

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 366 683

(51) Int. Cl.:

A61M 15/00 (2006.01)

$\widehat{}$,
12	TRADUCCIÓN DE PATENTE EUROPEA
(2)	I NADUCCION DE FAI ENTE EUNOFEA

Т3

- 96 Número de solicitud europea: 03731664 .3
- 96 Fecha de presentación : **03.01.2003**
- Número de publicación de la solicitud: 1469900 97 Fecha de publicación de la solicitud: 27.10.2004
- 54 Título: Cartucho hermético para un inhalador de polvo.
- (30) Prioridad: **24.01.2002 DE 102 02 940**
- (73) Titular/es: ALMIRALL, S.A. Ronda del General Mitre, 151 08022 Barcelona, ES
- Fecha de publicación de la mención BOPI: 24.10.2011
- (72) Inventor/es: Goede, Joachim; Lange, Karl-Heinz; Herder, Martin y Eilbracht, Meike
- (45) Fecha de la publicación del folleto de la patente: 24.10.2011
- (74) Agente: Elzaburu Márquez, Alberto

ES 2 366 683 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Cartucho hermético para un inhalador de polvo.

35

40

45

50

El invento se refiere a una cápsula para medicamentos en polvo para inhaladores de polvo para administrar un depósito de medicamento para una gran cantidad de cajas para medicamentos en polvo con al menos una cámara de reserva y con un dispositivo de dosificación integrado, comprendiendo el dispositivo de dosificación al menos una corredera de dosificación, que puede ser desplazada al menos desde una posición de carga a una posición de vaciado aproximadamente en el sentido transversal a la dirección de salida del medicamento en polvo desde al menos una cámara de reserva hasta un canal de la corredera de dosificación y a un inhalador correspondiente.

FUNDAMENTO DEL INVENTO

- En el ámbito del tratamiento de enfermedades de los bronquios, pero también en otras enfermedades en las que la medicación puede tener lugar a través de las vías respiratorias, se conoce la aplicación, junto a la pulverización de soluciones o de suspensiones, medicamentos en forma de polvo como aerosoles inhalables. Ejemplos de estos medicamentos están descritos con abundancia en la bibliografía y a título exclusivo de ejemplo remitimos a los documentos WO 93/11773, EP 0 416 950 A1 y EP 0 416 951 A1.
- 15 Una forma de aplicación usual es la administración a través de un aparato de inhalación (inhalador)

En los inhaladores de medicamentos en forma de polvo se conocen tanto los de aplicación de una dosis individual, como también aparatos de inhalación, que poseen una reserva para una gran cantidad de dosis de medicamento. En estos últimos se conoce el procedimiento de prever cámaras de reserva independientes para cada una de las dosis individuales o una sola cámara de reserva para una gran cantidad de dosis de un medicamento.

En los inhaladores en los que se prevé una gran cantidad de dosis individuales en cámaras de reserva separadas se conocen aquellos en los que cada una de las diferentes cámaras del inhalador está llena con una dosis de medicamento. Un ejemplo de un inhalador de esta clase se describe en el documento US 5,301,666 A. Sin embargo, también se conoce el procedimiento de alojar una gran cantidad de dosis de medicamento en polvo por separado en cámaras de envases blister. Un ejemplo de un envase blister de esta clase para su utilización con un inhalador se describe en el documento DE 44 00 083 C2. Un envase blister de esta clase construido al mismo tiempo como inhalador de un solo uso se describe por ejemplo en el documento DE 44 00 084 A1.

Un aparato de inhalación en el que se pueden alojar envases blister, que contienen cada uno cámaras de reserva separadas para diferentes dosis de un medicamento en forma de polvo y que pueden ser vaciada una detrás de otra con la ayuda del aparato de inhalación se describe en el documento DE 195 23 516 C1.

En el estado de la técnica se describen en numerosos lugares ejemplo de inhaladores con una cámara de reserva para una gran cantidad de dosis de medicamento. Un ejemplo con un depósito de reserva sustituible se describe en el documento DE-PS 846 770 y el documento WO/9531237 describe otro de ellos.

Un problema esencial de un sistema de inhalación en el que una gran cantidad de dosis de una sustancia medicinalmente activa se aloja en una cámara de reserva común es la dosificación de una dosis individual para un proceso de inhalación singular. Para ello se propusieron una gran cantidad de soluciones, como las que se describen por ejemplo en los documentos US 2,587 215 A y US 4,274,403 A. Otras formas de disposiciones para la dosificación de una dosis singular de medicamento en polvo se describen, además, en los documentos WO92/09322, WO 93/ 16748 y DE 35 35 561 C2 así como en el documento GB 2 165 159 A. A través del documento DE 195 22 415 A1 se conoce una cápsula sustituible para el alojamiento de una gran cantidad de dosis de un medicamento en polvo con una corredera de dosificación integrada.

Otro problema esencial de la inhalación de medicamentos en polvo es la descomposición de la fórmula galénica del polvo en partículas apropiadas para el pulmón. Los principios activos administradas por esta vía se mezclan generalmente con sustancias vehículo para obtener una posibilidad racional de la dosificación de la sustancia con actividad medicinal y para ajustar otras propiedades del medicamento en polvo, que pueden referirse a la capacidad de almacenamiento.

Las soluciones para la configuración de inhaladores de polvos con las que se quiere obtener partículas apropiadas para el pulmón en una corriente de aire para su inhalación se describen por ejemplo en los documentos EP 0 640 354 A2, US 5, 505,196 A, US 5,320,714 A, US 5,435,301 A, US 5,301,666 A, DE 195 22 416 A1 y WO 97/00703. También se conocen propuestas para la utilización de energía auxiliar para generar la corriente de aire, por ejemplo en el documento ZA-A 916741.

De una manera general también se conoce en el empleo de medicamentos en forma de polvo para inhalar la combinación de principios activos por medio de la aplicación de mezclas de principios activos prefabricados. Las propuestas correspondientes se hallan en los documentos EP 0 416 951 A1 y WO 93/11773, por ejemplo para la combinación de salmeterol y fluticasona o formoterol y budesonida.

En el documento WO 00/74754 y en otras muchas publicaciones, que abarcan más de veinte años, se describe, que en especial en los inhaladores de polvos existe un problema considerable desde el punto de vista de la humedad. La humedad no sólo puede actuar de manera desfavorable sobre el compuesto de medicamentos con acción farmacéutica, sino que puede afectar a la cooperación de los parámetros físicos y químicos de la combinación de principios activos y sustancias auxiliares. Con ello se puede producir por ejemplo un apelmazamiento o la descomposición del polvo inhalado en partículas apropiadas para el pulmón. Todas estas circunstancias pueden dar lugar a problemas desde el punto de vista de la capacidad de dosificación y de la eficacia de la administración de medicamentos en polvo.

5

10

15

35

40

Para reducir estos inconvenientes ya se intentó numerosas veces en el pasado reducir la penetración de humedad en el inhalador de polvos con la utilización de juntas. Además, se intentó reducir el efecto perjudicial de la humedad previendo agente de secados para absorber la humedad, en especial para mantener pequeña la humedad del aire en las cámaras de reserva.

ESTADO DE LA TÉCNICA

Haciendo referencia a un estado anterior de la técnica se describe con detalle en el documento WO 00/74754, en el que se intentó solucionar de manera regular este problema con la utilización de agente de secados en diferentes formas. La solicitante reivindica para sí haber resuelto por primera vez este problema previendo una junta, que debe evitar la penetración de humedad en el inhalador, en especial en el depósito de reserva de un inhalador de polvos, con elementos de hermetización, en especial elásticos.

Para ello se remite a elementos de hermetización de "todos los materiales conocidos usualmente, por ejemplo goma natural o sintética, una silicona o PTFE" y materiales análogos.

20 En lo que sigue se describirá con detalle y haciendo referencia al inhalador de polvos "Clickhaler" de Innovata Biomed una disposición, que se refiere a una configuración especial en relación con el mecanismo de dosificación de este inhalador, que comprende un dispositivo de dosificación a modo de una esclusa de rueda de celdas con la forma de un tronco de cono inclinado.

Como elemento de hermetización se prevé en la forma de ejecución descrita un manguito de hermetización, igualmente con forma de tronco de cono, que se coloca sobre el tronco de cono de dosificación y que debe ser giratorio, de manera, que pueda adoptar una posición de hermetización y una posición de no hermetización. Es interesante, que en la página 5 se describa, que la vaina de hermetización debe ser fabricada con preferencia con un material plástico como el del cono de dosificación. Además, se propone, que en la vaina de hermetización se prevea una cantidad de orificios igual a las cavidades de dosificación del elemento cónico de dosificación. La vaina de hermetización y el elemento de dosificación se deben configurar de tal modo, que al girar ambos, una cámara de dosificación conformada por medio de un orificio de la vaina de hermetización extraiga el medicamento de la reserva y que al seguir girándolos lo ceda a la cavidad de dosificación en el cono de dosificación propiamente dicho y finalmente sea cedido a un canal de aire.

Como especialmente ventajosa se describe una forma de ejecución en la que el contorno exterior de la vaina de hermetización forma un sector esférico, dando lugar a un ajuste bueno con un codo correspondiente del recipiente de reserva del medicamento. El contorno interior de la vaina de hermetización debe estar adaptado al tronco de cono del cono de dosificación.

A través del documento US 6,132,394 A se conoce el procedimiento de prever en una cámara de medicamento de un inhalador un recipiente separado, que contiene un agente de secado (desiccant). A diferencia con el documento US 4,274,403 A se describe la utilización de un recipiente separado totalmente cerrado de un material en lo posible permeable a humedad en el que se debe hallar un agente de secado, por ejemplo gel de sílice. La ventaja esencial es, que, frente a las cápsulas de secado convencionales no existen puntos de montaje o de unión a través de los que pequeñas cantidades del agente de secado podrían penetrar en la cámara de medicamento y contaminar con ello el medicamento en polvo. Esto puntos de unión se deben hallar en la cápsulas de secado convencionales, en especial, entre el cuerpo de la cápsula y la membrana porosa por la que puede penetrar vapor de agua en el agente de secado.

El recipiente separado se debería fabricar por ello con un solo material, con preferencia con una permeabilidad al vapor de agua grande. Como materiales apropiados se proponen policarbonato (PC) y ABS (acrilonitrilo-butadieno-estireno). El comportamiento en secado durante un periodo de tiempo grande deben ser adaptadas en este caso a través del material del recipiente.

A través del documento WO 01/46038 se conoce la utilización de un tapón, una película, una pastilla o un revestimiento de un copolímero de EVA con un 35 a 80 % en peso de un agente de secado tal como gel de sílice, arcilla o cloruro de cinc como cápsula de agente de secado o encapsulado en un recipiente de almacenamiento, en especial para alimentos empaquetados, indicando que con concentraciones altas del agente de secado se puede producir una estabilidad mecánica deficiente del tapón, etc. y el peligro de una descomposición mecánica. Las clases de EVA descritas como apropiadas poseen contenidos bastante altos en copolímeros de acetato de vinilo, de manera, que en estos materiales se producen permeabilidades al vapor de agua muy altas.

A través del documento WO 01/21238 se conoce el procedimiento de prever en un inhalador de polvos un cierre hermético, cuando no se utiliza. En relación con ello se describe que en un inhalador de polvos con una reserva de medicamento y con un canal de aire, que pasa por de bajo de la cámara de reserva, se prevea en cada uno de los dos lados del recipiente de reserva una pestaña de hermetización, que en una posición de reposo cubra un orificio de entrada de aire y un orificio de inhalación del canal de aire. Si, por medio de una caperuza de accionamiento se acciona un vástago de dosificación a través de la cámara de almacenamiento para transportar una dosis de medicamento de la reserva al canal de aire, se desplazan hacia abajo las dos pestañas de hermetización fijadas a la caperuza de accionamiento hasta que el vástago de accionamiento alcance su posición de vaciado. Para ello se prevén en las pestañas de hermetización orificios de paso dispuestos de tal modo, que en la posición final de la caperuza de accionamiento descubran los orificios del canal de aire. Mientras se mantenga presionada hacia abajo la caperuza de accionamiento es posible aspirar aire a través del canal de aire. Si se suelta la caperuza de accionamiento y si esta vuelve a su posición de partida se cierran nuevamente los orificios del canal de aire.

5

10

15

35

Por medio de una guía de colisa adicional y de una configuración elástica de las pestañas de hermetización son presionadas estas contra la pared exterior para incrementar el efecto de hermetización. Las pestañas de hermetización son presionadas a medida que aumenta el camino desde la posición de apertura hasta la posición de cierre con una fuerza creciente transversalmente a la dirección del movimiento contra la pared exterior del inhalador. Además, se prevé una junta elástica con la forma de un fuelle con pliegues entre la caperuza de accionamiento y la carcasa del inhalador para cerrar la ranura, que se halla entre las piezas mencionadas.

RESUMEN DEL INVENTO

20 El invento se basa por ello en el problema de mejorar los sistemas conocidos para la aplicación de medicamentos en forma de polvo.

El problema en el que se basa el invento se soluciona con las características de la reivindicación 1, desprendiéndose las configuraciones ventajosas del invento de las reivindicaciones subordinadas.

Con la configuración según el in vento se obtiene con un coste adicional mínimo una protección eficaz de la reserva de medicamento contra humedad procedente del medio ambiente, en especial durante el almacenamiento intermedio durante la vida útil después de la apertura de la reserva por un paciente. Esta ventaja es válida tanto durante el tiempo que la cápsula de medicamento se halla alojada en el inhalador, como también cuando se guarda fuera del inhalador. Se puede conservar la compatibilidad con inhaladores de cápsulas conocidos para cápsulas de medicamentos en polvo sustituibles de la clase mencionada más arriba.

La cápsula para medicamentos en polvo según en invento se caracteriza en una forma de ejecución especialmente preferida porque el canal de la corredera de dosificación posee en uno de sus extremos un orificio abierto hacia el medio ambiente por el que puede pasar una parte de la corredera de dosificación y porque alrededor del orificio se prevé una superficie de asiento para una junta.

Se puede obtener un funcionamiento especialmente fiable, cuando la corredera de dosificación posee una superficie de hermetización prevista en un plano aproximadamente transversal a la dirección de su movimiento de la posición de llenado a la posición de vaciado. Con ello se pueden evitar al mismo tiempo una variación de las fuerzas de fricción durante el movimiento de la corredera de dosificación, que pueden ser producidas en los inhaladores conocidos por un movimiento de la junta a lo largo de la superficie de hermetización por los restos de polvo o por el desgaste de la junta.

Se obtiene una hermetización especialmente fiable, cuando la hermetización está formada por una junta elástica.

40 Se asegura una hermetización especialmente duradera y eficaz durante un almacenamiento prolongado antes de introducir la cápsula de medicamento en polvo en un inhalador, cuando la corredera de dosificación puede ser desplazada, además, a una posición adicional de almacenamiento y cuando la junta es pretensada en la posición de almacenamiento de la corredera de dosificación con un pretensado elástico, en especial, cuando la corredera de dosificación es fijada en la posición de almacenamiento con medios elásticos.

45 En una forma de ejecución conveniente se caracteriza una cápsula según el invento para medicamentos en polvo por el hecho de que el dispositivo de dosificación comprende al menos una cavidad de dosificación para alojar una cantidad predeterminada de un medicamento en polvo.

Para la administración de combinaciones de principios activos puede ser, además, ventajoso, que la cápsula de medicamento en polvo posea al menos dos cámaras de reserva, en especial, cuando la cápsula de medicamento en polvo posee un dispositivo de dosificación, poseyendo el dispositivo de dosificación para cada una de las cámaras de reserva una cavidad de dosificación para la dosificación de una determinada cantidad de principio con actividad medicinal. Según la combinación prevista de los principios activos también es ventajoso, que los dispositivos de dosificación de las diferentes cápsulas de medicamento en polvo posean cavidades de dosificación con volúmenes iguales o distintos.

Es posible una utilización especialmente económica, en especial con medicamentos en polvo caros, que sólo se administran ocasionalmente, cuando la cápsula para medicamentos en polvo posee un dispositivo para indicar la cantidad remanente en las cámaras de reserva o extraída de las cámaras de reserva de dosis de medicamento.

Las ventajas del invento pueden ser aprovechadas en especial en el uso durante un tiempo grande en el caso de una cápsula para medicamentos en polvo para inhaladores de polvo para la administración de un depósito de medicamento para una gran cantidad de dosis de medicamentos en polvo con al menos una cámara de reserva y con un dispositivo de dosificación integrado, pudiendo adoptar el dispositivo de dosificación integrado al menos una posición de llenado y una posición de vaciado, siendo desplazable de la posición de llenado a la posición de vaciado, en el que se prevé una junta, que hermetiza la cámara de reserva al menos en la posición de llenado del dispositivo de dosificación contra la penetración de humedad procedente del medio ambiente y en el que la junta se puede deformar elásticamente durante el movimiento de la posición de vaciado a su posición de llenado sin un movimiento relativo de deslizamiento de la junta con relación a las superficies de hermetización.

5

10

25

30

35

40

45

En una forma de ejecución preferida del invento se fabrica la junta con un caucho de silicona o con un elastómero, con preferencia un elastómero termoplástico, con preferencia de un TPE-E (elastómero termoplástico de poliéster).

La mejora según el invento de las propiedades de uso, en especial por medio de una reducción eficaz de la acción de la humedad sobre un medicamento en polvo durante la utilización por un paciente o centro médico se obtiene, además, en una cápsula para medicamentos en polvo para inhaladores de polvo o en un inhalador de polvos con al menos una cámara de reserva para el alojamiento de un depósito de medicamento para una gran cantidad de dosis de medicamentos en polvo, que comprenden un cuerpo de carcasa y una tapa, que rodeen la al menos una cámara de reserva, en las que el cuerpo de la carcasa y/o la tapa es predominantemente de una PVDC (cloruro de polivinilideno), de .un material plástico compatible con medicamentos recubierto total o parcialmente con PVDC, un polímero de olefina con grupos laterales heterocíclicos (COC o mPP) o un PCTFE (politricloroetileno).

Una cápsula para medicamentos en polvo según el invento se caracteriza en una forma de ejecución especialmente ventajosa por el hecho de que al menos una corredera de dosificación, que forma parte del dispositivo de dosificación, es predominantemente de un PVDC (poli(cloruro de vinilideno)), de un material plástico compatible con el medicamento total o parcialmente recubierto con PVDC, un copolímero de olefina con grupos laterales heterocíclicos, un PP (polipropileno) orientado al menos parcialmente o un PCTFE (politricloroetileno).

Para la limitación de los efectos de la humedad, que haya penetrado en la cápsula o que se halla en ella, sobre un medicamento en polvo es, además, conveniente, que una cápsula para medicamentos en polvo o un inhalador de polvos según el invento se caracterice por el hecho de que el cuerpo de la carcasa y/o la tapa comprende al menos en una parte del lado orientado hacia la cámara de reserva una mezcla de un agente de secado encapsulado en una matriz termoplástica.

Para evitar alteraciones del medicamento por los restos del agente de secado es ventajoso según el invento, prever una cápsula para medicamentos en polvo para inhaladores de polvos o un inhalador de polvos con al menos una cámara de reserva para el alojamiento de un depósito de medicamento para una gran cantidad de dosis de medicamento en polvo, que contenga al menos un cuerpo modelado de una mezcla de una matriz termoplástica con un agente de secado encapsulado en ella, con preferencia gel de sílice, bentonita o un tamiz molecular, en especial, cuando en una matriz de un material termoplástico con una absorción de agua pequeña se forman canales, como los que se pueden obtener por disolución de componentes solubles del material coextrusionado. Para una absorción rápida de la humedad residual en la cámara de reserva también puede ser conveniente en este caso, que en una matriz de un material termoplástico con una absorción de agua pequeña se encapsulen como material de carga fibras, que absorban vapor de agua.

Para una producción en masa rentable es especialmente ventajoso que la mezcla se conforme en una matriz de un material termoplástico con una absorción de agua pequeña y un agente de secado encapsulado en ella, al menos como parte de una pared interior de una cámara de reserva, por medio de una inyección de varios componentes en un cuerpo de carcasa de un material plástico esencialmente impermeable a vapor de agua.

En el sentido del invento es, además, ventajoso, que el cuerpo de la carcasa y la tapa se sellen de manera hermética a agua, con preferencia con una soldadura con ultrasonido.

La producción es especialmente rentable, cuando la junta del cuerpo de la carcasa o de la corredera de dosificación se inyecta al mismo tiempo.

El invento se puede realizar ventajosamente desde el punto de vista económico en el caso de un inhalador para medicamentos en forma de polvo con una cápsula según el invento para el medicamento en polvo así como con un inhalador para medicamentos en forma de polvo en el que el medicamento pueda ser absorbido por el paciente por medio de una corriente de aire, que se caracteriza por un alojamiento para una cápsula para medicamentos en polvo según el invento.

Las ventajas del invento se manifiestan en especial para los pacientes necesitados de un tratamiento en el caso de una cápsula para medicamentos en polvo según el invento, que contenga un polvo con una o varias de las siguientes

sustancias activas: analgésicos, antialérgicos, antibióticos, anticolinérgicos, antihistamínicos, sustancias con acción antiinflamatoria, antipiréticos, corticoides, esteroides, antitusivos, dilatadores bronquiales, diuréticos, enzimas, sustancias eficaces para la circulación coronaria, hormones, proteínas y péptidos.

APLICACIÓN DEL INVENTO

Con el invento es posible preparar principios activos farmacodinámicos en forma de medicamentos pulverulentos, incluso con una gran sensibilidad a humedad o en condiciones climáticas ambiente desfavorables para un periodo de utilización grande y obtener con él también las ventajas de la utilización de inhaladores utilizables varias veces con cápsulas sustituibles de medicamentos en polvo.

También es posible preparar medicamentos en forma polvo para inhalación con distintas combinaciones de principios activos, mejorando las condiciones de almacenamiento, de las que algunos principios activos posean una mayor sensibilidad a humedad desde el punto de vista de la capacidad de almacenamiento, de su inalterabilidad o de sucapacidad de dosificación. Los principios activos, que pueden ser utilizadas con el invento pueden pertenecer, además, por ejemplo al grupo de beta-simpaticomiméticos: salbutamol, reproterol, fenoterol, formoterol, salmeterol. Ejemplos del grupo de los corticosteroides pueden ser: budesonida, beclometasona, fluticasona, triamcinolona, loteprednol, mometasona, flunisolida, ciclosonida. Ejemplos del grupo de los anticolinérgicos pueden ser: bromuro de ipatropio, bromuro de tiotropio, glicocopirrolatos.

Ejemplos del grupo de los analgésicos y de los preparados terapéuticos de la migraña pueden ser: morfina, tramadol, flupirtina, sumatriptano. Del grupo de los péptidos y de las proteínas se pueden utilizar por ejemplo: cetrorelix, insulina, calcitonina, hormona paratiroidea, análogos del factor VIII, alfa-interferón, beta-interferón, heparina, FSH (hormona estimulante folicular), colistina, tobramicina.

La aplicación no está limitada a los principios activos aquí mencionados. La cápsula para medicamentos en polvo descrita se presta para todas los principios activos, que se puedan dosificar en forma de polvo y administrar por inhalación. Por medio de modificaciones correspondientes del sistema y del dispositivo de dosificación también se presta el invento descrito para la combinación de principios activos, que contengan preparaciones líquidas, por ejemplo soluciones o suspensiones de principios activos con actividad farmacodinámica.

Los preparados de medicamentos en polvo, que pueden ser utilizados convenientemente con el sistema de cápsulas para medicamentos en polvo según el invento, pueden contener diferentes principios activos, como por ejemplo analgésicos, antialérgicos, antibióticos, anticolinérgicos, antihistamínicos, sustancias de acción antiinflamatoria, antipiréticos, corticoides, esteroides, antitusivos, broncodilatadores, diuréticos, enzimas, sustancias eficaces para la circulación coronaria,, hormonas, proteínas y péptidos. Ejemplos de analgésicos son codeína, diamorfina, dihidromorfina, ergotamina, fentanilo y morfina; ejemplos de antialérgicos son ácido cromoglicínico y nedocromil; ejemplos de antibióticos son cefalosporinas, fusafungina, neomicina, penicilinas, pentamidina, estreptomicina, sulfonamidas y tetraciclinas, colistina, tobramicina; ejemplos de anticolinérgicos son atropina, metonitrato de atropina, bromuro de ipratropio, bromuro de oxitropio, cloruro de trospio y bromuro de tiotropio; ejemplos de antihistamínicos son azelastina, flezelastina y metapirilieno; ejemplos de sustancias con actividad antiinflamatoria son beclometasona, budesonida, loteprednol, dexametasona, flunisolida, fluticasona, tipredano, triamciniolona, mometasona, ejemplos de antitusivos son narcotina y nsocapina; ejemplos de broncodilatadores son bambuterol, bitolterol, carbuterol, clenbuterol, efedrina, epinefrina, formoterol, fenoterol, hexoprenalina, ibuterol, isoprenalina, isoproterenol, metaproterenol, orciprenalina, fenilefrina, fenilpropanolamina, pirbuterol, procaterol, reproterol, rimiterol, salbutamol, salmeterol, sulfonterol, terbutalina y tolobuterol; ejemplos de diuréticos son amilorida y furosemida; un ejemplo de enzimas es tripsina; ejemplos de sustancias eficaces para la circulación coronaria son diltiazem y nitroglicerina; ejemplos de hormonas son cortisona, hidrocortisona y prednisolona; ejemplos de proteínas y péptidos son ciclosporinas, cetrorelix, glucagón e insulina. Otros principios activos que se pueden emplear son adrenocromo, colchicina, heparina, escopolamina. Los principios activos indicados a modo de ejemplo pueden emplearse en forma de bases o ácidos libres o en forma de sales farmacéuticamente compatibles. En calidad de iones conjugados pueden emplearse, por ejemplo, metales alcalinotérreos o alcalinos o aminas fisiológicamente compatibles así como, por ejemplo, acetato, bencenosulfonato, benzoato, hidrógeno-carbonato, hidrógeno-tartrato, bromuro, cloruro, yoduro, carbonato, citrato, fumarato, malato, maleato, gluconato, lactato, pamoato y sulfato. También pueden emplearse ésteres, por ejemplo acetato, acetonida, propionato, dipropionato, valerato.

El invento también hace posible, que el médico prescriba una dosificación adaptada con mucha exactitud al paciente durante un tiempo grande, sin que sea necesaria la evacuación, desfavorable desde el punto de vista de los costes del tratamiento, de cápsulas parcialmente vacías o sin que merme la compatibilidad con otras cápsulas con diferentes dispositivos de dosificación, por ejemplo con las cápsulas conocidas a través del documento WO 97/00703.

BREVE DESCRIPCIÓN DE LAS FIGURAS

Estas muestran:

20

25

30

35

40

45

50

La figura 1, una cápsula para medicamentos en polvo según el invento en una vista en perspectiva.

La figura 2, una vista en planta de una junta de una cápsula para medicamentos en polvo según el invento.

La figura 3, una vista de un elemento de arrastre de una corredera de dosificación de una cápsula para medicamentos en polvo según el invento.

La figura 4A, una vista del cuerpo de una corredera de dosificación de una cápsula para medicamentos en polvo según el invento.

5 La figura 4B, una sección longitudinal del cuerpo de la corredera de dosificación de una cápsula para medicamentos en polvo según el invento de la figura 4A.

La figura 5, una sección longitudinal de una cápsula para medicamentos en polvo según el invento en un inhalador con la corredera de dosificación en la posición de vaciado.

La figura 6, una sección longitudinal de una cápsula para medicamentos en polvo según el invento en un inhalador con la corredera de dosificación en la posición de llenado.

10

15

20

40

50

DESCRIPCIÓN DE EJEMPLOS DE EJECUCIÓN PREFERIDOS

La figura 1 representa una vista en perspectiva del cuerpo 11 de la carcasa de una cápsula para medicamentos en polvo según el invento para el alojamiento sustituible en un inhalador 2 de polvos. La cápsula para medicamentos en polvo representada posee en la parte superior del cuerpo 11 de su carcasa un borde 3, que comprende dos zonas 4 de asidero, para hacer posible la introducción cómoda de la cápsula para medicamentos en polvo en un inhalador 2 de polvos. En el ejemplo de ejecución representado se prevé al mismo tiempo en el borde 3 en una canal 5 anular conformado en él un dispositivo (no representado con detalle) para la indicación de la cantidad de dosis de medicamento remanentes en la cámara 6 de reserva o extraída de ella , por ejemplo con forma de cinta de película con marcas correspondientes, como se describe en particular en el documento WO 97/00703. Las marcas pueden ser leídas entonces por el usuario a través de la mirilla 7 del borde 3.

Del borde 3 sirve para alojar una tapa 8 con la que se puede cerrar una parte esencial de la cámara 6 de reserva, que forma la cápsula para medicamentos en polvo. Una tapa 8 de esta clase se sella convenientemente de manera hermética a agua con un cuello 10 corrido formado en el Interior del borde 3, por ejemplo por medio de soldadura con ultrasonido.

- Por debajo de la cámara 6 de reserva se dispone un canal 12 para la corredera de dosificación, que en el ejemplo de ejecución aquí descrito está formada por tres piezas, a saber un elemento 13 de arrastre, el cuerpo 14 propiamente dicho de la corredera de dosificación y una junta 15 (figuras 2, 3 y 4A y 4B). La corredera de dosificación es formada por el hecho de que la junta 15 representada en la figura 2 se aloja en el elemento 13 de arrastre representado en la figura 3 y que el elemento 13 de arrastre es fijado con presión sobre el cuerpo 14 de la corredera de dosificación.
- Como se desprende con claridad de la figura 1, el canal 12 de la corredera de dosificación posee en uno de sus extremos un orificio 16 y alrededor del orificio 16 se conforma una superficie 17 de asiento para la junta 15 de la corredera de dosificación. La superficie 17 de asiento se prevé al mismo tiempo como superficie de hermetización y se extiende en un plano aproximadamente perpendicular a la dirección del movimiento de la corredera de dosificación desde una posición de llenado, como la que se representa en la figura 5, a una posición de vaciado como la que se puede ver en la figura 6.

El cuerpo 14 de la corredera de dosificación representado en las figuras 4A y 4B comprende una cavidad 18 de dosificación, cuyo volumen define la cantidad dosificada preparada para una inhalación. La junta 15 también puede ser inyectada al mismo tiempo con un procedimiento de inyección de varios componentes y ser para ello, por ejemplo de un elastómero termoplástico. Correspondientemente, la superficie de hermetización también puede ser prevista en la corredera de dosificación y la junta 15 elástica puede estar montada, con preferencia inyectada, en la zona del orificio 16 del canal 12 de la corredera de dosificación.

El cuerpo 11 de la carcasa y/o la tapa 8 y/o el cuerpo 14 de la corredera de dosificación se pueden fabricar ventajosamente por inyección con un COC. Un material apropiado es el comercializado en Alemania con la denominación TOPAS® 8007 por la firma Ticona como producto para ensayos.

45 Para combinaciones de medicamentos en las que los polvos no se pueden conservar o sólo con dificultad en forma de mezcla también se pueden prever dos cámaras de reserva en lugar de la cámara 6 de reserva.

Las figuras 5 y 6 representan una sección longitudinal de la cápsula para medicamentos en polvo, como la que se debe alojar en un inhalador 2. Como se puede ver en las figuras, la corredera de dosificación designada en su conjunto con 9 puede ser desplazada en el canal 12 de la corredera de dosificación al menos desde la posición de llenado representada en la figura 6 a la posición de vaciado representada en la figura 5.

En la posición de llenado representada en la figura 6 puede caer el medicamento en polvo de la cámara 6 de reserva a la cavidad 18 de dosificación. Cuando la cavidad 18 de dosificación está llena con un medicamento en polvo tal como se desea, se puede desplazar la corredera 9 de dosificación por medio de los elementos de accionamiento, sólo

representados esquemáticamente, de un inhalador de polvos, como se describe por ejemplo en el documento US 5,840,279 A, a la posición de vaciado representada en la figura 5.

Se alcanza la posición de vaciado, cuando la cavidad 18 de dosificación se halle sobre un orificio 19 de vaciado. Cuando la corredera 9 de dosificación alcanza esta posición, el medicamento en polvo puede caer de las cavidades 18 de dosificación a través de del orificio 19 de vaciado, por ejemplo en un canal 40 de polvos de un inhalador 2.

En la figura 6 se puede ver con claridad la posición de llenado de la corredera 9 de dosificación con la cavidad 18 de dosificación situada debajo de un orificio 21 del lado inferior de la cámara 6 de reserva. Para alcanzar la posición de vaciado se desplaza la corredera 9 de dosificación hacia la izquierda en la figura 6 hasta que esta cavidad 18 de dosificación coincida con el orificio 19 de vaciado y el medicamento en polvo pueda caer hacia abajo.

En la figura 6 se puede ver, además, con claridad, que la junta 15 de la corredera 9 de dosificación asienta en la superficie 17 de asiento del canal 12 de la corredera de dosificación y que con una deformación elástica preferentemente pequeña da lugar a una buena hermetización. Esto puede tener lugar por medio de un pretensado con medios de muelle, en especial a través de un dispositivo de accionamiento del inhalador para la corredera 9 de dosificación, que de lugar, además, a un retorno inmediato de la corredera 9 de dosificación desde la posición de vaciado, como la que se representa en la figura 5, a su posición de llenado hermetizada, como la que se representa en la figura 6, una vez, que se extrajo una dosis de medicamento.

Para una presión de asiento mayor de la junta 15 de la corredera 9 de dosificación en la superficie 17 de asiento del canal 12 de la corredera de dosificación y con ello para una hermetización especialmente fiable durante el almacenamiento de una cápsula para medicamentos en polvo según el invento, en especial antes de la primera colocación en un inhalador de polvos, es ventajoso prever, algo más hacia la derecha referido a la representación de la figura 6, una posición de almacenamiento adicional para la corredera 9 de dosificación de una cápsula para medicamentos en polvo llena, en la que la corredera 9 de dosificación puede ser retenida por medio de la unión 22 elástica disoluble esbozada. En esta posición de almacenamiento se somete, además, la junta 15 de la corredera 9 de dosificación a una fuerza de pretensado mayor en la superficie 17 de asiento del canal 12 de la corredera de dosificación.

En la parte superior de la cámara de reserva se aloja todavía de manera ventajosa un cuerpo 23 modelado, que se asegura con preferencia por medio de cantos 24 correspondientes en su posición para evitar esfuerzos mecánicos, que actúen sobre el medicamento en polvo. El cuerpo 23 modelado se fabrica convenientemente por inyección a partir de una mezcla de una matriz termoplástica y un agente de secado. El agente de secado debe absorber en este caso en especial la humedad, que se halla en la cámara 6 de reserva o que penetra a través de la cavidad 18 de dosificación.

Con la utilización de un cuerpo modelado de esta clase se asegura, que ningún grumo de este agente de secado, de manera típica gel de sílice, pueda penetrar en el medicamento y con ello en las vías respiratorias del paciente. Un cuerpo modelado de esta clase puede estar formado por una matriz de PP, que no absorbe agua por sí misma y que se inyecta mezclada con un compuesto soluble en agua y el agente de secado, por ejemplo polietilenglicol, eliminando después el componente soluble por lavado. Con ello se obtiene una estructura a modo de esponja con canales, que, después del secado del cuerpo modelado, hacen posible una absorción rápida del agua del gel de sílice (no soluble en agua) por medio de superficies grandes y aprovechando también muna condensación capilar.

Para obtener una absorción de agua rápida en todo el cuerpo 23 modelado también puede ser conveniente encapsular en la mezcla de agente de secado y matriz termoplástica fibras adecuadas en calidad de material de carga, que debido a su efecto capilar dan lugar a un transporte rápido de la humedad del aire, respectivamente el agua hacia el agente de secado.

El cuerpo 23 modelado también se puede configurar a modo de un revestimiento de la pared a modo de un elemento adicional como se indica a título de ejemplo únicamente en la figura 5 o formar, por medio de una inyección de varios componentes, de manera completa o parcial una pared interior de la cámara 6 de reserva durante la fabricación de la cápsula para medicamentos en polvo.

45

40

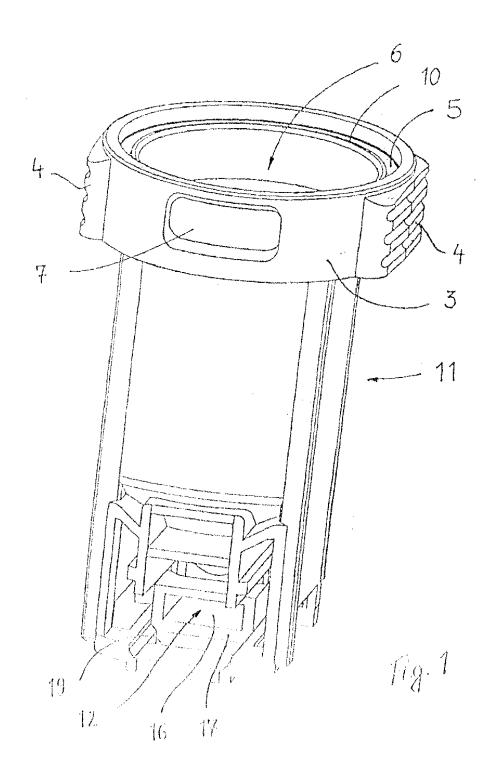
5

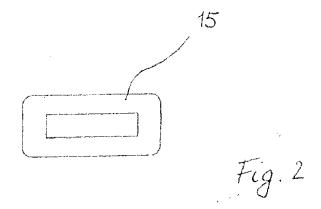
20

REIVINDICACIONES

- 1. Cápsula (1) para medicamentos en polvo para inhaladores de polvos para el alojamiento de un depósito de medicamento para una gran cantidad de dosis de medicamento en polvo con al menos una cámara (6) de reserva y con un dispositivo de dosificación integrado, pudiendo adoptar el dispositivo de dosificación al menos una posición de llenado y una posición de vaciado, comprendiendo al menos una corredera (9, 13, 14) de dosificación, que puede ser desplazada de la posición de llenado a la posición de vaciado en un canal (12) de la corredera de dosificación, caracterizada porque se prevé una junta (15), que hermetiza ampliamente la cámara (6) de reserva el menos en la posición de llenado del dispositivo de dosificación contra la humedad del medio ambiente, siendo la junta (15), cuando se desplaza en la dirección de dosificación desde su posición de vaciado a su posición de llenado, deformable elásticamente sin un movimiento relativo de deslizamiento de la junta (15) con relación a las superficies (17) de hermetización.
- 2. Cápsula (1) para medicamentos en polvo según la reivindicación 1, caracterizada porque la junta (15) se fabrica con un caucho de silicona o un elastómero.
- 3. Cápsula para medicamentos en polvo según una de las reivindicaciones precedentes, caracterizada porque la junta (15) se fabrica con un elastómero termoplástico con preferencia un TPE-E (elastómero termoplástico de poliéster).

10


25


30

35

40

- 4. Cápsula (1) para medicamentos en polvo según la reivindicación 1, caracterizada porque el canal (12) de la corredera de dosificación posee en uno de sus extremos un orificio (16) orientado hacia el medio ambiente por el que puede pasar una parte de la corredera (9, 13, 14) de dosificación y porque alrededor del orificio (16) se prevé una superficie (17) de asiento para la junta (15).
- 5. Cápsula (1) para medicamentos en polvo según la reivindicación 4, caracterizada porque la corredera (9, 13, 14) de dosificación posee una superficie de hermetización prevista en un plano aproximadamente transversal a la dirección de su movimiento desde la posición de llenado a la posición de vaciado.
 - 6. Cápsula (1) para medicamentos en polvo según una de las reivindicaciones precedentes, caracterizada porque la corredera (9, 13, 14) de dosificación puede ser desplazada, además, a una posición de almacenamiento y porque la junta (15) es pretensada elásticamente con efecto de hermetización al menos en la posición de almacenamiento de la corredera (9, 13, 14) de dosificación.
 - 7. Cápsula (1) para medicamentos en polvo según la reivindicación 6, caracterizada porque la corredera (9, 13, 14) de dosificación es fijada en la posición de almacenamiento con medios con elasticidad de muelle.
 - 8. Cápsula para medicamentos en polvo según una de las reivindicaciones precedentes, caracterizada porque el dispositivo de dosificación comprende al menos una cavidad (18) de dosificación para el alojamiento de una cantidad predeterminada de un medicamento en polvo.
 - 9. Cápsula para medicamentos en polvo según una de las reivindicaciones precedentes, caracterizada porque la cápsula para medicamentos en polvo posee al menos dos cámaras (6) de reserva.
 - 10. Cápsula para medicamentos en polvo según la reivindicación 9, caracterizada porque la cápsula para medicamentos en polvo posee un dispositivo de dosificación para cada una de las cámaras (6) de reserva de una cavidad (18) de dosificación para la dosificación de una cantidad predeterminada de un principio activo médico prevista en las cámaras (6) de reserva.
 - 11. Cápsula para medicamentos en polvo según una de las reivindicaciones precedentes, caracterizada porque los dispositivos de dosificación de las diferentes cápsulas para medicamentos en polvo poseen cavidades (18) de dosificación con un volumen igual o distinto.
 - 12. Cápsula para medicamentos en polvo según una de las reivindicaciones precedentes, caracterizada porque la cápsula (1) posee, además, un dispositivo para la indicación de las cantidades de dosis de medicamento remanentes en las cámaras (6) de reserva para medicamento en polvo o extraídas de las cámaras (6) de reserva.

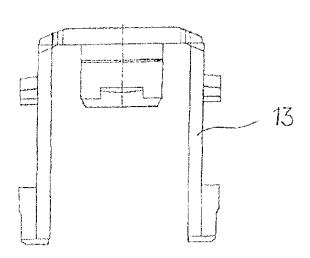


Fig. 3

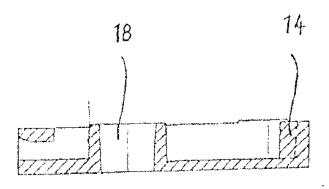


Fig. 4B

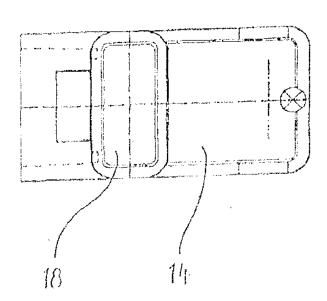
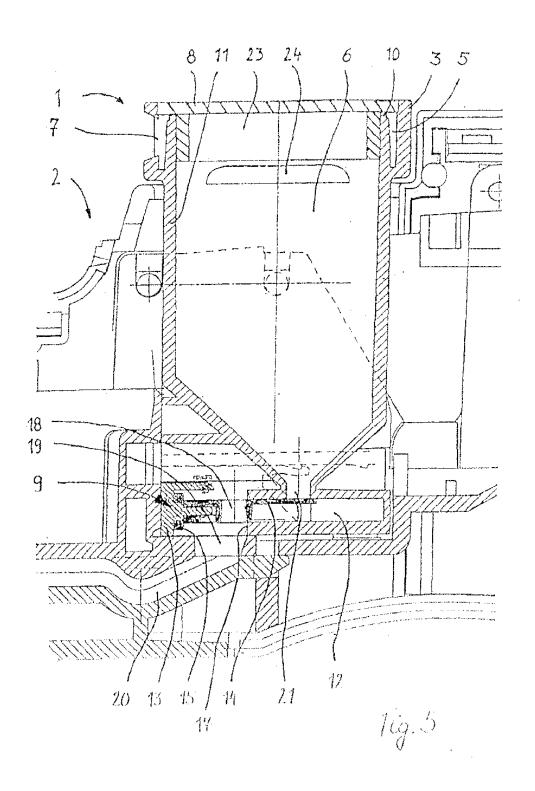
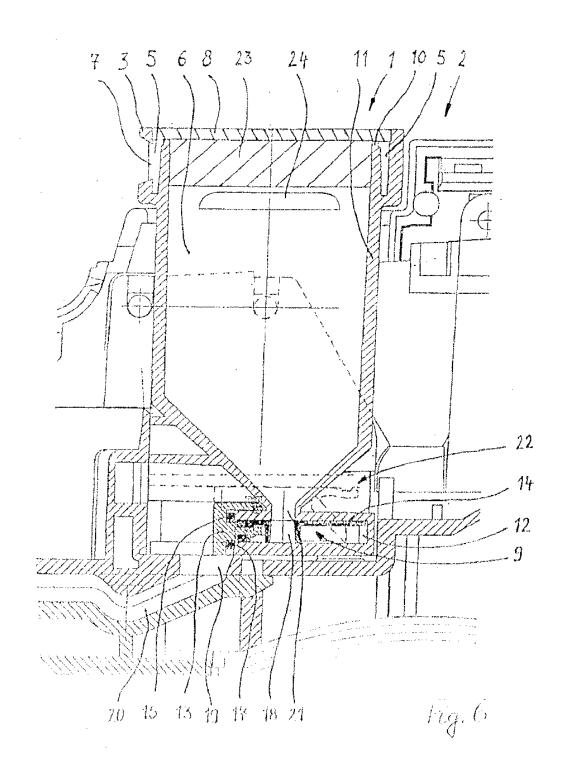




Fig. 4 A

