

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 367 831

(51) Int. Cl.:

B66B 5/02 (2006.01) **B66B 5/14** (2006.01)

(12)	TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 08785905 .4
- 96 Fecha de presentación : 03.07.2008
- 97 Número de publicación de la solicitud: 2173651 97 Fecha de publicación de la solicitud: 14.04.2010
- 54 Título: Dispositvo y procedimiento para el funcionamiento de un ascensor.
- (30) Prioridad: 03.07.2007 EP 07111603
- Titular/es: INVENTIO AG. Seestrasse 55 Postfach 6052 Hergiswil, CH
- Fecha de publicación de la mención BOPI: 08.11.2011
- (2) Inventor/es: Kostka, Miroslav
- (45) Fecha de la publicación del folleto de la patente: 08.11.2011
- 74) Agente: Aznárez Urbieta, Pablo

ES 2 367 831 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Dispositivo y procedimiento para el funcionamiento de un ascensor

5

10

15

20

25

30

35

40

45

50

La presente invención se refiere a un dispositivo y a un procedimiento para el funcionamiento de un ascensor con los que, si se comprueba que la carga del ascensor sobrepasa un valor límite, se impide el desplazamiento.

Por ejemplo, el documento WO 99/50165 da a conocer un llamado control de sobrecarga. En este caso, la carga del ascensor se registra mediante un sensor de carga. Si la carga sobrepasa un valor límite básico, se impide que se cierren las puertas del ascensor para que no pueda tener lugar ningún desplazamiento. Al mismo tiempo se emite una señal acústica que indica la sobrecarga. Sólo cuando el sensor de carga detecta que la carga del ascensor ya no sobrepasa el valor límite básico, las puertas se cierran y comienza el servicio de desplazamiento, desactivándose la señal de sobrecarga.

De este modo se asegura que no se excedan unos valores límite predeterminados para el funcionamiento seguro del ascensor en lo que respecta a la carga de los medios de suspensión, la potencia de operación y de frenado del accionamiento, las fuerzas de frenado y de retención del dispositivo de freno y similares. Por motivos de seguridad, generalmente se eligen valores límite más bien bajos. Para ello, durante el diseño, los valores mecánicos y de operación teóricamente alcanzables se dividen entre factores de seguridad mayores de 1 antes de compararlos con las cargas máximas presentes durante el servicio normal.

Igualmente, por ejemplo el documento WO 99/50165 arriba mencionado da a conocer la utilización de ascensores también para la evacuación de personas, por ejemplo en caso de incendio o de amenaza de bomba. De este modo, a partir de una altura de edificio determinada se puede llevar a cabo una evacuación, en particular de personas discapacitadas o mayores, más rápidamente que a través de las vías de evacuación convencionales, por ejemplo las escaleras. Así, en caso de edificios extremadamente altos, los ascensores constituyen prácticamente la única posibilidad de evacuar el edificio con suficiente rapidez.

Sobre todo en aquellas situaciones en las que el riesgo de un fallo del ascensor a causa de una sobrecarga pasa a segundo plano en comparación con las consecuencias de no evacuar las personas a tiempo, los valores límite elegidos en base al servicio normal, que son intencionadamente bajos por motivos de seguridad, impiden aprovechar toda la capacidad de transporte técnicamente posible del ascensor. Algo similar ocurre en otras situaciones, por ejemplo durante breves situaciones de tráfico punta, en las que los bajos valores límite, razonables para el servicio normal, limitan innecesariamente la capacidad del ascensor.

Por consiguiente, la presente invención tiene por objeto aumentar la capacidad de transporte de un ascensor en situaciones especiales.

Para resolver este objetivo, se ha perfeccionado un procedimiento de acuerdo con el preámbulo de la reivindicación 1 mediante las características distintivas indicadas en la misma.

El objeto se resuelve además mediante un procedimiento para el funcionamiento de un ascensor de acuerdo con la reivindicación 13.

La reivindicación 10 protege el dispositivo correspondiente para llevar a cabo un procedimiento según la invención.

De acuerdo con la invención, durante el servicio normal se realiza un control de sobrecarga convencional, es decir, se impide el servicio de desplazamiento si se comprueba que la carga del ascensor sobrepasa un valor límite básico. El valor límite básico puede corresponder, en particular, a la llamada carga nominal y se puede comparar por ejemplo con la carga útil actual registrada o con el peso total instantáneo de la cabina del ascensor. Esta carga del ascensor se puede registrar de forma conocida en sí, por ejemplo mediante un dispositivo dinamométrico en un medio de suspensión, en la cabina de ascensor, en un accionamiento del ascensor y/o en un dispositivo de freno del ascensor.

Cuando se comprueba que existe una situación especial, se conmuta a un modo de situación especial. Esta situación especial se puede producir sobre todo si se debe evacuarse el edificio al que da servicio el ascensor. Esta situación se puede registrar, por ejemplo, mediante una alarma de evacuación, que puede ser disparada por ejemplo de forma manual a través de los conmutadores de emergencia correspondientes y/o automáticamente, por ejemplo a través de sistemas de detección de incendios, sistemas de detección de seísmos o similares.

Adicional o alternativamente, una situación especial en el sentido de la presente invención también puede consistir por ejemplo en una situación de tráfico punta en la que, preferentemente durante un período breve, se requieren capacidades de transporte claramente superiores a la media. Una situación especial en el sentido de la presente invención puede consistir principalmente en una, así llamada, punta de tráfico descendente, en la que se ha de transportar en sentido descendente una carga útil extraordinariamente grande, ya que en este caso la solicitación es menor, principalmente para el accionamiento.

No obstante también se pueden concebir otras situaciones especiales, por lo que la presente invención no se limita a situaciones de evacuación y tráfico punta.

De acuerdo con la invención, en el modo de situación especial está previsto que el valor límite que al ser sobrepasado por la carga del ascensor impide el desplazamiento sea sustituido por un segundo valor límite mayor que el valor límite básico utilizado durante el servicio normal.

5

10

15

20

25

30

35

40

45

50

55

De este modo, el servicio de desplazamiento del ascensor sólo se impide cuando se sobrepasa el segundo valor límite, que es más alto, de modo que el ascensor puede transportar mayores cargas útiles en cada viaje. Así se aprovechan de forma precisa las reservas mecánicas y de accionamiento que presenta el ascensor debido a su diseño teniendo en cuenta los factores de seguridad. Esto es posible porque, como ya se ha indicado anteriormente, al diseñar ascensores normalmente se tienen en cuenta factores de seguridad relativamente altos, es decir, los ascensores teóricamente pueden funcionar con cargas más altas. Esto permite aumentar la capacidad de transporte, sobre todo en una situación de evacuación, en la que el riesgo de fallo normalmente pasa a segundo plano en comparación con los daños resultantes de no llevar a cabo una evacuación a tiempo.

Generalmente los ascensores se diseñan para un servicio normal más frecuente y de larga duración. Sin embargo, en general los componentes del ascensor pueden resistir cargas más altas que sólo se producen en breves momentos o en raras ocasiones. Por ejemplo, la magnitud que establece el límite en los electromotores es el calentamiento en régimen permanente, de modo que éstos pueden producir durante periodos breves rendimientos en parte claramente superiores. Por ello, en una realización preferente de la presente invención, en situaciones de tráfico punta con una demanda extraordinaria de capacidad de transporte también se conmuta al modo de situación especial.

La conmutación al modo de situación especial tiene lugar preferentemente de forma automática en cuanto se detecta una situación especial. Adicional o alternativamente, la conmutación al modo de situación especial también puede tener lugar de forma manual, por ejemplo por parte de las fuerzas de intervención en caso de una evacuación.

Ventajosamente, el servicio de desplazamiento se impide evitando que se cierre una puerta del ascensor. Los controles de ascensor usuales impiden que la cabina pueda moverse mientras siga abierta una puerta del ascensor. En el caso de las cabinas abiertas, se puede tratar por ejemplo de la puerta de caja en un piso en el que la cabina del ascensor esté parada en ese momento. En caso de cabinas cerradas con puertas de cabina, el servicio de desplazamiento se puede impedir mientras estén abiertas una o más puertas de la cabina y/o una o más puertas de la caja del ascensor. Adicional o alternativamente, el servicio de desplazamiento también se puede impedir de otro modo, por ejemplo mediante el bloqueo directo de un dispositivo de freno, parada y/o accionamiento.

Preferentemente se emite una segunda señal cuando se impide el servicio de desplazamiento, ya que la carga del ascensor sobrepasa el valor límite, es decir, en el servicio normal el valor límite básico y en el modo de situación especial el segundo valor límite. Esta señal puede ser igualmente visual, acústica o perceptible de otro modo e indica a las personas que ya se encuentran dentro de la cabina de ascensor y/o a las personas que llegan a ella que ya se ha sobrepasado la carga admisible del ascensor y que el servicio de desplazamiento no podrá tener lugar hasta que la carga del ascensor haya disminuido a un valor inferior al valor límite admisible.

Para ello, la segunda señal se puede emitir igualmente dentro de la cabina de ascensor y/o fuera de ella, por ejemplo cerca de una puerta de la caja. Preferentemente, la señal indica en qué medida se ha sobrepasado el valor límite admisible (por ejemplo el peso en kg) y/o cuántas personas deben abandonar la cabina (por ejemplo utilizando como base un peso medio por persona) para no sobrepasar el valor límite. Alternativa o adicionalmente se puede indicar la carga de ascensor actual registrada para que los usuarios del ascensor se den cuenta de que ésta se puede reducir mediante la salida de personas o de carga útil de la cabina de ascensor.

En una realización preferente de la presente invención, en el modo de situación especial se emite una primera señal que indica que casi se ha alcanzado la carga máxima admisible del ascensor para la situación especial cuando se comprueba que la carga del ascensor ha sobrepasado un tercer valor límite. Al igual que la segunda señal, la primera señal también se puede emitir de forma óptica, acústica o de otro modo, y puede consistir por ejemplo en una mera señal de aviso (por ejemplo se ilumina una lámpara de aviso y/o suena una señal acústica de aviso) o puede indicar la diferencia entre la carga actual y la carga máxima admisible del ascensor (por ejemplo en forma de peso o de un número de personas de peso medio).

El tercer valor límite puede corresponder por ejemplo al valor límite básico, de forma que en este caso la primera señal indica que ya se ha alcanzado la carga máxima admisible del ascensor para el servicio normal. Del mismo modo, el tercer valor límite puede ser un poco más alto que valor límite básico, siempre que sea menor que el segundo valor límite con el que se impide el servicio de desplazamiento. Alternativamente, el tercer valor límite también puede ser más bajo que el valor límite básico para indicar a tiempo, antes de alcanzar la carga máxima del ascensor, que se va a producir una sobrecarga y así evitar que se monten más personas.

Mientras sólo se supere el tercer valor límite, pero no el segundo, el ascensor puede funcionar normalmente también en el modo de situación especial. En particular, un control de espacio de la puerta puede desbloquear el cierre de la puerta únicamente si se comprueba que no hay ninguna persona u obstáculo en el área de las puertas de

ascensor. Para ello, el control de espacio de puerta puede controlar el espacio entre las puertas del ascensor (puertas de cabina y/o puertas de caja) o el espacio cercano a éste, por ejemplo mediante una cortina fotoeléctrica o una célula fotoeléctrica. Adicional o alternativamente, el control de espacio de puerta también puede tener en cuenta las señales de una tecla de apertura de puertas, con la que las puertas del ascensor se mantienen abiertas manualmente.

Preferentemente, en el modo de situación especial, el ascensor también puede funcionar en un primer modo de servicio diferente del servicio normal si se comprueba que la carga del ascensor sobrepasa el tercer valor límite. En este primer modo de servicio, la potencia de accionamiento del ascensor, su perfil de marcha, su comportamiento de frenado y similares se pueden adaptar a la mayor carga del ascensor. Por ejemplo, el control de ascensor puede tener en cuenta la mayor carga del ascensor, que sobrepasa el tercer valor límite, haciendo que la cabina del ascensor se acelere más lentamente, se frene antes y/o sea retenida mediante mayores fuerzas de frenado.

5

10

15

20

25

30

35

40

45

50

55

Adicional o alternativamente a la emisión de la primera señal y/o el funcionamiento del ascensor en el primer modo de servicio, en una realización preferente de la presente invención se puede prever un cuarto valor límite. Si se comprueba que la carga del ascensor sobrepasa este cuarto valor límite, que es más bajo que el segundo valor límite, se puede desactivar el control de espacio de puerta y comenzar el cierre de las puertas de ascensor. Preferentemente, en este proceso permanece activo un limitador de la fuerza de cierre de las puertas del ascensor, que evita que éstas produzcan lesiones a personas o dañen obstáculos, ya que al alcanzarse el límite de fuerza de cierre se interrumpe el proceso de cierre y, preferiblemente, se abre de nuevo la puerta del ascensor (al menos parcialmente), y de forma ventajosa inmediatamente después comienza un nuevo intento de cierre. Este modo conocido como "control de empuje" señala, en caso dado adicionalmente a la primera señal, que se ha sobrepasado el cuarto valor límite y evita de forma más eficaz que aumente la carga de la cabina.

En el servicio normal también puede tener lugar un modo de empuje de este tipo (también denominado "función finaltimer"): el control de espacio de puerta comienza un proceso de cierre de las puertas de ascensor si comprueba que la zona de cierre de las puertas del ascensor está bloqueada durante un tiempo determinado, y las puertas se abren de nuevo al menos parcialmente en cuanto alcanzan el límite de fuerza de cierre, para a continuación comenzar un nuevo intento de cierre.

Sin embargo, a diferencia del servicio normal, en el modo de situación especial el cierre de las puertas del ascensor en el modo de empuje comienza de forma ventajosa inmediatamente, es decir, independientemente de la autorización del control de espacio de puerta, en cuanto la cabina de ascensor recibe una orden de marcha y/o en cuanto se sobrepasa el cuarto valor límite. Por consiguiente, si se sobrepasa el cuarto valor límite, mediante el modo de empuje se puede interrumpir automáticamente la afluencia de personas a la cabina de ascensor, que entonces puede esperar una orden de marcha. De este modo se asegura que la cabina del ascensor acepte la mayor carga útil posible en la situación especial.

Igualmente, el control de espacio de puerta también se puede desactivar en cuanto se produce la conmutación al modo de situación especial, de modo que el cierre de las puertas de ascensor comienza de inmediato, independientemente de la superación un valor límite, tan pronto como la cabina de ascensor recibe una orden de marcha, con el fin de empezar lo más rápidamente posible el transporte de pasajeros y de este modo aumentar su capacidad.

En el servicio normal y/o en el modo de situación especial, el control de empuje se puede conmutar preferentemente a un modo de empuje continuo, en el que las puertas ejercen una presión continua sobre el obstáculo con la fuerza de cierre máxima admisible si ya se ha ejecutado una cantidad predeterminada de intentos de cierre sin que las puertas se hayan cerrado por completo. Por consiguiente, en este modo de empuje continuo, las puertas del ascensor ejercen una presión continua sobre el obstáculo en la zona de cierre. Si a pesar de ello el obstáculo continúa bloqueando el cierre de las puertas durante un tiempo predeterminado, el ascensor, preferentemente en el servicio normal, también se puede bloquear por completo, ya que esta situación indica un obstáculo que no puede ser retirado mediante "empuje". Si después de un tiempo predeterminado de empuje continuo las puertas del ascensor siguen sin cerrarse, se puede emitir una alarma para avisar, por ejemplo a un trabajador de mantenimiento.

Preferentemente, en el modo de empuje las puertas del ascensor se cierran más despacio de lo normal, para no sorprender al usuario. En particular, mediante este control de empuje se puede interrumpir con poca fuerza una afluencia de personas esencialmente continua a la cabina de ascensor. Si hay personas que se encuentran en la zona de cierre de las puertas del ascensor y si la desactivación del control del espacio de puerta impiden el cierre de las puertas del ascensor, favoreciendo así que la cabina se siga cargando, y debido al cierre (es decir, el "empuje") de las puertas dichas personas se salen de zona de cierre, las puertas del ascensor se pueden cerrar y la cabina puede comenzar el servicio de desplazamiento.

De forma especialmente preferente, el control de empuje continúa hasta que se cierren las puertas de ascensor. Es decir, si las puertas de ascensor se han vuelto a abrir tras topar con un obstáculo en la zona de cierre debido a la limitación de la fuerza de cierre, automáticamente comienzan de inmediato un nuevo intento de cierre, hasta que las puertas de ascensor se cierren por completo. En este contexto, al alcanzar una fuerza de cierre máxima, las puertas se pueden abrir de nuevo por completo o se pueden mover únicamente un poco en el sentido de apertura, para que sólo se abran parcialmente y el siguiente intento de cierre se produzca más rápidamente.

Esta última forma de realización descrita se puede poner en práctica alternativamente a la realización anteriormente descrita. Es decir, en lugar de emitir la primera señal se puede ejecutar el modo de empuje. No obstante, preferiblemente las dos realizaciones están combinadas entre sí, en cuyo caso se elige un cuarto valor límite mayor que el tercer valor límite pero todavía inferior al segundo valor límite. De esta forma, en el modo de situación especial, cuando se sobrepasa el tercer valor límite, primero se emite la primera señal. Si gracias a ello ya no monta ninguna persona más, las puertas se pueden cerrar estando activo el control de espacio de la puerta y el servicio de desplazamiento puede comenzar. Si se siguen montando personas, impidiendo que se cierren las puertas debido al control del espacio de puerta todavía activo, a continuación se sobrepasa el cuarto valor límite y el ascensor comienza con el modo de empuje, que indica con más insistencia que se va a superar inminentemente la carga máxima del ascensor y que es particularmente adecuado para interrumpir una afluencia de personas esencialmente continua a la cabina de ascensor. Si esta medida tiene éxito y las puertas se cierran, el ascensor puede comenzar el servicio de desplazamiento.

5

10

15

20

30

35

40

45

50

55

Independientemente de que haya previsto o no un tercer valor límite, el ascensor puede funcionar en un segundo modo de servicio diferente del servicio normal si se detecta que la carga del ascensor sobrepasa el cuarto valor límite. Como se ha explicado en relación con el primer modo de servicio, el control del ascensor puede tener en cuenta la mayor carga del ascensor, por ejemplo frenando antes o con más fuerza, acelerando más lentamente, aplicando mayores fuerzas de frenado o retención, o similares. La diferencia entre el segundo modo de servicio y el primer modo de servicio arriba descrito puede consistir en que en el segundo modo de servicio se tiene en cuenta la mayor carga del ascensor. Mientras que el primer modo de servicio se basa en una carga del ascensor superior al cuarto valor límite, el segundo modo de servicio está diseñado para una carga de ascensor superior al cuarto valor límite.

El cuarto valor límite corresponde ventajosamente al menos al 110%, preferentemente al menos al 120% y de forma especialmente preferente al menos al 125% del valor límite básico, que ventajosamente puede corresponder a su vez a la carga nominal del ascensor.

Ventajosamente, el segundo valor límite corresponde al menos al 110%, preferentemente al menos al 120%, de forma especialmente preferente al menos al 125% y de forma particularmente preferente al menos al 130% del valor límite básico.

El procedimiento según la invención se puede aplicar de múltiples formas en un dispositivo que controla el funcionamiento del ascensor, pudiendo incluir el concepto "controlar" igualmente "regular". En particular, el procedimiento se puede poner en práctica en un control de ascensor central o en un control de cabina individual. Por ejemplo, el servicio de desplazamiento puede ser impedido igualmente por un control de ascensor que controle una de varias cabinas autónomas o por un control de ascensor central que controle varias cabinas de un sistema de ascensores, principalmente todas ellas.

Otros objetivos, ventajas y características de la presente invención se desprenden de las reivindicaciones dependientes y del siguiente ejemplo de realización.

A continuación se explica un ejemplo de realización esquemático de la invención con referencia a las figuras adjuntas.

- Fig. 1: síntesis de los valores límite para la carga de ascensor utilizados en el ejemplo de realización.
- Fig. 2: organigrama de un procedimiento para el funcionamiento de un ascensor de acuerdo con una forma de realización de la presente invención.

En la Figura 1 están representados, por orden de magnitud, los valores límite G1, G2, G3, G4 para la carga de ascensor L utilizados en el ejemplo de realización. El valor límite básico G1 es el valor límite que, en caso de ser sobrepasado, impide el desplazamiento del ascensor en el servicio normal. El valor límite básico G2 es el valor límite que, en caso de ser sobrepasado, impide el servicio del ascensor en el modo de situación especial. Los valores límite G3 y G4 controlan la activación de modos de servicio particulares en el modo de situación especial, en los que determinados parámetros de servicio se adaptan a la carga actual L del ascensor.

En la Figura 2 está representada esquemáticamente la sucesión de pasos individuales de un procedimiento de acuerdo con una realización de la presente invención. Los pasos individuales se pueden poner en práctica por ejemplo en un microcontrolador o en forma de un programa a ejecutar por una CPU. Diversas partes del procedimiento también se pueden realizar de forma descentralizada mediante diferentes dispositivos, que preferentemente se pueden comunicar entre sí.

La Figura 2 muestra una realización de la invención especialmente preferente en la actualidad. No obstante, en un procedimiento según la invención se pueden suprimir partes individuales del procedimiento.

Comenzando con el paso S100, cuando un ascensor ha recibido una orden de marcha (por ejemplo mediante la pulsación de una tecla de piso en la cabina), primero se comprueba si existe una situación especial S.

La existencia de una situación especial se puede detectar por ejemplo si se ha registrado una alarma de evacuación disparada manualmente (por ejemplo accionando un botón de emergencia) o automáticamente (por ejemplo mediante un dispositivo de detección de incendios).

Si en el paso S100 se comprueba que no existe ninguna situación especial S (S100: N), el proceso pasa al paso S110, en el que se comprueba si I carga del ascensor L sobrepasa un valor límite básico G1. En el ejemplo de realización, como valor límite básico G1 se ha elegido la carga nominal de la cabina del ascensor. La carga del ascensor L se registra de forma conocida en sí mediante un dispositivo de registro de fuerzas, por ejemplo mediante bandas de medición de dilatación dispuestas por ejemplo en un elemento de conexión entre una correa de suspensión y la cabina del ascensor o entre el suelo y el cuerpo de la cabina.

5

10

15

20

25

30

35

40

45

50

55

60

Si en el paso S110 se comprueba que la carga de ascensor L no sobrepasa el valor límite básico G1 (S110: N), se inicia el cierre de las puertas de ascensor (puertas de cabina y de caja). Para ello, en el paso S120 se comprueba, mediante un control del espacio de puerta (no representado), si la zona de cierre entre las puertas de ascensor y también el espacio cercano a dicha zona de cierre delante y detrás de las puertas de ascensor están despejados. Si el control de espacio de puerta autoriza el cierre de las puertas (S120: Y), en el paso S130 se pone en funcionamiento el accionamiento de cierre de puertas, para cerrar las puertas del ascensor a una primera velocidad (Close 1). Si en este proceso no se alcanza una fuerza de cierre admisible FM (S135: N) porque las puertas no topan con ningún obstáculo al cerrarse, las puertas se cierran por completo (S140: Y). Después, la cabina puede iniciar su servicio de desplazamiento normal (S150).

Si al cerrarse las puertas de ascensor éstas topan con un obstáculo que opone una resistencia demasiado alta al cierre, la fuerza de cierre F alcanza una fuerza de cierre máxima admisible FM (S135: Y). A continuación, las puertas del ascensor se abren de nuevo, al menos parcialmente (S160), y el control del ascensor vuelve al paso S100. Si la situación no cambia, después de transcurrir un período de tiempo predeterminado (no representado) comienza un nuevo intento de cierre.

Simultáneamente con el primer inicio del cierre de puertas (S130) después de la recepción de la orden de marcha se pone en funcionamiento un temporizador TIMER 1 (S132), que comienza una cuenta atrás del tiempo normal necesario para el cierre de las puertas de ascensor, incluyendo una cantidad predeterminada de intentos de empuje y en caso dado un tiempo admisible de empuje continuo. Si al final de la cuenta atrás de dicho temporizador TIMER 1, es decir después de transcurrir un tiempo predeterminado, las puertas del ascensor todavía no se han cerrado por completo (no Y en S140), se emite una alarma (no representada) que por ejemplo informa a un trabajador de mantenimiento para que retire manualmente el obstáculo que bloquea las puertas.

Si en el paso S120 el control del espacio de puerta comprueba que la zona de cierre entre las puertas de ascensor no está despejado o que hay un obstáculo en el espacio de puerta, es decir en la zona de cierre o cerca de ésta, delante o detrás de la misma, no autoriza el cierre de las puertas del ascensor (S120: N). En este caso no se activa el accionamiento de cierre de puertas, sino que el control del ascensor vuelve al paso S100. Si la situación no cambia, el control del ascensor recorre de nuevo los pasos S100 a S120 hasta que se haya retirado el obstáculo del espacio de la puerta y el control del espacio de puerta autorice el cierre de la puerta (S120: Y). Si transcurre un período de tiempo predeterminado durante el cual el control del espacio de puerta no autoriza el cierre de las puertas del ascensor, se conmuta a un modo de empuje y se inicia el cierre a pesar de ello (no representado).

Si en el paso S110 en servicio normal se comprueba que la carga de ascensor L sobrepasa el valor límite básico G1 (S110: Y), se impide el cierre de las puertas (S300). De este modo se impide el servicio de desplazamiento del ascensor mientras las puertas estén abiertas. En el siguiente paso S310 se emite una segunda señal SGNL2 que indica a los pasajeros que se encuentran en la cabina que se ha sobrepasado la carga admisible del ascensor. Para ello, en la cabina se puede encender una pantalla que indique el exceso en kg con respecto a la carga máxima admisible del ascensor en un color de advertencia, por ejemplo en rojo. Al mismo tiempo se puede emitir una señal acústica de aviso en forma de un sonido permanente mientras se siga impidiendo el cierre de las puertas debido al control de sobrecarga (S130). El control del ascensor vuelve al paso S100, de modo que se impide el cierre de las puertas del ascensor (S300) y se mantiene la emisión de la señal SGNL2 (S310) hasta que haya salido de la cabina de ascensor la cantidad de pasajeros necesaria para que la carga de ascensor L ya no sobrepase el valor límite básico G1 (S110: N).

Si en el paso S100 se comprueba que existe una situación especial (S100: Y), se conmuta al modo de situación especial, que en el organigrama de la Figura 2 está indicado con los pasos que empiezan con el número 200. En primer lugar, en el paso S200 se comprueba si la carga de ascensor L sobrepasa un tercer valor límite G3. El valor límite G3 elegido en este caso es por ejemplo igual al valor límite básico G1, pero también puede ser menor o mayor que éste. Si la carga de ascensor L no sobrepasa el valor límite G3 (S200: N), se procede como en el servicio normal arriba descrito, es decir se comprueba si el espacio de la puerta está despejado (S120), se cierran las puertas (S130) y, si el control de espacio de la puerta autoriza el cierre de las puertas del ascensor (S120: Y), comienza el servicio de desplazamiento (S150). Si el control del espacio de puerta no autoriza el cierre de las puertas (S120: N) o si durante el cierre se alcanza la fuerza de cierre máxima admisible FM (S135: Y) porque hay un obstáculo en la zona de cierre, las puertas permanecen abiertas o se vuelven a abrir y el control del ascensor vuelve al paso S100. Por consiguiente, en el modo de situación especial el ascensor puede funcionar como en el servicio normal siempre que la carga de ascensor L

no sobrepase el tercer valor límite G3, que corresponde al valor límite básico. En una modificación no representada, en el modo de servicio especial (S100: Y) también es posible saltarse el paso S120, es decir desactivar el control del espacio de puerta y comenzar inmediatamente con el cierre de las puertas del ascensor (S130) en cuanto la cabina del ascensor recibe una orden de marcha.

Si en el modo de situación especial la carga de ascensor L sobrepasa el tercer valor límite G3 (S200: Y), se emite una primera señal SGNL1 (S210). En el ejemplo de realización, ésta corresponde en parte a la segunda señal SGNL2 arriba descrita, es decir, en la cabina de ascensor se indica de forma óptica, en un color diferente al color de advertencia, por ejemplo verde, la diferencia entre la carga de ascensor L real y el valor límite admisible G2, pero no se emite ningún sonido de aviso.

5

30

35

40

45

50

55

Dado que la primera señal SGNL1 todavía no indica que se haya sobrepasado la carga máxima admisible G2 en el modo de situación especial, sino que únicamente indica una sobrecarga inminente, la primera señal SGNL1 también se muestra fuera de la cabina de ascensor cerca de las puertas de la caja para informar a otras personas de que la cabina correspondiente todavía no alcanza la carga máxima, pero que casi se ha alcanzado la carga útil máxima posible.

15 A continuación, en el paso S220 se comprueba si la carga del ascensor L también sobrepasa un cuarto valor límite G4, que corresponde al 125% del valor límite básico G1. Si la respuesta es negativa (S220: N), la carga del ascensor L se encuentra entre el tercer y el cuarto valor límite G3 y G4. Correspondientemente, el control de ascensor adapta el modo de servicio en el paso S225 eligiendo un modo de servicio MOD1, que es diferente al servicio normal. En este primer modo de servicio, la cabina del ascensor se acelera más lentamente y se frena antes para tener en 20 cuenta la carga de ascensor L > G3 que sobrepasa el valor límite básico G1. Por lo demás, el ascensor funciona como en el servicio normal, es decir se cierra la puerta y, si el control del espacio de puerta autoriza el cierre (S120: Y) y las puertas de ascensor se pueden cerrar (\$140: Y) sin alcanzar su fuerza de cierre máxima limitada FM (\$135: N), comienza el servicio de desplazamiento. En otro caso, las puertas del ascensor permanecen abiertas o se abren (de nuevo) al menos parcialmente y el desarrollo del procedimiento vuelve al paso S100. Si la situación no cambia, el 25 control de ascensor, que sigue emitiendo la primera señal SGNL1 que indica que casi se ha alcanzado la carga máxima del ascensor, espera a que el espacio de puerta quede despejado (S120) o a que las puertas de ascensor se cierren a causa de su fuerza de cierre máxima (S140) y, a continuación, comienza el servicio de desplazamiento en el primer modo de servicio MOD1 (S150).

En la modificación no mostrada, en el modo de servicio especial (S100: Y) siempre se salta el paso S120, también cuando no se sobrepasa el cuarto valor límite G4 (S220: N), es decir, se desactiva el control del espacio de puerta y, en cuanto la cabina de ascensor recibe una orden de marcha, se inicia inmediatamente el cierre de las puertas del ascensor (S130).

Si en el paso S220 se comprueba que la carga del ascensor también sobrepasa el cuarto valor límite G4 (S220: Y), en el siguiente paso S230 se comprueba si la carga del ascensor L también sobrepasa el segundo valor límite G2, que corresponde al 130% del valor límite básico G1.

Si la carga del ascensor L también sobrepasa el segundo valor límite G2 (S230: Y), es decir el 130% de la carga nominal, se impide el cierre de las puertas y con ello el servicio de desplazamiento (S300) y se emite la segunda señal SGNL2 (S130), como cuando se sobrepasa la carga nominal G1 en el servicio normal (S110: Y). A diferencia de la primera señal (SGNL1), que sólo indica una sobrecarga inminente de la cabina, la segunda señal SGNL2 indica que ya se ha sobrepasado la carga máxima admisible del ascensor para el modo de servicio correspondiente (servicio normal o modo de situación especial). Además de la indicación óptica en un color distinto de la diferencia entre la carga de ascensor y el valor límite admisible (SGNL 1), esta situación se puede subrayar mediante la señal acústica de aviso o mediante la iluminación de un mensaje correspondiente, un símbolo correspondiente o una lámpara de aviso correspondiente.

A continuación, el control de desarrollo vuelve al paso S100. Mientras no cambie nada en la situación, es decir, mientras la carga del ascensor L sobrepase el segundo valor límite G2 (S230: Y), se impide el cierre de las puertas del ascensor (S300) y con ello su desplazamiento y se emite la segunda señal SGNL2 (S310).

Al tener en cuenta el segundo valor límite G2, que es más alto y corresponde a 1,3 veces el valor límite básico G1, en el modo de situación especial, sobre todo en caso de la evacuación del edificio en el ascensor, el servicio de desplazamiento del ascensor sólo se impide si se ha sobrepasado la capacidad de carga y la potencia de accionamiento y de frenado del ascensor incluso tomando como base un factor de seguridad más bajo. De este modo se puede aumentar claramente la capacidad de transporte del ascensor en la situación especial. Al elegir el segundo valor límite se ha de realizar una ponderación entre el riesgo de fallo condicionado por un factor de seguridad más bajo, y en consecuencia, una menor seguridad, por ejemplo con respecto a la capacidad de carga, la capacidad de tracción y la potencia de accionamiento y/o frenado, y las consecuencias de no realizar una evacuación a tiempo.

Si se tiene en cuenta como situación especial por ejemplo una situación de tráfico punta, para la elección del segundo valor límite se puede tomar como base por ejemplo, en lugar del funcionamiento continuo, un funcionamiento

breve de un electromotor que actúa como accionamiento y/o en lugar de la resistencia a la fatiga una resistencia para un tiempo limitado de los componentes mecánicos individuales.

Si en el paso S230 se comprueba que la carga del ascensor L no sobrepasa el segundo valor límite G2 (S230: N), el servicio de desplazamiento se puede realizar con el factor de seguridad más bajo, pero todavía seguro a pesar de ello. No obstante, preferentemente éste se limita conmutando a un segundo modo de servicio MOD2 (S240), en el que se acelera todavía más lentamente y se frena todavía con más antelación que en el primer modo de servicio MOD1, para tener en cuenta la carga de ascensor L > G4 (todavía) más elevada.

5

10

15

20

25

30

35

40

45

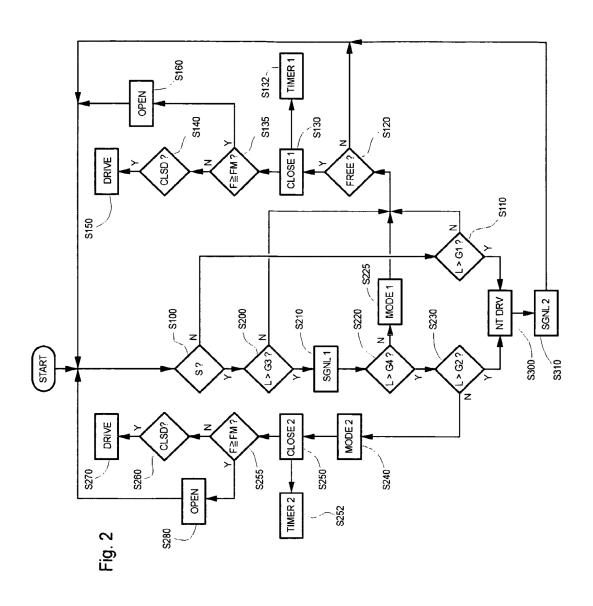
50

Si el peso del ascensor se encuentra entre el cuarto y el segundo valor límite G4 < L < G2 (S220: Y y S230: N), el servicio de desplazamiento, en caso dado de un modo de servicio modificado MOD2, todavía se puede realizar de forma segura, tal como se ha indicado más arriba. No obstante se debería limitar o impedir que la carga de la cabina continúe aumentando. Por ello, en este caso se lleva a cabo un funcionamiento de empuje en el que se activa el accionamiento de cierre de puertas (S250) independientemente de que el control del espacio de puerta autorice o no el cierre de las puertas del ascensor. Para que el cierre rápido de las puertas del ascensor no asuste a las personas que todavía estén entrando en la cabina, en el modo de empuje las puertas se cierran a baja velocidad (S250: CLOSE2), estando limitada la fuerza de cierre máxima como en el modo normal. Si las puertas se pueden cerrar por debajo de esta fuerza de cierre máxima (S260: Y), a continuación comienza el servicio de desplazamiento en el segundo modo de servicio MOD2 (S270).

Si al cerrarse las puertas de ascensor éstas topan con un obstáculo que no pueden superar con su fuerza de cierre máxima admisible, es decir si la fuerza de cierre F alcanza un valor máximo admisible FM (S255: Y), las puertas se abren de nuevo al menos parcialmente (S280). Después, el control del ascensor vuelve al paso S100. Si la situación no cambia, es decir, si la carga del ascensor L sigue estando por debajo del segundo valor límite G2 (S230: N), el accionamiento de cierre de puertas se activa de nuevo (S250). A diferencia del modo normal anteriormente descrito, en este caso no se espera ningún período de tiempo predeterminado, sino que las puertas comienzan a cerrarse de nuevo inmediatamente después de haberse abierto al menos parcialmente, es decir, las puertas del ascensor "empujan". De este modo se interrumpe con poca fuerza la afluencia de personas a la cabina y se indica claramente por contacto a los usuarios del ascensor que no han visto o que ignoran la primera señal SGNL1, en particular en una situación de pánico, que es inminente una sobrecarga del ascensor y, con ello, que el servicio de desplazamiento se impedirá si sigue aumentando la carga del ascensor.

Si los intentos de empuje no tienen éxito durante un período de tiempo predeterminado, es decir, si en el paso S255 el resultado es "Y" durante un tiempo predeterminado, el control del ascensor pasa a un empuje continuo en el que las puertas de ascensor ya no se abren de nuevo al menos parcialmente al alcanzar la fuerza de cierre máxima admisible FM, sino que ejercen una presión continua contra el obstáculo con dicha fuerza de cierre FM (no representado). A diferencia del modo normal, en el que también se pasa a este modo de empuje continuo cuando los intentos de empuje no tienen éxito durante un período de tiempo predeterminado, es decir, si en el paso S135 se obtiene una cantidad predeterminada de resultados "Y" (no representado), en el modo de servicio especial la cabina del ascensor no se bloquea ni siquiera si se ha ejecutado el modo de empuje continuo durante un período de tiempo predeterminado sin que las puertas del ascensor se hayan podido cerrar por completo.

Cuando al sobrepasar el cuarto valor límite G4 después de recibir la orden de marcha comienza por primera vez el cierre de las puertas del ascensor (S250), también se activa un temporizador TIMER 2 (S252) que comienza una cuenta atrás de un tiempo predeterminado, que corresponde por ejemplo al tiempo que requieren las puertas del ascensor para cerrarse por completo teniendo en cuenta una cantidad predeterminada de intentos de empuje y en caso dado una duración predeterminada para el empuje continuo. Si este tiempo transcurre, es decir si el temporizador TIMER 2 termina su cuenta atrás, sin que las puertas de ascensor se hayan cerrado por completo (S260: Y), se emite una alarma (no representada) que avisa a un trabajador de mantenimiento y/o informa del problema a una central de control de ascensor, ya que se ha de partir de la base de que el obstáculo no se podrá retirar aunque continúe el empuje (continuo).


El procedimiento arriba descrito constituye una realización especialmente preferente de la presente invención. No obstante se pueden suprimir algunas secciones individuales del procedimiento. Sobre todo se puede suprimir la bifurcación en función de la superación del tercer valor límite (S200) y/o la bifurcación en función del cuarto valor límite (S220). En este caso también se aumenta la capacidad de transporte del ascensor en una situación especial (S100: Y) de la siguiente manera: el servicio de marcha sólo se impide (S300) si la carga del ascensor L sobrepasa un segundo valor límite G2 (S230: Y) que es mayor que el valor límite básico G1, que a su vez al ser sobrepasado en el servicio normal (S100: N) ya impide el servicio de desplazamiento (S110: Y, S300). Por consiguiente, en la situación especial el ascensor puede transportar cargas mayores en una magnitud correspondiente a la diferencia G2-G1.

REIVINDICACIONES

1. Procedimiento para el funcionamiento de un ascensor, donde, en el servicio normal, se impide el desplazamiento (S300) si se comprueba que la carga del ascensor (L) sobrepasa un valor límite básico (G1), y donde se cambia a un modo de situación especial si se comprueba que existe una situación especial, en particular una situación de evacuación o una situación de tráfico punta, caracterizado porque, en el modo de situación especial, el servicio de desplazamiento (S300) se impide si se comprueba que la carga del ascensor (L) sobrepasa un segundo valor límite (G2), que es más alto que el valor límite básico (G1).

5

- 2. Procedimiento según la reivindicación 1, caracterizado porque el servicio de desplazamiento se impide evitando el cierre de una puerta del ascensor, en particular una puerta de la cabina del ascensor y/o una puerta de la caja del ascensor.
 - 3. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque cuando se impide el servicio de desplazamiento (S300) se emite una segunda señal (SGNL 2) (S310).
- Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque, en el modo de situación especial, se emite una primera señal (SGNL 1) (S210) si se comprueba que la carga del ascensor (L) sobrepasa un tercer valor límite (G3).
 - 5. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque, en el modo de situación especial, el ascensor funciona en un primer modo de servicio (MODE 1) diferente del servicio normal si se comprueba que la carga del ascensor (L) sobrepasa un tercer valor límite (G3).
- Procedimiento según la reivindicación 4 ó 5, caracterizado porque el tercer valor límite (G3) es mayor o igual
 que el valor límite básico (G1) y menor que el segundo valor límite (G2) (G2 > G3 ≥ G1).
 - 7. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque, en el modo de situación especial, el cierre de una puerta del ascensor se inicia (S250) cuando se recibe una orden de marcha y/o cuando se comprueba que la carga del ascensor (L) sobrepasa un cuarto valor límite (G4), iniciándose dicho cierre aunque un control del espacio de puerta detecte un obstáculo en el espacio de la puerta.
- Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque, en el modo de situación especial, el ascensor funciona en un segundo modo de servicio (MODE 2), diferente del servicio normal, si se comprueba que la carga del ascensor (L) sobrepasa un cuarto valor límite (G4).
 - **9.** Procedimiento según la reivindicación 7 u 8, caracterizado porque el cuarto valor límite (G4) es mayor o igual que el valor límite básico (G1) y menor que el segundo valor límite (G2) (G2 > G4 ≥ G1).
- **10.** Dispositivo para el funcionamiento de un ascensor para llevar a cabo un procedimiento según cualquiera de las reivindicaciones anteriores, con
 - un dispositivo de registro de carga para registrar la carga de ascensor (L);
 - un dispositivo de conmutación para conmutar a un modo de situación especial si se comprueba que existe una situación especial, en particular una situación de evacuación o una situación de tráfico punta; y
- un dispositivo para impedir el desplazamiento si se comprueba que la carga del ascensor (L) sobrepasa un valor límite momentáneamente asignado;
 - caracterizado porque el dispositivo incluye un dispositivo de selección de valores límite que, en el servicio normal, elige el valor límite básico (G1) y, en el modo de situación especial, elige el segundo valor límite (G2), más alto, como valor límite para impedir el servicio de desplazamiento.
- 40 **11.** Dispositivo según la reivindicación 10, caracterizado porque incluye un dispositivo de emisión de señales que emite una segunda señal (SGNL 2) cuando se impide el servicio de desplazamiento.
 - 12. Dispositivo según una de las reivindicaciones anteriores 10 a 11, caracterizado porque incluye un dispositivo de selección de modos de servicio que, en el modo de situación especial, puede activar un modo de servicio (MODE 1, MODE 2) diferente del servicio normal.
- 45 **13.** Procedimiento para el funcionamiento de un ascensor, en particular según una de las reivindicaciones 1 9, donde el servicio de desplazamiento se impide si se comprueba que la carga del ascensor (L) sobrepasa un valor límite.

