

11 Número de publicación: 2 368 708

(2006.01) B32B 17/12 (2006.01) B32B 17/12 (2006.01)

\frown	,
12	TRADUCCIÓN DE PATENTE EUROPEA
	INADUCCION DE PATEINTE EUROPEA

T3

- 96 Número de solicitud europea: 02748336 .1
- 96 Fecha de presentación: 04.03.2002
- 97 Número de publicación de la solicitud: **1372951** 97 Fecha de publicación de la solicitud: **02.01.2004**
- (54) Título: SOPORTE DE MATERIAL COMPUESTO CON PROPIEDADES DE RESISTENCIA AL FUEGO PARA REVESTIMIENTOS ASFÁLTICOS PARA TEJADOS.
- 30 Prioridad: 08.03.2001 IT MI20010489

73) Titular/es:

POLITEX S.A.S. DI FREUDENBERG POLITEX S.R.L. VIA TOMMASO GROSSI 2 20121 MILAN, IT

- 45 Fecha de publicación de la mención BOPI: 21.11.2011
- (72) Inventor/es:

LOCATELLI, Achille

- (45) Fecha de la publicación del folleto de la patente: 21.11.2011
- (74) Agente: de Elzaburu Márquez, Alberto

ES 2 368 708 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Soporte de material compuesto con propiedades de resistencia al fuego para revestimientos asfálticos para tejados

- El presente invento se refiere a un soporte de material compuesto con propiedades de resistencia al fuego para revestimientos asfálticos para tejados.
- 5 El uso de revestimientos no tejidos de material químico textil, por ejemplo poliéster, es conocido con la finalidad de proporcionar un soporte para revestimientos asfálticos para tejados.
 - También es bien conocido el hecho de proporcionar tales soportes por medio de dos capas no tejidas que comprenden filamentos de refuerzo, en particular filamentos de vidrio como se ha descrito en el documento US 5.118.550.
- El documento EP 667427 enseña una asociación de dos capas no tejidas con interposición de un velo de vidrio, que tiene la tarea de crear una barrera contra el fuego y las fugas de asfalto en caso de que se desarrolle un fuego sobre el tejado.
 - Sin embargo, se ha encontrado que tanto durante la etapa de producción del soporte de material compuesto como en la etapa de impregnación con asfalto, el diferente grado de variación dimensional de las capas no tejidas y del velo de vidrio provoca la formación de fisuras y grietas en el mismo velo, que anulan la propiedad de resistencia al fuego del soporte.
- El documento EP-A-0905303 describe un revestimiento asfáltico para tejados que incluye una capa de fibra de vidrio reforzada interpuesta entre dos capa asfálticas cubiertas por velos de plástico.
 - El documento EP-A-0613633 describe un soporte de material compuesto para revestimientos asfálticos para tejados que comprende una red de vidrio interpuesta entre dos capas no tejidas. El documento WO-A-97/18364 describe un soporte textil sintético para revestimientos asfálticos para tejados que consiste en dos capas no tejidas y en una pluralidad de filamentos de refuerzo de poliéster longitudinales, interpuestos entre dichas capas.
- 20 El documento FR-A-2701502 describe un material compuesto para tejados que comprende un soporte de celulosa revestida con asfalto y una membrana asfáltica reforzada con una banda de vidrio.
 - El documento EP-A-0379100 describe una banda portadora compuesta con una manta de fibra de vidrio y una manta de fibra sintética que se unen mediante tratamiento con agujas y consolidadas con un precondensado de melamina-formaldehido libre de polímero.
- 25 En vista del estado de la técnica descrito, el objeto del presente invento es proporcionar un soporte de material compuesto con propiedades de resistencia al fuego para revestimientos asfálticos para tejados, que sea capaz de obviar las desventajas de la técnica conocida.

30

- De acuerdo con el presente invento dicho objeto se consigue por medio de un soporte de material compuesto para revestimientos asfálticos que comprende una primera y una segunda capas de material sintético no tejido, y un velo de vidrio interpuesta entre dichas capas y una pluralidad de filamentos de vidrio de refuerzo orientados longitudinalmente, interpuestos entre dicho velo de vidrio y una de dichas capas de material no tejido.
- Debido al presente invento es posible proporcionar un soporte de material compuesto para revestimientos asfálticos que sea capaz de ofrecer una mayor resistencia al fuego, en comparación con los productos conocidos.
- De hecho los filamentos de vidrio garantizan, tanto en la etapa de producción del soporte como en la etapa de impregnación con asfalto, el no alargamiento de las capas no tejidas con respecto al velo de vidrio, con una consiguiente mayor resistencia a la formación de fisuras y grietas del último e, igualmente, con una mejora consiguiente de sus propiedades de resistencia al fuego.
 - Las características y las ventajas del presente invento resultarán evidentes a partir de la siguiente descripción detallada de una realización del mismo, que se ilustra a modo de ejemplo no limitativo en los dibujos adjuntos, en los que:
- la fig. 1 muestra esquemáticamente una realización del proceso de producción del soporte de material compuesto de acuerdo con el presente invento;
 - la fig. 2 muestra el soporte de material compuesto de acuerdo con el presente invento en sección transversal.
 - De acuerdo con lo esquematizado en la fig. 1, una primera capa 1 de textil no tejido, en particular de polímero de poliéster, es alimentada por un primer cabezal de extrusión A sobre una cinta transportadora 3.
- Sobre la capa no tejida 1 se superponen una pluralidad de filamentos de vidrio 4 de refuerzo longitudinales y un velo de vidrio 6.
 - En particular, dichos filamentos de vidrio 4 de refuerzo son desenrollados a partir de bobinas 5 gracias a medios de tracción

ES 2 368 708 T3

apropiados (no mostrados en la figura). El velo de vidrio 6 es a su vez desenrollado de una bobina 8.

5

15

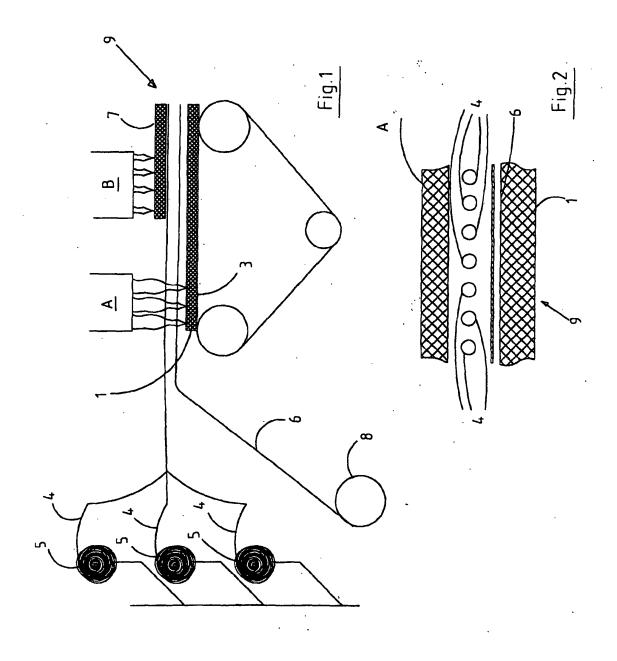
Sobre el grupo descrito en lo que antecede se dispone una segunda capa 7 de textil no tejido del mismo material que antes, que es alimentada por un segundo cabezal de extrusión B.

Se obtiene así un soporte 9 de material compuesto, mostrado en sección en la fig. 2, en el que el velo de vidrio 6 está situado entre las dos capas no tejidas 1 y 7 que, a su vez, están reforzadas en sentido longitudinal por los filamentos 4 de vidrio de refuerzo.

La presencia de los filamentos 4 de vidrio de refuerzo garantiza, tanto en la etapa de producción como en la etapa de impregnación con asfalto del soporte de material compuesto, que las capas 1 y 7 no se alarguen, impidiéndose así la formación de fisuras o grietas en el velo de vidrio 6.

Esto garantiza que, en caso de incendio, el asfalto inflamado no se escape entre las fisuras del velo de vidrio 6 y que, por tanto, el fuego no se propague al interior del edificio.

Por tanto, la calidad del producto así obtenido permite proporcionar una eficaz barrera resistente al fuego.


Además, ha de observarse que el invento puede ser mecanizado en la etapa de la impregnación con asfalto, incluso a altas temperaturas, ya que los filamentos 4 de vidrio de refuerzo impiden la generación de tensiones en el material químico que constituye las capas 1 y 7.

REIVINDICACIONES

1. Soporte de material compuesto para revestimientos asfálticos para tejados, que comprende una primera (1) y una segunda (7) capas de material sintético no tejido, un velo de vidrio (6) interpuesto entre dichas capas (1, 7) y una pluralidad de filamentos de vidrio de refuerzo (4) orientados longitudinalmente, interpuestos entre dicho velo de vidrio (6) y una de dichas capas (1, 7) de material no tejido.

5

2. Soporte de material compuesto según la reivindicación 1, caracterizado porque dichas primera (1) y segunda (7) capas están hechas por extrusión de polímero de

