluyen dos grupos que reaccionan por medio de la sustitución nucleófila en condiciones adecuadas para formar en condiciones adecuadas para formar un enlace covalente. Una variedad de reacciones formadoras de enlace adecuadas son conocidas en la técnica. Ver, por ejemplo, March, Advanced Organic Chemistry, cuarta edición, New York: John Wiley y Sons (1992), Chapters 10 a 16; Carey y Sundberg, Advanced Organic Chemistry, Part B, Plenum (1990), Chapters 1-11; y Collman et al., Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, Calif (1987), Capítulos 13 a 20. Los ejemplos de grupos electrófilos adecuados incluyen grupos carbonilo reactivos, tales como grupos cloruro de acilos, grupos éster, que incluye ésteres de carbonil pentafluorofenilo y ésteres de succinimida, grupos de cetona y grupos aldehído; grupos reactivo sulfonilo, tales como grupos cloruro de sulfonilo y grupos fosfonilo reactivos. Otros grupos electrófilos incluyen grupos epóxidos terminales, grupos isocianatos y grupos haluro de alquilo. Los grupos nucleófilos adecuados incluyen grupos amino primarios y secundarios y grupos hidroxilo y grupos carboxilo.

Los grupos reactivos complementarios adecuados se exponen más adelante. Los expertos en la técnica pueden

determinar fácilmente otros pares de grupo reactivo que se pueden usar en el presente procedimiento, y los ejemplos provistos en la presente memoria no se consideran una limitación.

En una primera realización, los grupos reactivos complementarios incluyen grupos carboxilo activados, grupos sulfonilo reactivos o grupos fosfonilo reactivos, o una combinación de estos, y grupos amino primario o secundario. En esta realización, los grupos reactivos complementarios reaccionan en condiciones adecuadas para formar un enlace amida, sulfonamida o fosfonamidato.

5

10

15

20

30

35

40

55

En una segunda realización, los grupos reactivos complementarios incluyen grupos epóxidos y grupos amino primario o secundario. Un bloque de construcción que contiene epóxido reacciona con un bloque de construcción que contiene amina en condiciones adecuadas para formar un enlace carbono-nitrógeno, lo que produce un β-amino alcohol.

En otra realización, los grupos reactivos complementarios incluyen grupos aziridinas y grupos amino primario o secundario. En condiciones adecuadas, un bloque de construcción que contiene aziridina reacciona con un bloque de construcción que contiene amina para formar un enlace carbono-nitrógeno, lo que origina 1,2-diamina. En una tercera realización, los grupos reactivos complementarios incluyen grupos isocianato y grupos amino primario o secundario. Un bloque de construcción que contiene isocianato reaccionará con un bloque de construcción que contiene amino en condiciones adecuadas para formar un enlace carbono-nitrógeno, lo que da origen a un grupo urea

En una cuarta realización, los grupos reactivos complementarios incluyen grupos isocianato y grupos hidroxilo. Un bloque de construcción que contiene isocianato reaccionará con un bloque de construcción que contiene hidroxilo en condiciones adecuadas para formar un enlace carbono-oxígeno, lo que da origen a un grupo carbamato.

En una quinta realización, los grupos reactivos complementarios incluyen grupos amino y grupos que contiene carbonilo, tales como grupos aldehído o cetona. Las aminas reaccionan con tales grupos por medio de la aminación reductora para formar un nuevo enlace carbono-nitrógeno.

En una sexta realización, los grupos reactivos complementarios incluyen grupo iluros de fósforo y grupos aldehído o cetona. Un bloque de construcción que contiene iluro de fósforo reaccionará con un bloque de construcción que contiene aldehído o cetona en condiciones adecuadas para formar un enlace doble de carbono-carbono, lo que da origen un algueno.

En una séptima realización, los grupos reactivos complementarios reaccionan por medio de cicloadición para formar una estructura cíclica. Un ejemplo de tales grupos reactivos complementarios son alquinos y azidas orgánicas, que reaccionan en condiciones adecuadas para formar una estructura anular de triazol. Un ejemplo del uso de esta reacción para ligar dos bloques de construcción se ilustra en la Figura 8. Las condiciones adecuadas para tales reacciones son conocidas en la técnica e incluyen las que se describen en WO 03/101972, cuyos contenidos completos se incorporan por referencia en la presente memoria.

En una octava realización, los grupos reactivos complementarios son un haluro de alquilo y un nucleófilo, tales como un grupo amino, un grupo hidroxilo o un grupo carboxilo. Tales grupos reaccionan en condiciones adecuadas para formar un carbono-nitrógeno (haluro de alquilo más amina) o carbono oxígeno (haluro de alquilo más grupo hidroxilo o carboxilo).

En una novena realización, los grupos funcionales complementarios son un grupo heteroaromático halogenado y un nucleófilo, y los bloques de construcción se ligan en condiciones adecuadas por medio de sustitución nucleófila aromática. Los grupos heteroaromáticos halogenados incluyen pirimidinas, triazinas y purinas cloradas, que reaccionan con nucleófilos, tales como aminas, en condiciones moderadas en solución acuosa. Los ejemplos representativos de la reacción de una triclorotriazina marcada con oligonucleótido con aminas se muestran en las Figuras 9 y 10. Los ejemplos de grupos heteroaromáticos clorados adecuados se muestran en la Figura 11.

Las reacciones formadoras de enlace adicionales que se pueden usar para unir los bloques de construcción en la síntesis de moléculas y bibliotecas por medio de los procedimientos de la invención incluyen los que se muestran a continuación. Las reacciones mostradas más adelante destacan los grupos funcionales reactivos. Varios sustituyentes pueden estar presentes en los reactantes, que incluyen los R1, R2, R3 y R4 marcados. Las posiciones posibles que se puede sustituir incluyen, pero sin limitación, a los indicados por R1, R2, R3 y R4. Estos sustituyentes pueden incluir cualquier resto químico adecuado, pero preferiblemente limitados a los que no interferirán o inhibirán significativamente la reacción indicada, y, a menos que se especifique de otro modo, pueden incluir hidrógeno, alquilo, alquilo sustituido, arilo, arilo sustituido, heteroarilo, heteroarilo sustituido, alcoxi, ariloxi, arilalquilo, sustituido, amino, amino sustituido y otros son conocidos en la técnica.

Los sustituyentes adecuados en estos grupos incluyen alquilo, arilo, heteroarilo, ciano, halógeno, hidroxilo, nitro, amino, mercapto, carboxilo, y carboxamida. Cuando se especifica, los grupos aceptores de electrones incluyen nitro, carboxilo, haloalquilo, tales como trifluorometilo y otros son conocidos en la técnica. Los ejemplos de grupos dadores de electrones adecuados incluyen alquilo, alcoxi, hidroxilo, amino, halógeno, acetamido y otros son conocidos en la técnica.

Adición de una amina primaria en un alqueno:

$$R_1$$
 $+$ R_2 $+$ R_1 R_2 R_2

Sustitución nucleófila:

5

Alquilación reductora de una amina:

$$R_1$$
 NH_2
 $NABH(OAC)$
 R_1
 R_2
 R_4
 $NABH_3CN$
 R_4
 R_4
 R_4
 R_4

Reacciones formadoras de enlace carbono-carbono catalizado por paladio:

Reacciones de condensación de Ugi:

COOH +
$$R_2$$
 + R_3 + R_4 NC R_4 + R_4 R1

5 Reacciones de sustitución aromática electrófila:

$$R_1$$
 R_2 R_2

X es un grupo dador de electrones.

Reacciones formadoras de imina/iminio/enamina:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_2
 R_4
 R_4

5 Reacciones de cicloadición:

Cicloadición de Diels-Alder

Cicloadición 1,3-dipolar, X-Y-Z = C-N-O, C-N-S, N₃,

$$R_2$$
 $+$ R_2 R_2 R_2 R_2 R_2 R_2 R_2 R_2

10 Reacciones de sustitución aromática nucleófila:

$$R_1$$
 R_2
 NH
 R_2
 W

W es un grupo aceptor de electrones

$$R_1$$
 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_5 R_5 R_5 R_7 R_8

Los ejemplos de sustituyentes X e Y adecuados incluyen amino sustituido o no sustituido, alcoxi sustituido o no sustituido, tioalcoxi sustituido o no sus

$$R_1$$
 NO_2
 N

Reacción de Heck:

5

$$R_1$$
 + R_2 R_2

Formación de acetal:

$$R_1$$
 R_2 $+$ X Z X Z X Z X Z X Z X Z Z

Los ejemplos de sustituyentes X e Y adecuados incluyen amino, hidroxilo y sulfhidrilo sustituido o no sustituido; Y es un ligador que conecta X e Y y es adecuada para formar la estructura anular hallada en el producto de la reacción

Reacciones de aldol:

10

15

20

25

30

35

40

$$R_1$$
 + R_2 R_2 R_1

Los ejemplos de sustituyentes X adecuados incluyen O, S y NR₃.

Los bloques de construcción del armazón que se pueden usar para formar las moléculas y bibliotecas descritas en la presente memoria incluyen los que tienen dos o más grupos funcionales que pueden participar en las reacciones formadoras de enlace con precursores del bloque de construcción periférico, por ejemplo, usando una o más reacciones formadoras de enlace descritas antes. Los restos del armazón también se pueden sintetizar durante la construcción de las bibliotecas y moléculas de la invención, por ejemplo, por medio de precursores del bloque de construcción que pueden reaccionar de maneras específicas para formar moléculas que comprenden un resto molecular central al que se anexan los grupos funcionales periféricos. En una realización, una biblioteca producida por los procedimientos de la invención comprende moléculas que comprenden un resto del armazón constante, pero restos periféricos diferentes o diferentes disposiciones de restos periféricos. En ciertas bibliotecas, todos los miembros de biblioteca comprenden un resto de armazón constante; otras bibliotecas pueden comprender moléculas que tienen dos o más restos del armazón diferentes. Los ejemplos de reacciones formadoras de armazón que se pueden usar en la construcción de las moléculas y bibliotecas de la invención se exponen en la Tabla 8. Los grupos R1, R2, R3 y R4 se limitan solo a que no puedan interferir, o inhibir significativamente, la reacción indicada, y pueden incluir hidrógeno, alquilo, alquilo sustituido, heteroalquilo, heteroalquilo sustituido, cicloalquilo, heterocicloalquilo, arilo, arilo sustituido, arilalquilo, arilo, arilo sustituido, arilalquilo, heteroarilalquilo, arilalquilo sustituido, heteroarilalquilo sustituido, heteroarilo, heteroarilo, heteroarilo, sustituido, halógeno, alcoxi, ariloxi, amino, amino sustituido y otros que son conocidos en la técnica. Los sustituyentes adecuados incluyen, pero sin limitación, alguilo, alcoxi, tioalcoxi, nitro, hidroxilo, sulfhidrilo, ariloxi, aril-S-, halógeno, carboxi, amino, alquilamino, dialquilamino, arilamino, ciano, cianato, nitrilo, isocianato, tiocianato, carbamilo, y carbamilo sustituido.

Se entiende que la síntesis de un resto funcional puede proceder por medio de un tipo particular de reacción de acoplamiento, tales como, pero sin limitación, a una de las reacciones descritas antes, o por medio de una combinación de dos o más reacciones de acoplamiento, tales como dos o más de las reacciones de acoplamiento descritas anteriormente. Por ejemplo, en una realización, los bloques de construcción se unen por una combinación de la formación del enlace amida (grupos complementarios amino y ácido carboxílico) y afinación reductora (grupos complementarios amino y aldehído o cetona). Se puede usar cualquier reacción química de acoplamiento, con la condición de que sea compatible con la presencia de un oligonucleótido. Las marcas de oligonucleótidos bicatenario (duplex), como se usa en ciertas realizaciones de la presente invención, son químicamente más robustas que las marcas de cadena simple, y, en consecuencia, toleran una variedad más amplia de condiciones de reacción y permiten el uso de reacciones formadoras de enlace que no serían posibles con las marcas de cadena simple.

Un bloque de construcción puede incluir uno o más grupos funcionales además del grupo o grupos reactivos empleados para formar el resto funcional. Uno o más de estos grupos funcionales adicionales se puede proteger para evitar reacciones no deseadas de estos grupos funcionales. Los grupos protectores adecuados son conocidos en la técnica para una variedad de grupos funcionales (Greene y Wuts, Protective Groups in Organic Synthesis, segunda edición, New York: John Wiley y Sons (1991)). Los grupos protectores particularmente útiles incluyen ésteres y éteres t-butílicos, acetales, éteres tritílicos y aminas, ésteres acetílicos, éteres trimetilsilílicos, éteres y ésteres y carbamatos dee tricloroetilo.

En una realización, cada bloque de construcción comprende dos grupos reactivos, que pueden ser iguales o diferentes. Por ejemplo, cada bloque de construcción adicionado en el ciclo s puede comprender dos grupos reactivos que son iguales, pero que son complementarios con los grupos reactivos de los bloques de construcción añadidos a las etapas s-1 y s + 1. En otra realización, cada bloque de construcción comprende dos grupos reactivos que son complementarios por sí mismos. Por ejemplo, una biblioteca que comprende moléculas de poliamida se puede producir por medio de reacciones entre los bloques de construcción que comprenden dos grupos carboxilo activados. En los compuestos resultantes no existen extremos N- o C-terminal, ya que los grupos amida alternativos tienen direccionalidad opuesta. De modo alternativo, se puede producir una biblioteca de poliamida por medio de bloques de construcción que comprenden un grupo amino y un grupo carboxilo activado. En esta realización, los bloques de construcción añadidos en la etapa n del ciclo tendrán un grupo reactivo libre que es complementario con el grupo reactivo disponible en n-1 bloques de construcción, mientras, preferiblemente, se protege el otro grupo reactivo en el enésimo bloque de construcción. Por ejemplo, si los miembros de la biblioteca se sintetizan en la dirección de C a N, los bloques de construcción añadidos comprenderán un grupo carboxilo activado y un grupo amino protegido.

10

30

35

40

45

50

55

60

Los restos funcionales pueden ser poliméricos o oligoméricos, tales como péptidos, peptidomiméticos, ácidos 15 nucleicos de péptidos o peptoides, o ellos pueden ser moléculas no poliméricas pequeñas, por ejemplo, las moléculas que tienen una estructura que comprende un armazón central y las estructuras dispuestas aproximadamente de la periferia del armazón. Las bibliotecas poliméricas u oligoméricas lineales resultarán del uso de bloques de construcción que tienen dos grupos reactivos, mientras que las bibliotecas poliméricas u oligoméricas 20 ramificadas resultarán del uso de bloques de construcción que tienen tres o más grupos reactivos, opcionalmente en combinación con bloques de construcción que tienen solo dos grupos reactivos. Tales moléculas pueden estar representadas por la fórmula general X1X2...X, donde cada X es un unidad monomérica de un polímero que comprende n unidades monoméricas, donde n es un número entero mayor de 1. En el caso de compuestos oligoméricos o poliméricos, los bloques de construcción terminales no necesitan comprender dos grupos funcionales. 25 Por ejemplo, en el caso de una biblioteca de poliamida, el bloque de construcción C-terminal puede comprender un grupo amino, pero la presencia de un grupo carboxilo es opcional. De modo similar, el bloque de construcción en el extremo N-terminal puede comprender un grupo carboxilo, pero no necesita contener un grupo amino.

Los compuestos oligoméricos o poliméricos ramificados también se pueden sintetizar con la condición de que al menos un bloque de construcción comprenda tres grupos funcionales que son reactivos con otros bloques de construcción. Una biblioteca de la invención puede comprender moléculas lineales, moléculas ramificadas o una combinación de estos.

Las bibliotecas también se pueden construir por medio de, por ejemplo, un bloque de construcción del armazón que tiene dos o más grupos reactivos, en combinación con otros bloques de construcción que tienen solo un grupo reactivo disponible, por ejemplo, cuando cualquier grupo reactivo adicional está protegido o no reactivo con los otros grupos reactivos presentes en el bloque de construcción del armazón. En una realización, por ejemplo, las moléculas sintetizadas se pueden representar con la fórmula general X(Y)n, donde X es un bloque de construcción del armazón; cada Y es un bloque de construcción ligado a X y n es un número entero de al menos dos, y preferiblemente un número entero de 2 a aproximadamente 6. En una realización preferida, el bloque de construcción inicial del ciclo 1 es un bloque de construcción del armazón. En las moléculas de la fórmula X(Y)n, cada Y puede ser igual o diferente, pero en la mayoría de los miembros de una biblioteca típica, cada Y será diferente.

En una realización, las bibliotecas de la invención comprenden compuestos de poliamida. Los compuestos de poliamida se pueden componer de bloques de construcción derivados de cualquier aminoácido, que incluyen los veinte α-aminoácidos naturales, tales como alanina (Ala; A), glicina (Gly; G), asparagina (Asn; N), ácido aspártico (Asp; I)), ácido glutámico (Glu; E), histidina (His; H), leucina (Leu; L), lisina (Lys; K), fenilalanina (Fe; F), tirosina (Tyr; Y), treonina (Thr; T), serina (Ser; S), arginina (Arg; R), valina (Val; V), glutamina (Gln; Q), isoleucina (lle; I), cisteína (Cys; C), metionina (Met; M), prolina (Pro; P) y triptofano (Trp; W), donde se dan los códigos de tres letras y una letra para cada aminoácido. En su forma natural, cada uno de los aminoácidos precedentes existe en la L-configuración, que se asume en la presente memoria a menos que se indique lo contrario. En el presente procedimiento, sin embargo, también se pueden usar las formas de configuración D de estos aminoácidos. Estos D-aminoácidos están indicados en la presente memoria por el código de tres o una letra minúscula, es decir, ala (a), gly (g), leu (1), gln (q), thr (t), ser (s), y demás. Los bloques de construcción también se pueden derivar de otros α-aminoácidos, que incluyen, pero sin limitación, 3-arilalaninas, tales como naftilalanina, fenilalaninas sustituidas con fenilo, que incluyen 4-fluoro-, 4-cloro, 4-bromo y 4-metilfenilalanina; 3-heteroarilalaninas, tales como 3-piridilalanina, 3-tienilalanina, 3quinolilalanina, y 3-imidazolilalanina; ornitina; citrulina; homocitrulina; sarcosina; homoprolina; homocisteína; prolina sustituida, tal como hidroxiprolina y fluoroprolina; dehidroprolina; norleucina; O-metiltirosina; O-metilserina; Ometiltreonina y 3-ciclohexilalanina. Cada uno de los aminoácidos precedentes se puede utilizar en la configuración D o L.

Los bloques de construcción también pueden ser aminoácidos que no son α -aminoácidos, tales como α -azaaminoácidos; β , γ , δ , ϵ , -aminoácidos, y aminoácidos N-sustituidos, tales como glicina N-sustituida, donde el N-sustituyente pueden ser, por ejemplo, un grupo alquilo sustituido o no sustituido, arilo, heteroarilo, arilalquilo o heteroarilalquilo. En una realización, el N-sustituyente es una cadena lateral de un α -aminoácido.

El bloque de construcción también puede ser una estructura peptidomimética, tales como un mimético de dipéptido, tripéptido, tetrapéptido o pentapéptido. Tales bloques de construcción peptidomiméticos preferiblemente se derivan de compuestos aminoacilo, de modo que la química de adición de estos bloques de construcción al grupo de poli(aminoacilo) creciente es el mismo, o similar a, la química usada para los otros bloques de construcción. Los bloques de construcción también pueden ser moléculas que son capaces de formar enlaces que son isostéricos con un enlace peptídico, para formar restos funcionales peptidomiméticos que comprenden una modificación del esqueleto peptídico, tales como ψ [CH2S], ψ [CH2NH], ψ [CSNH2], ψ [NHCO], ψ [COCH2}, y ψ (E) o (Z)CH=CH]. En la nomenclatura usada antes, ψ indica la ausencia de un enlace amida. La estructura que reemplaza el grupo amida se especifica entre paréntesis.

- 10 En una realización, la invención proporciona un procedimiento de sintetizar un compuesto que comprende o que consiste en un resto funcional que está unido operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional, dicho procedimiento que comprende las etapas de: (a) proporcionar un compuesto iniciador que consiste en un resto funcional inicial que comprende n bloques de construcción, donde n es un número entero de 1 o mayor, en el que el resto funcional inicial comprende al menos un grupo reactivo, y está unido operativamente a un oligonucleótido inicial, en el que el resto funcional inicial comprende al menos un grupo 15 reactivo, y está unido operativamente a un oligonucleótido inicial; en el que el resto funcional inicial y el oligonucleótido inicial se unen con a resto ligador y en el que el oligonucleótido inicial es bicatenario y el resto ligador se acopla covalentemente al resto funcional inicial y a ambas cadenas del oligonucleótido inicial; (b) hacer reaccionar el compuesto iniciador con un bloque de construcción deseado que comprende al menos un grupo 20 reactivo complementario, en el que al menos un grupo reactivo complementario es complementario con el grupo reactivo de la etapa (a), en condiciones adecuadas para la reacción del grupo reactivo complementario para formar un enlace covalente; (c) hacer reaccionar el oligonucleótido inicial con un oligonucleótido entrante que identifica el bloque de construcción de la etapa (b) en presencia de una enzima que cataliza el ligamiento del oligonucleótido inicial y el oligonucleótido entrante, en condiciones adecuadas para el ligamiento del oligonucleótido entrante y el 25 oligonucleótido inicial para formar un oligonucleótido codificador, en el que el último de dichos oligonucleótidos entrantes comprende una secuencia capuchón, dicha secuencia capuchón que comprende una secuencia de nucleótidos que contiene nucleótidos degenerados; de este modo se produce una molécula que comprende un resto funcional que comprende n+1 bloques de construcción que están unidos operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional.
- 30 Si el resto funcional de la etapa (c) comprende un grupo reactivo, las etapas 1-3 se pueden repetir una o más veces, de este modo forman ciclos 1 a i, donde i es un número entero de 2 o mayor, con el producto de la etapa (c) de un ciclo s-1, donde s es un número entero de i o menor, que es el compuesto iniciador de la etapa (a) de los ciclos. En cada ciclo, un bloque de construcción se añade al resto funcional en crecimiento y una secuencia de oligonucleótidos, que codifica el nuevo bloque de construcción, se añade al oligonucleótido codificador.
- En una realización, el compuesto iniciador inicial se genera por la reacción de un primer bloque de construcción con un oligonucleótido (por ejemplo, un oligonucleótido que incluye las secuencias del cebador de PCR o un oligonucleótido inicial) o con un ligador al que se une tal oligonucleótido. En la realización expuesta en la Figura 5, los compuestos ligadores comprenden un grupo reactivo para la unión de un primer bloque de construcción y se une a un oligonucleótido inicial. En esta realización, la reacción de un bloque de construcción, o en cada una de múltiples alícuotas, una de una colección de bloques de construcción, con el grupo reactivo del ligador y la adición de un oligonucleótido que codifica el bloque de construcción para el oligonucleótido inicial produce el uno o más iniciadores del compuesto iniciales del proceso expuesto anteriormente.
 - En una realización preferida, cada bloque de construcción individual se asocia con un oligonucleótidos distinto, de modo que la secuencia de nucleótidos en el oligonucleótido añadido en un ciclo dado identifica el bloque de construcción añadido en el mismo ciclo.

45

- El acoplamiento de los bloques de construcción y el ligamiento de los oligonucleótidos generalmente se producirá con concentraciones similares de materiales de partida y reactivos. Por ejemplo, se prefieren las concentraciones de reactivos en el orden de micromolar a milimolar, por ejemplo de aproximadamente 10 µM a aproximadamente 10 mM, a fin de tener el acoplamiento eficiente de los bloques de construcción.
- En ciertas realizaciones, el procedimiento también comprende, después de la etapa (b), la etapa de depurar cualquier resto funcional inicial sin reaccionar. La eliminación de cualquier resto funcional inicial sin reaccionar en un ciclo particular evita la reacción del resto funcional inicial del ciclo con un bloque de construcción añadido en un ciclo posterior. Tales reacciones pueden llevar a la generación de restos funcionales que pierden uno o más bloques de construcción, que potencialmente llevan a una variedad de estructuras del resto funcional que corresponden a una secuencia de oligonucleótidos particular. Tal depuración se puede lograr por la reacción de cualquier resto funcional inicial restantes con un compuesto que reacciona con el grupo reactivo de la etapa (b). Preferiblemente, el compuesto depurador reaccionar rápidamente con el grupo reactivo de la etapa (b) y no incluye grupos reactivos adicionales que pueden reaccionar con los bloques de construcción añadidos en ciclos posteriores. Por ejemplo, en la síntesis de un compuesto donde el grupo reactivo de la etapa (b) es un grupo amino, un compuesto depurador adecuado es un éster de N-hidroxisuccinimida, tal como éster de ácido acético de N-hidroxisuccinimida.

En otra realización, la invención proporciona un procedimiento de producir una biblioteca de compuestos, en el que cada compuesto comprende un resto funcional que comprende dos o más bloques de construcción que está unido operativamente a un oligonucleótido codificador que identifica la estructura de el resto funcional, dicho procedimiento que comprende las etapas de (a) proporcionar una solución que comprende m iniciadores del compuesto de la reivindicación 1, en el que m es un número entero de 1 o mayor; (b) dividir la solución de la etapa (a) en r recipientes de reacción, en el que r es un número entero de 2 o mayor, de este modo se producen r alícuotas de la solución; (c) hacer reaccionar los iniciadores del compuesto en cada recipiente de reacción con uno de r bloques de construcción, dichos bloques de construcción que comprenden al menos un grupo reactivo complementario, en el que al menos un grupo reactivo complementario es complementario con el grupo reactivo de la etapa (a), en condiciones adecuadas para la reacción del grupo reactivo complementario para formar un enlace covalente, de este modo se producen r alícuotas que comprenden los compuestos que consisten en un resto funcional que comprenden n+1 bloques de construcción unidos operativamente al oligonucleótido inicial; y (d) hacer reaccionar el oligonucleótido inicial en cada alícuota con uno de un conjunto de r oligonucleótidos entrantes distintos correspondientes al bloque de construcción de la etapa (c) en presencia de una enzima que cataliza el ligamiento del oligonucleótido entrante y el oligonucleótido inicial, en condiciones adecuadas para el ligamiento enzimático del oligonucleótido entrante y el oligonucleótido inicial para formar un oligonucleótido codificador, en el que el último de dichos r oligonucleótidos entrantes distintos comprende a secuencia capuchón, dicha secuencia capuchón que comprende una secuencia de nucleótidos que contiene nucleótidos degenerados; de este modo se producen r alícuotas que comprenden moléculas que consisten en un resto funcional que comprende n+1 bloques de construcción unidos operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional que comprende los n+1 bloques de construcción. En una realización preferida, el oligonucleótido presente en cada molécula proporciona suficiente información para identificar los bloques de construcción dentro de la molécula y, opcionalmente, el orden de la adición de los bloques de construcción. En esta realización, el procedimiento de la invención comprende un procedimiento de sintetizar una biblioteca de compuestos, en la que los compuestos comprenden un resto funcional que comprende dos o más bloques de construcción que está unido operativamente a un oligonucleótido que identifica la estructura del resto funcional. Opcionalmente, el procedimiento también puede incluir la etapa de (e) recombinar las r fracciones, producidas en la etapa (d), de este modo se produce una solución que comprende moléculas que consiste en un resto funcional que comprende n + 1 bloques de construcción, que están unidos operativamente a un oligonucleótido alargado que codifica los n + 1 bloques de construcción. Las etapas (a) a (e) se pueden realizar una o más veces para producir los ciclos 1 a i, donde i es un número entero de 2 o mayor. In ciclo s+1, donde s es un número entero de i-1 o menor, la solución que comprende m iniciadores del compuesto de la etapa (a) es la solución de la etapa (e) del ciclo s. Asimismo, los iniciadores del compuesto de la etapa (a) del ciclo s+1 son los productos de la etapa (d) del ciclo s.

10

15

20

25

30

35

40

45

50

55

60

Preferiblemente la solución de la etapa (b) se divide en r fracciones en cada ciclo de síntesis de la biblioteca. En esta realización, cada fracción reacciona con un bloque de construcción único.

En los procedimientos de la invención, el orden de adición del bloque de construcción y el oligonucleótido entrante no es crítico, y las etapas (b) y (c) de la síntesis de una molécula, y las etapas (c) y (d) de la síntesis de la biblioteca se pueden invertir, es decir, el oligonucleótido entrante se puede ligar al oligonucleótido inicial antes de añadir el nuevo bloque de construcción. En ciertas realizaciones, puede ser posible realizar estas dos etapas simultáneamente.

En ciertas realizaciones, el procedimiento también comprende, después de la etapa (b), la etapa de eliminar cualquier resto funcional inicial sin reaccionar. La eliminación de cualquier resto funcional inicial sin reaccionar en un ciclo particular impide que el resto funcional inicial de un ciclo reaccione con un bloque de construcción añadido en un ciclo posterior. Tales reacciones pueden llevar a la generación de restos funcionales que pierden uno o más bloques de construcción, potencialmente llevan a una variedad de estructuras del resto funcional que corresponden a una secuencia de oligonucleótidos particular. Tal eliminación se puede lograr por la reacción de cualquier resto funcional inicial restante con un compuesto que reacciona con el grupo reactivo de la etapa (b). Preferiblemente, el compuesto depurador reaccionar rápidamente con el grupo reactivo de la etapa (b) y no incluye grupos reactivos adicionales que pueden reaccionar con los bloques de construcción añadidos en ciclos posteriores. Por ejemplo, en la síntesis de un compuesto donde el grupo reactivo de la etapa (b) es un grupo amino, un compuesto depurador adecuado es un éster de N-hidroxisuccinimida, tal como éster de ácido acético de N-hidroxisuccinimida.

En una realización, los bloques de construcción usados en la síntesis de la biblioteca se seleccionan de un conjunto de bloques de construcción candidatos por evaluación de la capacidad de los bloques de construcción candidatos para reaccionar con grupos funcionales complementarios apropiados en las condiciones usadas para la síntesis de la biblioteca. Los bloques de construcción que se muestran adecuadamente reactivos en tales condiciones posteriormente se pueden seleccionar para la incorporación en la biblioteca. Los productos de un ciclo dado, opcionalmente, se pueden purificar. Cuando el ciclo es un ciclo intermedio, es decir, cualquier ciclo anterior al ciclo final, estos productos son intermedios y se pueden purificar antes de la iniciación del próximo ciclo. Si el ciclo es el ciclo final, los productos del ciclo son los productos finales, y se pueden purificar antes de cualquier uso de los compuestos. Esta etapa de purificación, por ejemplo, puede eliminar reactantes sin reaccionar o en exceso y la enzima empleada para el ligamiento de oligonucleótidos. Se puede usar cualquiera de los procedimientos que son adecuados para separar los productos de otras especies presentes en la solución, que incluyen cromatografía líquida, tal como cromatografía líquida de alto rendimiento (HPLC) y precipitación con un codisolvente adecuado, tal

como etanol. Los procedimientos adecuados para la purificación dependerán de la naturaleza de los productos y el sistema de disolventes usado para la síntesis.

Las reacciones se realizan preferiblemente en solución acuosa, tal como una solución acuosa regulada, pero también se puede realizar en medio acuoso/orgánico mixto compatible con las propiedades de solubilidad de los bloques de construcción, los oligonucleótidos, los productos intermedios y finales y la enzima usada para catalizar el ligamiento del oligonucleótido.

5

10

35

40

45

50

55

60

Se entiende que el número teórico de compuestos producidos por un ciclo dado en el procedimiento descrito anteriormente es el producto del número de diferentes iniciadores del compuesto; m, usado en el ciclo y el número de distintos bloques de construcción añadido en el ciclo, r. El número real de compuestos distintos producido en el ciclo puede ser tan alto como el producto de r y m (r x m), pero puede ser menor, dada las diferencias de reactividad de determinados bloques de construcción con ciertos otros bloques de construcción. Por ejemplo, la cinética de adición de un particular bloque de construcción a un particular compuesto iniciador puede ser tal que en la escala de tiempo del ciclo de síntesis, se puede producir poco a nada el producto de esta reacción.

En ciertas realizaciones, un bloque de construcción común se añade antes al ciclo 1, después del último ciclo o entre cualquiera de dos ciclos. Por ejemplo, cuando el resto funcional es una poliamida, un bloque de construcción de terminación N-terminal común se puede añadir después del ciclo final. Un bloque de construcción común también se puede introducir entre dos ciclos, por ejemplo, para añadir un grupo funcional, tal como un grupo alquino o azida, que se puede utilizar para modificar los restos funcionales, por ejemplo, por ciclación, después de la síntesis de la biblioteca.

El término "unido operativamente", como se usa en la presente memoria, significa que dos estructuras químicas se unen entre sí de manera tal de permanecer unidas durante las diversas manipulaciones a las que se espera sean sometidas. Normalmente el resto funcional y el oligonucleótido codificador se unen covalentemente por medio de un grupo de unión apropiado. El grupo de unión es un resto bivalente con un sitio de unión para el oligonucleótido y un sitio de unión para el resto funcional. Por ejemplo, cuando el resto funcional es un compuesto de poliamida, el compuesto de poliamida se puede unir al grupo de unión en su extremo N-terminal, su extremo C-terminal o por medio de un grupo funcional en una de las cadenas laterales. El grupo de unión es suficiente para separar el compuesto de poliamida y el oligonucleótido en la menos un átomo, y preferiblemente, en más de un átomo, tales como al menos dos, al menos tres, al menos cuatro, al menos cinco o al menos seis átomos. Preferiblemente, el grupo de unión es suficientemente flexible para permitir que el compuesto de poliamida se una a las moléculas blanco de una manera que es independiente del oligonucleótido.

En una realización, el grupo de unión se une al extremo N-terminal del compuesto de poliamida y el grupo 5'-fosfato del oligonucleótido. Por ejemplo, el grupo de unión se puede derivar de un precursor del grupo de unión que comprende un grupo carboxilo activado en un extremo y un éster activado en el otro extremo. La reacción del precursor del grupo de unión con el átomo de nitrógeno N-terminal formará un enlace amida que conecta el grupo de unión con el compuesto de poliamida o bloque de construcción N-terminal, mientras que la reacción del precursor del grupo de unión con el grupo 5'-hidroxi del oligonucleótido producirá la unión del oligonucleótido al grupo de unión por medio de una unión éster. El grupo de unión puede comprender, por ejemplo, una cadena polimetileno, tal como una cadena -(CH2)n- o una cadena poli(etilenglicol), tal como una cadena -(CH2CH2O)n, donde en ambos casos n es un número entero de 1 a aproximadamente 20. Preferiblemente, n es de 2 a aproximadamente 12, más preferiblemente de aproximadamente 4 a aproximadamente 10. En una realización, el grupo de unión comprende un grupo hexametilen (-(CH2)6-).

Cuando los bloques de construcción son residuos de aminoácidos, el resto funcional resultante es una poliamida. Los aminoácidos se pueden acoplar por medio de reacciones químicas adecuadas para la formación de los enlaces amida. Preferiblemente, el acoplamiento de los bloques de construcción de aminoácido se realiza en condiciones que sean compatibles con el ligamiento enzimático de los oligonucleótidos, por ejemplo, a pH neutro o casi neutro pH y en solución acuosa. En una realización, el compuesto de poliamida se sintetiza desde la dirección C-terminal a N-terminal. En esta realización, el bloque de construcción primero o C-terminal, se acopla en si grupo carboxilo a un oligonucleótido por medio de un grupo de unión adecuado. El primer bloque de construcción reacciona con el segundo bloque de construcción, que preferiblemente tiene un grupo carboxilo activado y un grupo amino protegido. Se puede usar cualquier abordaje de grupo activador/protector que es adecuado para la formación de enlace amida en fase de solución. Por ejemplo, las especies de carboxilo activado adecuadas incluyen fluoruro de acilo (Patente U.S. No. 5.360.928, incorporada en la presente memoria por referencia en su totalidad), anhídridos simétricos y ésteres de N-hidroxisuccinimida. Los grupos acilo también se pueden activar in situ, como es conocido en la técnica, por la reacción con un compuesto activador adecuado. Los compuestos activadores adecuados incluyen diciclohexilcarbodiimida (DCC), diisopropilcarbodiimida (DIC), 1-etoxicarbonil-2-etoxi-1,2-dihidroquinolina (EEDOJ, hidrocloruro de 1-etil-3-(3-dimetilaminopropil)carbodiimida (EDC), anhídrido n-propano-fosfónico (PPA), cloruro de N,N-bis(2-oxo-3-oxazolidinil)imidofosforilo (BOP-CI), hexafluorofosfato de bromo-tris-pirrolidinofosfonio (PyBrop), difenilfosforil azida (DPPA), reactivo de Castro (BOP, PyBop), sales de O-benzotriazolil-N,N,N',N'-tetrametiluronio (HBTU), cianuro de dietilfosforilo (DEPCN), dióxido de 2,5-difenil-2,3-dihidro-3-oxo-4-hidroxitiofeno (reactivo de Steglich; HOTDO), 1,11-carbonil-diimidazol (CDT), y cloruro de 4-(4,6-dimetoxi-1,3,5-triazin-2-il)-4-metilmorfolinio (DMT-MM). Los reactivos de acoplamiento se pueden emplear solos o en combinación con aditivos tales como N,N-

dimetil-4-aminopiridina (DMAP), N-hidroxi-benzotriazol (HOBt), N-hidroxibenzotriazina (HOOBt), N-hidroxisuccinimida (HOSu) N-hidroxiazabenzotriazol (HOAt), sales de azabenzotriazolil-tetrametiluronio (HATU, HAPyU) o 2-hidroxipiridina. En ciertas realizaciones, la síntesis de una biblioteca requiere el uso de dos o más abordajes de activación, para permitir el uso de un conjunto de bloques de construcción estructuralmente diversos. Para cada bloque de construcción, los expertos en la técnica pueden determinar el abordaje de activación apropiado.

5

10

15

20

25

30

35

40

45

50

55

60

El grupo protector N-terminal puede ser cualquier grupo protector que es compatible con las condiciones del proceso, por ejemplo, grupos protectores que son adecuados para las condiciones de síntesis en fase de solución. Un grupo protector preferido es el grupo fluorenilmetoxicarbonilo ("Fmoc"). También se puede necesitar proteger cualquiera de los grupos funcionales potencialmente reactivos en la cadena lateral del bloque de construcción de aminoacilo. Preferiblemente el grupo protector de la cadena lateral es ortogonal al grupo protector N-terminal, es decir, el grupo protector de la cadena lateral se elimina en condiciones que son diferentes de los requeridos para la eliminación del grupo protector N-terminal. Los grupos protectores de la cadena lateral adecuados incluyen el grupo nitroveratrilo, que se puede usar para proteger los grupos carboxilo de la cadena lateral y grupos amino de la cadena lateral. Otro grupo protector amino de la cadena lateral adecuada es el grupo N-pent-4-enoílo.

Los bloques de construcción se pueden modificar después de la incorporación en el resto funcional, por ejemplo, por una reacción adecuada que involucra un grupo funcional en uno o más de los blogues de construcción. La modificación del bloque de construcción puede ocurrir después de la adición del bloque de construcción final o en cualquier punto intermedio en la síntesis del resto funcional, por ejemplo, después de cualquier ciclo del proceso de síntesis. Cuando se sintetiza una biblioteca de moléculas bifuncionales de la invención, la modificación del bloque de construcción se puede realizar en la biblioteca completa o en una porción de la biblioteca, de este modo aumenta el grado de complejidad de la biblioteca. Las reacciones modificadoras del bloque de construcción adecuadas incluyen las reacciones que se pueden realizar en las condiciones compatibles con el resto funcional y el oligonucleótido codificador. Los ejemplos de tales reacciones incluyen la acilación y sulfonación de grupos amino o grupos hidroxilo, alquilación de los grupos amino, esterificación o tioesterificación de grupos carboxilo, amidación de grupos carboxilo, epoxidación de alquenos, y otras reacciones conocidas en la técnica. Cuando el resto funcional incluye un bloque de construcción que tiene un grupo funcional alguino o azida, la reacción de cicloadición de azida/alguino se puede usar para derivar el bloque de construcción. Por ejemplo, un bloque de construcción que incluye un alquino puede reaccionar con una azida orgánica, o un bloque de construcción que incluye una azida puede reaccionar con un alquino, en tal caso forma un triazol. Las reacciones de modificación del bloque de construcción pueden ocurrir después de la adición del bloque de construcción final o en un punto intermedio del proceso de síntesis, y se puede usar para anexar una variedad de estructuras químicas al resto funcional, que incluyen carbohidratos, restos de unión a metal y estructuras que se dirigen a ciertas biomoléculas o tipos de tejido.

En otra realización, el resto funcional comprende una serie lineal de bloques de construcción y esta serie lineal se cicla por medio de una reacción adecuada. Por ejemplo, si al menos dos bloques de construcción de la disposición lineal incluyen grupos sulfhidrilo, los grupos sulfhidrilo se pueden oxidar para formar una unión disulfuro, de este modo se cicla la disposición lineal. Por ejemplo, los restos funcionales pueden ser oligopéptidos que incluyen dos o más restos de cisteína L o D y/u homocisteína L o D. Los bloques de construcción también pueden incluir otros grupos funcionales capaces de reaccionar entre sí para ciclar la disposición lineal, tal como grupos carboxilo y grupos amino o hidroxilo.

En una realización preferida, uno de los bloques de construcción en la disposición lineal comprende un grupo alquino y otro bloque de construcción de la disposición lineal comprende un grupo azida. Los grupos azida y alquino pueden ser inducidos para reaccionar por medio de cicloadición, lo que da origen a la formación de una macroestructura cíclica. En el ejemplo ilustrado en la Figura 9, el resto funcional es un polipéptido que comprende un bloque de construcción de propargilglicina en su extremo C-terminal y un grupo azidoacetilo en su extremo N-terminal. La reacción del grupo alquino y la azida en condiciones adecuadas produce la formación de un compuesto cíclico, que incluye una estructura de triazol dentro del macrociclo. En el caso de una biblioteca, en una realización, cada miembro de la biblioteca comprende bloques de construcción que contienen alquino y azida y se pueden ciclar de esta manera. En una segunda realización, todos los miembros de la biblioteca comprenden bloques de construcción que contienen alquino y azida, pero solo una porción de la biblioteca se cicla. En una tercera realización, solo determinados restos funcionales incluyen bloques de construcción que contienen alquino y azida, y solo estas moléculas se ciclan. En las precedentes segunda y tercera realización, la biblioteca, después de la reacción de cicloadición, incluirá restos funcionales cíclicos y lineales.

En algunas realizaciones de la invención en que el mismo resto funcional, por ejemplo, triazina, se añade a cada una y todas las fracciones de la biblioteca durante una etapa de síntesis particular, puede no ser necesario añadir una marca oligonucleotídicas que codifica este resto funcional.

Los oligonucleótidos se pueden ligar por procedimientos químicos y enzimáticos. En una realización, los oligonucleótidos se ligan por medios químicos. El ligamiento químico del ADN y ARN se puede realizar por medio de reactivos tales como carbodiimida y bromuro de cianógeno hidrosolubles descritos, por ejemplo, por Shabarova, et al. (1991) Nucleic Acids Research, 19, 4247-4251), Federova, et al. (1996) Nucleosides and Nucleotides, 15, 1137-1147, y Carriero y Damha (2003) Journal of Organic Chemistry, 68, 8328-8338. En una realización, el ligamiento

químico se realiza por medio de bromuro de cianógeno, 5 M en acetonitrilo, en una relación 1:10 v/v con oligonucleótido 5'-fosorilado en un buffer de pH 7,6 (1 M de MES + 20 mM de MgCl2) a 0 grados durante 1 - 5 minutos. En otra realización, los oligonucleótidos se ligando por medio de procedimientos enzimáticos. En cada realización, los oligonucleótidos pueden ser bicatenarios, preferiblemente con una proyección de aproximadamente 5 a aproximadamente 14 bases. El oligonucleótidos también puede ser monocatenario, en tal caso se emplea una férula con una superposición de aproximadamente 6 bases con cada uno de los oligonucleótidos por ligar para ubicar los restos reactivos 5' y 3' próximos entre sí.

En una realización, el bloque de construcción inicial está unido operativamente a un oligonucleótido inicial. Antes o después de acoplar un segundo bloque de construcción al bloque de construcción inicial, una segunda secuencia de oligonucleótidos que identifica el segundo bloque de construcción se liga al oligonucleótido inicial. Los procedimientos para ligar la secuencia de oligonucleótidos inicial y la secuencia de oligonucleótidos entrante se exponen en las Figuras 1 y 2. En la Figura 1, el oligonucleótido inicial es bicatenario, y una cadena incluye una secuencia de la proyección que es complementaria con un extremo del segundo oligonucleótido y pone al segundo oligonucleótidos en contacto con el oligonucleótido inicial. Preferiblemente la secuencia de oligonucleótidos inicial de la proyección y la secuencia complementario del segundo oligonucleótidos son de al menos aproximadamente 4 bases; más preferiblemente ambas secuencias son de la misma longitud. El oligonucleótido inicial y el segundo oligonucleótidos se pueden ligar por medio de una enzima adecuada. Si el oligonucleótido inicial se liga al primer bloque de construcción en el extremo 5' de una de las cadenas (la "cadena superior"), por lo tanto la cadena que es complementaria con la cadena superior (la "cadena inferior") incluirá la secuencia de la proyección en su extremo 5', y el segundo oligonucleótidos incluirá una secuencia complementaria en su extremo 5'. Después del ligamiento del segundo oligonucleótido, se puede añadir una cadena que es complementaria con la secuencia del segundo oligonucleótido que es 3' a la secuencia complementaria de la proyección y que incluye la secuencia de la proyección adicional.

10

15

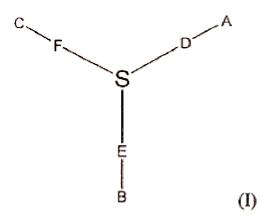
20

25

30

35

40


45

50

En una realización, el oligonucleótido se alarga como se expone en la Figura 2. El oligonucleótidos unido al resto funcional en crecimiento y el oligonucleótido entrante se ubican por ligamiento por el uso de una secuencia de la "férula", que incluye una región que es complementaria con el extremo 3' del oligonucleótido inicial y una región que es complementaria con el extremo 5' del oligonucleótido entrante. La férula pone el extremo 5' del oligonucleótido en proximidad con el extremo 3' del oligo entrante y el ligamiento se obtiene por medio de ligamiento enzimático. En el ejemplo ilustrado en la Figura 2, el oligonucleótido inicial consiste en 16 nucleobases y la férula es complementaria con las 6 bases en el extremo 3'. El oligonucleótido entrante consiste en 12 nucleobases, y la férula es complementaria con las 6 bases del extremo 5' terminal. La longitud de la férula y las longitudes de las regiones complementarias no son críticas. Sin embargo, las regiones complementarias deben ser suficientemente largas para permitir la formación de dímeros estables en las condiciones del ligamiento, pero tan largas como para producir un nucleótido codificador excesivamente largo en las moléculas finales. Se prefiere que las regiones complementarias sean de aproximadamente 4 bases a aproximadamente 12 bases, más preferiblemente de aproximadamente 5 bases a aproximadamente 5 bases a aproximadamente 5 bases a aproximadamente 5 bases de longitud.

Los procedimientos de dividir y mezclar usados para los procedimientos para la síntesis de biblioteca expuestos en la presente memoria asegurar que cada resto funcional único está unido operativamente a al menos una secuencia de oligonucleótidos única que identifica el resto funcional. Si 2 o más marcas de oligonucleótidos diferentes se usan para al menos un bloque de construcción en al menos uno de los ciclos de síntesis, cada resto funcional diferente que comprende este bloque de construcción será codificado por múltiples oligonucleótidos. Por ejemplo, si se usan 2 marcas de oligonucleótidos para cada bloque de construcción durante la síntesis de una biblioteca de 4 ciclos, existirán 16 secuencias de ADN (24) que codifican cada resto funcional único. Existen varias ventajas potenciales para codificar cada resto funcional único con múltiples secuencias. Primero, la selección de una combinación diferente de secuencias de la marca que codifican el mismo resto funcional asegura que estas moléculas se seleccionaron de modo independiente. Segundo, la selección de una combinación diferente de secuencias de la marca que codifican el mismo resto funcional eliminar la posibilidad de que la selección esté basada en la secuencia del oligonucleótido. Tercero, se pueden reconocer artefactos técnicos si el análisis de la secuencia sugiere que un resto funcional particular esta altamente enriquecido, pero solo aparece una combinación de secuencia de las muchas posibilidades. La marcación múltiple se puede lograr al tener reacciones de división independientes con el mismo bloque de construcción pero con una marca oligonucleotídicas diferente. De modo alternativo, se puede lograr la marcación múltiple por la mezcla de una relación apropiada de cada marca en una reacción de marcación única con un bloque de construcción individual.

En una realización, el oligonucleótido inicial es bicatenario y las dos cadenas se unen de modo covalente. Un medio de unión covalente de las cadenas se muestra en la Figura 3, en la que un resto ligador, por ejemplo, un ligador, se usa para ligar las dos cadenas y el resto funcional. El resto ligador puede ser cualquier estructura química que comprende un primer grupo funcional que está adaptado para reaccionar con un bloque de construcción, un segundo grupo funcional que está adaptado para reaccionar con el extremo 3' de un oligonucleótido, y un tercer grupo funcional que está adaptado para reaccionar con el extremo 5' de un oligonucleótido. Preferiblemente, el segundo y tercer grupos funcionales se orientan de modo de ubicar las cadenas de oligonucleótido en una orientación relativa que permita la hibridación de las dos cadenas. Por ejemplo, el resto ligador, por ejemplo, el ligador, puede tener la estructura general (I):

donde A, es un grupo funcional que puede formar un enlace covalente con un bloque de construcción, B es un grupo funcional que puede formar un enlace con el extremo 5' de un oligonucleótido, y C es un grupo funcional que puede formar un enlace con el extremo 3' de un oligonucleótido.

S es un átomo o un armazón. D, F y E son grupos químicos que unen los grupos funcionales A, C y B a S, que es un átomo nuclear o del armazón. Preferiblemente, (i) A es un grupo amino; B es un grupo fosfato; y C es un grupo fosfato; o (ii) en el que D, E y F son, de modo independiente, un grupo alquileno o un grupo oligo(etilen glicol); o (iii) en el que S es un átomo de carbono, un átomo de nitrógeno, un átomo de fósforo, un átomo de boro, un grupo fosfato, un grupo cíclico o un grupo policíclico; opcionalmente en el que el resto ligador es de la estructura

en el que cada uno de n, m y p es, de modo independiente, un número entero de l a aproximadamente 20; opcionalmente (A) en el que cada uno de n, m y p es de modo independiente un número entero de 2 a ocho, opcionalmente en el que cada uno de n, m y p es de modo independiente un número entero de 3 a 6; o (B) en el que el resto ligador tiene la estructura

15

20

10

En realizaciones en que el oligonucleótido inicial es bicatenario, los oligonucleótidos entrantes también son bicatenarios. Como se muestra en la Figura 3, el oligonucleótido inicial puede tener una cadena que es más larga que la otra, lo que proporciona una secuencia de la proyección. En esta realización, el oligonucleótido entrante incluye una secuencia de la proyección que es complementaria con la secuencia de la proyección del oligonucleótido inicial. La hibridación de las dos secuencia de la proyección complementarias pone el oligonucleótido entrante en posición para el ligamiento con el oligonucleótido inicial. Este ligamiento se puede realizar enzimáticamente por medio de una ADN o ARN ligasa. Las secuencias de la proyección del oligonucleótido entrante y el oligonucleótido inicial son preferiblemente de la misma longitud y consisten en dos o más nucleótidos, preferiblemente de 2 a aproximadamente 10 nucleótidos, más preferiblemente de 2 a aproximadamente 6 nucleótidos. En una realización

preferida, el oligonucleótido entrante es un oligonucleótido bicatenario que tiene una secuencia de la proyección en cada extremo. La secuencia de la proyección en un extremo es complementaria con la secuencia de la proyección del oligonucleótido inicial, mientras que después del ligamiento del oligonucleótido entrante y el oligonucleótido inicial, la secuencia de la proyección en el otro extremo es la secuencia de la proyección del oligonucleótido inicial del próximo ciclo. En una realización, las tres secuencias de la proyección son de 2 a 6 nucleótidos de longitud, y la secuencia codificadora del oligonucleótido entrante es de 3 a 10 nucleótidos de longitud, preferiblemente 3 a 6 nucleótidos de longitud. En una realización particular, las secuencias de la proyección son de 2 nucleótidos de longitud y la secuencia codificadora es de 5 nucleótidos de longitud.

En la realización ilustrada en la Figura 4, la cadena entrante tiene una región en su extremo 3' que es complementaria con el extremo 3' del oligonucleótido inicial, que deja las proyecciones en los extremo 5' de ambas cadenas. Los extremos 5' se pueden llenar por medio de, por ejemplo, una ADN polimerasa, tal como polimerasa vent, que da origen a un oligonucleótidos bicatenario alargado. La cadena inferior de este oligonucleótido se puede eliminar, y añadir una secuencia adicional al extremo 3' de la cadena superior por medio del mismo procedimiento.

La marca oligonucleotídica codificador se forma como resultado de la adición sucesiva de oligonucleótidos que identifica cada bloque de construcción sucesivo. En una realización de los procedimientos de la invención, las marcas de oligonucleótidos sucesivas se pueden acoplar por ligamiento enzimático para producir un oligonucleótido codificador.

20

45

50

55

El ligamiento de oligonucleótidos catalizado por enzimas se puede realizar por medio de cualquier enzima que tenga capacidad de ligar fragmentos de ácido nucleico. Los ejemplos de enzimas incluyen ligasas, polimerasas, y topoisomerasas. En realizaciones específicas de la invención, ADN ligasa (EC 6.5.1.1), ADN polimerasa (EC 2.7.7.7), ARN polimerasa (EC 2.7.7.6) o topoisomerasa (EC 5.99.1.2) se usan para ligar los oligonucleótidos. Las enzimas contenidas en cada clase EC se pueden hallar, por ejemplo, descritas en Bairoch (2000) Nucleic Acids Research 28:304-5.

En una realización preferida, los oligonucleótidos usado en los procedimientos de la invención son oligodesoxinucleótidos y la enzima usada para catalizar el ligamiento de oligonucleótidos es ADN ligasa. A fin de que el ligamiento se produzca en presencia de la ligasa, es decir, para formar un enlace fosfodiéster entre dos oligonucleótidos, un oligonucleótido debe tener un grupo 5'fosfato libre y el otro oligonucleótido debe tener un grupo 3' hidroxilo libre. Los ejemplos de ADN ligasa que se pueden usar en los procedimientos de la invención incluyen T4 ADN ligasa, Taq ADN ligasa, T4 ARN ligasa, ADN ligasa (E. coli) (todas disponibles en, por ejemplo, New England Biolabs, MA).

Los expertos en la técnica entenderán que cada enzima usada para el ligamiento tiene actividad óptima en condiciones específicas, por ejemplo, temperatura, concentración del buffer, pH y tiempo. Cada una de estas condiciones se puede ajustar, por ejemplo, de acuerdo con las instrucciones del fabricante, para obtener el ligamiento optimo de las marcas de oligonucleótidos.

El oligonucleótido entrante puede ser de cualquier longitud conveniente, pero preferiblemente tiene al menos de tres de nucleobases de longitud. Más preferiblemente, el oligonucleótido entrante tiene 4 o más nucleobases de longitud. En una realización, el oligonucleótido entrante tiene de 3 a aproximadamente 12 nucleobases de longitud. Se prefiere que los oligonucleótidos de las moléculas de las bibliotecas de la invención tengan una secuencia terminal que puede servir como un cebador para PCR, como es conocido en la técnica. Tal secuencia terminar se puede incorporar como extremo terminar del oligonucleótido entrante añadido en el ciclo final de la síntesis de la biblioteca, o se pueda añadir después de la síntesis de la biblioteca, por ejemplo, por medio de los procedimientos de ligamiento enzimático descritos en la presente memoria.

Una realización preferida del procedimiento de la invención se expone en la Figura 5. El proceso comienza con una secuencia de ADN sintetizada que une su extremo 5' a un ligador que termina en un grupo amino. En la etapa 1, esta secuencia de ADN de partida se liga a una secuencia de ADN entrante en presencia de una cadena de ADN férula, ADN ligasa y ditiotreitol en buffer Tris. Esto produce una secuencia de ADN marcada que se puede usar directamente en la próxima etapa o se purifica, por ejemplo, por medio de HPLC o precipitación con etanol, antes de proseguir a la próxima etapa. En la etapa 2 el ADN marcado reacciona con un aminoácido activado protegido, en este ejemplo, un fluoruro de aminoácido protegido con Fmoc, que produce un conjugado de aminoácido-ADN protegido. En la etapa 3, el conjugado de aminoácido-ADN protegido se desprotege, por ejemplo, en presencia de piperidina, y el conjugado desprotegido resultante, opcionalmente, se purifica, por ejemplo, por HPLC o precipitación con etanol. El conjugado desprotegido es el producto del primer ciclo de síntesis, y es el material de partida para el segundo ciclo, que añade un segundo residuo de aminoácido al grupo amino libre del conjugado desprotegido.

En realizaciones en que se usa PCR para amplificar y/o secuenciar los oligonucleótidos codificadores de moléculas seleccionadas, los oligonucleótidos codificadores pueden incluir, por ejemplo, secuencias del cebador de PCR y/o cebadores de secuenciación (por ejemplo, cebadores, tales como, por ejemplo, 3'-GACTACCGCGCTCCCTCCG-5' y 3'-GACTCGCCCGACCGTTCCG-5'). Se puede incluir una secuencia del cebador de PCR, por ejemplo, en el oligonucleótido inicial antes del primer ciclo de síntesis, y/o se puede incluir con el primer oligonucleótido entrante, y/o se puede ligar al oligonucleótido codificador después del ciclo final de síntesis de la biblioteca, y/o se puede

incluir en el oligonucleótido entrante del ciclo final. Las secuencias del cebador de PCR añadidas después del ciclo final de síntesis de la biblioteca y/o en el oligonucleótido entrante del ciclo final se denominan en la presente memoria como "secuencias capuchón".

En una realización, la secuencia del cebador de PCR se diseña dentro de la marca oligonucleotídica codificador. Por ejemplo, una secuencia del cebador de PCR se puede incorporar en la marca inicial del oligonucleótido y/o se puede incorporar en la marca final de oligonucleótido. En una realización la misma secuencia del cebador de PCR se incorpora en la marca inicial y final del oligonucleótido. En otra realización, una primera secuencia del cebador de PCR se incorpora en la marca inicial del oligonucleótido y una segunda secuencia del cebador de PCR se incorpora en la marca final del oligonucleótido. Alternativamente, la segunda secuencia del cebador de PCR se puede incorporar en la secuencia capuchón que se describe en la presente memoria. En realizaciones preferidas, la secuencia del cebador de PCR es al menos de aproximadamente 5, 7, 10, 13, 15, 17, 20, 22, o 25 nucleótidos de longitud.

Las secuencias del cebador de PCR adecuadas para usar en las bibliotecas de la invención son conocidas en la técnica; los cebadores y procedimientos adecuados se exponen, por ejemplo, en Innis, et al., eds., PCR Protocols: A Guide to Methods and Applications, San Diego: Academic Press (1990), cuyos contenidos se incorporan en la presente memoria por referencia en su totalidad. Otros cebadores adecuados para usar en la construcción de las bibliotecas descritas en la presente memoria son los cebadores descritos en las publicaciones de PCT WO 2004/069849 y WO 2005/003375, cuyos contenidos totales se incorporan expresamente en la presente memoria por referencia.

15

25

30

40

45

50

55

20 El término "polinucleótido" como se usa en la presente memoria con referencia a cebadores, sondas y fragmentos o segmentos de ácido nucleico para sintetizas por extensión del cebador se define como una molécula compuesta de dos o más desoxirribonucleótidos, preferiblemente más de tres.

El término "cebador" como se usa en la presente memoria se refiere a un polinucleótido sea purificado de un digesto por restricción de ácido nucleico o producido sintéticamente, que sea capaz de actuar como punto de iniciación de la síntesis de ácido nucleico cuando se coloca en las condiciones en que se induce la síntesis de un producto de extensión del cebador que es complementario con una cadena de ácido nucleico, es decir, en presencia de nucleótidos y un agente para la polimerización tal como ADN polimerasa, transcriptasa inversa y similares, y en una temperatura y pH adecuados. El cebador es preferiblemente monocatenario para máxima eficiencia, pero en forma alternativa puede ser forma bicatenaria. Si es bicatenario, el cebador primero se trata de separar de su cadena complementaria antes de usarse para preparar los productos de extensión. Preferiblemente, el cebador es un polidesoxirribonucleótido. El cebador debe ser suficientemente largo para inicial la síntesis de los productos de extensión en presencia de los agentes para la polimerización. Las longitudes exactas de los cebadores dependerán de muchos factores, que incluyen temperatura y la fuente de cebador.

Los cebadores usados en la presente memoria se seleccionan por ser "sustancialmente" complementarios con las diferentes cadenas de cada secuencia específica por amplificar. Esto significa que el cebador debe ser suficientemente complementario para hibridar no aleatoriamente con su respectiva cadena molde. En consecuencia, la secuencia del cebador puede reflejar o no la secuencia exacta del molde.

Los cebadores de polinucleótidos se pueden preparar por medio de cualquier procedimiento adecuado, tal como, por ejemplo, los procedimientos de fosfotriéster o fosfodiéster descritos en Narang et al., (1979) Met. Enzymol., 68:90; Patente U.S. Núm. 4.356.270, Patente U.S. Núm. 4.458.066, Patente U.S. Núm. 4.416.988, Patente U.S. Núm. 4.293.652; y Brown et al., (1979) Met. Enzymol., 68:109.

En los casos en que las secuencias del cebador de PCR se incluyen en un oligonucleótido entrante, estos oligonucleótidos entrantes preferiblemente serán significativamente más largos que los oligonucleótidos entrantes añadidos en otros ciclos, debido a que ellos incluirán una secuencia codificadora y una secuencia del cebador de PCR.

En una realización, la secuencia capuchón se añade después de la adición del bloque de construcción final y el oligonucleótido entrante final, y la síntesis de una biblioteca como se expone en la presente memoria incluye la etapa de ligamiento de la secuencia capuchón al oligonucleótido codificador, de modo que la porción del oligonucleótido de sustancialmente todos los miembros de la biblioteca termina en una secuencia que incluye una secuencia del cebador de PCR. Preferiblemente, la secuencia capuchón se añade por el ligamiento a las fracciones combinadas que son productos del ciclo de síntesis final. La secuencia capuchón se puede añadir por medio de un proceso enzimático usado en la construcción de la biblioteca.

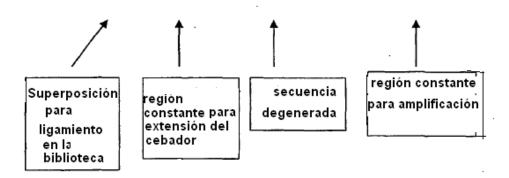
En una realización, la misma secuencia capuchón se liga a cada miembro de la biblioteca. En otra realización, se usa una pluralidad de secuencias capuchón. En esta realización, las secuencias capuchón de oligonucleótidos que contiene bases variables, por ejemplo, se ligan sobre miembros de la biblioteca después del ciclo de síntesis final. En una realización, después del ciclo de síntesis final, las fracciones se combinan y posteriormente se dividen en fracciones otra vez, cada fracción tiene una secuencia capuchón añadida diferente. Alternativamente, se pueden añadir múltiples secuencias capuchón a la biblioteca mezclada después del ciclo final de síntesis. En ambas

realizaciones, los miembros de la biblioteca final incluirán las moléculas que comprenden restos funcionales específicos ligados para identificar oligonucleótidos que incluyen dos o más secuencias capuchón diferentes.

En una realización, el cebador de terminación comprende una secuencia de oligonucleótidos que contiene nucleótidos variables, es decir, degenerados. Tales bases degeneradas dentro de los cebadores de terminación permiten la identificación de moléculas de la biblioteca de interés al determinar si una combinación de bloques de construcción es la consecuencia de la duplicación por PCR (secuencia idéntica) o apariciones independientes de la molécula (secuencia diferente). Por ejemplo, tales bases degeneradas pueden reducir el número potencial de falsos positivos durante el análisis biológico de la biblioteca codificada.

En una realización, un cebador de terminación degenerado comprende o tiene la siguiente secuencia:

5'-CAGCGTTCGA-3'

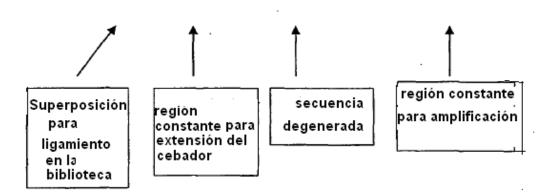

5

10

15

25

3'-AA GTCGCAAGCT NNNNN GTCTGTTCGAAGTGGACG-5'


donde N puede ser cualquiera de las 4 bases, lo que permite 1024 secuencias diferentes (45). El cebador tiene la siguiente secuencia después de su ligamiento en la biblioteca y extensión del cebador:

5'-CAGCGTTCGA N'N'N'N'N'CAGACAAGCTTCACCTGC-3'

3 '-AA GTCGCAAGCT N-N N N N GTCTGTTCGAAGTGGACG-5'

En otra realización, el cebador de terminación comprende o tiene la siguiente secuencia:

3'-AA GTCGCAAGCTACG ABBBABBBABBBA GACTACCGCGCTCCCTCCG

- donde B puede ser cualquiera de C, G o T, lo que permite 19.683 secuencias diferentes (39). El diseño de la región degenerada en este cebador mejora el análisis de secuencia del ADN, las bases de A que flanquean e interrumpen las bases degeneradas B impiden las extensiones homopoliméricas mayores de 3 bases, y facilitan el alineamiento de secuencia.
 - En una realización, el oligonucleótido de terminación degenerado se liga a los miembros de la biblioteca por medio de una enzima adecuada y la cadena superior del oligonucleótido de terminación degenerado posteriormente se polimeriza por medio de una enzima adecuada, tal como una ADN polimerasa.

En otra realización, la secuencia cebadora de PCR es un "adaptador universal" o "cebador universal". Como se usa

en la presente memoria, un "adaptador universal" o "cebador universal" es un oligonucleótidos que contiene una región cebadora de PCR única, que es, por ejemplo, de aproximadamente 5, 7, 10, 13, 15, 17, 20, 22, o 25 nucleótidos de longitud, y se ubica en forma adyacente a una región cebadora de secuenciación única que es, por ejemplo, de aproximadamente 5, 7, 10, 13, 15, 17, 20, 22, o 25 nucleótidos de longitud, y opcionalmente está seguida por una secuencia clave discriminante única (o secuencia identificadora de la muestra) que consiste en al menos uno de cada uno de los cuatro desoxirribonucleótidos (es decir, A, C, G, T).

Como se usa en la presente memoria, el término "secuencia clave discriminante" o "secuencia identificadora de la muestra" se refiere a una secuencia que se puede usar para marcar únicamente una población de moléculas de una muestra. Se pueden mezclar múltiples muestras, cada una que contiene una secuencia identificadora de la muestra única, secuenciar y re-clasificar después de la secuenciación del ADN para el análisis de las muestras individuales. La misma secuencia discriminante se puede usar para una biblioteca completa o, en forma alternativa, diferentes secuencias clave discriminantes para rastrear bibliotecas diferentes. En una realización, la secuencia clave discriminante está en el cebador de PCR 5', el cebador de PCR 3', o en ambos cebadores. Si ambos cebadores de PCR contienen una secuencia identificadora de la muestra, el número de muestras diferentes que se pueden mezclar con secuencias identificadoras de la muestra únicas es el producto de la cantidad de secuencias identificadoras de la muestra en cada cebador. En consecuencia, 10 cebadores 5' diferentes de secuencia identificadora de la muestra se pueden combinar con 10 cebadores 3' diferentes de secuencia identificadora de la muestra para producir 100 combinaciones diferentes de secuencia identificadora de la muestra.

Los ejemplos no limitantes de cebadores de PCR 5' y 3' únicos que contienen las secuencias clave discriminantes incluyen los siguientes:

Cebadores 5'(posiciones variables negrita e itálica):

5

10

15

20

25

- 5' A GCCTTGCCAGCCCGCTCAGATGACTCCCAAATCGATGTG;
- 5' C GCCTTGCCAGCCGCTCAGCTGACTCCCAAATCGATGTG:
- 5' G GCCTTGCCAGCCCGCTCAGGTGACTCCCAAATCGATGTG;
- 5' T GCCTTGCCAGCCCGCTCAGTTGACTCCCAAATCGATGTG:
- 5' AA GCCTTGCCAGCCCGCTCAGAATGACTCCCAAATCGATGTG;
- 5' AC GCCTTGCCAGCCCGCTCAGACTGACTCCCAAATCGATGTG;
- 5' AG GCCTTGCCAGCCCGCTCAGAGTGACTCCCAAATCGATGTG:
- 5' AT GCCTTGCCAGCCCGCTCAGATTGACTCCCAAATCGATGTG:

5' CA - GCCTTGCCAGCCCGCTCAGCATGACTCCCAAATCGATGTG.

Los cebadores 3' SID (posiciones variables negrita e itálica):

- 3' A GCCTCCCTCGCGCCATCAGAGCAGGTGAAGCTTGTCTG:
- 3' C GCCTCCCTCGCGCCATCAGCGCAGGTGAAGCTTGTCTG:
- 3' G GCCTCCCTCGCGCCATCAGGGCAGGTGAAGCTTGTCTG;
- 3' T GCCTCCCTCGCGCCATCAGTGCAGGTGAAGCTTGTCTG;
- 3' AA GCCTCCCTCGCGCCATCAGAAGCAGGTGAAGCTTGTCTG
- 3' AC GCCTCCCTCGCGCCATCAGACGCAGGTGAAGCTTGTCTG
- 3' AG GCCTCCCTCGCGCCATCAGAGCAGGTGAAGCTTGTCTG
- 3' AT GCCTCCCTCGCGCCATCAGATGCAGGTGAAGCTTGTCTG:

У

10

15

20

35

40

45

50

55

3' CA - GCCTCCCTCGCGCCATCAGCAGCAGGTGAAGCTTGTCTG

En una realización, la secuencia clave discriminante es de aproximadamente 4, 5, 6, 7, 8, 9, o 10 nucleótidos de longitud. En otra realización, la secuencia clave discriminante es una combinación de aproximadamente 1-4 nucleótidos. En aún otra realización, cada adaptador universal es de aproximadamente cuarenta y cuatro nucleótidos de longitud. En una realización los adaptadores universales se ligan, por medio de T4 ADN ligasa, en el extremo del oligonucleótido codificador. Se pueden diseñar diferentes adaptadores universales en forma específica para cada preparación de biblioteca y en consecuencia, proporcionarán un identificador único para cada biblioteca. El tamaño y la secuencia de los adaptadores universales puede ser modificado cuando se estime necesario por los expertos en la técnica.

Como se indicó antes, la secuencia de nucleótidos de la marca oligonucleotídica como parte de los procedimientos de esta invención se puede determinar por el uso de la reacción en cadena de polimerasa (PCR).

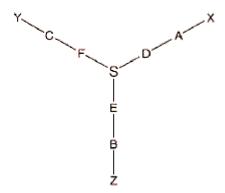
La marca oligonucleotídica está compuesta de polinucleótidos que identifican los bloques de construcción que componen el resto funcional que se describe en presente. La secuencia de ácidos nucleicos de la marca oligonucleotídica se determina al someter la marca oligonucleotídica a una reacción de PCR de la siguiente manera. La muestra apropiada se pone en contacto con un par cebador de PCR, cada miembro del par tiene una secuencia de nucleótidos preseleccionada. El par cebador de PCR es capaz de iniciar las reacciones de extensión del cebador por la hibridación en un sitio de unión del cebador de PCR en la marca oligonucleotídica codificadora. El sitio de unión del cebador de PCR se diseña preferiblemente en la marca oligonucleotídica codificadora. Por ejemplo, un sitio de unión del cebador de PCR se puede incorporar en la marca inicial del oligonucleótido y el segundo sitio de unión del cebador de PCR puede estar en la marca final oligonucleotídica. En forma alternativa, el segundo sitio de unión del cebador de PCR se puede incorporar en la secuencia capuchón como se describe en la presente memoria. En realizaciones preferidas, el sitio de unión del cebador de PCR tiene al menos aproximadamente 5, 7, 10, 13, 15, 17, 20, 22, o 25 nucleótidos de longitud.

La reacción de PCR se realiza por mezclado del par cebador de PCR, preferiblemente una cantidad predeterminada del mismo, con los ácidos nucleicos de la marca oligonucleotídica codificadora, preferiblemente una cantidad predeterminada de la misma, en un buffer de PCR para formar una mezcla de reacción de PCR. La mezcla se somete a termociclado durante una cantidad de ciclos, que está normalmente predeterminada, suficiente para la formación de un producto de reacción de PCR. Una cantidad suficiente de producto es una que se aísla en una cantidad suficiente para permitir la determinación de la secuencia del ADN.

La PCR se realiza normalmente por termociclado es decir, aumento y disminución repetido de la temperatura de una mezcla de reacción de PCR dentro de un intervalo de temperatura cuyo limite inferior es aproximadamente 30°C a aproximadamente 55°C y cuyo límite superior es aproximadamente 90°C a aproximadamente 100°C. El aumento y disminución puede ser continuo, pero preferiblemente es fásico con períodos de tiempo de estabilidad relativa de temperatura en cada una de las temperaturas, lo que favorece la síntesis, desnaturalización e hibridación del polinucleótido.

La reacción de PCR se realiza por medio de cualquier procedimiento adecuado. En general se produce en una solución acuosa regulada, es decir, un buffer de PCR, preferiblemente a un pH de 7-9. Preferiblemente, está presente un exceso molar del cebador. Se prefiere un gran exceso molar para aumentar la eficiencia del proceso.

El buffer de PCR también contiene los desoxriribonucleótido trifosfatos (sustratos de síntesis de polinucleótido) dATP, dCTP, dGTP, y dTTP y una polimerasa, normalmente termoestable, todo en cantidades adecuadas para la reacción de extensión del cebador (síntesis del polinucleótido) reacción. La solución resultante (mezcla de PCR) se calienta a aproximadamente 90° C-100° C durante aproximadamente 1 a 10 minutos, preferiblemente de 1 a 4 minutos. Después de este período de calentamiento la solución se deja enfriar a 54° C, que es preferible para la hibridación del cebador. La reacción de síntesis puede ocurrir a una temperatura que varía de temperatura ambiente hasta una temperatura superior a la cual la polimerasa (agente inductor) ya no actúa eficientemente. En consecuencia, por ejemplo, si se usa ADN polimerasa, la temperatura es generalmente no mayor de aproximadamente 40° C. El termociclado se repite hasta que se produce la cantidad deseada de producto de PCR. Un ejemplo de buffer de PCR comprende los siguientes reactivos: 50 mM de KCl; 10 mM de Tris-HCl a pH 8,3; 1,5 mM de MgCl2; 0,001% (p/vol) gelatina, 200 μM de dATP; 200 μM de dTTP; 200 μM de dCTP; 200 μM de dGTP; y 2,5 unidades Termus aquaticus (Taq) de ADN polimerasa l por 100 microlitros de buffer.


Las enzimas adecuadas para alargar enzimas las secuencias cebadoras incluyen, por ejemplo, ADN polimerasa I de E. coli, ADN polimerasa Taq, fragmento de Klenow de ADN polimerasa I de E. coli, T4 ADN polimerasa, otras ADN polimerasas disponibles, transcriptasa inversa, y otras enzimas, que incluyen enzimas termoestables, que facilitarán la combinación de los nucleótidos de la manera apropiada para formar los productos de extensión del cebador que son complementarios con cada cadena de ácido nucleico. En general, la síntesis se iniciará en el extremo 3' de cada cebador y procederá en dirección 5' de la cadena molde, hasta la que la síntesis termina, con la producción de moléculas de longitudes diferentes.

La cadena de ADN recién sintetizada y su cadena complementaria forma una molécula bicatenaria que se puede usar en las subsiguientes etapas del proceso de análisis.

Los procedimientos de amplificación por PCR se describen en las Patentes U.S. Nos. 4.683.192, 4.683.202, 4.800.159, y 4.965.188, y al menos en tecnología PCR: Principles and Applications for DNA Amplificaction, H. Erlich, ed., Stockton Press, New York (1989); y PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, San Diego, Calif. (1990).

Una vez que la marca oligonucleotídica codificadora se ha amplificado, se pueden determinar la secuencia de la marca, y finalmente la composición de la molécula seleccionada, por medio del análisis de la secuencia de ácidos nucleicos, un procedimiento bien conocido para determinar la secuencia de las secuencias de nucleótidos. El análisis de la secuencia de ácidos nucleicos se aproxima por una combinación de (a) técnicas fisicoquímicas, basadas en la hibridación o desnaturalización de una cadena sonda más su blanco complementario, y (b) reacciones enzimáticas con las polimerasas.

Los compuestos se pueden producir por medio de los procedimientos de la invención y recolecciones de tales compuestos, sea como especies aisladas o combinadas para formar una biblioteca de estructura químicas. Los compuestos descritos en la presente memoria incluyen compuestos de la fórmula

5

10

15

20

35

donde X es un resto funcional que comprende uno o más bloques de construcción, Z es un oligonucleótido unido a su extremo 3' terminal a B e Y es un oligonucleótido que está unido a C en su extremo 5' terminal. A es un grupo funcional que forma un enlace covalente con X, B es un grupo funcional que forma un enlace con el extremo 3' de Z y C es un grupo funcional que forma un enlace con el extremo 5' de Y. D, F y E son grupos químicos que unen grupos funcionales A, C y B a S, que es un átomo del núcleo o el armazón. Preferiblemente, D, E y F son de modo independiente una cadena de átomos, tales como una cadena alquileno o una cadena oligo(etilenglicol), y D, E y F pueden ser iguales o diferentes, y preferiblemente son efectivos para permitir la hibridación de los dos oligonucleótidos y la síntesis del resto funcional.

Preferiblemente, Y y Z son sustancialmente complementarios y están orientados en el compuesto para permitir el apareamiento de bases de Watson-Crick y la formación de duplex en condiciones adecuadas. Y y Z son de la misma longitud o diferentes longitudes. Preferiblemente, Y y Z son de la misma longitud, o uno de Y y Z es de 1 a 10 bases más largas que el otro. En una realización preferida, Y y tienen 10 o más bases de longitud y tienen regiones complementarias de diez o más pares de bases. Más preferiblemente, Y y Z son sustancialmente complementarias en toda su longitud, es decir, ellos tienen no más de un apareamiento erróneo por cada diez pares de bases. Con máxima preferencia, Y y Z son complementarias en toda su longitud, es decir, excepto por cualquier región de la proyección de Y o Z, las cadenas se hibridan por medio del apareamiento de Watson-Crick sin errores de apareamiento a lo largo de su longitud completa.

S puede ser un átomo individual o un armazón molecular. Por ejemplo, S puede ser un átomo de carbono, un átomo de boro, un átomo de nitrógeno o un átomo de fósforo, o un armazón poliatómico, tal como un grupo fosfato o un grupo cíclico, tal como un grupo cicloalquilo, cicloalquenilo, heterocicloalquilo, heterocicloalquenilo, arilo o heteroarilo. En una realización, el ligador es un grupo de la estructura

donde cada uno de n, m y p es, de modo independiente, un número entero de 1 a aproximadamente 20,

preferiblemente de 2 a ocho, y más preferiblemente de 3 a 6. En una realización particular, el ligador tiene la estructura que se muestra a continuación.

En una realización, las bibliotecas descritas en la presente memoria incluyen moléculas que consisten en un resto funcional compuesto de bloques de construcción, donde cada resto funcional está unido operativamente a un oligonucleótido codificador. La secuencia de nucleótidos del oligonucleótido codificador es indicador de los bloques de construcción presentes en el resto funcional, y en algunas realizaciones, la conectividad o disposición de los bloques de construcción. La invención proporciona la ventaja de que la metodología usada para construir el resto funcional y que se usa para construir la marca oligonucleotídica se pueden llevar a cabo en el mismo medio de reacción, preferiblemente un medio acuoso, en consecuencia se simplifica el procedimiento de preparar la biblioteca comparada con los procedimientos de la técnica previa. En ciertas realizaciones en las que las estas de ligamiento del oligonucleótido y las etapas de adición del bloque de construcción no se pueden realizar en medio acuoso, cada reacción tendrá un pH óptimo diferente. En estas realizaciones, la reacción de adición del bloque de construcción se puede realizar a un pH y temperatura adecuados en un buffer acuoso adecuado. El buffer posteriormente se puede intercambiar por un buffer acuoso que proporciona un pH adecuado para el ligamiento de oligonucleótidos.

Se describen en la presente memoria compuestos, y bibliotecas que comprenden los compuestos de Fórmula II

$$Z$$
— L — A_t — $X(Y)_n$ (II)

5

10

15

20

25

30

donde X es un armazón molecular, cada Y es de modo independiente, un resto periférico, y n es un número entero de 1 a 6. Cada A es de modo independiente, un bloque de construcción y n es un número entero de 0 a aproximadamente 5. L es un resto ligador y Z es un oligonucleótido monocatenario o bicatenario que identifica la estructura –A1-X(Y)n. La estructura X(Y)n puede ser, por ejemplo, una las estructuras de armazón que se exponen en la Tabla 8 (ver más adelante). Se describen en la presente memoria compuestos, y bibliotecas que comprenden los compuestos de Fórmula III:

$$Z$$
— L — A_1
 N
 N
 N
 N
 R_2
 R_3
 R_1
 R_2
 R_2
 R_3

donde t es un número entero de 0 a aproximadamente 5, preferiblemente de 0 a 3, y cada A es, de modo independiente, un bloque de construcción. L es un resto ligador y Z es un oligonucleótido monocatenario o bicatenario que identifica cada A y R1, R2, R3 y R4. R1, R2, R3 y R4 son de modo independiente un sustituyente seleccionado de hidrógeno, alquilo, alquilo sustituido, heteroalquilo, heteroalquilo, arilo sustituido, arilo sustituido, arilaquilo, heteroarilalquilo, arilaquilo, arilaquilo, arilaquilo, arilaquilo, alcoxi, ariloxi, ariloxi, ariloxi, ariloxi,

amino, y amino sustituido. En una realización, cada A es un residuos de aminoácido.

Las bibliotecas que incluyen compuestos de Fórmula II o Fórmula III pueden comprender al menos aproximadamente 100; 1000; 10.000; 100.000; 1.000.000 o 10.000.000 compuestos de Fórmula II o Fórmula III. En una realización, la biblioteca se prepara por medio de un procedimiento diseñado para producir una biblioteca que comprende al menos aproximadamente 100; 1000; 10.000; 100.000; 1.000.000 o 10.000.000 compuestos de Fórmula III.

Referencia	Carranco, I., et al. (2005) J. Comb. Chem. 7:33-41	Rosamilia, A.E., et al. (2005) Organic Letters 7:1525-1528	Syeda Huma, H.Z., et al. (2002) Tet Lett 43:6485- 6488	Tempest, P., et al. (2001) Tet Lett 42:4959-4962
Otros	<u>r_z</u>	o=	## E	
Ácido carboxílico				₩ ₩
Aldehido/cetona	€°	benzaldehidos y furfural	£	R2—CH0
Amina	5 J.	aminas	8— <u> </u>	H _P N
Tabla 8 Estructuras		IN THE PARTY OF TH		

Paulvannan, K. (1999) Tet Lett 40:1851- 1854	Tempest, P., et al. (2001) Tet Lett 42:4963-4968	Tempest, P., et al. (2003) Tet Lett 44:1947-1950	Nefzi, A., et al. (1999) Tet Lett 40:4939- 4942
≡z			To the state of th
BWG HOOO	NOO	NO2-	R2—000H
RITOCHO	R1—CH0	Boc HN	R-CHO
		R2	
		SA HA	

Bose, A.K., et al. (2005) Tet Lett 46:1901- 1903	Stadler, A. and Kappe, C.O. (2001) J. Comb. Chem. 3:624-630; Lengar, A. and Kappe, C.O. (2004) Organic Letters 6:771-774	Ivachtchenko, A.V., et al. (2003) J. Comb. Chem. 5:775-788	Micheli, F., et al. (2001) J. Comb. Chem.3:224- 228
S → 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	R3 HN NH2	RZ CODANE O NCS	HS HS
	RP ENG	rias	
	2	Recognition of the second of t	

Sternson, S.M., et al. (2001) Org. Lett. 3:4239- 4242	Cheng, WC., et al. (2002) J. Org, Chem. 67:5673-5677; Park, KH., et al. (2001) J Comb Chem 3:171-176	Brown, B.J., et al. (2000) Synlett 1:131- 133	Kilburn, J.P., et al. (2001) Tet Lett 42:2583-2586
£	. Sa		
HO HO		***************************************	O HO OH
F2 HNFMOC	5 × ×	χ	
R1—HS		TZ Z	. R1
	N N N N N N N N N N N N N N N N N N N	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	NEW YORK THE PROPERTY OF THE P

del Fresno, M., et al. (1998) Tet Lett 39:2639- 2642	Alvarez- Gutierrez, J.M., et al. (2000) Tet Lett 41:609- 612	Rinnová, M., et al. (2002) J. Comb.Chem 4:209-213
•		RAC X X X X X X X X X X X X X X X X X X X
éster de aminoácido	ácidos carboxílicos	HO H
		72
aminoácido	न्ह aminoácido	
TX X ZX		S E E

Makara, G.M., et al. (2002) Organic Lett 4:1751-1754	Schell, P., et al. (2005) J. Comb. Chem 7:96-98	Feliu, L., et al. (2003) J. Comb. Chem. 5:356-361
R3-TN-N12	. 2	
o=€		aminoácidos
R1—NH2		•
N N N N N N N N N N N N N N N N N N N	O N N N N N N N N N N N N N N N N N N N	

Hiroshige, M., et al. (1995) J. Am. Chem. Soc. 117:11590- 11591	Bose, A.K., et al. (2005) Tet Lett 46:1901- 1903
---	---

aminoácidos

aminoácidos

Aldehídos

Aminas

Una ventaja de los procedimientos de la invención es que se pueden usan para preparar bibliotecas que comprenden grandes cantidades de compuestos. La capacidad de amplificar secuencias de oligonucleótidos codificadoras por medio de procedimientos conocidos tales como la reacción en cadena de polimerasa ("PCR") significa que las moléculas seleccionadas se pueden identificar incluso si se recuperan relativamente pocas copias. Esto permite el uso práctico de bibliotecas muy grandes, que como consecuencia de su alto grado de complejidad, comprende relativamente pocas copias de cualquier miembro de biblioteca dado, o requiere el uso de volúmenes muy grandes. Por ejemplo, una biblioteca que consiste en 108 estructuras únicas en la que cada estructura tiene 1 x 1012 copias (aproximadamente 1 picomol), requiere aproximadamente 100 L de solución con 1 µM de concentración efectiva. Para la misma biblioteca, si cada miembro es representado por 1.000,000 copias, el volumen requerido es 100 µL con una concentración efectiva de 1 µM.

10

15

20

25

30

35

40

55

60

En una realización preferida, la biblioteca comprende de aproximadamente 103 a aproximadamente 1015 copias de cada miembro de biblioteca. Debido a las diferencias de eficiencia de síntesis entre los miembros de la biblioteca, es posible que diferentes miembros de la biblioteca tengan diferentes números de copias en cualquier biblioteca dada. En consecuencia, si bien el número de copias de cada miembro teóricamente presente en la biblioteca puede ser igual, el número real de copias de cualquier miembro de la biblioteca dada es independiente del número de copias de cualquier otro miembro. Más preferiblemente, las bibliotecas de compuesto de la invención incluyen al menos aproximadamente 105, 106 o 107 copias de cada miembro de la biblioteca, o de sustancialmente todo los miembros de biblioteca. Por "sustancialmente todos" los miembros de biblioteca se entiende al menos aproximadamente 85% de los miembros de la biblioteca, preferiblemente al menos aproximadamente 90%, y más preferiblemente al menos aproximadamente 95% de los miembros de la biblioteca.

Preferiblemente, la biblioteca incluye un número suficiente de copias de cada miembro que permite realizar múltiples rondas (es decir, dos o más) de selección contra un blanco biológico, con cantidades suficientes de moléculas de unión restantes después de la ronda final de selección para permitir la amplificación de la marca de oligonucleótidos de las moléculas restantes y, en consecuencia, la identificación de restos funcionales de la moléculas de unión. Una representación esquemática de tal proceso de selección se ilustra en la Figura 6, en que la 1 y 2 representan los miembros de la biblioteca, B es una molécula blanco y X es un resto unido operativamente a B que permite la eliminación de B del medio de selección. En este ejemplo, el compuesto 1 se une a B, mientras que el compuesto 2 no se une a B. El proceso de selección, como se describe en la Ronda 1, comprende (I) poner en contacto una biblioteca que comprende los compuestos 1 y 2 con B-X en condiciones adecuadas para unión del compuesto 1 a B; (II) eliminar el compuesto 2, (III) disociar el compuesto 1 de B y eliminar BX del medio de reacción. El resultado de la Ronda I es una colección de moléculas que está enriquecido en el compuesto 1 con respecto al compuesto 2. Las posteriores rondas que emplean las etapas I-III producen el posterior enriquecimiento del compuesto 1 respecto al compuesto 2. Si bien tres rondas de selección se muestran en la Figura 6, en la práctica se puede emplear cualquier número de rondas, por ejemplo de una ronda a diez rondas, para obtener el enriquecimiento deseado de las moléculas de unión con respecto a las moléculas de no unión.

En la realización mostrada en la Figura 6, no existe amplificación (síntesis de más copias) de los compuestos restantes después de cualquiera de las rondas de selección. Tal amplificación puede producir una mezcla de compuestos que no compatible con las cantidades relativas de los compuestos restantes después de la selección. Esta incompatibilidad se debe al hecho de que ciertos compuestos se pueden sintetiza más fácilmente que otros compuestos, y por ende se pueden amplificar de una manera que no es proporcionar a su presencia después de la selección. Por ejemplo, si el compuesto 2 se sintetiza más fácilmente que el compuesto 1, la amplificación de las moléculas restantes después de la Ronda 2 puede producir una amplificación desproporcionada del compuesto 2 con respecto al compuesto 1, y una mezcla de compuestos resultante con mucho menor enriquecimiento (si hubiera) del compuesto 1 con respecto al compuesto 2.

En una realización, el blanco se inmoviliza en un soporte sólido por cualquier técnica de inmovilización conocida. El soporte sólido puede ser, por ejemplo, una matriz insoluble en agua contenida dentro de una columna o una membrana de cromatografía. La biblioteca codificada se puede aplicar a una matriz insoluble en agua dentro de una columna cromatográfica. La columna posteiormente se lava para eliminar los agentes de unión no específicos. Los compuestos unidos al blanco posteriormente se pueden disociar por el cambio de pH, concentración salina, concentración de disolvente orgánico, u otros procedimientos, tales como competición con un ligando conocido por el blanco.

En otra realización, el blanco está libre en solución y se incuba con la biblioteca codificada. Los compuestos que se unen al blanco (también denominados en la presente memoria como "ligandos") se aíslan selectivamente por una etapa de separación por tamaño tal como filtración en gel o ultrafiltración. En una realización, la mezcla de compuestos codificados y la biomolécula blanco se pasan a través de una columna de cromatografía por exclusión de tamaño (filtración en gel), que separa cualquier complejo ligando-blanco de los compuestos no unidos. Los complejos ligando-blanco se transfieren a una columna de cromatografía de fase inversa, que disocia los ligandos del blanco. Los ligandos disociados se analizan posteriormente por amplificación por PCR y análisis de secuencia de los oligonucleótidos codificadores. Este abordaje es particularmente ventajosos en situaciones en que la inmovilización del blanco puede producir pérdida de actividad.

En algunas realizaciones de la invención, el procedimiento de selección puede comprender la amplificación del

oligonucleótido codificador de al menos un miembro de la biblioteca de compuestos que se une a un blanco previo ala secuenciación.

En una realización, la biblioteca de compuestos que comprende oligonucleótidos codificadores se amplifica antes del análisis de secuencia a fin de minimizar cualquier potencial asimetría en la distribución de la población de moléculas de ADN presentes en la mezcla de la biblioteca seleccionada. Por ejemplo, solo una pequeña cantidad de biblioteca se recupera después de una etapa de selección y normalmente se amplifica por medio de PCR antes del análisis de secuencia. La PCR tiene el potencial de producir una asimetría en la distribución de la población de moléculas de ADN presentes en la mezcla de la biblioteca seleccionada. Esto es especialmente problemático cuando el número de moléculas de entrada es pequeño y las moléculas de entrada son moldes de PCR malos. Los productos de PCR producidos en los primeros ciclos son moldes más eficientes que la biblioteca de duplex covalentes, y en consecuencia la frecuencia de estas moléculas en la población amplificada final puede ser mucho más alta que en el molde de entrada original.

10

15

20

25

30

45

50

55

Por consiguiente, a fin de minimizar esta potencial asimetría de la PCR; en una realización de la invención, una población de oligonucleótidos de cadena simple correspondientes a los miembros de la biblioteca individual se produce, por ejemplo, por medio de un cebador en una reacción, seguido por amplificación PCR por medio de dos cebadores. Al realizar esto, existe una acumulación lineal de producto de extensión del cebador de cadena simple antes de la amplificación exponencial por medio de PCR, y la diversidad y distribución de las moléculas en el producto de extensión del cebador acumulado refleja más precisamente la diversidad y distribución de las moléculas presentes en el modelo de entrada original, debido a que la fase de amplificación exponencial ocurre solo después de que mucha de la diversidad molecular original presente está representada en la población de moléculas producidas durante la reacción de extensión del cebador.

Una vez que los ligandos únicos son identificados por el proceso descrito anteriormente, se pueden aplicar varios niveles de análisis para producir la información de la relación estructura-actividad y guiar la posterior optimización de la afinidad, especificidad y bioactividad del ligando. En ligandos derivados de la misma estructura, se puede emplear un modelado molecular tridimensional para identificar los rasgos estructurales significativos comunes a los ligandos, de este modo se generan familias de ligandos de molécula pequeña que presumiblemente se unen a un sitio común de la biomolécula blanco.

Se puede usar una variedad de abordajes de análisis para obtener ligandos que posean afinidad alta por un blanco pero afinidad significativamente más débil por otro blanco estrechamente relacionado. Un abordaje de selección es identificar ligandos para ambas biomoléculas en experimentos paralelos y posteriormente eliminar los ligandos comunes por una comparación de referencia cruzada. En este procedimiento, los ligandos para biomolécula se pueden identificar por separado como se describió antes. Este procedimiento es compatible con las biomoléculas blanco inmovilizadas y las biomoléculas blanco libres en solución.

Para las biomoléculas blanco inmovilizadas, otro abordaje es añadir una etapa de preselección que elimina todos los ligandos que se unen a la biomolécula no blanco de la biblioteca. Por ejemplo, una primera biomolécula se puede poner en contacto con una biblioteca codificada como se describió anteriormente. Los compuestos que no se unen a la primera biomolécula posteriormente se separan de cualquier complejo de primera biomolécula-ligando que se forma. La segunda biomolécula seguidamente se pone en contacto con los compuestos que no se unieron a la primera biomolécula. Los compuestos que se unen a la segunda biomolécula se pueden identificar como se describió anteriormente y tienen afinidad significativamente mayor para la segunda biomolécula que para la primera molécula.

Un ligando para una biomolécula de función desconocida que se identifica por el procedimiento descrito antes también se puede usar para determinar la función biológica de la biomolécula. Esto es ventajoso porque si bien nuevas secuencias génicas aún se deben identificar, las funciones de las proteínas codificadas por estas secuencias y la validez de estas proteínas como blancos para nuevos descubrimiento y desarrollo de fármacos son difíciles de terminar y representan tal vez el obstáculo más significativo para aplicar la información genómica al tratamiento de una enfermedad. Los ligandos específicos del blanco obtenidos mediante el proceso descrito en esta invención se pueden emplear efectivamente en los ensayos biológicos de célula completa o en modelos animales apropiados para entender la función de la proteína blanco y la validez de la proteína blanco para la intervención terapéutica. Este abordaje también puede confirmar que el blanco es específicamente susceptible para el descubrimiento de fármacos de molécula pequeña.

En una realización, uno o más compuestos de una biblioteca de la invención se identifican como ligandos para una biomolécula particular. Estos compuestos posteriormente se pueden evaluar en un ensayo in vitro en cuanto a la capacidad de unirse a la biomolécula. Preferiblemente, los restos funcionales de los compuestos de unión se sintetizan sin la marca de oligonucleótido o resto ligador, y estos restos funcionales se evalúan en cuanto a la capacidad de unirse a la biomolécula.

El efecto de la unión de los restos funcionales a las biomolécula sobre la función de la biomolécula también se puede evaluar por medio de ensayos in vitro libres de células o basado en células. Para una biomolécula que tiene una función desconocida, el ensayo puede incluir una comparación de la actividad de la biomolécula en presencia y

ausencia del ligando, por ejemplo, por la medición directa de la actividad, tal como actividad enzimática o por una medición indirecta, tal como una función celular que está influida por la biomolécula. Si la biomolécula es de función desconocida, una célula que expresa la biomolécula se puede poner en contacto con el ligando y se evalúa el efecto del ligando sobre la viabilidad, función, fenotipo, y/o expresión del gen de la célula. El ensayo in vitro puede ser, por ejemplo, un ensayo de muerte celular, un ensayo de proliferación celular o un ensayo de replicación viral. Por ejemplo, si la biomolécula es una proteína expresada por un virus, una célula infectada con el virus se puede poner en contacto con un ligando para la proteína. Posteriormente se puede evaluar el efecto de la unión del ligando a la proteína sobre la viabilidad viral.

Un ligando identificado por el procedimiento de la invención también se puede evaluar en un modelo in vivo o en un ser humano. Por ejemplo, el ligando se puede evaluar en un animal u organismo que produce la biomolécula. Se puede determinar cualquier cambio resultante en el estado de salud (por ejemplo, progresión de la enfermedad) del animal u organismo.

En una biomolécula, tal como una molécula de proteína o un ácido nucleico, de función desconocida, el efecto de un ligando que se une a la biomolécula en una célula u organismo que produce la biomolécula puede proporcionar información respecto de la función biológica de la biomolécula. Por ejemplo, la observación de que un proceso celular particular se inhibe en presencia del ligando indica que el proceso depende, al menos en parte, de la función de la biomolécula.

Los ligandos identificados por medio de los procedimientos de la invención también se pueden usar como reactivos de afinidad para la biomolécula a la que se usan. En una realización, tales ligandos se usan para efectuar la purificación por afinidad de la biomolécula, por ejemplo, por medio de cromatografía de una solución que comprende la biomolécula por medio de una fase sólida al que se unen uno o más ligandos.

Esta invención se ilustra adicionalmente con los siguientes ejemplos

Ejemplos

5

15

20

Ejemplo 1: Síntesis y caracterización de una biblioteca en el orden de 105 miembros

La síntesis de una biblioteca que comprende en el orden de 105 miembros distintos se obtuvo por medio de los siguientes reactivos:

Compuesto 1:

Códigos de letra único para desoxirribonucleótidos:

30 A = adenosina

C = citidina

G = guanosina

T = timidina

Precursores del bloque de construcción:

ES 2 365 534 T3

Marca de oligonucleótidos: Secuencia

Secuencia	Número de marca
5'-PO4-GCAACGAAG (SEQ ID NO:1) ACCGTTGCT-PO3-5' (SEQ ID NO:2)	1.1
5'-PO3-GCGTACAAG (SEQ ID NO:3) ACCGCATGT-PO3-5' (SEQ ID NO:4)	1.2
5'-PO3-GCTCTGTAG (SEQ ID NO:5) ACCGAGACA-PO3-5' (SEQ ID NO:6)	1.3
5'-PO3-GTGCCATAG (SEQ ID NO:7) ACCACGGTA-PO3-5' (SEO ID NO:8)	1.4

5'-PO ₃ -GTTGACCAG (SEQ ID NO:9) ACCAACTGG-PO ₃ -5' (SEQ ID NO:10)	1.5
5'-PO ₃ -CGACTTGAC (SEQ ID NO:11) CAAGTCGCA-PO ₃ -5' (SEQ ID NO:12)	1.6
5'-PO ₃ -CGTAGTCAG (SEQ ID NO:13) ACGCATCAG-PO ₃ -5' (SEQ ID NO:14)	1.7
5'-PO ₃ -CCAGCATAG (SEQ ID NO:15) ACGGTCGTA-PO ₃ -5' (SEQ ID NO:16)	1.8
5'-PO ₃ -CCTACAGAG (SEQ ID NO:17) ACGGATGTC-PO ₃ -5' (SEQ ID NO:18)	1.9
5'-PO ₃ -CTGAACGAG (SEQ ID NO:19) CGTTCAGCA-PO ₃ -5' (SEQ ID NO:20)	1.10
5'-PO ₃ -CTCCAGTAG (SEQ ID NO:21) ACGAGGTCA-PO ₃ -5' (SEQ ID NO:22)	1.11
5'-PO ₃ -TAGGTCCAG (SEQ ID NO:23) ACATCCAGG-PO ₃ -5' (SEQ ID NO:24)	1.12
5'-PO ₃ -GCGTGTTGT (SEQ ID NO:25) TCCGCACAA-PO ₃ -5' (SEQ ID NO:26)	2.1
5'-PO ₃ -GCTTGGAGT (SEQ ID NO:27) TCCGAACCT-PO ₃ -5' (SEQ ID NO:28)	2.2
5'-PO3-GTCAAGCGT (SEQ ID NO:29) TCCAGTTCG-PO3-5' (SEQ ID NO:30)	2.3
5'-PO3-CAAGAGCGT (SEQ ID NO:31) TCGTTCTCG-PO3-5' (SEQ ID NO:32)	2.4
5'-PO3-CAGTTCGGT (SEQ ID NO:33) TCGTCAAGC-PO3-5' (SEQ ID NO:34)	2.5
5'-PO ₃ -CGAAGGAGT (SEQ ID NO:35) TCGCTTCCT-PO ₃ -5' (SEQ ID NO:36)	2.6
5'-PO3-CGGTGTTGT (SEQ ID NO:37) TCGCCACAA-PO3-5' (SEQ ID NO:38)	2.7
5'-PO3-CGTTGCTGT (SEQ ID NO:39) TCGCAACGA-PO3-5' (SEO ID NO:40)	2.8

ES 2 365 534 T3

5'-PO ₃ -CCGATCTGT (SEQ TCGGCTAGA-PO ₃ -5'		2.9
5'-PO ₃ -CCTTCTCGT (SEQ TCGGAAGAG-PO ₃ -5'		2.10
5'-PO ₃ -TGAGTCCGT (SEQ TCACTCAGG-PO ₃ -5'		.2.11
5'-PO ₃ -TGCTACGGT (SEQ TCAGATTGC-PO ₃ -5'	-	2.12
5'-PO ₃ -GTGCGTTGA (SEQ CACACGCAA-PO ₃ -5'		3.1
5'-PO ₃ -GTTGGCAGA (SEQ CACAACCGT-PO ₃ -5'		3.2
5'-PO ₃ -CCTGTAGGA (SEQ CAGGACATC-PO ₃ -5'		3.3
5'-PO ₃ -CTGCGTAGA (SEQ CAGACGCAT-PO ₃ -5'		3.4
5'-PO ₃ -CTTACGCGA (SEQ CAGAATGCG-PO ₃ -5'		3.5
5'-PO ₃ -TGGTCACGA (SEQ CAACCAGTG-PO ₃ -5'	<u>-</u>	3.6
5'-PO ₃ -TCAGAGCGA (SEQ CAAGTCTCG-PO ₃ -5'		3.7
5'-PO ₃ -TTGCTCGGA (SEQ CAAACGAGC-PO ₃ -5'	ID NO:63)	3.8
5'-PO ₃ -GCAGTTGGA (SEQ CACGTCAAC-PO ₃ -5'	-	3.9
5'-PO ₃ -GCCTGAAGA (SEQ CACGGACTT-PO ₃ -5'	· ·	3.10
5'-PO ₃ -GTAGCCAGA (SEQ CACATCGGT-PO ₃ -5'		3.11
5'-PO ₃ -GTCGCTTGA (SEQ CACAGCGAA-PO ₃ -5'		3.12
5'-PO ₃ -GCCTAAGTT (SEQ CTCGGATTC-PO ₃ -5'		4.1

CTCATCACG-PO ₃ -5'	-	4.2
5'-PO ₃ -GTCGAAGTT (SEQ CTCAGCTTC-PO ₃ -5'		4.3
5'-PO ₃ -GTTTCGGTT (SEQ CTCAAAGCC-PO ₃ -5'		4.4
5'-PO ₃ -CAGCGTTTT (SEQ CTGTCGCAA-PO ₃ -5'		4.5
5'-PO ₃ -CATACGCTT (SEQ CTGTATGCG-PO ₃ -5'		4.6
5'-PO ₃ -CGATCTGTT (SEQ CTGCTAGAC-PO ₃ -5'		4.7
5'-PO ₃ -CGCTTTGTT (SEQ CTGCGAAAC-PO ₃ -5'		4.8
5'-PO ₃ -CCACAGTTT (SEQ CTGGTGTCA-PO ₃ -5'		4.9
5'-PO ₃ -CCTGAAGTT (SEQ CTGGACTTC-PO ₃ -5'		4.10
5'-PO ₃ -CTGACGATT (SEQ CTGACTGCT-PO ₃ -5'		4.11
5'-PO ₃ -CTCCACTTT (SEQ CTGAGGTGA-PO ₃ -5'		4.12
5'-PO ₃ -ACCAGAGCC (SEQ AATGGTCTC-PO ₃ -5'		5.1
5'-PO ₃ -ATCCGCACC (SEQ AATAGGCGT-PO ₃ -5'	-	5.2
5'-PO ₃ -GACGACACC (SEQ AACTGCTGT-PO ₃ -5'		5.3
5'-PO ₃ -GGATGGACC (SEQ AACCTACCT-PO ₃ -5'		5.4
5'-PO ₃ -GCAGAAGCC (SEQ AACGTCTTC-PO ₃ -5'		5.5

5'-PO ₃ -GCCATGTCC (SEQ AACGGTACA-PO ₃ -5'	5.6
5'-PO ₃ -GTCTGCTCC (SEQ AACAGACGA-PO ₃ -5'	5.7
5'-PO ₃ -CGACAGACC (SEQ AAGCTGTCT-PO ₃ -5'	5.8
5'-PO ₃ -CGCTACTCC (SEQ AAGCGATGA-PO ₃ -5'	5.9
5'-PO ₃ -CCACAGACC (SEQ AAGGTGTCT-PO ₃ -5'	5.10
5'-PO ₃ -CCTCTCTCC (SEQ AAGGAGAGA-PO ₃ -5'	5.11
5'-PO ₃ -CTCGTAGCC (SEQ AAGAGCATC-PO ₃ -5'	5.12

Buffer de ligasa 1X: 50 mM de Tris, pH 7,5; 10 mM de ditiotreitol; 10 mM de MgCl2; 2,5 mM de ATP; 50 mM de NaCl.

Buffer de ligasa I0X: 500 mM de Tris, pH 7,5; 100 mM de ditiotreitol; 100 mM de MgCl2; 25 mM de ATP; 500 mM de NaCl

5 Ciclo 1

10

15

20

25

30

35

A cada uno de los doce tubos de PCR se añadieron 50 μ L de una solución 1 mM del Compuesto 1 en agua; 75 μ L de una solución 0,80 mM de una de las Marcas 1.1-1.12; 15 μ L de buffer de ligasa 10X y 10 μ L de agua desionizada. Los tubos se calentaron 95°C durante 1 minuto y posteriormente se enfriaron a 16°C durante 10 minutos. A cada tubo se añadieron 5.000 unidades de T4 ADN ligasa (2,5 μ L de una solución de 2.000.000 unidades/mL (New England Biolabs, Cat. No. M0202)) en 50 μ L de buffer de ligasa 1X y las soluciones resultantes se incubaron a 16°C durante 16 horas.

Después del ligamiento, las muestras se transfirieron a tubos Eppendorf de 1,5 ml y se trataron con 20 μ L de NaCl M acuoso y 500 μ L de etanol frío (-20°C) y se mantuvo a -20°C durante 1 hora. Después de la centrifugación, el sobrenadante se extrajo y el pellet se lavó con 70% de etanol acuoso a -20°C. Cada uno de los pellets se diluyó posteriormente en 150 μ L de 150 mM buffer de borato de sodio, pH 9.4.

Las soluciones patrón que comprenden uno de cada un de los precursores del bloque de construcción BB1 a BB12, N,N-diisopropiletanolamina y hexafluorofosfato de O-(7-azabenzotriazol-1-il)-1,1,3,3-tetrametiluronio, cada uno a una concentración de 0,25 M, se prepararon en DMF y se agitaron a temperatura ambiente durante 20 minutos. Las soluciones del precursor del bloque de construcción se añadieron a cada una de las soluciones de pellet descritas anteriormente para proporcionar un exceso de 10 veces de precursor del bloque de construcción con respecto al ligador. Las soluciones resultantes se agitaron. Se añadieron 10 equivalentes adicionales del precursor del bloque de construcción se añadieron a la mezcla de reacción después de 20 minutos, y otros 10 equivalentes después de 40 minutos. La concentración final de DMF en la mezcla de reacción fue 22%. Las soluciones de reacción posteriormente se agitaron toda la noche a 4°C. El progreso de la reacción se controló por RP-HPLC por medio de acetato de tetraetilamonio acuoso 50 mM (pH=7.5) y acetonitrilo, y un gradiente de 2-46% de acetonitrilo durante 14 min. La reacción se detuvo cuando se acila ~95% del material inicial (ligador). Después de la acilación, las mezclas de reacción se mezclaron y liofilizaron a sequedad. El material liofilizado se purificó posteriormente por HPLC, y las fracciones correspondientes a la biblioteca (producto acilado) se mezclaron y liofilizaron.

La biblioteca se disolvió en 2,5 ml de buffer de fosfato de sodio 0,01 M (pH = 8,2) y se añadió 0,1 ml de piperidina (4% v/v) a este. La adición de piperidina produce turbidez que no se disuelve con el mezclado. Las mezclas de reacción se agitaron a temperatura ambiente durante 50 minutos, y posteriormente se centrifugó la solución turbia (14.000 rpm), el sobrenadante se extrajo por medio una pipeta de 200 µl y el pellet se resuspendió en 0,1 ml de agua. El lavado acuoso se combinó con el sobrenadante y se descartó el pellet. La biblioteca desprotegida se precipitó de la solución por la adición de exceso de etanol frío en hielo de modo de llevar la concentración final de etanol de la reacción a 70% v/v. La centrifugación de la mezcla acuosa de etanol dio un pellet blanco que comprende la biblioteca. El pellet se lavó una vez con etanol acuoso frío 70%. Después de la extracción del

disolvente, el pellet se secó al aire (~5 min) para eliminar las trazas de etanol y posteriormente se usó en el ciclo 2. Las marcas y los correspondientes precursores del boque de construcción usados en la Ronda 1 se exponen en la siguiente Tabla 1.

Tabla 1

Precursor del bloque de construcción	Marca
BB1	1.11
BB2	1.6
BB3	1.2
BB4	1.8
BB5	1.1
BB6	1.10
BB7	1.12
BB8	1.5
BB9	1.4
BB10	1.3
BB11	1.7
BB12	1.9

Ciclos 2-5

Para cada uno de estos ciclos, la solución combinada resultante del ciclo previo se dividió en 12 alícuotas iguales de 50 µl cada una y se colocaron en tubos de PCR. A cada tubo se añadió una solución que comprende una marca diferente, y se llevaron a cabo el ligamiento, purificación y acilación que se describieron para el Ciclo 1, excepto para los Ciclos 3-5, se omitió la etapa de purificación por HPLC descrita para el Ciclo 1. La correspondencia entre las marcas y los precursores del bloque de construcción para los Ciclos 2-5 se presenta en la Tabla 2.

Los productos del Ciclo 5 se ligaron con el cebador de cierre que se muestra a continuación, por medio del procedimiento descrito antes para el ligamiento de las marcas.

5'-PO3-GGCACATTGATTTGGGAGTCA

GTGTAACTAAACCCTCAGT-PO3-5'

Tabla 2

Precursores del	Ciclo 2	Ciclo 3	Ciclo 4	Ciclo 5
bloque de construcción	Marca	Marca	Marca	Marca
BB1	2.7	3.7	4.7	5.7
BB2	2.8	3.8	4.8	5.8
BB3	2.2	3.2	4.2	5.2
BB4	2.10	3.10	4.10	5.10
BB5	2.1	3.1	4.1	5.1
BB6	2.12	3.12	4.12	5.12
BB7	2.5	3.5	4.5	5.5

15

5

BB8	2.6	3.6	4.6	5.6
BB9	2.4	3.4	4.4	5.4
BB10	2.3	3.3	4.3	5.3
BB11	2.9	3.9	4.9	5.9
BB12	2.11	3.11	4.11	5.11

Resultados

El procedimiento de síntesis descrito antes tiene la capacidad de producir una biblioteca que comprende 125 (aproximadamente 249.000) estructuras diferentes. La síntesis de la biblioteca se controló por electroforesis en gen del producto de cada ciclo. Los resultados de cada uno de los cinco ciclos y la biblioteca final después del ligamiento del cebador de cierre se ilustran en la Figura 7. El compuesto marcado "pieza principal" es el Compuesto 1. La figura muestra que cada ciclo produce el aumento de peso molecular esperado y que los productos de cada ciclo son sustancialmente homogéneos con respecto al peso molecular.

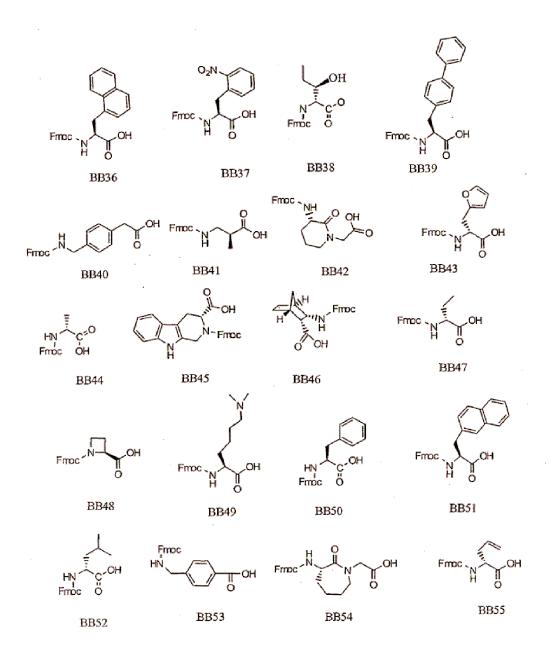
Ejemplo 2: Síntesis y caracterización de una biblioteca en el orden de 108 miembros

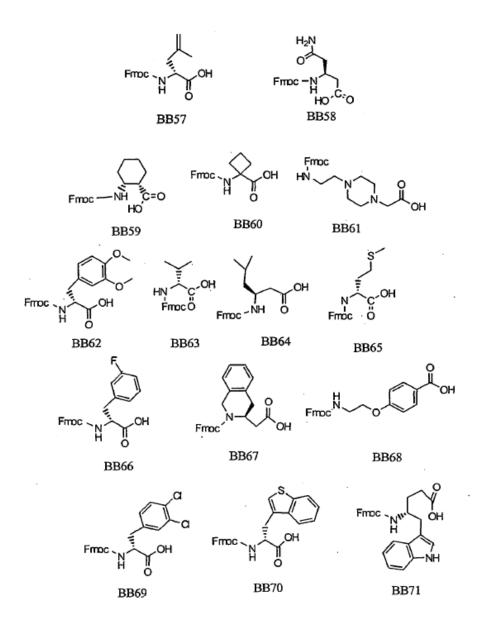
10 La síntesis de una biblioteca que comprende en el orden de 108 miembros distintos se llevó a cabo por medio de los siguientes reactivos:

Compuesto 2:

Códigos de letra único para desoxirribonucleótidos:

15 A = adenosina


C = citidina


G = guanosina

T = timidina

20

Precursores del bloque de construcción:

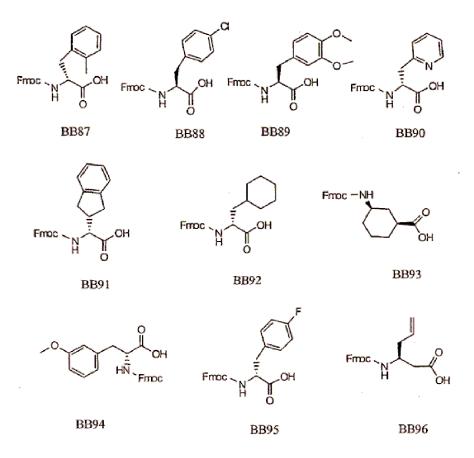


Tabla 3: Marcas de oligonucleótidos usadas en el ciclo 1:

Número		
de marca	Secuencia de la cadena superior	Secuencia de la cadena inferior
٠.	5'-PO3-	5'-PO3-
	AAATCGATGTGGTCACTCAG	GAGTGACCACATCGATTTGG
1.1	(SEQ ID NO:121)	(SEQ ID NO:122)
	5'-PO3-	5'-PO3-
	AAATCGATGTGGACTAGGAG	CCTAGTCCACATCGATTTGG
1.2	(SEQ ID NO:123)	(SEQ ID NO:124)
	5'-PO3-	5'-PO3-
	AAATCGATGTGCCGTATGAG	CATACGGCACATCGATTTGG
1.3	(SEQ ID NO:125)	(SEQ ID NO:126)
	5'-PO3-	5'-PO3-
	AAATCGATGTGCTGAAGGAG	CCTTCAGCACATCGATTTGG
1.4	(SEQ ID NO:127)	(SEQ ID NO:128)
	5'-PO3-	5'-PO3-
	AAATCGATGTGGACTAGCAG	GCTAGTCCACATCGATTTGG
1.5	(SEQ ID NO:129)	(SEQ ID NO:130)
	5'-PO3-	5'-PO3-
	AAATCGATGTGCGCTAAGAG	CTTAGCGCACATCGATTTGG
1.6	(SEQ ID NO:131)	(SEQ ID NO:132)
	5'-PO3-	5'-PO3-
	AAATCGATGTGAGCCGAGAG	CTCGGCTCACATCGATTTGG
1.7	(SEQ ID NO:133)	(SEQ ID NO:134)

	£1 002	si nois
	5'-PO3- AAATCGATGTGCCGTATCAG	5'-PO3-
1.0		GATACGGCACATCGATTTGG
1.8	(SEQ ID NO:135)	(SEQ ID NO:136)
	5'-PO3-	5'-PO3-
1.0	AAATCGATGTGCTGAAGCAG	GCTTCAGCACATCGATTTGG
1.9	(SEQ ID NO:137)	(SEQ ID NO:138)
	5'-P03-	5'-PO3-
	AAATCGATGTGTGCGAGTAG	ACTCGCACACATCGATTTGG
1.10	(SEQ ID NO:139)	(SEQ ID NO:140)
	5'-PO3-	5'-PO3-
	AAATCGATGTTTTGGCGAG	CGCCAAACACATCGATTTGG
1.11	(SEQ ID NO:141)	(SEQ ID NO:142)
	5'-PO3-	5'-PO3-
	AAATCGATGTGCGCTAACAG	GTTAGCGCACATCGATTTGG
1.12	(SEQ ID NO:143)	(SEQ ID NO:144)
	5'-PO3-	5'-PO3-
1.10	AAATCGATGTGAGCCGACAG	GTCGGCTCACATCGATTTGG
1.13	(SEQ ID NO:145)	(SEQ ID NO:146)
	5'-PO3-	5'-PO3-
	AAATCGATGTGAGCCGAAAG	TTCGGCTCACATCGATTTGG
1.14	(SEQ ID NO:147)	(SEQ ID NO:148)
	5'-PO3-	5'-PO3-
	AAATCGATGTGTCGGTAGAG	CTACCGACACATCGATTTGG
1.15	(SEQ ID NO:149)	(SEQ ID NO:150)
	5'-PO3-	5'-PO3-
1.16	AAATCGATGTGGTTGCCGAG	CGGCAACCACATCGATTTGG
1.16	(SEQ ID NO:151)	(SEQ ID NO:152)
	5'-PO3-	5'-PO3-
1.17	AAATCGATGTGAGTGCGTAG	ACGCACTCACATCGATTTGG
1.17	(SEQ ID NO:153)	(SEQ ID NO:154)
	5'-PO3- AAATCGATGTGGTTGCCAAG	5'-PO3-
1.18	(SEQ ID NO:155)	TGGCAACCACATCGATTTGG
1.18	5'-PO3-	(SEQ ID NO:156)
	AAATCGATGTGTGCGAGGAG	5'-PO3-
1.19	(SEQ ID NO:157)	CCTCGCACACATCGATTTGG
1.19	5'-PO3-	(SEQ ID NO:158)
	AAATCGATGTGGAACACGAG	5'-PO3-
1.20	(SEQ ID NO:159)	CGTGTTCCACATCGATTTGG
1.20	5'-PO3-	(SEQ ID NO:160) 5'-PO3-
	AAATCGATGTGCTTGTCGAG	CGACAAGCACATCGATTTGG
1.21	(SEQ ID NO:161)	
1.41	5'-PO3-	(SEQ ID NO:162) 5'-PO3-
	AAATCGATGTGTTCCGGTAG	A0CCGGAACACATCGATTTGG
1.22	(SEQ ID NO:163)	(SEQ ID NO:164)
1.22	5'-PO3-	5'-PO3-
	·AAATCGATGTGTGCGAGCAG	GCTCGCACACATCGATTTGG
1.23	(SEQ ID NO:165)	(SEQ ID NO:166)
1.23	5'-PO3-	5'-PO3-
	AAATCGATGTGGTCAGGTAG	ACCTGACCACATCGATTTGG
1.24	(SEQ ID NO:167)	(SEQ ID NO:168)
1.6**	5'-PO3-	5'-PO3-
1.25	AAATCGATGTGGCCTGTTAG	
1.43	AMMICOMIGIOGCCIGITAG	AACAGGCCACATCGATTTGG

	(SEQ ID NO:169)	(SEQ ID NO:170)
1.26	5'-PO3- AAATCGATGTGGAACACCAG (SEQ ID NO:171)	5'-PO3- GGTGTTCCACATCGATTTGG (SEQ ID NO:172)
1.27	5'-PO3-AAATCGATGTGCTTGTCCAG (SEQ ID NO:173)	(SEQ ID NO:174)
1.28	5'-PO3- AAATCGATGTGTGCGAGAAG (SEQ ID NO:175)	5'-PO3- TCTCGCACACATCGATTTGG (SEQ ID NO:176)
1.29	5'-PO3- AAATCGATGTGAGTGCGGAG (SEQ ID NO:177)	5'-PO3- CCGCACTCACATCGATTTGG (SEQ ID NO:178)
1.30	5'-PO3- AAATCGATGTGTTGTCCGAG (SEQ ID NO:179)	5'-PO3- CGGACAACACATCGATTTGG (SEQ ID NO:180)
	5'-PO3- AAATCGATGTGTGGAACGAG	5'-PO3- CGTTCCACACATCGATTTGG
1.31	(SEQ ID NO:181) 5'-PO3- AAATCGATGTGAGTGCGAAG	(SEQ ID NO:182) 5'-PO3- TCGCACTCACATCGATTTGG
1.32	(SEQ ID NO:183) 5'-PO3- AAATCGATGTGTGGAACCAG	(SEQ ID NO:184) 5'-PO3- GGTTCCACACATCGATTTGG
1.33	(SEQ ID NO:185) 5'-PO3- AAATCGATGTGTTAGGCGAG	(SEQ ID NO:186) 5'-PO3- CGCCTAACACATCGATTTGG
1.34	(SEQ ID NO:187) 5'-PO3- AAATCGATGTGGCCTGTGAG	(SEQ ID NO:188) 5'-PO3- CACAGGCCACATCGATTTGG
1.35	(SEQ ID NO:189)	(SEQ ID NO:190) 5'-PO3-
1.36	5'-PO3-AAATCGATGTGCTCCTGTAG (SEQ ID NO:191) 5'-PO3-	ACAGGAGCACATCGATTTGG (SEQ ID NO:192) 5'-PO3-
1.37	AAATCGATGTGGTCAGGCAG (SEQ ID NO:193) 5'-PO3- AAATCGATGTGGTCAGGAAG	GCCTGACCACATCGATTTGG (SEQ ID NO:194) 5'-PO3- TCCTGACCACATCGATTTGG
1.38	(SEQ ID NO:195) 5'-PO3- AAATCGATGTGGTAGCCGAG	(SEQ ID NO:196) 5'-PO3- CGGCTACCACATCGATTTGG
1.39	(SEQ ID NO:197) 5'-PO3- AAATCGATGTGGCCTGTAAG	(SEQ ID NO:198) 5'-PO3- TACAGGCCACATCGATTTGG
1.40	(SEQ ID NO:199) 5'-PO3-	(SEQ ID NO:200) .5'-PO3-
1.41	AAATCGATGTGCTTTCGGAG (SEQ ID NO:201) 5'-PO3-	CCGAAAGCACATCGATTTGG (SEQ ID NO:202) 5'-PO3-
1.42	AAATCGATGTGCGTAAGGAG (SEQ ID NO:203)	(SEQ ID NO:204)

	(SEQ ID NO:239)	(SEQ ID NO:240)
1.61	5'-PO3- AAATCGATGTGCCGAAGAAG (SEQ ID NO:241) 5'-PO3-	5'-PO3- TCTTCGGCACATCGATTTGG (SEQ ID NO:242) 5'-PO3-
1.62	AAATCGATGTGGTTGCAGAG (SEQ ID NO:243) 5'-PO3-	CTGCAACCACATCGATTTGG (SEQ ID NO:244) 5'-PO3-
1.63	AAATCGATGTGGATGGTGAG (SEQ ID NO:245) 5'-PO3-	CACCATCCACATCGATTTGG (SEQ ID NO:246) 5'-PO3-
1.64	AAATCGATGTGCTATCGCAG (SEQ ID NO:247) 5'-PO3-	GCGATAGCACATCGATTTGG (SEQ ID NO:248) 5'-PO3-
1.65	AAATCGATGTGCGAAAGCAG (SEQ ID NO:249) 5'-PO3-	GCTTTCGCACATCGATTTGG (SEQ ID NO:250) 5'-PO3-
1.66	AAATCGATGTGACACTGGAG (SEQ ID NO:251) 5'-PO3-	CCAGTGTCACATCGATTTGG (SEQ ID NO:252) 5'-PO3-
1.67	AAATCGATGTGTCTGGCAAG (SEQ ID NO:253) 5'-PO3-	TGCCAGACACATCGATTTGG (SEQ ID NO:254) 5'-PO3-
1.68	AAATCGATGTGGATGGTCAG (SEQ ID NO:255) 5'-PO3- AAATCGATGTGGTTGCACAG	GACCATCCACATCGATTTGG (SEQ ID NO:256) 5'-PO3- GTGCAACCACATCGATTTGG
1.69	(SEQ ID NO:257) 5'-PO3-	(SEQ ID NO:258) 5'-PO3-CGATGCCCCATCCGA
1.70	AAATCGATGTGGGCATCGAG (SEQ ID NO:259) 5'-PO3-	TTT GG (SEQ ID NO:260) 5'-PO3-
1.71	AAATCGATGTGTGCCTCAG (SEQ ID NO:261) 5'-PO3-	GGAGGCACACATCGATTTGG (SEQ ID NO:262) 5'-PO3- TGAGGCACACATCGATTTGG
1.72	AAATCGATGTGTGCCTCAAG (SEQ ID NO:263)	(SEQ ID NO:264)
1.73	5'-PO3- AAATCGATGTGGGCATCCAG (SEQ ID NO:265) 5'-PO3- AAATCGATGTGGGCATCAAG	5'-PO3- GGATGCCCACATCGATTTGG (SEQ ID NO:266) 5'-PO3-TGATGCCCA CAT CGA TTT GG
1.74	(SEQ ID NO: 267) 5'-PO3- AAATCGATGTGCCTGTCGAG	(SEQ ID NO: 268) 5'-PO3-CGA CAG GCA CAT CGA TTT GG
1.75	(SEQ ID NO:269)	(SEQ ID NO:270)
٠.,	5'-PO3- AAATCGATGTGGACGGATAG	5'-PO3-ATC CGT CCA CAT CGA TTT GG
1.76	(SEQ ID NO:271) 5'-PO3- AAATCGATGTGCCTGTCCAG	(SEQ ID NO:272) 5'-PO3-GGA CAG GCA CAT CGA TTT GG
1.77	(SEQ ID NO:273)	(SEQ ID NO:274)

	5'-PO3-	5'-PO3-CGT GCT TCA CAT
	AAATCGATGTGAAGCACGAG	CGA TTT GG
1.78	(SEQ ID NO:275)	(SEQ ID NO:276)
	5'-PO3-	5'-PO3-TGA CAG GCA CAT
	AAATCGATGTGCCTGTCAAG	CGA TTT GG
1.79	(SEQ ID NO:277)	(SEQ ID NO:278)
****	5'-PO3-	5'-PO3-GGT GCT TCA CAT
	AAATCGATGTGAAGCACCAG	CGA TTT GG
1.80	(SEQ ID NO:279)	(SEQ ID NO:280)
*****	, , , , , , , , , , , , , , , , , , , ,	5'-PO3-ACG AAG GCA CAT
	5'-PO3-AAATCGATGTGCCTTCGTAG	CGA TTT GG
1.81	(SEQ ID NO:281)	(SEQ ID NO:282)
	5'-PO3-	5'-PO3-CGG ACG ACA CAT
	AAATCGATGTGTCGTCCGAG	CGA TTT GG
1.82	(SEQ ID NO:283)	(SEQ ID NO:284)
	5'-PO3-	5'-PO3-CAG ACT CCA CAT
	AAATCGATGTGGAGTCTGAG	CGA TTT GG
1.83	(SEQ ID NO:285)	(SEQ ID NO:286)
1.00	5'-PO3-	5'-PO3-CGG ATC ACA CAT
	AAATCGATGTGTGATCCGAG	CGA TTT GG
1.84	(SEQ ID NO:287)	(SEQ ID NO:288)
	5'-PO3-	5'-PO3-CGC CTG ACA CAT
	AAATCGATGTGTCAGGCGAG	CGA TTT GG
1.85	(SEQ ID NO:289)	(SEQ ID NO:290)
	5'-PO3-	5'-PO3-TGG ACG ACA CAT
	AAATCGATGTGTCGTCCAAG	CGA TTT GG
1.86	(SEQ ID NO:291)	(SEQ ID NO:292)
	5'-PO3-	5'-PO3-CTC CGT CCA CAT
	AAATCGATGTGGACGGAGAG	CGA TTT GG
1.87	(SEQ ID NO:293)	(SEQ ID NO:294)
	5'-PO3-	5'-PO3-CTG CTA CCA CAT
	AAATCGATGTGGTAGCAGAG	CGA TTT GG
1.88	(SEQ ID NO:295)	(SEQ ID NO:296)
	5'-PO3-	5'-PO3-
	AAATCGATGTGGCTGTGTAG	ACACAGCCACATCGATTTGG
1.89	(SEQ ID NO:297)	(SEQ ID NO:298)
	5'-PO3-	5'-PO3-GTC CGT CCA CAT
	AAATCGATGTGGACGGACAG	CGA TTT GG
1.90	(SEQ ID NO:299)	(SEQ ID NO:300)
	5'-PO3-	5'-PO3-TGC CTG ACA CAT
	AAATCGATGTGTCAGGCAAG	CGA TTT GG
1.91	(SEQ ID NO:301)	(SEQ ID NO:302)
	5'-PO3-	5'-PO3-
	AAATCGATGTGGCTCGAAAG	TTCGAGCCACATCGATTTGG
1.92	(SEQ ID NO:303)	(SEQ ID NO:304)
	5'-PO3-	5'-PO3-CCG AAG GCA CAT
	AAATCGATGTGCCTTCGGAG	CGA TTT GG
1.93	(SEQ ID NO:305)	(SEQ ID NO:306)
	5'-PO3-	5'-PO3-GTG CTA CCA CAT
	AAATCGATGTGGTAGCACAG	CGA TIT GG
1.94	(SEQ ID NO:307)	(SEQ ID NO:308)
•	5'-PO3-	5'-PO3-GAC CTT CCA CAT
1.95	AAATCGATGTGGAAGGTCAG	CGA TTT GG

	(SEQ ID NO:309)	(SEQ ID NO:310)
1.96	5'-PO3- AAATCGATGTGGTGCTGTAG (SEO ID NO:311)	5'-PO3-ACA GCA CCA CAT CGA TTT GG (SEQ ID NO: 312)

Tabla 4: Marcas de oligonucleótidos usadas en el ciclo 1:

Número de marca	Secuencia de la cadena supe	rior Secuencia de la cadena inferior
	5'-PO3-GTT GCC TGT	5'-PO3-AGG CAA CCT
2.1	(SEQ ID NO:313)	(SEQ ID NO:314)
	5'-PO3-CAG GAC GGT	5'-PO3-CGT CCT GCT
2.2	(SEQ ID NO:315)	(SEQ ID NO:316)
	5'-PO3-AGA CGT GGT	5'-PO3-CAC GTC TCT
2.3	(SEQ ID NO:317)	(SEQ ID NO:318)
	5'-PO3-CAG GAC CGT	5'-PO3-GGT CCT GCT
2.4	(SEQ ID NO:319)	(SEQ ID NO:320)
	5'-PO3-CAG GAC AGT	5'-PO3-TGT CCT GCT
2.5	(SEQ ID NO:321)	(SEQ ID NO:322)
	5'-PO3-CAC TCT GGT	5'-PO3-CAG AGT GCT
2.6	(SEQ ID NO:323)	(SEQ ID NO:324)
	5'-PO3-GAC GGC TGT	5'-PO3-AGC CGT CCT
2.7	(SEQ ID NO:325)	(SEQ ID NO:326)
	5'-PO3-CAC TCT CGT	5'-PO3-GAG AGT GCT
2.8	(SEQ ID NO:327)	(SEQ ID NO:328)
	5'-PO3-GTA GCC TGT	5'-PO3-AGG CTA CCT
2.9	(SEQ ID NO:329)	(SEQ ID NO:330)
	5'-PO3-GCC ACT TGT	5'-PO3-AAG TGG CCT
2.10	(SEQ ID NO:331)	(SEQ ID NO:332)
,	5'-PO3-CAT CGC TGT	5'-PO3-AGC GAT GCT
2.11	(SEQ ID NO:333)	(SEQ ID NO:334)
	5'-PO3-CAC TGG TGT	5'-PO3-ACC AGT GCT
2.12	(SEQ ID NO:335)	(SEQ ID NO:336)
2.12	5'-PO3-GCC ACT GGT	5'-PO3-CAG TGG CCT
2.13	(SEQ ID NO:337)	(SEQ ID NO:338)
2.13	5'-PO3-TCT GGC TGT	5'-PO3-AGC CAG ACT
2.14	(SEQ ID NO:339)	
2.14	5'-PO3-GCC ACT CGT	(SEQ ID NO:340)
2 15	(SEQ ID NO:341)	5'-PO3-GAG TGG CCT
2.15	-	(SEQ ID NO:342)
2.16	5'-PO3-TGC CTC TGT	5'-PO3-AGA GGC ACT
2.16	(SEQ ID NO:343)	(SEQ ID NO:344)
0.17	5'-PO3-CAT CGC AGT	5'-PO3-TGC GAT GCT
2.17	(SEQ ID NO:345)	(SEQ ID NO:346)
	5'-PO3-CAG GAA GGT	5'-PO3-CTT CCT GCT
2.18	(SEQ ID NO:347)	(SEQ ID NO:348)
	5'-PO3-GGC ATC TGT	5'-PO3-AGA TGC CCT
2.19	(SEQ ID NO:349)	(SEQ ID NO:350)
	5'-PO3-CGG TGC TGT	5'-PO3-AGC ACC GCT
2.20	(SEQ ID NO:351)	(SEQ ID NO:352)
2.21	5'-PO3-CAC TGG CGT	5'-PO3-GCC AGT GCT

	(SEQ ID NO:353)	(SEQ ID NO:354)
	5'-PO3-TCTCCTCGT	5'-PO3-GAGGAGACT
2.22	(SEQ ID NO:355)	(SEQ ID NO: 356)
	5'-PO3-CCT GTC TGT	5'-PO3-AGA CAG GCT
2.23	(SEQ ID NO:357)	(SEQ ID NO:358)
	5'-PO3-CAA CGC TGT	5'-PO3-AGC GTT GCT
2.24	(SEQ ID NO:359)	(SEQ ID NO:360)
	5'-PO3-TGC CTC GGT	5'-PO3-CGA GGC ACT
2.25	(SEQ ID NO:361)	(SEQ ID NO:362)
	5'-PO3-ACA CTG CGT	5'-PO3-GCA GTG TCT
2.26	(SEQ ID NO:363)	(SEQ ID NO:364)
	5'-PO3-TCG TCC TGT	5'-PO3-AGG ACG ACT
2.27	(SEQ ID NO:365)	(SEQ ID NO:366)
	5'-PO3-GCT GCC AGT	5'-PO3-TGG CAG CCT
2.28	(SEQ ID NO:367)	(SEQ ID NO:368)
	5'-PO3-TCA GGC TGT	5'-PO3-AGC CTG ACT
2.29	(SEQ ID NO:369)	(SEQ ID NO:370)
	5'-PO3-GCC AGG TGT	5'-PO3-ACC TGG CCT
2.30	(SEQ ID NO:371)	(SEQ ID NO: 372)
	5'-PO3-CGG ACC TGT	5'-PO3-AGG TCC GCT
2.31	(SEQ ID NO:373)	(SEQ ID NO: 374)
	5'-PO3-CAA CGC AGT	5'-PO3-TGC GTT GCT
2.32		(SEQ ID NO: 376)
	5'-PO3-CAC ACG AGT	
2.33	(SEQ ID NO:377)	(SEQ ID NO:378)
	5'-PO3-ATG GCC TGT	5'-PO3-AGG CCA TCT
2.34	(SEQ ID NO:379)	(SEQ ID NO: 380)
0.05	5'-PO3-CCA GTC TGT	5'-PO3-AGA CTG GCT
2.35		(SEQ ID NO: 382)
2.26	5'-PO3-GCC AGG AGT	5'-PO3-TCC TGG CCT (SEQ ID NO: 384)
2.36	(SEQ ID NO: 383) 5'-PO3-CGG ACC AGT	5'-PO3-TGG TCC GCT
2.27	(SEQ ID NO:385)	(SEQ ID NO: 386)
2.37	5'-PO3-CCT TCG CGT	5 ³ -PO3-GCG AAG GCT
2.38	(SEQ ID NO:387)	(SEQ ID NO:388)
2.30	5'-PO3-GCA GCC AGT	5'-PO3-TGG CTG CCT
2.39	(SEQ ID NO:389)	(SEQ ID NO: 390)
2.32	5'-PO3-CCA GTC GGT	5'-PO3-CGA CTG GCT
2.40	(SEQ ID NO:391)	(SEQ ID NO:392)
2.40	5'-PO3-ACT GAG CGT	
2.41	(SEQ ID NO:393)	(SEQ ID NO:394)
21	5'-PO3-CCA GTC CGT	5'-PO3-GGA CTG GCT
2.42	(SEQ ID NO:395)	(SEQ ID NO: 396)
, <u>-</u>	5'-PO3-CCA GTC AGT	5'-PO3-TGA CTG GCT
2.43	(SEQ ID NO:397)	(SEQ ID NO:398)
	5'-PO3-CAT CGA GGT	5'-PO3-CTC GAT GCT
2.44	(SEQ ID NO:399)	(SEQ ID NO: 400)
W. T. T.	5'-PO3-CCA TCG TGT	5'-PO3-ACG ATG GCT
2.45	(SEQ ID NO: 401)	(SEQ ID NO: 402)
•••	5'-PO3-GTG CTG CGT	5'-PO3-GCA GCA CCT
2.46	(SEQ ID NO:403)	(SEQ ID NO: 404)
	•	•

	0, 200 G.	sa non com a om com
	5'-PO3-GAC TAC GGT	
2.47	(SEQ ID NO: 405)	(SEQ ID NO: 406)
	5'-PO3-GTG CTG AGT	5'-PO3-TCA GCA CCT
2.48	(SEQ ID NO:407)	(SEQ ID NO: 408)
	5'-PO3-GCTGCATGT	5'-PO3-ATGCAGCCT
2.49	(SEQ ID NO:409)	(SEQ ID NO:410)
	5'-PO3-GAGTGGTGT	5'-PO3-ACCACTCCT
2.50	(SEQ ID NO:411)	(SEQ ID NO:412)
	5'-PO3-GACTACCGT	5'-PO3-GGTAGTCCT
2.51	(SEQ ID NO:413)	(SEQ ID NO:414)
	5'-PO3-CGGTGATGT	5'-PO3-ATCACCGCT
2.52	(SEQ ID NO:415)	(SEQ ID NO: 416)
	5'-PO3-TGCGACTGT	5'-PO3-AGTCGCACT
2.53	(SEQ ID NO:417)	(SEQ ID NO:418)
	5'-PO3-TCTGGAGGT	5'-PO3-CTCCAGACT
2.54	(SEQ ID NO:419)	(SEQ ID NO: 420)
	5'-PO3-AGCACTGGT	5'-PO3-CAGTGCTCT
2.55	(SEQ ID NO:421)	(SEQ ID NO: 422)
	5'-PO3-TCGCTTGGT	5'-PO3-CAAGCGACT
2.56	(SEQ ID NO: 423)	(SEQ ID NO: 424)
0.50	5'-PO3-AGCACTCGT	5'-PO3-GAGTGCTCT
2.57	(SEQ ID NO: 425)	(SEQ ID NO: 426)
0.50	5'-PO3-GCGATTGGT	5'-PO3-CAATCGCCT
2.58	(SEQ ID NO: 427)	(SEQ ID NO: 428)
2.50	5'-PO3-CCATCGCGT	5'-PO3-GCGATGGCT
2.59	(SEQ ID NO:429)	(SEQ ID NO:430)
2.60	5'-PO3-TCGCTTCGT	5'-PO3-GAAGCGACT
2.60	(SEQ ID NO:431)	(SEQ ID NO:432)
2.61	5'-PO3-AGTGCCTGT	5'-PO3-AGGCACTCT
2.61	(SEQ ID NO:433)	(SEQ ID NO:434)
. 0.60	5'-PO3-GGCATAGGT	5'-PO3-CTATGCCCT
2.62	(SEQ ID NO:435) 5'-PO3-GCGATTCGT	(SEQ ID NO: 436)
2.62	(SEQ ID NO: 437)	5'-PO3-GAATCGCCT
2.63	5'-PO3-TGCGACGGT	(SEQ ID NO:438) 5'-PO3-CGTCGCACT
2.64	(SEQ ID NO:439)	(SEQ ID NO:440)
2.64	5'-PO3-GAGTGGCGT	5'-PO3-GCCACTCCT
2.65	(SEQ ID NO:441)	(SEQ ID NO:442)
2.03	5'-PO3-CGGTGAGGT	5'-PO3-CTCACCGCT
2.66	(SEQ ID NO:443)	(SEQ ID NO: 444)
2.00	5'-PO3-GCTGCAAGT	5'-PO3-TTGCAGCCT
2.67	(SEQ ID NO:445)	(SEQ ID NO: 446)
2.07	5'-PO3-TTCCGCTGT	5'-PO3-AGCGGAACT
2.68	(SEQ ID NO:447)	(SEQ ID NO:448)
2.00	5'-PO3-GAGTGGAGT	5'-PO3-TCCACTCCT
2.69	(SEQ ID NO:449)	(SEQ ID NO: 450)
2.07	5'-PO3-ACAGAGCGT	5'-PO3-GCTCTGTCT
2.70	(SEQ ID NO:451)	(SEQ ID NO: 452)
2.70	5'-PO3-TGCGACCGT	5'-PO3-GGTCGCACT
2.71	(SEQ ID NO: 453)	(SEQ ID NO: 454)
4./1	5'-PO3-CCTGTAGGT	5'-PO3-CTACAGGCT
2.72	(SEQ ID NO:455)	(SEQ ID NO: 456)
4.14	(SEQ ID NO:455)	(9EA IN MO:430)

	5'-PO3-TAGCCGTGT	. 5'-PO3-ACGGCTACT
2.73	(SEQ ID NO: 457)	(SEQ ID NO:458)
	5'-PO3-TGCGACAGT	5'-PO3-TGTCGCACT
2.74	(SEQ ID NO:459)	(SEQ ID NO:460)
	5'-PO3-GGTCTGTGT	5'-PO3-ACAGACCCT
2.75	(SEQ ID NO:461)	(SEQ ID NO:462)
	5'-PO3-CGGTGAAGT	5'-PO3-TTCACCGCT
2.76	(SEQ ID NO:463)	(SEQ ID NO:464)
	5'-PO3-CAACGAGGT	5'-PO3-CTCGTTGCT
2.77	(SEQ ID NO:465)	(SEQ ID NO:466)
	5'-PO3-GCAGCATGT	5'-PO3-ATGCTGCCT
2.78	(SEQ ID NO:467)	(SEQ ID NO:468)
ę	5'-PO3-TCGTCAGGT	5'-PO3-CTGACGACT
2.79	(SEQ ID NO: 469)	(SEQ ID NO:470)
	5'-PO3-AGTGCCAGT	5'-PO3-TGGCACTCT
2.80	(SEQ ID NO: 471)	(SEQ ID NO:472)
	5'-PO3-TAGAGGCGT	5'-PO3-GCCTCTACT
2.81	(SEQ ID NO:473)	(SEQ ID NO:474)
	5'-PO3-GTCAGCGGT	5'-PO3-CGCTGACCT
2.82	(SEQ ID NO: 475)	(SEQ ID NO: 476)
	5'-PO3-TCAGGAGGT	5'-PO3-CTCCTGACT
2.83	(SEQ ID NO:477)	(SEQ ID NO:478)
	5'-PO3-AGCAGGTGT	5'-PO3-ACCTGCTCT
2.84	(SEQ ID NO:479	(SEQ ID NO:480)
	5'-PO3-TTCCGCAGT	5'-PO3-TGCGGAACT
2.85	(SEQ ID NO: 481)	(SEQ ID NO:482)
	5'-PO3-GTCAGCCGT	5'-PO3-GGCTGACCT
2.86	(SEQ ID NO: 483)	(SEQ ID NO: 484)
	5'-PO3-GGTCTGCGT	5'-PO3-GCAGACCCT
2.87	(SEQ ID NO: 485)	(SEQ ID NO: 486)
	5'-PO3-TAGCCGAGT	5'-PO3-TCGGCTACT
2.88	(SEQ ID NO:487)	(SEQ ID NO: 488)
	5'-PO3-GTCAGCAGT	5'-PO3-TGCTGACCT
2.89	(SEQ ID NO:489)	(SEQ ID NO:490)
	5'-PO3-GGTCTGAGT	5'-PO3-TCAGACCCT
2.90	(SEQ ID NO:491)	(SEQ ID NO:492)
	5'-PO3-CGGACAGGT	5'-PO3-CTGTCCGCT
2.91	(SEQ ID NO:493)	(SEQ ID NO:494)
	5'-PO3-TTAGCCGGT5'-	5'-PO3-CGGCTAACT5'-PO3-
	PO3-3'	3'
2.92	(SEQ ID NO: 495)	(SEQ ID NO:496)
	5'-PO3-GAGACGAGT	5'-PO3-TCGTCTCCT
2.93	(SEQ ID NO:497)	(SEQ ID NO:498)
	5'-PO3-CGTAACCGT	5'-PO3-GGTTACGCT
2.94	(SEQ ID NO:499)	(SEQ ID NO:500)
	5'-PO3-TTGGCGTGT5'-	5'-PO3-ACGCCAACT5'-PO3-
	PO3-3'	3'
2.95	(SEQ ID NO:501)	(SEQ ID NO:502)
	5'-PO3-ATGGCAGGT	5'-PO3-CTGCCATCT
2.96	(SEQ ID NO:503)	(SEQ ID NO:504)
	,	17-x 101001)

Tabla 4: Marcas de oligonucleótidos usadas en el ciclo 3:

Número de ma <u>rca</u>	Secuencia de la cadena superior	
	5'-PO3-CAG CTA CGA	5'-PO3-GTA GCT GAC
3.1	(SEQ ID NO:505)	(SEQ ID NO:506)
	5'-PO3-CTC CTG CGA	5'-PO3-GCA GGA GAC
3.2	(SEQ ID NO:507)	(SEQ ID NO:508)
	5'-PO3-GCT GCC TGA	5'-PO3-AGG CAG CAC
3.3	(SEQ ID NO:509)	(SEQ ID NO:510)
5.5	5'-PO3-CAG GAA CGA	5'-PO3-GTT CCT GAC
3.4	(SEQ ID NO:511)	(SEQ ID NO:512)
5	5'-PO3-CAC ACG CGA	5'-PO3-GCG TGT GAC
3.5	(SEQ ID NO:513)	(SEQ ID NO:514)
5.5	5'-PO3-GCA GCC TGA	5'-PO3-AGG CTG CAC
3.6	(SEQ ID NO:515)	(SEQ ID NO:516)
3.0	5'-PO3-CTG AAC GGA	5'-PO3-CGT TCA GAC
3.7	(SEQ ID NO:517)	(SEQ ID NO:518)
3.7	5'-PO3-CTG AAC CGA	5'-PO3-GGT TCA GAC
20	(SEQ ID NO:519)	(SEQ ID NO:520)
3.8	5'-PO3-TCT GGA CGA	5'-PO3-GTC CAG AAC
2.0		
3.9	(SEQ ID NO:521)	(SEQ ID NO:522)
2.16	5'-PO3-TGC CTA CGA	5'-PO3-GTA GGC AAC
3.10		(SEQ ID NO:524)
	5'-PO3-GGC ATA CGA	5'-PO3-GTA TGC CAC
3.11		(SEQ ID NO:526)
	5'-PO3-CGG TGA CGA	5'-PO3-GTC ACC GAC
_3.12		(SEQ ID NO:528)
	5'-PO3-CAA CGA CGA	5'-PO3-GTC GTT GAC
3.13		(SEQ ID NO:530)
	5'-PO3-CTC CTC TGA	5'-PO3-AGA GGA GAC
3.14		(SEQ ID NO:532)
	5'-PO3-TCA GGA CGA	5'-PO3-GTC CTG AAC
3.15		(SEQ ID NO:534)
	5'-PO3-AAA GGC GGA	5'-PO3-CGC CTT TAC
3.16		(SEQ ID NO:536)
	5'-PO3-CTC CTC GGA	5'-PO3-CGA GGA GAC
3.17		(SEQ ID NO:538)
	5'-PO3-CAG ATG CGA	5'-PO3-GCA TCT GAC
3.18		(SEQ ID NO:540)
	5'-PO3-GCA GCA AGA	5'-PO3-TTG CTG CAC
3.19	(SEQ ID NO:541)	(SEQ ID NO:542)
	5'-PO3-GTG GAG TGA	5'-PO3-ACT CCA CAC
3.20		(SEQ ID NO:544)
	5'-PO3-CCA GTA GGA	5'-PO3-CTA CTG GAC
3.21	(SEQ ID NO:545)	(SEQ ID NO:546)
	5'-PO3-ATG GCA CGA	5'-PO3-GTG CCA TAC
3.22	2 (SEQ ID NO:547)	(SEQ ID NO:548)
	5'-PO3-GGA CTG TGA	5'-PO3-ACA GTC CAC
3.23	(SEQ ID NO:549)	(SEQ ID NO:550)

	5'-PO3-CCG AAC TGA	5'-PO3-AGT TCG GAC
3.24	(SEQ ID NO:551)	(SEQ ID NO:552)
	5'-PO3-CTC CTC AGA	5'-PO3-TGA GGA GAC
3.25	(SEQ ID NO:553)	(SEQ ID NO:554)
	5'-PO3-CAC TGC TGA	5'-PO3-AGC AGT GAC
3.26	(SEQ ID NO:555)	(SEQ ID NO:556)
	5'-PO3-AGC AGG CGA	5'-PO3-GCC TGC TAC
3.27	(SEQ ID NO:557)	(SEQ ID NO:558)
	5'-PO3-AGC AGG AGA	5'-PO3-TCC TGC TAC
3.28	(SEQ ID NO:559)	(SEQ ID NO:560)
	5'-PO3-AGA GCC AGA	5'-PO3-TGG CTC TAC
3.29	(SEQ ID NO:561)	(SEQ ID NO:562)
	5'-PO3-GTC GTT GGA	5'-PO3-CAA CGA CAC
3.30	(SEQ ID NO:563)	(SEQ ID NO:564)
	5'-PO3-CCG AAC GGA	5'-PO3-CGT TCG GAC
3.31	(SEQ ID NO:565)	(SEQ ID NO:566)
	5'-PO3-CAC TGC GGA	5'-PO3-CGC AGT GAC
3.32	(SEQ ID NO:567)	(SEQ ID NO:568)
	5'-PO3-GTG GAG CGA	5'-PO3-GCT CCA CAC
3.33	(SEQ ID NO:569)	(SEQ ID NO:570)
	5'-PO3-GTG GAG AGA	5'-PO3-TCT CCA CAC
3.34	(SEQ ID NO:571)	(SEQ ID NO:572)
	5'-PO3-GGA CTG CGA	5'-PO3-GCA GTC CAC
3.35	(SEQ ID NO:573)	(SEQ ID NO:574)
	5'-PO3-CCG AAC CGA	5'-PO3-GGT TCG GAC
3.36	(SEQ ID NO:575)	(SEQ ID NO:576)
	5'-PO3-CAC TGC CGA	5'-PO3-GGC AGT GAC
3.37	(SEQ ID NO:577)	(SEQ ID NO:578)
5.57		
	5'-PO3-CGA AAC GGA	5'-PO3-CGT TTC GAC
3.38	5'-PO3-CGA AAC GGA (SEQ ID NO:579)	5'-PO3-CGT TTC GAC (SEQ ID NO:580)
3.38	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC
	5'-PO3-CGA AAC GGA (SEQ ID NO:579) 5'-PO3-GGA CTG AGA (SEQ ID NO:581)	5'-PO3-CGT TTC GAC (SEQ ID NO:580) 5'-PO3-TCA GTC CAC (SEQ ID NO:582)
3.38 3.39	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA	5'-PO3-CGT TTC GAC (SEQ ID NO:580) 5'-PO3-TCA GTC CAC (SEQ ID NO:582) 5'-PO3-TGT TCG GAC
3.38	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584)
3.38 3.39 3.40	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC
3.38 3.39	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585)	5'-PO3-CGT TTC GAC (SEQ ID NO:580) 5'-PO3-TCA GTC CAC (SEQ ID NO:582) 5'-PO3-TGT TCG GAC (SEQ ID NO:584) 5'-PO3-GGT TTC GAC (SEQ ID NO:586)
3.38 3.39 3.40 3.41	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC
3.38 3.39 3.40	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588)
3.38 3.39 3.40 3.41 3.42	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC
3.38 3.39 3.40 3.41	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590)
3.38 3.39 3.40 3.41 3.42 3.43	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC
3.38 3.39 3.40 3.41 3.42	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592)
3.38 3.39 3.40 3.41 3.42 3.43 3.44	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC
3.38 3.39 3.40 3.41 3.42 3.43	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594)
3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593) 5'-PO3-TGC GAA GGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594) 5'-PO3-CTT CGC AAC
3.38 3.39 3.40 3.41 3.42 3.43 3.44	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593) 5'-PO3-TGC GAA GGA (SEQ ID NO: 595)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594) 5'-PO3-CTT CGC AAC (SEQ ID NO: 596)
3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593) 5'-PO3-TGC GAA GGA (SEQ ID NO: 595) 5'-PO3-TGC GAA CGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594) 5'-PO3-CTT CGC AAC (SEQ ID NO: 596) 5'-PO3-GTT CGC AAC
3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593) 5'-PO3-TGC GAA GGA (SEQ ID NO: 595) 5'-PO3-TGC GAA CGA (SEQ ID NO: 597)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594) 5'-PO3-CTT CGC AAC (SEQ ID NO: 596) 5'-PO3-GTT CGC AAC (SEQ ID NO: 598)
3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593) 5'-PO3-TGC GAA GGA (SEQ ID NO: 595) 5'-PO3-TGC GAA CGA (SEQ ID NO: 597) 5'-PO3-CTG GCT GGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594) 5'-PO3-CTT CGC AAC (SEQ ID NO: 596) 5'-PO3-GTT CGC AAC (SEQ ID NO: 598) 5'-PO3-CAG CCA GAC
3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593) 5'-PO3-TGC GAA GGA (SEQ ID NO: 595) 5'-PO3-TGC GAA CGA (SEQ ID NO: 597) 5'-PO3-CTG GCT GGA (SEQ ID NO: 597) 5'-PO3-CTG GCT GGA (SEQ ID NO: 599)	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594) 5'-PO3-CTT CGC AAC (SEQ ID NO: 596) 5'-PO3-GTT CGC AAC (SEQ ID NO: 598) 5'-PO3-CAG CCA GAC (SEQ ID NO: 598) 5'-PO3-CAG CCA GAC (SEQ ID NO: 600)
3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47	5'-PO3-CGA AAC GGA (SEQ ID NO: 579) 5'-PO3-GGA CTG AGA (SEQ ID NO: 581) 5'-PO3-CCG AAC AGA (SEQ ID NO: 583) 5'-PO3-CGA AAC CGA (SEQ ID NO: 585) 5'-PO3-CTG GCT TGA (SEQ ID NO: 587) 5'-PO3-CAC ACC TGA (SEQ ID NO: 589) 5'-PO3-AAC GAC CGA (SEQ ID NO: 591) 5'-PO3-ATC CAG CGA (SEQ ID NO: 593) 5'-PO3-TGC GAA GGA (SEQ ID NO: 595) 5'-PO3-TGC GAA CGA (SEQ ID NO: 597) 5'-PO3-CTG GCT GGA	5'-PO3-CGT TTC GAC (SEQ ID NO: 580) 5'-PO3-TCA GTC CAC (SEQ ID NO: 582) 5'-PO3-TGT TCG GAC (SEQ ID NO: 584) 5'-PO3-GGT TTC GAC (SEQ ID NO: 586) 5'-PO3-AAG CCA GAC (SEQ ID NO: 588) 5'-PO3-AGG TGT GAC (SEQ ID NO: 590) 5'-PO3-GGT CGT TAC (SEQ ID NO: 592) 5'-PO3-GCT GGA TAC (SEQ ID NO: 594) 5'-PO3-CTT CGC AAC (SEQ ID NO: 596) 5'-PO3-GTT CGC AAC (SEQ ID NO: 598) 5'-PO3-CAG CCA GAC

	CI DOS ACT COLA COLA	51 DO2 CHC CLC TAC
	5'-PO3-AGT GCA GGA	5'-PO3-CTG CAC TAC
3.50	(SEQ ID NO:603)	(SEQ ID NO: 604)
	5'-PO3-GAC CGT TGA	5'-PO3-AAC GGT CAC
3.51	(SEQ ID NO:605)	(SEQ ID NO: 606)
	5'-PO3-GGT GAG TGA	5'-PO3-ACT CAC CAC
3.52	(SEQ ID NO:607)	(SEQ ID NO:608)
	5'-PO3-CCT TCC TGA	5'-PO3-AGG AAG GAC
3.53	(SEQ ID NO:609)	(SEQ ID NO:610)
	5'-PO3-CTG GCT AGA	5'-PO3-TAG CCA GAC
3.54	(SEQ ID NO:611)	(SEQ ID NO:612)
	5'-PO3-CAC ACC AGA	5'-PO3-TGG TGT GAC
3.55	(SEQ ID NO:613)	(SEQ ID NO:614)
	5'-PO3-AGC GGT AGA	5'-PO3-TAC CGC TAC
3.56	(SEQ ID NO:615)	(SEQ ID NO:616)
	5'-PO3-GTC AGA GGA	5'-PO3-CTC TGA CAC
3.57	(SEQ ID NO:617)	(SEQ ID NO:618)
	5'-PO3-TTC CGA CGA	5'-PO3-GTC GGA AAC
3.58	(SEO ID NO:619)	(SEQ ID NO:620)
	5'-PO3-AGG CGT AGA	5'-PO3-TAC GCC TAC
3.59	(SEQ ID NO:621)	(SEQ ID NO:622)
	5'-PO3-CTC GAC TGA	5'-PO3-AGT CGA GAC
3.60	(SEQ ID NO: 623)	(SEQ ID NO:624)
***************************************	5'-PO3-TAC GCT GGA	5'-PO3-CAG CGT AAC
3.61	(SEQ ID NO:625)	(SEQ ID NO: 626)
	5'-PO3-GTT CGG TGA	5'-PO3-ACC GAA CAC
3.62	(SEQ ID NO:627)	(SEQ ID NO:628)
	5'-PO3-GCC AGC AGA	5'-PO3-TGC TGG CAC
3.63	(SEQ ID NO:629)	(SEQ ID NO:630)
2.02	5'-PO3-GAC CGT AGA	5'-PO3-TAC GGT CAC
3.64	(SEQ ID NO:631)	(SEQ ID NO:632)
	5'-PO3-GTG CTC TGA	5'-PO3-AGA GCA CAC
3.65	(SEQ ID NO:633)	(SEQ ID NO: 634)
	5'-PO3-GGT GAG CGA	5'-PO3-GCT CAC CAC
3.66	(SEQ ID NO:635)	(SEQ ID NO:636)
*	5'-PO3-GGT GAG AGA	5'-PO3-TCT CAC CAC
3.67	(SEQ ID NO:637)	(SEQ ID NO:638)
7.7.	5'-PO3-CCT TCC AGA	5'-PO3-TGG AAG GAC
3.68	(SEQ ID NO:639)	(SEQ ID NO:640)
2.00	5'-PO3-CTC CTA CGA	5'-PO3-GTA GGA GAC
3.69	(SEQ ID NO:641)	(SEQ ID NO:642)
0.05	5'-PO3-CTC GAC GGA	5'-PO3-CGT CGA GAC
3.70	(SEQ ID NO:643)	(SEQ ID NO:644)
5.70	5'-PO3-GCC GTT TGA	5'-PO3-AAA CGG CAC
3.71	(SEQ ID NO:645)	(SEQ ID NO:646)
3., x	5'-PO3-GCG GAG TGA	5'-PO3-ACT CCG CAC
3.72	(SEQ ID NO:647)	(SEQ ID NO:648)
W 7 1 W	5'-PO3-CGT GCT TGA	5'-PO3-AAG CAC GAC
3.73	(SEQ ID NO:649)	(SEQ ID NO:650)
5.15	5'-PO3-CTC GAC CGA	5'-PO3-GGT CGA GAC
3.74	(SEQ ID NO:651)	(SEQ ID NO:652)
J.17	5'-PO3-AGA GCA GGA	5'-PO3-CTG CTC TAC
3.75	(SEQ ID NO:653)	(SEQ ID NO: 654)
9.10	(OTA ID MO:000)	(AEG ID MO.014)

	5'-PO3-GTG CTC GGA	5'-PO3-CGA GCA CAC
3.76	(SEQ ID NO:655)	(SEQ ID NO:656)
	5'-PO3-CTC GAC AGA	5'-PO3-TGT CGA GAC
3.77	(SEQ ID NO:657)	(SEQ ID NO:658)
	5'-PO3-GGA GAG TGA	5'-PO3-ACT CTC CAC
3.78	(SEQ ID NO:659)	(SEQ ID NO:660)
	5'-PO3-AGG CTG TGA	5'-PO3-ACA GCC TAC
3.79	(SEQ ID NO:661)	(SEQ ID NO:662)
	5'-PO3-AGA GCA CGA	5'-PO3-GTG CTC TAC
3.80	(SEQ ID NO:663)	(SEQ ID NO:664)
	5'-PO3-CCA TCC TGA	5'-PO3-AGG ATG GAC
3.81	(SEQ ID NO:665)	(SEQ ID NO:666)
	5'-PO3-GTT CGG AGA	5'-PO3-TCC GAA CAC
3.82	(SEQ ID NO:667)	(SEQ ID NO:668)
	5'-PO3-TGG TAG CGA	5'-PO3-GCT ACC AAC
3.83	(SEQ ID NO:669)	(SEQ ID NO:670)
	5'-PO3-GTG CTC CGA	5'-PO3-GGA GCA CAC
3.84	(SEQ ID NO:671)	(SEQ ID NO:672)
	5'-PO3-GTG CTC AGA	5'-PO3-TGA GCA CAC
3.85	(SEQ ID NO:673)	(SEQ ID NO:674)
	5'-PO3-GCC GTT GGA	5'-PO3-CAA CGG CAC
3.86	(SEQ ID NO:675)	(SEQ ID NO:676)
	5'-PO3-GAG TGC TGA	5'-PO3-AGC ACT CAC
3.87	(SEQ ID NO:677)	(SEQ ID NO:678)
2.00	5'-PO3-GCT CCT TGA	5'-PO3-AAG GAG CAC
3.88	(SEQ ID NO: 679)	(SEQ ID NO:680)
2.00	5'-PO3-CCG AAA GGA	5'-PO3-CTT TCG GAC
3.89	(SEQ ID NO: 681) 5'-PO3-CAC TGA GGA	(SEQ ID NO:682) 5'-PO3-CTC AGT GAC
3.90	(SEQ ID NO:683)	(SEQ ID NO: 684)
3.90	5'-PO3-CGT GCT GGA	5'-PO3-CAG CAC GAC
3.91	(SEQ ID NO: 685)	(SEQ ID NO:686)
3.31	5'-PO3-CCG AAA CGA	5'-PO3-GTT TCG GAC
3.92	(SEQ ID NO:687)	(SEQ ID NO:688)
3.72	5'-PO3-GCG GAG AGA	5'-PO3-TCT CCG CAC
3.93	(SEQ ID NO:689)	(SEQ ID NO:690)
5.75	5'-PO3-GCC GTT AGA	5'-PO3-TAA CGG CAC
3.94	(SEQ ID NO:691)	(SEQ ID NO:692)
*··· '	5'-PO3-TCT CGT GGA	5'-PO3-CAC GAG AAC
3.95	(SEQ ID NO:693)	(SEQ ID NO:694)
	5'-PO3-CGT GCT AGA	5'-PO3-TAG CAC GAC
3.96	(SEQ ID NO:695)	(SEQ ID NO:696)

Tabla 4: Marcas de oligonucleótidos usadas en el ciclo 3:

Número de marca	Secuencia de la cadena sup	Secuencia erior de la cadena inferior
	5'-PO3-GCCTGTCTT	5'-PO3-GAC AGG CTC
4.1	(SEQ ID NO:697)	(SEQ ID NO:698)
	5'-PO3-CTCCTGGTT	5'-PO3-CCA GGA GTC
4.2	(SEQ ID NO:699)	(SEQ ID NO:700)

	5'-PO3-ACTCTGCTT	5'-PO3-GCA GAG TTC
4.3	(SEQ ID NO:701)	(SEQ ID NO:702)
	5'-PO3-CATCGCCTT	5'-PO3-GGC GAT GTC
4.4	(SEQ ID NO:703)	(SEQ ID NO:704)
	5'-PO3-GCCACTATT	5'-PO3-TAG TGG CTC
4.5	(SEQ ID NO:705)	(SEQ ID NO:706)
	5'-PO3-CACACGGTT	5'-PO3-CCG TGT GTC
4.6	(SEQ ID NO:707)	(SEQ ID NO:708)
	5'-PO3-CAACGCCTT	5'-PO3-GGC GTT GTC
4.7	(SEQ ID NO:709)	(SEQ ID NO:710)
4.0	5'-PO3-ACTGAGGTT	5'-PO3-CCT CAG TTC
4.8	(SEQ ID NO:711)	(SEQ ID NO:712)
4.0	5'-PO3-GTGCTGGTT	5'-PO3-CCA GCA CTC
4.9	(SEQ ID NO:713)	(SEQ ID NO:714)
	5'-PO3-CATCGACTT	5'-PO3-GTC GAT GTC
4.10	(SEQ ID NO:715)	(SEQ ID NO:716)
4 1 1	5'-PO3-CCATCGGTT	5'-PO3-CCG ATG GTC
4.11	(SEQ ID NO:717)	(SEQ ID NO:718)
4.10	5'-PO3-GCTGCACTT	5'-PO3-GTG CAG CTC
4.12	(SEQ ID NO:719) 5'-PO3-ACAGAGGTT	(SEQ ID NO:720)
4.12		5'-PO3-CCT CTG TTC
4.13	(SEQ ID NO:721)	(SEQ ID NO:722)
4.14	5'-PO3-AGTGCCGTT (SEQ ID NO:723)	5'-PO3-CGG CAC TTC (SEQ ID NO:724)
4.14	5'-PO3-CGGACATTT	
4.15	(SEQ ID NO:725)	5'-PO3-ATG TCC GTC (SEQ ID NO: 726)
4.15	5'-PO3-GGTCTGGTT	5'-PO3-CCA GAC CTC
4.16	(SEQ ID NO:727)	
4.16	5'-PO3-GAGACGGTT	(SEQ ID NO:728) 5'-PO3-CCG TCT CTC
4.17	(SEQ ID NO:729)	(SEQ ID NO:730)
4.17	5'-PO3-CTTTCCGTT	5'-PO3-CGG AAA GTC
4.18	(SEQ ID NO:731)	(SEQ ID NO:732)
4.10	5'-PO3-CAGATGGTT	5'-PO3-CCA TCT GTC
4.19	(SEQ ID NO:733)	(SEQ ID NO:734)
7.17	5'-PO3-CGGACACTT	5'-PO3-GTG TCC GTC
4.20	(SEQ ID NO:735)	(SEQ ID NO:736)
7.20	5'-PO3-ACTCTCGTT	5'-PO3-CGA GAG TTC
4.21	(SEQ ID NO:737)	(SEQ ID NO:738)
- T	5'-PO3-GCAGCACTT	5'-PO3-GTG CTG CTC
4.22	(SEQ ID NO:739)	(SEQ ID NO:740)
	5'-PO3-ACTCTCCTT	5'-PO3-GGA GAG TTC
4.23	(SEQ ID NO:741)	(SEQ ID NO:742)
1.20	5'-PO3-ACCTTGGTT	5'-PO3-CCA AGG TTC
4.24	(SEQ ID NO:743)	(SEQ ID NO:744)
	5'-PO3-AGAGCCGTT	5'-PO3-CGG CTC TTC
4.25	(SEQ ID NO:745)	(SEQ ID NO:746)
7.60	5'-PO3-ACCTTGCTT	5'-PO3-GCA AGG TTC
4.26	(SEQ ID NO:747)	(SEQ ID NO:748)
7.20	5'-PO3-AAGTCCGTT	5'-PO3-CGG ACT TTC
4.27	(SEQ ID NO:749)	(SEQ ID NO:750)
7.61	5'-PO3-GGA CTG GTT	5'-PO3-CCA GTC CTC
4.28	(SEQ ID NO:751)	(SEQ ID NO:752)
7.20	(200 ID MO: 121)	(OLQ 10 NO: /32)

	5'-PO3-GTCGTTCTT	5'-PO3-GAA CGA CTC
4.29	(SEQ ID NO:753)	(SEQ ID NO:754)
	5'-PO3-CAGCATCTT	5'-PO3-GAT GCT GTC
4.30	(SEQ ID NO:755)	(SEQ ID NO:756)
	5'-PO3-CTATCCGTT	5'-PO3-CGG ATA GTC
4.31	(SEQ ID NO:757)	(SEQ ID NO:758)
	5'-PO3-ACACTCGTT	5'-PO3-CGA GTG TTC
4.32	(SEQ ID NO:759)	(SEQ ID NO:760)
	5'-PO3-ATCCAGGTT	5'-PO3-CCT GGA TTC
4.33	(SEQ ID NO:761)	(SEQ ID NO:762)
	5'-PO3-GTTCCTGTT	5'-PO3-CAG GAA CTC
4.34	(SEQ ID NO:763)	(SEQ ID NO:764)
	5'-PO3-ACACTCCTT	5'-PO3-GGA GTG TTC
4.35	(SEQ ID NO: 765)	(SEQ ID NO:766)
	5'-PO3-GTTCCTCTT	5'-PO3-GAG GAA CTC
4.36	(SEQ ID NO:767)	(SEQ ID NO:768)
	5'-PO3-CTGGCTCTT	5'-PO3-GAG CCA GTC
4.37	(SEQ ID NO:769)	(SEQ ID NO:770)
	5'-PO3-ACGGCATTT	5'-PO3-ATG CCG TTC
4.38	(SEQ ID NO:771)	(SEQ ID NO:772)
	5'-PO3-GGTGAGGTT	5'-PO3-CCT CAC CTC
4.39	(SEQ ID NO:773)	(SEQ ID NO:774)
	5'-PO3-CCTTCCGTT	5'-PO3-CGG AAG GTC
4.40	(SEQ ID NO:775)	(SEQ ID NO:776)
	5'-PO3-TACGCTCTT	5'-PO3-GAG CGT ATC
4.41	(SEQ ID NO:777)	(SEQ ID NO:778)
	5'-PO3-ACGGCAGTT	5'-PO3-CTG CCG TTC
4.42	(SEQ ID NO:779)	(SEQ ID NO:780
	5'-PO3-ACTGACGTT	5'-PO3-CGT CAG TTC
4.43	(SEQ ID NO:781)	(SEQ ID NO:782)
	5'-PO3-ACGGCACTT	5'-PO3-GTG CCG TTC
4.44	(SEQ ID NO:783)	(SEQ ID NO:784)
	5'-PO3-ACTGACCTT	5'-PO3-GGT CAG TTC
4.45	(SEQ ID NO:785)	(SEQ ID NO:786)
1.46	5'-PO3-TTTGCGGTT	5'-PO3-CCG CAA ATC
4.46	(SEQ ID NO:787)	(SEQ ID NO:788)
	5'-PO3-TGGTAGGTT	5'-PO3-CCT ACC ATC
4.47	(SEQ ID NO:789)	(SEQ ID NO:790)
4.40	5'-PO3-GTTCGGCTT	5'-PO3-GCC GAA CTC
4.48	(SEQ ID NO:791)	(SEQ ID NO:792)
4.40	5'-PO3-GCC GTT CTT	5'-PO3-GAA CGG CTC
4.49	(SEQ ID NO:793)	(SEQ ID NO:794)
4.50	5'-PO3-GGAGAGGTT	5'-PO3-CCT CTC CTC
4.50	(SEQ ID NO:795)	(SEQ ID NO:796)
	5'-PO3-CACTGACTT	5'-PO3-GTC AGT GTC
4.51	(SEQ ID NO:797)	(SEQ ID NO:798)
4.50	5'-PO3-CGTGCTCTT	5'-PO3-GAG CAC GTC
4.52	(SEQ ID NO:799)	(SEQ ID NO:800)
1.50	5'-PO3-AATCCGCTT	5'-PO3-GCGGATTTC
4.53	(SEQ ID NO:801)	(SEQ ID NO:802)
4.5.4	5'-PO3-AGGCTGGTT	5'-PO3-CCA GCC TTC
4.54	(SEQ ID NO:803)	(SEQ ID NO:804)

•		ar non ou o mud ama
	5'-PO3-GCTAGTGTT	5'-PO3-CAC TAG CTC
4.55	(SEQ ID NO:805)	(SEQ ID NO:806)
	5'-PO3-GGAGAGCTT	5'-PO3-GCT CTC CTC
4.56	(SEQ ID NO:807)	(SEQ ID NO:808)
	5'-PO3-GGAGAGATT	5'-PO3-TCT CTC CTC
4.57	(SEQ ID NO:809)	(SEQ ID NO:810)
	5'-PO3-AGGCTGCTT	5'-PO3-GCA GCC TTC
4.58	(SEQ ID NO:811)	(SEQ ID NO:812)
	5'-PO3-GAGTGCGTT	5'-PO3-CGC ACT CTC
4.59	(SEQ ID NO:813)	(SEQ ID NO:814)
	5'-PO3-CCATCCATT	5'-PO3-TGG ATG GTC
4.60	(SEQ ID NO:815)	(SEQ ID NO:816)
	5'-PO3-GCTAGTCTT	5'-PO3-GAC TAG CTC
4.61	(SEQ ID NO:817)	(SEQ ID NO:818)
	5'-PO3-AGGCTGATT	5'-PO3-TCA GCC TTC
4.62	(SEQ ID NO:819)	(SEQ ID NO:820)
	5'-PO3-ACAGACGTT	5'-PO3-CGT CTG TTC
4.63	(SEQ ID NO:821)	(SEQ ID NO:822)
	5'-PO3-GAGTGCCTT	5'-PO3-GGC ACT CTC
4.64	(SEQ ID NO:823)	(SEQ ID NO:824)
	5'-PO3-ACAGACCTT	5'-PO3-GGT CTG TTC
4.65	(SEQ ID NO:825)	(SEQ ID NO:826)
	5'-PO3-CGAGCTTTT	5'-PO3-AAG CTC GTC
4.66	(SEQ ID NO:827)	(SEQ ID NO:828)
4.68	5'-PO3-TTAGCGGTT	5'-PO3-CCG CTA ATC
4.67	(SEQ ID NO:829)	(SEQ ID NO:830)
4.60	5'-PO3-CCTCTTGTT	5'-PO3-CAA GAG GTC
4.68	(SEQ ID NO:831) 5'-PO3-GGTCTCTTT	(SEQ ID NO:832) 5'-PO3-AGA GAC CTC
4.60	(SEQ ID NO:833)	(SEQ ID NO:834)
4.69	5'-PO3-GCCAGATTT	5'-PO3-ATC TGG CTC
4.70	(SEQ ID NO:835)	(SEQ ID NO:836)
4.70	5'-PO3-GAGACCTTT	5'-PO3-AGG TCT CTC
4.71	(SEQ ID NO:837)	(SEQ ID NO:838)
, 4./1	5'-PO3-CACACAGTT	5'-PO3-CTG TGT GTC
4.72	(SEQ ID NO:839)	(SEQ ID NO:840)
4./2	5'-PO3-CCTCTTCTT	5'-PO3-GAA GAG GTC
4.73	(SEQ ID NO:841)	(SEQ ID NO:842)
4.73	5'-PO3-TAGAGCGTT	5'-PO3-CGC TCT ATC
4.74	(SEQ ID NO:843)	(SEQ ID NO:844)
4.74	5'-PO3-GCACCTTTT	5'-PO3-AAG GTG CTC
4.75	(SEQ ID NO:845)	(SEQ ID NO:846)
4.73	5'-PO3-GGCTTGTTT	5'-PO3-ACA AGC CTC
4.76	(SEQ ID NO:847)	(SEQ ID NO:848)
4.70	5'-PO3-GACGCGATT	5'-PO3-TCG CGT CTC
4.77	(SEQ ID NO:849)	(SEQ ID NO:850)
7.11	5'-PO3-CGAGCTGTT	5'-PO3-CAG CTC GTC
4.78	(SEQ ID NO:851)	(SEQ ID NO:852)
7.70	5'-PO3-TAGAGCCTT	5'-PO3-GGC TCT ATC
4.79	(SEQ ID NO:853)	(SEQ ID NO:854)
7.17	5'-PO3-CATCCGTTT	5'-PO3-ACG GAT GTC
4.80	(SEQ ID NO:855)	(SEQ ID NO:856)
4. 00	(255 TD MO.000)	(525 25 10:000)

	5'-PO3-GGTCTCGTT	5'-PO3-CGA GAC CTC
4.81	(SEQ ID NO:857)	(SEQ ID NO:858)
	5'-PO3-GCCAGAGTT	5'-PO3-CTC TGG CTC
4.82	(SEQ ID NO:859)	(SEQ ID NO:860)
	5'-PO3-GAGACCGTT	5'-PO3-CGG TCT CTC
4.83	(SEQ ID NO:861)	(SEO ID NO:862)
	5'-PO3-CGAGCTATT	5'-PO3-TAG CTC GTC
4.84	(SEQ ID NO:863)	(SEQ ID NO:864)
1.00	5'-PO3-GCAAGTGTT	5'-PO3-CAC TTG CTC
4.85	(SEQ ID NO:865)	(SEQ ID NO:866)
	5'-PO3-GGTCTCCTT	5'-PO3-GGA GAC CTC
4.86	(SEQ ID NO:867)	(SEQ ID NO:868)
	5'-PO3-GCCAGACTT	5'-PO3-GTC TGG CTC
4.87	(SEQ ID NO:869)	(SEQ ID NO:870)
	5'-PO3-GGTCTCATT	5'-PO3-TGA GAC CTC
4.88	(SEQ ID NO:871)	(SEQ ID NO:872)
	5'-PO3-GAGACCATT	5'-PO3-TGG TCT CTC
4.89	(SEQ ID NO:873)	(SEQ ID NO:874)
	5'-PO3-CCTTCAGTT	5'-PO3-CTG AAG GTC
4.90	(SEQ ID NO:875)	(SEQ ID NO:876)
	5'-PO3-GCACCTGTT	5'-PO3-CAG GTG CTC
4.91	(SEQ ID NO:877)	(SEQ ID NO:878)
	5'-PO3-AAAGGCGTT	5'-PO3-CGC CTT TTC
4.92	(SEQ ID NO:879)	(SEQ ID NO:880)
	5'-PO3-CAGATCGTT	5'-PO3-CGA TCT GTC
4.93	(SEQ ID NO:881)	(SEQ ID NO:882)
	5'-PO3-CATAGGCTT	5'-PO3-GCC TAT GTC
4.94	(SEQ ID NO:883)	(SEQ ID NO:884)
	5'-PO3-CCTTCACTT	5'-PO3-GTG AAG GTC
4.95	(SEQ ID NO:885)	(SEQ ID NO:886)
*	5'-PO3-GCACCTCTT	5'-PO3-GAG GTG CTC
4.96	(SEQ ID NO:887)	(SEQ ID NO:888)

Tabla 7: Correspondencia entre bloques de construcción y marcas de oligonucleótidos para los Ciclos 1-4.

Bloque de construcción	Ciclo	Ciclo	Ciclo	Ciclo
	1	2	3	4
BB1	1.1	2.1	3.1	4.1
BB2	1.2	2.2	3.2	4.2
BB3	1.3	2.3	3.3	4.3
BB4	1.4	2.4	3.4	4.4
BB5	1.5	2.5	3.5	4.5

BB6	1.6	2.6	3.6	4.6
BB7	1.7	2.7	3.7	4.7
BB8	1.8	2.8	3.8	4.8
BB9	1.9	2.9	3.9	4.9
BB10	1.10	2.10	3.10	4.10
BB11	1.11	2.11	3.11	4.11
B812	1.12	2.12	3.12	4.12
BB13	1.13	2.13	3.13	4.13
BB14	1.14	2.14	3.14	4.14
BB15	1.15	2.15	3.15	4.15
B816	1.16	2.16	3.16	4.16
BB17	1.17	2.17	3.17	4.17
BB18	1.18	2.18	3.18	4.18
BB19	1.19	2.19	3.19	4.19
BB20	1.20	2.20	3.20	4.20
BB21	1.21	2.21	3.21	4.21
BB22	1.22	2.22	3.22	4.22
BB23	1.23	2.23	3.23	4.23
BB24	1.24	2.24	3.24	4.24
BB25	1.25	2.25	3.25	4.25
BB26	1.26	2.26	3.26	4.26
BB27	1.27	2.27	3.27	4.27
BB28	1.28	2.28	3.28	4.28
BB29	1.29	2.29	3.29	4.29
BB30	1.30	2.30	3.30	-4.30
BB31	1.31	2.31	3.31	4.31
BB32	1.32	2.32	3.32	4.32
BB33	1.33	2.33	3.33	4.33
BB34	1.34	2.34	3.34	4.34
BB35	1.35	2.35	3.35	4.35
BB36	1.36	2.36	3.36	4.36
BB37	1.37	2.37	3.37	4.37
BB38	1.38	2.38	3.38	4.38
B839	1.39	2.39	3.39	4.39
BB40	1.44	2.44	3.44	4.44
BB41	1.41	2.41	3.41	4.41

BB42	1.42	2.42	3.42	4.42
BB43	1.43	2.43	3.43	4.43
BB44	1.40	2.40	3.40	4.40
BB45	1.45	2145	3.45	4.45
BB46	1.46	2.46	3.46	4.46
BB47	1.47	2.47	3.47	4.47
BB48	1.48	2.48	3.48	4.48
BB49	1.49	2.49	3.49	4.49
BB50	1.50	2.5.0	3.50	4.50
BB51	1.51	2.51	3.51	4.51
BB52	1.52	2.52	3.52	4.52
BB53	1.53	2.53	3.53	4.53
BB54	1.54	2.54	3.54	4.54
BB55	1.55	2.55	3.55	4.55
BB56	1.56	2.56	3.56	4.56
BB57	1.57	2.57	3.57	4.57
BB58	1.58	2.58	3.58	4.58
BB59	1.59	2.59	3.59	4.59
BB60	1.60	2.60	3.60	4.60
BB61	1.61	2.61	3.61	4.61
BB62	1.62	2.62	3.62	4.62
BB63	1.63	2.63	3.63	4.63
BB64	1.64	2.64	3.64	4.64
BB65	1.65	2.65	3.65	4.65
BB66	1.66	2.66	3.66	4.66
BB67	1.67	2.67	3.67	4.67
BB68	1.68	2.68	3.68	4.68
BB69	1.69	2.69	3.69	4.69
BB70	1.70	2.70	3.70	4.70
BB71	1.71	2.71	3.71	4.71
BB72	1.72	2.72	3.72	4.72
BB73	1.73	2.73	3.73	4.73
BB74	1.74	2.74	3.74	4.74
BB75	1.75	2.75	3.75	4.75
BB76	1.76	2.76	3.76	4.76
BB77	1.77	2.77	3.77	4.77

BB78	1.78	2.78	3.78	4.78
BB79	1.79	2.79	3.79	4.79
BB80	1.80	2.80	3.80	4.80
BB81	1.81	2.81	3.81	4.81
BB82	1.82	2.82	3.82	4.82
BB83	1.96	2.96	3.96	4.96
BB84	1.83	2.83	3.83	4.83
BB85	1.84	2.84	3.84	4.84
BB86	1.85	2.85	3.85	4.85
BB87	1.86	2.86	3.86	4.86
BB88	1.87	2.87	3.87	4.87
BB89	1.88	2.88	3.88	4.88
BB90	1.89	2.89	3.89	4.89
BB91	1.90	2.90	3.90	4.90
BB92	1.91	2.91	3.91	4.91
BB93	1.92	2.92	3.9.2	4.92
BB94	1.93	2.93	3.93	4.93
BB95	1.94	2.94	3.94	4.94
BB96	1.95	2.95	3.95	4.95

Buffer de ligasa 1X: 50 mM de Tris, pH 7,5; 10 mM de ditiotreitol; 10 mM de MgCl2; 2 mM de ATP; 50 mM de NaCl.

Buffer de ligasa 10X: 500 mM de Tris, pH 7,5; 100 mM de ditiotreitol; 100 mM de MgCl2; 20 mM de ATP; 500 mM de NaCl

5 Unión del espaciador soluble en agua al Compuesto 2

A una solución del Compuesto 2 (60 mL, 1 mM) en buffer de borato de sodio (150 mM, pH 9,4) que se enfrió a 4°C se añadieron 40 equivalentes de ácido N-Fmoc-15-amino-4,7,10,13-tetraoxaoctadecanoico (S-Ado) en N,N-dimetilformamida (DMF) (16 mL, 0,15 M) seguido por 40 equivalentes de cloruro hidrato de 4-(4,6-dimetoxi[1,3,5]triazin-2-il)-4-metilmorfolinio (DMTMM) en agua (9,6 mL, 0,25 M). La mezcla se agitó suavemente durante 2 horas a 4°C antes de añadir 40 equivalentes adicionales de S-Ado y DMTMM y se agitaron durante 16 horas adicionales a 4°C.

Después de la acilación, se añadieron 0,1X volumen de NaCl 5 M acuoso y un volumen 2,5X de etanol frío (-20°C) y la mezcla se dejó estacionar a -20°C durante al menos una hora. La mezcla posteriormente se centrifugó durante 15 minutos a 14.000 rpm en una centrifuga de 4°C para dar un pellet blanco que se lavó con EtOH frío y posteriormente se secó en un liofilizador a temperatura ambiente durante 30 minutos. El sólido se disolvió en 40 mL de agua y se purificó por HPLC de fase inversa con una columna Waters Xterra RP18. Se usó un perfil de gradiente de fase móvil binaria para eluir el producto por medio un buffer de 50 mM de acetato de trietilamonio a pH 7,5 y 99% de solución de acetontrilo/1% de agua. El material purificado se concentró por liofilización y el residuo resultante se disolvió en 5 mL de agua. Se añadió un volumen 0,1X de piperidina a la solución y la mezcla se agitó suavemente durante 45 minutos a temperatura ambiente. El producto se purificó posteriormente por precipitación con etanol como se describió antes y se aisló por centrifugación. El pellet resultante se lavó dos veces con EtOH frío y se secó por liofilización para dar el Compuesto 3.

Ciclo 1

10

15

20

25

A cada pocillo de una placa de 96 pocillos se añadieron 12,5 μL de una solución 4 mM del Compuesto 3 en agua; 100 μL de una solución 1 mM de una marca de oligonucleótidos 1,1 a 1,96, como se muestra en la Tabla 3 (la relación molar del Compuesto 3 a las marcas fue 1:2). Las placas se calentaron 95°C durante 1 minuto y

posteriormente se enfriaron a 16°C durante 10 minutos. A cada pocillo se añadieron 10 μ L de buffer de ligasa 10X, 30 unidades de T4 ADN ligasa (1 μ L de una solución de 30 unidades/ μ L (FermentasLife Science, Cat. No. EL0013)), 76,5 μ L de agua y las soluciones resultantes se incubaron a 16°C durante 16 horas.

Después de la reacción de ligamiento, se añadieron 20 µL de NaCl acuoso 5 M directamente a cada pocillo, seguido por 500 µL de etanol frío (-20°C) y se mantuvo a -20°C durante 1 hora.

Las placas se centrifugaron durante 1 hora a 3200 g en una centrífuga Beckman Coulter Allegra 6R por medio Beckman Microplus Carriers. El sobrenadante se extrajo cuidadosamente por la inversión de la placa y el pellet se lavó con 70% de etanol frío acuoso a -20°C. Cada uno de los pellet se diluyó posteriormente en el buffer de borato de sodio (50 µL, 150 mM, pH 9,4) a una concentración de 1 mM y se enfrió a 4°C.

A cada solución se añadieron 40 equivalentes de uno de los 96 precursores del bloque de construcción en DMF (13 μL, 0,15 M) seguido por 40 equivalentes de DMT-MM en agua (8 μL, 0,25M), y las solucione se agitaron suavemente a 4°C. Después de 2 horas, se añadieron 40 equivalentes adicionales de uno de cada precursor del bloque de construcción y las soluciones se agitaron suavemente durante 16 horas a 4°C. Después de la acilación, 10 equivalentes de éster de ácido acético de-N-hidroxi-succinimida en DMF (2 μL, 0,25M) se añadieron a cada solución y se agitaron suavemente durante 10 minutos.

Después de la acilación, las 96 mezclas de reacción se combinaron y se añadieron 0,1 volumen de NaCl acuoso 5 M y 2,5 volúmenes de etanol absoluto frío y la solución se dejó estacionar a -20°C durante al menos una hora. La mezcla posteriormente se centrifugó. Después de la centrifugación, se extrajo tanto sobrenadante como sea posible con una micropipeta, el pellet se lavó con etanol frío y se centrifugó otra vez. El sobrenadante se extrajo con una pipeta de 200 µL. Se añadió etanol frío 70% al tubo, y la mezcla resultante se centrifugó durante 5 min a 4°C.

El sobrenadante se extrajo y el etanol restante se extrajo por liofilización a temperatura ambiente durante 10 minutos. El pellet se diluyó posteriormente en 2 mL de agua y se purificó por HPLC de fase inversa con una columna Waters Xterra RP18, Se usó un perfil de gradiente de fase móvil binaria para eluir la biblioteca por medio un buffer de 50 mM de acetato de trietilamonio a pH 7,5 y 99% de solución de acetontrilo/1% de agua. Las fracciones que contienen la biblioteca se recolectaron, mezclaron y liofilizaron. El residuo resultante se disolvió en 2,5 mL de agua y se añadieron 250 µL de piperidina. La solución se agitó suavemente durante 45 minutos y posteriormente se precipitó con etanol como se describió antes. El pellet resultante se secó por liofilización y posteriormente se disolvió en buffer de borato de sodio (4,8 mL, 150 mM, pH 9,4) a una concentración de 1 mM.

La solución se enfrió a 4°C y se añadieron 40 equivalentes de N-Fmoc-propargilglicina en DMF (1,2 mL, 0,15 M) y DMT-MM en agua (7,7 mL, 0,25 M). La mezcla se agitó suavemente durante 2 horas a 4°C antes de añadir 40 equivalentes adicionales de N-Fmoc-propargilglicina y DMT-MM y la solución se agitó durante 16 horas adicionales. La mezcla se purificó más tarde por precipitación con EtOH y HPLC de fase inversa como se describió anteriormente y el grupo N-Fmoc se extrajo por tratamiento con piperidina como se describió previamente. Después de la purificación final con precipitación EtOH, el pellet resultante se secó por liofilización y se llevó al próximo ciclo de síntesis-

Ciclos 2-4

5

20

25

30

35

40

45

50

55

Para cada uno de estos ciclos, el pellet seco del ciclo previo se disolvió en agua y se determinó la concentración de biblioteca por espectrofotometría basada en el coeficiente de extinción del componente de ADN de la biblioteca, donde el coeficiente de extinción inicial del Compuesto 2 es 131,500 L/(mol.cm). La concentración de la biblioteca se ajustó con agua de modo que la concentración final de las reacciones de ligamiento posterior fue 0,25 mM. La biblioteca posteriormente se dividió en 96 alícuotas iguales de una placa de 96 pocillos. A cada pocillo se añadió una solución que comprende una marca diferente (la relación molar de la biblioteca a marca fue 1:2), y se realizaron los ligamientos como se describió en el Ciclo 1. Las marcas de oligonucleótidos usadas en los Ciclos 2, 3 y 4 se exponen en las tablas 4, 5 y 6, respectivamente. La correspondencia entre las marcas y los precursores del bloque de construcción para cada uno de los Ciclos 1 a 4 se proporciona en la Tabla 7. La biblioteca se precipitó por la adición de etanol como se describió antes para el Ciclo 1, y se disolvió en el buffer de borato de sodio (150 mM, pH 9,4) a una concentración de 1 mM. Se realizaron las subsiguientes acilaciones y purificaciones como se describió para el Ciclo 1, excepto que se omitió la purificación por HPLC durante el Ciclo 3.

Los productos del Ciclo 4 se ligaron con el cebador de cierre mostrado a continuación, por medio el procedimiento descrito anterior para el ligamiento de las marcas.

5'-PO3-CAG AAG ACA GAC AAG CTT CAC CTG C (SEQ ID NO: 889) 5'-PO3-GCA GGT GAA GCT TGT CTG TCT TCT GAA (SEQ ID NO : 890)

Resultados:

El procedimiento de síntesis descrito antes tiene la capacidad de producir una biblioteca que comprende 964 (aproximadamente 108) estructuras diferentes. La síntesis de la biblioteca se controló por medio de electroforesis en gel y LC/MS del producto de cada ciclo. Después de la finalización, la biblioteca se analizó por medio de varias

técnicas. La Figura 13a es un cromatograma de la biblioteca después del Ciclo 4, pero antes del ligamiento del cebador de cierre; La Figura 13b es un espectro de masa de la biblioteca en misma etapa de síntesis. El peso molecular promedio se determinó por análisis de ion negativo LC/NIS. La señal iónica se dilucidó por medio del software ProMass. Este resultado es compatible con la masa promedio predicha de la biblioteca.

El componente de ADN de la biblioteca se analizó por electroforesis en gel, que mostró que la mayor parte del material de biblioteca corresponde al producto ligado del tamaño correcto. El análisis de secuencia de ADN de los clones moleculares del producto de PCR derivado de un muestreo de la biblioteca muestra el ligamiento de ADN ocurrido con alta fidelidad y a casi finalización.

Ciclación de la biblioteca

En la terminación del Ciclo 4, una porción de la biblioteca se terminó en el extremo N-terminal por medio de ácido azidoacético en las condiciones de acilación usuales. El producto, después de la purificación por precipitación con EtOH, se disolvió en buffer de fosfato de sodio (150 mM, pH 8) a una concentración de 1 mM y 4 equivalentes de CuSO4 en agua (200 mM), ácido ascórbico en agua (200 mM), y se añadió una cantidad catalítica del compuesto que se muestra a continuación como una solución en DMF (200 mM). La mezcla de reacción posteriormente se agitó suavemente durante 2 horas a temperatura ambiente.

Para medir el grado de ciclación, se extrajeron alícuotas de 5 µL de la reacción de ciclación de la biblioteca y se trataron con una azida o alquino marcado con fluorescencia (1 µL de patrones de DMF 100 mM) preparada como se describió en el Ejemplo 4. Después de 16 horas, ni las marcas de alquino o azida se incorporaron en la biblioteca por análisis HPLC a 500 nm. Este resultado indicó que la biblioteca ya no contenía grupos azida o alquino capaces d de cicloadición y que la biblioteca por ende debe hacer reaccionado con si misma, a través de reacciones de ciclación o intermoleculares. La biblioteca ciclada se purificó por HPLC en fase inversa como se describió previamente. Los experimentos de control por medio de la biblioteca no ciclada mostraron la incorporación completa de las marcas fluorescentes mencionadas anteriormente.

25 Ejemplo 4: Preparación de marcas fluorescentes para el ensayo de ciclación:

En tubos separados, propargil glicina o 2-amino-3-fenilpropilazida (8 µmol cada uno) se combinaron con FAM-OSu (Molecular Probes Inc.) (1,2 equiv.) en buffer borato pH 9,4 (250 µL). Las reacciones se dejaron proceder durante 3 h a temperatura ambiente, y posteriormente se liofilizaron toda la noche. La purificación por HPLC proporcionó alquino y azida fluorescentes deseados en rendimiento cuantitativo.

30

20

Ejemplo 5: Ciclación de compuestos individuales por medio la reacción de cicloadición de azida/alquino

Preparación de azidoacetil-Gly-Pro-Phe-Pra-NH2:

5

10

20

Por medio de 0,3 mmol de resina Rink-amida, la secuencia indicada se sintetizó por medio de técnicas de síntesis en fase sólida estándares con aminoácidos protegidos con Fmoc y HATU como agente de activación (Pra = C-propargilglicina). Se usó ácido azidoacético para terminar el tetrapéptido. El péptido se escindió de la resina con 20% de TFA/DCM durante 4 h. La purificación por RP HPLC proporcionó el producto como un sólido blanco (75 mg, 51%). 1 H RMN (DMSO-d6, 400 MHz): 8,4-7,8 (m, 3H), 7,4-7,1 (m, 7H), 4,6-4,4 (m, 1H), 4,4-4,2 (m, 2H), 4,0-3,9 (m, 211), 3,74 (dd, 111, 1=6 Hz, 17 Hz), 3,5-3,3 (m, 2H), 3,07 (dt, 1H, 1=5 Hz, 14 Hz), 100, 10

15 Ciclación de Azidoacetil-Gly-Pro-Phe-Pra-NH2:

El péptido azidoacetilo (31 mg, 0,62 mmol) se disolvió en MeCN (30 mL). Se añadieron diisopropiletilamina (DIEA, 1 mL) y Cu(MeCN)4PF6 (1 mg). Después de la agitación durante 1,5 h, la solución se evaporó y el residuo resultante se tomó en 20% de MeCN/H20. Después de la centrifugación para extraer sales insolubles, la solución se sometió a HPLC de fase inversa preparativa. El péptido cíclico deseado se aisló como un sólido blanco (10 mg, 32%). 1H RMN

(DMSO-d6, 400 MHz): 8,28 (t, 1H, J = 5 Hz), 7,77 (s, 1H), 7,2 - 6,9 (m, 911), 4,98 (m, 211), 4,48 (m, 1H), 4,28 (m, 111), 4,1-3,9 (m, 2H), 3,63 (dd, 111, J = 5 Hz, 16 Hz), 3,33 (m, 211), 3,0 (m, 311), 2,48 (dd, 1H, J = 11 Hz, 14 Hz), 1,75 (m, 1110, 1,55 (m, 111), 1,32 (m, 111), 1,05 (m, 1H). IR (mull) 2900, 1475, 1400 cm 1. ESIMS 497,2 ([M+H], 100%), 993,2 ([2M+11], 30%), 1015,2 ([2M+Na], 15%). ESIMS con ion-source fragmentación: 535,2 (70%), 519,3 ([M+Na], 100%), 497,2 ([M+H], 80%), 480,1 ([M-NH2], 30%), 452,2 ([M-NH2-CO], 40%), 208,1 (60%).

Preparación de azidoacetil-Gly-Pro-Phe-Pra-Gly-OH:

Por medio de 0,3 mmol de resina de Glicina-Wang, la secuencia indicada se sintetizó por medio de aminoácidos protegidos con Fmoc y HATU como el agente de activación.

Se usó ácido azidoacético en la última etapa de acoplamiento para terminar el pentapéptido. La escisión del péptido se obtuvo por medio de 50% de TFA/DCM durante 2 h. La purificación por RP HPLC proporcionó el péptido como un sólido blanco (83 mg; 50%). 1H RMN (DMSO-d6, 400 MHz): 8,4 - 7,9 (m, 4H), 7,2 (m, 5H), 4,7 - 4,2 (m, 3H), 4,0 - 3,7 (m, 4H), 3,5 - 3,3 (m, 2H), 3,1 (m, 1H), 2,91 (dd, 1H, J = 4 Hz, 16 Hz), 2,84 (t, 1H, J = 2,5 Hz), 2,78 (m, 1H), 2,6 - 2,4 (m, 2H), 2,2 - 1,6 (m, 4H). IR (mull) 2900, 2100, 1450, 1350 cm'. ESIMS 555,3 ([M+H], 100%). ESIMS con fragmentación de la fuente iónica: 577,1 ([M+Na], 90%), 555,3 ([M+H], 80%), 480,1 ([M-Gly-Pra-CO], 40%), 238,0 ([M-Gly-Pra-Phe], 80%).

Ciclación de azidoacetil-Gly-Pro-Phe-Pra-Gly-OH:

El péptido (32 mg, 0,058 mmol) se disolvió en MeCN (60 mL). Se añadieron diisopropiletilamina (1 mL) y Cu(MeCN)4PF6 (1 mg) y la solución se agitó durante 2 h. El disolvente se evaporó y el producto bruto se sometió a RP HPLC para eliminar dímeros y trímeros. El monómero cíclico se aisló como un cristal incoloro (6 mg, 20%). ESIMS 555,6 ([M+H], 100%), 1109,3 ([2M+H], 20%), 1131,2 ([2M+Na], 15%).

ESIMS con fragmentación de la fuente iónica: 555,3 ([M+H], 100%), 480,4 ([M-Gly], 30%), 452,2 ([M-Gly-CO], 25%), 424,5 ([M-Gly-2CO], 10%, solo posible en una estructura cíclica).

Conjugación de péptido lineal al ADN:

20

40

El compuesto 2 (45 nmol) se disolvió en 45 μL de buffer de borato de sodio (pH 9,4; 150 mM). A 4° C, se añadió péptido lineal (18 μL de un patrón de 100 mM en DMF; 180 nmol; 40 equiv.), seguido por DMT-MM (3,6 μL de un patrón de 500 mM en agua; 180 nmol; 40 equiv). Después de agitar durante 2 horas, LCMS mostró reacción completa, y el producto se aisló por precipitación con etanol. ESIMS 1823,0 ([M-3H]/3, 20%), 1367,2 ([M-4H]/4, 20%), 1093,7 ([M-5H]/5, 40%), 911,4 ([M-6H]/6, 100%).

Conjugación del péptido cíclico al ADN:

- 30 El Compuesto 2 (20 nmol) se disolvió en 20 μL de buffer de borato de sodio (pH 9,4, 150 mM). A 4° C, se añadió péptido lineal (8 μL de de un patrón de 100 mM DMF; 80 nmol; 40 equiv.), seguido por DMT-MM (1,6 gL de un patrón de 500 mM en agua; 80 nmol; 40 equiv). Después de agitar durante 2 h, LCMS mostró reacción completa, y el producto se aisló por precipitación con etanol. ESIMS 1823,0 ([M-3H]/3, 20%), 1367,2 ([M-4H]/4, 20%), 1093,7 ([M-5H]/5, 40%), 911,4 ([M-6H]/6, 100%).
- 35 Ciclación del péptido ligado a ADN:

El conjugado del péptido lineal-ADN (10 nmol) se disolvió en buffer de fosfato de sodio pH 8 (10 μL, 150 mm). A temperatura ambiente, 4 equivalentes de CuSO4, ácido ascórbico, y el ligando Sharpless se añadieron (0,2 μL de patrones de 200 mM). La reacción se dejó proceder durante la noche. RP HPLC mostró que el péptido lineal-ADN no estuvo presente y que el producto co-eluyó con el péptido cíclico-ADN auténtico. No se observaron trazas de dímeros u otros oligómeros.

Condiciones LC: Targa C18, 2,1 x 40 mm, 10-40% de MeCN en 40 mM de aqua. TEAA durante 8 min.

Ejemplo 6: Aplicación de reacciones de sustitución nucleófila aromática a la síntesis del resto funcional

Procedimiento general para la arilación de Compuesto 3 con cloruro cianúrico:

El Compuesto 2 se disuelve en buffer de borato de sodio pH 9,4 a una concentración de 1 mM. La solución se enfría a 4°C y 20 equivalentes de cloruro cianúrico se añade posteriormente como una solución 500 mM en MeCN. Después de 2 horas, la reacción completa se confirma por LCMS y el conjugado de diclorotriazina-ADN resultante se aísla por precipitación con etanol.

Procedimiento para sustitución de amina de diclorotriazina-ADN:

El conjugado diclorotriazina-ADN se disuelve en buffer borato pH 9,5 a una concentración de 1 mM. A temperatura ambiente, 40 equivalentes de una amina alifática se añaden como una solución de DMF. La reacción es seguida por LCMS y está usualmente completa después de 2 h. El conjugado resultante de alquilamino-monoclorotriazina-ADN se aísla por precipitación con etanol.

Procedimiento para substitución de amina de monoclorotriazina-ADN:

25

El conjugado alquilamino-monoclorotriazina-ADN se disuelve en buffer borato pH 9,5 a una concentración de 1 mM. A 42°C, 40 equivalentes de una segunda amina alifática se añaden como una solución de DMF. La reacción es seguida por LCMS y está usualmente completa después de 2 h. El conjugado resultante de diaminotriazina-ADN se aísla por precipitación con etanol.

Ejemplo 7: Aplicación de reacciones de aminación reductora en la síntesis del resto funcional

Procedimiento general para aminación reductora de un ligador de ADN que contiene una amina secundaria con un bloque de construcción de aldehído:

El Compuesto 2 se acopló a un residuo de prolina N-terminal. El compuesto resultante se disolvió en buffer de fosfato de sodio (50 μ L, 150 mM, pH 5,5) a una concentración de 1 mM. A esta solución se añadieron 40 equivalentes de un bloque de construcción de aldehído en DMF (8 μ L, 0,25M) y cianoborohidruro de sodio en DMF (8 μ L, 0,25M) y la solución se calentó a 80°C durante 2 horas. Después de la alquilación, la solución se purificó por precipitación con etanol.

Procedimiento general para afinaciones reductoras del ADN-ligador que contiene un aldehído con bloques de construcción de amina:

El compuesto 2 acoplado a un bloque de construcción que comprende un grupo aldehído se disolvió en buffer de

fosfato de sodio (50 μ L, 250 mM, pH 5,5) a una concentración de 1 mM. A esta solución se añadieron 40 equivalentes de una bloque de construcción de amina en DMF (8 μ L, 0,25 M) y cianoborohidruro de sodio en DMF (8 μ L, 0,25 M) y la solución se calentó a 80°C durante 2 horas. Después de la alquilación, la solución se purificó por precipitación con etanol.

5 Ejemplo 8: Aplicación de reacciones de construcción de peptoide en la síntesis del resto funcional

Procedimiento general para síntesis de peptoide en el ADN-ligador:

compuesto 2 se disolvió en buffer de borato de sodio (50 μ L, 150 mM, pH 9,4) a una concentración de 1 mM y se enfrió a 4°C. A esta solución se añadieron 40 equivalentes de bromoacetato de N-hidroxisuccinimidilo en DMF (13 μ L, 0,15 M) y la solución se agitó suavemente a 4°C durante 2 horas. Después de la acilación, el ADN-Ligador se purificó por precipitación con etanol y se redisolvió en buffer de borato de sodio (50 μ L, 150 mM, pH 9,4) a una concentración de 1 mM y se enfrió a 4°C. A esta solución se añadieron 40 equivalentes de un bloque de construcción de amina en DMF (13 μ L, 0,15 M) y la solución se agitó suavemente a 4°C durante 16 horas. Después de la alquilación, el ADN-ligador se purificó por precipitación con etanol y se redisolvió en buffer de borato de sodio (50 μ L, 150 mM, pH 9,4) a una concentración de 1 mM y se enfrió a 4°C. La síntesis de peptoide continuó por la adición escalonada de bromoacetato de N-hidroxisuccinimidilo seguido por la adición de un bloque de construcción de amina.

Ejemplo 9: Aplicación de la reacción de reacción de cicloadición de azida-alquino a la síntesis del resto funcional

Procedimiento general

10

15

30

35

40

20 Un conjugado que contiene alquino se disuelve en buffer fosfato pH 8,0 a una concentración de aprox 1 mM. A esta mezcla se añaden 10 equivalentes de una azida orgánica y 5 equivalentes de sulfato de cobre (II), ácido ascórbico, y el ligando de (tris-((1-benciltriazol-4-il)metil)amina a temperatura ambiente. La reacción es seguida por LCMS, y usualmente se completa después de 1 - 2 h. El conjugado de triazol-ADN resultante se puede aislar por precipitación con etanol.

25 Ejemplo 10 Identificación de un ligando para Ab1 quinasa de una biblioteca codificada

La capacidad para enriquecer moléculas de interés en un ADN-biblioteca codificada por encima de los miembros de biblioteca no deseables es gran importancia para identificar compuestos únicos con propiedades definidas contra blancos terapéuticos de interés. Para demostrar esta capacidad de enriquecimiento se sintetizó una molécula de unión conocida (descrita por Shah et al., Science 305, 399-401 (2004), incorporada en la presente memoria por referencia) a rhAbl quinasa (GenBank U07563). Este compuesto se unión a un oligonucleótido de ADN bicatenario por medio del ligador descrito en los ejemplos precedentes por medio de procedimientos químicos estándares para producir una molécula similar (resto funcional ligado a un oligonucleótido) a las producidas por medio de los procedimientos descritos en los Ejemplos 1 y 2. Una biblioteca generalmente producida como se describe en el Ejemplo 2 y el ADN-ligado al agente de unión de Abl-quinasa se diseñaron con secuencias únicas de ADN que permitieron el análisis qPCR de ambas especies. El ADN-ligado al agente de unión de Abl-quinasa se mezcló con la biblioteca en una relación de 1:1000. Esta mezcla se equilibró con la rhAble quinasa, y la enzima fue capturada en una fase sólida, se lavó para eliminar los miembros de la biblioteca de no unión y se eluyeron las moléculas de unión. La relación de las moléculas de la biblioteca al ADN-ligado al inhibidor de Abl quinasa en el eluato fue 1:1, lo que indica un enriquecimiento mayor de 500 veces del ADN-ligado al agente de unión de Abl-quinasa en un exceso de 1000 veces de las moléculas de la biblioteca.

LISTA DE SECUENCIAS

	<110> Praecis Pharmacel	iticals, inc.
5	<120> MÉTODOS PARA	LA SÍNTESIS DE GENOTECAS CODIFICADAS
	<130> PPI-156CPPC	
10	<150> 11/015458 <151> 2004-12-17	
	<150> 60/530854 <151> 2003-12-17	
15	<150> 60/540681 <151> 2004-01-30	
20	<150> 60/553715 <151> 2004-03-15	
20	<150> 60/588672 <151> 2004-07-16	
25	<150> 60/689466 <151> 2005-06-09	
	<150> 60/731041 <151> 2005-10-28	
30	<160> 890	
	<170> FastSEQ para Wind	dows Versión 4.0
35	<210> 1 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 1 gcaacgaag	9
45	<210> 2 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 2 tcgttgcca	9
	<210> 3 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 3 gcgtacaag	9

5	<210> 4 <211> 9 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 4 tgtacgcca	9
15	<210> 5 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 5 gctctgtag	9
25	<210> 6 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 6 acagagcca	9
35	<210> 7 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 7 gtgccatag	9
45	<210> 8 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 8 atggcacca	9
	<210> 9 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 9 gttgaccag	9

5	<210> 10 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 10 ggtcaacca	9
15	<210> 11 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 11 cgacttgac	9
25	<210> 12 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 12 acgctgaac	9
35	<210> 13 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 13 cgtagtcag	9
45	<210> 14 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 14 gactacgca	9
	<210> 15 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 15 ccagcatag	9

5	<210> 16 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 16 atgctggca	9
15	<210> 17 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 17 cctacagag	9
25	<210> 18 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 18 ctgtaggca	9
35	<210> 19 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 19 ctgaacgag	9
45	<210> 20 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
EE	<400> 20 acgacttgc	9
55	<210> 21 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 21 ctccagtag	9

5	<210> 22 <211> 9 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 22 actggagca	9
15	<210> 23 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 23 taggtccag	9
25	<210> 24 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
00	<400> 24 ggacctaca	9
35	<210> 25 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 25 gcgtgttgt	9
45	<210> 26 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 26 aacacgcct	9
	<210> 27 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 27 gcttggagt	9

5	<210> 28 <211> 9 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 28 tccaagcct	9
15	<210> 29 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 29 gtcaagcgt	9
25	<210> 30 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 30 gcttgacct	9
35	<210> 31 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 31 caagagcgt	9
45	<210> 32 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 32 gctcttgct	9
	<210> 33 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 33 cagttcggt	9

5	<210> 34 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 34 cgaactgct	9
15	<210> 35 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 35 cgaaggagt	9
25	<210> 36 <211> 9 <212> DNA <213> Secuencia Artificial	
20	<220> <223> constructo sintético	
30	<400> 36 tccttcgct 9	
35	<210> 37 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 37 cggtgttgt	9
45	<210> 38 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	ı
55	<400> 38 aacaccgct	9
55	<210> 39 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 39	9

5	<210> 40 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 40 agcaacgct	9
15	<210> 41 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 41 ccgatctgt	9
25	<210> 42 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 42 agatcggct	9
35	<210> 43 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 43 ccttctcgt 9	
45	<210> 44 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 44 gagaaggct	9
33	<210> 45 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 45 tgagtccgt	9

5	<210> 46 <211> 9 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 46 ggactcact	9
15	<210> 47 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 47 tgctacggt	9
25	<210> 48 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 48 cgttagact	9
35	<210> 49 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 49 gtgcgttga	9
45	<210> 50 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 50 aacgcacac	9
	<210> 51 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 51 gttggcaga	9

5	<210> 52 <211> 9 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 52 tgccaacac	9
15	<210> 53 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 53 cctgtagga	9
25	<210> 54 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 54 ctacaggac	9
35	<210> 55 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 55 ctgcgtaga	9
45	<210> 56 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 56 tacgcagac	9
	<210> 57 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 57 cttacgcga	9

5	<210> 58 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
10	<400> 58 gcgtaagac	9
15	<210> 59 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 59 tggtcacga	9
25	<210> 60 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 60 gtgaccaac	9
35	<210> 61 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 61 tcagagcga	9
45	<210> 62 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 62 gctctgaac	9
	<210> 63 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 63 ttgctcgga	9

5	<210> 64 <211> 9 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 64 cgagcaaac	9
15	<210> 65 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 65 gcagttgga	9
25	<210> 66 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 66 caactgcac	9
35	<210> 67 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 67 gcctgaaga	9
45	<210> 68 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 68 ttcaggcac	9
	<210> 69 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 69 gtagccaga	9

F	<210> 70 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 70 tggctacac	9
15	<210> 71 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 71 gtcgcttga	9
25	<210> 72 <211> 9 <212> DNA <213> Secuencia Artificial	
20	<220> <223> constructo sintético	
30	<400> 72 aagcgacac	9
35	<210> 73 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 73 gcctaagtt	9
45	<210> 74 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 74 cttaggctc	9
	<210> 75 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 75 gtagtgctt	9

5	<210> 76 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 76 gcactactc	9
15	<210> 77 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 77 gtcgaagtt	9
25	<210> 78 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 78 cttcgactc	9
35	<210> 79 <211> 9. <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 79 gtttcggtt	9
45	<210> 80 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 80 ccgaaactc	9
55	<210> 81 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 81 cagcgtttt	9

5	<210> 82 <211> 9 <212> D <213> Se	_	Artificial	
5	<220> <223> co	onstructo	sintético	
10	<400> 82 aacgctgte			9
15	<210> 83 <211> 9 <212> D <213> So		Artificial	
	<220> <223> co	onstructo	sintético	
20	<400> 83 catacgctt	_		9
25	<210> 84 <211> 9 <212> D <213> Se		Artificial	
30	<220> <223> co	onstructo	sintético	
30	<400> 84 gcgtatgto			9
35	<210> 85 <211> 9 <212> D <213> Se		Artificial	
40	<220> <223> co	onstructo	sintético	
	<400> 85 cgatctgtt			9
45	<210> 86 <211> 9 <212> D <213> Se		Artificial	
50	<220> <223> co	onstructo	sintético	
55	<400> 86 cagategte			9
	<210> 87 <211> 9 <212> D <213> Se		Artificial	
60	<220> <223> co	onstructo	sintético	
65	<400> 87 cgctttgtt	7	9	

5	<210> 88 <211> 9 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 88 caaagcgtc	9
15	<210> 89 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 89 ccacagttt	9
25	<210> 90 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 90 actgtggtc	9
35	<210> 91 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 91 cctgaagtt	9
45	<210> 92 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 92 cttcaggtc	9
	<210> 93 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 93 ctgacgatt	9

5	<210> 94 <211> 9 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 94 tcgtcagtc	9
15	<210> 95 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 95 ctccacttt 9	
25	<210> 96 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 96 agtggagtc	9
35	<210> 97 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 97 accagagcc	9
45	<210> 98 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 98 ctctggtaa	9
	<210> 99 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 99 atccgcacc	9

5	<210> 100 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 100 tgcggataa	9
15	<210> 101 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 101 gacgacacc	9
25	<210> 102 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 102 tgtcgtcaa	9
35	<210> 103 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 103 ggatggacc	9
45	<210> 104 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 104 tccatccaa	9
	<210> 105 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 105 gcagaagcc	9

5	<210> 106 <211> 9 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 106 cttctgcaa	9
15	<210> 107 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 107 gccatgtcc	9
25	<210> 108 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 108 acatggcaa	9
35	<210> 109 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 109 gtctgctcc	9
45	<210> 110 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 110 agcagacaa	9
00	<210> 111 <211> 9 <212> DNA	
60	<213> Secuencia Artificial <220> <223> constructo sintético	
65	<400> 111	9

5	<210> 112 <211> 9 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 112 tctgtcgaa	9
15	<210> 113 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 113 cgctactcc	9
25	<210> 114 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 114 agtagcgaa	9
35	<210> 115 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 115 ccacagacc	9
45	<210> 116 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 116 tctgtggaa	9
55	<210> 117 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 117	a

5	<210> 118 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
10	<400> 118 agagaggaa	9
15	<210> 119 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 119 ctcgtagcc	9
25	<210> 120 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 120 ctacgagaa-	9
35	<210> 121 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 121 aaatcgatgt ggtcactcag	20
45	<210> 122 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 122 gagtgaccac atcgatttgg	20
	<210> 123 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 123 aaatcgatgt ggactaggag	20

5	<210> 124 <211> 20 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 124 cctagtccac atcgatttgg	20
15	<210> 125 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 125 aaatcgatgt gccgtatgag	20
25	<210> 126 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 126 catacggcac atcgatttgg	20
35	<210> 127 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 127 aaatcgatgt gctgaaggag	20
45	<210> 128 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 128 ccttcagcac atcgatttgg	20
	<210> 129 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 129 aaatcgatgt ggactagcag	20

5	<210> 130 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 130 gctagtccac atcgatttgg	20
15	<210> 131 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 131 aaatcgatgt gcgctaagag	20
25	<210> 132 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 132 cttagcgcad atcgatttgg	20
35	<210> 133 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 133 aaatcgatgt gagccgagag	20
45	<210> 134 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 134 ctcggctcac atcgatttgg	20
	<210> 135 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 135 aaatcgatgt gccgtatcag	20

5	<210> 136 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 136 gatacggcac atcgatttgg	20
15	<210> 137 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 137 aaatcgatgt gctgaagcac	20
25	<210> 138 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 138 gcttcagcac atcgatttgg	20
35	<210> 139 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 139 aaatcgatgt gtgcgagtag	20
45	<210> 140 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 140 actcgcacac atcgatttgg	20
	<210> 141 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 141 aaatcgatgt gtttggcgag	20

5	<210> 142 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 142 cgccaaacac atcgatttgg	20
15	<210> 143 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 143 aaatcgatgt gcgctaacag	20
25	<210> 144 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 144 gttagcgcac atcgatttgg	20
35	<210> 145 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 145 aaatcgatgt gagccgacag	20
45	<210> 146 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 146 gtcggctcac atcgatttgg	20
55	<210> 147 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 147 aaatcgatgt gagccgaaag	20

5	<210> 148 <211> 20 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 148 ttcggctcac atcgatttgg	20
15	<210> 149 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 149 aaatcgatgt gtcggtagag	20
25	<210> 150 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 150 ctaccgacac atcgatttgg	20
35	<210> 151 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 151 aaatcgatgt ggttgccgag	20
45	<210> 152 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 152 cggcaaccac atcgatttgg	20
	<210> 153 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 153 aaatcgatgt gagtgcgtag	20

5	<210> 154 <211> 20 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 154 acgcactcac atcgatttgg	20
15	<210> 155 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 155 aaatcgatgt ggttgccaag	20
25	<210> 156 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
50	<400> 156 tggcaaccac atcgatttgg	20
35	<210> 157 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 157 aaatcgatgt gtgcgaggag	20
45	<210> 158 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 158 cctcgcacac atcgatttgg	20
	<210> 159 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 159 aaatcgatgt ggaacacgag	20

5	<210> 160 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 160 cgtgttccac atcgatttgg	20
15	<210> 161 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 161 aaatcgatgt gcttgtcgag	20
25	<210> 162 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 162 cgacaagcac atcgatttgg	20
35	<210> 163 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 163 aaatcgatgt gttccggtag	20
45	<210> 164 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 164 accggaacac atcgatttgg	20
	<210> 165 <211>20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 165 aaatcgatgt gtgcgagcag	20

5	<210> 166 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 166 gctcgcacac atcgatttgg	20
15	<210> 167 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 167 aaatcgatgt ggtcaggtag	20
25	<210> 168 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 168 acctgaccac atcgatttgg	20
35	<210> 169 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 169 aaatcgatgt ggcctgttag	20
45	<210> 170 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 170 aacaggccac atcgatttgg	20
	<210> 171 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 171 aaatcgatgt ggaacaccag	20

5	<210> 172 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 172 ggtgttccac atcgatttgg	20
15	<210> 173 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 173 aaatcgatgt gcttgtccag	20
25	<210> 174 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 174 ggacaagcac atcgatttgg	20
35	<210> 175 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 175 aaatcgatgt gtgcgagaag	20
45	<210> 176 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 176 tctcgcacac atcgatttgg	20
	<210> 177 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 177 aaatcgatgt gagtgcggag	20

5	<210> 178 <211> 20 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 178 ccgcactcac atcgatttgg	20
15	<210> 179 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 179 aaatcgatgt gttgtccgag	20
25	<210> 180 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 180 cggacaacac atcgatttgg	20
35	<210> 181 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 181 aaatcgatgt gtggaacgag	20
45	<210> 182 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 182 20 cgttccacac atcgatttgg	20
	<210> 183 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 183 20 aaatcgatgt gagtgcgaag	20

5	<210> 184 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 184 tcgcactcac atcgatttgg	20
15	<210> 185 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 185 aaatcgatgt gtggaaccag	20
25	<210> 186 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 186 ggttccacac atcgatttgg	20
35	<210> 187 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 187 aaatcgatgt gttaggcgag	20
45	<210> 188 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 188 cgcctaacac atcgatttgg	20
	<210> 189 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 189 aaatcgatgt ggcctgtgag	20

5	<210> 190 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 190 cacaggccac atcgatttgg	20
15	<210> 191 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 191 aaatcgatgt gctcctgtag	20
25	<210> 192 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 192 acaggagcac atcgatttgg	20
35	<210> 193 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 193 aaatcgatgt ggtcaggcag	20
45	<210> 194 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 194 gcctgaccac atcgatttgg	20
	<210> 195 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 195 aaatcgatgt ggtcaggaag	20

5	<210> 196 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 196 tcctgaccac atcgatttgg	20
15	<210> 197 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 197 aaatcgatgt ggtagccgag	20
25	<210> 198 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 198 cggctaccac atcgatttgg	20
35	<210> 199 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 199 aaatcgatgt ggcctgtaag	20
45	<210> 200 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 200 tacaggccac atcgatttgg	20
	<210> 201 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 201 aaatcgatgt gctttcggag	20

5	<210> 202 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 202 ccgaaagcac atcgatttgg	20
15	<210> 203 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 203 aaatcgatgt gcgtaaggag	20
25	<210> 204 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 204 ccttacgcac atcgatttgg	20
35	<210> 205 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 205 aaatcgatgt gagagcgtag	20
45	<210> 206 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 206 acgctctcac atcgatttgg	20
	<210> 207 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 207 aaatcgatgt ggacggcaag	20

5	<210> 208 <211> 20 <212> DNA <213> Secuencia Artificial <220>	
10	<223> constructo sintético <400> 208 tgccgtccac atcgatttgg	20
15	<210> 209 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 209 aaatcgatgt gctttcgcag	20
25	<210> 210 <211> 20 <212> DNA <213> Secuencia Artificial	
20	<220> <223> constructo sintético	
30	<400> 210 gcgaaagcac atcgatttgg	20
35	<210> 211 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 211 aaatcgatgt gcgtaagcag	20
45	<210> 212 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 212 gcttacgcac atcgatttgg	20
	<210> 213 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 213 aaatcgatgt ggctatggag	20

5	<210> 214 <211> 20 <212> DNA <213> Secuencia Artificial	
J	<220> <223> constructo sintético	
10	<400> 214 ccatagccac atcgatttgg	20
15	<210> 215 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 215 aaatcgatgt gactctggag	20
25	<210> 216 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 216 ccagagtcac atcgatttgg	20
35	<210> 217 <211> 19 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 217 aaatcgatgt gctggaaag	19
45	<210> 218 <211> 19 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 218 ttccagcaca tcgatttgg	19
	<210> 219 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 219 aaatcgatgt gccgaagtag	20

5	<210> 220 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 220 acttcggcac atcgatttgg	20
15	<210> 221 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 221 aaatcgatgt gctcctgaag	20
25	<210> 222 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 222 tcaggagcac atcgatttgg	20
35	<210> 223 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 223 aaatcgatgt gtccagtcag	20
45	<210> 224 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 224 gactggacac atcgatttgg	20
	<210> 225 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 225 aaatcgatgt gagagcggag	20

5	<210> 226 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 226 ccgctctcac atcgatttgg	20
15	<210> 227 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 227 aaatcgatgt gagagcgaag	20
25	<210> 228 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 228 tegeteteac ategatttgg	20
35	<210> 229 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 229 aaatcgatgt gccgaaggag	20
45	<210> 230 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 230 ccttcggcac atcgatttgg	20
	<210> 231 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 231 aaatcgatgt gccgaagcag	20

5	<210> 232 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 232 gcttcggcac atcgatttgg	20
15	<210> 233 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 233 aaatcgatgt gtgttccgag	20
25	<210> 234 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 234 cggaacacac atcgatttgg	20
35	<210> 235 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 235 aaatcgatgt gtctggcgag	20
45	<210> 236 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 236 cgccagacac atcgatttgg	20
	<210> 237 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 237 aaatcgatgt gctatcggag	20

5	<210> 238 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 238 ccgatagcac atcgatttgg	20
15	<210> 239 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 239 aaatcgatgt gcgaaaggag	20
25	<210> 240 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 240 cctttcgcac atcgatttgg	20
35	<210> 241 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 241 aaatcgatgt gccgaagaag	20
45	<210> 242 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 242 tcttcggcac atcgatttgg	20
	<210> 243 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 243 aaatcgatgt ggttgcagag	20

5	<210> 244 <211> 20 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 244 ctgcaaccac atcgatttgg	20
15	<210> 245 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 245 aaatcgatgt ggatggtgag	20
25	<210> 246 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 246 caccatccac atcgatttgg	20
35	<210> 247 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 247 aaatcgatgt gctatcgcag	20
45	<210> 248 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 248 gcgatagcac atcgatttgg	20
	<210> 249 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 249 aaatcgatgt gcgaaagcag	20

5	<210> 2 <211> 2 <212> [<213> 3	20	Artificial	
5	<220> <223> 0	constructo	sintético	
10	<400> 2 gctttcgc	250 ac atcgatt	tgg	20
15	<210> 2 <211> 2 <212> [<213> 3	20	Artificial	
	<220> <223> 0	constructo	sintético	
20	<400> 2 aaatcga	251 itgt gacact	ggag	20
25	<210> 2 <211> 2 <212> [<213> 3	20	Artificial	
30	<220> <223> c	constructo	sintético	
30	<400> 2 ccagtgto	252 cac atcgat	ttgg	20
35	<210> 2 <211> 2 <212> [<213> 3	20	Artificial	
40	<220> <223> 0	constructo	sintético	
	<400> 2 aaatcga	253 itgt gtctggd	caag	20
45	<210> 2 <211> 2 <212> [<213> 3	20	Artificial	
50	<220> <223> 0	constructo	sintético	
55	<400> 2 tgccaga	254 Icac atcga	tttgg	20
	<210> 2 <211> 2 <212> [<213> 3	20	Artificial	
60	<220> <223> 0	constructo	sintético	
65	<400> 2 ggatggt		20	

5	<210> 256 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 256 gaccatccac atcgatttgg	20
15	<210> 257 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 257 aaatcgatgt ggttgcacag	20
25	<210> 258 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 258 gtgcaaccac atcgatttgg	20
35	<210> 259 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 259 aaatcgatgt gggcatcgag	20
45	<210> 260 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 260 cgatgcccca tccgatttgg	20
55	<210> 261 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 261 aaatcgatgt gtgcctccag	20

5	<210> 262 <211> 20 <212> DNA <213> Secuencia Artificial	
J	<220> <223> constructo sintético	
10	<400> 262 ggaggcacac atcgatttgg	20
15	<210> 263 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 263 aaatcgatgt gtgcctcaag	20
25	<210> 264 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 264 tgaggcacac atcgatttgg	20
35	<210> 265 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 265 aaatcgatgt gggcatccag	20
45	<210> 266 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 266 ggatgcccac atcgatttgg	20
	<210> 267 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 267 aaatcgatgt gggcatcaag	20

5	<210> 268 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 268 tgatgcccac atcgatttgg	20
15	<210> 269 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 269 aaatcgatgt gcctgtcgag	20
25	<210> 270 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 270 cgacaggcac atcgatttgg	20
35	<210> 271 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 271 aaatcgatgt ggacggatag	20
45	<210> 272 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 272 atccgtccac atcgatttgg	20
	<210> 273 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 273 aaatcgatgt gcctgtccag	20

5	<210> 274 <211> 20 <212> DNA <213> Secuencia Artificial	
J	<220> <223> constructo sintético	
10	<400> 274 ggacaggcac atcgatttgg	20
15	<210> 275 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 275 aaatcgatgt gaagcacgag	20
25	<210> 276 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 276 cgtgcttcac atcgatttgg	20
35	<210> 277 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 277 aaatcgatgt gcctgtcaag	20
45	<210> 278 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 278 tgacaggcac atcgatttgg	20
	<210> 279 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 279 aaatcgatgt gaagcaccag	20

5	<210> 280 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 280 ggtgcttcac atcgatttgg	20
15	<210> 281 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 281 aaatcgatgt gccttcgtag	20
25	<210> 282 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 282 acgaaggcac atcgatttgg	20
35	<210> 283 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 283 aaatcgatgt gtcgtccgag	20
45	<210> 284 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 284 cggacgacac atcgatttgg	20
	<210> 285 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 285 aaatcgatgt ggagtctgag	20

5	<210> 286 <211> 20 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 286 cagactccac atcgatttgg	20
15	<210> 287 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 287 aaatcgatgt gtgatccgag	20
25	<210> 288 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 288 cggatcacac atcgatttgg	20
35	<210> 289 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 289 aaatcgatgt gtcaggcgag	20
45	<210> 290 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 290 cgcctgacac atcgatttgg	20
	<210> 291 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 291 aaatcgatgt gtcgtccaag	20

5	<210> 292 <211> 20 <212> DNA <213> Secuencia Artificial	
J	<220> <223> constructo sintético	
10	<400> 292 tggacgacac atcgatttgg	20
15	<210> 293 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 293 aaatcgatgt ggacggagag	20
25	<210> 294 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 294 ctccgtccac atcgatttgg	20
35	<210> 295 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 295 aaatcgatgt ggtagcagag	20
45	<210> 296 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 296 ctgctaccac atcgatttgg	20
	<210> 297 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 297 aaatcgatgt ggctgtgtag	20

5	<210> 298 <211> 20 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 298 acacagccac atcgatttgg	20
15	<210> 299 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 299 aaatcgatgt ggacggacag	20
25	<210> 300 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 300 gtccgtccac atcgatttgg	20
35	<210> 301 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 301 aaatcgatgt gtcaggcaag	20
45	<210> 302 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 302 tgcctgacac atcgatttgg	20
	<210> 303 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 303 aaatcgatgt ggctcgaaag	20

5	<210> 304 <211> 20 <212> DNA <213> Secuencia Artificial	
Ü	<220> <223> constructo sintético	
10	<400> 304 ttcgagccac atcgatttgg	20
15	<210> 305 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 305 aaatcgatgt gccttcggag	20
25	<210> 306 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 306 ccgaaggcac atcgatttgg	20
35	<210> 307 <211> 20 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 307 aaatcgatgt ggtagcacag	20
45	<210> 308 <211> 20 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 308 gtgctaccac atcgatttgg	20
	<210> 309 <211> 20 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 309 aaatcgatgt ggaaggtcag	20

E	<210> 310 <211> 20 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 310 gaccttccac atcgatttgg	20
15	<210> 311 <211> 20 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 311 aaatcgatgt ggtgctgtag	20
25	<210> 312 <211> 20 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 312 acagcaccac atcgatttgg	20
35	<210> 313 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 313 gttgcctgt	9
45	<210> 314 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 314 aggcaacct	9
	<210> 315 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 315 caggacggt	9

F	<210> 316 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 316 cgtcctgct	9
15	<210> 317 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 317 agacgtggt	9
25	<210> 318 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 318 cacgtctct	9
35	<210> 319 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 319 caggaccgt	9
45	<210> 320 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
<i></i>	<400> 320 ggtcctgct	9
55	<210> 321 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 321	9

5	<210> 322 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 322 tgtcctgct	9
15	<210> 323 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 323 cactctggt	9
25	<210> 324 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 324 cagagtgct	9
35	<210> 325 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 325 gacggctgt	*9
45	<210> 326 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
<i></i>	<400> 326 agccgtcct	9
55	<210> 327 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 327	9

_	<210> 328 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 328 gagagtgct	9
15	<210> 329 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 329 gtagcctgt	9
25	<210> 330 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 330 aggctacct	9
35	<210> 331 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 331 gccacttgt	9
45	<210> 332 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 332 aagtggcct	9
55	<210> 333 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 333 catcactat	9

E	<210> 334 <211> 9 <212> DNA <213> Secuencia Artific	cial
5	<220> <223> constructo sinté	tico
10	<400> 334 agcgatgct	9
15	<210> 335 <211> 9 <212> DNA <213> Secuencia Artific	cial
	<220> <223> constructo sinté	tico
20	<400> 335 cactggtgt	9
25	<210> 336 <211> 9 <212> DNA <213> Secuencia Artific	cial
30	<220> <223> constructo sinté	tico
30	<400> 336 accagtgct	9
35	<210> 337 <211> 9 <212> DNA <213> Secuencia Artific	cial
40	<220> <223> constructo sinté	tico
	<400> 337 gccactggt	9
45	<210> 338 <211> 9 <212> DNA <213> Secuencia Artific	cial
50	<220> <223> constructo sinté	tico
55	<400> 338 cagtggcct	9
	<210> 339 <211> 9 <212> DNA <213> Secuencia Artific	cial
60	<220> <223> constructo sinté	tico
65	<400> 339 tctggctgt	9

5	<210> 340 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 340 agccagact	9
15	<210> 341 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 341 gccactcgt	9
25	<210> 342 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 342 gagtggcct	9
35	<210> 343 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 343 tgcctctgt	9
45	<210> 344 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 344 agaggcact	9
55	<210> 345 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 345 categoagt	9

E	<210> 346 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 346 tgcgatgct	9
15	<210> 347 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 347 caggaaggt	9
25	<210> 348 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 348 cttcctgct 9	
35	<210> 349 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 349 ggcatctgt	9
45	<210> 350 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 350 agatgccct	9
	<210> 351 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 351 cagtactat	9

5	<210> 352 <211> 9 <212> DNA <213> Secuencia Artificia	al
5	<220> <223> constructo sintétic	ю
10	<400> 352 agcaccgct	9
15	<210> 353 <211> 9 <212> DNA <213> Secuencia Artificia	al
	<220> <223> constructo sintétic	ю
20	<400> 353 cactggcgt	9
25	<210> 354 <211> 9 <212> DNA <213> Secuencia Artificia	al
30	<220> <223> constructo sintétic	ю
30	<400> 354 gccagtgct	9
35	<210> 355 <211> 9 <212> DNA <213> Secuencia Artificia	al
40	<220> <223> constructo sintétic	ю
	<400> 355 tctcctcgt 9	
45	<210> 356 <211> 9 <212> DNA <213> Secuencia Artificia	al
50	<220> <223> constructo sintétic	ю
55	<400> 356 gaggagact	9
	<210> 357 <211> 9 <212> DNA <213> Secuencia Artificia	al
60	<220> <223> constructo sintétic	ю
65	<400> 357	9

E	<210> 358 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 358 agacaggct	9
15	<210> 359 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 359 caacgctgt	9
25	<210> 360 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 360 agcgttgct	9
35	<210> 361 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 361 tgcctcggt	9
45	<210> 362 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
EE	<400> 362 cgaggcact	9
55	<210> 363 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 363 acactgcgt	9

-	<210> 364 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético)
10	<400> 364 gcagtgtct	9
15	<210> 365 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético)
20	<400> 365 tcgtcctgt	9
25	<210> 366 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético)
30	<400> 366 aggacgact	9
35	<210> 367 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético)
	<400> 367 gctgccagt	9
45	<210> 368 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético)
55	<400> 368 tggcagcct	9
33	<210> 369 <211>	9
60	<212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético)
65	<400> 369 tcaggctgt	9

5	<210> 370 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 370 agcctgact	9
15	<210> 371 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 371 gccaggtgt	9
25	<210> 372 <211> 9 <212> DNA <213> Secuencia Artificial	
20	<220> <223> constructo sintético	
30	<400> 372 acctggcct	9
35	<210> 373 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético.	
	<400> 373 cggacctgt	9
45	<210> 374 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 374 aggtccgct	9
55	<210> 375 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 375	9

5	<210> 376 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 376 tgcgttgct	9
15	<210> 377 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 377 cacacgagt	9
25	<210> 378 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 378 tcgtgtgct	9
35	<210> 379 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 379 atggcctgt	9
45	<210> 380 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 380 aggccatct	9
55	<210> 381 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 381 ccaatctat	9

5	<210> 382 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 382 agactggct	9
15	<210> 383 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 383 ccaggagt	9
25	<210> 384 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
00	<400> 384 tcctggcct	9
35	<210> 385 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 385 cggaccagt	9
45	<210> 386 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 386 tggtccgct	9
	<210> 387 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 387 ccttcgcgt	9

5	<210> 388 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 388 gcgaaggct	9
15	<210> 389 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 389 gcagccagt	9
25	<210> 390 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 390 tggctgcct	9
35	<210> 391 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 391 ccagtcggt	9
45	<210> 392 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 392 cgactggct	9
	<210> 393 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 393 actgagcgt	9

_	<210> 394 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 394 gctcagtct	9
15	<210> 395 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 395 ccagtccgt	9
25	<210> 396 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 396 ggactggct	9
35	<210> 397 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 397 ccagtcagt	9
45	<210> 398 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 398 tgactggct	9
	<210> 399 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 399	9

5	<210> 400 <211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 400 ctcgatgct	9
15	<210> 401 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 401 ccatcgtgt	9
25	<210> 402 <211> 9 <212> DNA <213> Secuencia Artificial	
30	<220> <223> constructo sintético	
30	<400> 402 acgatggct	9
35	<210> 403 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
	<400> 403 gtgctgcgt	9
45	<210> 404 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
55	<400> 404 gcagcacct	9
	<210> 405 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 405 gactacggt	9

5	<210> 406 <211> 9 <212> DNA <213> Secuencia Artificial	
3	<220> <223> constructo sintético	
10	<400> 406 cgtagtcct	9
15	<210> 407 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
20	<400> 407 gtgctgagt	9
25	<210> 408 <211> 9 <212> DNA <213> Secuencia Artificial	
20	<220> <223> constructo sintético	
30	<400> 408 tcagcacct	9
35	<210> 409 <211> 9 <212> DNA <213> Secuencia Artificial <220>	
40	<223> constructo sintético <400> 409 gctgcatgt	9
45	<210> 410 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 410 atgcagcct	9
55	<210> 411 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 411 gagtggtgt <210> 412	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 412 accactcct	9
15	<210> 413 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 413 gactaccgt	9
25	<210> 414 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 414 ggtagtcct	9
35	<210> 415 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 415 cggtgatgt	9
45	<210> 416 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 416 atcaccgct	9
55	<210> 417 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 417 tgcgactgt	9
-	<210> 418	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 418 agtcgcact	9
	<210> 419 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 419 tctggaggt	9
25	<210> 420 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 420 ctccagact	9
35	<210> 421 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 421 agcactggt	9
45	<210> 422 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 422 cagtgctct	9
55	<210> 423 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 423 tcgcttggt	9
65	<210> 424	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 424 caagcgact	9
	<210> 425 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 425 agcactcgt	9
25	<210> 426 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 426 gagtgctct	9
35	<210> 427 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 427 gcgattggt	9
45	<210> 428 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 428 caatcgcct	9
55	<210> 429 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 429 ccatcgcgt	9
65	<210> 430	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 430 gcgatggct	9
	<210> 431 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 431 tcgcttcgt	9
25	<210> 432 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 432 gaagcgact	9
35	<210> 433 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 433 agtgcctgt	9
45	<210> 434 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 434 aggcactct	9
55	<210> 435 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
05	<400> 435 ggcataggt	9
65	<210> 436	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 436 ctatgccct	9
	<210> 437 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 437 gcgattcgt	9
25	<210> 438 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 438 gaatcgcct	9
35	<210> 439 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 439 tgcgacggt	9
45	<210> 440 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 440 cgtcgcact	9
55	<210> 441 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 441 gagtggcgt <210> 442	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 442 gccactcct	9
15	<210> 443 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 443 cggtgaggt	9
25	<210> 444 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 444 ctcaccgct	9
35	<210> 445 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 445 gctgcaagt	9
45	<210> 446 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 446 ttgcagcct	9
55	<210> 447 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 447 ttccgctgt	9
65	<210> 448	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 448 agcggaact	9
	<210> 449 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 449 gagtggagt	9
25	<210> 450 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 450 tccactcct	9
35	<210> 451 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 451 acagagcgt	9
45	<210> 452 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 452 gctctgtct	9
55	<210> 453 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 453 tgcgaccgt	9
65	<210> 454	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 454 ggtcgcact	9
15	<210> 455 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 455 cctgtaggt	9
25	<210> 456 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 456 ctacaggct	9
35	<210> 457 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 457 tagccgtgt	9
45	<210> 458 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 458 acggctact	9
55	<210> 459 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 459 tgcgacagt <210> 460	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 460 tgtcgcact	9
	<210> 461 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 461 ggtctgtgt	9
25	<210> 462 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 462 acagaccct	9
35	<210> 463 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 463 9 cggtgaagt	9
45	<210> 464 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 464 9 ttcaccgct	9
55	<210> 465 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 465 caacgaggt	9
65	<210> 466	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 466 ctcgttgct	9
	<210> 467 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 467 gcagcatgt	9
25	<210> 468 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 468 atgctgcct	9
35	<210> 469 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 469 tcgtcaggt	9
45	<210> 470 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 470 ctgacgact	9
55	<210> 471 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 471 agtgccagt	9
	<210> 472	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 472 tggcactct	9
	<210> 473 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 473 tagaggcgt	9
25	<210> 474 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 474 gcctctact	9
35	<210> 475 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 475 9 gtcagcggt	9
45	<210> 476 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 476 cgctgacct	9
55	<210> 477 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 477 tcaggaggt <210> 478	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 478 ctcctgact	9
	<210> 479 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 479 agcaggtgt	9
25	<210> 480 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 480 9 acctgctct	9
35	<210> 481 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 481 ttccgcagt	9
45	<210> 482 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 482 tgcggaact	9
55	<210> 483 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 483 gtcagccgt <210> 484	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 484 ggctgacct	9
15	<210> 485 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 485 ggtctgcgt	9
25	<210> 486 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 486 gcagaccct	9
35	<210> 487 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 487 tagccgagt	9
45	<210> 488 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 488 tcggctact	9
55	<210> 489 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 489 gtcagcagt <210> 490	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 490 tgctgacct	9
10	<210> 491 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 491 ggtctgagt	9
25	<210> 492 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 492 tcagaccct	9
35	<210> 493 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 493 cggacaggt	9
45	<210> 494 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 494 ctgtccgct	9
55	<210> 495 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 495 ttagccggt	9
65	<210> 496	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 496 cggctaact	9
	<210> 497 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 497 gagacgagt	9
25	<210> 498 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 498 tcgtctcct 9	
35	<210> 499 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 499 cgtaaccgt	9
45	<210> 500 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 500 ggttacgct	9
55	<210> 501 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 501 ttggcgtgt <210> 502	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 502 acgccaact	9
10	<210> 503 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 503 atggcaggt	9
25	<210> 504 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 504 ctgccatct	9
35	<210> 505 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 505 cagctacga	9
45	<210> 506 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 506 gtagctgac	9
55	<210> 507 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 507 ctcctgcga	9
	<210> 508	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 508 gcaggagac	9
15	<210> 509 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 509 gctgcctga	9
25	<210> 510 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 510 aggcagcac	9
35	<210> 511 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 511 caggaacga	9
45	<210> 512 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 512 gttcctgac	9
55	<210> 513 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 513 cacacgcga	9
65	<210> 514	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 514 gcgtgtgac	9
	<210> 515 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 515 gcagcctga	9
25	<210> 516 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 516 aggctgcac	9
35	<210> 517 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 517 ctgaacgga	9
45	<210> 518 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 518 cgttcagac	9
55	<210> 519 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 519 ctgaaccga	9
-	<210> 520	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 520 ggttcagac	9
	<210> 521 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 521 tctggacga	9
25	<210> 522 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 522 gtccagaac	9
35	<210> 523 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 523 tgcctacga	9
45	<210> 524 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 524 gtaggcaac	9
55	<210> 525 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 525 ggcatacga	9
00	<210> 526	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 526 gtatgccac	9
	<210> 527 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 527 cggtgacga	9
25	<210> 528 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 528 gtcaccgac	9
35	<210> 529 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 529 caacgacga	9
45	<210> 530 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 530 gtcgttgac	9
55	<210> 531 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 531 ctcctctga	9
65	<210> 532	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 532 agaggagac	9
15	<210> 533 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 533 tcaggacga	9
25	<210> 534 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 534 gtcctgaac	9
35	<210> 535 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 535 aaaggcgga	9
45	<210> 536 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 536 cgcctttac	9
55	<210> 537 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
05	<400> 537 ctcctcgga	9
65	<210> 538	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 538 cgaggagac	9
15	<210> 539 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 539 cagatgcga	9
25	<210> 540 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 540 gcatctgac	9
35	<210> 541 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 541 gcagcaaga	9
45	<210> 542 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 542 ttgctgcac	9
55	<210> 543 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 543 gtggagtga <210> 544	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
40	<400> 544 actccacac	9
10	<210> 545 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 545 ccagtagga	9
25	<210> 546 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 546 ctactggac	9
35	<210> 547 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 547 atggcacga	9
45	<210> 548 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 548 gtgccatac	9
55	<210> 549 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 549 ggactgtga <210> 550	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 550 acagtccac	9
	<210> 551 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 551 ccgaactga	9
25	<210> 552 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 552 agttcggac	9
35	<210> 553 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 553 ctcctcaga	9
45	<210> 554 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 554 tgaggagac	9
55	<210> 555 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 555 cactgctga	9
	<210> 556	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 556 agcagtgac	9
10	<210> 557 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 557 agcaggcga	9
25	<210> 558 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 558 gcctgctac	9
35	<210> 559 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 559 agcaggaga	9
45	<210> 560 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 560 tcctgctac	9
55	<210> 561 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 561 agagccaga	9
-	<210> 562	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 562 tggctctac	9
10	<210> 563 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 563 gtcgttgga	9
25	<210> 564 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 564 caacgacac	9
35	<210> 565 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 565 ccgaacgga	9
45	<210> 566 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 566 cgttcggac	9
55	<210> 567 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 567 cactgcgga	9
65	<210> 568	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 568 cgcagtgac	9
15	<210> 569 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 569 gtggagcga	9
25	<210> 570 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 570 gctccacac	9
35	<210> 571 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 571 gtggagaga	9
45	<210> 572 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 572 tctccacac	9
55	<210> 573 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 573 ggactgcga <210> 574	9

	<211> <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 574 gcagtccac	9
15	<210> 575 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 575 ccgaaccga	9
25	<210> 576 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 576 ggttcggac	9
35	<210> 577 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 577 *cactgccga	9
45	<210> 578 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 578 ggcagtgac	9
55	<210> 579 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 579 cgaaacgga <210> 580	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 580 cgtttcgac	9
10	<210> 581 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 581 ggactgaga	9
25	<210> 582 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 582 tcagtccac	9
35	<210> 583 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 583 ccgaacaga	9
45	<210> 584 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 584 tgttcggac	9
55	<210> 585 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
05	<400> 585 cgaaaccga	9
65	<210> 586	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 586 ggtttcgac	9
	<210> 587 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 587 ctggcttga	9
25	<210> 588 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 588 aagccagac	9
35	<210> 589 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 589 cacacctga	9
45	<210> 590 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 590 aggtgtgac	9
55	<210> 591 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 591 aacgaccga	9
65	<210> 592	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 592 ggtcgttac	9
	<210> 593 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 593 atccagcga	9
25	<210> 594 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 594 gctggatac	9
35	<210> 595 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 595 tgcgaagga	9
45	<210> 596 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 596 cttcgcaac	9
55	<210> 597 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 597 tgcgaacga	9
65	<210> 598	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
40	<400> 598 gttcgcaac	9
10	<210> 599 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 599 ctggctgga	9
25	<210> 600 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 600 cagccagac	9
35	<210> 601 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 601 cacaccgga	9
45	<210> 602 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 602 cggtgtgac	9
55	<210> 603 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 603 agtgcagga	9
	<210> 604	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 604 ctgcactac	9
10	<210> 605 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 605 gaccgttga	9
25	<210> 606 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 606 aacggtcac	9
35	<210> 607 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 607 ggtgagtga	9
45	<210> 608 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 608 actcaccac	9
55	<210> 609 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 609 ccttcctga	9
65	<210> 610	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 610 aggaaggac	9
	<210> 611 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 611 ctggctaga	9
25	<210> 612 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 612 tagccagac	9
35	<210> 613 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 613 cacaccaga	9
45	<210> 614 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 614 tggtgtgac	9
55	<210> 615 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 615 agcggtaga	9
	<210> 616	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 616 taccgctac	9
10	<210> 617 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 617 gtcagagga	9
25	<210> 618 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 618 ctctgacac	9
35	<210> 619 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 619 ttccgacga	9
45	<210> 620 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 620 gtcggaaac	9
55	<210> 621 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 621 aggcgtaga	9
65	<210> 622	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
40	<400> 622 tacgcctac	9
10	<210> 623 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 623 ctcgactga	9
25	<210> 624 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 624 agtcgagac	9
35	<210> 625 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 625 tacgctgga	9
45	<210> 626 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 626 cagcgtaac	9
55	<210> 627 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 627 gttcggtga	9
00	<210> 628	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 628 accgaacac	9
15	<210> 629 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 629 gccagcaga	9
25	<210> 630 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 630 tgctggcac	9
35	<210> 631 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 631 gaccgtaga	9
45	<210> 632 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 632 tacggtcac	9
55	<210> 633 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 633 gtgctctga <210> 634	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 634 agagcacac	9
	<210> 635 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 635 ggtgagcga	9
25	<210> 636 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 636 gctcaccac	9
35	<210> 637 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 637 ggtgagaga	9
45	<210> 638 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 638 tctcaccac	9
55	<210> 639 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 639 ccttccaga	9
65	<210> 640	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 640 tggaaggac	9
	<210> 641 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 641 ctcctacga	9
25	<210> 642 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 642 gtaggagac	9
35	<210> 643 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 643 ctcgacgga	9
45	<210> 644 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 644 cgtcgagac	9
55	<210> 645 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 645 gccgtttga	9
	<210> 646	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 646 aaacggcac	9
	<210> 647 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 647 gcggagtga	9
25	<210> 648 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 648 actccgcac	9
35	<210> 649 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 649 cgtgcttga	9
45	<210> 650 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 650 aagcacgac	9
55	<210> 651 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 651 ctcgaccga	9
	<210> 652	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 652 ggtcgagac	9
15	<210> 653 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 653 agagcagga	9
25	<210> 654 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 654 ctgctctac	9
35	<210> 655 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 655 gtgctcgga	9
45	<210> 656 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 656 cgagcacac	9
55	<210> 657 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
6E	<400> 657 ctcgacaga	9
65	<210> 658	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 658 tgtcgagac	9
15	<210> 659 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 659 ggagagtga	9
25	<210> 660 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 660 actetecae	9
35	<210> 661 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 661 aggctgtga	9
45	<210> 662 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 662 acagcctac	9
55	<210> 663 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 663 agagcacga	9
55	<210> 664	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 664 gtgctctac	9
10	<210> 665 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 665 ccatcctga	9
25	<210> 666 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 666 aggatggac	9
35	<210> 667 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 667 gttcggaga	9
45	<210> 668 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 668 tccgaacac	9
55	<210> 669 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 669 tggtagcga	9
55	<210> 670	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 670 gctaccaac	9
	<210> 671 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 671 gtgctccga	9
25	<210> 672 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 672 ggagcacac	9
35	<210> 673 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 673 gtgctcaga	9
45	<210> 674 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 674 tgagcacac	9
55	<210> 675 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 675 gccgttgga <210> 676	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 676 caacggcac	9
	<210> 677 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 677 gagtgctga	9
25	<210> 678 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 678 agcactcac	9
35	<210> 679 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 679 gctccttga	9
45	<210> 680 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 680 aaggagcac	9
55	<210> 681 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
6E	<400> 681 ccgaaagga	9
65	<210> 682	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 682 ctttcggac	9
	<210> 683 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 683 cactgagga	9
25	<210> 684 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 684 ctcagtgac	9
35	<210> 685 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 685 cgtgctgga	9
45	<210> 686 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 686 cagcacgac	9
55	<210> 687 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 687 ccgaaacga	9
	<210> 688	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 688 gtttcggac	9
	<210> 689 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 689 gcggagaga	9
25	<210> 690 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 690 tctccgcac	9
35	<210> 691 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 691 gccgttaga	9
45	<210> 692 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 692 taacggcac	9
55	<210> 693 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 693 tctcgtgga	9
55	<210> 694	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 694 cacgagaac	9
	<210> 695 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 695 cgtgctaga	9
25	<210> 696 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 696 tagcacgac	9
35	<210> 697 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 697 gcctgtctt	9
45	<210> 698 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 698 gacaggctc	9
55	<210> 699 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 699 ctcctggtt <210> 700	9
	-10. 100	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 700 ccaggagtc	9
	<210> 701 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 701 actctgctt	9
25	<210> 702 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 702 gcagagttc	9
35	<210> 703 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 703 catcgcctt	9
45	<210> 704 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 704 ggcgatgtc	9
55	<210> 705 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 705 gccactatt <210> 706	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 706 tagtggctc	9
	<210> 707 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 707 cacacggtt	9
25	<210> 708 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 708 ccgtgtgtc	9
35	<210> 709 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 709 caacgcctt	9
45	<210> 710 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 710 ggcgttgtc	9
55	<210> 711 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 711 actgaggtt <210> 712	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 712 cctcagttc	9
	<210> 713 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 713 gtgctggtt	9
25	<210> 714 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 714 ccagcactc	9
35	<210> 715 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 715 catcgactt	9
45	<210> 716 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 716 gtcgatgtc	9
55	<210> 717 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
0.5	<400> 717 ccatcggtt	9
65	<210> 718	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 718 ccgatggtc	9
	<210> 719 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 719 gctgcactt	9
25	<210> 720 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 720 gtgcagctc	9
35	<210> 721 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 721 acagaggtt	9
45	<210> 722 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 722 cctctgttc 9	
55	<210> 723 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 723 agtgccgtt <210> 724	9
	-·• · - ·	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 724 cggcacttc	9
15	<210> 725 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 725 cggacattt	9
25	<210> 726 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 726 atgtccgtc	9
35	<210> 727 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 727 ggtctggtt	9
45	<210> 728 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 728 ccagacctc	9
55	<210> 729 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 729 gagacggtt <210> 730	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 730 ccgtctctc	9
15	<210> 731 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 731 ctttccgtt	9
25	<210> 732 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 732 cggaaagtc	9
35	<210> 733 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 733 cagatggtt	9
45	<210> 734 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 734 ccatctgtc	9
55	<210> 735 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 735 cggacactt	9
	<210> 736	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 736 gtgtccgtc	9
15	<210> 737 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 737 actctcgtt	9
25	<210> 738 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 738 cgagagttc	9
35	<210> 739 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 739 gcagcactt	9
45	<210> 740 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 740 gtgctgctc	9
55	<210> 741 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 741 actctcctt 9	
65	<210> 742	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 742 ggagagttc	9
	<210> 743 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 743 accttggtt	9
25	<210> 744 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 744 ccaaggttc	9
35	<210> 745 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 745 agagccgtt	9
45	<210> 746 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 746 cggctcttc	9
55	<210> 747 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 747 accttgctt	9
	<210> 748	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 748 gcaaggttc	9
	<210> 749 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 749 aagtccgtt	9
25	<210> 750 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 750 cggactttc	9
35	<210> 751 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 751 ggactggtt	9
45	<210> 752 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 752 ccagtcctc	9
55	<210> 753 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 753 gtcgttctt	9
65	<210> 754	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 754 gaacgactc	9
	<210> 755 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 755 cagcatctt	9
25	<210> 756 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 756 gatgctgtc	9
35	<210> 757 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 757 ctatccgtt	9
45	<210> 758 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 758 cggatagtc	9
55	<210> 759 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 759 acactcgtt	9
65	<210> 760	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 760 cgagtgttc	9
	<210> 761 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 761 atccaggtt	9
25	<210> 762 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 762 cctggattc	9
35	<210> 763 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 763 gttcctgtt	9
45	<210> 764 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 764 caggaactc	9
55	<210> 765 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
	<400> 765 acactcctt	9
65	<210> 766	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 766 ggagtgttc	9
	<210> 767 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 767 gttcctctt	9
25	<210> 768 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 768 gaggaactc	9
35	<210> 769 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 769 ctggctctt	9
45	<210> 770 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 770 gagccagtc	9
55	<210> 771 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 771 acggcattt <210> 772	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 772 atgccgttc	9
	<210> 773 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 773 ggtgaggtt	9
25	<210> 774 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 774 cctcacctc	9
35	<210> 775 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 775 ccttccgtt 9	
45	<210> 776 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 776 cggaaggtc	9
55	<210> 777 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 777 tacgctctt	9
UU	<210> 778	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 778 gagcgtatc	9
	<210> 779 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 779 acggcagtt	9
25	<210> 780 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 780 ctgccgttc	9
35	<210> 781 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 781 actgacgtt	9
45	<210> 782 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 782 cgtcagttc	9
55	<210> 783 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
0.5	<400> 783 acggcactt	9
65	<210> 784	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 784 gtgccgttc	9
10	<210> 785 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 785 actgacctt	9
25	<210> 786 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 786 ggtcagttc	9
35	<210> 787 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 787 tttgcggtt	9
45	<210> 788 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 788 ccgcaaatc	9
55	<210> 789 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 789 tggtaggtt <210> 790	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 790 cctaccatc	9
10	<210> 791 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 791 gttcggctt	9
25	<210> 792 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 792 gccgaactc	9
35	<210> 793 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 793 gccgttctt	9
45	<210> 794 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 794 gaacggctc	9
55	<210> 795 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 795 ggagaggtt <210> 796	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
	<400> 796 cctctcctc	9
10	<210> 797 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 797 cactgactt	9
25	<210> 798 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 798 gtcagtgtc	9
35	<210> 799 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 799 cgtgctctt	9
45	<210> 800 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 800 gagcacgtc	9
55	<210> 801 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
C.F.	<400> 801 aatccgctt	9
65	<210> 802	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 802 gcggatttc	9
	<210> 803 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 803 aggctggtt	9
25	<210> 804 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 804 ccagccttc	9
35	<210> 805 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 805 gctagtgtt	9
45	<210> 806 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 806 cactagctc	9
55	<210> 807 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 807 ggagagctt	9
UO	<210> 808	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 808 gctctcctc	9
	<210> 809 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 809 ggagagatt	9
25	<210> 816 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 816 tggatggtc	9
35	<210> 817 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 817 gctagtctt	9
45	<210> 818 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 818 gactagctc	9
55	<210> 819 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 819 aggctgatt <210> 820	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 820 tcagccttc	9
10	<210> 821 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 821 acagacgtt	9
25	<210> 810 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 810 tctctcctc	9
35	<210> 811 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 811 aggctgctt	9
45	<210> 812 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 812 gcagccttc	9
55	<210> 813 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 813 gagtgcgtt	9
	<210> 814	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
40	<400> 814 cgcactctc	9
10	<210> 815 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 815 ccatccatt	9
25	<210> 822 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 822 cgtctgttc	9
35	<210> 823 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 823 gagtgcctt	9
45	<210> 824 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 824 ggcactctc	9
55	<210> 825 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
0.5	<400> 825 acagacctt	9
65	<210> 826	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 826 aatctattc	9
	<210> 827 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 827 cgagctttt	9
25	<210> 828 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 828 aagctcgtc	9
35	<210> 829 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 829 ttagcggtt	9
45	<210> 830 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 830 ccgctaatc	9
55	<210> 831 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 831 cctcttgtt	9
	<210> 832	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 832 caagaggtc	9
	<210> 833 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 833 ggtctcttt	9
25	<210> 834 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 834 agagacctc	9
35	<210> 835 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 835 gccagattt	9
45	<210> 836 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 836 atctggctc	9
55	<210> 837 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 837 gagaccttt <210> 838	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 838 aggtctctc	9
15	<210> 839 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 839 cacacagtt	9
25	<210> 840 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 840 ctgtgtgtc	9
35	<210> 841 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 841 cctcttctt	9
45	<210> 842 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 842 gaagaggtc	9
55	<210> 843 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 843 tagagcgtt	9
- -	<210> 844	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 844 cgctctatc	9
10	<210> 845 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 845 gcacctttt	9
25	<210> 846 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 846 aaggtgctc	9
35	<210> 847 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 847 ggcttgttt	9
45	<210> 848 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 848 acaagcctc	9
55	<210> 849 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 849 gacgcgatt <210> 850	9
	~ 10~ 000	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 850 tcgcgtctc	9
	<210> 851 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 851 cgagctgtt	9
25	<210> 852 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 852 cagctcgtc	9
35	<210> 853 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 853 tagagcctt	9
45	<210> 854 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 854 ggctctatc	9
55	<210> 855 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 855 catccgttt	9
-	<210> 856	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 856 acggatgtc	9
15	<210> 857 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 857 ggtctcgtt	9
25	<210> 858 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 858 cgagacctc	9
35	<210> 859 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 859 gccagagtt	9
45	<210> 860 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 860 ctctggctc	9
55	<210> 861 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 861 gagaccgtt <210> 862	9

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
40	<400> 862 cggtctctc	9
10	<210> 863 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 863 cgagctatt	9
25	<210> 864 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 864 tagctcgtc	9
35	<210> 865 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 865 gcaagtgtt	9
45	<210> 866 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 866 cacttgetc	9
55	<210> 867 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
05	<400> 867 ggtctcctt	9
65	<210> 868	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 868 ggagacctc	9
10	<210> 869 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 869 gccagactt	9
25	<210> 870 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 870 gtctggctc	9
35	<210> 871 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 871 ggtctcatt	9
45	<210> 872 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 872 tgagacctc	9
55	<210> 873 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
65	<400> 873 gagaccatt <210> 874	9
	=10. OIT	

	<211> 9 <212> DNA <213> Secuencia Artificial	
5	<220> <223> constructo sintético	
10	<400> 874 tggtctctc	9
10	<210> 875 <211> 9 <212> DNA <213> Secuencia Artificial	
15	<220> <223> constructo sintético	
20	<400> 875 ccttcagtt	9
25	<210> 876 <211> 9 <212> DNA <213> Secuencia Artificial	
	<220> <223> constructo sintético	
30	<400> 876 ctgaaggtc	9
35	<210> 877 <211> 9 <212> DNA <213> Secuencia Artificial	
40	<220> <223> constructo sintético	
40	<400> 877 gcacctgtt	9
45	<210> 878 <211> 9 <212> DNA <213> Secuencia Artificial	
50	<220> <223> constructo sintético	
	<400> 878 caggtgctc	9
55	<210> 879 <211> 9 <212> DNA <213> Secuencia Artificial	
60	<220> <223> constructo sintético	
0.5	<400> 879 aaaggcgtt	9
65	<210> 880	

	<211> <212> <213>		Artificial	
5	<220> <223>	constructo	sintético	
10	<400> cgcctttt		9	
	<210> <211> <212> <213>	9	Artificial	
15	<220> <223>	constructo	sintético	
20	<400> cagato			9
25	<210> < <211> < <212> < <213>	9	Artificial	
	<220> <223>	constructo	sintético	
30	<400> cgatctg			9
35	<210> < <211> < <212> < <213>	9	Artificial	
40	<220> <223>	constructo	sintético	
	<400>			9
45	<210> <211> <211> <212> <213>	884 9	Artificial	9
50	<220> <223>	constructo	sintético	
	<400> gcctatg			9
55	<210> < <211> < <212> < <213>	9	Artificial	
60	<220> <223>	constructo	sintético	
65	<400>		9	

```
<210> 886
      <211>9
      <212> DNA
      <213> Secuencia Artificial
 5
      <223> constructo sintético
      <400> 886
10
                               9
      gtgaaggtc
      <210> 887
      <211>9
      <212> DNA
15
      <213> Secuencia Artificial
      <220>
      <223> constructo sintético
20
      <400> 887
      gcacctctt
                               9
      <210> 888
      <211> 9
25
      <212> DNA
      <213> Secuencia Artificial
      <220>
      <223> constructo sintético
30
      <400> 888
                               9
      gaggtgctc
      <210> 889
      <211> 25
35
      <212> DNA
      <213> Secuencia Artificial
      <220>
40
      <223> constructo sintético
      <400> 889
              cagaagacag acaagcttca cctgc
      <210> 890
45
      <211> 27
      <212> DNA
      <213> Secuencia Artificial
50
      <220>
      <223> constructo sintético
      <400> 890
      gcaggtgaag cttgtctgtc ttctgaa 27
55
      PPI-156CP
      2
```

REIVINDICACIONES

- 1. Un procedimiento de sintetizar una molécula que comprende un resto funcional que está unido operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional, dicho procedimiento que comprende las etapas de:
- (a) proporcionar un compuesto iniciador que consiste en un resto funcional inicial que comprende n bloques de construcción, en el que n es un número entero de 1 o mayor, donde el resto funcional inicial comprende al menos un grupo reactivo, y está unido operativamente a un oligonucleótido inicial, en el que el resto funcional inicial comprende al menos un grupo reactivo, y está unido operativamente a un oligonucleótido inicial; en el que el resto funcional inicial y el oligonucleótido inicial se unen con un resto ligador y en el q ue el oligonucleótido inicial es bicatenario y el resto ligador se acopla covalentemente al resto funcional inicial y a ambas cadenas del oligonucleótido inicial;
 - (b) hacer reaccionar el compuesto iniciador con un bloque de construcción deseado que comprende al menos un grupo reactivo complementario, en el que al menos un grupo reactivo complementario es complementario con el grupo reactivo de la etapa (a), en las condiciones adecuadas para la reacción del grupo reactivo complementario para formar un enlace covalente;

15

20

30

35

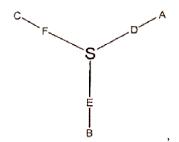
50

(c) hacer reaccionar el oligonucleótido inicial con un oligonucleótido entrante que identifica el bloque de construcción de la etapa (b) en presencia de una enzima que cataliza el ligamiento del oligonucleótido inicial y el oligonucleótido entrante, en condiciones adecuadas para el ligamiento del oligonucleótido entrante y el oligonucleótido inicial para formar un oligonucleótido codificador, en el que el último de dichos oligonucleótidos entrantes comprende una secuencia capuchón, dicha secuencia capuchón que comprende una secuencia de nucleótidos que contiene nucleótidos degenerados;

de este modo se produce una molécula que comprende un resto funcional que comprende n+1 bloques de construcción que está unido operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional.

- 25 2. Un procedimiento de sintetizar una biblioteca de compuestos, en la que los compuestos comprenden un resto funcional que comprende dos o más bloques de construcción que están unidos operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional, dicho procedimiento que comprende las etapas de
 - (a) proporcionar una solución que comprende m iniciadores del compuesto de la reivindicación 1, en la que m es un número entero de 1 o mayor;
 - (b) dividir la solución de la etapa (a) en r recipientes de reacción, en el que r es un número entero de 2 o mayor, de este modo se producen r alícuotas de la solución;
 - (c) hacer reaccionar los iniciadores del compuesto en cada recipiente de reacción con uno de los r bloques de construcción, dichos bloques de construcción que comprenden al menos un grupo reactivo complementario, en los que al menos un grupo reactivo complementario es complementario con el grupo reactivo de la etapa (a), en condiciones adecuadas para la reacción del grupo reactivo complementario para formar un enlace covalente, de este modo se producen r alícuotas que comprenden compuestos que consiste en un resto funcional que comprende n+1 bloques de construcción unidos operativamente al oligonucleótido inicial; y
- (d) hacer reaccionar el oligonucleótido inicial en cada alícuota con uno de un conjunto de r oligonucleótidos entrantes distintos que corresponden al bloque de construcción de la etapa (c) en presencia de una enzima que cataliza el ligamiento del oligonucleótido entrante y el oligonucleótido inicial, en condiciones adecuadas para ligamiento enzimático del oligonucleótido entrante y el oligonucleótido inicial para formar un oligonucleótido codificador, en el que el último de dichos r oligonucleótidos entrantes distintos comprenden una secuencia capuchón, dicha secuencia capuchón que comprende una secuencia de nucleótidos que contiene nucleótidos degenerados;
- de este modo se producen r alícuotas que comprenden moléculas que consisten en un resto funcional que comprende n+1 bloques de construcción unidos operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional que comprende los n+1 bloques de construcción,
 - 3. El procedimiento de la reivindicación 1 en el que el resto funcional de la etapa (c) comprende un grupo reactivo, y las etapas (a) a (c) se repiten una vez o más veces, de este modo se formar ciclos 1 a i, donde i es un número entero de 2 o mayor, donde el producto de la etapa (c) de un ciclo s, donde s es un número entero de i-1 o menor, es el compuesto iniciador del ciclo s + 1.
 - 4. El procedimiento de la reivindicación 1 en el que la etapa (c) precede a la etapa (b) o la etapa (b) precede a la etapa (c).
 - 5. El procedimiento de la reivindicación 1 en el que al menos uno de los bloques de construcción es un

aminoácido o un aminoácido activado.


5

15

20

25

- 6. El procedimiento de la reivindicación 1 en el que la enzima se selecciona del grupo que consiste en un ADN ligasa, una ARN ligasa, una ADN polimerasa, un ARN polimerasa y una topoisomerasa.
- 7. El procedimiento de la reivindicación 1 en el que el oligonucleótido inicial comprende una secuencia del cebador de PCR.
 - 8. El procedimiento de la reivindicación 1 en el que el oligonucleótido entrante tiene 3 a 10 nucleótidos de longitud.
 - 9. El procedimiento de la reivindicación 3, que además comprende después del ciclo i, la etapa de
- (e) ciclar el resto funcional; opcionalmente en el que el resto funcional comprende un grupo alquinilo y un grupo
 azido, y el compuesto se somete a condiciones adecuadas para cicloadición del grupo alquinilo y el grupo azido para formar un grupo triazol, de este modo se cicla el resto funcional.
 - 10. El procedimiento de la reivindicación 2, que además comprende la etapa de
 - (e) combinar dos o más de las r alícuotas, de este modo se produce una solución que comprende moléculas que consisten en un resto funcional que comprende n + 1 bloques de construcción, que está unido operativamente a un oligonucleótido codificador que identifica la estructura del resto funcional que comprende los n +1 bloques de construcción.
 - 11. El procedimiento de la reivindicación 10 en el que se combinan r alícuotas.
 - 12. El procedimiento de la reivindicación 10 en el que las etapas (a) a (e) se realizan una o más veces para producir ciclos 1 a i, donde i es un número entero de 2 o mayor, en el que en el ciclo s+1, donde s es un número entero de i-1 o menor, la solución que comprende m iniciadores del compuesto de la etapa (a) es la solución de la etapa (e) del ciclo s, opcionalmente en el que en al menos uno de los ciclos 1 a i de la etapa (d) precede a la etapa (c).
 - 13. El procedimiento de la reivindicación 1 en el que el resto ligador comprende un primer grupo funcional adaptado para unirse con un bloque de construcción, un segundo grupo funcional adaptado para unirse al extremo 5' de un oligonucleótido, y un tercer grupo funcional adaptado para unirse al extremo 3' de un oligonucleótido.
 - 14. El procedimiento de la reivindicación 13 en el que el resto ligador es de la estructura

en el que

A es un grupo funcional adaptado a unirse a un bloque de construcción;

30 B es un grupo funcional adaptado a unirse al extremo 5' de un oligonucleótido:

C es un grupo funcional adaptado a unirse al extremo 3' de un oligonucleótido;

S es un átomo o un armazón;

D es una estructura química que conecta A a S;

E es una estructura química que conecta B a S; y

F es una estructura química que conecta C a S; opcionalmente en el que

(i) A es un grupo amino;

B es un grupo fosfato; y

C es un grupo fosfato; o

- (ii) en el que D, E y F son cada uno de modo independiente, un grupo alguileno o un grupo oligo(etilenglicol); o
- (iii) en el que S es un átomo de carbono, un átomo de nitrógeno, un átomo de fósforo, un átomo de boro, un grupo fosfato, un grupo cíclico o un grupo policíclico; opcionalmente en el que el resto ligador es de la estructura

en el que cada uno

- 5 de n, m y p es, de modo independiente, un número entero de 1 a aproximadamente 20; opcionalmente
 - (A) en el que cada uno de n, m y p es de modo independiente un número entero de 2 a ocho, opcionalmente en el que cada uno de n, m y p es de modo independiente un número entero de 3 a 6; o
 - (B) en el que el resto ligador tiene la estructura

- 15. El procedimiento de la reivindicación 9, que además comprende el siguiente ciclo i, la etapa de: (f) ciclar uno o más de los restos funcionales; opcionalmente en el que un resto funcional de la etapa (f) comprende un grupo azido y un grupo alquinilo; opcionalmente en el que el resto funcional se mantiene en condiciones adecuadas para la cicloadición del grupo azido y el grupo alquinilo para formar un grupo triazol, de este modo forma un resto funcional cíclico; opcionalmente en el que la reacción de cicloadición se realiza en la presencia de un catalizador de cobre; opcionalmente en el que al menos uno del uno o más restos funcionales de la etapa (f) comprende al menos dos grupos sulfhidrilo, y dicho resto funcional se mantiene en condiciones adecuadas para la reacción de los dos grupos sulfhidrilo para formar un grupo disulfuro, de este modo cicla el resto funcional.
 - 16. El procedimiento de la reivindicación 1 en el que el grupo reactivo y el grupo reactivo complementario se seleccionan del grupo que consiste en
- 20 (i) un grupo amino; un grupo carboxilo; un grupo sulfonilo; un grupo fosfonilo; un grupo epóxido; un grupo aziridina; y un grupo isocianato; o
 - (ii) un grupo hidroxilo; un grupo carboxilo; un grupo sulfonilo; un grupo fosfonilo; un grupo epóxido; un grupo aziridina: v un grupo isocianato: o
- (iii) un grupo amino y un grupo aldehído o cetona, opcionalmente en el que la reacción entre el grupo reactivo y el grupo reactivo complementario se realiza en condiciones reductoras; o
 - (iv) un grupo iluro de fósforo y un grupo aldehído o cetona.
 - 17. El procedimiento de la reivindicación 1 en el que el grupo reactivo y el grupo reactivo complementario reacciona por medio de la cicloadición para formar una estructura cíclica, opcionalmente en el que el grupo reactivo y el grupo reactivo complementario se seleccionan del grupo que consiste en
- 30 (i) un alquino y una azida; o
 - (ii) un grupo heteroaromático halogenado y un nucleófilo; opcionalmente en el que el grupo heteroaromático halogenado se selecciona del grupo que consiste en pirimidinas clorados, triazinas cloradas y purinas cloradas; o en el que el nucleófilo es un grupo amino.
- 18. Un procedimiento para identificar uno o más compuestos que unen a un blanco biológico, dicho procedimiento que comprende las etapas de:

- (a) poner en contacto el blanco biológico con un biblioteca de compuestos preparada por el procedimiento de la reivindicación 2 en condiciones adecuadas para al menos un miembro de la biblioteca de compuestos para unirse al blanco;
- (b) eliminar miembros de biblioteca que no se unen al blanco;
- 5 (c) amplificar los oligonucleótidos codificadores del al menos un miembro de la biblioteca de compuestos que se une al blanco:
 - (d) secuenciar los oligonucleótidos codificadores de la etapa (c); y
 - (e) usar las secuencias determinadas en la etapa (d) para determinar la estructura de los restos funcionales de los miembros de la biblioteca de compuestos que se unen al blanco biológico;
- 10 de este modo se identifican uno o más compuestos que se unen al blanco biológico.
 - 19. El procedimiento de la reivindicación 1 o 2, en el que dicha secuencia capuchón comprende la siguiente secuencia: 3'- AA GTCGCAAGCT NNNNN GTCTGTTCGAAGTGGACG 5', en el que N es cualquiera de A, T, G o C.
- 20. El procedimiento de la reivindicación 1 o 2, en el que dicha secuencia capuchón comprende la siguiente secuencia:
 - 3' AA GTCGCAAGCTACG ABBBABBBABBBA GACTACCGCGCTCCCTCCG 5', en el que B es cualquiera de T, G, o C.
 - 21. El procedimiento de la reivindicación 1 o 2, en el que las reacciones se realizan en solución.
 - 22. El procedimiento de la reivindicación 1 o 2, en el que la molécula sintetizada es un compuesto polimérico.
- 23. El procedimiento de la reivindicación 1 o 2, en el que la molécula sintetizada es un compuesto no polimérico.

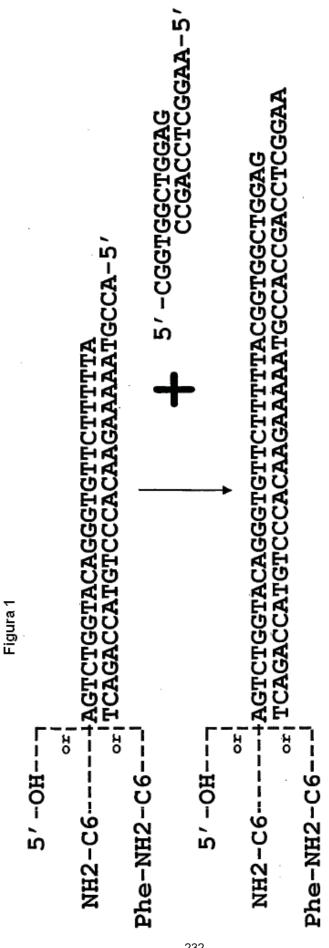


Figura 2

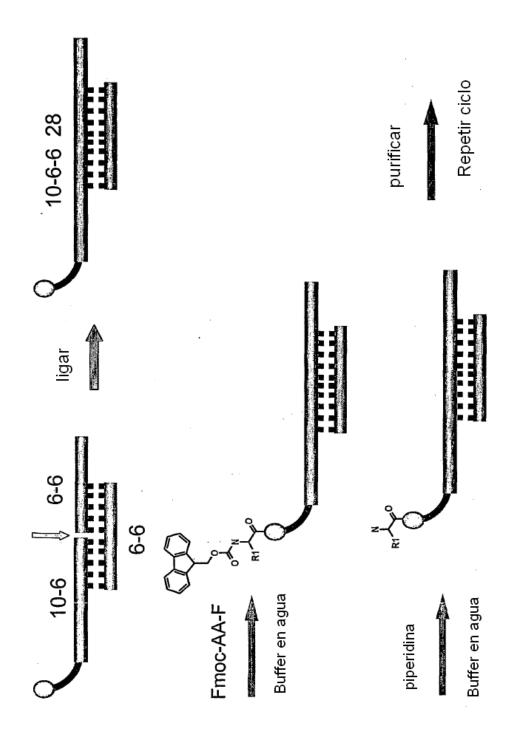
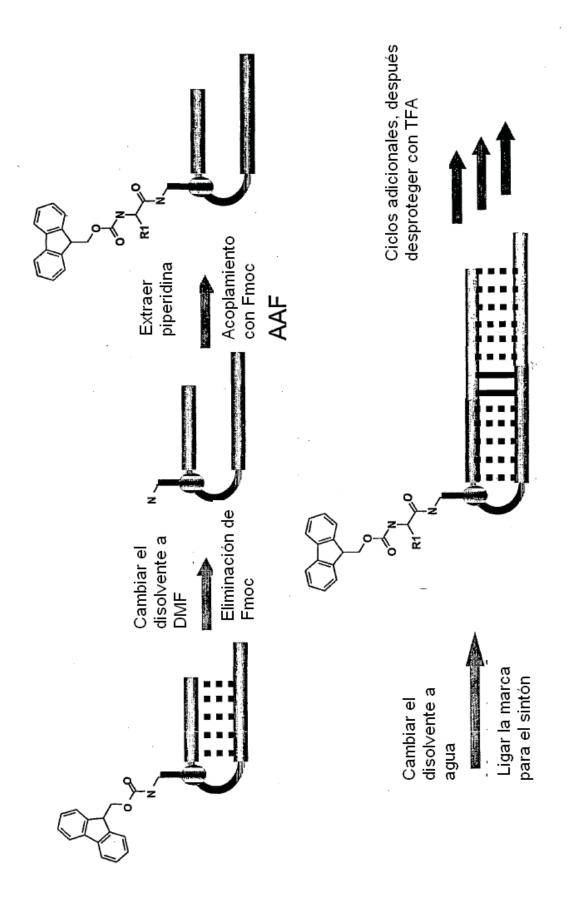



Figura 3

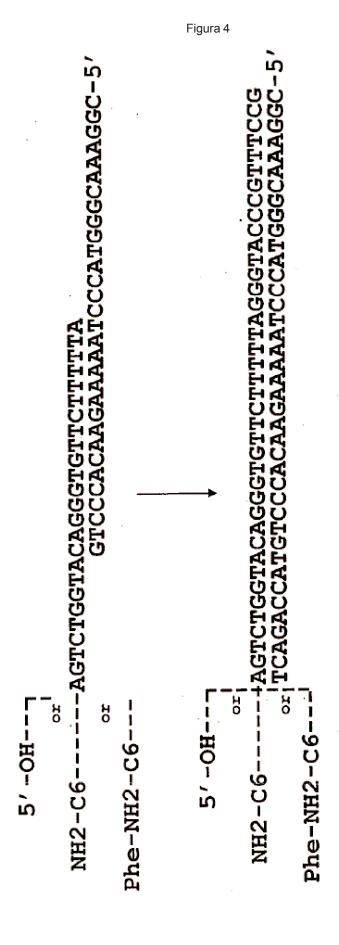


Figura 5

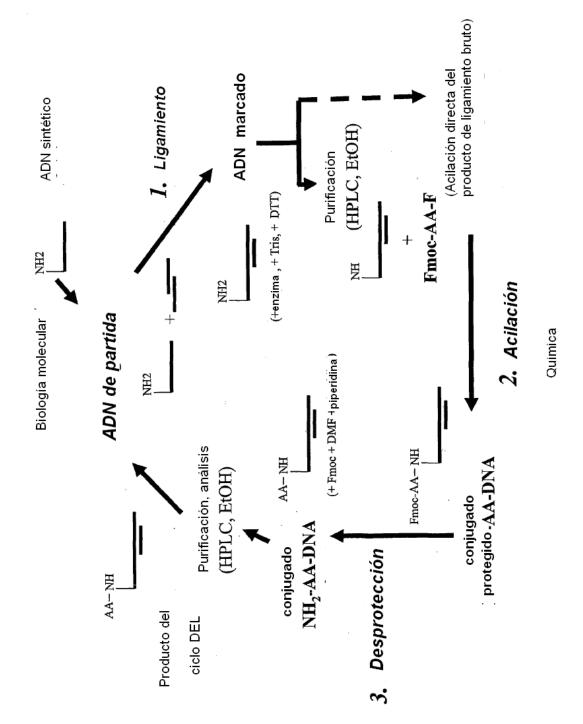


Figura 6

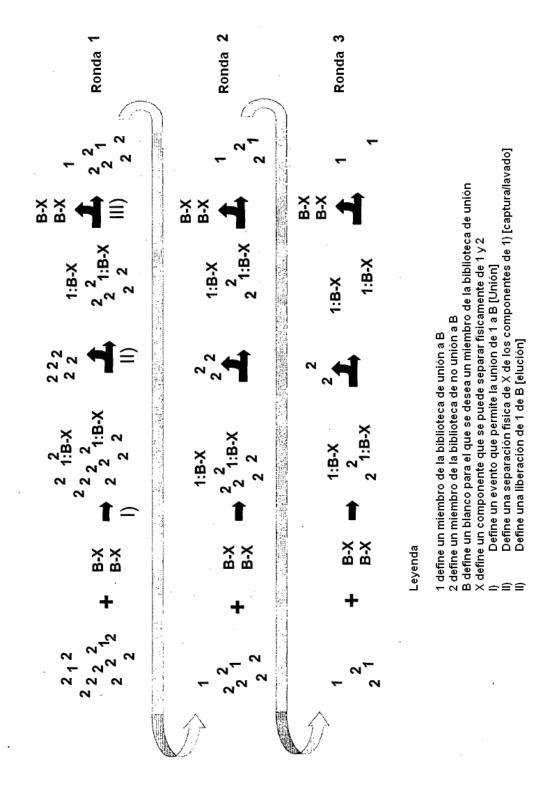


Figura 7

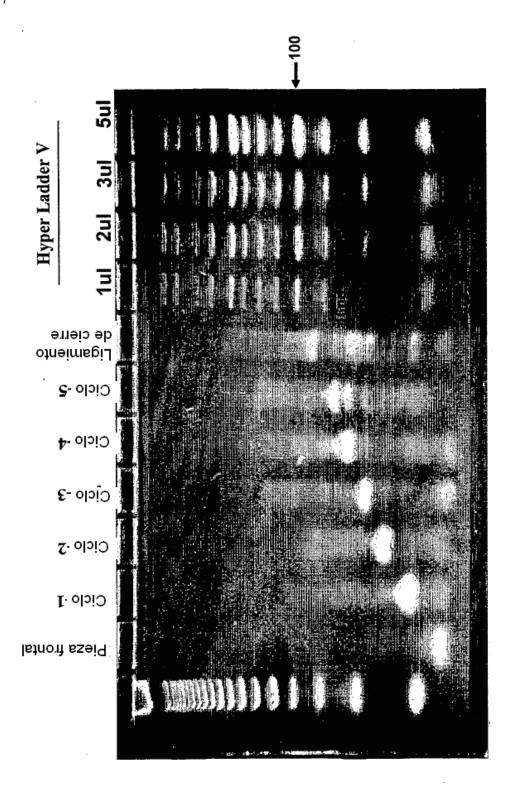


Figura 8

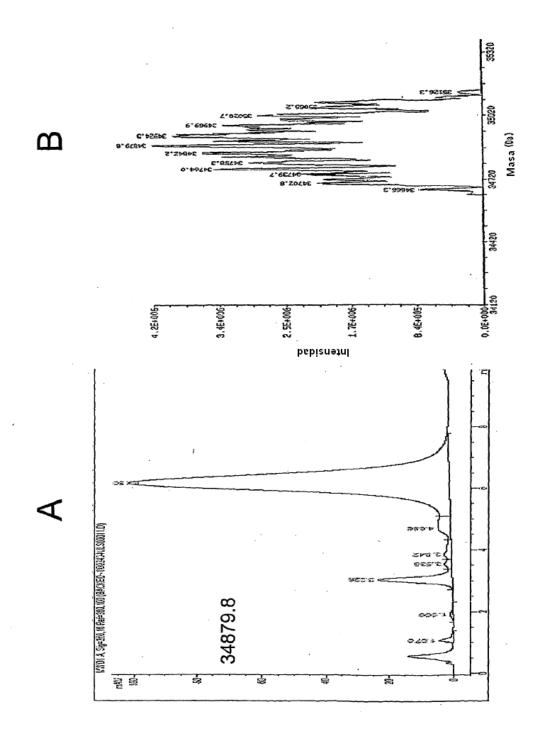

Figura 9

Figura 10

Figura 11

Figura 12

Figura 13

