

11) Número de publicación: 2 370 529

(51) Int. CI.: A61P 31/04 (2006.01) A61K 31/422 (2006.01) A61K 31/166 (2006.01) A61K 31/423 (2006.01) A61K 31/341 (2006.01) A61K 31/4245 (2006.01) A61K 31/343 (2006.01) A61K 31/427 (2006.01) A61K 31/352 (2006.01) A61K 31/428 (2006.01) (2006.01) A61K 31/429 A61K 31/381 (2006.01) A61K 31/4025 (2006.01) A61K 31/4155 (2006.01) A61K 31/4184 (2006.01) A61K 31/4192 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 07712942 .7
- 96 Fecha de presentación: 22.03.2007
- Número de publicación de la solicitud: 1996180
 Fecha de publicación de la solicitud: 03.12.2008
- (54) Título: DERIVADOS DE BENZAMIDA Y DE PIRILAMIDA COMO AGENTES ANTIBACTERIANOS.
- 30 Prioridad: 23.03.2006 GB 0605881 16.11.2006 GB 0623070

73) Titular/es:

Biota Scientific Management Pty Ltd Unit 10 585 Blackburn Road Notting Hill, VIC 3168, AU

- 45 Fecha de publicación de la mención BOPI: 19.12.2011
- (72) Inventor/es:

BROWN, David, Ryall; COLLINS, Ian; CZAPLEWSKI, Lloyd, George y HAYDEN, David, John

- 45 Fecha de la publicación del folleto de la patente: 19.12.2011
- (74) Agente: García Egea, Isidro José

ES 2 370 529 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados de benzamida y de piridilamida como agentes antibacterianos

5

10

15

20

25

30

40

45

La invención se refiere al uso de una clase de benzamidas y piridilamidas sustituidos como agentes antibacterianos, a nuevos miembros de dicha clase por sí mismos y a composiciones farmaceúticas que comprenden dichos compuestos.

Antecedentes de la invención

Se conocen muchas clases de agentes antibacterianos, incluyendo penicilinas y cefalosporinas, tetraciclinas, sulfonamidas, monobactamos, fluroquinolonas y quinolonas, amonoglicósidos, glicopéptidos, macrolidos, polimixinas, lincosamidas, trimetopimas, y cloramfenicol. Los mecanismos fundamentales de acción de estas clases antibacterianas varían.

La resistencia bacteriana a muchos antibacterianos conocidos es un problema cada vez mayor. Consecuentemente, hay una continua necesidad en el estado de la técnica de agentes antibacterianos alternativos, especialmente aquellos que tienen mecanismos de acción fundamentalmente diferentes de los de las clases conocidas.

Entre los patógenos Gram – positivos, tales como estafilococos, estreptococos, micobacterias y enterococos, han surgido o evolucionado cepas resistentes que los hacen especialmente difíciles de erradicar. Ejemplos de tales cepas son el *Staphylococcus aureus* resistente a la meticilina (SARM), estafilococos negativos de coagulasa resistentes a la meticilina (ENCRM), *Streptococcus pneumoniae* resistente a la penicilina y *Enterococcus faecium* de resistencia múltiple. A la vista del rápido surgimiento de bacterias resistentes a múltiples sustancias, el desarrollo de agentes antibacterianos con formas novedosas de acción que sean efectivas contra el creciente número de bacterias resistentes, especialmente los enterococos resistentes a la vancomicina y las bacterias resistentes a antibióticos beta – lactam, tales como el *Staphylococcus aureus* resistente a la meticilina, es de la mayor importancia.

La división celular ha sido de considerable interés para la industria farmacéutica como objetivo porque comprende un gurpo de proteínas objeto bien conservadas que son todas esenciales para la viabilidad de un amplio intervalo de bacterias, y sus actividades son completamente diferentes de aquellas proteínas implicadas en la división celular de las células de mamíferos. Se ha descrito una serie de compuestos que actúan sobre componentes de la maquinaria de la división celular (Ohashi, Y. et al., *J.Bacteriol.* 181, 1348-1351 (1999), Jennings, L.D. et al., *Bioorg. Med. Chem.* 12, 5115-5131 (2004), Sutherland, A. G. et al., *Org Biomol Chem* 1, 4138-4140 (2003), Margalit, D.N. et al., *Proc. Natl. Acad. Sci. USA* 101, 11821-11826 (2004), Wang, J. et al. *J. Biol. Chem.* 278, 44424-44428 (2003), White, E.L. et al. *J. Antimicrob. Chemother.* 50, 111-114 (2002), Reynolds, R. C. et al., *Bioorg Med Chem Lett* 14, 3161-3164 (2004) y Stokes et al. *J Biol Chem.* 280, 39709-39715 (2005)). Hasta el momento, el mayor esfuerzo se ha dirigido hacia la proteína FtsZ, en cuanto tiene varias actividades bioquímicas que pueden ser ensayadas *in vitro.* Desafortunadamente, la mayoría de los compuestos descritos hasta el momento tienen, o bien una potencia relativamente baja, o propiedades farmacológicas no deseables o especificidad desconocida.

La publicación de la Patente Mundial WO 00/66120, de la Patente Europea EP-A-0291074 y de la Patente Mundial WO 2004/078748 se refieren a derivados de benzamida para tratar la infección bacteriana.

Breve descripción de la invención

Esta invención se basa en el descubrimiento de que una clase de benzamidas y piridilamidas tienen actividad antibacteriana como se evidencia por la inhibición del crecimiento bacteriano por miembros de dicha clase. Los compuestos exhiben actividad contra las cepas de bacterias Gram-positivas, tales como *Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus* y *Staphylococcus saprophyticus*, *Bacillus anthracis* y *Bacillus cereus*. Mientras que la invención no se limita por cualquier hipótesis en particular como al mecanismo de acción de los compuestos, se cree en el momento actual que tal actividad está mediada por los compuestos que inhiben la inhibición celular por vinculación a FtsZ.

Descripción detallada de la invención

De acuerdo con un aspecto amplio de la invención, se prevé el uso de un compuesto que es una benzamida o piridilamida sustituida de la fórmula (I) o una sal, hidrato, o solvato de los mismos, en la producción de un medicamento para su uso en el tratamiento de la infección bacteriana:

$$R_2$$
 R_3
 R_3
 R_3
 R_3

En donde

10

15

20

25

30

35

R representa hidrógeno o 1, 2 ó 3 substitutivos opcionales seleccionados de forma independiente de (C_1-C_6) alquilo, (C_2-C_6) alquinilo, (C_1-C_6) alquinilo, halo, (C_1-C_3) alquinilo total o parcialmente fluorinado, (C_1-C_3) alcóxido o (C_1-C_3) alquiltio, nitro, nitrilo, (-CN), oxo (-CN), oxo (-CN), enilo, fenóxido, heteroarilo monocíclico o heteroarilóxido con átomos de 5 ó 6 anillos, $-COR^A$, $-NR^BCOR^A$,

W es=C(R₁)-ó=N-:

 R_3 es un radical de la fórmula $-(Alq^1)_m-(Z)_p-(Alq^2)_n-Q$ en donde

m, p y n, son, independientemente, 0 ó 1, siempre que al menos uno de m, p y n sea 1,

Z es -O-, -S-, -S(O)-. -S(O₂)-. -NH-, -N(CH₃)-. -N(CH₂CH₃)-, -C(=O)-, -O-, -(C=O)-, -C(=O)-, -C(=O)-, -C(=O)-, un radical monocíclico, carbocíclico o heterocíclico divalente opcionalmente sustituido que tenga átomos de 3 a 6 anillos; o un radical heterocíclico bicíclico divalente opcionalmente sustituido que tenga átomos de 5 a 10 anillos;

 Alq^{1} y Alq^{2} son radicales de C_{1} - C_{6} alquilleno, C_{2} - C_{6} alquenilleno o C_{2} - C_{6} alquinilleno opcionalmente sustituidos, que pueden, opcionalmente, terminar con o ser interrumpidos por $-O_{-}$, $-S_{-}$,

Q es hidrógeno, halógeno, nitrilo (-CN), o hidróxilo o un radical monocíclico, carbocíclico o heterocíclico opcionalmente sustituido que tenga átomos de 3 a 7 anillos; o un radical heterocíclico bicíclico opcionalmente sustituido que tenga átomos de 5 a 10 anillos; y en las definiciones de 2 Alq¹, Alq² y Q el término "sustituido" significa sustituido con hasta cuatro sustitutivos compatibles, cada uno de los cuales se selecciona de forma independiente de (C₁-C6)alquilo, (C₂-C6)alquenilo, (C₂-C6)alquinilo, (C₁-C6)alcóxido, hidróxido, hidróxido, hidróxido (C₁-C6)alquilo, mercapto, mercapto (C₁-C6)alquilo, (C₁-C6)alquiltio, halo, (C₁-C3)alquilo total o parcialmente fluorinado, (C₁-C3)alcóxido o (C₁-C3)alquiltio, nitro, nitrilo, (-CN), oxo (=O), fenilo, fenóxido, heteroarilo monocíclico o heteroarilóxido con átomos de 5 ó 6 anillos, -COOR⁴, -COR⁴, -OCOR⁴, -SO₂R⁴, -CONR⁴R⁶, -SO₂NR⁴RԹ, -NR⁶RՅ, -NR⁶RՅ, -NR⁶RՅ, -NR⁶RՅOOR⁶, -NR⁶SO₂OR⁶ ó -NRՐCONRՐԹԹ en donde R⁶ y R՞ son, independientemente, hidrógeno o un grupo (C₁-C6)alquilo o, en el caso en donde R⁶ y R՞ estén enlazados al mismo átomo N, R⁶ y Rఠ tomados en su conjunto con dicho nitrógeno pueden formar un anillo amino cíclico, y donde el sustitutivos es fenilo, fenóxido o heteroarilo o heroarilóxido monocíclico con 5 ó 6 átomos, pudiendo ser su anilo fenilo o heteroarilo, en sí mismo, sustituido por cualquiera de los sustitutivos precedentes excepto fenilo, fenóxido, heteroarilo o heteroarilóxido:

Algunos miembros de la clase de compuestos definidos por fórmula (I) *supra* se consideran novedosos en su propio derecho, y la invención incluye todos los tales miembros novedosos de la clase.

Así, la invención también incluye compuestos novedosos que son benzamidas o piridilamidas sustituidas de fórmula (IC) y sales, hidratos o solvatos de las mismas:

Donde W es=C(R₁)-ó=N-; R₁, es hidrógeno y R₂ es metilo, hidrógeno o fluorina; o R₁ y R₂ tomados en su conjunto son –CH₂-, -CH₂CH₂-, -O-, ó, en cualquier orientación, -O-CH₂-, OCH₂CH₂-; R₄ y R₅ son, de forma independiente, flúor o cloro, o uno de R₄ y R₅ es hidrógeno mientras que el otro es flúor o cloro; y R₃ es un radical seleccionado de aquellas de las siguientes fórmulas A-H, en las que cualquier posición de anillo vacante es opcionalmente sustituida:

10

5

Donde Q es hidrógeno, halógeno, nitrilo o hidróxilo o un radical monocíclico, carbocíclico o heterocíclico opcionalmente sustituido que tenga átomos de 3 a 7 anillos; o un radical heterocíclico bicíclico opcionalmente sustituido que tenga átomos de 5 a 10 anillos; y en las definiciones de R_3 y R_3 y R_4 el término "opcionalmente sustituido" tiene el mismo significado que en las definiciones de R_4 y R_4 en relación con la fórmula (1).

La invención también incluye novedosos compuestos de pirirdilamida de la fórmula (ID) y sales, hidratos o solvatos de la misma:

10

35

En donde R2 es hidrógeno, metilo, o flúor; y R3 es como se define en relación con la fórmula (IC).

Terminología

Tal y como se usa aquí, el término "(Ca-Cb)alquilo", en donde "a" y "b" son enteros, se refiere a un radical de alcilo de cadena recta o ramificada que tenga de "a" a "b" átomos de carbono. Así, cuando "a" sea 1 y "b" sea 6, por ejemplo, el término incluye metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo, t-butilo, n-pentilo y n-hexilo.

Tal y como se usa aquí, el término "radical de C_1 - C_6 alquileno divalente", en donde "a" y "b" son enteros, se refiere a una cadena de hidrocarbono saturado que tiene de "a" a "b" átomos de carbono y dos valencias no satisfechas. El término incluye, por ejemplo, metileno, etileno, n-propileno y n-butileno.

Tal y como se usa aquí, el término " $(C_a$ - $C_b)$ alquenilo", en donde "a" y "b" son enteros, se refiere a un grupo funcional de alcenilo de cadena recta o ramificada que tenga de "a" a "b" átomos de carbono que tengan al menos un enlace doble de estereoquímica de E ó Z donde sea posible. El término incluye, por ejemplo, vinilo, allilo, 1- y 2- butenilo y 2-metilo-2-propenilo.

- Tal y como se usa aquí, el término "radical de C_1 - C_6 alquenileno divalente", se refiere a una cadena de hidrocarbono saturado que tiene de "a" a "b" átomos de carbono, al menos un doble enlace, y dos valencias no satisfechas. El término incluye, por ejemplo, -CH=CH-(vinileno), -CH=CH-CH₂-, -CH₂-CH=CH-, -CH=CH-CH₂-, -CH=CH-CH₂-, -CH=CH-CH₂-CH₂-, -CH=CH-CH₂-CH₂-, -CH=CH-CH₂-CH=CH-, y CH=CH-CH₂-CH₂-CH=CH-.
- Tal y como se usa aquí, el término "C_a-C_balquinilo", en donde "a" y "b" son enteros, se refiere a una cadena de grupos de hidrocarbono de cadena recta o de cadena ramificada que tenga de "a" a "b" átomos de carbono y tenga, adicionalmente, al menos un triple enlace. Este término incluiría, por ejemplo, etilino, 1-propilino, 1- y 2-butinilo, 2-metilo-2-propinilo, 2-pentinilo, 4-pentinilo, 3-hexinilo, 4-hexinilo y 5-hexinilo.
- Tal y como se usa aquí, el término "radical de (C₁-C₆)alquinileno divalente", en donde "a" y "b" son enteros, se refiere a una cadena de hidrocarbono divalente que tiene de "a" a "b" átomos de carbono y al menos un triple enlace. El término incluye, por ejemplo, -C=C-, C_ C-CH2-, y -CH2-C_CH-.

Tal y como se usa aquí, el término "cicloalcilo" se refiere a un radical monocíclico o carbocíclico saturado monocíclico puente que tiene entre 3-8 átomos de carbono e incluye, por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohex

- Tal y como se usa aquí, el término no cualificado "arilo", se refiere a un radical aromático carbocíclico mono- o bicíclico. Ejemplos ilustrativos de tales radicales son el fenilo y el naftilo.
 - Tal y como se usa aquí, el término no cualificado "heteroarilo" se refiere a un radical aromático mono- o bi-cíclico que contea uno o más heteroaromas seleccionados de entre S, N y O, e incluye radicales que tengan dos anillos monocíclicos así, o un anillo monocíclico así y un anillo arilo monocíclico, que están fusionados o directamente enlazados por un enlace covalente. Ejemplos ilustrativos de tales radicales son tienilo, benzotienilo, furilo, benzofurilo, pirrolilo, imidazolilo, benizimiadazolilo, tiazolilo, benzotiazolilo, tiazolopiridinilo, isotiazolilo, benzisotiazolilo, pirazolilo, oxazolilo, benzoxazolilo, isoxazolilo, benzisoxazolilo, isotiazolilo, triazolilo, benzotriazolilo, oxadiazolilo, piridazinilo, piridazinilo, piridazinilo, piridazinilo, triazinilo, indolilo e indazolilo.
- Tal y como se usa aquí, el término no cualificado "heterociclilo" o "heterocíclico" incluye "heteroarilo" como se definió supra, y, adicionalmente, significa un radical no aromático mono- o bi-cíclico que contenga uno o mas heteroaromas

seleccionados de entre S, N y O. Ejemplos ilustrativos de tales radicales son los grupos pirrolilo, furanilo, tienilo, piperidinilo, imidazolilo, oxazolilo, isoxazolilo, tiazolilo, tidiazolilo, pirazolilo, piridinilo, pirrolidinilo, pirrolidinilo, pirrolidinilo, morfolinilo, morfolinilo, piperazinilo, indolilo, morfolinilo, benzofuranilo, piranilo, isoxazolilo, benzimidazolilo, metilenedioxifenilo, etilenedioxifenilo, malimido y succinimido.

A menos que se indique de otra forma en el contexto en que tenga lugar, el término "sustituido", en cuanto se aplica a cualquier grupo funcional aquí significa sustituido con hasta cuatro sustitutivos compatibles, cada uno de los cuales pueden ser, de forma independiente, por ejemplo, (C₁-C₆)alquilo, (C₂-C₆)alquenilo, (C₂-C_e)alquinilo, (C₁-C₆)alcóxido, hidróxido, hidróxido(C₁-C₆)alquilo, mercapto, mercapto(C₁-C₆)alquilo, (C₁-C₆)alquiltio, halo, (C₁-C₃)alquilo total o parcialmente fluorinado, (C₁-C₃)alcóxido o (C₁-C₃)alquiltio, nitro, nitrilo, (-CN), oxo (=O), fenilo, fenóxido, heteroarilo monocíclico o heteroarilóxido con átomos de 5 ó 6 anillos, -COOR^A, -COR^A, -OCOR^A, -SO₂R^A, -CONR^AR^B, -NR^AB, -OCONR^AR^B, -NR^BCOR^A, -NR^BCOOR^A, -NR^BSO₂OR^A ó -NR^ACONR^AR^B en donde R^A y R^B son, independientemente, hidrógeno o un grupo (C₁-C₆)alquilo o, en el caso en donde R^A y R^B estén enlazados al mismo átomo N, R^A y R^B tomados en su conjunto con dicho nitrógeno pueden formar un anillo amino cíclico, y donde el sustitutivos es fenilo, fenóxido o heteroarilo o heroarilóxido monocíclico con 5 ó 6 átomos, pudiendo ser su anilo fenilo o heteroarilo, en sí mismo, sustituido por cualquiera de los sustitutivos precedentes excepto fenilo, fenóxido, heteroarilo o heteroarilóxido. Un "sustitutivo opcional" o "sustitutivo" puede ser uno de los grupos especificados supra.

Tal y como se usa aquí, el término "sal" incluye adición básica, adición ácida y sales cuaternarias. Los compuestos de la invención que son acídicos pueden formar sales, incluyendo sales farmacéuticamente aceptables, con bases tales como hidróxidos de metal alcalino, por ejemplo, hidróxidos de sodio y potasio; hidróxidos de metal terroso alcalino, por ejemplo, hidróxidos de calcio, bario y magnesio; con bases orgánicas, por ejemplo N-metilo-D-glucamina, tris(hidroximetil)amino-metano colino, L-arginina, L-lisina, piperidina de N-etilo, dibenzilamina y similares. Estos compuestos (I), que son básicos, pueden formar sales, incluyendo sales farmaceúticamente aceptables con ácidos inorgánicos, por ejemplo, con ácidos hidrohálicos, tales como ácidos hidroclóricos o hidrobrómicos, ácido sulfúrico, ácido nítrico o ácido fosfórico y similares, y con ácidos orgánicos, por ejemplo, con ácidos acéticos, tartáricos, succínicos, fumáricos, maleicos, málicos, salicílicos, cítricos, metanosulfónicos, p-toluenosulfónicos, benzoicos, benzenosulfónicos, glutámicos, lácticos y mandélicos y similares. Para una revisión de sales adecuadas, ver Handbook of Pharmaceutical Salts: properties, Selection, and Use, por Stahl y Wermuth (Wiley-VCH, Weinheim, Alemania, 2002).

30 El término "solvato" se usa aquí para describir un complejo molecular que comprende el compuesto de la invención y una cantidad estoiquiométrica de una o más moléculas solventes farmacéuticamente aceptables, por ejemplo, etanol. El término "hidrato" se emplea cuando dicho solvente es el agua.

Los compuestos de la invención que contienen uno o más centros quirales potenciales o fácticos, por razón de la presencia de átomos de carbono asimétricos, pueden existir como un número de enantiómeros o diastereoisómeros con estereoquímica R ó S en cada centro quiral. La invención incluye todos esos enantiómeros y diastereoisómeros y mezclas de los mismos.

Aspectos de la invención

20

25

35

40

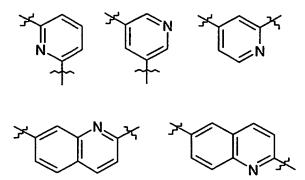
45

Una subclase en particular de compuestos para uso antibacteriano, de acuerdo con la invención, consiste de los de la fórmula (IA)

Donde R_4 y R_5 son, de forma independiente, flúor o cloro, o uno de R_4 y R_5 es hidrógeno mientras que el otro es flúor o cloro y R_1 , R_2 y R_3 son como se define en referencia a la fórmula (I) *supra*.

Otra subclase en particular de compuestos para uso antibacteriano, de acuerdo con la invención, consiste de los de la fórmula (IB)

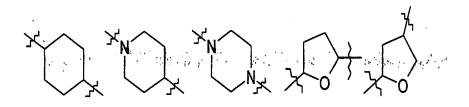
$$R_{2}$$
 R_{3}
 (IB)


Donde R₂ y R₃ son como se define en referencia a la fórmula (I) supra.

En una reducida suclase de compuestos para uso antibacteriano, de acuerdo con la invención, incluyendo los de la fórmula (IA) supra, R_1 y R_2 son hidrógeno; y en los compuestos de la fórmula (IB) supra R_2 es hidrógeno. En el radical R_3 , p puede ser 0, y m y/o n puede ser 1. Alternativamente, p puede ser 1, y Z puede ser un radical carbocíclico o heteroarilo opcionalmente sustituido que tenga de 3 a 6 átomos unidos en forma de anillo o un radical bicíclico, carbocíclico o heteroarilo opcionalmente sustituido que tenga de 5 a 10 átomos unidos en forma de anillo, que está enlazado a la parte $-(Alc^1)_{m^-}$ de R_3 y a la parte $-(Alc^2)_{n^-}Q$ de R_3 por medio de átomos de carbono o nitrógeno unidos en forma de anillo. Ejemplos de radicales divalentes Z en esta realización incluyen los seleccionados de entre los siguientes, en cada orientación:

15

5


10

15

25

En otra realización alternativa, p es 1, y Z es un radical carbocíclico o heterocíclico no aromático monocíclico opcionalmente sustituido que tiene de 3 a 6 átomos unidos en forma de anillo o un carbocíclico o heterocíclico no aromático bicíclico opcionalmente sustituido que tiene de 5 a 10 átomos unidos en forma de anillo, que está enlazado a la parte –(Alc¹)_m- de R₃ y a la parte –(Alc²)_n-Q de R₃ por medio de átomos de carbono o nitrógeno unidos en forma de anillo. Ejemplos de radicales Z, que son opcionalmente sustituidos, en esta realización incluyen los seleccionados de entre los siguientes, en cada orientación:

10 En los compuestos a los que se refiere la invención, y en cualquiera de las subclases o realizaciones de tales compuestos discutidos *supra*, Q puede ser hidrógeno. Sin embargo, Q puede ser también un radical seleccionado de entre cualquiera de los radicales Z divalentes específicamente identificados supra pero con una de las valencias no satisfechas de los mismos satisfechas con hidrógenos o un sustitutivo opcional.

En los compuestos a los que la invención se refiere, y cualquiera de las subclases o realizaciones de tales compuestos discutidos *supra* n y/o m pueden ser 0.

En todos los compuestos y clases de compuestos a los que se refiere la invención, es usual que el radical R_3 , cuando se extiende completamente, no exceda la longitud de una cadena de hidrocarbono saturado no ramificada de 14 átomos de carbono, esto es, no exceda de alrededor de 16 Angstroms.

En los compuesto a los que se refiere la invención, Alq^1 y Alq^2 , cuando están presentes, pueden ser, por ejemplo, radicales de C_1 - C_6 alquilleno, C_2 - C_6 alquenilleno o C_2 - C_6 alquinilleno de cadena recta opcionalmente sustituidos, que pueden, opcionalmente, terminar con o ser interrumpidos por -0-, -S-, -S(O)-. -S(O_2)-. -NH-, -N(CH_3)-. -N(CH_2 CH₃)-. -C(C=O)-, -O-(C=O)-, -C(C=O)-O-.

Cualesquiera sustitutivos opcionales R y cualesquiera sustitutivos opcionales presentes en Alq¹, Alq², Z y Q pueden ser seleccionados de entre, por ejemplo, metilo, -OCH₃, -CF₃, -OCF₃, etilo, ciclopropilo, oxo, hidróxilo, -F, -Cl, -Br, ciano, acetilo, amino, metilamino, acetilamino, carbamato, -CONH₂, nitro, -COOH y -CH₂OH.

Compuestos de la fórmula (IC) per se, y sales, hidratos o solvatos de la misma constituyen un aspecto distinto de la invención:

Donde W es=C(R₁)-ó=N-;

 R_1 , es hidrógeno y R_2 es metilo, hidrógeno o flúor; o R_1 y R_2 tomados en su conjunto son $-CH_2$ -, $-CH_2CH_2$ -, -O-, ó, en cualquier orientación, -O- CH_2 -, OCH_2CH_2 -;

5 R₄ y R₅ son, de forma independiente, flúor o cloro, o uno de R₄ y R₅ es hidrógeno mientras que el otro es flúor o cloro:

R₃ es un radical seleccionado de aquellas de las siguientes fórmulas A-H, en las que cualquier posición vacante en el anillo es opcionalmente sustituida:

10

Donde Q se define en relación con la fórmula (I) *supra*, y en donde cualquier carbono no sustituido en el anillo es opcionalmente sustituido.

15 En los compuestos (IC) se prefiere actualmente que W sea =CH- y R₂ sea hidrógeno.

En los compuestos (IC) el radical R₃ puede ser hidrógeno o fenilo opcionalmente sustituido.

En un conjunto peculiar de compuestos (IC), R_3 es quinolin-2-ilo, benzotiazol-2-ilo, tiazol-2-ilo, tiazol-4-ilo, tiazol-5-ilo, oxadiazol-3-ilo, oxadiazol-5-ilo, oxazol-2-ilo, oxazol-4-ilo, oxazol-5-ilo o tiazolopiridin-2-ilo opcionalmente sustituidos.

Los sustitutivos opcionales que pueden estar presentes en R₃ en el aspecto de la invención del compuesto *per se* incluyen metilo, -OCH₃, -CF₃, -OCF₃, etilo, ciclopropilo, oxo, hidróxilo, -F, -Cl, -Br, ciano, acetilo, amino, metilamino, acetilamino, carbamato, -CONH₂, nitro, -COOH y -CH₂OH.

Compuestos de la fórmula (IC) per se, y sales, hidratos o solvatos de la misma también constituyen un aspecto distinto de la invención:

En donde R₂ es hidrógeno, metilo, o flúor; y R₃ es como se define en relación con la fórmula (IC).

Ejemplos específicos de compuestos con los que la invención se relaciona incluyen los de los ejemplos en este documento.

Hay múltiples estrategias sintéticas para la síntesis de los compuestos (I) con los que se relaciona la presente invención, pero todos se basan en la química conocida, conocida por el experto en química orgánica sintética. Así, los compuestos de acuerdo con la fórmula (I) pueden ser sintetizados de acuerdo de acuerdo con procedimientos descritos en la literatura normalizada y son notoriamente conocidos para el experto en la materia. Fuentes literarias típicas son "Advanced Organic Chemistry", cuarta Edición (Wiley), J. March, "Comprehensive Organic Transformation", segunda edición (Wiley), R.C. Larock, "Handbook of Heterocyclic Chemistry", segunda edición (Pergamon), A.R. Katrizky), artículos de revista tales como los encontrados en "synthesis", "Acc.Chem.Rev", o fuentes primarias de literatura identificadas por búsqueda de literatura normalizada online o de fuentes secundarias tales como "Chemical Abstracts" o "Beilstein".

Los compuestos (I) pueden ser preparados, por ejemplo, por introducción del radical $-(Alc^1)_m-(Z)_p$ $-(Alc^2)_n-Q$ en el grupo hidróxilo de un compuesto (II)

15

20

25

30

Se dan ulteriores detalles de las aproximaciones sintéticas y esquemas para la preparación del intermediario (II) en los ejemplos de este documento. Como se mencionó *supra*, los compuestos con los que se relaciona la invención son activos contra las bacterias, en cuanto inhiben el crecimiento bacteriano. Son, en consecuencia, de uso en el tratamiento de infecciones bacterianas en animales humanos y no humanos, como por ejemplo, otros mamíferos, pájaros y pescado. Los compuestos incluyen aquellos que inhiben el crecimiento de organismos Gram-positivos como el *Bacillus subtilis* y el *Staphylococcus aureus* y algunos también muestran actividad contra ciertos organismos Gram-negativos.

Se comprenderá que el nivel concreto de dosis para cada paciente en particular dependerá de una variedad de factores incluyendo la actividad del compuesto específico utilizado, la edad, peso corporal, salud general, sexo, dieta, tiempo de administración, vía de administración, índice de excreción, combinación de sustancias y la severidad de la enfermedad en concreto sometida a terapia. Como se exige en la técnica farmacéutica, las dosis seguras y autorizadas serán determinadas por ensayo clínico, pero las dosis diarias pueden variar dentro de amplios márgenes y se ajustarán a las necesidades individuales en cada caso concreto. Sin embargo, generalmente, la dosificación adoptada apra cada vía de administración cuando un compuesto se administra solamente a humanos adultos es de 0.00001 a 150 mg/kg de peso corporal. Tal dosis puede ser dada, por ejemplo, diariamente, de 1 a 5 veces. Para inyección intravenosa, una dosis diaria adecuada es de 0.0001 a 150 mg/kg de peso corporal. Una dosis diaria puede ser administrada como una dosis individual o de acuerdo con un esqueda de dosificación fraccionada.

Los compuestos con los que la invención se relaciona pueden ser preparados para su administración por cualquier vía consistente con sus propiedades farmacocinéticas, tales como soluciones o suspensiones orales, tópicas o parenterales estériles. Las composiciones administrables por vía oral pueden ser en forma de tabletas, cápsulas, polvos, gránulos, rombos, preparaciones líquidas o en gel. Las tabletas y cápsulas para administración oral puede ester en forma de presentación de dosis unitaria, y pueden contener excipientes convencionales tales como agentes enlazantes, por ejemplo, sirope, acacia, gelatina, sorbitol, tragacanto o polivinilopirrolidona; rellenos, por ejemplo lactosa, azúcar, almidón de maíz, fosfato de calcio, sorbito o glicina; lubricante formador de tabletas, como por ejemplo, estearato de magnesio, talco, glicol de polietileno o sílice; desintegrantes, por ejemplo, almidón de patata, o agentes humidificadores aceptables como el sulfato de lauril de sodio. Las tabletas pueden estar revestiadas de acuerdo con procedimientos notoriamente conocidos en la práctica farmacéutica normal. Las preparaciones líquidas orales puede tener la forma de, por ejemplo, suspensiones acuosas u oleaginosas, soluciones, emulsiones, jarabes o elíxires, o pueden ser presentados como un producto seco para su reconstitución con agua u otro portador adecuado antes de su uso. Tales preparaciones líquidas pueden contener aditivos convencionales como agentes de suspensión, por ejemplo sorbitol, jarabe metilcelulosa, jarabe de glucosa, grasas comestibles hidrogenadas de gelatina; agentes emulsionantes, por ejemplo lecitina, monooleato sorbitano, o acacia; portadores no acuosos (que pueden incluir aceites comestibles), por ejemplo, aceite de almendra, aceite de coco fraccionado, esteros oleaginosos como glicerina, glicol de propileno, o alcohol etílico; conservantes, como por ejemplo metil o propil phidroxibenzoato o ácido sórbico, y, si se desea, agentes aromatizantes o colorantes convencionales.

Para aplicación tópica sobre la piel, la sustancia puede tomar la forma de una crema, loción o ungüento. Las formulaciones de crema o ungüento que pueden ser utilizadas para la sustancia son fórmulas convencionales conocidas en el estado de la técnica, por ejemplo como las descritas en libros de texto normalizados de Farmacia, tales como la Farmacopea Británica.

Para aplicación tópica al ojo, la sustancia puede tomar la forma de una solución o una suspensión en un portador acuoso o no acuoso estéril adecuado. Pueden ser también incluidos aditivos, por ejemplo amortiguadores tales como el metabisulfito de sodio o edeato de disodio; conservantes incluyendo agentes bactericidas y fungicidas comoe el acetato o nitrato de mercurio de fenilo, cloruro o clorhexidina de benzalconio, y agentes engrosadores como la hipromelosa.

El ingrediente activo puede ser también administrado de forma parenteral en un medio estéril, o bien en forma subcutánea o intravenosa, o intramuscular, o de forma intrasternal, o por técnicas de infusión, en forma de suspensiones acuosas u oleaginosas inyectables estériles. Dependiendo del portador y de la concentración usada, la sustancia puede o bien estar suspendida o disuelta en el portador. De forma ventajosa, pueden estar disueltos en el portador ayudantes, como un anestésico local, agentes conservantes y amortiguadores.

En cuanto los compuestos con los cuales se relaciona la invención son activos antibacterialmente e inhiben el crecimiento bacteriano, son también de uso en el tratamiento de la contaminación bacteriana de un sustrato, tales como instrumentos de hospital o superficies de trabajo. Con objeto de tratar un sustrato contaminado, los compuestos pueden ser aplicados a la zona de dicha contaminación en una cantidad suficiente como para inhibir el crecimiento bacteriano.

Los siguientes ejemplos ilustran la síntesis de compuestos con los que se relaciona la invención.

Procedimiento analítico

10

15

20

25

30

35

40 Los procedimientos analíticos usados para caracterizar compuestos incluían HPLC-MS y ¹H NMR.

Condiciones HPLC-MS - Procedimiento 1

Fase móvil: A=Acetonitrilo

B= 10mM de acetato de amonio acuoso

gradiente:	Tiempo (minutos)	% A	%B
	0.00	20	80
	0.30	20	80
	4.00	90	10
	5.00	90	10
	5.03	20	80

Tiempo de ejecución: 7 minutos

Tiempo de flujo : 1 ml/min

Volumen de inyección: variable dependiendo de la concentración de la

muestra

5

Temperatura de columna: 40° C

Columna: 50 x 4.6 mm. Gemini C18; 5 Qm

Detector PDA: 220, 240, y 254 nm analizados

Condiciones HPLC-MS - Procedimiento 2

Fase móvil: A=Acetonitrilo

10 B= 10mM de acetato de amonio acuoso

gradiente:	Tiempo (minutos)	% A	%B
	0.00	20	80
	0.30	20	80
	24.00	90	10
	28.00	90	10
	28.03	20	80

Tiempo de ejecución: 30 minutos

Tiempo de flujo : 1 ml/min

Volumen de inyección: variable dependiendo de la concentración de la

muestra

Temperatura de columna: 40° C

Columna: 50 x 4.6 mm. Gemini C18; 5 Qm

Detector PDA: 220, 240, y 254 nm analizados

20

15

Condiciones HPLC-MS - Procedimiento 3

Fase móvil: A=Acetonitrilo + 0.1 % ácido Trifluoroacético

B= Agua + 0.1 % ácido Trifluoroacético

gradiente:	Tiempo (minutos)	% A	%B
	0.0	0	100
	1.8	95	5
	2.1	95	5
	2.3	0	100
	2.4	0	100

Tiempo de ejecución: 2.4 minutos

Tiempo de flujo : 1 ml/min

Volumen de inyección: 3 QI

Temperatura de columna: temperatura ambiente (20° C)

Columna: 50 x 2.0mm. Hypersil C18 BDS; 5 Qm

Detector UV: conjunto detector de longitud de onda variable a

215nm

5

10 Condiciones HPLC-MS - Procedimiento 4

Fase móvil: A=Acetonitrilo + 0.1 % ácido Fórmico

B= Agua + 0.1 % ácido Fórmico

gradiente:	Tiempo (minutos)	% A	%B
	0.0	0	100
	2.5	100	0
	2.7	100	0
	2.71	0	100
	3.0	0	100

Tiempo de ejecución: 3.5 minutos

Tiempo de flujo : 1 ml/min

Volumen de inyección: 3 QI

Temperatura de columna: temperatura ambiente (20° C)

Columna: 50 x 2.1mm. Atlantis dC18; 5 Qm

20 Detector UV: conjunto detector de longitud de onda variable a

215nm

Condiciones de Análisis HPLC-MS - Procedimiento 5

Columna	Purospher® star c-18		
Fase Móvil	ACN:0.1% ácido Fórmico (AF)		
Modo de flujo			
	Tiempo%ACN	% AF	
	0.00	10.0	90.0
	7.00	10.0	90.0
	15.00	90.0	10.0
	18.00	90.0	10.0
	25.00	10.0	90.0
	30.0	10.0	90.0
Flujo	1.00 ml/min		
Máximo de UV	Variable		
Temperatura de Columna	30° C		
Volumen de Inyección	Variable		

Condiciones de Análisis HPLC-MS - Procedimiento 6

Columna	Discovery HSC-1	8 Columna 250x4.6	, 5.0 Qm
Fase Móvil	A – Acetonitrilo B – 0.1 % ácido Fórmico		
r ase Movii	A – Acetoritino B	- 0.1 % acido Foiti	lico
Modo de flujo			
	Tiempo	A	В
	0.0	5.0	95.0
	4.0	5.0	95.0
	8.0	95.0	5.0
	16.0	950	5.0
	18.0*	5	95.0
	20.0	5.0	95.0
Flujo	1.00 ml/min		
Máximo de UV	Variable		
Temperatura de Columna	45 grados		
Preparación de muestra	Metanol		
Volumen de Inyección	Variable		

Condiciones HPLC-MS - Procedimiento 8

Fase móvil: A=Acetonitrilo + 0.1 % ácido Fórmico

B= Agua + 0.1 % ácido Fórmico

gradiente:	Tiempo (minutos)	% A	%В
	0.0	10	90
	7.0	10	90
	15.0	90	10
	18.0	90	10
	25.0	10	90
	30.0	10	90

5

Tiempo de ejecución: 30.0 minutos

Tiempo de flujo : 1 ml/min

Temperatura de columna: temperatura ambiente (25° C)

Columna: 250 x 4.6mm. Xbridge dC18; 5 Qm

Detector UV: conjunto detector de longitud de onda variable a

215nm

Condiciones HPLC-MS - Procedimiento 9

Fase móvil: A=Acetonitrilo + 0.1 % ácido Fórmico

B= Agua + 0.1 % ácido Fórmico

15

10

gradiente:	Tiempo (minutos)	% A	%B
	0.0	10	90
	7.0	10	90
	15.0	90	10
	18.0	90	10
	25.0	10	90
	30.0	10	90

Tiempo de ejecución: 30.0 minutos

Tiempo de flujo : 1 ml/min

Temperatura de columna: temperatura ambiente (25° C)

Columna: 250 x 4.6mm. Purospher Star dC18; 5 Qm

Detector UV: conjunto detector de longitud de onda variable a

262nm

20

NMR

Los espectros ¹H NMR fueron consistentes con las estructuras requeridas.

Los puntos de fusión fueron medidos sobre un dispositivo Stuart Scientific SMP10 y no están corregidos.

Las producciones dadas no están optimizadas.

5 **Procedimientos experimentales**

Esquema 1: (a) SOCl₂, tolueno, reflujo; (b) NH₃ acuoso.

Procedimiento General para la conversión de un Ácido Carboxílico en una Amida Carboxílica (Procedimiento A). 3-Hidróxibenzenocarboxamida.

Fue suspendido ácido 3-Hidroxibenzoico (110.5 g, 0.8 mol, 1 equiv.) en tolueno (500 ml) y se añadió cloruro de tionilo (88.0 ml, 1.2 mol, 1.5 equiv.) lentamente, a temperatura ambiente. La solución fue calentada al reflujo, en donde se mantuvo durante 5 horas. Después de este tiempo, la reacción fue enfriada a temperatura ambiente y concentrada al vacío. El residuo fue disuelto en tetrahidrofurano (300 ml) y enfriado en un baño de metanol helado. Se añadió lentamente solución de amoníaco acuoso concentrado (-300 ml), gota a gota, y la mezcla de reacción fue calentada lentamente a temperatura ambiente en donde fue agitada durante 16 horas. La mezcla de reacción fue concentrada al vacío y el sólido resultante fue suspendido en agua y filtrado. El sólido recolectado fue lavado con agua adicional (x3) y, entonces, secado al vacío para obtener 3-hidroxibenzamida como un sólido blancuzco (79.9 g, 72.8 %) mp 167-168°C. HPLC-MS (procedimiento 1): ml z 136 [M-H]⁻. Rt= 1.21 min. ¹H NMR (d6-DMSO) δ = 9.53 (s, 1H), 7.78 (s, 1H), 7.30-7.15 (m, 4H), 6.88 (d, *J* = 8 Hz, 1H).

20 Esquema 2: (a) RX, K₂CO₃, Nal, DMF, 60° C

Procedimiento General para la alquilación de fenoles usando Alquilo Halidos (Procedimiento B).

25 Ejemplo 1: 3-Nonilóxido-benzenocarboxamida

Se añadió K_2CO_3 (302 mg., 2.19 mmol, 1.5 equiv.) y Nal (43.5 mg, 0.29 mmol, 0.2 equiv.) a una solución de 3-hidróxidobenzenocarboxamida (200 mg, 1.46 mmol, 1 equiv.) en DMF (3 ml). La suspensión fue agitada durante 5 minutos antes de que se introdujera cloruro de n-nonilo (0.32 ml, 1.61 mmol, 1.1 equiv): La mezcla resultante fue calentada a 60° C donde se matuvo durante 16 horas. Tras este período, la reacción fue enfriada a temperatura ambiente y dividida entre EtOAc y agua. La fase orgánica fue separada, lavada con agua adicional (x 2), secada (MgSO₄), filtrada y concentrada al vacío hasta revelar un sólido incoloro. En el caso de 3-n-noniloxibenzamida, este sólido incoloro fue agitado durante 5 minutos con MeOH (-0.5 ml) [Nota Bene: 3-n-noniloxibenzamida parcialmente soluble en MeOH] y, entonces, filtrado para revelar el compuesto deseado como un sólido incoloro (116 mg, 30%). HPLC-MS (procedimiento 3): $ml z 264 \, [M+H]^+$, $Rt=1.80 \, min. \, ^1H \, NMR \, (d_6-DMSO) \, \delta = 7.95 \, (s, 1H), 7.44-7.31 \, (m, 4H), 7.06 \, (ddd, <math>J=8 \, Hz, J=2 \, Hz, J=1 \, Hz, 1H), 3.99 \, (t, J=6.5 \, Hz, 2H), 1.72 \, (quintet, J=6.5 \, Hz, 2H), 1.42 \, (m, 2H), 1.34-1.26 \, (m, 10H), 0.86 \, (t, J=6.5 \, Hz, 3H).$

Nota Bene 1: La etapa final de purificación era dependiente de la naturaleza del grupo R. Otros procedimientos de purificación usados en el transcurso de la síntesis de genoteca fueron:

- 1. Recristalización (por ejemplo, MeOH, EtOAc/hexano, CH₃CH ordenados).
- 15 2. Cromatografía de columna de fase normal (gel de sílice)
 - 3. HPLC preparatorio o TLC preparatorio.

Nota Bene 2: En el caso de compuestos destinados a ser solubles en agua, la fase acuosa fue concentrada al vacío y, entonces, lavada con MeOH. Las fracciones metanólicas fueron concentradas al vacío y el producto en bruto purificado por HPLC preparatorio.

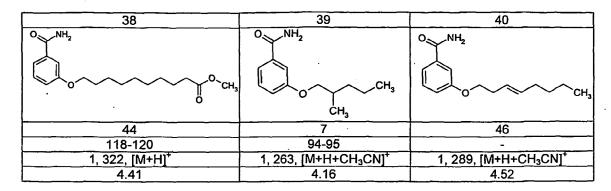
20 **Ejemplos 2 a 44 (Tabla A)**

5

10

Los ejemplos 2 a 44 fueron sintetizados de acuedo con el procedimiento B, esquema 2

Ejemplo	2	3	4	5
Estructura	O NH ₂ O CH ₃	O NH ₂ CH ₃ CH ₃	O_NH ₂	O NH2 CH3
HPLC-MS: Procedimiento no., m/z, ion	3, 180, [M+H] ⁺	3, 180, [M+H] [†]	3, 192, [M+H] ⁺	3, 208, [M+H] ⁺
Rt (min)	1.10	1.05	1.11	1.78


					
6		7			9
O NH ₂	O_NF	l,	O NH ₂	— Т	O_NH ₂
1 7 '		~	* '	.	Y "
O CH ₂		O CH ₃		~	O CH3
		3	· ·	53	
3, 178, [M+H] ⁺	3, 19	94, [M+H] ⁺	3, 222, [M	l+H] ⁺	3, 196, [M+H] ⁺
1.03	<u> </u>	1.63	1.48		1.08
10					
0 NH ₂	0.	11 NH ₂	12		13
1		72	O NH ₂		O NH ₂
					CH3
		CH.	3	___________________	1
		ĽH₂			CH ₃
2 200 FM 1 11 ⁺		2 400 PM	1	· · · · · · · · · · · · · · · · · · ·	
3, 286, [M+H] ⁺ 1.46		3, 192, [M+H] [†] 1.23	3, 248, 1.5		3, 208, [M+H] ⁺ 1.38
	,		1	· <u>·</u>	1.30
14		<u> </u>	15		16
ONH ₂		O NH ₂		O_NH	
		O NH ₂			
	014		4		in the second se
	YCH ₃		V∕V∕N _{CH₂}		0
·	ĊН ₃		Ori ₂		O CH ₃
3, 222, [M+H]	+), [M+H] [†]	3	, 224, [M+H] ⁺
1.48	·		1.40		1.16
47	·		10		
0 NH ₂		O NH ₂	18		19
				O NH ₂	
			Q		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	∕_∕CH₂	~~~	~о ^Д сн₃		
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CH ₃
3, 234, [M+H]	3, 234, [M+H] ⁺ 3, 266		3, 250, [M+H] ⁺ 3, 250, [M+H] ⁺ 1.67		250, [M+H] ⁺
1.51		<u>1. </u>	<u> </u>		1.67
20			21		20
O NH ₂		O NH ₂	- I	O NH ₂	22
VIII 2				14112	
					ÇH₃
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
				,0	CH ₃
3, 270, [M+H] 1.50	-	3, 284,	[M+H] [†] 61	3, 2	236, [M+H] [†]
1.50		[1.63
23	1	. 2	4		25
					20

26	27	28	29
O NH ₂ O CH ₃	O NH ₂	O NH ₂	O NH ₂
3, 238, [M+H] ⁺	3, 278, [M+H] ⁺	3, 262, [M+H] ⁺	3, 242, [M+H] ⁺
1.08	1.33	1.65	1.43

30	31	32
O NH ₂ O CH ₃	O NH ₂ O CH ₃	O NH ₂ O CH ₃
3, 192, [M+H] [†]	3, 246, [M+H] ⁺	3, 260, [M+H] ⁺
1.20	1.49	1.50

33	34	35
ONH ₂ OCH ₃	ONH ₂ F	ONH ₂ OCH ₃
3, 224, [M+H] ⁺	3, 260, [M+H] ⁺	3, 272, [M+H] ⁺
1.03	1.38	1.35

Ejemplo	36	37
Estructura	O_NH ₂	0 NH ₂
Rendimiento (%)	70	70
Mp (°C)	100-101	98-99
HPLC-MS: procedimiento no., m/z, ion	1, 298, [M+H]*	1, 280, [M+H]*
Rt (min)	4.72	3.62

41	42	43	44
O NH2	O NH ₂ O OH	0 NH ₂	0 NH2
56	16	40	54
135-137	107-109	70-72	109-111
1, 293, [M+H+CH ₃ CN] ⁺	1, 210, [M+H+CH₃CN] ⁺	1, 280, [M+H] ⁺	1, 317, [M+H+CH₃CN] ⁺
3.36	3.42	3.76	5.11

Tabla de nombres de compuestos de producto; Ejemplos 2-44:

Ejemplo	Nombre del compuesto
2	3-Propoxibenzenocarboxamida
3	3-lsopropoxibenzenocarboxamida
4	3-(Ciclopropilmetóxi)benzenocarboxamida
5	3-(Pentilóxi)benzenocarboxamida
6	3-(Alilóxi)benzenocarboxamida
7	3-Butoxibenzenocarboxamida
8	3-(Hexiloxi)benzenocarboxamida
9	3-(2-Metoxietoxi)benzenocarboxamida
10	3-(4-fenoxibutoxi)benzenocarboxamida
11	3-[(2-Metil-2-propenil)oxi]benzenocarboxamida
12	3-(7-Octeniloxi)benzenocarboxamida
13	3-(Isopentiloxi)benzenocarboxamida
14	3-[(4-Metilpentil)oxi]benzenocarboxamida
15	3-(5-Hexeniloxi)benzenocarboxamida

16	3-(2-Propoxietoxi)benzenocarboxamida
17	3-(6-Hepteniloxi)benzenocarboxamida
18	acetato 5-[3-(Aminocarbonil)fenoxi]pentilo
19	3-(Octiloxi)benzenocarboxamida
20	3-(4-Fenilbutoxi)benzenocarboxamida
21	3-[(5-Fenilpentil)oxi]benzenocarboxamida
22	3-[(5-Metilhexil)oxi]benzenocarboxamida
23	3-(2-Quinolinilmetoxi)benzenocarboxamida
24	3-(Heptiloxi)benzenocarboxamida
25	4-[3-(aminocarbonil)fenoxi]butanoato de etilo
26	4-[3-(aminocarbonil)fenoxi]butanoato de metilo
27	2-[3-(aminocarbonil)fenoxi]acetate de ciclohexilo
28	3-(2-Cicloheptiletoxi)benzenocarboxamida
29	3-[(3-Metilbenzil)oxi]benzenocarboxamida
30	3-[2-Buteniloxi]benzenocarboxamida
31	3-(2-Octiniloxi)benzenocarboxamida
32	3-(4-Noniniloxi)benzenocarboxamida
33	2-[3-(aminocarbonil)fenoxi]acetato de etilo
34	3-[(4-Fluorfenetil)oxi]benzenocarboxamida
35	3-[(4-Metoxifenetil)oxi]benzenocarboxamida
36	3-[(6-Fenilhexil)oxi]benzenocarboxamida
37	6-[3-(aminocarbonil)fenoxi]hexanoato de etilo
38	10-[3-(aminocarbonil)fenoxi]decanoato de metilo
39	3-[(2-Metilpentil)oxi]benzenocarboxamida
40	3-[(E)-3-Octeniloxi]benzenocarboxamida
41	2-[3-(aminocarbonil)fenoxi]acetato de butilo
42	3-(4-Hidroxibutoxi)benzenocarboxamida
43	4-[3-(aminocarbonil)fenoxi]butanoato de butilo
44	3-(4-Ciclohexilbutoxi)benzenocarboxamida

Esquema 3: (a) ROH, PPh₃-PS, DIAD, Et₃N, THF, r.t.

Procedimiento General para la Alquilación de Fenoles Utilizando Alcoholes por medio de reacción de Mitsunobu (Procedimiento C):

W, Y, Z = H, F, CI

10

15

20

5 Ejemplo 45 3-[(Z)-Deceniloxi]benzenocarboxamida

Se añadió diisopropilazodicarboxilato (0.47 ml, 2.4 mmol, 1.2 equiv.) a una suspensión de fosfina de trifenilo apoyada en polímero (1.4 g., 3 mmol, basado en una carga de 2.15 mmol/g [adquirido de Argonaut], 1.5 equiv.) engrosado en THF (20 ml) a temperatura ambiente. La mezcla fue agitada durante 5 minutos antes de que fueran añadidos 3-hidroxibenzamida (274 mg, 2 mmol, 1 equiv.), trietilamina (0.28 ml, 2 mmol, 1 equiv.) y cis-5-decenol (313 mg, 2 mmol, 1 equiv.). La suspensión resultante fue agitada a temperatura ambiente durante 16 horas y, entonces, filtrada. La resina fue lavada con THF adicional (x 3) y, entonces, lo filtrado y lo lavado, combinados, fueron concentrados bajo presión reducida, para obtener el producto en bruto como un semi-sólido descolorido. Fue purificado por cromatografía de columna en sílice eluyéndose con EtOAc/hexano (20 % - 40 % gradiente) para obtener el compuesto deseado como un sólido blanco (390 mg., 71 %), mp 98-100°C. HPLC-MS (procedimiento 1): $ml z 276 \, [\text{M+H}]^+$, Rt=5.00 min. $^1\text{H} \, \text{NMR} \, (\text{CDCl}_3) \, \delta = 7.35 \, (\text{s}, 1\text{H}), 7.32-7.28 \, (\text{m}, 2\text{H}), 7.08-7.02 \, (\text{m}, 1\text{H}), 6.18 \, (\text{br}, 2\text{H}), 5.41-5.32 \, (\text{m}, 2\text{H}), 3.98 \, (\text{t} \, \textit{J} = 6.4 \, \text{Hz}, 2\text{H}), 2.12-2.05 \, (\text{m}, 2\text{H}), 2.05-1.98 \, (\text{m}, 2\text{H}), 1.79 \, (\text{m}, 2\text{H}), 1.51 \, (\text{m}, 2\text{H}), 1.28 \, (\text{m}, 4\text{H}), 0.88 \, (\text{t}, \textit{J} = 7.0 \, \text{Hz}, 3\text{H}).$

Nota Bene 1: En algunos casos, se uso dietilazodicarboxilato (0.38 ml, 2.4 mmol, 1.2 equiv.) en lugar de diisopropilazodicarboxilato.

Nota Bene 2: En algunos casos, se utilizó fosfina de trifenilo no apoyado. En el caso de fenoles que contengan átomos de flúor, ningún producto podría ser detectado cuando se use fosfina de trifenilo apoyada en polímero y, así, las reacciones fueron llevadas a cabo con fosfina de trifenilo.

Ejemplo	46	47
Estructura	O NH ₂	O NH ₂ CH ₃
Rendimiento (%)	34	7.5
Mp (°C)	94-96	93-94
HPLC-MS: procedimiento no., m/z, ion	1, 298, [M+H] ⁺	1, 280, [M+H]*
Tiempo reacción (min)	4.73	4.78

48	49	50
O_NH ₂	0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CH ₃
56		10
133-134	-	88-90
1, 274, [M+H] ⁺	2, 262, [M+H] ⁺	1, 260, [M+H] ⁺
4.66	14.55	4.48

51	52	53
ONH ₂ CH ₃	O NH ₂ CH ₃	ONH ₂ OCH ₃
14	44	60
133-135	101-102	86-87
1, 260, [M+H] ⁺	1, 248, [M+H] [†]	1, 252, [M+H] [†]
4.42 ·	4.46	3.81

54	55	56
	CH ₃ CH ₃ CH ₃	O NH ₂ CH ₃
45	-	57
94-95	-	94-95
1, 266, [M+H] [†]	1, 330, [M+H] [†]	1, 260, [M+H] [†]
4.14	5.64	• 4.47

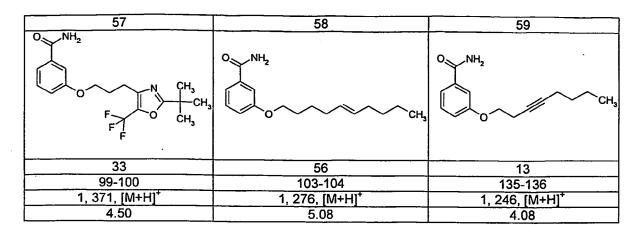


Tabla de nombres de compuestos de producto; Ejemplos 46-61:

Ejemplo	Número de compuesto
46	3-(10-Undeciniloxi)benzenocarboxamida
47	3-[(Z)-2-Noneniloxi]benzenocarboxamida
48	3-(5-Deciniloxi)benzenocarboxamida
49	3-[(E)-2-Noneniloxi]benzenocarboxamida
50	3-(2-Noniniloxi)benzenocarboxamida
51	3-(3-Noniniloxi)benzenocarboxamida
52	3-[(Z)-5-Octeniloxi]benzenocarboxamida
53	3-[2-(Pentiloxi)etoxi]benzenocarboxamida
54	3-[2-(Hexiloxi)etoxi]benzenocarboxamida
55	3-{[(5E)-2,6,10-Trimetil-5,9-undecadienil]oxi}
	benzenocarboxamida
56	3-[(2E,6Z)-2,6-Nonadieniloxi]benzenocarboxamida
57	3-{3-[2-(tert-Butil)-5-(trifluorometil)-1,3-oxazol-4-
	il]propoxi}benzenocarboxamida
58	3-[(E)-5-Deceniloxi]benzenocarboxamida

59	3-(3-Octiniloxi)benzenocarboxamida
60	3-[(3-Metilpentil)oxi]benzenocarboxamida
61	3-[(Z)-6-Noneniloxi]benzenocarboxamida

Esquema 4: (a) $Br(CH_2)_6Br$, K_2CO_3 , CH_3CH , $60^{\circ}C$; (b) PPh_3 , CH_3CN , reflujo; (c) (i) KHMDS, tolueno, $0^{\circ}C$; (ii) RCHO, -78° C a r.t.; (d) H2, 10° Pd/C, MeOH, r.t.

5 3-[(6-Bromohexil)oxi]benzenocarboxamida.

10

15

20

(Procedimiento D) se añadió K_2CO_3 (1.38 g, 10 mmol, 1 equiv.) a una suspensión de 3-hidroxibenzamida (1.37 g, 10 mmol, 1 equiv.) en CH_3CN (100 ml). La mezcla fue agitada durante 10 minutos a temperatura ambiente, antes de que se añadiera 1,6-dibromo-hexano (9.76 g, 40 mmol, 4 equiv.). La mezcla resultante fue agitada a 60° C durante 16 horas. Pasado este tiempo, la reacción fue enfriada a temperatura ambiente, algunos sólidos no disueltos fueron filtrados y el filtrado evaporado bajo presión reducida hasta la sequedad. EL residuo fue absorbido en EtOAc y agua. La fase orgánica fue separada y lavada consecutivamente con solución de K_2CO_3 , agua y salmuera. Secada con MgSO₄ y evaporada bajo presión reducida hasta un volumen pequeño. El sólido precipitado fue filtrado y lavado con EtOAc/pentano, para obtener el compuesto deseado como un sólido blanco (2.0 g, 67%), mp 115-117°C. HPLC-MS (procedimiento 1): m/z 300 $[M]^+$, 302 $[M+2H]^+$, Rt=4.08 min.

Bromuro de 6-[3-(Aminocarbonil)fenóxi]hexil(trifenil)fosfonio

Fue calentada una mezcla de 3-[(6-Bromohexil)oxi]benzenocarboxamida (2.10 g, 7 mmol, 1 equiv.) y trifennilfosfina (1.93 g, 7.35 mmol, 1.05 equiv.) en CH₃CN (30 ml) al reflujo durante 72 horas. El solvente fue evaporado bajo presión reducida y el residuo fue triturado con Et₂O seco hasta que se solidificó. El sólido fue filtrado

y secado al vacío para obtener el compuesto deseado como un sólido blanco (4.0 g, 100%). HPLC-MS (procedimiento 1): m/z 482 [M-Br]⁺, Rt = 3.65 min.

Ejemplo 62: 3-{(Z)-7-(3-Tienil)-6-heptenil]oxi}benzenocarboxamida

(Procedimiento E) se añadió una solución de potasio bis(trimetilsilil)amido (0.5 M; 7.1 ml, 3.55 mmol, 1.2 equiv.) en tolueno, lentamente, gota a gota, sobre un período de 15 minutos a 0° C bajo N₂ a una suspensión agitada de bromuro de 6-[3-(amicarbonil)fenoxi]hexil (trifenil) fosfonio (2.0 g, 3.55 mmol, 1.2 equiv.) en tolueno anhidroso (28 ml). La solución de color naranja oscuro fue agitada durante otros 20 minutos a 0° C y enfriada a -78° C, momento en el que se añadió instantáneamente tiofeno-3-carboxaldehido, y la temperatura se dejó ascender de -78°C a temperatura ambiente. La mezcla amarilla clara fue agitada a temperatura ambiente durante 16 horas. La mezcla de reacción fue sofocada con NH₄Cl (20 ml) acuoso saturado y el solvente fue evaporado bajo presión reducida. El residuo fue llevado a CH₂Cl₂ y H₂O, la fase orgánica fue separada, lavada con salmuera y secada (Na₂SO₄). El solvente fue evaporado bajo presión reducida y el residuo fue purificado por cromatografía de columna en sílice eluyéndolo con EtOAc/hexano (10%-50% gradiente) para obtener el compuesto deseado como un sólido blancuzco (300 mg, 35%), mp 71-73° C. Por análisis ¹H NMR, consistió de una mezcla de *Z:E* (90:10). HPLC-MS (procedimiento 1): m/z 316 [M+H]⁺, Rt = 4.62 min.

Ejemplo 63: 3-{-7-(3-Tienil)-6-heptil]oxi}benzenocarboxamida

añadió % Pd/C (30 solución de **ejemplo** 62 3-{(Z)-7-(3-Tienil)-6mg) una а 20 heptenil]oxi}benzenocarboxamida (260 mg. 0.82 mmol) en MeOH (8 ml). La mezcla fue agitada bajo H₂ a temperatura ambiente durante 3 días. El catalizador fue eliminado por filtración a través de un tampón de Celita y el solvente fue evaporado bajo presión reducida, hasta alcanzar un pequeño volumen. El sólido precipitado fue filtrado y enjuagado con Et₂O/pentano para obtener el compuesto deseado como un sólido blanco (130 mg. 48%), mp 97-100° C. HPLC-MS (procedimiento 1): m/z 318 [M+H]⁺, Rt = 4.87 min.

25 <u>Ejemplo 64</u>: 3-{[(**Z**)-7-(5-Cloro-2-furil)-6-heptenil]oxi}benzenocarboxamida

Sintetizado a partir del **Bromuro de 6-[3-(Aminocarbonil)fenóxi]hexil(trifenil)fosfonio** de acuerdo con el Procedimiento E. Producción 72 %, mp 53-56° C. Por análisis ¹H NMR, consistió de una mezcla de *Z:E* (81:19). HPLC-MS (procedimiento 1): m/z 334 [M+H][†], Rt = 4.80 min.

Esquema 5: (a) $Br(CH_2)_6Br$ (n=5, 8) K_2CO_3 , CH_3CH , $60^{\circ}C$; (b) acetílido de litio complejo de etilenodiamina [Lic= $CH(H_2NCH_2CH_2NH_2)$] DMSO, r.t.

$$O = S_1$$

$$O = S_2$$

$$O = S_3$$

$$O = S_4$$

3-[(7-Bromoheptil)oxi]benzenocarboxamida

Sintetizado de acuerdo con el procedimiento D. HPLC-MS (procedimiento 1): m/z 314 $[M]^+$, 316 $[M+2H]^+$ Rt = 4.37 min.

Ejemplo 65: 3-(8-Noninilóxi)benzenocarboxamida.

10

15

20

5

(Procedimiento F) un complejo de etilenodiamina de acetílido de litio (305 mg, 3.3 mmol, 1.1 equiv.) fue ubicado en un frasco de cuello triple, desgasificado, lavado con N_2 y supendido en DMSO (2 ml). Se añadió una solución de **3-[(7-Bromoheptil)oxi]benzenocarboxamida** (943 mg, 3 mmol, 1 equiv.) en DMSO (2 ml), lentamente, gota a gota, a temperatura ambiente, bajo N_2 , a la suspensión agitada. La mezcla de reacción fue agitada a temperatura ambiente durante 16 horas. Después de ese tiempo, fue diluida con solución 1 N HCl y extraída con EtOAc (x 3). Los extractos orgánicos combinados fueron lavados con salmuera, secados (Na_2SO_4) y evaporados hasta la sequedad bajo presión reducida. El producto en bruto fue purificado por cromatografía de columna en sílice eluyendo con EtOAc/hexano al 20 %, para obtenerse el compuesto deseado como un sólido blanco (100 mg, 13%), mp 82-83° C. HPLC-MS (procedimiento 1): m/z 260 [M+H]⁺·Rt = 4.26 min.

3-[(7-Bromodecil)oxi]benzenocarboxamida

Sintetizado de acuerdo con el procedimiento D. Producción 32%, mp 114-116°C, HPLC-MS (procedimiento 1): m/z 356 [M]⁺, 358 [M+2H]⁺ Rt = 5.15 min.

Ejemplo 66: 3-(11-Dodeciniloxi)benzenocarboxamida.

Sintetizado a partir de 3-[(7-Bromodecil)oxi]benzenocarboxamida

Esquema 6: (a) complejo de etilenodiamina de acetílido de litio [LiC=CH(H₂NCH₂CH₂NH₂)], DMSO, r.t., (b) ácido ptoluenosulfónico, EtOH, reflujo; (c) 3-hidroxibenzenocarboxamida, PPh₃-PS, DIAD, Et₃N, THF, r.t.

10-Undecin-1-ol

5

10

15

20

(Procedimiento G) Se añadió una solución de 2-[(8-bromooctil)oxi)tetrahidro-2H-pirano disponible en el mercado (1.0 g, 3.4 mmol, 1 equiv.) en DMSO (5 ml), lentamente, gota a gota, a temperatura ambiente, bajo N_2 , a una suspensión agitada de complejo de etilenodiamina de acetílido de litio (350 mg, 3.8 mmol, 1.1 equiv.) en DMSO (5 ml). La mezcla de reacción fue agitada a temperatura ambiente durante 18 h y diluido con n-pentano (50 ml). La fase orgánica fue lavada con solución 1 N HCl (2x20 ml) y agua (2x20 ml), secada (Na_2SO_4) y evaporada hasta la sequedad bajo presión reducida. El residuo (líquido incoloro, 570 mg, producción 70%) fue disuelto en 95 % EtOH (20 ml) conjuntamente con ácido p-toluenosulfónico (150 mg) y la mezcla fue calentada al reflujo durante 2.5 horas. Después de ser enfriado, el disolvente fue evaporado bajo presión reducida. El residuo fue purificado por cromatografía de columna en sílice eluyendo con EtOAc/hexano (10%-30% de gradiente), para obtener el compuesto deseado como un aceite incoloro (240 mg, producción conjunta de 48%).

Ejemplo 67: 3-(-9-Deciniloxi)benzenocarboxamida.

Sintetizado a partir de 3-hidroxibenzenocarboxamida y 10-undecin-1-ol de acuerdo con el Procedimiento C, esquema 3; mp 111-112 $^{\circ}$ C, HPLC-MS (procedimiento 1): m/z 274 [M+H] † Rt = 4.61 min.

Esquema 7: (a) SOCl₂, tolueno, reflujo; (b) NH₃ acuoso, (c) n-Non-Br, K_2CO_3 , Nal, DMF, 60° C; (d) 10-undecinol, PPh₃-PS, DIAD, Et₃N, THF, r.t.

2-Cloro-5-hidroxibenzenocarboxamida

Sintetizado a partir de ácido **2-Cloro-5-hidroxibenzenocarboxílico**, de acuerdo con el procedimiento A, esquema 1. Producción 28%, mp 159-161 $^{\circ}$ C, HPLC-MS (procedimiento 1): m/z 170 [M-H] $^{-}$ Rt = 1.48 min.

Ejemplo 68: 2-Cloro-5-(noniloxi)benzenocarboxamida

Sintentizada a partir de **2-Cloro-5-hidroxibenzenocarboxamida** de acuerdo con el Método B, esquema 2. Producción 80%, HPLC-MS (procedimiento 1): m/z 339 [M+H+CH₃CH]⁺, Rt = 5.29 min.

Ejemplo 69: 2-Cloro-5-(10-undeciniloxi)benzenocarboxamida

Sintetizado a partir de **2-Cloro-5-hidroxibenzenocarboxamida** de acuerdo con el procedimiento C, esquema 3. Producción 13%, HPLC-MS (procedimiento 1): m/z 322 [M+H]⁺, Rt = 4.94 min.

Esquema 8: (a) BBr₃, CH₂Cl₂, r.t.; (b) R₁-Br, K₂CO₃, Nal, DMF, 60° C; (c) R₂-OH, PPh₃-PS, DIAD, Et₃N, THF, r.t.

$$O_1$$
 O_2 O_3 O_4 O_4 O_5 O_5

2-Flúor-5-hidroxibenzenocarboxamida

(Procedimiento H) se añadió lentamente, gota a gota, una solución de tribromuro de boro (1.0 M en CH₂Cl₂, 23.6 ml, 23.6 mmol, 2 equiv.) a una solución agitada de 2-Flúor-5-metoxibenzenocarboxamida (2.0 g, 11.8 mmol, 1 equiv.) en CH₂Cl₂ (60 ml), a temperatura ambiente, bajo N₂. La mezcla reactiva fue agitada a termperatura ambiente durante 48 horas. El solvente fue eliminado bajo presión reducida, el residuo fue disuelto en agua (120 ml) y extraído con EtOAc (4x100 ml). Los extractos orgánicos combinados fueron lavados con agua (2x100 ml), secados (Na₂SO₄) y filtrados a través de un tampón de gel de sílice. El filtrado fue evaporado hasta la sequedad bajo presión reducida, para obtener el compuesto deseado como un sólido gris (1.50 g, 82%).

Ejemplos 70-75 (Tabla C)

15

Los ejemplos 70-72 fueron sintetizados a partir de 2-Flúor-5-hidroxibenzenocarboxamida de acuerdo con el procedimiento B, esquema 2 y Ejemplos 73-75 fueron sintetizados a partir de 2-Flúor-5-hidroxibenzenocarboxamida de acuerdo con el procedimiento C, esquema 3

Ejemplo	70	71
Estructura	F CH ₃	O NH ₂ F CH ₃
Rendimiento (%)	-	40
Mp (°C)	-	78-80
HPLC-MS: procedimiento no., m/z, ion	4, 282, [M+H] ⁺	1, 337, [M+H+CH₃CN] ⁺
Rt (min)	2.42	5.69

72	73
F CH ₃	F CH ₃
42	8.5
82-83	69-71
1, 351, [M+H+CH₃CN] ⁺	1, 307, [M+H+CH₃CN] ⁺
6.03	4.71

74	75
F CH ₃	F O CH
-	8
75-76	72-74
1, 280, [M+H] ⁺	1, 306, [M+H] ⁺
5.05	4.96

Tabla de nombres de compuestos de producto; Ejemplos 70-75

5

Ejemplo	Nombre de compuesto
70	2-Flúor-5-(noniloxi)benzenocarboxamida
71	2-Flúor-5-(deciloxi)benzenocarboxamida
72	2-Flúor-5-(undeciloxi)benzenocarboxamida
73	2-Flúor-5-[(Z)-5-octeniloxilbenzenocarboxamida
74	2-Flúor-5-[(E)-2-noneni)oxi]benzenocarboxamida
75	2-Flúor-5-(10-undeciniloxi)benzenocarboxamida

Esquema 9: (a) SOCl₂, tolueno, reflujo; (b) NH₃ acuoso; (c) BBr₃, CH₂Cl₂, r.t.; (d) n-Non-Br, K₂CO₃, Nal, DMF, 60° C

6-Cloro-2-flúor-3-metoxibenzenocarboxamida

Sintetizado a partir de **ácido 6-Cloro-2-flúor-3-metoxibenzenocarboxílico**, disponible en el mercado, de acuerdo con el Procedimiento A, esquema 1. Producción 85%, mp 154-156°C, HPLC-MS (procedimiento 1): m/z 245 [M+H+CH₃CN]^{†}, Tiempo de reacción = 2.37 min.

5 6-Cloro-2-flúor-3-hidroxibenzenocarboxamida

Sintetizado a partir de **6-Cloro-2-flúor-3-metoxibenzenocarboxamida** de acuerdo con el Procedimiento H. Producción: 90%.

Ejemplo 76: 6-Cloro-2-flúor-3-(noniloxi)benzenocarboxamida

Sintetizado a partir de **6-Cloro-2-flúor-3-hidroxibenzenocarboxamida** de acuerdo con el Procedimiento B, esquema 2. Producción 73%, mp 75-77°C, HPLC-MS (procedimiento 1): m/z 316 $[M+H]^+$, Rt = 5.27 min.

Esquema 10: (a) BBr₃, CH₂Cl₂, r.t.; (b) R-Br, K₂CO₃, NaI, DMF, 60°C.

$$O \cap NH_2$$
 $O \cap NH_2$
 $O \cap NH_2$

15 2-Cloro-6-flúor-3-hidroxibenzenocarboxamida

10

Sintetizado a partir de **2-Cloro-6-flúor-3-metoxibenzenocarboxamida**, disponible en el mercado, de acuerdo con el procedimiento H. Producción: 78 %.

Ejemplo 77: 6-Cloro-2-flúor-3-(hexiloxi)benzenocarboxamida

Sintetizado a partir de **2-Cloro-6-flúor-3-hidroxibenzenocarboxamida** de acuerdo con el Procedimiento B, esquema 2. Producción 30%, mp 66-68°C, HPLC-MS (procedimiento 1): m/z 274 [M+H]⁺, Rt = 2.78 min.

5 Ejemplo 78: 6-Cloro-2-flúor-3-(noniloxi)benzenocarboxamida

Sintetizado a partir de **2-Cloro-6-flúor-3-hidroxibenzenocarboxamida** de acuerdo con el Procedimiento B, esquema 2. Producción 15%, mp 64-66°C, HPLC-MS (procedimiento 1): m/z 316 $[M+H]^+$, Rt = 5.13 min.

Esquema 11: (a) SOCl₂, tolueno, reflujo; (b) NH₃ acuoso; (c) BBr₃, CH₂Cl₂, r.t. (d) n-Hex-Br, K₂CO₃, Nal, DMF, 60° C.

${\bf 2,4,6\text{-}Trifluor\text{-}3\text{-}metoxibenzenocarboxamida}$

Sintetizado a partir de **ácido 2,4,6-Trifluor-3-metoxibenzenocarboxílico** disponible en el mercado, de acuerdo con el Procedimiento B, esquema 1. Producción 85%, mp 102°C, HPLC-MS (procedimiento 1): m/z 206 [M+H]⁺, Rt = 2.40 min.

2,4,6-Trifluor-3-hidroxibenzenocarboxamida

Sintetizado a partir de **2,4,6-Trifluor-3-metoxibenzenocarboxamida**, de acuerdo con el Procedimiento H. Producción 100%, HPLC-MS (procedimiento 1): m/z 190 [M-H] $^{-}$, Rt = 1.07 min.

20

10

15

Ejemplo 79: 2,4,6-Trifluor-3-(hexiloxi)benzenocarboxamida

Sintetizado a partir de **2,4,6-Trifluor-3-hidroxibenzenocarboxamida**, de acuerdo con el Procedimiento B, esquema 2. Producción 54%, mp 89-90°C, HPLC-MS: m/z 276 [M+H]⁺, Rt = 4.36 min.

5 Esquema 12:

15

(a) BBr₃, CH₂Cl₂, r.t.; (b) n-Hex-Br, K₂CO₃, Nal, DMF, 60°C.

2,4-Diflúor-3-hidroxibenzenocarboxamida.

Sintetizado a partir de **2,4-Diflúor-3-(hexiloxi)benzenocarboxamida**, disponible en el mercado, de acuerdo con el Procedimiento H. Producción 98%, HPLC-MS (procemiento 1): m/z 172 [M-H]⁻, Rt = 1.03 min.

Ejemplo 80: 2,4-Diflúor-3-(hexiloxi)benzenocarboxamida.

Sintetizado a partir de **2,4-Diflúor-3-hidroxibenzenocarboxamida**, de acuerdo con el Procedimiento B, esquema 2. Producción 51%, mp 86-87° C.

Esquema 13: (a) SOCl₂, tolueno, reflujo; (b) NH₃ acuoso; (c) BBr₃, CH₂Cl₂, r.t. (d) R₁-Br, K₂CO₃, Nal, DMF, 60° C. (e) R₂-OH, PPh₃-PS, DIAD, Et₃N, THF, r.t.

	T	,
Ejemplo	81	82
Estructura	F F CH ₃	F CH ₃
Rendimiento (%)	38	71
Mp (°C)	93-95	76-78
HPLC-MS: procedimien to no., m/z, ion	1, 258, [M+H] ⁺	1, 300, [M+H] [†]
Rt (min)	4.38	5.16

2,4-Diflúor-3-metoxibenzenocarboxamida.

Sintetizado a partir de **ácido 2,4-Diflúor-3-metoxibenzenocarboxílico**, disponible en el mercado, de acuerdo con el Procedimiento A, esquema 1. Producción 84%, mp 167-169° C, HPLC-MS (procemiento 1): m/z 188 [M+H]⁺, Rt = 2.00 min.

2,6-Diflúor-3-hidroxibenzenocarboxamida.

Sintetizado a partir de **2,6-Diflúor-3-metoxibenzenocarboxamida** de acuerdo con el Procedimiento H. Producción 78%. HPLC-MS (procemiento 1): *m/z* 172 [M-H] , Rt = 1.25 min.

Ejemplos 81-87 (Tabla D)

Los ejemplos 81-83 fueron sintetizados a partir de 2,6-Diflúor-3-hidroxibenzenocarboxamida de acuerdo con el procedimiento B, esquema 2. Los ejemplos 84-88 fueron sintetizados a partir de 2,6-Diflúor-3-hidroxibenzenocarboxamida de acuerdo con el procedimiento C, esquema 3.

15

5

83	84	85
F O O O O	CH ₃ ONH ₂ F CH ₃ CH ₃	P F CH ₃
37	29	6.5
99-101	67-69	62-64
1, 288, [M+H] ⁺	1, 298, [M+H] ⁺	1, 302, [M+H] ⁺
3.72	4.91	4.18

86	. 87	88
F F CH ₂	F F CH ₃	O NH ₂ F F CH
16	16	21
57-59	<40	87-89
1, 288, [M+H] ⁺	1, 312, [M+H] [†]	1, 324, [M+H] [†]
4.65	4.94	4.67

Tabla de nombres de compuestos de producto; Ejemplos 81-88:

Ejemplo	Nombre de compuesto
81	2,6-Diflúor-3-(hexiloxi)benzenocarboxamida
82	2,6-Diflúor-3-(noniloxi)benzenocarboxamida
83	Butilo 2-[3-(aminocarbonilo)-2,4-diflúorfenoxilacetato
84	2,6-Diflúor-3-[(<i>E</i>)-2-nonenitoxi]benzenocarboxamida
85	2,6-Diflúor-3-[2-(hexiloxi)etoxi]benzenocarboxamida
86	2,6-Diflúor-3-[(Z)-6-noneniloxi)benzenocarboxamida
Ejemplo	Nombre del compuesto
87	2,6-Diflúor-3-[(Z)-5-deceniloxi)benzenocarboxamida
88	2,6-Diflúor-3-(10-undeciniloxi)benzenocarboxamida

Esquema 14: (a) K₂CO₃, DMF, r.t.; (b) NaOH, H₂O/IPA,reflujo; (c) n-Hex-Br, K₂CO₃, DMF, 70°C.

2-[3-(aminocarbonilo)-2,4-diflúorfenoxi]acetato metilo.

Una mezcla de **2,6-diflúor-3-hidroxibenzenocarboxamida** (1.2 g, 7 mmol, 1 equiv.), K_2CO_3 (2.87 g, 21 mmol, 3 equiv.) y metil bromoacetato (.69 ml, 7.35 mmol, 1.05 equiv.) en DMF (30 ml) fue agitada a temperature ambiente durante 18 h. La mezcla fue diluida con agua y extraída con EtOAc (4x80 ml). Los extractos orgánicos combinados fueron secados (MgSO₄) y evaporados hasta la sequedad bajo presión reducida. El producto fue usado en bruto en la siguiente fase. HPLC-MS (procedimiento 1): m/z 246 [M+H][†], Rt = 2.08 min.

Acido 2-[3-(aminocarbonilo)-2,4-diflúorfenoxi]acético

Fue añadido **2-[3-(aminocarbonilo)-2,4-diflúorfenoxi]acetato metilo** (7 mmol, 1 equiv.) a una solución de NaOH (1g, 25 mmol, 3.6 equiv.) en agua (20 ml) y alcohol isopropilo (5 ml). La mezcla fue agitada al reflujo durante 1.5 h, diluida con agua (40 ml) y extraída con CH_2Cl_2 (40 ml). La fase acuosa fue acidificada a un pH 1 con solución conc. HCl. El sólido precipitado fue filtrado y secado al vacío para obtener el compuesto deseado (130 mg, 8%), mp 152-153°C. HPLC-MS (procedimiento 1): m/z 312 [M-H+2CH₃CN]⁻, Rt = 0.91 min.

Ejemplo 89: Hexilo 2-[3-(aminocarbonilo)-2,4-diflúorfenoxi]acetato

Se añadió n-Bromohexano (0.077 ml, 0.55 mmol, 1.05 equiv.) a una suspensión de **ácido 2-[3-(aminocarbonil)-2,4-diflúorfenoxi]acético** (120 mg, 0.52 mmol, 1 equiv.) y K₂CO₃ (215 mg, 1.56 mmol, 3 equiv.) en DMF (3 ml) y la mezcla fue agitada a 70°C durante 1.5 h. Después de enfriar a temperatura ambiente, la mezcla fue vertida en agua (25 ml) y el sólido precipitante fue filtrado y lavado con agua (2x20 ml). Después de secarse, el sólido en bruto fue triturado por agitación en hexano (10 ml), filtrado y lavado con hexano (3 x10 ml), para obtener el compuesto deseado como un sólido blanco (99 mg, 60%), mp 108°C. HPLC-MS: *m/z* 316 [M+H][†], Tiempo de reacción = 4.09 min.

Esquema 15: (a) complejo de etilenodiamina de acetílido de litio [LiC $\underline{=}$ CH(H₂NCH₂CH₂NH₂)], DMSO, r.t., (b) ácido ptoluenosulfónico, EtOH, reflujo; (c) CICH₂COCI, CH₂CI₂, r.t. (d) K₂CO₃, NaI, DMF, 60° C

10

7-Octin-1-ol.

5

10

Sintetizado a partir de available **2-[(8-bromohexil)oxi]tetrahidro-2H-pirano** disponible en el mercado, de acuerdo con el Procedimiento G. Producción global 55%, aceite incoloro.

7-Octinil 2-cloroacetato.

Se añadió cloruro de cloroacetilo (0.16 ml, 2.0 mmol, 1 equiv.) a una solución agitada de **7-Octin-1-ol** (300 mg, 2.4 mmol, 1.2 equiv.) en CH₂Cl₂ (6 m-) a -5°C. La mezcla de reacción se dejó calendar a temperature ambiente, donde fue agitada durante 4 h. El solvente fue eliminado bajo presión reducida y el residuo fue purificado por cromatografía de columna en sílice eluyéndolo con EtOAc/hexano (10%) para obtener el compuesto deseado como un líquido amarillo pálido (450 mg, 100%).

Ejemplo 90: 7-Octinil 2-[3-(aminocarbonil)-2,4-diflúorfenóxi]acetato.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el Procedimiento B, esquema 2. Producción 13%, mp 130-132°C, HPLC-MS (procedimiento 1): m/z 340 [M+H]⁺, Tiempo de reacción = 3.93 min.

Esquema 16: (a) ZnEt₂, CH₂I₂, tolueno, r.t.

Ejemplo 91: 3-[4-(2-Etilciclopropil)butoxi]benzenocarboxamida.

Se añadió a una solución del **ejemplo 52** (500 mg, 2.02 mmol, 1 equiv.) in tolueno seco (1 ml), a temperatura ambiente, bajo N₂, una solución de zinc de dietilo (1.1 M en tolueno, 1.84 ml, 2.02 mmol, 1 equiv.). Se añadió Diiodometano (0.244 ml, 3.03 mmol, 1.5 equiv.), lentamente, gota a gota, y la mezcla de reacción fue agitada a temperatura ambiente durante 5 días. La mezcla fue diluida con agua (40 ml) and extraída con CH₂Cl₂ (4x40 ml). Los extractos orgánicos combinados fueron secados (MgSO₄) y los solventes fueron eliminados bajo presión reducida. Por HPLC-MS, the residuo en bruto consistía de material prima (80%) y producto deseado (20%). La reacción fue repetida de la misma forma, in tolueno (15 ml) usando zinc de dietilo (1.1 M in tolueno, 6.1 ml, 6.6 mmol, 3.3 equiv.) and diiodometano (0.244 ml, 3.03 mmol, 1.5 equiv.). La mezcla de reacción fue agitada a 50°C durante 5 días, diluída con agua (80 ml) and extraída con CH₂Cl₂ (4x50 ml). Los extractos orgánicos combinados fueron secados (MgSO₄) y los solventes fueron eliminados bajo presión reducida. El residuo fue triturado por agitado en pentano (15 ml) y el sólido precipitante fue filtrado y enjuagado con pentano para obtener 196 mg de un compuesto blanco, mp 104-105°C. Por HPLC-MS, consistió de materia prima (65%) y del producto deseado (35%). HPLC-MS (procedimiento 1): m/z 303 [M+H+CH₃CN]⁺, Rt = 4.83 min.

Esquema 17: (a) $Br(CH_2)_9OH$, K_2CO_3 , Nal, DMF, 60° C; (b) cloruro de toluenosulfonilo, Et_3N , CH_2Cl_2 , r.t.; (c) NaCN, $H_2O/EtOH$, 75° C.

20 3-[(9-Hidroxinonil)oxi]benzenocarboxamida

5

10

15

Sintetizado de acuerdo con el Procedimiento B, esquema 2. Producción 75%, mp 118-120°C, HPLC-MS (procedimiento 1): m/z 280 [M+H] † , Tiempo de reacción = 3.50 min.

Ejemplo 92: 9-[3-(Aminocarbonil)fenoxi]nonilo 4-metilbenzenosulfonato

Se añadieron cloruro de toluenosulfonilo (410 mg, 2.15 mmol, 1.5 equiv.) and trietilamina (0.40 ml, 2.88 mmol, 2 equiv.) a una solución de **3-[(9-hidroxinonil)oxi]benzenocarboxamida** (400 mg, 1.43 mmol, 1 equiv.) in CH_2Cl_2 (4 ml) y la mezcla de reacción fue agitada a temperatura ambiente durante 6 días. Fue añadida una solución de $NaHCO_3$ saturado (40 ml) y la mezcla fue extraída con CH_2Cl_2 (3x30 ml). Los extractos orgánicos combinados fueron secados (MgSO₄) y el solvente fue evaporado bajo presión reducida. El residuo fue purificado por cromatografía de columna sobre sílice eluyendo con CH_3OH/CH_2Cl_2 (2%), para conseguir el compuesto deseado como un sólido banco (428 mg, 69%), mp 78-80°C. HPLC-MS (procedimiento 1): m/z 434 [M+H][†], tiempo de reacción = 4.90 min.

10 Ejemplo 93: 3-[(9-Cianononil)oxi]benzenocarboxamida.

Se añadió cianuro de sodio (60 mg, 1.22 mmol, 1.3 equiv.) a una solución de 9-[3-(aminocarbonil)fenoxi]nonil 4-

metilbenzenosulfonato (407 mg, 0.94 mmol, 1 equiv.) en agua (10 ml) y 95% EtOH (8 ml), y la mezcla de reacción fue agitada a 75°C durante 2 días. Después de enfriar a temperature ambiente, la mezcla fue diluida con agua (10 ml) y extraída con H_2Cl_2 (3x10 ml). Los extractos orgánicos combinados fueron secados (MgSO₄) y el solvent fue eliminado bajo presión reducida. El residuo en bruto fue purificado por cromatografía de columna sobrer sílice eluyendo con EtOAc/hexano (50%), para obtener el compuesto deseado como un sólido blanco (57 mg, 21%), mp 96-97°C. HPLC-MS (procedimiento 1): m/z 289 [M+H] † , Tiempo de reacción = 4.16 min.

Esquema 18: (a) n-Non-Br, K₂CO₃, Nal, DMF, 60° C; (b) LiOH, NaOCH₃, MeOH, reflujo.

2-(Noniloxi)isonicotinonitrilo.

20

Sintetizado a partir de **2-hidroxiisonicotinonitrilo**, disponible en el mercado, de acuerdo con el Procedimiento B. Producción 30%, semi-sólido, HPLC-MS (procedimiento 2): m/z 245 $[M+H+CH_3CN]^{\dagger}$, tiempo de reacción=21.46 minutos. La reacción dio también, como subproducto, 1-nonil-2-oxo-1,2-dihidro-4-piridinocarbonitrilo, producción 39%, mp 46-48°C, HPLC-MS (procedimiento 1): m/z 288 $[M+H+CH_3CN]^{\dagger}$, Tiempo de reacción = 4.94 min.

5 <u>Ejemplo 94:</u> 2-(Noniloxi)isonicotinamida.

Se agitó a temperature ambiente durante 2.5 horas una solución de **2-(noniloxi)isonicotinonitrilo** (250 mg, 1.0 mmol, 1 equiv.) y metóxido de sodio (10 mg, 10 mmol, 0.1 equiv) en CH_3OH (10 ml) seco. Se añadió una solución de hidróxido de litio (24 mg, 1.0 mmol, 1 equiv.) en agua (1 ml) y la mezcla de reacción fue calentada al reflujo durante 3.5 h. Tras enfriarse a temperatura ambiente, la mezcla fue vertida en agua (40 ml). El sólido precipitante fue filtrado y secado al vacío a $50^{\circ}C$, para obtener el compuesto deseado como un sólido blanco (60 mg, 23%), mp $108-110^{\circ}C$. HPLC-MS (procedimiento 1): m/z 265 $[M+H]^{+}$, Tiempo de reacción = 5.08 min.

Esquema 19: (a) Br₂, CCl₄, (b) K₂CO₃, CH₃CN, 60° C, 5 días, (c) conc. H₂SO₄, H₂O, 40° C.

$$H_3C$$
 CH_2
 CH_3
 H_3C
 CH_3
 H_2N
 CH_3
 H_2N
 CH_3
 H_2N
 CH_3
 H_2N
 CH_3
 CH_3

1,2-Dibromoheptano

10

15

20

Se añadió bromina (1.9 ml, 377.28 mmol, 1.05 equiv.), lentamente, gota a gota, a una solución de 1-hepteno (5 ml, 35.5 mmol, 1 equiv.) in CCl₄ (7 ml) enfriada a -10°C, bajo N₂. La mezcla de reacción fue agitada a temperatura ambiente durante 16 horas. El solvente fue eliminado por evaporación bajo presión reducida. El residuo fue dividido entre CH₂Cl₂ (200 ml) y 10% de solución de metabisulfato de sodio acuoso (200 ml). La fase organic fue separada, lavada con salmuera y secada (Na₂SO₄). Fue evaporada bajo presión reducida hasa la sequedad, para obtener el compuesto deseado como un aceite incoloro (8.94g, 98%).

3-Pentil-2,3-dihidro-1,4-benzodioxina-6-carbonitrilo y 2-pentil-2,3-dihidro-1,4-benzodioxina-6-carbonitrilo.

25 Se añadió **1,2-Dibromoheptano** (5.11 g, 19.8 mmol, 1.1 equiv.) a una mezcla de dihidróxido de benzonitrilo (2.43 g, 18 mmol, 1 equiv.) y K₂CO₃ (12.4 g, 90 mmol, 5 equiv.) en CH₃CN (100 ml). La mezcla de reacción fue calentada al

reflujo durante 4 días. Después de enfriarse a temperature ambiente, el solvent fue eliminado bajo presión reducida; el residuo fue diluido con agua (200 ml) y extraído con EtOAc (3x150 ml). Las fases orgánicas combinadas fueron lavadas con salmuera, secadas (Na_2SO_4) y evaporadas bajo presión reducida hasta la sequedad. El residuo fue purificado por cromatografía de columna sobre sílice eluyendo con EtOAc/hexano (5%-10% de gradiente) para obtener el compuesto deseado como un aceite incoloro (390 mg, 9%); mezcla de dos regio-isómeros. HPLC-MS (procedimiento 1): m/z 230 [M-H], Temperatura ambiente = 5.28 min.

<u>Example 95:</u> 3-Pentyl-2,3-dihydro-1,4-benzodioxine-6-carboxamide and 2-pentyl-2,3-dihydro-1,4-benzodioxine-6-carboxamide.

$$H_2N$$
 O CH_3 CH_2N O CH_3

10 Una mezcla de los regio-isómeros 3-pentil-2,3-dihidro-1,4-benzodioxina-6-carbonitrilo y 2-pentil-2,3-dihidro-1,4-

benzodioxina-6-carbonitrilo (50 mg, 0.22 mmol) fue agitada vigorosamente en conc. H_2SO_4 (0.5 ml) y calentada hasta los 40°C. Se añadió agua (82 mg), gota a gota, y la mezcla fue agitada durante 45 min a 40°C. La mezcla fue enfriada a -5°C, y se añadió hielo (25 ml) rápidamente, con agitado vigoroso. La mezcla se agitó a temperature ambiente durante dos horas más. El sólido precipitante fue filtrado, lavado con agua y secado al vacío a 40°C. Fue purificada sobre una plancha TLC de preparación (Analtech, 2mm, 20x20) eluyendo con metil-tert-butll-éter, para obtener el compuesto deseado como un sólido blanco (50 mg, 93%), HPLCMS (procedimiento 1): m/z 291 [M+H+CH₃CN]⁺, Tiempo de reacción = 4.14 min.

Ejemplos 96-99, 101-116, 117, 119, 122, 124, 128-134, 137-139, 142, 144-154, 156-159 y 161-163 (Tabla E)

Los compuestos de los Ejemplos 96-99, 101-116, 117, 119, 122, 124, 128-134, 137-139, 142, 144-154, 156-159 y 161-163 fueron sintetizados de acuerdo con el procedimiento general siguiente: fueron añadidos 2,6-diflúor-3-hidroxibenzamida (C) and carbonato de potasio (D) a una solución del reactivo (A) en DMF anhidroso. La mezcla de reacción fue agitada a temperatura ambiente o 25°C bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400P) usando etil acetato/hexano como el eluyente para obtener el compuesto de producto.

25 Tabla E

15

Ejemplo	96	97
Producto	2,6-Diflúor-3-(5-metil-quinolin-2-ilmetóxido)- benzamida	2,6-Diflúor-3-(6-metil-quinolin-2- ilmetóxido)-benzamida
Esquema de reacción	Me N O F CONH ₂	Me—N Br Me—N O—F F CONH ₂
Reactivo (A)	2-Bromometil-5-metil-quinolina	2-Bromometil-6-metil-quinolina
Cantidades de A; B; C; D	0.5 g, :0021 mol; 3ml; 0.366 g, :0021 mol; 0.99 g, :0072 mol	0.05 g, .0002 mol; 1 ml; 0.036 g, 002 mol; 0.1 g, .0007 mol
Temperatura/Tiempo de agitado	25°C / 24 h	25°C / 24 h
Relación etil acetato/hexano	35:65	20:80
Producción	0.3 g, 43% de sólido blancuzco	0.039 g, 56% de sólido blancuzco
1H NMR (DMSO, 400 MHz, a menos que se indique de otra forma)	2.51 (s, 3H), 5.42 (s, 2H), 7.06 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.6Hz (acoplamiento- <i>m</i>), 7.31 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =5.2 Hz), 7.63 (d, 2H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>) 7.76 (s, 1H), 7.87 (s, 1H) 7.91	2.51 (s, 3H), 5.42 (s, 2H), 7.06 (dt, 1H, J=9.2 Hz (acoplamiento-o), J=1.6Hz (acoplamiento-m), 7.31 (dt, 1H, J=9.2 Hz (acoplamiento-o), J=5.2 Hz), 7.63 (d, 2H, J=8.4 Hz (acoplamiento-o) 7.76 (s, 1H),

	(d, 1H, <i>J</i> =8.8Hz (acoplamiento- <i>o</i>), 8.16 (s, 1H), 8.34 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>)	7.87 (s, 1H) 7.91 (d, 1H, <i>J</i> =8.8Hz (acoplamiento- <i>o</i>), 8.16 (s, 1H), 8.34 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>)
MS-ES+	329.05	329.05
Número de Procedimiento HPLC, tiempo de reacción (minutos)	5, 12.63	5, 9.59

98	99
2,6-Diflúor-3-(7-metóxi-quinolin-2-ilmetóxido)-benzamida	3-[4-(2-Cloro-fenil)-tiazol-2-ilmetóxido]-2,6-diflúor- benzamida
MeO N Br N CONH ₂	CI S Br CONH ₂
2-Bromometil-7-metil-quinolina	2-Bromometil-4-(2-cloro-fenil)-tiazola
0.01 g, .00039 mol; 2 ml; 0.068 g, .00039 mol; 0.188 g, .0013 mol	0.35 g, .0012 mol; 15 ml; 0.21 g, .0012 mol; 0.585 g, .0042 mol
25°C / 24 h	25°C / 24 h
20:80	20:80
0.012 g, 9% de sólido blancuzco	0.80 g, 17% de sólido marrón amarillento
2.51 (s, 3H), 5.41 (s, 2H), 7.06 (m, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.2Hz (acoplamiento- <i>m</i>), 7.35-7.32 (m, 2H), 7.39 (1H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 7.51 (d, 1H <i>J</i> =8.4Hz (acoplamiento- <i>o</i>), 7.88 (d, 1H) 7.91 (ancho s, 1H), 8.16 (s, 1H), 8.33 (d, 1H, (d, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>)	5.59 (s, 2H), 7.13 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =2.0Hz (acoplamiento- <i>m</i>), 7.39-7.48 (m, 3H), 7.57-7.59 (m, 1H), 7.85-7.86 (m, 1H), 7.89 (ancho s, 1H), 8.17 (ancho s, 2H)
<u>345.06</u>	381.03
5, 8.73	<u>5, 9.99</u>

101	102
2,6-Diflúor-3-(3-flúor-benziloxi)-benzamida	3-(bifenilo-3-ilmetóxido]-2,6-diflúor-benzamida
F CONH ₂	Br — F CONH ₂
1-Bromometil-3-flúor-benzeno	3-Bromometil-bifenilo
0.188 g, .001 mol; 2 ml; 0.173 g, .001 mol; 0.485 g, .0035 mol	0.25 g, .001 mol; 2 ml; 0.173 g, .001 mol; 0.5 g, .0035 mol
25°C / 24 h	25°C / 24 h
20:80	20:80
0.058 g, 18% de sólido blancuzco	0.15 g, 44% de sólido blancuzco
5.21 (s, 2H), 7.07 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>), 7.18 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =2.4 Hz (acoplamiento- <i>m</i>), 7.25-7.31 (m, 3H), 7.43-7.49 (m, 1H), 7.86 (ancho s, 1H) 8.14 (ancho s, 1H)	5.26 (s, 2H), 7.07 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.31-7.36 (m, 1H), 7.39 (d, 1H, <i>J</i> =7.2 Hz), 7.43-7.52 (m, 4H), 7.66 (t, 3H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.74 (s, 1H), 7.85 (s, 1H), 8.13 (ancho s, 1H)
282.11	340.08
5. 9.41	5. 10.21

103	104
3-(7-Metilquinolin-2-ilmetoxi)-2,6-Diflúor-benzamida	2,6-diflúor-3-(7-cloro-benzotiazol-2-ilmetoxi)-benzamida
Me N_Br →	CI S Br
Etapa-1	Etapa-1
Me N N N N N N N N N N N N N N N N N N N	CI S N F CONH ₂
2-Bromometil-7-metil-quinolina	2-Bromometil-7-cloro-benzotiazola
0.5 g, .002 mol; 3 ml; 0.366g, .002 mol; 0.99 g, .007 mol	0.3 g, .001 mol; 3 ml; 0.198 g, .001 mol; 0.57 g, .004 mol
25°C / 24 h	25°C / 24 h
35:65	30:70
0.3 g, 43% de sólido blancuzco	0.02 g, 5% de sólido amarillo ligero
2.53 (s, 3H), 5.42 (s, 2H), 7.05 (t, 1H, <i>J</i> =8.8 Hz	5.73 (s, 2H), 7.12 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento-o),

(acoplamiento-o), 7.30 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento-o), <i>J</i> =5.2 Hz), 7.47 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento-o) 7.59 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento-o), 7.80 (s, 1H)	J=1.2 Hz (acoplamiento-m),7.41 (dt, 1H, J=9.2 Hz (acoplamiento-o) J=5.2 Hz), 7.61 (dd, 2H, J=7.6 Hz (acoplamiento-o), 7.91 (ancho s, 1H), 8.04 (dd, 1H,
7.89 (d, 2H, <i>J</i> =8.8Hz (acoplamiento-o), 8.16 (s, 1H), 8.38 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento-o)	J=7.2 Hz (acoplamiento-o), J=1.6 Hz (acoplamiento-m), 8.19 (ancho s, 1H)
329.17	355.04
5, 11.00	5, 9.85

105	106
3-[4-(7-Metoxifenil)tiazol-2-ilmetoxi]-2,6-Diflúor- benzamida	2,6-diflúor-3-(7-cloro-benzotiazol-2-ilmetoxi)-benzamida
Meo → Br Etapa-1	CI → Etapa-1
MeO F CONH ₂	S O F CONH ₂
2-Bromometil-4-(4-metoxi-fenil)-tiazola	2-Bromometil-4-(4-cloro-fenil)-tiazola
0.085 g, .0003 mol; 2 ml; 0.052 g, .0003 mol; 0.142 g, .0010 mol	0.45 g, .0015 mol; 5 ml; 0.273 g, .0015 mol; 0.747 g, .0055 mol
25°C / 24 h	25°C / 24 h
40:60	40:60
0.048 g, 42% de sólido blanco	0.35 g, 58% de sólido blanco
3.80 (s, 3H), 5.57 (s, 2H), 7.01 (d, 2H, <i>J</i> =8.8Hz), 7.12 (m, 1H), 7.41 (m, 1H), 7.88 (ancho s, 2H), 7.90 (s, 1H) 8.02 (s, 1H), 8.17 (s, 1H)	5.59 (s, 2H), 7.12 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>),7.41 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>) <i>J</i> =5.2 Hz), 7.52 (d, 2H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.89 (ancho s, 1H), 7.99 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 8.17 (ancho s, 1H), 8.26 (s, 1H)
377.04	381.03
5, 9.63	5, 10.23

107	108
2,6-Diflúor-3-(3-triflúormetoxibenziloxi)benzamida	Estero metilo de ácido 3-(3-Carbamoilo-2,4-diflúor- fenoximetil]-benzoico
F ₃ CO Br	MeO ₂ C →
Etapa-1	Etapa-1

F ₃ CO F CONH ₂	MeO ₂ C F CONH ₂
1-Bromometil-3-triflúormetoxi-benzeno	Estero metilo ácido 3-Bromometil-benzoico
0.243 g, .001 mol; 2 ml; 0.173g, .001 mol; 0.485 g, .003 mol	0.230g, .001 mol; 2 ml; 0.173 g, .001 mol; 0.485g, 003 mol
25°C / 24 h	25°C / 24 h
20:80	20:80
0.058 g, 18.4% de sólido blanco	0.055 g, 18.4% de sólido blanco
5.25 (s, 2H), 7.09 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 7.29 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =5.2 Hz (acoplamiento- <i>m</i>), 7.36 (t, 3H, J=8.0 Hz), 7.48 (t, 3H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.56 (t, 3H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.86 (ancho s, 1H), 8.14 (s, 1H)	3.87 (s, 3H), 5.28 (s, 2H), 7.08 (d, 1H, <i>J</i> =9.2 Hz (acoplamiento-o), 7.27-7.33 (m, 1H), 7.58 (t, 1H, <i>J</i> =7.6 Hz (acoplamiento-o), 7.73 (d, 1H, <i>J</i> =7.6 Hz (acoplamiento-o), 7.86 (s, 1H), 7.94 (d, 1H, <i>J</i> =8.0 Hz (acoplamiento-o), 8.06 (s, 1H), 8.15 (s, 1H)
348.11	322.13
5, 9.81	5, 9. <u>29</u>

109	110
3-(6-Metoxiquinolin-2-ilmetoxi)-2,6-Diflúor- benzamida	3-(6-cloro-quinolin-2-ilmetoxi)-2,6-diflúor-benzamida
MeO ────────────────────────────────────	CI————————————————————————————————————
Etapa-1	Etapa-1
MeO-N-O-F F-CONH ₂	CI—NO—F F CONH ₂
2-Bromometil-6-metoxi-quinolina	2-Bromometil-6-cloro-quinolina
0.1 g, .0003 mol; 2 ml; 0.068g, .0003 mol; 0.185 g, .00013 mol	0.09 g, .00038 mol; 2 ml; 0.065 g, .00038 mol; 0.1 a0007 mol
25°C / 24 h	25°C / 24 h
35:65	35:65
0.045 g, 33% de sólido amarillo	0.02 g, 16% de sólido blanco
3.90 (s, 3H), 5.39 (s, 2H), 7.06 (m, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>), 7.31 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =5.2 Hz), 7.73 (d, 1H, <i>J</i> =8.4 Hz) 7.80 (dd, 1H, <i>J</i> =2.4 Hz (acoplamiento- <i>m</i>), 7.87 (s, 1H) 7.92 (d, 1H, <i>J</i> =9.2Hz (acoplamiento- <i>o</i>), 8.16 (s, 1H), 8.33 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>)	5.45 (s, 2H), 7.06 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>),7.31 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>) <i>J</i> =5.2 Hz), 7.73 (d, 1H, <i>J</i> =8.4 Hz), 7.80 (dd, 1H, <i>J</i> =2.4 Hz (acoplamiento- <i>m</i>), 7.87 (s, 1H), 8.03 (d, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 8.16 (2H, <i>J</i> =2.4 Hz (acoplamiento- <i>m</i>), 8.44 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>)
345.06	349.01
5, 9.28	5. 9.99

111	112
3-(7-Cloro-quinolin-2-ilmetoxi)-2,6-Diflúor-benzamida	3-(8-cloro-quinolin-2-ilmetoxi)-2,6-diflúor-benzamida
CI Bi	C1
Etapa-1	Etapa-1
CI N O F CONH ₂	CI N O F CONH ₂
2-Bromometil-7-cloro-quinolina	2-Bromometil-8-cloro-quinolina
0.068 g, .00028 mol; 2 ml; .050 g, 00028mol; 0.139g, .001 mol	0.1 g, .0004 mol; 2 ml; 0.0733 g, 0004 mol; 0.175 g, .0014 mol
25°C / 24 h	25°C / 24 h
35:65	50:50
0.015 g, 94% de sólido blanco	0.038 g, 27% de sólido blanco
5.45 (s, 2H), 7.06 (m, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>), 7.31 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =5.2 Hz), 7.68 (dd, 1H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 8.8 Hz (acoplamiento- <i>o</i>)), 7.69 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.87 (ancho s, 1H), 8.06-8.08 (m, 2H), 8.16 (ancho s, 1H), 8.50 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>)	7.38 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento-o), <i>J</i> =5.2 Hz), 7.61 (t, 1H, <i>J</i> =8.0 Hz (acoplamiento-o), 7.78 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento-o)), 7.87 (ancho s, 1H), 7.98-8.03 (m, 2H), 8.16 (ancho s, 1H), 8.55 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento-o)
345.06	349.01
<u>5, 10.01</u>	5, 9.98

113	114
2,6-Diflúor-3-(naftalen-2-ilmetoxi)-benzamida	2,6-Diflúor-3-(5-fenil-benzotiazol-2-ilmetoxi)-benzamida
Br→	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Etapa-1	Etapa-1
O-F F CONH ₂	S P CONH ₂
2-Bromometil-naftaleno	2-Bromometil-5-fenil-benzotiazola
0.5 g, .0022 mol; 5 ml; 0.391 g, .0022 mol; 1.06 g, .0076 mol	0.23 g, .00075 mol; 5 ml; 0.13 g, .00075 mol; 0.36 g, .0026 mol
25°C / 24 h	25°C / 24 h
35:65	30:70

0.35 g, 49% de sólido blancuzco	0.012 g, 4% de sólido amarillo ligero
5.36 (s, 2H), 7.07 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 7.34 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =5.2 Hz), 7.53-7.55 (m, 2H), 7.58 (dd, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), <i>J</i> =2.4 Hz (acoplamiento- <i>m</i>), 7.86 (ancho s, 1H), 7.92-7.97 (m, 3H), 7.98 (ancho s, 1H), 8.143 (ancho s, 1H)	5.73 (s, 2H), 7.11 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =5.2 Hz), 7.36-7.43 (m, 2H), 7.51 (t, 2H, <i>J</i> =7.6 Hz (acoplamiento- <i>o</i>), 7.78-7.81 (m, 3H), 7.90 (ancho s, 1H), 8.16 (ancho s, 1H), 8.29 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>) 8.28-8.29 (d, 1H, <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>)
314.06	397.11
5, 9.95	5. 10.28

115	116
2,6-Diflúor-3-(4-piridin-2-il-tiazol-2-ilmetoxi)-benzamida	2,6-Diflúor-3-(3-metoxibenziloxi)-benzamida
Etapa-1	MeO Br → Etapa-1
2-(2-Bromometil-tiazol-4-il)-piridina 0.23 g, .0009 mol; 3 ml; 0.156 g, .0009 mol; 0.424 g, .003 mol	1-Bromometil-3-metoxi-benzeno 0.2 g, .001 mol; 2 ml; 0.173 g, .001 mol; 0.485 g, .0035 mol
25°C / 24 h	25°C / 24 h
20:80	20:80
0.058 g, 18% de sólido amarillo claro	0.055 g, 18% de sólido blanco
3.75 (s, 3H), 5.15 (s, 2H), 6.90 (d, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.87 (ancho s, 1H), 7.05 (t, 2H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.25-7.31 (m, 2H), 7.84 (ancho s, 1H), 8.13 (ancho s, 1H)	3.75 (s, 3H), 5.15 (s, 2H), 6.90 (d, 1H, <i>J</i> =8.0 Hz (acoplamiento-o), 7.87 (ancho s, 1H), 7.05 (t, 2H, <i>J</i> =8.8 Hz (acoplamiento-o), 7.25-7.31 (m, 2H), 7.84 (ancho s, 1H), 8.13 (ancho s, 1H)
294.14	294.14
5. 8.29	5, 9.34

117	119
2,6-Diflúor-3-(5-nitro-benzotiazol-2-ilmetoxi)-benzamida	2,6-Diflúor-3-(3-metoxi-benzotiazol-2-ilmetoxi)-benzamida
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MeO N F CONH ₂ MeO N F CONH ₂
2-Bromometil-5-nitro-benzotiazola	2-Bromometil-5-metoxi-benzotiazola
0.05g, 0.183mmol; 2 ml; 0.031g, 0.183mmol; 0.088a, 0.64mmol	0.045g, 0.174 mmol; 5 ml; 0.030g, 0.174mmol; 0.082g, 0.609 mmol
25°C / 24 h	Temperatura ambiente, durante toda la noche
35:65	35:65
0.040 g, 67% de sólido amarillo	0.020 g, 33% de sólido amarillo
δ 5.77 (s, 3H), 5.42 (s, 2H), 7.12 (t, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.42 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.90 (ancho s, 1H), 8.18 (ancho s, 1H), 8.32 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 8.46 (d, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 8.83 (s, 1H)	δ 3.84 (ancho s, 3H), 5.66 (s, 2H), 7.08-7.12 (m, 2H), 7.38 (m, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.55-7.56 (m, 1H), 7.88 (ancho s, 1H), 7.99 (d, 3H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.87 (ancho s, 1H), 7.05 (t, 2H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 8.17 (ancho s, 1H)
366.06	351.10
5. 15.63	5. 15.69
122	124
2,6-Diflúor-3-(4-fenetilo-tiazol-2-ilmetoxi)-benzamida	3-[1-(5-Cloro-benzotiazol-2-il)-etoxi]-2,6-diflúor-benzamida
S Br HO F F CONH ₂	CI → S CH ₃ → Etapa-1 F CONH ₂ CI → S CH ₃
2-Bromometil-4-fenetil-tiazola	2-(1-bromo-metil)-5-cloro-benzotiazola
0.200g, 0.7mmol; 5 ml; 0.125g, 0.7mmol; 0.300g, 2.4mmol	0.3 g, 0.1 mmol; 2 ml; 0.188 g, 0.1mol; 0.5 g, 0.3 mol
Temperatura ambiente, durante toda la noche	25 °C, 2 h
35:65	35:65
0.108 g, 41% de sólido blanco	0.1 g, 25% de sólido amarillo
ō 2.98 (tt, 4H, <i>J</i> =4.8 Hz), 5.48 (s, 2H), 7.08-7.15 (m, 1H), 7.17-7.28 (m, 4H), 7.33-7.38 (m, 2H), 7.87 (ancho s, 1H), 8.26 (ancho s, 1H)	δ 1.76 (d, 3H, <i>J</i> =6.4 Hz), 6.01 (q, 1H, <i>J</i> =6.4 Hz (acoplamiento- <i>o</i>), 7.06 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.34 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.52 (dd, 1H, <i>J</i> =7.2 Hz (acoplamiento- <i>o</i>), 7.89 (ancho s, 1H), 8.11 (ancho s, 1H), 8.17 (d, 2H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>)
375.14	<u>369.06</u>
5, 15.84	5, 10.5

128	129
2,6-Diflúor-3-(2-flúor-3-metil-benziloxi)-benzamida	-
Br HO—F H ₃ C F F CONH ₂ F H ₃ C F	S Br HO F F CONH ₂ CI S O F CONH ₂ CI
1-Bromometil-2-flúor-3-metil-benzeno	2-bromometil-5-(4-cloro-fenil)-benzotiazola
0.19 g, 1.0 mmol; 2 ml; 0.173 g, 1.0 mmol; 0.483a. 3.5 mmol	0.050g, 0.147 mmol; 5 ml; 0.025g, 0.147 mmol; 0.075g, 0.517mmol
Temperatura ambiente, durante toda la noche	25° C, durante toda la noche
35:65	35:65
0.112 g, 44% de sólido blanco	0.020 g, 54% de sólido blanco
δ 2.26 (s, 3H), 5.18 (s, 2H), 7.06-7.14 (m, 2H), 7.29-7.37 (m, 3H), 7.85 (ancho s, 1H), 8.14 (ancho s, 1H)	δ 5.72 (s, 2H), 7.11 (dt, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i> & 8.4 Hz), 7.39 (m, 1H), 7.55 (d, 2H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.78-7.83 (m, 3H), 7.89 (ancho s, 1H), 8.18 (ancho s, 1H), 8.23 (d, 2H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>) , 8.30 (s, 1H)
296.13	431.095 [,]
<u>5, 11.02</u>	<u>5, 11.02</u>

130	131
-	-
Br S Pr HO F F CONH ₂ Me Br S O F CONH ₂	Br S Br HO F F CONH ₂
5-Bromo-2-bromometil-4- <i>o</i> -tolil-tiazola	5-bromo-2-bromometil-4-m- tolil-tiazola
0.5 g, 1.8 mmol; 10 ml; 0.313g, 1.8 mmol; 0.884g, 6.5 mmol	0.70 g, 2.61mmol; 10 ml; 0.450g, 2.61mmol; 1.2a. 9.14mmol
25° C, durante toda la noche	25° C, durante toda la noche
35:65	35:65

0.281 g, 44% de sólido blancuzco	0.371 g, 40% de sólido amarillo
δ 5.53 (s, 2H), 7.11 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.38 (m, 5H), 7.89 (ancho s, 1H), 8.16 (ancho s, 1H)	¹ H NMR (MeOH, 400 MHz); δ 2.70 (s, 3H), 5.23 (s, 2H), 6.93 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.06 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), & 2.0 Hz (acoplamiento- <i>m</i>), 7.23 (dt, 1H, <i>J</i> =4.8 Hz), 7.48 (d, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.49 (s, 1H), 7.80-7.82 (m, 1H), 7.93 (ancho s, 1H)
439.09	439 & 441.08
5, <u>10</u> . <u>56</u>	5, 10.53

132	133
2,6-Diflúor-3-(2-fenil-oxazol-4-ilmetoxi)-benzamida	2,6-Diflúor-3-(2-tiofen-2-il-oxazol-ilmetoxi)-benzamida
F CONH ₂ HO F F CONH ₂ F CONH ₂	F CONH ₂ HO F F CONH ₂ F CONH ₂
4-bromometil-2-fenil-oxazola	4-bromometil-2-tiofen-2-il-oxazola
0.238g, 1.0 mmol; 2 ml; 0.173g, 1.0 mmol; 0.483g, 3.5 mmol	0.218 g, 1.0 mmol; 2 ml; 0.173 g, 1.0 mmol; 0.483g, 3.5 mmol
_ <u>25</u> °C, 24 h	Temperatura ambiente, durante toda la noche
35:65	35:65
0.099 g, 30% de sólido blanco	0.020 g, 33% de sólido blancuzco
δ 5.15 (s, 2H), 7.12 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.42 (dt, 1H, <i>J</i> =9.2 Hz <i>J</i> =5.2 Hz (acoplamiento- <i>m</i>), 7.55 (t, 3H, <i>J</i> =3.2 Hz), 7.85 (ancho s, 1H), 7.98-8.00 (m, 2H), 8.13 (ancho s, 1H), 8.33 (s, 1H)	δ 5.11 (s, 2H), 7.09 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.23 (t, <i>J</i> =4.8 Hz), 7.39 (dt, 3H, <i>J</i> =5.2 Hz), 7.73 (dt, 3H, <i>J</i> =5.2 Hz), 7.82 (dt, 3H, <i>J</i> =5.2 Hz) (ancho s, 1H), 7.85 (ancho s, 1H), 8.13 (ancho s, 1H), 8.27 (s, 1H)
<u>331.1</u>	337.1
5. 9.43	5. 9.21

134	137
2,6-Diflúor-3-(5-tiofen-2-il-[1,2,4]oxadiazol-3-ilmetoxi)- benzamida	3-(4-Benzil-tiazol-2-ilmetoxi)-2,6-Diflúor-benzamida

S F CONH ₂ HO F CONH ₂ F	S Br HO F CONH ₂ F CONH ₂ F CONH ₂ F CONH ₂
4-bromometil-5-tiofen-2-il-[1,2,4]oxadiazola	4-benzil-2-bromometil-tiazola
0.245 g, 1.0 mmol; 2 ml; 0.173 g, 1.0 mmol; 0.483g, 3.5 mmol	0.268g, 1 mmol; 2 ml; 0.173 g, 1 mmol; 0.483g, 3.5mmol
Temperatura ambiente, durante toda la noche	25 °C, 24 h
35:65	40:60
0.020 g, 6% de sólido blancuzco	0.126 g, 35% de sólido blanco
δ 5.43 (s, 2H), 5.15 (s, 2H), 7.12 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>) & 1.6 Hz (acoplamiento- <i>m</i>), 7.34-7.41 (m, 2H), 7.87 (ancho s, 1H), 8.06 (d, 1H, <i>J</i> =4.0 Hz), 8.12 (d, 1H, <i>J</i> =4.8 Hz), 8.16 (ancho s, 1H)	δ 4.06 (s, 2H), 5.45 (s, 2H), 7.09 (dt, 1H, <i>J</i> =7.6 Hz (acoplamiento- <i>o</i>), 7.18 (t, <i>J</i> =6.8 Hz), 7.23-7.36 (m, 2H), 7.37 (s, 1H), 7.86 (ancho s, 1H), 8.14 (ancho s, 1H)
338.09	361.05
5. 9.2	5. 15.45

138	139
-3-(5-Ciclopropil-[1,2,4]oxadiazol-3-ilmetoxi)-2,6-Diflúor- benzamida	3-(6-Cloro-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-Diflúor- benzamida
S Br HO F N-N S F CONH ₂ F CONH ₂ F CONH ₂	CI N S Br F CONH ₂
3-bromometil-5-ciclopropil-[1,3,4]tiadiazola	2-bromometil-6-cloro-tiazolo[5,4-b]piridina
0.219g, 1 mmol; 2 ml; 0.173 g, 1 mmol; 0.483g, 3.5mmol	0.1g, 0.38 mmol; 5 ml; 0.066g, 0.38 mmol; 0.184g, 1.336mmol
Temperatura ambiente, durante toda la noche	Temperatura ambiente, durante toda la noche
30:70	35:65
0.118 g, 38% de sólido rosa	0.030 g, 22% de sólido amarillo
δ 1.01-1.05 (m, 2H), 1.19-1.24 (m, 2H), 2.51-2.58 (m, 1H), 5.59 (s, 2H), 7.11 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.37 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.2 Hz (acoplamiento- <i>m</i>), 7.87 (ancho s, 1H), 8.15 (ancho s, 1H)	δ 5.72 (s, 2H), 7.12 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- o), 7.37-7.43 (m, 1H), 7.90 (ancho s, 1H), 8.18 (ancho s, 1H), 8.68 (dt, 1H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 8.73 (dt, 1H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>)
312.11	356.05
5. 8.79	5. 15.84

142	144
-2,6-Diflúor-3-(5-m-tolilo-benzotiazol-2-ilmetoxi)-benzamida	2,6-Diflúor-3-(2-pirazol-1-ilo-etoxi)-benzamida
S Br HO F F CONH ₂ S O F CONH ₂	HO F CONH ₂ N O F CONH ₂
3-bromometil-5-m-tolilo-benzotiazola	1-(2-bromo-etil)-1H-pirazola
0.160g, 0.5mmol; 5 ml; 0.087g, 0.5mmol; 0.240g, 1.76mmol	0.175g, 1mmol; 2 ml; 0.173g 1mmol; 0.483g 3.5mmol
Temperatura ambiente, durante toda la noche	_25 °C, 24 h
35:65	35:65
0.026 g, 10% de sólido blanco	0.112 g, 42% de sólido amarillo
δ 2.82 (s, 3H), 5.28 (s, 2H), 7.08 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.2 Hz (acoplamiento- <i>m</i>), 7.34-7.35 (m, 1H), 7.47 (dt, 1H, <i>J</i> =7.2 Hz (acoplamiento- <i>o</i>), 7.53 (t, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.71 (dd, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.2 Hz (acoplamiento- <i>m</i>), 7.75 (d, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.85 (ancho s, 1H), 8.13 (d, 2H, <i>J</i> =8.4 Hz), 8.18 (d, 1H, <i>J</i> =1.2 Hz (acoplamiento- <i>m</i>)	δ 4.39 (d, 2H, <i>J</i> =4.8 Hz), 4.50 (d, 2H, <i>J</i> =4.8 Hz), 6.24 (m, 1H), 7.03 (dt, 1H, <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>), 7.17 (dt, 1H), 7.46 (d, 1H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 7.76 (d, 1H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 7.83 (ancho s, 1H), 8.10 (ancho s, 1H)
411.17	268.13
5. 17.10	5, 13.38

145	146
-3-[5-(3,5-Dimetil-isoxazol-4-il)- [1,2,4]oxadiazol-3-ilmetoxi) -2,6-Diflúor- benzamida	2,6-Diflúor-3-(8-metil-quinolin-2-ilmetoxi)-benzamida
NON FCONH ₂ HO-N FCONH ₂ NON FCONH ₂	CH ₃ HO F CONH ₂ F CONH
5-(3,5-Dimetil-isoxazol-4-il)-3-metil- [1,2,4]oxadiazola	2-bromometil-8-metil-quinolina
0,179g, 1.0 mmol; 2 ml; 0.173g, 1.0 mmol: 0.483a. 3.5mmol	0.130g, 0.550 mmol; 1.5 ml; 0.095g, 0.550 mmol 0.265a. 1.92 mmol
_25 °C, 24 h	Temperatura ambiente, durante toda la noche
40:60	35:65

0.098 g, 28% de sólido blanco	0.014 g, 8% de sólido blanco
δ 2.49 (s, 3H), 2.76 (s, 3H), 5.46 (s, 2H), 7.11 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.41 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>) & 5.2 Hz), 7.86 (ancho s, 1H), 8.14 (ancho s, 1H)	 ō 2.71 (s, 3H), 5.46 (s, 2H), 7.06 (dt, 2H, J=9.2 Hz (acoplamiento-o) J=1.6 Hz (acoplamiento-m), 7.36 (dt, 1H, J=9.2 Hz (acoplamiento-o, J=5.2 Hz), 7.51 (t, 1H, J=7.6 Hz (acoplamiento-o), 7.65 (t, 2H, J=7.6 Hz (acoplamiento-o), 7.82 (d, 1H, J=8.0 Hz (acoplamiento-o), 7.86 (ancho s, 1H), 8.15 (ancho s, 1H), 8.41 (d, 1H, J=8.0 Hz (acoplamiento-o)
351.13	329.09
5. 8.57	5, 10.02

147	148
2,6-Diflúor-3-(4-flúor-3-metil-benziloxi)-benzamida	2,6-Diflúor-3-(5-metil-benzotiazol-2-ilmetoxi)- benzamida
F CONH ₂ H ₃ C F CONH ₂ F CONH ₂ F CONH ₂	Br HO F CONH ₂
4-bromometil-1-flúor-2-metil-benzeno	2-bromometil-5-metil-benzotiazola
0.203 g; 1mmol; 2 ml; 0.173 g, 1mmol; 0.483g, 3.5mmol	0.06g, 0.247 mmol; 2 ml; 0.0428g, 0.247 mmol; 0.119g, 0.866 mmol
Temperatura ambiente, durante toda la noche	<u>25</u> °C, 24 h
30:70	35:65
0.0973 g, 33% de sólido blanco	0.023 g, 27% de sólido amarillo
δ 2.24 (s, 3H), 5.10 (s, 2H), 7.06 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>) <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>), 7.15 (t, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.26-7.31 (m, 2H), 7.36 (d, 1H, <i>J</i> =7.6 Hz (acoplamiento- <i>o</i>), 7.84 (ancho s, 1H), 8.12 (ancho s, 1H)	δ 2.46 (s, 3H), 5.67 (s, 2H), 7.10 (dt, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.30 (d, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i> , <i>J</i> =5.2 Hz), 7.37 (dt, 1H, <i>J</i> =5.2Hz, <i>J</i> =9.2Hz), 7.83 (s, 1H), 7.88 (ancho s, 1H), 8.00 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 8.17 (ancho s, 1H)
296.11	335.09
5. 15.53	5, 15.29

149	150
2,6-Diflúor-3-(5-estirilo-[1,2,4]oxadiazol-3-ilmetoxi)- benzamida	2,6-Diflúor-3-(5-tiofen-3-il-[1,2,4]oxadiazol-3-ilmetoxi)- benzamida
O-N HO-F O-N F CONH ₂ HO-F CONH ₂ F CONH ₂	F CONH ₂ HO F F CONH ₂ F CONH ₂
3-bromometil-5-estirilo-[1,2,4]oxadiazol	3-bromometil-5-tiofen-3-il-[1,2,4]oxadiazol
0.265g, 1.0 mmol; 2 ml; 0.173g 1.0 mmol; 0.483g 3.5 mmol	0,245g, 1.0 mmol; 2 ml; 0.173g, 1.0 mmol; 0.483g, 3.5 mmol
_25 °C, 24 h	_25 °C, 24 h
40:60	30:70
0.089 g, 25% de sólido blanco	0.067 g, 20% de sólido blanco
δ 5.41 (s, 2H), 7.11 (dt, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.35-7.47 (m, 5H), 7.78-7.93 (m, 4H), 8.16 (ancho s, 1H)	δ 5.43 (s, 2H), 7.11 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.38 (dt, <i>J</i> =5.2 Hz, <i>J</i> =9.2 Hz), 7.70 (d, 1H, <i>J</i> =5.2Hz), 7.85-7.87 (m, 2H), 8.15 (ancho s, 1H), 8.64 (t, 1H, <i>J</i> =1.2 Hz)
358.14	338:08
5. 9.2	<u>5, 8.66</u>

151	152
3-(5-Bromo-quinolin-2-ilmetoxi)-2,6-Diflúor-benzamida	2,6-Diflúor-3-(5-tiofen-2-il-[1,2,4]oxadiazol-2-ilmetoxi)- benzamida
Br F CONH ₂ HO F CONH ₂	F CONH ₂ HO F CONH ₂ N-N O F CONH ₂
5-bromo-2-bromometil-quinolina	2-bromometil-5-tiofen-3-il-[1,3,4]oxadiazol
0.300g, 1.0 mmol; 1.5 ml; 0.173g, 1.0 mmol; 0.483g, 3.5 mmol	0.245 g, 1.0 mmol; 2 ml; 0.173 g, 1.0 mmol; 0.483g, 3.5 mmol
Temperatura ambiente, durante toda la noche	Temperatura ambiente, durante toda la noche
35:65	30:70
0.086 g, 22% de sólido blanco	0.0842 g, 25% de sólido blancuzco
δ 5.50 (s, 2H), 7.06 (dt, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>),	δ 5.55 (s, 2H), 7.14 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>),

7.30-7.31 (m, 1H), 7.73 (t, 1H, <i>J</i> =8.0 Hz), 7.83 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.87 (ancho s, 1H), 7.99 (d, 1H, <i>J</i> =7.6 Hz (acoplamiento- <i>o</i>), 8.06 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 8.16 (ancho s, 1H), 8.60 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>)	7.31 (dd, 1H, <i>J</i> =4.8 Hz), 7.43 (dt, <i>J</i> =9.2 Hz, <i>J</i> =5.2 Hz), 7.86 (dd, 1H, <i>J</i> =4.8Hz), 7.88 (ancho s, 1H), 7.99 (d, 1H, <i>J</i> =5.2 Hz), 8.15 (ancho s, 1H)
393.01	338.1
5, 15.70	5, 8.95

153	154
2,6-Diflúor-3-(3-tiofen-2-il-[1,2,4]oxadiazol-5-ilmetoxi)- benzamida	3-(3-Benziloxi-benziloxi)-2,6-Diflúor-benzamida
S N Br CONH ₂ S N O F F	Br ————————————————————————————————————
5-bromometil-3-tiofen-2-il-[1,2,4]oxadiazol	3-benziloxi-benzilbromuro
0.245g, 1.0 mmol; 2 ml; 0.173g, 1.0 mmol; 0.483a. 3.5 mmol	0,276g, 1.0 mmol; 2 ml; 0.173g, 1.0 mmol; 0.483g, 3.5 mmol
25 °C, 24 h	25 °C, 24 h
50:50	45:55
0.045 g, 13% de sólido amarillo	0.035 g, 10% de sólido blancuzco
δ 5.67 (s, 2H), 7.13 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), <i>J</i> =1.6 Hz (acoplamiento- <i>m</i>), 7.28 (dd, 1H, <i>J</i> =4.0 Hz (acoplamiento- <i>o</i>), 7.38 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 5.2 Hz), 7.83 (dd, 1H, <i>J</i> =3.6 Hz (acoplamiento- <i>o</i>), 7.91 (ancho s, 1H), 7.92 (ancho s, 1H), 8.18 (ancho s, 1H)	δ 5.10 (s, 2H), 5.15 (s, 2H), 6.98-7.09 (m, 4h), 7.22-7.28 (m, 3h), 7.39 (t, 2H, <i>J</i> =7.2 Hz (acoplamiento- <i>o</i>), 7.37 (d, 2H, <i>J</i> =7.2 Hz (acoplamiento- <i>o</i>), 7.85 (ancho s, 1H), 8.13 (ancho s, 1H)
<u>338.13</u>	370.17
5, 9.26	5, 10.18

156	157
3-(6-cloro-tiazolo[5,4-c]piridin-2-ilmetoxi)-2,6- Diflúor-benzamida	2,6-Diflúor-3-[5-(2-hidroxi-fenil)-benzotiazol-2-ilmetoxi)- benzamida
S Br HO F CONH ₂ N S O F CONH ₂	OH F CONH ₂ OH S OF F CONH ₂
2-bromometil-6-cloro-tiazolo[5,4-c]piridina	2-(2-bromometil-benzotiazol-5-il)-fenol
0.050g, 0.189 mmol; 5 ml; 0.0328g, 0.189 mmol; 0.0916a. 0.663 mmol	0.036g, 0.1 mmol; 5 ml; 0.020g, 0.11 mmol; 0.030g, 0.385 mmol
25° C, toda la noche	25° C, toda la noche
50:50	50:50
0.012 g, 18% de sólido amarillo	0.005 g, 10.0% de sólido amarillo
δ 5.78 (s, 2H), 7.12 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.38-7.44 (m, 1h), 7.91 (ancho s, 1H), 8.20 (ancho s, 2H), 9.25 (s, 1H)	δ 5.71 (s, 2H), 6.91 (t, 2H, <i>J</i> =5.6 Hz), 6.97 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.11 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.20 (t, 1H, <i>J</i> =7.6 Hz), 7.35 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.39-7.43 (m, 1h), 7.64 (d, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.89 (ancho s, 1H), 8.13 (d, 2H, <i>J</i> =8.4 Hz), 8.18 (ancho s, 1H)
355.9	413.01
5, 15.25	5, 15.22

158	159
3-[5-Bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-Diflúor- benzamida	3-[5-Bromo-4-(4-cloro-fenil)-tiazol-2-ilmetoxi]-2,6- Diflúor-benzamida
MeO Br S Br HO F CONH ₂ MeO MeO	Br S Br F CONH ₂ CI Br S OF F CONH ₂
5-Bromo-2-bromometilo-4-(4-metoxi-fenil)-tiazola	5-Bromo-2-bromometilo-4-(4-cloro-fenil)-tiazola
1.1g, 3.0 mmol; 10 ml; 0.524g, 3.0 mmol; 1.46g, 10.2 mmol	0.3511g, 0.950mmol; 10 ml; 0.203g, 1.1 mmol; 0.570g, 4.1 mmol
25° C, toda la noche	25° C, toda la noche
35:65	35:65
0.140 g, 10% de sólido blancuzco	0.280 g, 60% de sólido amarillo
δ 3.81 (s, 3H), 5.54 (s, 2H), 7.06 (d, 2H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.12 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>),	δ 5.55 (s, 2H), 7.13 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.40 (dt, 1H, <i>J</i> =9.2 Hz

7.40 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.84 (dt, 1H, <i>J</i> =8.8 Hz (acoplamiento- <i>o</i>), 7.89 (ancho s, 1H), 8.16 (ancho s, 2H)	(acoplamiento-o), 7.59 (d, 2H, <i>J</i> =8.4 Hz (acoplamiento-o), 7.91 (d, 1H, <i>J</i> =8.4 Hz (acoplamiento-o), 7.89 (s, 1H), 8.16 (ancho s, 1H)
455.08 & 457.07	459.05, 461.05
_5, 10.49	5. 11.26

161	162	
2,6-Diflúor-3-(3-pirrol-1-il-benziloxi)-benzamida	2,6-Diflúor-3-(3-fenoxi-benziloxi)-benzamida	
Br HO F CONH ₂	Br HO—F	
O F CONH ₂	CONH₂ F	
-1-(3-bromometil-fenil)-1H-pirrola	3-fenoxi benzil bromuro	
0.235g, 1.0 mmol; 5 ml; 0.173g,1.0 mmol; 0.483a. 3.5 mmol	0.263g, 1.0 mmol; 5 ml; 0.173g, 1.0 mmol; 0.483g, 3.5 mmol	
25° C, toda la noche	25° C, toda la noche	
35:65	35:65	
0.140 g, 10% de sólido blanco	0.105 g, 31% de sólido blanco	
δ 5.23 (s, 2H), 6.28 (t, 2H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 7.07 (dt, 1H), 7.30 (d, 2H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.37 (t, 2H, <i>J</i> =2.0 Hz (acoplamiento- <i>m</i>), 7.48 (t, 1H, <i>J</i> =8.0 Hz (acoplamiento- <i>o</i>), 7.56 (d, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.66 (s, 1H), 7.85 (ancho s, 1H), 8.13 (ancho s, 2H)	δ 5.17 (s, 2H), 6.96-7.05 (m, 3H), 7.07 (d, 2H, <i>J</i> =8.0 Hz), 7.16 (t, 1H, <i>J</i> =7.6 Hz (acoplamiento- <i>o</i>), 7.20 (d, 1H, <i>J</i> =7.6 Hz (acoplamiento- <i>o</i>), 7.25 (dt, 1H, <i>J</i> =9.2 Hz (acoplamiento- <i>o</i>), 7.38-7.43 (m, 3H), 7.85 (ancho s, 1H), 8.13 (ancho s, 1H)	
329.08	356.09	
<u>5, 9.90</u>	5, 10.29	

163		
2,6-Diflúor-3-(5-fenil-isoxazol-3-ilmetoxi)-benzamida		
H ₂ NOC FOH H ₂ NOC FOH F H ₂ NOC F F H ₂ NOC F		
4-bromometil-2-tiofen-2-il-tiazola		
0.260g, 1mmol; 5 ml; 0.173g,1mmol; 0.483g, 3.5mmol		
25° C, toda la noche		
35:65		

0.105 g, 30% de sólido blanco		
δ 5.25 (s, 3H), 7.09 (t, 2H, <i>J</i> =8.4 Hz (acoplamiento- <i>o</i>), 7.16-7.18 (m, 1H), 7.38 (m, 1H), 7.68 (d, 1H, <i>J</i> =3.6 Hz (acoplamiento- <i>o</i>), 7.74 (d, 1H, <i>J</i> =4.8 Hz (acoplamiento- <i>o</i>), 7.85 (ancho s, 1H), 8.13 (ancho s, 1H)		
353.08		
5. 9.02		

Ejemplo 100: 3-[4-(2-Bromo-5-metoxi-fenil)-tiazol-2-ilmethoxi]-2,6-diflúor-benzamida

Se añadió zinc (0.06 g, .0001 mol) a una solución def 3-[5-Bromo-4-(2-bromo-5-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida (0.06 g, .0001 mol) en 6 ml de ácido acético. La mezcla reactiva fue objeto de reflujo durante 30 min. Se permitió a la mezcla de reacción llegar a 25°C. La mezcla de reacción fue filtrada en lecho de celite; El producto fue precipitado por la adición de agua al filtrado. El sólido blanco fue filtrado y secado (0.006 g, 12%). ¹H NMR (DMSO, 400 MHz), 3.79 (s, 3H), 5.59 (s, 2H), 6.94 (dd, 1H, *J*=8.8 Hz (acoplamiento-*o*), *J*=4.0 Hz), 7.09-7.15 (m, 1H), 7.27 (d, 1H, J-4.0 Hz), 7.40-7.43 (m, 1H), 7.63 (d, 1H, *J*=8.8 Hz (acoplamiento-*o*), 7.89 (broad s, 1H), 8.11 (s, 1H); MS ES+ (455.08 & 457.08). HPLC (procedimiento 5) tiempo de reacción = 10.21 min.

Ejemplo 118: 2,6-Diflúor-3-[4-(4-metoxi-fenil)-5-propil-tiazol-2-ilmethoxi]-benzamida

Etapa-1

Se añadió 50 mg secos de Pd-C seco a una solución de **3-[5-alil-4-(4-metoxi-fenil)-tiazol-2-ilmethoxi]-2,6-diflúor-benzamida** (0.1 g, 0.02 mmol) en 5 ml de metanol anhidroso. La mezcla de reacción fue agitada a 25°C durante 12 h bajo atmósfera de hidrógeno. La mezcla de reacción fue filtrada sobre el lecho de celita. El filtrado fue evaporado hasta la sequedad bajo presión reducida y el residuo fue purificado cromatografía de columna sobre sílice (230-400Q) usando etil acetato/hexano (50:50) como el eluyente para proporcionar el compuesto del título como un sólido blanco (0.02 g, 2%). ¹H NMR (DMSOd₆, 400 MHz); δ 0.92 (t, 3H, *J*=7.2 Hz), 1.63-1.65 (m, 2H), 2.8 (t, 2H, *J*=7.6 Hz (acoplamiento-o), 3.79 (s, 3H), 5.47 (s, 2H). 7.02 (d, 2H, *J*=8.8 Hz (acoplamiento-o), 7.11 (m, 1H), 7.42 (m, 1H), 7.53 (d, 2H, *J*=8.8 Hz (acoplamiento-o), 7.88 (s, 1H), 8.16 (s,1H), 8.38 (d, 1H, *J*=8.4 Hz (acoplamiento-o). MS ES+ (419.14), HPLC (procedimiento 5) tiempo de reacción=16.58 min.

25

15

20

5

Ejemplo 120: 3-[5-Alil-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida

Etapa-1

5

10

15

Se añadió alil tributiltin (0.072 g, 0.0002 mol) a una solución de **3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida** (0.1 g, 0.0002 mol) en 5 ml de DMF anhidroso y la mezcla de reacción fue desgasificada durante 10 minutos. Entonces se añadió tetrafenilfosfina de Paladio (0) (0.025 g, 0.00002 mol). La mezcla de reacción fue calentada a 120°C durante 12 h bajo la atmósfera de nitrógeno. Entonces la mezcla de reacción fue enfriada a temperature ambiente, se le añadió 100 ml de agua y se extrajo el compuesto con etil acetato, las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequeda bajo presión reducida. El compuesto fue purificado por cromatografía columna sobre sílice (230-400P) usando metanol/DCM (2:98) como el eluyente para obtener el compuesto del título como un sólido marrón (0.120 g, 60%). ¹H NMR (DMSO-d₆, 400 MHz): δ 3.79 (s, 3H), 5.11-5.14 (m, 1H), 5.16 (s, 1H), 5.48 (s, 2H), 5.57 (s, 1H), 5.99-6.06 (m, 1H), 7.03 (d, 2H, *J*=8.4 Hz (acoplamiento-o), 7.11 (dt, 1H, *J*=9.2 Hz (acoplamiento-o), 7.36-7.42 (m, 1H), 7.56 (d, 2H, *J*=8.8 Hz (acoplamiento-o), 7.88 (ancho s, 1H), 8.16 (ancho s, 1H). MS ES+ (417.06), HPLC (procedimiento 5) temperature ambiente= 16.96 min.

Ejemplo 121: 2,6-Diflúor-3-[4-(4-metoxi-fenil)-5-piridin-3-ii-tiazol-2-ilmetoxi]-benzamida

20

25

30

Etapa-1

Se añadió fosfato de potasio (0.056 g 0.025 mmol) a una solución de **3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida** (0.1 g, 0.02 mmol) en DMF:H₂O (2:1), **ácido borónico 3-piridina** (0.054 g, 0.04 mmo)). La mezcla de reacción fue desgasificada durante 10 min y entonces se añadió diclorobis [(trifenilfosfina)-Palladio (II) (0.023g, 0.003 mmol) y se desgasificón de nuevo durante 10 min. La mezcla de reacción fue calentada a 120°C durante 12 h bajo atmósfera de nitrógeno. Se destiló DMF, después de enfriar a temperature ambiente, se añadió agua en la mezcla de reacción y se extrajo con etil acetato. Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, and evaporada hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía sobre sílice (230-400P) usando etil acetato/hexano (50:50) as the eluyente para obtener el comuesto del título como un sólido amarillo (0.050 g, 50%). ¹H NMR (DMSO-d₆, 400 MHz): δ 3.75 (s, 3H), 5.59 (s, 2H), 6.92 (d, 2H, *J*=8.8 Hz (acoplamiento-o), 7.14 (dt, 1H, *J*=9.2 Hz (acoplamiento-o), 7.36 (d, 2H, *J*=8.4 Hz(acoplamiento-o), 7.45 (dt, 2H, *J*=9.2 Hz (acoplamiento-o) *J*=5.2 Hz (acoplamiento-o), 7.79 (m, 1H), 7.88 (ancho s, 1H), 8.16 (ancho s, 1H), 8.53 (d, 1H, *J*=2.0 Hz (acoplamiento-*m*), 8.57 (d, 1H, *J*=4.8 Hz). MS ES+ (454.10), HPLC (procedimiento 5) Tiempo de reacción = 15.26 min.

Example 123: 3-(5-Bromo-benzotiazol-2-ilmetoxi)-2,6-diflúor-benzamida

35

40

Etapa-1

Se añadió **2,6-diflúor-3-hidroxibenzamida** (0.620 g, 0.22 mol) y carbonato de potasio (1.73 g, 1.25 mmol) a una solución de **5-bromo-2-bromometil-benzotiazola** (1.1 g, 0.358 mmol) en 5 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. Se añadió agua a la mezcla de reacción, el compuesto fue precipitado, filtrado y lavado con dietilétero para obtener el compuesto del título como un sólido amarillo (1.1 g, 76%). ¹H NMR (DMSO-d₆, 400 MHz): δ 5.71 (s, 2H), 7.11 (dt, 1H *J*=8.8 Hz (acoplamiento-*o*), 7.38-

7.39 (m, 1H), 7.65 (d, 1H, *J*=8.8 Hz (acoplamiento-*o*), 7.90 (ancho s, 1H), 8.13 (d, 1H, *J*=8.8 Hz (acoplamiento-*o*), 8.18 (s, 1H), 8.26 (ancho s, 1H). MS ES+ (400.9), HPLC (procedimiento 5) tiempo de reacción= 16.57 min.

Ejemplo 125: 2,6-Diflúor-3-[4-(4-metoxi-fenil)-5-piridin-2-il-tiazol-2-ilmetoxi]-benzamida

Etapa-1

Se añadió piridina de 2-tributilestanilo (0.081 g, 0.02 mmol) a una solución de **3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida** (0.1 g, 0.02 mmol) en 5 ml de DMF anhidroso y se desgasificó durante 10 min. Se añadió Paladio Tetrakis (trifenilfosfina) (0) (0.026 g, 0.002 mmol) a la mezcla de reacción y fue desgasificado otra vez durante 10 min. y, entonces, calentado a 120°C durante 12 h bajo atmósfera de nitrógeno. Entonces la mezcla de reacción fue enfriada a temperature ambiente, se le añadió agua y se la extrajo con etil acetato. Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía de columna sobre sílice (230-400Q) usando etil acetato (40:60) como eluyente para obtener el compuesto del título como un sólido blanco (0.120 g, 60%). ¹H NMR (DMSO-d₆, 400 MHz): δ 3.80 (s, 3H), 5.55 (s, 2H), 6.99 (d, 2H, *J*=8.8 Hz (acomplamiento-o), 7.12 (dt, 1H, *J*=8.8 Hz (acomplamiento-o), 7.23 (d, 1H, *J*=8.0 Hz (acomplamiento-o), 7.29-7.32 (m, 1H), 7.44 (d, 2H, *J*=8.8 Hz (acomplamiento-o), 7.62 (m, 1H), 7.69 (dt, 1H, *J*=8.0 Hz (acomplamiento-o), 7.88 (ancho s, 1H), 8.17 (ancho s, 1H), 8.60 (d, 1H, *J*=4.0 Hz), MS ES+ (454.18), HPLC (procedimiento 5) Tiempo de reacción=15.6 min.

Ejemplo 126: 3-(5-Alil-benzotiazol-2-ilmetoxi)-2,6-diflúor-benzamida

5

10

15

20

25

30

35

40

Etapa-1

Se añadió tributiletano alilo (0.083 g, 0.025 mol) a una solución de **3-(5-bromo-benzotiazol-2-ilmetoxi)-2,6-diflúor-benzamida** (0.1 g, 0.025 mol) en 5 ml de DMF anhidroso y la mezcla de reacción fue desgasificada durante 10 minutos. Se añadió paladio Tetrakis (trifenilfosfina) (0) (0.029 g, 0.0025 mol) y se desgasificó de nuevo durante 10 min. La mezcla de reacción fue calentada a 120°C durante 1 h bajo atmósfera de nitrógeno y enfriada después a temperature ambiente. Se añadió agua a la mezcla de reacción y se extrajo con etil acetato. Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue cristalizado con etil acetato/hexano para obtener el compuesto del título como un sólido marrón (0.050 g, 55%). ¹H NMR (DMSO-d₆, 400 MHz): δ 3.52 (d, 2H, *J*=6.4 Hz), 507-5.13 (m, 1H) 5.68 (s, 2H) 5.98-6.05 (m, 1H), 7.10 (dt, 1H, *J*=8.4 Hz (acomplamiento-o), 7.31 (d, 1H, *J*=8.4 Hz (acomplamiento-o), 7.38 (dt, 1H, *J*=9.2 Hz (acomplamiento-o), *J*=5.2 Hz), 7.83 (s, 1H), 7.89 (ancho s, 1H), 8.05 (d, 1H, *J*=8.4 Hz (acomplamiento-o), 8.17 (ancho s, 1H) MS ES+ (361.05), HPLC (procedimiento 5) Tiempo de reacción = 16.74 min.

Ejemplo 127: 2,6-Diflúor-3-[4-(4-metoxi-fenil)-5-piridin-4-il-tiazol-2-ilmetoxi]-benzamida

Etapa-1

Se añadió **ácido borónico** 4-**piridina acid** (0.108 g, 0.87 mmol), y fosfato de potasio (0.112 g, 0.51 mmol) a una solución de **3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida** (0.2 g, 0.43 mmol) en 5 ml de DMF:H₂O (2:1) anhidroso. Después de desgasificó la mezcla de reacción durante 10 minutos, y se añadió paladio diclorobis [(trifenilfosphine) (II) (0.046 g, 0.06 mmol) y se desgasificó de nuevo durante 10 min. La mezcla de reacción fue calentada a 120°C durante 12 h bajo atmósfera de nitrógeno. Se destiló DMF, después de enfriarlo a

temperature ambiente, se añadió agua a la mezcla de reacción y se extrajo con etil acetato. Las capas orgánicas combinadas fueron secadas sobre Na_2SO_4 anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía sobre sílice (230-400Q) usando etil acetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido blanco (0.045g, 49%). 1 H NMR (DMSO-d₆, 400 MHz): δ 3.80 (s, 3H), 5.59 (s, 2H), 6.94 (d, 2H, J=8.8 Hz (acoplamiento-o), 7.14 (dt, 1H), 7.34 (d, 1H, J=6.0 Hz (acoplamiento-o), 7.38 (d, 2H, J=8.8 Hz (acoplamiento-o), 7.41-7.45 (m, 1H), 7.89 (ancho s, 1H), 8.17 (s, 1H), 8.60 (dd, 1H) MS ES+ (454.12),HPLC (procedimiento 5) Tiempo de reacción= 13.55 min.

Ejemplo 135: 2,6-Diflúor-3-(5-propil-benzotiazol-2-ilmetoxi)-benzamida

10 Etapa-1

15

20

25

30

Se añadieron 20 mg de Pd-C seco a una solución de **3-(5-alil-benzotiazol-2-ilmetoxi)-2,6-diflúor-benzamida** (0.1 g, 0.27 mmol) en 5 ml de metanol anhidroso. La mezcla de reacción fue agitada a 25°C durante 12 h bajo atmósfera de hidrógeno. La mezcla de reacción fue filtrada sobre el lecho de celita. El filtrado fue evaporado hasta la sequedad bajo presión reducida y el compuesto fue cristalizada con etil acetato/hexano para obtener el compuesto del título como sólido amarillo ligero (0.014g, 14%). ¹H NMR (DMSO-d₆, 400 MHz): ō 0.92 (t, 3H, *J*=7.2 Hz), 1.62-1.68 (m, 2H), 2.71, 2H, *J*=7.2 Hz), 5.67 (s, 2H), 7.12 (dt, 1H, *J*=8.8 Hz (acoplamiento-o) J=1.6 Hz), 7.32 (d, 1H, *J*=8.4 (acoplamiento-o), 7.38 (dt, 1H, *J*=9.2 Hz (acoplamiento-o), J=5.2 Hz), 7.83 (s, 1H), 7.89 (ancho s, 1H), 8.01 (d, 1H, *J*=8.4 Hz (acoplamiento-o). 8.17 (ancho s, 1H). MS ES+ (363.08), HPLC (procedimiento 5) Tiempo de reacción=17.64 min.

Ejemplo 136: 2,6-Diflúor-3-[5-(3-hidroxi-fenil)-benzotiazol-2-ilmetoxi]-benzamida

Etapa-1

Se añadió, gota a gota, tribromuro de boro (0.493 g, 1.9 mmol) a -78°C a una suspensión de **2,6-diflúor-3-[5-(3-metoxi-fenil)-benzotiazol-2-ilmethoxi]-benzamida** (0.14 g, 0.3 mmol) en 15 ml de DCM anhidroso. La mezcla de reacción fue agitada a -78°C durante 3 h bajo atmósfera de nitrógeno. Se añadió 5 ml de agua a 0°C a la mezcla de reacción. El compuesto fue extraído con etil acetato. Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida. The compuesto fue purificado por chromatografía de columna sobre sílice (230-400Q) usando etil acetato (40:60) como el eluyente para obtener el compuesto del título como un sólido amarillo (0.020 g, 14%). ¹H NMR (DMSO-d₆, 400 MHz): ō 5.71 (s, 2H), 6.80 (dd, 1H, *J*=9.6 Hz (acoplamiento-o), 7.11 (dt, 1H, *J*=8.0 Hz (acoplamiento-o), 7.17 (dt, 1H, *J*=8.0 Hz (acoplamiento-o), 7.29 (t, 1H, *J*=8.0 Hz (acoplamiento-o), 7.39-7.43 (m, 1H), 7.71 (dd, 1H, *J*=9.6 Hz) 7.89 (ancho s, 1H), 8.18-8.22 (m, 2H). MS ES+ (413.01), HPLC (procedimiento 5) Tiempo de reacción = 14.95 min

Example 140: 2,6-Diflúor-3-[5-(4-hidroxi-fenil)-benzotiazol-2-ilmetoxi]-benzamida

35 El compuesto **2,6-Diflúor-3-[5-(4-metoxi-fenil)-benzotiazol-2-ilmetoxi]-benzamida** (0.095g, 0.223 mmol) fue disuelto en 5 ml de DCM y enfriado hasta - 70°C. A esto, se añadió, gota a gota, BBr₃ (0.1 ml 0.156 mmol). Después de su completa adición, la mezcla de reacción fue agitada a temperatura ambiente durante 30 min. La mezcla de reacción fue suavizada con MeOH. La mezcla de reacción fue concentrada and purificada por cromatografía de columna para obtener 0.0025g, 3% de compuesto como un sólido blanco. ¹H NMR (DMSO-d₆, 400 MHz); δ 5.70 (s,

2H), 6.88 (d, 1H, *J*=8.4 Hz (acoplamiento-*o*), 7.10 (m, 1H), 7.41 (m, 2H), 7.60 (d, 2H, *J*= 8.8 Hz, (acoplamiento-*o*), 7.71 (d, 2H), 7.89 (ancho s, 1H), 8.13-8.17 (m, 2H), 9.62 (ancho s, 1H); MS ES+ (413.0).

Ejemplo 141: 3-[5-(2-Amino-fenil)-benzotiazol-2-ilmetoxi]-2,6-diflúor-benzamida

5 A la solución del compuesto **3-(5-bromo-benzotiazol-2-ilmethoxi)-2,6-diflúor-benzamida** (0.3g 0.755 mmol) en

DMF:H₂O seco (5 mL: 2.5 mL), se le añadió **ácido borónico fenilamina-2** (0.260g, 1.5mmol) y K₂CO₃ (0.125g, 0.9 mmol) bajo atmósfera de nitrógeno a temperatura ambiente. Despúes de eso, dicha mezcla de reacción fue desgasificada durante media hora. Se añadió paladio Diclorobis [(trifenilfosfina) (II) a la mezcla de reacción (0.080g, 0.113 mmol) y fue de nuevo desgasificada durante media hora y la mezcla de reacción fue calentada a 120°C durante 2 hrs bajo atmósfera de nitrógeno. Se destiló DMF, después de enfriarlo a temperature ambiente, se añadió agua en la mezcla de reacción y se extrajo con etil acetate. Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía sobre sílice (230-400Q) usando etil acetato/hexano (50:50) como el eluyente para obtener el compuesto del título como un sólido amarillo (0.025g, 8%). ¹H NMR (DMSO-d₆, 400 MHz); δ 4.86 (ancho s, 2H), 5.71 (s, 2H), 6.66 (dt, 1H, *J*=8.4 Hz (acoplamiento-o), 6.78 (d, 1H, *J*=7.2 Hz (acoplamiento-o), 7.04-7.13 (m, 3H), 7.37-7.44 (m, 1H), 7.51 (dd, 1H, *J*=8.4 Hz (acoplamiento-o), *J*= 1.6 Hz (acoplamiento-*m*), 7.89 (ancho s, 1H), 8.00 (ancho s, 1H), 8.18 (d, 2H, *J*= 4.0 Hz); MS ES+ (412.16),HPLC (procedimiento 5) Temperatura ambiente = 15.33 min.

Ejemplo 143: 2,6-Diflúor-3-[5-(3-metoxi-fenil)-benzotiazol-2-ilmetoxi]-benzamida

Se añadió ácido borónico 3-metoxifenilo (0.228g, 1.5 mmol) y K₃PO₄ (0.190g, 0.9 mmol) a la solución del compuesto **3-(5-bromo-benzotiazoI-2-ilmetoxi)-2,6-diflúor-benzamida** (0.300g, 0.755mmol) en DMF:H₂O seco (5mL: 2.5 mL) bajo condición inerte a temperatura ambiente y se desgasificó durante media hora. Entonces se añadió paladio diclorobis [(trifenilfosfina) (II) (0.078g, 0.075mmol) a la mezcla de reacción y fue desgasificada otra vez durante media hora. La mezcla de reacción fue calentada a 120°C durante 2 hrs bajo atmósfera de nitrógeno. Se destiló DMF, después de enfriarlo a temperature ambiente, se añadió agua a la mezcla de reacción y fue extraída con etil acetato. Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía sobre sílice (230-400Q) usando etil acetato/hexano (50:50) como el eluyente para obtener el compuesto del título como un sólido blanco (0.140 g, 43%). ¹H NMR (DMSO-d₆, 400 MHz); δ 3.85 (s, 3H), 5.72 (s, 2H), 6.97 (t, 1H, *J*=6.8 Hz (acoplamiento-o), 7.11 (t, 1H, *J*=8.0 Hz (acoplamiento-o), 7.30 (ancho s, 1H), 7.34 (d, 1H, *J*=8.8 Hz (acoplamiento-o), 7.40 (dd, 2H, *J*=8.0 Hz (acoplamiento-o), 7.79 (d, 1H, *J*=8.0 Hz (acoplamiento-o), 7.90 (ancho s, 1H), 8.18 (ancho s, 1H), 8.21 (d, 1H, *J*=8.0 Hz); MS ES+ (427.14), HPLC (procedimiento 5) Temperatura ambiente = 16.48 min.

Ejemplo 155: 2,6-Diflúor-3-[4'-(4-metoxi-fenil)-[2,5']bitiazolil-2'-ilmetoxi]-benzamida

Etapa-1

10

15

20

25

Se añadió tiazola 2-tributilestanilo (0.071 g, 0.2 mmol) a una solución de **3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida** (0.1 g, 0.2 mmol) en 5 ml de DMF anhidroso y se desgasificó la mezcla de reacción durante 10 minutos. Entonces se añadió paladio tetrafenilfosfina (0) (0.026 g, 0.2 mmol). La mezcla de reacción fue calentada a 120°C durante 12 h bajo la atmósfera de nitrógeno. Entonces la mezcla de reacción fue enfriada a temperature ambiente, se le añadieron 100 ml de agua y se le extrajo el compuesto con etil acetato, las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por chromatografía de columna sobre sílice (230-400Q) usando etil acetato (40:60) como el eluyente para obtener el compuesto del título como un sólido amarillo (0.003 g, 3%). ¹H NMR (DMSO-d₆, 400 MHz): δ 3.82 (s, 3H), 5.57 (s, 2H), 7.06 (d, 1H, *J*=8.4 Hz (acoplamiento-o), 7.13 (dt, 1H), 7.39-7.47(m, 1H), 7.51 (d, 2H, *J*=8.4 Hz (acoplamiento-o), 7.52-7.58 (m, 1H), 7.59-7.86 (m, 2H), 7.68 (d, 1H, *J*=3.2 Hz), 7.89 (ancho s, 1H), 8.18 (ancho s, 1H), 9.12 (s, 1H); MS ES+ (460.01), HPLC (procedimiento 5) Temperatura ambiente = 15.64 min.

Ejemplo 160: 2,6-Diflúor-3-[3-(6-metil-2-fenil-tiazol-4-il)-propoxi]-benzamida

3-(5-Metil-2-fenil-tiazol-4-il)-propan-1-ol. Se añadió **2,6-diflúor-3-hidroxibenzamida** (0.173g, 1.0 mmol), PPh₃ (0.262g, 1.0 mmol) y azodicarboxilato diisopropilo (0.202g, 1.0 mmol) a una solución de **3-(5-metil-2-fenil-tiazol-4-il)-propan-1-ol** (0.219g, 1.0 mmol) en 5 ml de DMF anhidroso. La mezcla de reacción fue agitada a 80°C durante toda la noche bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400Q) usando etil acetato/hexano (35:65) como el eluyente para obtener el compuesto del título como un sólido blanco (0.050g, 13%). ¹H NMR (DMSO-d₆, 400 MHz): δ 2.44 (ancho s, 3H), 3.14 (t, 2H, *J*=6.4 Hz), 4.35 (t, 2H, *J*=6.4 Hz), 7.04 (dt, 1H, *J*=9.2 Hz (acoplamiento-o), 7.22-7.28 (m, 1H), 7.43-7.49 (m, 3H); 7.83-7.86 (m, 3H), 8.10 (s, 1H); MS ES+ (375.15), HPLC (procedimiento 5) Temperatura ambiente = 10.67 min.

Ejemplo 164: 2,6-Diflúor-3-[4-(4-metoxi-fenil)-[5,5']bitiazolil-2-ilmetoxi]-benzamida

Se añadió ácido 5-tributiloestananilo-tiazola-2 (0.091g,0.2mmol) a una solución de **2,6-diflúor-3-[4-(4-metoxi-fenil)-[5,5']bitiazolil-2-ilmetoxi]-benzamida** (0.100g, 0.2 mmol) en 5 ml de DMF anhidroso. La mezcla de reacción fue agitada a 80°C durante toda la noche bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400Q) usando etil acetato/hexano (35:65) como el eluyente para obtener el compuesto del título como un sólido blanco (0.025g, 25%). ¹H NMR (DMSO-d₆, 400 MHz): ō 3.78 (s, 3H), 5.57 (s, 2H), 6.97 (d, 2H, *J*=8.8 Hz (acoplamiento-o), 7.13 (t, 1H), 7.44 (d, *J*= 8.8, (acoplamiento-o, 3H), 7.89 (ancho s, 1H), 8.05 (s, 1H), 8.17 (ancho s, 1H), 9.12 (s, 1H); MS ES+(459.94), HPLC (procedimiento 5) Temperatura ambiente = 15.21 min.

Ejemplo 165: 2-Flúor-3-Hexoxi-benzamida

35

10

15

20

25

Se añadió carbonato de potasio (0.213, 1.4 mmol) a la solución de **2-flúor-3-Hidroxi-benzamida** (0.12 g, 0.774 mmol) en 20 mL DMF 1-bromohexano (0.13 mL, 1.0 mmol). La mezcla de reacción fue agitada a 90°C durante 4 h. Se destiló el DMF y la mezcla de reacción fue extraída con EtOAc. El compuesto bruto obtenido fue purificado por chromatografía de columna sobre sílice (230-400Q) usando etil acetato/hexano (50:50) como el eluyente para obtener el compuesto del título (0.05g, 28%). 1 H NMR (DMSO-d₆, 400 MHz con D₂O): δ 0.82-0.99 (m, 3H), 1.10-1.33 (m, 6H), 1.67-1.71 (m, 2H), 3.99-4.15 (t, 2H, $_{2}$ =8.0 Hz), 7.08-7.24 (m, 2H). MS ES+ (214.33), HPLC (procedimiento 6) Tiempo de reacción=11.15 min.

Ejemplo 166: 2-Hidroxi-3-Hexoxi-benzamida

Una mezcla de 2-fluor-3-Hexoxi-benzamida (0.30 g, 1.2 mmol), sulfato de cobre (0.10 g, 0.4 mol), cobre (0.015g, 0.2 mmol) y NaOH (2.5 ml) fue agitada a 100°C durante 14 hrs. Después de completarse la reacción, la mezcla de reacción fue acidificada y extraída con EtOAc. El compuesto de crudo obtenido fue purificado por cromatografía de columna sobre sílice (230-400Q) us column usando etil acetato/hexano (50:50) como eluyente para obtener el compuesto del título como amarillo (0.15g, 50 %). ¹H NMR (DMSOd6, 400 MHz with D2O): δ 3.9 (s, 3H), 7.11-7.18
 (m, 2H), 7.53-7.58 (m, 1H). MS ES+ (229.0 M+2H aducto). HPLC (Procedimiento 7) Tiempo de reacción=11.16 min.

Ejemplo 167: Síntesis de 3-Flúor-5-hexiloxi benzamida

20

25

Se añadió una solución de nitrito de sodio (0.315 mg, 4.6 mmol) en agua (5 ml) a 0°C a una solución de **3-amino-5-hexiloxi benzamida** (0.9 g, 3.8 mmol) en ácido tetrafluorobórico (20ml), y fue agitada durante 1 hr. Posteriormente, se dejó que alcanzara la temperatura ambiente y fue agitada durante 1 hr seguida por calentamiento a 60°C durante 2hrs. Fue entonces basificada a pH=14 usando una solución de NaOH saturada y extraída con diclorometano (3x30ml). El solvente fue evaporado para producer un product en bruto, que fue purificado por cromatografía de columna usando gel de sílice (230-400 de malla) y diclorometano como eluyente (100 mg, 11%). 1 H NMR (DMSO-d₆, 400 MHz with D₂O): δ 0.88 (t, J=7.2Hz, 3H), 1.32 (m, 2H), 1.41 (m, 4H), 1.72 (m, 2H), 4.0 (t, J=7.2Hz, 2H),6.97 (m, 1H), 7.22 (m, 1H), 7.28 (m, 1H), 7.52 (ancho s, 1H), 8.03 (ancho s, 1H). MS ES+ (238.0, 239.0), HPLC (procedimiento 7) Tiempo de reacción=11.34 min.

Ejemplo 168: Síntesis de 3-(Pirazol-1-ilmetoxi)-benzamida

Se llevó estero metilo de ácido 3-(Pirazol-1-ilmetoxi)-benzoico (250 mg, 1.1 eq.) en un recipiente a presión con 5

30 ml de amoníaco acuoso, calentado a 110°C durante 12 hr. La mezcla de reacción fue entonces vertida en agua (25 ml), y extraída conm diclorometano (25 ml x 4). Se secó la capa organic sobre sulfato de sodio y se concentró para obtener sólido en bruto. El producto fue purificado por cromatografía de columna usando 80% de EtOAc-DCM como un eluyente sobre 230- 400 de malla de gel de sílice. Se obtuvo producto en bruto como un polvo sólido (50 mg, 19%). H NMR (DMSO-d₆, 400 MHz con D₂O): δ 6.12 (s, 2H), 6.33 (m, 1H), 7.25 (m, 1H), 7.37 (m, 1H), 7.41 (m, 1H), 7.51 (m, 1H), 7.56 (m, 2H), 7.95 (ancho s, 1H), 7.99 (m, 1H). MS ES+ (218.0, 235.0- de aducto de amonio), HPLC (procedimiento 7) Tiempo de reacción=9.08 min.

Ejemplo 169: 3-[(2-Metilciclopropil)metoxi]benzenocarboxamida.

5

10

15

Sintetizado de acuerdo con el procedimiento C, esquema 3. Producción 27%, mp 119-121°C, HPLC-MS (procedimiento 1): m/z 206 $[M+H]^+$, Tiempo de reacción= 3.47 min.

Ejemplo 170: 3-[(5-Metil-3-piridinil)metoxi]benzenocarboxamida.

Se añadieron N-Bromosuccinimida (2.13 g, 12 mmol) y el subsiguiente α , α '-azoisobutironitrilo (16 mg, 0.1 mmol) a una solución de 3,5-lutidina (1.14 ml, 10 mmol) en CCl₄ (40 ml). La mezcla de reacción fue agitada al reflujo durante 2 hrs. Después del enfriamiento, la succinimida fue eliminada por filtración y el filtrado fue evaporado a un volumen menor (10 ml). Se añadió una mezcla de 3-hidroxibenzenocarboxamida (550 mg, 4 mmol) y K_2CO_3 (830 mg, 6 mmol) en DMF (5 ml) a este filtrado, y la nueva mezcla de reacción fue agitada a 60°C durante 24 h. Después de diluir con CH_2Cl_2 (100 ml), la solución fue lavada con solución de Na_2CO_3 (40 ml) y agua (40 ml), secada (Na_2SO_4) y evaporada hasta la sequedad, bajo presión reducida. El residuo de aceite marrón fue extraído por trituración con Et_2O (2x10 ml), y a partir de los extractos de Et_2O , el precipitante sólido fue filtrado y lavado con pentano, para obtener 70 mg (7.2% de producción) del producto deseado. Mp 152-154°C, HPLC-MS: m/z 243 $[M+H]^+$, Tiempo de reacción = 2.28 min.

Ejemplo 171: 3-[(3-Bromobenzil)oxi]benzenocarboxamida.

20 Sintetizado de acuerdo con el procedimiento B, esquema 2. Producción 54%, mp 129-131°C, HPLC-MS (procedimiento 1): m/z 347 [M+H+CH₃CN]⁺, Tiempo de reacción = 3.99 min.

Esquema 20: (a) KOH acuoso, $(CH_3CO)_2O$; (b) 3-hidroxibenzenocarboxamida, PPh₃, DIAD, Et₃N, THF, temperatura ambiente; (c) K_2CO_3 , MeOH, H_2O .

25 3-(Hidroximetil)fenil acetato.

Se añadió hielo (4g), seguido por anhídrido acético (0.95 ml, 10 mmol, 1.25 equiv.) a una solución agitada de 3-hidroxibenzilalcohol (1.0 g, 8 mmol, 1 equiv.) en solución de 6.4N KOH (1.86 ml, 12 mmol, 1.5 equiv.) a temperatura ambiente. La mezcla de reacción fue agitada a temperature ambiente durante 3h. Se añadió agua (50 ml) y la mezcla fue agitada durante 30 min, antes de su extracción con CH_2Cl_2 (2x50 ml). Los extractos orgánicos combinados fueron lavados con salmuera (50 ml), secados (Na_2SO_4) and evaporados hasta la sequedad, bajo presión reducida. El residuo oleaginoso, transparente, fue purificado por cromatografía de columna sobre sílice, eluted with EtOAc/hexane (1:2), to give the desired product as a clear oil (714 mg, 54% yield). HPLC-MS (method 1): m/z 165 [M-H]-. Rt = 2.52 min.

Ejemplo 172: Acetato 3-[3-(Aminocarbonil)fenoxi]metilfenilo.

Sintetizado de acuerdo con el Procedimiento Method C, esquema 3. Producción 32%, HPLC-MS (procedimiento 1): m/z 286 [M+H]^{$^{+}$}. Tiempo de reacción = 3.44 min.

Ejemplo 173: 3-[(3-Hidroxibenzil)oxi]benzenocarboxamida.

10

25

30

35

Una solución de K₂CO₃ (500 mg, 3.62 mmol, 5.75 equiv.) en agua (5 ml) fue añadida a una solución de **acetato 3-[3-(aminocarbonil)fenoxi]metilfenilo** (180 mg, 0.63 mmol, 1 equiv.) y la mezcla fue agitada a temperatura ambiente, bajo N₂, durante 3 h; La mezcla fue acidificada con solución de 10% HCl hasta pH 1, y fue extraíada con EtOAc (2x30 ml). Los extractos orgánicos combinados fueron lavados con agua (30 ml), secados (Na₂SO₄) y evaporados hasta la sequedad bajo presión reducida, para obtener un residuo de aceite transparente que, después de su trituración con Et₂O, se solidificó hasta formar un sólido blanco (70 mg, 46% de producción). Mp 122-123°C, HPLCMS (procedimiento 1): m/z 244 [M+H]⁺. Tiempo de reacción = 2.92 min.

Esquema 21: (a) Hexanol, 3 equ. NaH, 100-120° C; (b) SOCI₂, tolueno, reflujo; (c) NH₃ acuoso.

Ácido 3-Cloro-2-(hexiloxi)isonicotínico.

Una solución de hidruro de sodio (60% en aceite mineral, 600 mg, 15.0 mmol, 3 equiv.) en hexanol (10 ml) fue agitada a temperatura ambiente durante 2 h. Se añadió ácido 2,3-Dicloro-isonicotínico (960 mg, 5.0 mmol, 1 equiv.) y la mezcla de reacción fue agitada a 100°C durante 16 h. La mezcla fue diluida con agua (100 ml) y pentano (300 ml), y las dos fases fueron separadas. La fase acuosa fue neutralizada con solución de 1 N HCl hasta pH 6.0 y extraída con EtOAc (3x80 ml). Los extractos EtOAc combinados fueron secados (MgSO₄) y evaporados bajo presión reducida hasta la sequedad. El residuo fue triturado con pentano, enfriado a 0°C y el sólido precipitante fue filtrado, para obtener 410 mg de un compuesto blanco (producción 32%). Por análisis ¹HNMR, consistió en alrededor del 80% del product deseado, que fue usado hasta la siguiente fase sin purificación ulterior. HPLC-MS: m/z 256 [M-H]⁻, Tiempo de reacción = 2.94 min.

Ejemplo 174: 3-Cloro-2-(hexiloxi)isonicotinamida.

Sintetizada a partir de **ácido 3-cloro-2-(hexiloxi)isonicotínico** de acuerdo con el Procedimiento A. Producción 85% (bruto); purificado posteriormente por TLC preparatorio, mp 75-77°C, HPLC-MS: m/z 298 [M+H+CH₃CN]⁺, Rt = 4.16 min

2-flúor-3-hidroxibenzenocarboxamida.

5

10

Sintetizado a partir de **2-flúor-3-metoxibenzenocarboxamida** disponible en el mercado de acuerdo con el Procedimiento H. Producción 82%, mp 196-197 $^{\circ}$ C, HPLC-MS (procedimiento 1): m/z 154 [M-H] $^{-}$, Tiempo de reacción = 1.24 min.

Ejemplo	175	176
Estructura	O NH ₂	F CH ₃
Rendimiento (%)	62	70
Mp (°C)	76-77	91-92
HPLC-MS: procedimiento no., m/z, ion	1, 282, [M+H]*	1, 270, [M+H] ⁺
Tiempo reacción (min)	4.78	3.52

177	178	
O NH ₂ F CH	O NH ₂ F O OH	
7	6	
98-100	70-72	
1, 306, [M+H] [†]	1, 246, [M+H] ⁺	
4.78	3.52	

Tabla de nombres de compuestos de producto; Ejemplos 175-178:

5

15

Ejemplo	Nombre del compuesto
175	2-Flúor-3-(noniloxi)benzenocarboxamida
176	2-[3-(aminocarbonilo)-2-flúorfenoxi]acetato de Butilo
177	2-Flúor-3-(10-undeciniloxi)benzenocarboxamida
178	2,6-Diflúor-3-(4-hidroxibutoxi)benzenocarboxamida

Esquema 22: (a) Metil 4-bromocronato, K₂CO₃, DMF, temperatura ambiente; (b) NaOH, IPA/H₂O, reflujo; (c) n-BuBr, K₂CO₃, DMF, 50°C; (d) H₂, 5% Rh/C, BuOH, temperatura ambiente

Example 179: Metil 4-[3-(aminocarbonil)-2,4-diflúorfenoxi]-2-butenoato.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el Procedimiento B, esquema 2. Producción 41%, mp 122-123°C, HPLC-MS (procedimiento 1): m/z 272 [M+H]⁺, Tiempo de reacción = 2.80 min.

Ácido 4-[3-(aminocarbonil)-2,4-diflúorfenoxi]-2-butenoico.

Una solución de **Metil 4-[3-(aminocarbonil)-2,4-diflúorfenoxi]-2-butenoato** (1.25 g, 4.61 mmol, 1 equiv.) y NaOH (0.75 g, 18.44 mmol, 4 equiv.) en isopropanol (10 ml) y H_2O (20 ml) fue calentada al reflujo durante 1 h. Después de enfriar a temperatura ambiente, la mezcla fue acidificada con HCl concentrado hasta alcanzar pH 1. El sólido precipitante blanco fue filtrado y lavado con E_2O (50 ml), para obtener 568 mg, 48% de producción, mp 187-188°C, HPLC-MS (procedimiento 1): m/z 258 [M+H] $^+$, Tiempo de reacción = 0.98 min. Por análisis 1 H-NMR, se determinó que era una mezcla de isómeros en una relación (3:2) E:Z.

La fase acuosa fue extraída con Et₂O (2x50 ml) y los extractos combinados fueron secados (Na₂SO₄) y evaporados hasta la sequedad bajo presión reducida, para obtener un sólido naranja claro, 418 mg, 35% de producción, mp 127-

128°C, HPLC-MS (procedimiento 1): m/z 258 [M+H]^{\dagger}, Tiempo de reacción = .0.99 min. Por análisis ¹H-NMR, se determinó que era una mezcla de isómeros en una relación (3:40) E:Z.

Example 180: Butil 4-[3-(aminocarbonil)-2,4-diflúorfenoxi]-2-butenoato.

5 Ácido 4-[3-(Aminocarbonil)-2,4-diflúorfenoxi]-2-butenoico, mezcla de isómeros (3:2) E:Z, (526 mg, 2 mmol, 1

equiv.) fue disuelto en DMF seco (5 ml). Se añadieron K_2CO_3 (850 mg, 6 mmol, 3 equiv.) and n-butilbromuro (0.23 ml, 2.1 mmol, 1.05 equiv.) y la mezcla de reacción fue calentada durante 70 h a 50°C y durante 1.5 h a temperatura ambiente. Después de enfriar a temperatura ambiente, la mezcla fue diluida con H_2O (50 ml) y extraída con EtOAc (3 x 40 ml). Los extractos orgánicos combinados fueron lavados con H_2O (6x30 ml), secados (MgSO₄) y evaporados hasta la sequedad bajo presión reducida. El residuo oleaginoso fue purificado por cromatografía de columna sobre sílice, eluido con CH_2Cl_2 y MeOH/ CH_2Cl_2 (1%), para obtener 364 mg, 57% de producción, mp<40°C. HPLC-MS (procedimiento 1): m/z 314 [M+H]⁺, Tiempo de reacción= 3.88 min. Por análisis 1 H-NMR, se determinó que era una mezcla de isómeros en una relación (5:7) E:Z. Cuando se llevó a cabo la misma reacción sobre la mezcla de isómeros (3:40) E:Z ácida, el producto obtenido se determinó que era una mezcla de isómeros en una relación (1:4) E:Z.

Ejemplo 181: Butil 4-[3-(aminocarbonil)-2,4-diflúorfenoxi]butanoato.

$$\begin{array}{c} O \\ \\ F \\ \\ O \\ \\ O \\ \end{array}$$

Fue agitado **ácido 4-[3-(Aminocarbonil)-2,4-diflúorfenoxi]-2-butenoico** (100 mg, 0.32 mmol) con 5% Rh/C (5 mg) en butanol (5 ml) bajo H₂, a temperature ambiente durante 21 horas. La mezcla de reacción fue filtrada a través de un tampón de celita y enjuagada con CH₂Cl₂ (3x5 ml). El filtrado fue evaporado hasta la sequedad, bajo presión reducida, para obtener 88 mg del producto deseado, producción: 87%, mp 53-55°C. HPLC-MS (procedimiento 1): m/z 316 [M+H]⁺, Tiempo de reacción = 3.49 min.

Ejemplo 182-197 (Tabla G)

10

15

20

Los ejemplos 182 – 197 fueron sintetizados a partir de 2,6-diflúor-3-hidroxibenzenocarboxamida: los ejemplos 182, 190, 192, 193 y 195, de acuerdo con el Procedimiento B, esquema 2 y Ejemplos 183-189, 194 y 196-197 de acuerdo con el Procedimiento C, esquema 3.

Ejemplo	182	183	184
Estructura	O NH ₂ F F N-O CH ₃	O NH ₂ F F O O	O NH ₂ F O O
Rendimiento (%)	11	4	10
Mp (°C)	130-132	86-88	-
HPLC-MS: procedimiento no., m/z, ion	1, 269, [M+H] [↑]	1, 254, [M+H]*	1, 254, [M+H] [†]
Tiempo reacción (min)	2.84	3.15	3.11

185	186	187	188
F F CH ₂	O NH ₂ F F S	O NH ₂ F CH ₃	F F S
7	30	9	17 ·
92-93	155-156	111-112	161-162
1, 268, [M+H] ⁺	1, 268, [M-H] ⁺	1, 284, [M+H] ⁺	1, 270, [M+H] ⁺
3.49	3.38	3.73	3.42

189	190	191	192
NH ₂ F F S N	O NH ₂ F F O N CH ₃	NH ₂ F F S N N N N N N N N N N N N N N N N N	F F CH ₃
8.4	13	8	46
130-132	194-196	175-177	172-174
1, 271, [M+H] ⁺	1, 285, [M+H] ⁺	1, 271, [M+H] [†]	1, 285, [M+H] ⁺
2.37	2.73	2.51	2.85

193	193 194 195	
F F CH ₃	F CH ₃	F F CH ₃
49	14	30
172-173	167-168	103-105
1, 285, [M+H] ⁺	1, 268, [M+H] ⁺	1, 278, [M+H] ⁺
2.80	1.86	3.89

196	197
F F O CH ₃	F F CH ₃
3	57
137-138	201-202
1, 308, [M+H] [†]	1, 279, [M+H]*
3.51	2.89

Tabla de nombres de compuestos de producto; Ejemplos 182-197:

Nombre del compuesto
2,6-Diflúor-3-[(5-metil-3- isoxazolil)metoxi]benzenocarboxamida
2,6-Diflúor-3-(2-furilmetoxi)benzenocarboxamida
2,6-Diflúor-3-(3-furilmetoxi)benzenocarboxamida
2,6-Diflúor-3-[(5-metil-2- furil)metoxi]benzenocarboxamida
2,6-Diflúor-3-(2-tienilmetoxi)benzenocarboxamida
2,6-Diflúor-3-[(4-metil-2- tienil)metoxi]benzenocarboxamida
2,6-Diflúor-3-(3-tienilmetoxi)benzenocarboxamida
2,6-Diflúor-3-(1,3-tiazol-5-ilmetoxi)benzenocarboxamida
2,6-Diflúor-3-[(2-metil-1,3-tiazol-4- il)metoxi]benzenocarboxamida
2,6-Diflúor-3-(1,3-tiazol-2-ilmetoxi)benzenocarboxamida
2,6-Diflúor-3-[(5-metil-1,3-tiazol-2- il)metoxi]benzenocarboxamida
2,6-Diflúor-3-[(4-metil-1,3-tiazol-2- il)metoxi]benzenocarboxamida
2,6-Diflúor-3-[(1-meti)-1H-imidazol-2- il)metoxi]benzenocarboxamida
2,6-Diflúor-3-[(3-metilbenzil)oxi]benzenocarboxamida
3-[(3-Etoxibenzil)oxi]-2,6-diflúorbenzenocarboxamida
2,6-Diflúor-3-[(6-metil-2-piridinil) metoxi]benzenocarboxamida

Esquema 23: (a) n-BuLi, Et₂NH, THF; (b) NalO₄, MeOH; (c) NaBH₄, MeOH; (d) PPh₃, DIAD, Et₃N, THF, temperatura ambiente.

Ejemplo 198: 2,6-Diflúor-3-[(2-metil-4-piridinil)metoxi]benzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el Procedimiento C, esquema 3. El bloque de construcción requerido, **4-hidroximetil-2-metilpiridina**, fue sintetizado de acuerdo con el procedimiento de la literatura, mostrado en Esquema 23 (Ragan, J.A., Jones, B.P., Meltz, C.N., Teixeira J.J.Jr.; Synthesis 2002, 483-486. Producción34%, mp 185-186°C, HPLC-MS (procedimiento 1): m/z 279 [M+H]⁺, Tiempo de reacción = 2.50 min.

Ejemplo 199: 2,6-Diflúor-3-([1,3]oxazolo[4,5-b]piridin-2-ilmetoxi)benzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el procedimiento B, esquema 2. Producción 8%, mp 180-181°C, HPLC-MS (procedimiento 1): *m/z* 306 [M+H)⁺, Tiempo de reacción = 2.30 min.

Example 200: 2,6-Diflúor-3-(2-quinolinilmetoxi)benzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el procedimiento B, esquema 2. Producción 48%, mp 216-218 $^{\circ}$ C, HPLC-MS (procedimiento 1): m/z 315 [M+H] † , Tiempo de reacción = 3.43 min.

15 Ejemplo 201: 3-(1-Benzotiofen-5-ilmetoxi)-2,6-diflúorbenzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el procedimiento B, esquema 2. El elemento básico exigidido, **5-(clorometil)-1-benzotiofeno**, fue sintetizado por clorinación de 1-benzotiofen-5-ilmetanol, disponible en el mercado, con cloruro de tionilo. Producción 10%, mp 146-148°C, HPLC-MS (procedimiento 1): m/z 320 [M+H]⁺, Tiempo de reacción= 3.95 min.

Ejemplos 202-207 (Tabla H)

20

5

Los ejemplos 202-207 fueron sintetizados a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el Procedimiento C, esquema 3.

Ejemplo	202	203	204
Estructura	F F S	P NH2 F N	P F F
Rendimiento (%)	29	9	13
Mp (°C)	154-156	-	84-86
HPLC-MS: procedimiento no., m/z, ion	1, 320, [M+H] ⁺	1, 304, [M+H] [†]	1, 322, [M+H] ⁺
Tiempo reacción (min)	3.97	2.52	3.73

205	206	207
F F CH ₃	O_NH ₂ F_F S	O NH ₂ F F O O O O O O O O O O O O O O O O O
23	63	26
149-150	142-143	135-136
1, 334, [M+H] ⁺	1, 320, [M+H] ⁺	1, 304, [M+H] [†]
3.88	4.02	3.82

Tabla de nombres de compuestos de producto; Ejemplos 202-207:

5

10

Ejemplo	Nombre del compuesto
202	3-(1-Benzotiofeno-3-ilmetoxi)-2,6-diflúorbenzenocarboxamida
203	2,6-Diflúor-3-(imidazo[1,2-a]piridin-2-ilmetoxi)benzenocarboxamida
204	3-(2,3-Dihidro-1,4-benzodioxin-2-ilmetoxi)-2,6-diflúorbenzenocarboxamida
205	2,6-Diflúor-3-[(5-metil-1-benzotiofen-2-il)metoxi]benzenocarboxamida
206	3-(1-Benzotiofen-2-ilmetoxi)-2,6-diflúorbenzenocarboxamida
207	3-(1-Benzofuran-2-ilmetoxi)-2,6-diflúorbenzenocarboxamida

[5-(Triflúormetil)-1-benzotiofen-2-il]metanol.

Se añadieron piridina (0.37 ml, 4.72 mmol, 1.5 equiv.) y el subsiguiente fluoruro cianúrico (0.53 ml, 6.3 mmol, 2 equiv.) a una solución agitada de ácido 5-(triflúormetil)-1-benzotiofeno-2-carboxílico (776 mg, 3.15 mmol, 1 equiv.) en CH₂Cl₂ (16 ml), disponible en el mercado, mantenido bajo N₂, a -20 hasta -10°C. Se produjo una precipitación de ácido cianúrico y se incrementó gradualmente según procedía la reacción. Después de agitarse la mecla a -20 hasta -10°C durante 2 h, se añadión agua helada conjuntamente con 100 ml CH₂Cl₂. Fueron filtrados sólidos no disueltos;

la fase organic fue separada del filtrado y la capa acuosa fue extraída una vez más con CH_2CI_2 (50 ml). Las capas orgánicas combinadas fueron lavadas con agua helada (50 ml), secadas (Na_2SO_4) y concentradas bajo presión reducida hasta un pequeño volumen (15 ml). Se añadió $NaBH_4$ (240 mg, 6.3 mmol, 2 equiv.) en una parte, y entonces se añadió MeOH (6.5 ml), gota a gota, sobre 15 minutos a temperatura ambiente. La mezcla de reacción fue neutralizada con 1 NH_2SO_4 , y los solventes orgánicos fueron evaporados bajo presión reducida.

El residuo fue llevado a EtOAc (80 ml) y agua (40 ml); la capa orgánica fue separada, y la capa acuosa fue extraída con EtOAc (2x60 ml). Las capas orgánicas combinadas fueron lavadas con 1 N H_2SO_4 y salmuera, secada (Na_2SO_4) y el solvente fue evaporado bajo presión reducida. El residuo fue purificado por cromatografía de columna sobre sílice, usando EtOAc/hexano (10-20% gradiente) como eluyente, para obtener 400 mg (54.6% de producción) del producto requerido como un sólido blanco. HPLC-MS (procedimiento 1) produjo un máximo con tiempo de reacción = 4.02 min, pero ninguna ionización

Ejemplo 208: 2,6-Diflúor-3-[5-(triflúormetil)-1-benzotiofen-2-il]metoxibenzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** y [5-(triflúormetil)-1-benzotiofen-2-il]metanol de acuerdo con el procedimiento C, esquema 3. Producción 3%, mp150-152°C, HPLC-MS (procedimiento 1): *m/z* 386 [M-H]⁻, Tiempo de reacción = 4.39 min.

Ejemplos 209-217 (Tabla I)

Los ejemplos 209-217 fueron sintetizados a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo con el procedimiento B, esquema 2.

15

5

Ejemplo	209	210	211
Estructura	F F N N N N N N N N N N N N N N N N N N	P F F CI	F F CH,
Rendimiento (%)	37	62	16
Mp (°C)	138-139	-	172-173
HPLC-MS: procedimiento no., m/z, ion	1, 305, [M+H] ⁺	1, 339, [M+H]*	1, 319, [M+H] ⁺
Tiempo reacción (min)	3.28	3.72	3.60

212	213	214
PH2 F CH3	F CH ₃ CH ₃	F F O N O O
32	50	14
150-151	160-161	153-155
1, 319, [M+H] ⁺	1, 361, [M+H] ⁺	1, 348, [M-H]
3.60	4.29	3.32

215	216	217
P P P P P P P P P P P P P P P P P P P	F F S N S N S	O NH ₂ F S F F
15	25	60
185-186	195-197	223-224
1, 321, [M+H]*	1, 339, [M+H] ⁺	1, 389, [M+H] [†]
3.46	3.67	4.15

Tabla de nombres de compuestos de producto. Ejemplos 209-217:

5

Ejemplo	Nombre del compuesto
209	3-(1,3-Benzoxazol-2-ilmetoxi)-2,6-diflúorbenzenocarboxamida
210	3-[(5-Cloro-1,3-benzoxazol-2-il)metoxi]-2,6-diflúorbenzenocarboxamida
211	2,6-Diflúor-3-[(6-metil-1,3-benzoxazol-2-il)metoxi]benzenocarboxamida
212	2,6-Diflúor-3-[(5-metil-1,3-benzoxazol-2-il)metoxi]benzenocarboxamida
213	3-[5-(tert-Butil)-1,3-benzoxazol-2-il]metoxi-2,6-diflúorbenzenocarboxamida
214	2,6-Diflúor-3-[(5-nitro-1,3-benzoxazol-2-il)metoxi]benzenocarboxamida
215	3-(1,3-Benzotiazol-2-ilmetoxi)-2,6-diflúorbenzenocarboxamida
216	2,6-Diflúor-3-[(5-flúor-1,3-benzotiazol-2-il)metoxi]benzenocarboxamida
217	2,6-Diflúor-3-[5-(triflúormetil)-1,3-benzotiazol-2-il]metoxibenzenocarboxamida

5-Cloro-2-(clorometil)-1,3-benzotiazola.

4-Cloro-2-amino-benzotiol (4.05 g, 25.4 mmol, 1 equiv.) y 2-cloro-1,1,1-trimetoxi etano (5.0 ml, 37 mmol, 1.45 equiv.) fueron calentados mientras eran agitados a 60° C durante 2 h. La mezcla de reacción fue enfriada a temperatura ambiente y triturada con dietil etero (10 ml). El sólido no disuelto fue filtrado y enjuagado con Et_2O and pentano, para obtener 1.54 g (28% de producción) del producto deseado. Los licores iniciadores fueron evaporados hasta la sequedad, el residuo sólido naranja fue disuelto en Et_2O (50 ml) y lavado consecutivamente con 1 N HCl (25 ml), agua (25 ml), 5% de solución de NaHCO $_3$ (25 ml) y salmuera (25 ml). La capa orgánica fue secada (MgSO $_4$) y evaporada hasta alcanzar un volumen inferior, bajo presión reducida. El sólido precipitante fue filtrado y lavado con

 Et_2O y pentano, para obtener una segunda fracción del producto deseado 1.88 g (34% de producción). Producción total 62%, mp 102-104°C, HPLC-MS (procedimiento 1): m/z 260 [M+H+CH₃CN]⁺, Tiempo de reacción = 4.52 min.

10 Ejemplos 218-221 (Tabla J)

Los ejemplos 218-221 fueron sintetizados a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** y 5-cloro-2-(clorometil)-1,3-benzotiazola de acuerdo con el procedimiento B, esquema 2.

Ejemplo	218	219
Estructura	O NH ₂ F F S CI	O NH ₂ F S CI
Rendimiento (%)	81	67
Mp (°C)	235-236	204-205
HPLC-MS: procedimiento no., m/z, ion	1, 355, [M+H] ⁺	1, 337, [M+H] ⁺
Tiempo reacción (min)	3.89	392

220	221
CI F CI	O NH ₂ CI
50 .	35
240-242	218-220
1, 371, [M+H] ⁺	1, 371, [M+H] [†]
4.02	3.98

Tabla de nombres de compuestos de producto; Ejemplos 218-221:

Ejemplo	Nombre del compuesto
218	3-[(5-Cloro-1,3-benzotiazol-2-il)metoxi]-2,6-diflúorbenzenocarboxamida
219	3-[(5-Cloro-1,3-benzotiazol-2-il)metoxi]-2-flúorbenzenocarboxamida
220	6-Cloro-3-[(5-cloro-1,3-benzotiazol-2-il)metoxi]-2-flúorbenzenocarboxamida
221	2-Cloro-3-[(5-cloro-1,3-benzotiazol-2-il)metoxi]-6-flúorbenzenocarboxamida

Esquema 24: (a) K₂CO₃, NaI, DMF, 60°C; (b) conc. H₂SO₄, H₂O, 40°C.

5 2-[(5-Cloro-1,3-benzotiazol-2-il)metoxi]isonicotinonitrilo.

10

15

25

Fue disuelto 2-Hidroxi-4-ciano-piridina (240 mg, 2 mmol, 1 equiv.) en DMF (6 ml), se añadieron K_2CO_3 (415 mg, 3 mmol, 1.5 equiv.) and Nal (60 mg, 0.4 mmol, 0.2 equiv.) y la mezcla fue agitada a temperature ambiente durante 10 minutos. Se añadió **5-Cloro-2-(clorometil)-1,3-benzotiazola** (436 mg, 2 mmol, 1 equiv.) y la mezcla de reacción fue agitada a 60°C durante 3 h y a temperatura ambiente durante toda la noche. Por adición de H_2O , se precipitó un sólido marrón, que fue filtrado, enjuagado con H_2O , secado y re-cristalizado a partir de CH_3CN . Producción 280 mg (46%), mp 224-227°C, HPLC-MS (procedimiento 1): m/z 302 $[M+H]^+$, Tiempo de reacción= 3.80 min. Por análisis ^{13}C -NMR se identificó el derivado N-alquilado (Esquema 25). Los licores iniciadores DMF- H_2O fueron evaporados hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice, eluído con EtOAc/hexano (10%-100% gradiente) para obtener 45 mg (7.5% de producción) de un sólido marrón, HPLC-MS (procedimiento 1): m/z 302 $[M+H]^+$, Tiempo de reacción = 4.86 min. Por análisis ^{13}C -NMR, se identificó como el derivado O-alquilado deseado (Esquema 24).

<u>Ejemplo 222:</u> 2-[(5-Cloro-1,3-benzotiazol-2-il)metoxi]isonicotinamida.

20 Fue disuelto 2-[(5-Cloro-1,3-benzotiazol-2-il)metoxi]isonicotinonitrilo (40 mg, 0.13 mmol) en H₂SO₄ concentrado

(0.36 ml) y la solución fue calentada a 40° C, bajo un agitado vigoroso. Se añadió agua (50 mg), gota a gota, y la mezcla fue agitada a 40° C durante 3 h. Después de enfriar a -5° C, se añadió rápidamente hielo picado (25 ml), con agitación vigorosa, y la mezcla fue agitada a temperatura ambiente durante dos horas más. Se añadió una solución de amoníaco (pH 10) y el sólido precipitante fue filtrado, enjuagado con H_2 O y secado. El sólido marrón fue purificado por TLC preparatorio, eluído con EtOAc, para obtener 20 mg (47% de producción), mp $220-222^{\circ}$ C, HPLC-MS (procedimiento 1): m/z 320 [M+H]^+ , Tiempo de reacción = 3.76 min.

Esquema 25: (a) KOH, 2-metoxi-etanol:H₂O (1:1), reflujo; (b) CICH₂C(OCH₃)₃ (c) K₂CO₃, Nal, DMF, 60° C

2-(Clorometil)-4-etil-1,3-benzotiazola.

- (Procedimiento J) Una solución de 4-etil-1,3-benzotiazol-2-amina (1.0 g, 5.6 mmol, 1 equiv.) y KOH (7.4 g, 112.2 mmol, 20 equiv.) en 2-metoxi-etanol (9 ml) y H₂O (9 ml), fue agitada bajo N₂ y al reflujo, durante 20 h. Después de enfriar a temperatura ambiente, la mezcla fue vertida en agua (150 ml) y extraída con CH₂Cl₂ (2x40 ml). La fase acuosa fue neutralizada con HCl concentrado y extraída de nuevo con CH₂Cl₂ (3x70 ml). Los extractos neutrales combinados fueron lavados con agua (2x60 ml), secados (Na₂SO₄) y evaporados hasta la sequedad bajo presión reducida. El residuo semi-sólido amarillo-verde (790 mg) fue mezclado con 2-cloro-1,1,1-trimetoxi etano (1.62 g, 10.4 mmol) y la mezcla fue agitada, under N₂, a 60°C, durante 4 h. Los volátiles fueron eliminados por evaporación bajo presión reducida y el residuo líquido marrón fue purificado por cromatografía de columna sobre sílice, eluído con CH₂Cl₂/hexano (10% y 50%), para obtener un líquido amarillo (406 mg, 34% de producción sobre dos pasos). HPLC-MS (procedimiento 1): m/z 212 [M+H][†], Tiempo de reacción = 5.00 min
- 15 <u>Ejemplo 223:</u> 3-[(4-Etil-1,3-benzotiazol-2-il)metoxi]-2,6-diflúorbenzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** y **2-(clorometil)4-etil-1,3-benzotiazola** de acuerdo con el Procedimiento B, esquema 2. Producción 17%, mp 184-186°C, HPLC-MS (producción 1): m/z 349 $[M+H]^+$, Tiempo de reacción = 4.16 min.

20 2-(Clorometil)-6-metoxi-1,3-benzotiazola

Sintetizado a partir de 6-metoxi-1,3-benzotiazol-2-amina disponible en el Mercado, de acuerdo con el Procedimiento J, esquema 25. Se usó en bruto en la etapa siguiente.

Ejemplo 224: 2,6-Diflúor-3-[(6-metoxi-1,3-benzotiazol-2-il)metoxi]benzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** y 2-(**clorometil)-6-metoxi-1,3-benzotiazola** de acuerdo al Procedimiento B, esquema 2. Producción 19%, mp 190-192°C, HPLC-MS (producción 1): m/z 351 [M+H] $^{+}$, Tiempo de reacción = 3.50 min.

Esquema 26: (a) BrCH₂CN, K₂CO₃, Nal, DMF, 60° C; (b) KOH, 2-metóxi-etanol:H₂O (1:1), reflujo.

Ejemplo 225: 3-(Cianometoxi)-2,6-diflúorbenzenocarboxamida.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** de acuerdo al Procedimiento B, esquema 2. Producción 86%, mp 122-123°C, HPLC-MS (procedimiento 1): m/z 213 [M+H][†], Tiempo de reacción = 1.97 min.

$Ejemplo\ 226:\ 3-[(4-Cloro-1,3-benzotiazol-2-il)metoxi]-2, 6-difl\'uor benzeno carboxamida.$

(Procedimiento K) Se añadió una solución de KOH (15.15 g, 270 mmol, 20 equiv.) en H2O (25 ml) a una solución de 4-cloro-1,3-benzotiazol-2-amina (2.5 g, 13.5 mmol, 1 equiv.) en 2-metoxi-etanol (25 ml) y la mezcla de reacción fue calentada al reflujo durante toda la noche. Después de enfriarla a temperature ambiente, la mezcla fue diluida con H₂O (200 ml), acidificada con solución de 5N HCl hasta llegar a pH 4 y extraída con CH₂Cl₂ (3x150 ml). Los extractos orgánicos combinados fueron lavados con salmuera (100 ml), secados (Na₂SO₄) y concentrados bajo presión reducida hasta la sequedad, para obtener 1.5 g (70% de producción). A partir de este residuo en bruto,

fueron mezclados 167 mg (asumiendo un 1.05 mmol), con **3-(cianometoxi)-2,6-diflúorbenzenocarboxamida** (150 mg, 0.7 mmol) y la mezcla fue agitada a 120°C, en un baño de aceite pre-calentado, bajo N_2 , durante 2 h. Se añadió EtOH (2 ml) y la mezcla de reacción fue calentada durante 2 horas adicionales. Después de enfriarla a temperature ambiente, se filtró el sólido, se lavó con EtOH y se re-cristalizó a partir de EtOAc/pentano, para obtener el producto deseado como un sólido amarillo pálido, 62 mg (25% de producción en segunda etapa). HPLC-MS (procedimiento 1): m/z 355 [M+H] $^{+}$, Tiempo de reacción = 3.75 min.

Ejemplo 227: 3-[(6-Cloro-1,3-benzotiazol-2-il)metoxi]-2,6-diflúorbenzenocarboxamida.

5

Sintetizado a partir de 6-cloro-1,3-benzotiazol-2-amina and **3-(cianometoxi)-2,6-diflúorobenzeno carboxamida**, de acuerdo con el Procedimiento K, esquema 26. Producción 38% (segunda fase), mp 190-191 °C, HPLC-MS (procedimiento 1): m/z 355 $[M+H]^+$, Tiempo de reacción= 3.85 min.

Ejemplo 228: 2,6-Diflúor-3-[(4-metil-1,3-benzotiazol-2-il)metoxi]benzenocarboxamida.

Sintetizado a partir de 4-metil-1,3-benzotiazol-2-amina y **3-(cianometoxi)-2,6-diflúorbenzeno carboxamida,** de acuerdo con el procedimiento K, esquema 26. Producción 36% (segunda etapa), mp 201-202°C, HPLC-MS (procedimiento 1): m/z 335 [M+H]⁺, Tiempo de reacción = 3.79 min.

Ejemplo 229: 2,6-Diflúor-3-[(6-metil-1,3-benzotiazol-2-il)metoxi]benzenocarboxamida.

Sintetizado a partir de 6-metil-1,3-benzotiazol-2-amina y **3-(cianometoxi)-2,6-diflúorbenzeno carboxamida,** de acuerdo al Procedimiento K, esquema 26. Producción 17% (segunda etapa), HPLC-MS (procedimiento 1): *m/z* 335 [M+H][†], Tiempo de reacción = 3.70 min.

Ejemplo 230: 2,6-Diflúor-3-[6-(triflúormetoxi)-1,3-benzotiazol-2-il]metoxibenzenocarboxamida.

Sintetizado a partir de 6-(triflúormetoxi)-1,3-benzotiazol-2-amina y 3-(cianometoxi)-2,6-diflúorbenzenocarboxamida, de acuerdo al Procedimiento K, esquema 26. Producción 34% (segunda fase), mp 174-175°C, HPLC-MS (procedimiento 1): m/z 405 [M+H]⁺, Tiempo de reaccion = 4.14 min.

6-Propil-1,3-benzotiazol-2-amina.

5

10

15

20

Se añadió una solución de Br_2 (3.8 ml, 74 mmol, 2 equiv.) en AcOH glacial (18.5 ml), gota a gota, a <25°C, a una solución agitada de 4-propilamina (5.0 g, 37 mmol, 1 equiv.) y tiocianato de amonio (5.63 g, 74 mmol, 2 equiv.) en AcOH glacial (110 ml). La mezcla resultante fue agitada a temperatura ambiente durante for 2 h, diluída con H_2O (700 ml) y extraída con EtOAc (2x250 ml). La capa acuosa fue alcalizada con solución de amoníaco acuoso hasta pH 10 y extraída con EtOAc (3x300 ml). Los extractos alcalinos combinados fueron lavados con H_2O (2x200 ml), secada y evaporada hasta la sequedad bajo presión reducida, para obtener el producto deseado como un sólido blanco, 2.34 g (33% de producción), mp 120-122°C. HPLC-MS (procedimiento 1): m/z 193 $[M+H]^+$, Tiempo de reacción = 3.92 min.

Ejemplo 231: 2,6-Diflúor-3-[(6-propil-1,3-benzotiazol-2-il)metoxi]benzenocarboxamida.

Sintetizado a partir de **6-propil-1,3-benzotiazol-2-amina** y **3-(cianometoxi)-2,6-diflúorbenzenocarboxamida**, de acuerdo con el procedimiento K, esquema 26. Producción18% (segunda etapa), mp 173-175°C. HPLC-MS (procedimiento 1): m/z 363 [M+H]⁺, Tiempo de reacción = 4.35 min.

Esquema 27. (a) NBS, α , α ' -azoisobutironitrilo, CCI₄, (b) K₂CO₃, DMF, 60° C; (c) ácido borónico 4-piridina, Na₂CO₃, Pd(PPh₃)₄, dioxano.

5-Bromo-2-(bromometil)-1,3-benzotiazola.

5

10

Se añadieron N-Bromosuccinimida (4.45 g, 25 mmol, 1.4 equiv.) y, seguidamente, α , α '-azoisobutironitrilo (110 mg, 0.7 mmol, 0.04 equiv.) a una solución de 5-bromo-2-metil-benzotiazola (4.07 g, 17.85 mmol, 1 equiv.) en CCl₄ (110 ml). La mezcla de reacción fue agitada al reflujo durante 24 hrs. Después del enfriado, la succinimida fue eliminada por filtración y fue enjuagada con CCl₄ (100 ml). El filtrado fue evaporado hasta la sequedad bajo presión reducida y el residuo sólido naranja fue purificado por cromatografía de columna sobre sílice, eluido con CH_2Cl_2 /hexane (20%-70% gradiente), para obtener el producto deseado como un sólido blanco, 2.15 g (39% producción). Mp 116-117, HPLC-MS (procedimiento 1): m/z 308 [M+H]⁺, Tiempo de reacción = 4.84 min. La reacción dio también 1.40 g (20% de producción) del subproducto 5-bromo-2-dibromometil-benzotiazola, además de 0.89 g (22%) de materia prima no reaccionada.

15 3-[(5-Bromo-1,3-benzotiazol-2-il)metoxi]-2,6-diflúorbenzenocarboxamida.

Sintetizado a partir de 2,6-diflúor-3-hidroxibenzenocarboxamida y 5-bromo-2-(bromometil)-1,3-benzotiazola,

de acuerdo al Procedimiento B, esquema 2. Producción 81%, mp 244-246°C, HPLC-MS (procedimiento 1): m/z 399, 401 [M+H] $^{+}$, Tiempo de reacción = 3.98 min.

20 <u>Ejemplo 232:</u> 2,6-Diflúor-3-[5-(4-piridinil)-1,3-benzotiazol-2-il]metoxibenzenocarboxamida.

Se suspendió en dioxano (3.5 ml) una mezcla de **3-[(5-bromo-1,3-benzotiazol-2-il)metoxi]-2,6-diflúorbenzenocarboxamida** (168 mg, 0.42 mmol, 1 equiv.), ácido borónico 4-piridina (98 mg, 0.63 mmol, 1.5

equiv.) y solución Na_2CO_3 acuosa (0.42 ml, 0.82 mmol, 2 equiv.) y la mezcla fue desgasificada y lavada con N_2 . Se añadió como catalizador Tetrakis(trifenilfosfina) paladio (0) (37 mg, 0.031 mmol, 0.075 equiv.) y la mezcla de reacción fue calentada al reflujo durante 12 h. Tras enfriarla a temperatura ambiente, la mezcla fue diluida con H_2O y el precipitante sólido fue filtrado y enjuagado con H_2O , IMS, IMS/Et₂O y Et₂O. Re-cristalizado a partir de CH₃CN, para obtener el product deseado como un sólido blancuzco, 47 mg (28% de producción), mp 255-258°C. HPLC-MS: m/z 398 [M+H] $^+$, Tiempo de reacción = 3.28 min.

Ejemplos 233-241 (Tabla K)

Los ejemplos 233-241 fueron sintetizados a partir de 2,6-diflúor-3-hidroxibenzenocarboxamida de acuerdo al Procedimiento B, esquema 2.

1	0

Ejemplo	233	234	235
Estructura	O NH ₂ F F S	F F CI	O NH ₂ F F O S
Rendimiento (%)	58	25	63
Mp (°C)	207-209	198-199	208-210
HPLC-MS: procedimiento no., m/z, ion	1, 347, [M+H] ⁺	1, 382, [M+H] ⁺	1, 347, [M+H] ⁺
Tiempo reacción (min)	3.96	3.89	3.84

236	237	238
FF CH ₃	O NH ₂ F F S N H S	F F NN O N
54	6 (solamente-75% puro)	17
222-224	-	188-189
1, 361, [M+H] ⁺	1, 362, [M+H] [†]	1, 332, [M+H] ⁺
4.13	3.75	3.17

239	240	241
F F N-O	F F O NH2	F F CH ₃
60	44	77
177-178	164-165	172-173
1, 332, [M+H]*	1, 332, [M+H] ⁺	1, 362, [M+H] ⁺
3.62	3.65	3.76

Tabla de nombres de compuestos de producto; Ejemplos 233-241:

Ejemplo	Nombre de compuesto
233	2,6-Diflúor-3-[(2-fenil-1,3-tiazol-4-il)metoxi]benzenocarboxamida
234	3-[5-(4-Clorofenil)-1,3,4-tiadiazol-2-il]metoxi-2,6-diflúorbenzenocarboxamida
235	2,6-Diflúor-3-[(4-fenil-1,3-tiazol-2-il)metoxi]benzenocarboxamida
236	2,6-Diflúor-3-[2-(4-metilfenil)-1,3-tiazol-4-il]metoxibenzenocarboxamida
237	3-[(2-Amino-1,3-tiazol-4-il)metoxi]-2,6-diflúorbenzenocarboxamida
238	2,6-Diflúor-3-[(5-fenil-1,3,4-oxadiazol-2-il)metoxi]benzenocarboxamida
239	2,6-Diflúor-3-[(5-fenil-1,2,4-oxadiazol-3-il)metoxi]benzenocarboxamida
240	2,6-Diflúor-3-[(3-fenil-1,2,4-oxadiazol-5-il)metoxi]benzenocarboxamida
241	2,6-Diflúor-3-[3-(4-metoxifenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida

Ejemplo 242: 2,6-Diflúor-3-[3-(4-hidroxifenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida.

(Procedimiento L) Se añadió lentamente, gota a gota, solución de tribromuro de Boro (1.0 M en CH_2CI_2 , 1.5 ml, 1.5 mmol, 2 equiv.) a suspensión agitada de 2,6-diflúor-3-[3-(4-metoxifeni)-1-2-4-oxadiazol-5-il]metoxibenzenocarboxamida (272 mg, 0.75 mmol, 1 equiv.) en CH_2CI_2 (5 ml), a temperatura ambiente, bajo N_2 . La mezcla de reacción fue agitada a temperature ambiente durante 4 h y vertida en agua (20 ml). Se añadió CH_2CI_2 (10 ml) y la mezcla bifásica fue agitada durante 30 min. a temperatura ambiente. El sólido blanco no disuelto fue filtrado, lavado con agua y Et_2O , para obtener 170 mg (65% de producción), mp 209-210°C, HPLC-MS (procedimiento 1): m/z 348 $[M+H]^+$, Tiempo de reacción = 3.00 min.

5

15

Ejemplos 234-250 (Tabla L)

Los ejemplos 243-250 fueron sintetizados a partir de 2,6-diflúor-3-hidroxibenzenocarboxamida de acuerdo al Procedimiento B, esquema 2

Ejemplo	243	244	245
Estructura	F F F	Ningún ejemplo	F F O N F
Rendimiento (%)	38		81
Mp (°C)	168-169		173-174
HPLC-MS: procedimiento no., m/z, ion	1, 398, [М-Н] ⁻		1, 350, [M+H] ⁺
Tiempo reacción (min)	4.27		3.81

249	250
F CH ₃ CH ₃ CH ₃	F F CH ₃
53	33
132-133	141-142
1, 388, [M+H] [↑]	1, 360, [M+H] ⁺
4.62	4.24

Tabla de nombres de compuestos de producto: Ejemplos 243-250:

Ejemplo	Nombre de compuesto
243	2,6-Diflúor-3-(3-[4-(triflúormetil)fenil]-1,2,4-oxadiazol-5-ilmetoxi)benzenocarboxamida
245	2,6-Diflúor-3-[3-(4-fluorofenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
246	3-[3-(4-Clorofenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida
247	2,6-Diflúor-3-[3-(4-metilfenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
248	2,6-Diflúor-3-[3-(4-isopropilfenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
249	3-(3-[4-(tert-Butil)fenil]-1,2,4-oxadiazol-5-ilmetoxi)-2,6-diflúorbenzenocarboxamida
250	3-[3-(4-Etilfenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida

Esquema 28: (a) $(Boc)_2O$, Et_3N , DMAP, THF; (b) K_2CO_3 , Nal, DMF, temperatura ambiente; (c) 4H HCI, dioxano, temperatura ambiente.

tert-Butil N-4-[5-(clorometil)-1,2,4-oxadiazol-3-il]fenilcarbamato.

5

10

15

Se añadió Dicarbonato de di-tert-butilo (1.04 g, 4.75 mmol, 1.05 equiv.), parte a parte, a una solución de 4-[5-(clorometil)-1,2,4-oxadiazol-3-il]anilina (950 mg, 4.53 mmol, 1 equiv.), Et₃N (0.20 ml, 5.44 mmol, 1.2 equiv.) y dimetilaminopiridina (catalizador), y la mezcla de reacción fue agitada a temperatura ambiente durante 3 días. El solvente fue evaporado bajo presión reducida, el residuo fue triturado con Et₂O y el sólido fue eliminado por filtración. El filtrado fue evaporado hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice, eluído con EtOAc/hexano (20%), para obtener un sólido cremoso, 780 mg (55% de producción). Alrededor del 70% puro por HPLC-MS (procedimiento 1): m/z 308 [M-H]⁻, Tiempo de reacción = 4.72 min. Se usó sin purificación ulterior en la siguiente fase.

N-[4-(5-[3-(aminocarbonil)-2,4-diflúorfenoxi]metil-1,2,4-oxadiazol-3-il)fenil]carbamato de tert-Butilo.

Sintetizado a partir de **2,6-diflúor-3-hidroxibenzenocarboxamida** y **N-4-[5-(clorometil)-1,2,4-oxadiazol-3-il]fenilcarbamato de tert-butilo**, de acuerdo al Procedimiento B, esquema 2, a temperatura ambiente. Producción 42%, mp 165-166°C, HPLC-MS (procedimiento 1): m/z 447 [M+H]⁺, Tiempo de reacción=4.10 min.

<u>Ejemplo 251:</u> sal de hidrocloruro 3-[3-(4-Aminofenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida

Fue disuelto N-[4-(5-[3-(aminocarbonil)-2,4-diflúorfenoxi]metil-1,2,4-oxadiazol-3-il)fenil]carbamato de tert-Butilo (300 mg, 0.67 mmol, 1 equiv.) en 4N HCl en dioxano (7 ml, 28 mmol, 42 equiv.) y la mezcla de reacción fue agitada a temperatura ambiente durante toda la noche. Los volátiles fueron eliminados bajo presión reducida, el residuo fue triturado con Et₂O seco y el sólido formado fue filtrado y enjuagado con Et₂O seco. El producto en bruto (200,mg) fue absorbido en EtOH (2 ml) y fue triturado con 2N HCl en solución de Et₂O (0.3 ml) y Et₂O seco. EL sólido blanco fue filtrado y lavado con Et₂O seco, para obtener 110 mg del producto deseado (43% de producción). HPLC-MS (procedimiento 1): m/z 347 [M+H-HCl][†], Tiempo de reacción= 2.98 min.

Ejemplos 252-266 (Tabla M)

5

20

Los ejemplos 252, 254-256 y 258-266 fueron sintetizados a partir de 2,6-diflúor-3-hidroxibenzenocarboxamida de acuerdo al Procedimiento B, esquema 2. Los ejemplos 253 y 257 fueron sintetizados a partir de carboxamida de 2,6-diflúor-3-[3-(2-metoxifenil)-1,2,4-oxadiazol-5-il]metoxibenceno de acuerdo al procedimiento L.

Ejemplo	252	252a	253
Estructura	O H, C H,	F CH ₃	F HO
Rendimiento (%)	60	73	54
Mp (°C)	148-149	263-264	164-165
HPLC-MS: procedimiento no., m/z, ion	1, 346, [M+H] [†]	1, 362, [M+H] ⁺	1, 348, [M+H] ⁺
Tiempo reacción (min)	3.95	3.45	3.52

254	255	256
F CI	F F CI	F F O-CH ₃
56	71	. 96
173-174	146-148	149-151
1, 366, [M+H] ⁺	1, 367, [M+H] [†]	1, 362, [M+H] ⁺
3.82	4.10	3.75

257	258	259
F F OH	F F F F	F F ON-O
37	76	62
197-199	155-157	179-180
1, 348, [M+H] ⁺	1, 400, [M+H] ⁺	1, 377, [M+H] ⁺
3.11	4.23	3.78

260	261	262
F F CI	F F CH ₃	O NH ₂ F F O N O N
64	24	36
155-157	192-194	195-197
1, 400, [M+H] ⁺	1, 392, [M+H] ⁺	1, 333, [M+H] ⁺
3.92	3.43	2.70

263	264
F F CH ₃	F F CI
79	30
. 137-139	128-130
1, 376, [M+H] ⁺	1, 430, 432, [M+H] ⁺
3.88	4.0

265	266
F F CI	F F O N O N
83	47
123-125	88-89
1, 380, [M+H] [†]	1, 346, [M+H] [†]
3.92	3.58

Tabla de nombres de compuestos de producto; Ejemplos 252-266:

Ejemplo	Nombre de compuesto
252	2,6-Diflúor-3-[3-(2-metilfenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
252a	2,6-Diflúor-3-[3-(2-metoxifenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
253	2,6-Diflúor-3-[3-(2-hidroxifenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
254	3-[3-(2-Clorofenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida
255	3-[3-(3-Clorofenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida
256	2,6-Diflúor-3-[3-(3-metoxifenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
257	2,6-Diflúor-3-[3-(3-hidroxifenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
258	2,6-Diflúor-3-(3-[3-(triflúormetil)fenil]-1,2,4-oxadiazol-5-ilmetoxi)benzenocarboxamida
259	2,6-Diflúor-3-[3-(3-nitrofenil)-1,2,4-oxadiazol-5-il]metoxibenzenocarboxamida
260	3-[3-(2,6-Diclorofenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida
261	3-[3-(2,4-Dimetoxifenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida
262	3-[3-(2,4-Dimetoxifenil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida
263	2,6-Diflúor-3-(3-[(4-metilfenoxi)metil]-1,2,4-oxadiazol-5-ilmetoxi)benzenocarboxamida
264	3-(3-[(2,6-Diclorofenoxi)metil]-1,2,4-oxadiazol-5-ilmetoxi)-2,6-diflúorbenzenocarboxamida
265	3-[3-(4-Clorobenzil)-1,2,4-oxadiazol-5-il]metoxi-2,6-diflúorbenzenocarboxamida
266	3-[(3-Benzil-1,2,4-oxadiazol-5-il)metoxi]-2,6-diflúorbenzenocarboxamida

Esquema 29: (a) NH₂OH.HCl, NaOH, EtOH; (b) bromuro de bromoacetilo, (c) K₂CO₃, DMF

4- Cloro-N-hidroxi-benzamida

- Se añadión hidrocloruro de hidroxilamina (5.03 g, 73.0 mmol) y NaOH (2.90 g, 73.0 mmol) a una solución de 4-clorobenzonitrilo (10.0 g, 73.0 mmol) en EtOH (250 ml). La mezcla de reacción resultante fue puesta al reflujo durante 15h. Después que la reacción fuera completada (monitorización con TLC), la mezcla fue concentrada, se le añadió EtOH y se filtró. El filtrado fue evaporado al vacío y usado como tal para la siguiente etapa (producción en bruto 12.0 g, 66%).
- 10 5-Bromometil-3-(4-cloro-fenil)-[1,2,4]oxadiazola

Se añadión bromuro de bromoacetilo (1.50 mL, 17.58 mmol) a 4-Cloro-N-hidroxi-benzamida (1.0 g, 5.86 mmol) y K_2CO_3 (3.18 g, 23.44 mmol). La mezcla de reacción fue calentada a 100°C durante 15 min. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (100 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na_2SO_4), filtrado y concentrado. El residuo bruto fue purificado sobre gel de sílice (60-120 M, 1% EtOAc-Hexano) para obtener el producto deseado (0.44 g, 28%) como un sólido blanco.

Ejemplos 267-270 (Tabla N)

Los compuestos de los ejemplos 267-270 fueron sintetizados de acuerdo al siguiente procedimiento general: se añadió reactante (B) y carbonato de potasio (C) a una solución de 5-bromometil-3-(4-cloro-fenil)-[1,2,4]oxadiazola (A) en 2 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25° C durante 24h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400 M) usando etil acetato/hexano (45:55) como eluyente para obtener el compuesto de producto.

25

<u>Tabla N</u>

Ejemplo	26	7	268
Producto	3-[3-(4-cloro-fenil)-[1,2,4]oxadiazol-5-ilmetoxi]- 2-flúor-benzamida		5-[3-(4-cloro-fenil)-[1,2,4]oxadiazol-5- ilmetoxi]-2-flúor-benzamida
Esquema de reacción	CI—NOB	HO F	CI NH ₂
Reactivo (B)	2-flúor-3-hidrox	ki-benzamida	2-flúor-5-hidroxi-benzamida
Cantidades de A; B; C	0.03 g, 0.10 mmol; 0 0.053 a. 0		0.07 g, 0.25 mmol; 0.04 g, 0.25 mmol; 0.124 g, 0.90 mmol
Producción	0.3 g, 43% de só	olido blancuzco	0.025 g, 27% de sólido blanco
¹ H NMR (DMSO-d ₆ , 400 MHz)	δ 5.72 (s, 2H), 7.17-7.25 (m, 2H), 7.39-7.43 (m, 1H), 7.80 (m, 3H), 7.80 (br s, 1H) y 8.03 (d, J=8.80 Hz, 2H)		δ 5.63 (s, 2H), 7.23-7.33 (m, 3H), 7.65-7.73 (m, 4H) y 8.03 (d, J=8.40 Hz, 2H)
MS-ES+	348.	07	348.11
Número de Procedimiento HPLC, tiempo de reacción (minutos)	8, 16	5.33	8, 16.56
2	69		270
	enil)-[1,2,4]oxadiazol-5- úor-benzamida	6-Cloro-3-[3-(4-cloro-	fenil)-[1,2,4]oxadiazol-5-ilmetoxi]-6-flúor- benzamida
CI—	Br HO F	CI—	N-O HO CI
cı—()-	F CI ONH2	CI-	N CI F
6-Cloro-2-flúor-3-	hidroxi-benzamida	2-Cloro-	6-flúor-3-hidroxi-benzamida
	48 g, 0.25 mmol; 0.124 g,) mmol	0.070 g,	0.25 mmol; 0.048 g, 0.25 mmol; 0,124 g, 0.9 mmol
0.070 g, 71% (de sólido blanco	0.013	g, 13% de sólido blanco
Hz, 2H), 7.88 (br s, 1H)	9 (m, 2H), 7.67 (d, J=8.80 n, 8.03 (d, J=8.80 Hz, 2H) (br s, 1H)		.37 (m, 2H), 7.65 (d, J=8.40 Hz, 2H), 7.87 (d, J=8.40 Hz, 2H) y 8.14 (br s, 1H)
38	2.03		382.03
8, 1	6.53		8. 16.48

Esquema 30: (a) 2-Benziloxi-tioacetamida, DMF; (b) BBr₃, DCM, (c) PBr₃, Tolueno (d) Fenoles correspondientes

2-Benziloximetil-4-(4-cloro-fenil)-tiazola

Se añadió 2-Bromo-1-(4-cloro-fenil)-etanona (3.0 g, 12.87 mmol) a la solución de 2-Benziloxi-tioacetamida (3.0g, 16.57 mmol) en 3 ml de DMF. La mezcla de reacción fue calentada a 130°C durante 24 h bajo atmósfera de nitrógeno. Después de completer la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 2% EtOAc-Hexano) para obtener el producto deseado (2.0 g, 49%). El derivado de ciano correspondiente fue también preparado por el mismo método general.

[4-(4-Cloro-fenil)-tiazol-2-il]-metanol

Una solución de 2-Benziloximetil-4-(4-cloro-fenil)-tiazola (2.0g, 6.34 mmol) en 25 ml de DCM fue enfriada hasta -78° C seguida por la añadidura de BBr₃ (2.38 ml, 25.3 mmol). La mezcla de reacción fue agitada a 25°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió una solución de NaHCO₃ (20 ml) a 0° C y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (60-120 M, 40% EtOAc-Hexane) para obtener el producto deseado (0.8g, 57%). El derivado de ciano correspondiente fue también preparado por el mismo método general.

2-Bromometil-4-(4-cloro-fenil)-tiazola

Se añadió PBr₃ (0.51 ml, 5.33 mmol) a la solución de [4-(4-Cloro-fenil)-tiazol-2-il]-metanol (0.80g, 3.55 mmol) en 10 ml de tolueno y la mezcla de reacción fue calentada a 120°C durante 20 min bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.17 g, 17%). El derivado de ciano correspondiente fue también preparado por el mismo método general.

30 **Ejemplos 271-276 (Tabla O)**

35

Los compuestos de los ejemplos 271-276 fueron sintetizados de acuerdo al siguiente procedimiento general: se añadión reactivo (B) y carbonato de potasio (C) a una solución de reactivo (A) en DMF anhidroso. La mezcla reactiva fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etil acetato/hexane como el eluyente para obtener el compuesto de producto.

Tabla O

Ejemplo	271	272
Producto	3-[4-(4-cloro-fenil)-tiazol-2-ilmetoxi]-2-flúor- benzamida	3-[4-(4-cloro-fenil)-tiazol-2-ilmetoxi]-2-flúor- benzamida
Esquema de reacción	CI—NSBr NH2 CI—NS ONH2	CI— Br HO F NH ₂ CI— S NH ₂ NH ₂
Relación etilacetato:hexano	30:70	30:70
Reactivo (A)	2-bromometil-4-(4-cloro-fenil)-tiazola	2-bromometil-4-(4-cloro-fenil)-tiazola
Reactivo (B)	2-flúor-3-hidroxi-benzamida	2-flúor-5-hidroxi-benzamida
Cantidades de A; B; C; volumen DMF	0.070 g, 0.24 mmol; 0.037 g, 0.24 mmol: 0.116 a. 0.8 mmol: 2 ml	0.07 g, 0.24 mmol; 0.037 g, 0.24 mmol; 0.116 a. 0.84 mmol; 2 ml
Producción	0.035 g, 40% de sólido blanco	0.020 g, 23% de sólido blanco
¹ H NMR (DMSO-d ₆ , 400 MHz)	δ 5.60 (s, 2H), 7.20 (m, 2H), 7.44 (m, 1H), 7.53 (d, J=8.40 Hz, 2H), 7.66 (br s, 1H), 7.79 (br s, 1H), 8.0 (d, J=8.40 Hz, 2H) y 8.25 (s, 1H)	δ 5.52 (s, 2H), 7.24 (m, 2H), 7.33 (m, 1H), 7.53 (d, J=8.40 Hz, 2H), 7.72 (m, 2H), 8.01 (d, J=8.40 Hz, 2H) y 8.25 (s, 1H)
MS-ES+	363.22	363.04
Número de Procedimiento HPLC, tiempo de reacción (minutos)	9, 16.91	9, 17.06

273	274
6-Cloro-3-[4-(4-cloro-fenil)-tiazol-2-ilmetoxi]-2-flúor- benzamida	6-Cloro-3-[4-(4-cloro-fenil)-tiazol-2-ilmetoxi]-6-flúor- benzamida
CI—NH ₂ NH ₂ NH ₂ NH ₂ CI—NH ₂ NH ₂ NH ₂	CI————————————————————————————————————
30:70	30:70
2-bromometil-4-(4-cloro-fenil)-tiazola	2-bromometil-4-(4-cloro-fenil)-tiazola

6-cloro-2-flúor-3-hidroxi-benzamida	2-cloro-6-flúor-3-hidroxi-benzamida
0.070 g, 0.24 mmol; 0.045 g, 0.24 mmol; 0.116 g, 0.8 mmol: 2 ml	0.07 g, 0.24 mmol; 0.045 g, 0.24 mmol; 0.116 a. 0.84 mmol: 2 ml
0.017 g, 17% de sólido blanco	0.042 g, 43% de sólido blanco
δ 5.62 (s, 2H), 7.29-7.32 (m, 1H), 7.37-7.41 (m, 1H), 7.53 (d, J=8.80 Hz, 2H), 7.86 (br s, 1H), 8.0 (d, J=8.80 Hz, 2H) , 8.14 (br s, 1H) y 8.26 (s, 1H)	δ 5.60 (s, 2H), 7.30 (m, 1H), 7.38 (m, 1H), 7.53 (d, J=8.40 Hz, 2H), 7.86 (br s, 1H), 8.0 (d, J=8.40 Hz, 2H), 8.13 (br s, 1H) y 8.24 (s, 1H)
396.99	397.20
8, 17.00	8, 16.98

275	276
2-[4-(4-cloro-fenil)-tiazol-2-ilmetoxi]-isonicotinamida	3-[4-(4-ciano-fenil)-tiazol-2-ilmetoxi]-2,6-flúor-benzamida
CI—S Br NH2	NC-N-Br HO F
CI—(S)	NC-\S\S\F\F
O NH ₂	· O NH₂
30:70	50:50
2-bromometil-4-(4-cloro-fenil)-tiazola	4-(2-bromometil-tiazol-4-il)-benzonitrilo
2-hidroxi-isonicotinamida	2,6-diflúor-3-hidroxi-benzamida
0.10 g, 0.34 mmol; 0.048 g, 0.34 mmol; 0.167 g, 0.12 mmol; 2 ml	0.55 g, 1.9 mmol; 0.34 g, 1.90 mmol; 0.95 g, 6.92 mmol: 8 ml
0.027 g, 12% de sólido blanco	0.41 g, 56% de sólido blanco
δ 5.46 (s, 2H), 6.63 (m, 1H), 6.90 (s, 1H), 7.51 (d, J=8.40 Hz, 2H), 7.70 (br s, 1H), 7.98 (m, 3H) y 8.15 (m, 2H)	δ 5.60 (s, 2H), 7.12 (t, J=8.80 Hz, 1H), 7.40 (m, 1H), 7.89 (br s, 1H), 7.94 (d, J=8.40 Hz, 2H), 8.17 (m, 3H) y 8.48 (s, 1H)
346.12	372.07
8, 14.96	8, 15.52

Esquema 31: (a) Tioacetamida, DMF; (b) NBS, CCl₄ (c) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF (d) ácidos borónicos correspondientes, condiciones de Suzuki o de Stille (e) CuCN, piridina.

5 4-(4-Metoxi-fenil)-2-metil-tiazola

10

La mezcla de tioacetamida (16.0 g, 213 mmol) y 2-bromo-1-(4-metoxi-fenil)-etanona (4.0 g, 17.5 mmol) fue calentada a 140°C durante 24 h bajo atmósfera de nitrógeno. Después de completar la mezcla de reacción (monitorización con TLC), se añadió agua (100 ml) y se extrajo con etilacetato (3 x 100 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado and concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 1% EtOAc-Hexano) para conseguir el producto deseado (2.5 g, 69%).

5-Bromo-2-bromometil-4-(4-metoxi-fenil)-tiazola

Se añadió NBS (7.43 g, 41.74 mmol) a la solución 4-(4-Metoxi-fenil)-2-metil-tiazola (5.0, 24.3 mmol) en CCl₄ (20 ml) y la mezcla de reacción fue calentada a 100°C durante 2 h bajo atmósfera de nitrógeno. Después de completer la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400 M) usando 1% etilacetato/hexano para obtener el producto deseado (3.0 g, 34%).

3-[5-Bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida

Se añadió 2,6-Diflúor-3-hidroxi-benzamida (0.23 g, 1.37 mmol) y carbonato de potasio (0.75 g, 5.43 mmol) a una solución de 5-Bromo-2-bromometil-4-(4-metoxi-fenil)-tiazola (0.50 g, 1.37 mmol) en 5 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (30:70) como el eluyente para proporcionar el compuesto del título (0.30 g, 48%).

Ejemplos 277-287 (Tabla P).

Los compuestos de los ejemplos 277-287 fueron sintetizados de acuerdo con el procedimiento general siguiente: se añadió reactivo (B) y fosfato de potasio (C) a una solución de 3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida (A) en 5 ml de DMF anhidroso y agua. La mezcla de reacción fue desgasificada durante 10 minutos seguidos por la adición de paladio diclorobis(trifenil fosfina) (II) (D). La mezcla de reacción fue calentada a 120°C durante 12 h bajo la atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), fue añadida agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (45% EtOAc-Hexano) para obtener el compuesto de producto deseado.

Tabla P

Ejemplo	277	278
Producto	2,6-diflúor-3-[5-(2-hidroxi-fenil)-4-(4-metoxi- fenil)-tiazol-2-ilmetoxi]-benzamida	2,6-diflúor-3-[5-(3-hidroxi-fenil)-4-(4-metoxi- fenil)-tiazol-2-ilmetoxi]-benzamida
Esquema de reacción	Br S O F F NH2	Br S O F NH ₂ OH S O F NH ₂
Reactivo (B)	Ácido borónico 2-hidroxifenilo	Ácido borónico 2-hidroxifenilo
Cantidades de A; B; C; D	0.20 g, 0.44 mmol; 0.12 g, 0.88 mmol; 0.11 g, 0.53 mmol; 0.046 g, 0.068 mmol	0.20 g, 0.44 mmol; 0.12 g, 0.88 mmol; 0.11 g, 0.53 mmol; 0.046g, 0.068 mmol
Gel de sílice	60-120 M	60-120 M
Producción	0.005 g, 3% de sólido blanco	0.02 g, 10% de sólido blanco
¹ H NMR (DMSO- d ₆ , 400 MHz)	δ 3.72 (s, 3H), 5.54 (s, 2H), 6.80 (m, 3H) 7.08-7.23 (m, 2H), 7.39-7.46 (m, 3H), 7.88 (br s, 1H), 8.17 (br s, 1H) y 9.90 (br s, 1H)	δ 3.75 (s, 3H), 5.54 (s, 2H), 6.77 (m, 3H), 7.16 (m, 2H), 7.45 (m, 3H), 7.89 (br s, 1H), 8.17 (br s, 1H) y 9.64 (br s, 1H)
MS-ES+	469.31	469.30
Número de Procedimiento HPLC, tiempo de reacción (minutos)	8, 16.04	8, 15.70

279	280
2,6-diflúor-3-[5-(4-hidroxi-fenil)-4-(4-metoxi-fenil)-tiazol-2- ilmetoxi]-benzamida	2,6-diflúor-3-[5-(2-metoxi-fenil)-4-(4-metoxi-fenil)-tiazol- 2-ilmetoxi]-benzamida
Br S O F NH ₂	Br S O F NH ₂
S O F F NH ₂	OMe S N F NH ₂
Ácido borónico 4-hidroxifenilo	Ácido borónico 2-metoxifenilo
0.20 g, 0.44 mmol; 0.12 g, 0.88 mmol; 0.11 g, 0.53 mmol; 0.046 g, 0.068 mmol	0.10 g, 0.20 mmol; 0.06 g, 0.41mmol; 0.05 g, 0.24 mmol; 0.021g, 0.03 mmol
60-120 M	60-120 M
0.02 g, 10% de sólido blanco	0.019 g, 18% de sólido blanco
δ 3.74 (s, 3H), 5.52 (s, 2H), 6.78 (d, J=8.40 Hz, 2H), 6.89 (d, J=8.40 Hz, 2H), 7.13 (m, 3H), 7.37-7.45 (m, 3H), 7.89 (br s, 1H), 8.17 (br s, 1H) y 9.79 (br s, 1H)	δ 3.70 (s, 3H), 3.72 (s, 3H), 5.54 (s, 2H), 6.85 (d, J=8.80 Hz, 2H), 6.95 (m, 1H), 7.14-7.19 (m, 3H), 7.36 (d, J=8.80 Hz, 2H), 7.44 (m, 2H), 7.87 (br s, 1H) y 8.16 (br s, 1H)
469.29	483.40
8, 15.60	9, 16.85

281	282
2,6-diflúor-3-[5-(3-metoxi-fenil)-4-(4-metoxi-fenil)-tiazol- 2-ilmetoxi]-benzamida	2,6-diflúor-3-[5-(4-metoxi-fenil)-4-(4-metoxi-fenil)-tiazol-2- ilmetoxi]-benzamida
Br S O F NH ₂	Br S O F NH ₂
oMe S N F NH₂	MeO N N F NH ₂
Ácido borónico 4-metoxifenilo	Ácido borónico 4-metoxifenilo
0.10 g, 0.20 mmol; 0.06 g, 0.41mmol; 0.05 g, 0.24 mmol; 0.021g, 0.03 mmol	0.10 g, 0.20 mmol; 0.06 g, 0.41mmol; 0.05 g, 0.24 mmol; 0.021g, 0.03 mmol
60-120 M	60-120 M
0.025 g, 24% de sólido blanco	0.018 g, 17% de sólido amarillo
δ 3.69 (s, 3H), 3.75 (s, 3H), 5.55 (s, 2H), 6.89-6.96 (m,	δ 3.74 (s, 3H), 3.77 (s, 3H), 5.53 (s, 2H), 6.90 (d, J=8.80

5H), 7.14 (m, 1H), 7.31 (m, 1H), 7.38-7.46 (m, 3H), 7.89 (br s, 1H) y 8.17 (br s, 1H)	Hz, 2H), 6.97 (d, J=8.80 Hz, 2H), 7.13 (m, 1H), 7.28 (d, J=8.0 Hz, 2H), 7.39 (d, J=8.0 Hz, 2H), 7.44 (m, 1H), 7.89 (br s, 1H) y 8.16 (br s, 1H)
483.42	483.23
9, 16.97	8. 17.03

283	284
2,6-diflúor-3-[5-(2-amino-fenil)-4-(4-metoxi-fenil)-tiazol-2- ilmetoxi]-benzamida	2,6-diflúor-3-[5-(3-amino-fenil)-4-(4-metoxi-fenil)- tiazol-2-ilmetoxi]-benzamida
Br S O F F NH ₂	Br S O F NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
Ácido borónico 4-aminofenilo	Ácido borónico 4-aminofenilo
0.10 g, 0.20 mmol; 0.09 g, 0.54 mmol; 0.10 g, 0.48 mmol: 0.021 a. 0.03 mmol	0.10 g, 0.20 mmol; 0.07 g, 0.54 mmol; 0.102 a. 0.48 mmol: 0.021 a. 0.03 mmol
60-120 M	60-120 M
0.042 g, 41% de sólido amarillo claro	0.015 g, 14% de sólido amarillo claro
δ 3.72 (s, 3H), 4.94 (br s, 1H), 5.54 (s, 2H), 6.57 (t, J=7.20 Hz, 1H), 6.75 (d, J=8.0 Hz, 1H), 6.84 (m, 2H), 7.14 (m, 1H), 7.0 (m, 1H), 7.14 (m, 2H), 7.51 (m, 3H), 7.89 (br s, 1H) y 8.18 (br s, 1H)	δ 3.74 (s, 3H), 5.25 (br s, 1H), 5.53 (s, 2H), 6.44 (m, 1H), 6.56 (m, 2H), 6.89 (m, 2H), 7.03 (m, 1H), 7.13 (m, 1H), 7.42 (m, 3H), 7.88 (br s, 1H) y 8.17 (br s, 1H)
468.02	468.03
9, 16.70	9, 16.04

285	286
2,6-diflúor-3-[5-(4-amino-fenil)-4-(4-metoxi-fenil)-tiazol-2- ilmetoxi]-benzamida	-3-[5-ciclopropil-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]- 2,6-diflúor-benzamida
Br S O F NH ₂ H ₂ N S O F NH ₂	Br NH ₂
Ácido borónico 4-aminofenilo	Ácido borónico ciclopropilo
0.10 g, 0.20 mmol; 0.07 g, 0.54 mmol; 0.102 g, 0.48 mmol; 0.021 g, 0.03 mmol	0.10 g, 0.20 mmol; 0.37g, 0.43 mmol; 0.05 g, 0.26 mmol; 0.021g, 0.03 mmol
60-120 M	60-120 M
0.01 g, 9% de sólido marrón	0.01 g, 10% de sólido blanco
δ 3.74 (s, 3H), 5.42 (br s, 2H), 5.50 (s, 2H), 6.54 (m, 2H), 6.89 (d, J= 8.80 Hz, 2H), 6.99 (d, J= 8.40 Hz, 2H), 7.13 (m, 1H), 7.40 (m, 3H), 7.89 (br s. 1H) and 8.17 (br s. 1H)	δ 0.66 (m, 2H), 1.11 (m, 2H), 2.20 (m, 1H), 3.80 (s, 3H), 5.44 (s, 2H), 7.02 (m, 2H), 7.11 (m, 1H), 7.39 (m, 1H), 7.80 (m, 2H), 7.88 (br s, 1H) and 8.16 (br s, 1H)
468.31	417.11
8, 16.06	9, 17.12

2,6-diflúor-3-[-4-(4-metoxi-fenil)-5-fenil-tiazol-2-ilmetoxi]-benzamida	
_	
Br S O F NH ₂	
Ácido borónico fenilo	
0.10 g, 0.20 mmol; 0.05 g, 0.43 mmol; 0.05 g, 0.26 mmol; 0.021g, 0.03 mmol	
230-400 M	
0.02 g, 22%	
δ 3.75 (s, 3H), 5.56 (s, 2H), 6.90 (d, J= 8.80 Hz, 2H), 7.14 (t, J= 8.80 Hz, 1H), 7.36-7.45 (m, 8H), 7.89 (br s. 1H) and 8.17 (br s. 1H)	
453.23	
<u>9, 13.35</u>	

Ejemplo 288: 2,6-Diflúor-3-[4'-(4-metoxi-fenil)-[4,5']bitiazolil-2'-ilmetoxi]-benzamida

Se añadió tiazola de 4-tributilestanilo (0.16 g , 0.43 mmol) a una solución de 3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida (0.20 g, 0.043 mmol) en 5 ml de DMF anhidroso y la mezcla de reacción fue desgasificada durante 10 minutos. Se añadió entonces Paladio de Tetrakis(trifenilfosfina) (0) (0.05 g, 0.043 mmol) y la mezcla de reacción fue calentada a 120°C durante 12 h bajo atmósfera de nitrógeno. Entonces, la mezcla de reacción fue enfriada a temperatura ambiente, se añadió agua (25 ml) y se extrajo el compuesto con etilacetato (3 x 50 ml). Las capas orgánicas combinadas fueron secadas sobre Na_2SO_4 anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía de columna sobre sílice (230-400 M) usand etilacetato/Hexano (40:60) como el eluyente para obtener el compuesto del título como un sólido blanco (0.072g, 36%). 1 H NMR (DMSO-d₆, 400 MHz): $\bar{\delta}$ 3.80 (s, 3H), 5.56 (s, 2H), 7.01 (d, J=8.80 Hz, 2H), 7.13 (m, 1H), 7.41-7.50 (m, 4H), 7.90 (br s, 1H), 8.18 (br s, 1H) y 9.18 (s, 1H). MS ES+ (460.32), HPLC (procedimiento II) Tiempo de reacción = 16.37 min.

Ejemplo 289: 3-[5-Ciano-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida

Se añadió CuCN (0.19 g, 2.19 mmol) a una solución de 3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúorbenzamida (0.20 g, 0.43 mmol) en piridina (4.0 ml). La mezcla de reacción fue calentada a 150°C en microondas durante 2 h. Después de completer la reacción, el pH fue ajustado a 3-4 con solución 1 N HCl y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na $_2$ SO $_4$), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (60-120 M, 45% EtOAc-Hexano) para obtener el producto deseado (0.02 g, 11 %) como un sólido marrón. 1 HNMR (DMSO-d $_6$, 400 MHz): $\bar{\delta}$ 3.79 (s, 3H), 5.67 (s, 2H), 7.16 (m, 3H), 7.42 (m, 1H), 7.88 (br s, 1H), 8.03 (d, J=8.80 Hz, 2H) y 8.19 (br s, 1H). MS ES+ (402.07), HPLC (procedimiento I) Tiempo de reacción = 16.60 min.

Esquema 32: (a) Zn/ácido acetic; (b) BBr₃/DCM

5

10

15

20

25

2,6-Diflúor-3-[4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-benzamida

Se añadió polvo de Zn (2.0 g) a una solución de 3-[5-bromo-4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida (2.0 g, 4.37 mmol) en 50 ml de ácido acético. La mezcla de reacción fue calentada a 120°C durante 1 h. Después de

completarse la mezcla de reacción (monitorización con TLC), se añadió agua (100 ml) y el pH fue ajustado a 8-9 con solución NaOH y se extrajo con etilacetato (3 x 150 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.8 g, 50%) como un sólido blanco.

Ejemplo 290: 2,6-Diflúor-3-[4-(4-hidroxi-fenil)-tiazol-2-ilmetoxi]-benzamida

Una solución de 2,6-Diflúor-3-[4-(4-metoxi-fenil)-tiazol-2-ilmetoxi]-benzamida (0.20 g, 0.53 mmol) en 15 ml of DCM fue enfriada a -78° C seguida por la adición de BBr $_3$ (0.2ml, 2.14 mmol). La mezcla de reacción fue agitada a 25°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió solución de NaHCO $_3$ (20 ml) a 0°C y se extrajo con etilacetato (3 x 150 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na $_2$ SO $_4$), filtrado y concentrado, el residuo fue purificado por cromatografía de columna sobre gel de sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido amarillo claro (0.06 g, 31%). 1 H NMR (DMSO-d $_6$, 400 MHz): δ 5.55 (s, 2H), 6.83 (d, J= 8.40 Hz, 2H), 7.13 (m, 1H), 7.40 (m, 1H), 7.78 (d, J= 8.80 Hz, 2H), 7.88 (br s, 1H), 7.91(s, 1H), 8.17 (br s, 1H) y 9.64 (br s, 1H). MS ES+(363.25), HPLC (procedimiento I) Tiempo de reacción = 14.57 min.

15 Esquema 33: (a) Tioacetamida; (b) NBS; (c) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

4-(2-Metil-tiazol-4-il)-benzonitrilo

5

10

El compuesto fue preparado siguiendo el procedimiento general como se describe en la preparación de 4-(4-20 Metoxifenil)-2-metil-tiazola (Esquema 31).

4-(5-Bromo-2-bromometil-tiazol-4-il)-benzonitrilo

El compuesto fue preparado siguiendo el procedimiento general como se describió en la preparación de 5-Bromo-2-

bromometil-4-(4-metoxi-fenil)-tiazola (Esquema 31).

25 Ejemplo 291: 3-[5-Bromo-4-(4-ciano-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida

Se añadió 2,6-diflúor-3-hidroxi-benzamida (0.20 g, 1.20 mmol) y carbonato de potasio (0.58 g, 4.20 mmol) a una solución de 4-(5-Bromo-2-bromometil-tiazol-4-il)-benzonitrilo (0.43 g, 1.20 mmol) en 5 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (30:70) como eluyente para obtener el compuesto del título como un sólido blanco (0.35 g, 66%). 1 H NMR (DMSO-d₆, 400 MHz): δ 5.57 (s, 2H), 7.13 (m, 1H), 7.44 (m, 1H), 7.89 (br s, 1H), 8.0 (d, J= 8.40 Hz, 2H), 8.10 (d, J= 8.40 Hz, 2H) and 8.17 (br s, 1H). MS ES+(450.09), HPLC (procedimiento I) Tiempo de reacción = 16.127 min.

Esquema 34: (a) NH₂OH.HCl, NaOH, EtOH; (b) Bromuro de bromoacetilo, (c) K₂CO₃, DMF.

$$F_{3}CO - \bigcirc CN \xrightarrow{a} F_{3}CO - \bigcirc N \xrightarrow{b} F_{3}CO -$$

Triflúormetoxifenilo -N-hidroxi-benzamida

10

15

30

$$F_3$$
CO $\stackrel{HO}{\longleftarrow}$ N $_{NH_2}$

Se añadió hidrocloruro de hidroxilamina (0.365 g, 5.0 mmol) y NaOH (0.212 g, 5.0 mmol) a una solución de 4-Triflúormetoxibenzonitrilo (1.0 g, 5.0 mmol) en EtOH (20 ml). La mezcla de reacción resultante fue puesta al reflujo durante 15h. Después de completarse la reacción (monitorización con TLC), la mezcla fue concentrada, se le añadió EtOH y se filtró. El filtrado fue evaporado al vacío y usado como tal para la etapa siguiente (producción en bruto 12.0 g, 66%).

5-Bromometil-3-(Tri Flúor Metoxi fenil)-[1,2,4]oxadiazola

$$F_3CO$$
 $N = O$
 Br

Se añadió bromuro de bromoacetilo (2.0 ml, 23.12 mmol) a triflúorometoxi-N-hidroxi-benzamida (0.40 g, 5.86 mmol) y K₂CO₃ (0.87 g, 6.0 mmol). La mezcla de reacción fue calentada a 100°C durante 15 min. Después de completarse la mezcla de reacción (monitorización con TLC), se le añadió agua (100 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (60-120 M, 3% EtOAc-Hexano) para obtener el producto deseado (0.25 g, 43%) como un sólido blanco.

Ejemplo 292: 3-[3-(4-Triflúormetoxi-fenil)-[1,2,4]oxadiazol-5-ilmetoxi]-2-flúor-benzamida

$$F_3CO$$
 $N - O$
 N

Se añadió 2,6-diflúor-3-hidroxibenzamida (0.18 g, 1.0 mmol) y carbonato de potasio (0.516 g, 3.7 mmol) a una solución de 5-Bromometil-3-(Triflúormetoxifenilo)-[1,2,4]oxadiazola (0.24 g, 1.0 mmol) en 2.5 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue

evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido blanco (0.090 g, 20%). 1 H NMR (DMSO-d₆,400 MHz): δ 5.71 (s, 2H), 7.15 (t, J= 7.60 Hz, 1H), 7.40 (m, 1H), 7.60 (d, J= 8.0 Hz, 2H), 7.91 (br s, 1H), 8.15 (d, J=8.40 Hz, 2H) y 8.18 (brs, 1H). MS ES+(41628), HPLC (procedimiento I), Tiempo de reacción = 16.79 min

Esquema 35:

5

20

25

30

X=CI, Example 294 X=OMe, Example 293 X= Me, Example 295

4-Clorometil-2-(4-metoxi-fenil)-oxazola (procedimiento general)

Se le añadió 4-metoxibenzamida (0.30 g, 1.90 mmol) a una solución de 1,3 dicloroacetona (0.504 g, 3.90 mmol) en tolueno (5 ml). La mezcla de reacción fue calentada a 120°C durante 1 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado sobre gel de sílice (230-400 M, 15% EtOAc-Hexano) para obtener el producto deseado (0.37 g, 83%).

15 Ejemplo 293: 2,6-Diflúor-3-[2-(4-metoxi-fenil)-oxazol-4-ilmetoxi]-benzamida

Se añadió 2,6-Diflúor-3-hidroxi-benzamida (0.077 g, 0.40 mmol) y carbonato de potasio (0.216 g, 1.50 mmol) a una solución de 4-Clorometil-2-(4-metoxi-fenil)-oxazola (0.100 g, 0.4mmol) en 2 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el título del compuesto como un sólido blanco (0.044 g, 27%). 1 H NMR (DMSO-d₆, 400 MHz): δ 4.01 (s, 3H), 5.12 (s, 2H), 7.10 (m, 3H), 7.40 (m, 1H), 7.85 (br s, 1H), 7.93 (d, J= 8.80 Hz, 2H), 8.13 (br s, 1H) y 8.25 (s, 1H). MS ES+(361.16), HPLC (procedimiento I) Tiempo de reacción = 15.47 min.

Ejemplo 294: 3-[2-(4-Cloro-fenil)-oxazol-4-ilmetoxi]-2;6-diflúor-benzamida

Se añadió 2,6-Diflúor-3-hidroxi-benzamida (0.15 g, 0.78 mmol) y carbonato de potasio (0.363 g, 2.60 mmol) a una solución de 4-Clorometil-2-(4-cloro-fenil)-oxazola (0.20 g, 0.87 mmol) en 2 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M)

usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido blanco (0.10 g, 31%). 1 H NMR (DMSO-d₆, 400 MHz): δ 5.14 9s, 2H), 7.12 (t, J= 9.20 Hz, 1H), 7.40 (m, 1H), 7.63 (d, J= 8.40, 2H), 7.85 (br s, 1H), 8.0 (d, J= 8.40 Hz, 2H), 8.13 (br s, 1H) and 8.36 (s, 1H). MS ES+(365.13), HPLC (procedimiento I) Tiempo de reacción = 16.36 min.

5 Example 295: 2,6-Diflúor-3-(2-p-tolil-oxazol-4-ilmetoxi)-benzamida

Se añadió 2,6-Diflúor 3-hidroxi-benzamida (0.08 g, 0.50 mmol) y carbonato de potasio (0.233g, 1.50 mmol) a una solución de 4-Clorometil-2-p-tolil-oxazola (0.10 g, 0.50 mmol) en 2 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el título compuesto como un sólido blanco (0.03 g, 18%). ¹H NMR (DMSO-d₆, 400 MHz): δ 2.37 (s,3H), 5.13 (s, 2H), 7.11 (m, 1H), 7.36 (d, J= 8.0 Hz, 2H), 7.41 (m, 1H), 7.88 (m, 3H), 8.12 (br s, 1H) and 8.29 (s, 1H). MS ES+(345.24), HPLC (procedimiento I) Tiempo de reacción = 16.07 min.

Esquema 36:

2: X= Cl, Example 297

2-(4-Metoxi-fenil)-4,5-dimetil-oxazola (procedimiento general)

Una mezcla de 3-Cloro-2-butanona (2.1g, 10.0 mmol) y 4-metoxibenzamida (0.30 g, 1.0 mmol) fue calentada a 115°C durante 15 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado sobre gel de sílice (230-400 M, 20% EtOAc-Hexano) para obtener el producto deseado (0.17 g, 42%) como un sólido blanco. El derivado de cloro correspondiente fue también preparado por el mismo procedimiento general.

4-Bromometil-2-(4-metoxi-fenil)-5-metil-oxazola

Se añadió NBS (7.43 g, 41.74 mmol) a la solución de 4-Bromometil-2-(4-metoxi-fenil)-5-metil-oxazola (0.17 g , 0.80 mmol) in acetonitrilo (4.0 ml). La mezcla de reacción fue agitada a 25°C durante 1 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue enfriada a 0°C y se añadieron 2 ml de agua. El precipitado resultante fue filtrado y secado para obtener el producto deseado (0.11 g, 46%). El derivado de cloro correspondiente fue preparado también por el mismo procedimiento general.

20

15

10

Ejemplo 296: 2,6-Diflúor-3-[2-(4-metoxi-fenil)-5-metil-oxazol-4-ilmetoxi]-benzamida

Se añadió 2,6-Difluoro-3-hydroxy-benzamide (0.061 g, 0.35 mmol) y carbonato de potasio (0.171 g, 1.05 mmol) a una solución de 4-Bromometil-2-(4-metoxi-fenil)-5-metil-oxazola (0.10 g, 0.35 mmol) en 2 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido blanco (0.117 g, 87%). 1 H NMR (DMSO-d₆, 400 MHz): δ 2.42 (s, 3H), 3.82 (s, 3H), 5.06 (s, 2H), 7.10 (m, 3H), 7.37 (m, 1H), 7.86 (m, 3H) y 8.13 (br s, 1H). MS ES+ (375.12), HPLC (procedimiento I) Tiempo de reacción = 15.78 min.

Ejemplo 297: 3-[2-(4-Cloro-fenil)-5-metil-oxazol-4-ilmetoxi]-2,6-diflúor-benzamida

$$O \longrightarrow Br$$
 $O \longrightarrow P$
 $O \longrightarrow$

Se añadió 2,6-Diflúor-3-hidroxi-benzamida (0.072 g, 0.42 mmol) y carbonato de potasio (0.203 g, 1.20 mmol) a una solución de 4-Bromometil-2-(4-cloro-fenil)-5-metil-oxazola (0.12 g, 0.42 mmol) en 2 ml de DMF anhidroso. La mezcla de reacción fue calentada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como sólido blanco (0.01 g, 6%). 1 H NMR (DMSO-d₆, 400 MHz): δ 2.49 (s, 3H), 5.09 (s, 2H), 7.11 (m, 1H), 7.38 (m, 1H), 7.60 (d, J= 8.40 Hz, 2H), 7.85 (br s, 1H), 7.95 (d, J= 8.40 Hz, 2H) y 8.13 (br s, 1H). MS ES+(379.25), HPLC (procedimiento I) Tiempo de reacción = 16.71 min.

Esquema 37: (a) PBr_3 ; (b) $SnCl_2.2H_2O$; (c) cloruro de 2-benzoiloxiacetilo; (d) reagent de Lawesson; (e) BBr_3 ; (f) 2,6-diflúor-3-hidroxi benzamida, K_2CO_3 , DMF; (g) Condiciones de Suzuki o Estannilo.

25

10

15

2,5-Dibromo-3-nitro-piridina

Se añadió PBr₃ (6.60 ml, 68.49 mmol) a una solución de 5-Bromo-3-nitro-piridin-2-ol (10.0 g, 45.66 mmol) en 70 ml de tolueno y 7 ml de DMF y la mezcla de reacción fue calentada a 120°C durante 20 min bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (100 ml) y se extrajo con etilacetato (3 x 200 ml). El combinado organic fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (10.30 g, 80.03%).

2,5-Dibromo-piridin-3-ilamine

20

25

30

Se añadió, lentamente, SnCl₂ (24.0 g, 106.42 mmol) a la solución de 2,5-Dibromo-3-nitro-piridina (10.30 g, 35.47 mmol) en 100 ml de etanol. La mezcla de reacción fue calentada a 80°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. Se añadió agua (250 ml), se separó el sólido blanco, se basificó la mezcla de reacción con solución NaOH. A este se añadieron los 250 ml de etilacetato. Se filtró y se lavó el residuo con etilacetato, se separan las capas, se secó (Na₂SO₄), se filtró, concentró para obtener el producto deseado (6.20g, 67.39%).

2-Benzyloxy-N-(2,5-dibromo-pyridin-3-yl)-acetamide

Se añadió trietilamina (5.3 ml, 37.53 mmol) a la solución de 2,5-Dibromo-piridin-3-ilamine (8.6 g, 34.12 mmol) en 50 ml de DCM. La mezcla de reacción se enfrió a 0°C. A esto se añadió la solución de cloruro 2-benziloxiacetilo (7.45 g, 40.95 mmol) en 35 ml de DCM. La mezcla de reacción fue agitada a 25°C durante 12 hr. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. El residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (10:90) como eluyente para obtener el compuesto del título (3.2 g, 24.17%).

2-Benziloximetil-5-bromo-tiazolo[5,4-b]piridina

Se añadión reagent de Lawesson (1.51g, 3.74 mmol) a la solución de 2-Benziloxi-N-(2,5-dibromo-piridin-3-il)-acetamida (2.5 g, 6.248 mmol) en 30 ml de tolueno. La mezcla de reacción fue calentada a 120°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. El residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (5:95) como eluyente para obtener el compuesto del título (1.60 g, 76.5%).

5-bromo-2-bromometil-tiazolo[5,4-b]piridina

Una solución de 2-Benziloximetil-5-bromo-tiazolo[5,4-b]piridina (1.60 g, 4.77 mmol) DCM (15 ml) fue enfriada a -78° C seguido por la adición de BBr₃ (2.27 ml, 23.86 mmol). La mezcla de reacción fue agitada a 25°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió solución de NaHCO₃ (20 ml) a

0° C y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (2.0 g, producción bruta).

Example 298: 3-(5-bromo-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-diflúor-benzamida

Se añadió 2,6-Diflúor-3-hidroxi-benzamida (1.01 g, 5.84 mmol) y carbonato de potasio (3.09 g, 22.72 mmol) a una solución de 5-bromo-2-bromometil-tiazolo [5,4-b]piridina (2.0 g, 6.493mmol) en 10 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título (1.80 g, 69%). ¹H NMR (DMSO-d₆, 400 MHz): δ 5.72 (s, 2H), 7.12 (t, J= 7.60 Hz, 1H), 7.39 (m, 1H), 7.90 (br s, 1H), 8.18 (br s, 1H) y 8.80 (m, 2H). MS ES+(402.08), HPLC (procedimiento I) Tiempo de reacción = 15.50 min.

3-(5-Alil-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-diflúor-benzamida

15

20

25

30

Se añadió alil tributiltin (0.26 ml , 0.86 mmol) a una solución de 3-(5-bromo-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-diflúor-benzamida (0.15 g, 0.37 mmol) en 5 ml de DMF anhidroso y la mezcla de reacción fue desgasificada durante 10 minutos. Se añadió entonces paladio Tetrakis(trifenilfosfina) (0) (0.007 g, 0.0056 mmol) y la mezcla de reacción fue calentada a 120°C durante 1 h bajo la atmósfera de nitrógeno. Entonces la mezcla de reacción fue enfriada a temperature ambiente, se añadió agua (25 ml) y se extrajo el compuesto con etilacetato. Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía de columna sobre sílice (100-200 M) usando etilacetato/Hexano (60:40) como eluyente para obtener el compuesto del título (0.10 g, 75%).

Example 299: 2,6-Diflúor-3-(5-propil-tiazolo[5,4-b]piridin-2-ilmetoxi)-benzamida

$$N$$
 S O F $CONH_2$

Se añadió Pd-C (10%, 5 mg) a una solución de 3-(5-Alil-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-diflúor-benzamida (0.018 g, 0.049 mmol) en 5 ml de metanol anhidroso y la mezcla de reacción fue agitada a 25°C durante 12 h bajo atmósfera de nitrógeno. La mezcla de reacción fue filatrada sobre el lecho de celita y el filtrado fue evaporado hasta la sequedad bajo presión reducida para obtener el compuesto del título como un sólido blanco (0.0078 g, 43%). 1 H NMR (DMSO-d₆, 400 MHz); δ 0.91 (m, 3H), 1.65 (m, 2H), 2.74 (m, 2H), 5.69 (s, 2H), 7.12 (m, 1H), 7.39 (m, 1H), 7.90 (br s, 1H), 8.18 (br s, 1H), 8.27 (br s, 1H) y 8.52 (br s, 1H). MS ES+ (364.11), HPLC (procedimiento I) Tiempo de reacción = 15.85 min.

Ejemplo 300: 2,6-Diflúor-3-[5-(1-metil-1H-imidazol-2-il)-tiazolo[5,4-b]piridin-2-ilmetoxi]-benzamida

$$Br$$
 N
 S
 O
 F
 $CONH_2$
 N
 N
 S
 O
 F
 $CONH_2$

Se añadió 1-metil-2-tributilestannanil-1H-imidazola (0.120 g , 0.32 mmol) a una solución de 3-(5-bromo-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-diflúor-benzamide (0.10 g, 0.24 mmol) en 5 ml de DMF anhidroso y se desgasificó la mezcla de reacción durante 10 minutos. Fue añadido entonces paladio Tetrakis(trifenilfosfina) (0) (0.004 g, 0.0037 mmol) y la mezcla de reacción fue calentada a 120°C durante 12 h bajo atmósfera de nitrógeno. La mezcla de reacción fue enfriada entonces a temperatura ambiente, se añadió agua (25 ml) y se extrajo el compuesto con etilacetato. Las capas orgánicas combinadas fueron secadas sobre Na_2SO_4 anhidroso, y evaporadas hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía de columna sobre sílice (230-400 M) usando etilacetato/hexano (40:60) como eluyente para obtener el compuesto del título como un sólido rojo ladrillo (0.020 g, 20%). 1 H NMR (DMSO-d₆, 400 MHz): $\bar{\delta}$ 3.14 (s, 3H), 5.67 (s, 2H), 7.07 (m, 1H), 7.28-7.37 (m, 2H), 7.87 (m, 2H), 8.28 (s, 1H), 8.53 (s, 1H) y 8.75 (br s, 1H). MS ES+(402.22), HPLC (procedimiento l) Tiempo de reacción = 12.05 min.

Ejemplo 301:2,6-Diflúor-3-[5-(1-metil-1H-pirrol-2-il)-tiazolo[5,4-b]piridin-2-ilmetoxi]-benzamida

10

15

20

25

30

35

$$Br$$
 N
 S
 O
 F
 $CONH_2$

Se añadió 1-metil-2-tributilestannanil-1H-pirrola (0.120~g,~0.32~mmol) a una solución de 3-(5-bromo-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-diflúor-benzamida (0.10~g,~0.24~mmol) en 5 ml de DMF anhidroso y la mezcla de reacción fue desgasificada durante 10 minutos. Se añadió entonces paladio Tetrakis(trifenilfosfina) (0)~(0.004~g,~0.0037~mmol) y la mezcla de reacción fue calentada a 120° C durante 12 h bajo atmósfera de nitrógeno. La mezcla de reacción fue entonces enfriada a temperatura ambiente, se añadió agua (25~ml) y se extrajo el compuesto con etilacetato. Las capas orgánicas combinadas fueron secadas sobre Na_2SO_4 anhidroso, and evaporado hasta la sequedad bajo presión reducida. El compuesto fue purificado por cromatografía de columna sobre sílice (230-400~M) usando etilacetato/Hexano (40:60) como eluyente para obtener el compuesto del título como un sólido amarillo (0.032~g,~32%). 1 H NMR (DMSO-d $_6$, 400 MHz): δ 3.73 (s, 3H), 5.72 (s, 2H), 6.13 (br s, 1H), 6.40 (br s, 1H), 6.97 (s, 1H), 7.12 (m, 1H), 7.42 (m, 1H), 7.90 (br s, 1H), 8.18 (br s, 1H), 8.48 (s, 1H) and 8.75 (s, 1H). MS ES+(401.26), HPLC (procedimiento I) Tiempo de reacción = 15.61 min.

Example 302: 2,6-Diflúor-3-(5-fenil-tiazolo[5,4-b]piridin-2-ilmetoxi)-benzamida

Se añadió ácido borónico fenilo (0.12 g, 0.99 mmol) y fosfato de potasio (0.13 g, 0.59 mmol) a una solución de 3-(5-bromo-tiazolo[5,4-b]piridin-2-ilmetoxi)-2,6-diflúor-benzamida (0.20 g, 0.49 mmol) en 4 ml de DMF y agua (2.0 ml). La mezcla de reacción fue desgasificada duante 10 minutos seguida por la adición de paladio diclorobis(tri fenil fosfina) (II) (0.070 g, 0.099 mmol). La mezcla de reacción fue calentado a 120°C durante 2h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (100-200 M, 60% EtOAc-Hexano) para obtener el producto deseado (0.080 g, 41%) como un sólido marrón claro. ¹H NMR (DMSO-d₆, 400 MHz): δ 5.74 (s, 2H), 7.10 (m, 1H), 7.41-7.56 (m, 4H), 7.85 (m, 3H), 8.19 (m, 1H), 8.71 (br s, 1H) and 8.98 (br s, 1H). MS ES+ (398.09), HPLC (procedimiento I) Tiempo de reacción = 16.07 min.

Esquema 38:

X=Me,Y=H; Example 303 X=OH, Y=H; Example 304 X=F, Y=H; Example 305 X=OCF3, Y=H; Example 307

X=CI, Y= H; Example 306 X=H, Y=OH; Example 308

4-Clorometil-2-p-tolil-tiazola (Ejemplo representativo)

Se añadió 4-metiltiobenzamida (0.50 g, 3.31 mmol) a una solución de 1,3 dicloroacetona (0.84 g, 6.62 mmol) en tolueno (5 ml) y la mezcla de reacción fue calentada a 120°C durante 1 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado sobre gel de sílice (230-400 M, 15% EtOAc-Hexano) para obtener el producto deseado (0.49 g, 67%). Los otros derivados fueron también preparados por el mismo procedimiento general.

10 3-(4-Clorometil-tiazol-2-il)-fenol

Se añadió 3-hidroxitiobenzamida (0.25 g, 1.63 mmol) a una solución de 1,3 dicloroacetona (0.42 g, 3.26 mmol) en tolueno (5 ml) y la mezcla de reacción fue calentada a 120°C durante 1 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla der reacción fue evaporada hasta la sequedad, se añadió agua y se extrajo con EtOAc (x 3). El orgánico combinado fue secado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 10% EtOAc-Hexano) para obtener el producto deseado (0.14 g, 38%).

Esquema 39: (a) acetamida 2-benziloxi, DMF; (b) BBr₃, DCM; (c) 2,6-Diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

X=H, Example 310 X= Cl, Example 309

20

2-Benziloximetil-4-(4-cloro-fenil)-oxazola (procedimiento representativo)

Se añadió 2-Bromo-1-(4-clorofenil)-etanona (2.0 g, 8.56 mmol) a una solución de 2-Benziloxi-acetamida (1.40 g, 8.56 mmol) en 4 ml de DMF y la mezcla de reacción fue calentada a 130°C durante 6 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se le añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 10% EtOAc-Hexano) para obtener el producto deseado (1:1 g, 44%).

2-Bromometil-4-(4-cloro-fenil)-oxazola (procedimiento representativo)

Una solución de 2-Benziloximetil-4-(4-cloro-fenil)-oxazola (1.10 g, 3.6 mmol) en 10 ml de DCM fue enfriada a -78 $^{\circ}$ C seguida por la adición de BBr₃ (1.76 ml, 18.0 mmol). La mezcla de reacción fue agitada a 25 $^{\circ}$ C durante 2 h. Después de completarse la mezcla der reacción (monitorización con TLC), se añadió solución de NaHCO₃ (20 ml) a 0 $^{\circ}$ C y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.5g, 49%, en bruto).

Ejemplos 303-310 (Tabla Q)

Los compuestos de los ejemplos 303-310 fueron sintetizados de acuerdo con el siguiente procedimiento general: se añadió 2,6-Diflúor-3-hidroxi-benzamida (B) y carbonato de potasio (C) a una solución de reactivo (A) en 2 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25 °C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto de producto.

Tabla Q

5

10

15

20

Ejemplo	303	304
Producto	2,6-Diflúor-3-[2-p-tolil-tiazol-4-ilmetoxi]-	2,6-Diflúor-3-[2-(4-hidroxi-fenil)-tiazol-4-
	benzamida	ilmetoxi]-benzamida
Esquema de reacción	S CI S O F F CONH ₂	HO S O F CONH ₂
Reactivo (A)	4-Clorometil-2-p-tolil-tiazola	4-(4-Clorometil-tiazol-2-il)-fenol
Cantidades de A; B; C	0.100 g, 0.4mmol; 0.069 g, 0.40 mmol; 0.18 a. 1.30 mmol	0.25 g, 1.10 mmol; 0.17 g, 0.99 mmol; 0.535 g, 3.87 mmol
Producción	0.022 g, 13% de sólido blanco	0.012 g, 3% de sólido blanco
¹ H NMR (DMSO-d ₆ , 400	δ 2.36 (s, 3H), 5.28 (s, 2H), 7.09 (t, J=	δ 5.25 (s, 2H), 6.85 (m, 2H), 7.09
MHz)	8.40 Hz, 1H), 7.33 (d, J= 8.0 Hz, 2H),	(m, 1H), 7.40 (m, 1H), 7.66 (s, 1H),
·	7.40 (m, 1H), 7.75 (s, 1H), 7.84 (m, 3H)	7.78 (m, 2H), 7.85 (br s, 1H), 8.13
	and 8.13 (br s. 1H)	(br s, 1H) and 10.03 (br s. 1H)
MS-ES+	361.14	363.14
Número de	8, 16.63	8, 14.53
Procedimiento HPLC,		
tiempo de reacción		
(minutos)		

305	306
2,6-Diflúor-3-[2-(flúor-fenil)-tiazol-4-ilmetoxi]- benzamida	-3-[2-(4-cloro-fenil)-tiazol-4-ilmetoxi]- 2,6-Diflúor- benzamida
F S O F CONH ₂	CI S CI F CONH ₂
4-Clorometil-2-(4-flúor-fenil)-tiazola	4-Clorometil-2-(4-cloro-fenil)-tiazola
0.15 g, 0.65 mmol; 0.10 g, 0.59 mmol; 0.27 g, 1.97 mmol	0.06 g, 0.27 mmol; 0.04 g, 0.27 mmol; 0.12 g 0.93 mmol
0.06 g, 25% de sólido blanco	0.035 g, 34% de sólido blanco
δ 5.29 (s, 2H), 7.11 (t, J= 8.80 Hz, 1H), 7.33-7.43 (m, 3H), 7.81 (s, 1H), 7.85 (br.s, 1H), 8.0 (m, 2H) and 8.13 (br s, 1H)	δ 5.30 (s, 2H), 7.11 (m, 1H), 7.40 (m, 1H), 7.59 (d, J= 8.80 Hz, 2H), 7.86 (m, 2H), 7.97 (d. J= 8.80 Hz. 2H) and 8.14 (br s. 1H)
365.03	381.16
8. 16.18	8, 16.88

307	308
2,6-Diflúor-3-[2-(4-triflúormetoxi-fenil)-tiazol-4-ilmetoxi]- benzamida	2,6-Diflúor-3-[2-(3-hidroxi-fenil)-tiazol-4-ilmetoxi]- benzamida
F ₃ CO S CI F CONH ₂	OH S CI F CONH ₂
4-Clorometil-2-(4-triflúormetoxi-fenil)-tiazola	3-(4-Clorometil-tiazol-2-il)-fenol
0.04 g, 0.11 mmol; 0.02 g, 0.11 mmol; 0.056 g, 0.38 mmol	0.12 g, 0.53 mmol; 0.08 g, 0.49 mmol; 0.26 g, 1.93 mmol
0.008 g, 16% de sólido blanco	0.014 g, 7% de sólido blanco
δ 5.31 (s, 2H), 7.12 (t, J= 8.80 Hz, 1H), 7.40 (m 1H), 7.52 (d, J= 8.40 Hz, 2H), 7.87 (br s, 2H), 8.09 (d. J= 8.40 Hz. 2H) and 8.15 (br s. 1H)	δ 5.29 (s, 2H), 6.89 (m, 1H), 7.09 (m, 1H), 7.28-7.41 (m, 4H), 7.78 (s, 1H), 7.86 (br s, 1H), 8.13 (br s, 1H) and 9.79 (s, 1H)
431.21	363.12
8, 17.13	8, 14.66

309	310
3-[4-(4-Cloro-fenil)-oxazol-2-ilmetoxi]-2,6-Diflúor- benzamida	2,6-Diflúor-3-(4-fenil-oxazol-2-ilmetoxi]- benzamida
CI Property of the Continuation of the Continu	O O F N F CONH ₂
2-Bromometil-4-(4-cloro-fenil)-oxazola	2-Bromometil-4-fenil-oxazola
0.07 g, 0.24 mmol; 0.037g, 0.24 mmol; 0.11 g, 0.84 mmol	0.2 g, 0.84 mmol; 0.14 g, 0.84 mmol; 0.405 2.94 mmol
0.02 g, 22% de sólido blanco	0.04 g, 14% de sólido amarillo claro
δ 5.38 (s, 2H), 7.12 (m, 1H), 7.40 (m, 1H), 7.52 (d, J= 8.40 Hz, 2H), 7.80 (d, J= 8.40 Hz, 2H), 7.88 (br s. 1H), 8.16 (br s. 1H) and 8.73 (s, 1H)	δ 5.39 (s, 2H), 7.13 (t, J= 8.80 Hz, 1H), 7.32-7.46 (m, 4H), 7.78 (d, J= 7.20 Hz, 2H), 7.88 (br s, 1H), 8.16 (br s, 1H) and 8.70 (s, 1H)
365.03	331.15
9. 16.25	8, 15.46

 $\textbf{Esquema 40:} \ \, \textbf{(a) Acetamida; (b) NBS, AlBN, CCl}_{\textbf{4}; (c) 2,6-difl\'uor-3-hidroxibenzamida, K}_{\textbf{2}CO_{3}, DMF; (d) Zn/Acido ac\'etico; (e) BBr}_{\textbf{3}, DCM}.$

4-(4-Metoxi-fenil)-2-metil-oxazola

5

Preparado como por el procedimiento mencionado en el Esquema 31.

5-Bromo-2-bromometil-4-(4-metoxi-fenil)-oxazola

Preparado como por el procedimiento mencionado en el Esquema 31.

3-[5-Bromo-4-(4-metoxi-fenil)-oxazol-2-ilmetoxi]-2,6-diflúor-benzamida

Preparado como por el procedimiento mencionado en el Esquema 31.

5

10

15

20

25

Ejemplo 311: 2,6-Diflúor-3-[4-(4-metoxi-fenil)-oxazol-2-ilmetoxi]-benzamida

Se añadió 50 mg de Zn en polvo a una solución de 3-[5-Bromo-4-(4-metoxi-fenil)-oxazol-2-ilmetoxi]-2,6-diflúor-benzamida (0.06g, 0.13 mmol) en 5 ml de ácido acético. La mezcla de reacción fue calentada a 120°C durante 1 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y el pH fue ajustado a 8-9 con solución de NaOH y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.02 g, 40%) como un sólido blanco. ¹H NMR (DMSO-d₆, 400 MHz): ō 3.77 (s, 3H), 5.36 (s, 2H), 6.99 (d, J= 8.40 Hz, 2H), 7.12 (m, 1H), 7.37 (m, 1H), 7.71 (d, J = 8.40 Hz, 2H), 7.87 (br s, 1H), 8.15 (br s,1H) and 8.56 (s, 1H). MS ES+ (361.24), HPLC (procedimiento I) Tiempo de reacción = 15.41 min.

Ejemplo 312: 2,6-Diflúor-3-[4-(4-metoxi-fenil)-oxazol-2-ilmetoxi]-benzamida

Una solución de 2,6-Diflúor-3-[4-(4-metoxi-fenil)-oxazol-2-ilmetoxi]-benzamida (0.20 g, 0.55 mmol) en 10 ml de DCM fue enfriada a -78° C seguida por la adición de BBr₃ (0.10 ml, 2.20 mmol). La mezcla de reacción fue agitada a 25°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió solución de NaHCO₃ (20 ml) a 0° C y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido blanco (0.012 g, 6%). ¹H NMR (DMSO-d₆, 400 MHz): δ 5.35 (s, 2H), 6.82 (d, J= 8.40 Hz, 2H), 7.14 (m, 1H), 7.38 (m, 1H), 7.58 (d, J= 8.40 Hz, H), 7.87 (br s, 1H), 8.15 (br s, 1H),8.47 (s, 1H) and 9.63 (s, 1H). MS ES+(347.22), HPLC (procedimiento 1) Tiempo de reacción = 14.00 min.

Esquema 41: (a) Tioacetamida; (b) NBS, AIBN, CCl₄; (c) CuCN, Piridina; (d) MeOH, HCl seco; (e) NBS, AIBN, CCl₄; (f) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

4-(4-Metoxi-fenil)-2-metil-tiazola

5

10

Una mezcla de tioacetamida (16.0 g, 213 mmol) y 2-Bromo-1-(4-metoxi-fenil)-etanona (4.0 g, 17.5 mmol) fue calentada a 140°C durante 24 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 1% EtOAc-Hexano) para obtener el producto deseado (2.5 g, 69%).

5-Bromo-4-(4-metoxi-fenil)-2-metil-tiazola

15

Se añadió NBS (4.32 g, 24.3 mmol) y AIBN (0.4 g, 2.43 mmol) a la solución de 5-Bromo-2-bromometil-4-(4-metoxifenil)-tiazola (5.0 g, 24.3 mmol) en 20 ml de CCl₄. La mezcla de reacción fue calentada a 100°C durante 2 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la misma fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400 M) usando 1% etilacetato/hexano como eluyente para obtener el producto deseado (4.0 g, 58%).

4-(4-Metoxi-fenil)-2-metil-tiazola-5-carbonitrilo

20

25

Se añadió CuCN (3.10 g, 35.2 mmol) a una solución de 5-Bromo-4-(4-metoxi-fenil)-2-metil-tiazola (2.0 g, 7.0 mmol) en 15 ml de piridina y la mezcla de reacción fue calentada a 150°C en microondas durante 2 h. Después de completarse la reacción, el pH fue ajusado a 3-4 con solución 1 N HCl y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (60-120 M, 12% EtOAc-Hexano) para obtener el producto deseado (1.5 g, 92%) como un sólido blanco.

Estero de metilo de ácido carboxílico-4-(4-Metoxi-fenil)-2-metil-tiazola-5

Se pasó gas HCl seco a una solución de 4-(4-Metoxi-fenil)-2-metil-tiazola-5-carbonitrilo (0.50 g, 2.1 mmol) en 15 ml de metanol durante 1 h a 0° C. La mezcla de reacción fue agitada a 25°C durante 24 h. Después de completarse la mezcla de reacción (monitorización con TLC), la misma fue evaporada hasta la sequedad bajo presión reducida. Se añadió agua (50 ml) y el pH fue ajustado a 7-8 con solución NaHCO₃ y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.25g, 44%) como un sólido blanco.

Estero de metilo de ácido carboxílico-2-Bromometil-4-(4-metoxi-fenil)-tiazola-5

10

15

Se añadió NBS (0.16 g, 0.94 mmol) and AIBN (0.015 g, 0.094 mmol) a la solución de estero metilo de ácido carboxílico 4-(4-Metoxi-fenil)-2-metil-tiazola-5 (0.25 g, 0.94 mmol) en 20 ml de CCl₄. La mezcla de reacción fue agitada a 100°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), la misma fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400 M) usando 10 % etilacetato/hexano como eluyente para obtener el producto deseado (0.078 g, 24%).

Example 313: Estero de metilo de ácido carboxílico 2-(3-Carbamoil-2,4-diflúor-fenoximetil)-4-(4-metoxi-fenil)-tiazole-5

20

25

Se añadió 2,6-Diflúor-3-hidroxi-benzamida (0.025~g, 0.14~mmol) y carbonato de potasio (0.07~g, 0.50~mmol) a una solución de estero de metilo de ácido carboxílico-2-Bromometil-4-(4-metoxi-fenil)-tiazola-5 (0.05~g, 0.14~mmol) en 2 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25° C durante 24 h. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120~M) usando etilacetato/hexano (50:50) como eluyente para obtener el producto del título como un sólido blanco (0.025g,40%). 1 H NMR (DMSO-d₆, 400~MHz): 5~3.76~(s, 3H), 3.81~(s, 3H), 5.60~(s, 2H), 7.01~(d, J= <math>8.40~Hz, 2H), 7.12~(m, 1H), 7.41~(m, 1H), 7.74~(d, J= <math>8.40~Hz, 2H), 7.90~(br~s, 1H)~y~8.18~(br~s, 1H). MS ES+(435.06), HPLC (procedimiento I) Tiempo de reacción = 15.86~min.

Esquema 42: (a) anhídrido tríflico, piridina, DCM; (b) 2,6-Diflúor-3-[5-(4,4,5,5-tetrametil-[1,3,2]dioxaborolan-2-il)-1H-inden-2-ilmetoxi]-benzamida, catalizador Pd, fosfato de potasio; (c) H₂, Pd-C

Estero ciclohex-1-enilo de ácido triflúormetanosulfónico

5

10

15

20

Se añadió piridina (4.48 ml, 56.0 mmol) a una solución de ciclohexanona (5.0 g, 51 mmol) en 80 ml de DCM y la mezcla de reacción resultante fue enfriada a -78°C. Se añadió sobre un período de 1 h. la solución de anhídrido tríflico (7.40 ml, 56.0 mmol) en 30 ml de DCM a la mezcla de reacción. La mezcla de reacción fue agitada a 25° C durante 24 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. El residuo fue triturado con n-pentano y la capa orgánica decantada, secada (Na₂SO₄), filtrada y concentrada para obtener el producto deseado (5.0 g, 42%).

Ejemplo 314: 3-(5-Ciclohex-1-enil-1H-inden-2-ilmetoxi)-2,6-diflúor-benzamida

Se añadió estero ciclohex-1-enil de ácido triflúormetanosulfónico $(0.15~g,\,0.60~mmol)$ y fosfato de potasio $(0.057~g,\,0.20~mmol)$ a una solución de 2,6-Diflúor-3-[5-(4,4,5,5-tetrametil-[1,3,2]dioxaborolan-2-il)-1H-inden-2-ilmetoxi]-benzamida $(0.10~g,\,0.20~mmol)$ en 3 ml de DMF anhidroso y agua (1.5~ml). La mezcla de reacción fue desgasificada durante 10 minutos seguidos por la adición de paladio diclorobis(trifenil fosfina) (II) $(0.02~g,\,0.03~mmol)$. La mezcla de reacción fue calentada a 80°C durante 1 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25~ml) y se extrajo con etilacetato (3~x~50~ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na_2SO_4) , filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice $(230\text{-}400~M,\,45\%~EtOAc\text{-}Hexano)$ para obtener el producto deseado $(0.017g,\,19\%)$ como un sólido blanco. 1H NMR (DMSO-d₆, 400 MHz): δ 1.63 (m, 4H), 2.20 (m, 2H), 2.45 (m, 2H), 5.67 (s, 2H), 6.29 (m, 1H), 7.12 (m, 1H), 7.37 (m, 1H), 7.57 (m, 2H), 7.90 (br s, 1H), 8.03 (d, J= 8.40 Hz, 1H) y 8.18 (br s, 1H). MS ES+ (401.16), HPLC (procedimiento II) Tiempo de reacción = 14.13 min.

Ejemplo 315: 3-(5-Ciclohexil-1H-inden-2-ilmetoxi)-2,6-diflúor-benzamida

$$N$$
 $O \longrightarrow F$ $CONH_2$ S F $CONH_2$

Se añadió Pd-C (10%, 100 mg) a una solución de 3-(5-Ciclohex-1-enil-1H-inden-2-ilmetoxi)-2,6-diflúor-benzamida (0.01 g, 0.25 mmol) en 5 ml de metanol anhidroso. La mezcla de reacción fue agitada a 25°C durante 48 h bajo atmósfera de hidrógeno. La mezcla de reacción fue filtrada sobre lecho de celita y evaporada hasta la sequedad bajo presión reducida para obtener el compuesto del título como un sólido blanco (0.01 g, 10%). ¹H NMR (DMSO-d₆, 400 MHz); δ 1.40 (m, 6H), 1.72 (m, 4H), 2.63 (m, 1H), 5.66 (s, 2H), 7.09 (m, 1H), 7.35 (m, 2H), 7.83 (br s, 1H), 7.89 (d, J= 8.40 Hz, 1H), 7.99 (d, J= 8.40 Hz, 1H) y 8.18 (br s, 1H). MS ES+ (403.33), HPLC (procedimiento II) Tiempo de reacción = 18.76 min.

Esquema 43: (a) anhídrido tríflico, piridina, DCM; (b) 2,6-Diflúor-3-[5-(4,4,5,5-tetrametil-[1,3,2]dioxaborolan-2-il)-1H-inden-2-ilmetoxi]-benzamida, catalizador Pd, fosfato de potasio; (c) H₂, Pd-C

Example 316

Example 317

Estero ciclopent-1-enilo de ácido triflúormetanosulfónico

Se añadió piridina (5.2 ml, 65.0 mmol) a una solución de ciclopentanona (5.0 g, 59 mmol) en 80 ml de DCM y la mezcla de reacción resultante fue enfriada a -78°C. Se añadió solución de anhídrido tríflico (9.2 ml, 65.0 mmol) a la mezcla de reacción en 30 ml de DCM sobre un período de 1 h. La mezcla de reacción fue agitada a 25° C durante 24 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. El residuo fue triturado con n-pentano y decantado, la capa orgánica secada (Na₂SO₄), filtrada y concentratada para obtener el producto deseado (2.4 g, 22%).

Example 316: 3-(5-Ciclopent-2-enil-1 H-inden-2-ilmetoxi)-2,6-diflúor-benzamida

Se añadió estero ciclopent-1-enilo de ácido triflúormetanosulfónico (0.37g, 1.70 mmol) y fosfato de potasio (0.14 g, 0.60 mmol) a una solución de 2,6-Diflúor-3-[5-(4,4,5,5-tetrametil-[1,3,2]dioxaborolan-2-il)-1H-inden-2-ilmetoxi]-benzamida (0.25 g, 0.56 mmol) en 7 ml de DMF anhidroso y agua (3.5 ml). La mezcla de reacción fue desgasificada durante 10 minutos seguidos por la adición de paladio diclorobis(trifenil fosfina) (II) (0.05 g, 0.08 mmol). La mezcla de reacción fue calentada a 80°C durante 1 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 45% EtOAc-Hexano) para obtener el producto deseado (0.14 g, 65%) como un sólido blanco. ¹H NMR (DMSO-d₆, 400 MHz): δ 1.22 (m, 2H), 2.01 (m, 2H), 2.88 (m, 2H), 5.68 (s, 2H), 6.43 (s, 1H), 7.01 (t, J= 9.20 Hz, 1H), 7.37 (m, 1H), 7.67 (d, J= 8.40 Hz, 1H), 7.89 (br s, 1H), 7.94 (s, 1H), 8.07 (d, J= 8.40 Hz, 1H) y 8.18 (br s, 1H). MS ES+ (387.15), HPLC (procedimiento II) Tiempo de reacción = 13.74 min.

Example 317: 3-(5-Ciclopentil-1H-inden-2-ilmetoxi)-2,6-diflúor-benzamida

Se añadió Pd-C (10%, 100 mg) a una solución de 3-(5-Ciclopent-1-enil-1H-inden-2-ilmetoxi)-2,6-diflúor-benzamida (0.05 g, 0.10 mmol) en 5 ml de metanol anhidroso. La mezcla de reacción fue agitada a 25°C durante 48 h bajo atmósfera de hidrógeno. La mezcla de reacción fue filtrada sobre lecho de celita y evaporada hasta la sequedad bajo presión reducida para obtener el compuesto como un sólido blanco (0.005 g, 10%). ¹H NMR (DMSO-d₆, 400 MHz); δ 1.22 (m, 2H), 1.67 (m, 4H), 1.80 (m, 2H), 2.07 (m, 2H), 3.20 (m, 1H), 5.67 (s, 2H), 7.09 (m, 1H), 7.37 (m, 2H), 7.87 (m, 2H), 8.0 (m, 1H) y 8.18 (br s, 1H). MS ES+ (389.12), HPLC (procedimiento II) Tiempo de reacción = 18.19 min.

5

10

15

20

Ejemplos 318 a 333

Esquema 44 (Ejemplos 318-320): (a) Reagente de Lawesson; (b) bromoacetofenonas sustituidas (c) LAH, THF; (d) PBr₃, Tolueno; (e) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

X=F, Example 318 X=CF3, Example 319 X=OCF3, Example 320

5 Etiltio-oxamato

10

15

20

25

Se añadió reagent de Lawesson (24.15 g, 59.7 mmol) a la solución de etiloxamato (10.0 g, 85.30 mmol) en 120 ml de tolueno y la mezcla de reacción fue calentada a 120°C durante 12 h. Después de completarse la mezcla de reacción (monitorización con TLC), la misma fue evaporada hasta la sequedad bajo presión reducida. El residuo fue purificado por cromatografía de columna sobre sílice (230-400 M) usando etilacetato/hexano (5:95) como el eluyente para obtener el compuesto del título (1.8 g, 16%).

Estero etilo de ácido 4-(4-Triflúormetil-fenil)-tiazola-2-carboxílico (Ejemplo representativo)

Se añadió etil tio-oxamato (0.15 g, 1.14 mmol) a la solución de 2-Bromo-1-(4-triflúormetil-fenil)-etanona (0.50 g, 0.80 mmol) en 7 ml de etanol. La mezcla de reacción fue calentada a 80°C durante 2 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la misma fue concentrada bajo presión reducida, se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 2% EtOAc-Hexano) para obtener el producto deseado (0.21 g, 76%). Los otros derivados fueron también preparados por el mismo procedimiento general.

[4-(4-Trifluorometil-fenil)-tiazol-2-il]-metanol

Se añadió gota a gota una solución de estero de etilo de ácido 4-(4-Triflúormetil-fenil)-tiazola-2-carboxílico (0.21 g, 0.71 mmol) en 5 ml de THF a una suspensión helada de LAH (0.056 g, 1.40 mmol) en 8 ml de THF anhidroso. La mezcla de reacción fue agitada a 25°C durante 1 h. Después de completarse la mezcla de reacción (monitorización con TLC), enfriada la mezcla de reacción a 0°C y rebajada con 2.5 ml de agua seguido por la adición de 15% de

solución NaOH (2 ml) y, finalmente, 4 ml de agua. La solución resultante fue filtrada a través de lecho de celita y el filtrado fue concentrado bajo presión reducida. Se añadió agua (50 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na $_2$ SO $_4$), filtrado y concentrado para obtener el producto deseado (0.13 g, 70%). Los otros derivados fueron también preparados por el mismo método general.

2-Bromometil-4-(4-triflúormetil-fenil)-tiazola

Se añadión PBr₃ (0.072 ml, 0.752 mmol) a la solución de [4-(4-Triflúormetil-fenil)-tiazol-2-il]-metanol (0.13g, 0.50 mmol) en 2 ml de tolueno y la mezcla de reaccción fue calentada a 120°C durante 20 min bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 1% EtOAc-Hexano) para obtener el producto deseado (0.04 g, 25%). Los otros derivados fueron preparados también por el mismo procedimiento general.

Esquema 45 (Ejemplo 321): (a) MeOH, H₂SO₄; (b) SnCl₂.2H₂O, EtOH; (c) cloruro 2-benziloxiacetilo; (d) Reagente de Lawesson; (e) BBr₃, DCM; (f) PBr₃, tolueno-DMF; (g) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

Estero metilo ácido 4-Cloro-3-nitro-benzoico

Se añadió H₂SO₄ (2ml, 37.02 mmol) a una solución de ácido 4-cloro-3-nitrobenzoico (5.0 g, 24.81 mmol) en 50 ml de metanol y la mezcla de reacción fue calentada a 70°C durante 5 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. Se añadión agua (50 ml) y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (5.04 g, 94%).

Estero metilo ácido 3-Amino-4-cloro-benzoico

25

20

10

Se añadió $SnCl_2.2H_2O$ (26.0 g, 115.96 mmol) a una solución de estero metilo de ácido 4-Cloro-3-nitro-benzoico (5.0 g, 23.19 mmol) en 100 ml de etanol y la mezcla de reacción fue calentada a $80^{\circ}C$ durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. Se añadió agua (100 ml), se basificó la mezcla de reacció con solución NaOH y se extrajo con EtOAc caliente (3 x 250 ml). El orgánico combinado fue secado sobre Na_2SO_4 , filtrado y concentrado para obtener el product deseado (3.0 g, 69%).

Estero de metilo de ácido 3-(2-Benziloxi-acetilamino)-4-cloro-benzoico

Una solución de estero monobenzilo de ácido carbónico (3.50 g, 21.0 mmol) en 50 ml de DCM y 0.50 ml de DMF fue enfriada a -78° C seguida por la adición de cloruro oxalilo (11.79 ml, 105 mmol). La mezcla de reacción resultante fue agitada a temperatura ambiente durante 1 h. Después de completarse la mezcla de reacción (monitorización con TLC), se la concentró para obtener cloruro 2-benziloxiacetilo (3.0 g, 96%). Se añadió trietilamina (2.47 ml, 17.78 mmol) a una solución helada de estero de metilo de ácido 3-amino-4-cloro-benzoico en 10 ml de DCM seguuida por la adición de cloruro 2-benziloxiacetilo (3.0 g, 17.78 mmol) en 10 ml de DCM. La mezcla de reacción fue agitada a 25°C durante 12 hr. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. El resiudo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (5:95) como eluyente para obtener el compuesto del título (1.70 g, 31 %).

Estero de metilo de ácido 3-(2-Benziloxi-tioacetilamino)-4-cloro-benzoico

Se añadió reagente de Lawesson (1.03 g, 2.50 mmol) a la solución de estero metilo de ácido 3-(2-Benziloxi-acetilamino)-4-cloro-benzoico (1.70 g, 5.10 mmol) en 20 ml de tolueno y la mezcla de reacción fue calentada a 120° C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. El residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (5:95) como el eluyente para obtener el compuesto del título (1.20 g, 67%).

Estero de metilo de ácido 2-Benziloximetil-benzotiazola-6-carboxílico

20

25

30

35

40

Se añadió (0.12 g, 5.10 mmol), parte a parte, a una solución de estero metilo de ácido 3-(2-Benziloxi-tioacetilamino)-4-cloro-benzoico (1.20 g, 3.40 mmol) en 8 ml de NMP. La mezcla de reacción fue calentada a 160°C durante 3 h. Después de completarse la mezcla de reacción (monitorización con TLC), la misma fue vertida en 150 ml de agua helada y se extrajo con etilacetato (3 x 150 ml). El orgánico combinado fue secado (Na₂SO₄), filtrado y concentrado para obtener el product deseado. (1.07 g, 56%).

Estero de metilo de ácido 2-Hidroximetil-benzotiazola-6-carboxílico

Una solución de estero de metilo de ácido 2-Benziloximetil-benzotiazola-6-carboxílico (0.10 g, 0.32 mmol) en 2 ml de DCM fue enfriada a -78° C seguida por la adición de BBr₃ (0.06 ml, 0.64 mmol). La mezcla de reacción fue agitada a 25°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió solución de NaHCO₃ (20 ml) a 0°C y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.08 g, producción en bruto).

Estero de metilo de ácido 2-Bromometil-benzotiazola-6-carboxílico

Se añadió PBr₃ (0.06 ml, 0.60 mmol) a una solución de estero de metilo de ácido 2-Hidroximetil-benzotiazola-6-carboxílico (0.08 g, 0.40 mmol) en 5 ml de tolueno y 1 ml de DMF. La mezcla de reacción fue calentada a 120°C durante 20 min bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.044 g, 36%).

Esquema 46 (Ejemplo 322):

Benzo[1,3]dioxola-5-carbonitrilo

Se añadió dibromometano (19.25 g, 110.0 mmol) y carbonato de potasio (25.50 g, 184.90 mmol) a una solución de 3,4 Dihidroxibenzonitrilo (5.0 g, 37.0 mmol) en 20 ml de DMF. La mezcla de reacción fue calentada a 120°C durante 2 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue enfriada a temperatura ambiente. Se añadió agua (50 ml) a la mezcla de reacción y se extrajoj el compuesto con etilacetato (3 x 100 ml). Las capas orgánicas combinadas fueron secadas sobre Na₂SO₄ anhidroso, y evaporadas hasta la sequedad bajo presión reducida para obtener el compuesto del título como un sólido amarillo

(5.16 g, 94.8%).

N-Hidroxi-benzo[1,3]dioxola-5-carboxamidina

20

25

10

15

Se añadió hidrocloruro de hidroxilamina (4.68 g, 67.90 mmol) y NaOH (2.71 g, 67.9 mmol) a una solución de Benzo[1,3]dioxola-5-carbonitrilo (5.0 g, 33.9 mmol) en EtOH (100 ml). La reacción resultante fue puesta al reflujo durante 12 h. Después de completarse la reacción (monitorización con TLC), la mezcla fue concentrada, se le añadió EtOH y fue filtrada. El filtrado fue evaporado bajo presión reducida y usado como tal para la etapa siguiente (producción bruta 4.8 g, 78.68%).

3-Benzo[1,3]dioxol-5-il-5-bromometil-[1,2,4]oxadiazola

Se añadió bromuro de Bromoacetilo (0.22 g, 1.10 mmol) a N-Hidroxi-benzo[1,3]dioxola-5-carboxamidina (0.40 g, 0.55 mmol) y K₂CO₃ (0.38 g, 0.78 mmol). La mezcla de reacción fue calentada a 100°C durante 15 min. Después de

completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na_2SO_4), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (60-120 M, 5% EtOAc-Hexano) para obtener el producto deseado (0.05 g, 31%).

5 Esquema 47 (Ejemplo 323): (a) Etil bromopiruvato, EtOH; (b) LAH, THF; (c) PBr₃, tolueno; (d) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

Estero de etilo de ácido 2-(4-Metoxi-fenil)-tiazola-4-carboxílico

Se añadió trietilamina (0.41 ml, 2.98 mmol) seguida por adición gota a gota de etil bromopiruvato (0.56 ml, 4.40 mmol) a una solución helada de 4-metoxi-tiobenzamida (0.50 g, 2.98 mmol) en etanol (25 ml). La mezcla de reacción fue calentada a 65°C durante 12 h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida, se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (60-120 M, 10% EtOAc-Hexano) para obtener el producto deseado (0.38 g, 48%).

[2-(4-Metoxi-fenil)-tiazol-4-il]-metanol

Se añadió una solución de estero etilo ácido 2-(4-Metoxi-fenil)-tiazola-4-carboxílicor (0.26 g, 0.98 mmol) in 5 ml de THF a una suspension helada de LAH (0.08 g, 2.07 mmol) en 10 ml de THF anhidroso. La mezcla de reacción fue calentada hasta 60°C durante 1h. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue enfriada a 0°C, se añadió agua (2.0 ml) seguida por la adición de 15% de solución NaOH (2 ml) y, finalmente, 4 ml de agua. La solución resultante fue filtrada a través de lecho de celita y concentrada bajo presión reducida; se añadió agua (25 mL) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.14 g, 64%).

4-Bromometil-2-(4-metoxi-fenil)-tiazola

30

Se añadió PBr₃ (0.078 ml, 0.813 mmol) a una solución de [2-(4-Metoxi-fenil)-tiazol-4-il]-metanol (0.12 g, 0.50 mmol) en 3 ml de tolueno y la mezcla de reacción fue calentada a 120°C durante 20 min bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (25 ml) y se extrajo con

etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.13 g, 84%).

Esquema 48 (Ejemplo 324): (a) anhídrido propiónico, K₂CO₃; (b) NBS, AIBN, CCl₄; (c) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

$$CI \xrightarrow{HO} A \xrightarrow{a} CI \xrightarrow{N-O} b \xrightarrow{b} CI \xrightarrow{N-O} C$$

3-(4-Cloro-fenil)-S-etil-[1,2,4]oxadiazola

Se añadió anhídrido propiónico (0.75 mL, 5.79 mmol) a 4-Cloro-N-hidroxi-benzamida (0.50 g, 2.89 mmol) y K₂CO₃ (2.0 g, 14.48 mmol). La mezcla de reacción fue calentada a 100°C durante 30 min. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue enfriada a 0°C, se añadió agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (60-120 M, 5% EtOAc-Hexano) para obtener el producto deseado (0.29 g, 48%).

5-(1-Bromo-etil)-3-(4-cloro-fenil)-[1,2,4]oxadiazola

15

20

5

10

Se añadió NBS (0.24~g, 1.38~mmol) y AIBN (0.02~g, 0.0001~mmol) a una solución de 3-(4-Cloro-fenil)-5-etil-[1,2,4]oxadiazola (0.29~g, 1.38~mmol) en CCl₄ (10~ml). La mezcla de reacción fue calentada a 100° C durante 2 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400~M) usando 1% de etilacetato/hexano como eluyente para obtener el producto deseado (0.12~g, 30~%).

Esquema 49 (Ejemplo 325): (a) PBr₃, tolueno (b) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

4-Bromometil-5-metil-2-fenil-2H-[1,2,3]triazola

Se añadió PBr₃ (0.53 g, 1.90 mmol) a una solución de (5-Metil-2-fenil-2H-[1,2,3]triazol-4-il)-metanol (0.25 g, 1.30 mmol) en 10 ml de tolueno y la mezcla de reacción fue calentada a 120°C durante 20 min bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), fue añadida agua (25 ml) y se extrajo con etilacetato (3 x 50 ml). El organic combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el product deseado (0.30 g, 90%) como un sólido amarillo.

Esquema 50 (Ejemplo 326): (a) CuCN, Piridina; (b) Hidrocloruro de hidroxilamina, etanol; (c) cloruro de cloroacetilo, K_2CO_3 ; (d) 2,6-diflúor-3-hidroxibenzamida, K_2CO_3 , DMF.

Tiazola-2-carbonitrilo

Se añade CuCN (1.09 g, 12.19 mmol) a una solución de 2-bromotiazola (1.0 g, 6.09 mmol) en 4 ml de piridina. La mezcla de reacción fue calentada a 150°C durante 3 h. Después de completarse la reacción, el pH fue ajustado a 3-4 con solución 1 N HCl y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.42 g, 63%).

N-Hidroxi-tiazola-2-carboxamidina

Se añadió hidrocloruro de hidroxilamina (0.53 g, 7.60 mmol) y piridina (0.27 g, 3.40 mmol) a una solución de tiazola-2-carbonitrilo (0.42 g, 3.80 mmol) en EtOH (20 ml). La mezclade reacción resultante fue puesta al reflujo durante 15h. Después de completarse la reacción (monitorización con TLC), la mezcla fue concentrada, se le añadió EtOH y fue filtrada. El filtrado fue evaporado bajo presión reducida y usado como tal para la etapa siguiente (producción en bruto 0.50 g, 91 % de producción en bruto).

5-Clorometil-3-tiazol-2-il-[1,2,4]oxadiazola

Se añadió Cloruro de Cloroacetilo (5.0 ml, 44.5 mmol) a N-Hidroxi-tiazola-2-carboxamidina (0.50 g, 3.49 mmol) y K_2O_3 (1.0 g, 7.20 mmol). La mezcla de reacción fue calentada a 100°C durante 15 min. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió aguar (25 ml) y se extrajo con etilacetato (3 x, 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na_2SO_4) , filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 10% EtOAc-Hexano) para obtener el producto deseado (0.18 g, 25%) como un sólido blanco.

15

20

5

Esquema 51 (Ejemplo 327): (a) cloruro de acetilo, Et₃N; (b) reagente de Lawesson; (c) Br₂, DCM; (d) NBS, AIBN, CCl₄; (e) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

N-(4-Phenoxy-phenyl)-acetamide

5

10

15

30

Se añadió trietilamina (0.90 ml, 5.93 mmol) seguida por cloruro de acetilo (0.50 g, 6.47mmol) a una solución helada de 4-fenoxi-fenilamina (1.0 g, 5.39 mmol) en 10 ml de DCM. La mezcla de reacción fue agitada a 25° C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua, se extrajo con DCM (3 x 50 ml). El orgánico combinado fue secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (1.20 g, de producción en bruto).

N-(4-Fenoxi-fenil)-tioacetamida

Se añadió reagente de Lawesson (1.50 g, 3.70 mmol) a una solución de N-(4-fenoxi-fenil)-acetamida (1.20 g, 5.28 mmol) en 10 ml de tolueno. La mezcla de reacción fue calentada a 120°C durante 2 h. Después de completarse la reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida. El residuo fue purificado por cromatografía de columna sobre sílice (60-120M) usando etilacetato/hexano (5:95) como eluyente para producir el compuesto del título (0.78 g, 60.7%).

2-Metil-6-fenoxi-benzotiazola

Se añadió Br₂ (0.32 ml, 6.40 mmol) gota a gota a una solución helada de N-(4-fenoxi-fenil)-tioacetamida (0.78 g, 3.20 mmol) en 10 ml de DCM. La mezcla de reacción fue calentada a 45°C durante 2 h. Después de completarse la reacción (monitorización con TLC), la mezcla de reacción fue evaporada bajo presión reducida. El residuo fue basificado con solución árida de NH₄OH y extraído con etilacetato. El organic combinado fue secado (Na₂SO₄), filtrado y concentrado. El residuo fue purificado por cromatografía de columna sobre sílice (230-400 M) usando etilacetato/hexano (3:97) como eluyente para obtener el compuesto del título (0.08 g, 10.3%).

2-Bromometil-6-fenoxi-benzotiazola

Se añadió NBS (0.039 g, 0.22 mmol) y AIBN (0.004 g, 0.024 mmol) a una solución de 2-metil-6-fenoxi-benzotiazola (0.06 g, 0.24 mmol) en 5 ml de CCl₄. La mezcla de reacción fue calentada a 100°C durante 2 h bajo atmósfera de

nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400M) usando 1% de etilacetato/hexano como eluyente para obtener el producto deseado (0.005g, 6.3%).

5 Esquema 52 (Ejemplo 330): (a) NBS, AIBN, CCl₄; (b) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF.

7-Bromometil-quinolina

Se añadió NBS (0.14 g, 0.77 mmol) y AIBN (0.025 g, 0.15 mmol) a una solución de 7-metilquinolina (0.10 g, 0.70 mmol) en 5 ml de CCl₄. La mezcla de reacción fue calentada a 100°C durante 2 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400M) usando 1% etilacetato/hexano como eluyente para obtener el producto deseado (0.090g, 58%).

Ejemplos 318-333 (Tabla R)

Los compuestos de los Ejemplos 318-333 fueron sintetizados de acuerdo con el siguiente procedimiento general: Se añadió 2,6-Diflúor-3-hidroxi-benzamida (B) y carbonato de potasio (C) a una solución de reactivo (A) en DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice utilizando etilacetato/hexano com eluyente para obtener el compuesto del producto.

20 Tabla R

Ejemplo	318	319
Producto	2,6-Diflúor-3-[4-(4-flúor-fenil)-tiazol-2- ilmetoxi]-benzamida	2,6-Diflúor-3-[4-(4-triflúormetil-fenil)- tiazol-2-ilmetoxi]-benzamida
Esquema de reacción	F S Br CONH ₂	F ₃ C N S F ₃ C N S F CONH ₂
Reactivo (A)	2-Bromometil-4-(4-flúor-fenil)-tiazola	2-Bromometil-4-(4-triflúormetil-fenil)- tiazola
Cantidades de A; B; C; volumen DMF	0.30 g, 1.10 mmol; 0.17g, 0.99 mmol; 0.52 a. 3.5 mmol: 2 ml	0.04 g, 0.01 mmol; 0.02 g, 0.01 mmol: 0.05 a. 0.30 mmol: 2 ml
Relación Etilacetato:Hexano	50:50	50:50

Sílice	230-400 M	60-120 M
Producción	0.035 g, 8% de sólido blanco	0.017 g, 33% de sólido blanco
¹ H NMR (DMSO-d ₆ , 400 MHz)	8.5.58 (s,·2H), 7:15 (d, J=⋅8.80 Hz,⊲1H), 7.32 (m, 2H), 7.44 (m, 1H), 7.89 (br s, 1H), 8.03 (m, 2H) and 8.18 (s, 2H)	δ 5.61 (s, 2H), 7.15 (t, J= 8.80 Hz, 1H), 7.45 (m, 1H), 7.84 (d, J= 8.40 Hz, 2H), 7.89 (br s, 1H), 8.20 (m, 3H) and 8.43 (s. 1H)
MS-ES+	364.97	415.23
Número de Procedimiento HPLC, tiempo de reacción (minutos)	9, 16.50	8, 16.96

320	321
2,6-Diflúor-3-[4-(4-triflúormetil-fenil)-tiazol-2-ilmetoxi]- benzamida	Estero de metilo de ácido 2-(3-Carbamoil-2,4-diflúor- fenoximetil)-benzotiazola-6-carboxílico
F ₃ CO N Br F ₃ CO F S F CONH ₂	S F CONH ₂
2-Bromometil-4-(4-triflúormetil-fenil)-tiazola	Estero metilo de ácido 2-Bromometil-benzotiazola-6- carboxílico
0.14 g, 0.40 mmol; 0.07g, 0.04 mmol; 0.16 g, 1.2 mmol; 2 ml	1.40 g, 4.89 mmol; 0.76 g, 4.40 mmol; 2.37 g, 17.12 mmol: 15 ml
50:50	50:50
230-400 M	60-120 M
0.005 g, 2% de sólido blanco	1.20 g, 64.8% de sólido blanco
δ 5.59 (s, 2H), 7.12 (m, 1H), 7.40 (m, 1H), 7.46 (d, J= 8.40 Hz, 2H), 7.87 (br s, 1H), 8.09 (d, J= 8.80 Hz, 2H), 8.16 (br s, 1H) and 8.27 (s, 1H)	δ 3.91 (s, 3H), 5.74 (s, 2H), 7.12 (m, 1H), 7.40 (m, 1H), 7.90 (br s, 1H), 8.0 (d, J= 8.40 Hz, 1H), 8.18 (br s, 1H), 8.32 (d, J= 8.40 Hz, 1H) and 8.52 (s. 1H)
431.28	379.11
8, 17.10	9, 15.22

322	323
3-(3-Benzo[1,3]dioxol-5-il-[1,2,4]oxadiazol-5-ilmetoxi)- 2,6-diflúor-benzamida	2,6-Diflúor-3-[2-(4-metoxi-fenil)-tiazol-4-ilmetoxi]- benzamida
N-O Br N-O F NN F CONH ₂	S Br N F CONH ₂
3-Benzo[1,3]dioxol-5-il-5-bromometil-[1,2,4]oxadiazol	4-Bromometil-2-(4-metoxi-fenil)-tiazola
0.30 g, 1.06 mmol; 0.18 g, 1.06 mmol; 0.312 g, 3.70 mmol: 2 ml	0.11 g, 0.40 mmol; 0.063 g, 0.36 mmol; 0.19 a. 1.40 mmol: 2 ml
50:50	50:50
60-120 M	60-120 M
0.13 g, 32.67% de sólido blanco	0.035 g, 23% de sólido blanco
δ 5.66 (s, 2H), 6.14 (s, 2H), 7.10 (m, 2H), 7.38 (m, 1H), 7.45 (s, 1H), 7.56 (m, 1H), 7.90 (br s, 1H) and 8.18 (br s. 1H)	δ 3.82 (s, 3H), 5.27 (s, 2H), 7.07 (d, J= 8.80 Hz, 2H), 7.12 (m, 1H), 7.42 (m, 1H), 7.71 (s, 1H), 7.89 (m, 3H) and 8.14 (br s, 1H)
376.16	<u>377</u> .21
8, 15.43	8. 15.93

324	325
3-(1-[4-Cloro-fenil)- [1,2,4]oxadiazol-5-il]-etoxi)-2,6- diflúor-benzamida	2,6-Diflúor-3-(5-metil-2-fenil-2H-[1,2,3]triazol-4-ilmetoxi)- benzamida
CI NO BIT OF H ₂ NOC	N-N O-F N F CONH ₂
5-(1-Bromo-etil)-3-(4-cloro-fenil)-[1,2,4]oxadiazola	4-Bromometil-5-metil-2-fenil-2H-[1,2,3]triazola
0.11 g, 0.38 mmol; 0.05 g, 0.34 mmol; 0.18 g, 1.33 mmol: 2 ml	0.23 g, 0.90 mmol; 0.15 g, 0.90 mmol; 0.44 g, 3.1 mmol; 5 ml

50:50	50:50
60-120 M	60-120 M
0.06 g, 41% de sólido blanco	0.03 g, 9.5% de sólido blanco
δ 1.81 (d, J= 6.80 Hz, 3H), 5.98 (q, J= 6.80 Hz, 1H), 7.08 (m, 1H), 7.40 (m, 1H), 7.66 (d, J= 8.40 Hz, 2H), 7.88 (br s, 1H), 8.02 (d, J= 8.40 Hz, 2H) and 8.16 (br s, 1H)	δ 2.39 (s, 3H), 5.34 (s, 2H), 7.12 (m, 1H), 7.40 (m, 2H), 7.55 (m, 2H), 7.86 (br s, 1H), 7.96 (d, J= 8.0 Hz, 2H) and 8.14 (br s, 1H)
380.09	345.20
8, 16.81	8, 16.18

326	327
2,6-Diflúor-3-(3-tiazol-2-il-[1,2,4]oxadiazol-5-ilmetoxi)- benzamida	2,6-Diflúor-3-(5-fenoxi-benzotiazol-2-ilmetoxi)- benzamida
N-O S N-O CI N-O S N-O N-O NH ₂	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5-Clorometil-3-tiazol-2-il-[1,2,4]oxadiazol	2-Bromometil-5-fenoxi-benzotiazola
0.18 g, 0.89 mmol; 0.014 g, 0.89 mmol; 0.36 g, 2.68 mmol; 2 ml	0.005 g, 0.015 mmol; 0.003g, 0.015 mmol; 0.008a. 0.054 mmol: 1 ml
45:55	50:50
230-400 M	60-120 M
0.10 g, 33% de sólido amarillo limón	0.001 g, 16% de sólido blanco
δ 5.73 (s, 2H), 7.11-7.16 (m, 1H), 7.37-7.43 (m, 1H), 7.90 (br s, 1H) and 8.16-8.19 (m, 3H)	δ 5.76 (s, 2H), 7.03-7.23 (m, 5H), 7.35-7.43 (m, 3H), 7.56 (m, 1H), 7.90 (br s, 1H) and 8.14-8.18 (m. 2H)
339.20	413.24
8. 13.99	n/a

328	329
3-[3-(4-Diflúormetoxi-3-metoxi-fenil)-[1,2,4]oxadiazol-5- ilmetoxi)-2,6-Diflúor-benzamida	3-[3-(4-Cloro-3-nitro-fenil)-[1,2,4]oxadiazol-5- ilmetoxi)-2,6-Diflúor-benzamida
F F	C_1 C_1 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_2 C_1 C_2 C_2 C_1 C_2 C_2 C_2 C_3 C_4 C_4 C_4 C_5
N-O F NH ₂	(a) 2,6-diflúor-3-hidroxibenzamida, K ₂ CO ₃ , DMF
(a) 2,6-diflúor-3-hidroxibenzamida, K ₂ CO ₃ , DMF	(a) 2,0-dilidol-5-fildroxiderizariida, N ₂ CO ₃ , Divil
5-clorometil-3-(4-Diflúormetoxi-3-metoxi-fenil)- [1,2,4]oxadiazol	5-clorometil-3-(4-Cloro-3-nitro-fenil)-[1,2,4]oxadiazol
0.10 g, 0.34 mmol; 0.059 g, 0.34 mmol; 0.16 g, 1.20 mmol; 2 ml	0.15 g, 0.54 mmol; 0.085 g, 0.49 mmol; 0.26 a. 1.90 mmol: 2 ml
50:50	50:50
60-120 M	60-120 M
0.035 g, 23% de sólido blanco	0.06 g, 26% de sólido blanco
δ 3.92 (s, 3H), 5.70 (s, 2H), 7.14 (m, 1H), 7.22 (s, 1H), 7.40 (m, 2H), 7.65 (m, 2H), 7.91 (br s, 1H) and 8.19 (br s. 1H)	δ 5.76 (s, 2H), 7.13 (m, 1H), 7.40 (m, 1H), 7.90 (br s, 1H), 8.01 (d, J= 8.40 Hz, 1H), 8.18 (br s. 1H). 8.29 (m. 1H) and 8.61 (s. 1H)
428.27	411.15
8, 15.96	8, 16.20

330	331		
2,6-Diflúor-3-(quinolin-7-ilmetoxi]-benzamida	3-(3-Cloro-benziloxi)-2,6-Diflúor-benzamida		
NH ₂ F	$\begin{array}{c c} CI & a \\ \hline CI & O & F \\ \hline & F & NH_2 \\ \hline \end{array}$		
	(a) 2,6-diflúor-3-hidroxibenzamida, K ₂ CO ₃ , DMF		
7-Bromometilquinolina	1-bromometi-3-clorobenzeno		
0.90 g, 0.40 mmol; 0.071 g, 0.40 mmol; 0.19 g, 1.40 mmol; 2 ml	mmol; 0.19 g, 0.20 g, 0.98 mmol; 0.17 g, 0.98 mmol; 0.47 g 3.45 mmol; 2 ml		

50:50	50:50
60-120 M	60-120 M
0.012 g, 10% de sólido blanco	0.14 g, 48% de sólido blanco
δ 5.44 (s, 2H), 7.07 (m, 1H), 7.33 (m, 1H), 7.54 (m, 1H), 7.66 (m, 1H), 7.86 (br s, 1H), 8.04 (d, J= 8.40 Hz, 1H), 8.08 (s, 1H), 8.15 (br s, 1H), 8.37 (d. J= 8.40 Hz. 1H) and 8.91 (m. 1H)	δ 5.19 (s, 2H), 7.07 (t, J= 9.20 Hz, 1H), 7.27 m, 1H), 7.42 (m, 3H), 7.51 (s, 1H), 7.86 (br s, 1H) and 8.14 (br s, 1H)
315.02	298.05
9. 12.46	9. 16.37

332	333
2,6-Diflúor-3-(3-nitro-benziloxi)-benzamida	2,6-Diflúor-3-[2-(5-metil-2-p-tolil-oxazol-4-il)-etoxi]-benzamida
Br a NO ₂ F CONH ₂	O Br a NH ₂
(a) 2,6-diflúor-3-hidroxibenzamida, K ₂ CO ₃ , DMF	(a) 2,6-diflúor-3-hidroxibenzamida, K ₂ CO ₃ , DMF
1-Bromometil-3-nitro-benzeno	4-(2-Bromo-etil)-5-metil-2-p-tolil-oxazol
0.216 g, 1.0 mmol; 0.17 g, 1.0 mmol; 0.48 g, 3.5 mmol; 2 ml	0.10 g, 0.35 mmol; 0.061 g, 0.35 mmol; 0.17 q, 1.24 mmol; 2 ml
50:50	50:50
60-120 M	60-120 M
δ 5.34 (s, 2H), 7.07 (m, 1H), 7.30 (m, 1H), 7.72 (t J= 8.0 Hz, 1H), 7.90 (m, 2H), 8.15 (br s, 1H), 8.23 (d, J= 8.40 Hz, 1H) and 8.33 (br s, 1H)	δ 2.34 (br s, 6H), 2.93 (t, J= 6.40 Hz, 2H), 4.26 (t, J= 6.40 Hz, 2H), 7.04 (t, J= 8.80 Hz, 1H), 7.21-7.31 (m, 3H), 7.80 (d, J= 8.0 Hz, 2H). 7.84 (br s, 1H) and 8.11 (br s, 1H)
0.11 g, 35% de sólido blanco	0.022 g, 16% de sólido blanco
309.23	373.21
9, 15.32	8. 16.61

Esquema 53: (a) Tioacetamida, DMF; (b) NBS, AIBN, CCl₄, (c) 2,6-diflúor-3-hidroxibenzamida, K₂CO₃, DMF (d) Zn, AcOH (e) BBr₃, DCM.

4-(3-Metoxi-fenil)-2-metil-tiazola

5

10

Una mezcla de tioacetamida (8.0 g, 106.0 mmol) y 2-bromo-1-(3-metoxi-fenil)-etanona (2.0 g, 8.81 mmol) fue calentada a 140°C durante 6 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió agua (50 ml) y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado. El residuo en bruto fue purificado sobre gel de sílice (230-400 M, 2% EtOAc-Hexano) para obtener el producto deseado (1.5g, 83%).

5-Bromo-2-bromometil-4-(3-metoxi-fenil)-tiazola

Se ar (1.50, nitróge

Se añadió NBS (2.60 g, 14.60 mmol) y AIBN (0.12 g, 0.73 mmol) a una solución de 4-(3-metoxi-fenil)-2-metil-tiazole (1.50, 7.30 mmol) en 20 ml de CCl₄. La mezcla de reacción fue calentada a 100°C durante 2 h bajo atmósfera de nitrógeno. Después de completarse la mezcla de reacción (monitorización con TLC), la mezcla de reacción fue evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (230-400 M) usando 2% etilacetato/hexano como eluyente para obtener el producto deseado (1.20 g, 45%).

3-[5-Bromo-4-(3-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida

20

Se añadió 2,6-Diflúor-3-hidroxi-benzamida (0.38 g, 2.20 mmol) y carbonato de potasio (1.06 g, 7.70 mmol) a una solución de 5-Bromo-2-bromometil-4-(3-metoxi-fenil)-tiazola (0.80 g, 2.20 mmol) en 5 ml de DMF anhidroso. La mezcla de reacción fue agitada a 25°C durante 24 h bajo atmósfera de nitrógeno. La mezcla de reacción fue

evaporada hasta la sequedad bajo presión reducida y el residuo fue purificado por cromatografía de columna sobre sílice (60-120M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido blanco (0.50 g, 49%).

2,6-Diflúor-3-[4-(3-metoxi-fenil)-tiazol-2-ilmetoxi]-benzamida

5

10

15

20

25

Se añadió polvo de zinc (0.50 g, w/w) a la solución de 3-[5-bromo-4-(3-metoxi-fenil)-tiazol-2-ilmetoxi]-2,6-diflúor-benzamida (0.50 g, 1.10 mmol) en 10 ml de ácido acético. La mezcla de reacción fue calentada a 120°C durante 1 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadión agua (50 ml) y el pH fue ajustado a 8-9 con solución NaOH y extraído con etilacetato (3 x 100 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na₂SO₄), filtrado y concentrado para obtener el producto deseado (0.22 g, 53%).

Ejemplo 334: 2,6-Diflúor-3-[4-(3-hidroxi-fenil)-tiazol-2-ilmetoxi]-benzamida

Una solución de 2,6-Diflúor-3-[4-(3-metoxi-fenil)-tiazol-2-ilmetoxi]-benzamida (0.20 g, 0.53 mmol) en 15 ml de DCM fue enfriada a -78°C seguida por la adición de BBr $_3$ (0.20 ml, 2.14 mmol). La mezcla de reacción fue agitada a 25°C durante 2 h. Después de completarse la mezcla de reacción (monitorización con TLC), se añadió solución de NaHCO $_3$ (20 ml) a 0°C y se extrajo con etilacetato (3 x 50 ml). El orgánico combinado fue lavado con agua, salmuera, secado (Na $_2$ SO $_4$), filtrado y concentrado. El residuo fue purificado por cromatografía de columna sobre sílice (60-120 M) usando etilacetato/hexano (50:50) como eluyente para obtener el compuesto del título como un sólido blanco (0.065 g, 33%). 1 H NMR (DMSO-d $_6$, 400 MHz): δ 5.60 (s, 2H), 6.74 (m, 1H), 7.10 (m, 1H), 7.24 (m, 1H). 7.37-7.45 (m, 3H), 7.90 (br s, 1H), 8.10 (s, 1H), 8.17 (br s, 1H) y 9.55 (s, 1H). MS ES+(362.99), HPLC (procedimiento II) Tiempo de reacción = 14.95 min.

Análisis de Concentración Inhibitoria Mínima (CIM)

Fue analizada la actividad antimicrobiana de los compuestos de esta invención por análisis de susceptibilidad en medios líquidos. Las CIM para compuestos contra cada cepa fueron determinados por un procedimiento de microdilución de caldo de acuerdo con las indicaciones de Comité para Estándares de Laboratorios Clínicos (conocido por NCCLS, sus siglas en inglés). (NCCLS 2000. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-fifth edition. Approved standard M7-A5. NCCLS, Wayne, Pa.).

De forma breve, se preparan compuestos de análisis en 100 PI de 1.6% de solución DMSO en planchas multipocillo.

Variadas colonias bacterianas de una plancha recién rayada son transferidos a un caldo rico y apropiado, tal como el de Mueller Hinton. La suspensión celular se ajusta a una densidad óptica de 0.09 y, posteriormente, diluida 1:100 con caldo caliente 2x. Esta suspensión celular se dispensa en los pocillos que contienen solución del compuesto de tal forma que el volumen final es 200 Ql. Las planchas son incubadas toda la noche (16-20 horas) a 37°C y la turbidez es medida a ojo y cuantificada epectrofotométricamente. El CIM se define como la concentración más baja que inhibe el crecimiento visible.

Se encontró que los compuestos de la presente invención tenían actividad antimicrobiana en el análisis CIM descrito supra.

Resultados

La tabla 1 muestra la Concentración Inhibitoria Mínima (CIM) de los ejemplos contra el *Bacillus subtilis* 168_{CA}. Las actividades fueron calificadas como 'A' si el CIM era ≤8 micrograms/ml, 'B' if el CIM era de 16 a 64 micrograms/ml y 'C' si el CIM era mayor que 64 micrograms/ml.

Tabla 1 Bacillus subtilis CIMs

Ejemplo	Actividad	Ejemplo	Actividad	Ejemplo	Actividad
1	А	33	С	65	А
2	С	34	В	66	А
3	С	35	В	67	А
4	С	36	А	68	А
5	В	37	С	69	А
6	С	38	А	70	А
7	С	39	В	71	А
8	В	40	А	72	В
9	С	41	В	73	А
10	А	42	В	74	А
11	С	43	В	75	А
12	В	44	А	76	А
13	В	45	А	77	В
14	В	46	А	78	А
15	В	47	А	79	В
16	С	48	А	80	В
17	В	49	А	81	А
18	С	50	А	82	А
19	А	51	А	83	А
20	А	52	А	84	А
21	В	53	С	85	А
22	В	54	В	86	А
23	В	55	Α	87	А

24	Α	56	А	88	A
25	С	57	А	89	А
26	С	58	А	90	А
27	С	59	A	91	A
28	A	60	В	92	A
29	В	61	A	93	A
30	С	62	A	94	A
31	В	63	A	95	В
32	A	64	А		
Ejemplo	Actividad	Ejemplo	Actividad	Ejemplo	Actividad
96	В	153	А	210	А
97	Α	154	А	211	А
98	A	155	А	212	A
99	А	156	A	213	A
100	A	157	A	214	В
101	В	158	A	215	A
102	A	159	A	216	A
103	А	160	A	217	A
104	А	161	A	218	A
105	A	162	A	219	A
106	A	163	A	220	A
107	A	164	А	221	A
108	В	165	A	222	A
109	A	166	С	223	A
110	A	167	В	224	В
111	A	168	С	225	С
112	А	169	С	226	В
L	п	1	1	ı	I

113	A	170	С	227	А
114	Α	171	В	228	Α
115	В	172	С	229	А
116	В	173	С	230	А
117	А	174	В	231	А
118	A	175	А	232	В
119	A	176	А	233	А
120	А	177	А	234	А
121	A	178	В	235	А
122	A	179	С	236	А
123	А	180	A	237	В
124	А	181	A	238	В
125	A	182	С	239	В
126	А	183	В	240	А
127	A	184	В	241	A
128	A	185	С	242	A
129	С	186	A	243	A
130	A	187	В	244	
131	В	188	В	245	A
132	A	189	С	246	A
133	A	190	В	247	A
134	В	191	В	248	А
135	A	192	С	249	А
136	A	193	В	250	А
Ejemplo	Actividad	Ejemplo	Actividad	Ejemplo	Actividad
137	В	194	С	251	В
138	С	195	А	252	А
139	А	196	А	253	В
	•	•		•	

140	С	197	В	254	Α
141	А	198	В	255	Α
142	A	199	С	256	А
143	С	200	А	257	А
144	С	201	А	258	А
145	В	202	А	259	А
146	A	203	С	260	А
147	В	204	В	261	В
148	A	205	А	262	В
149	A	206	А	263	А
150	A	207	А	264	В
151	A	208	А	265	А
152	В	209	В	266	В
267	A	290	А	314	А
268	A	291	А	315	А
269	A	292	А	316	А
270	A	293	А	317	А
271	A	294	А	318	А
272	A	295	А	319	А
273	A	296	А	320	A
274	A	297	А	321	А
275	В	298	А	322	А
276	А	299	А	323	А
277	A	301	А	324	А
278	А	302	А	325	А
279	А	303	А	326	В
280	A	304	А	327	A

281	А	305	А	328	А
282	А	306	А	329	А
283	А	307	А	330	В
284	А	308	А	331	А
285	А	309	А	332	В
286	А	310	А	333	А
287	А	311	А	334	В
288	А	312	В		
289	А	313	А		

Algunos de los ejemplos fueron también analizados en cuanto a su actividad contra el organismo patogénico Staphylococcus aureus ATCC29213. La tabla 2 muestra las CIMs de los ejemplos contra Staphylococcus aureus. Las actividades fueron de nuevo calificadas como "A" si el CIM fue ≤8 micrograms/ml, 'B' si el CIM fue 16 a 64 micrograms/ml y 'C' si el CIM fue mayor que 64 micrograms/ml.

Tabla 2 Staphylococcus aureus CIMs

Ejemplo	Actividad	Ejemplo	Actividad	Ejemplo	Actividad
1	А	46	А	72	В
5	В	47	В	73	А
8	В	49	A	74	А
12	А	51	В	75	A
15	В	52	A	76	А
17	В	53	С	77	В
18	С	54	В	78	А
19	А	55	A	79	В
24	А	56	А	80	В
26	С	57	В	81	А
27	С	58	А	82	А
28	С	59	В	83	В
29	В	60	В	84	А
30	С	61	А	85	А

31	В	62	А	86	А
32	В	64	А	87	А
36	С	65	А	88	A
39	В	66	A	89	A
40	А	67	A	90	A
41	В	68	A	91	A
42	В	69	A	93	В
43	В	70	A	94	A
45	A	71	A	95	С
			A		
98	А	153	A	208	A
99	А	155	A	209	С
100	А	156	A	210	A
101	В	157	A	211	В
102	А	158	A	212	В
103	А	159	A	213	В
104	А	161	A	214	В
105	А	162	A	215	A
106	А	163	A	216	A
107	А	164	А	217	А
108	В	165	А	218	А
109	В	166	С	219	A
111	А	167	В	220	А
Ejemplo	Actividad	Ejemplo	Actividad	Ejemplo	Actividad
114	А	168	С	221	A
115	А	169	С	222	А
116	В	170	С	223	А
117	А	171	В	224	С

118	A	172	С	225	С
119	A	173	С	226	В
120	A	174	В	227	А
121	A	175	A	228	В
122	A	176	В	229	А
123	A	177	A	230	А
124	A	178	В	231	A
125	A	179	С	232	А
126	A	180	В	233	А
127	A	181	В	235	А
128	В	182	С	236	А
129	В	183	В	237	В
130	A	184	В	239	В
132	A	185	С	240	А
133	A	186	В	241	А
134	В	187	В	242	А
135	Α	188	В	243	А
136	A	189	С	245	А
137	В	190	В	246	А
138	С	191	В	247	А
139	A	192	С	248	А
140	A	193	В	249	А
141	A	194	С	250	А
143	A	195	В	251	В
144	С	196	В	252	А
145	С	197	В	256	В
146	В	200	В	257	А
	1	l	!		

147	В	201	В	260	А
148	А	202	В	262	В
149	В	204	В	263	В
150	В	205	А	265	В
151	В	206	С	266	В
152	В	207	В		
267		289		311	
	А		А		А
268	В	290	А	312	А
269	А	291	А	313	А
Ejemplo	Actividad	Ejemplo	Actividad	Ejemplo	Actividad
270	A	292	A	314	В
271	А	293	А	315	А
272	А	294	А	316	А
273	А	295	А	317	А
274	А	296	А	318	А
275	В	297	А	319	А
276	А	298	А	320	А
277	А	299	А	321	А
278	А	300	В	322	А
279	А	301	В	323	A
280	А	302	A	324	A
281	А	303	A	325	В
282	А	304	A	326	В
283	А	305	A	327	А
Í		200		331	
284	Α	306	Α	331	В

286	А	308	В	334	А
287	А	309	Α		
288	А	310	В		

Algunos de los ejemplos fueron también analizados en cuanto a su actividad contra otras especies bacterianas. La tabla 3 muestra las CIMs de los ejemplos contra variadas especies bacterianas. Las actividades fueron de nuevo calificadas como "A" si el CIM fue ≤8 micrograms/ml, 'B' si el CIM fue 16 a 64 micrograms/ml y 'C' si el CIM fue mayor que 64 micrograms/ml.

5

Tabla 3 CIMs contra diversas bacterias

Actividad

Ejemplo	Bacillus cereus ATCC 14579	Staphylococcus Epidermidis ATCC 12228	Staphylococcus haemolyticus ATCC 29970	Staphylococcus saprophyticus ATCC 15305
46		A		
84		A		
87		А		
88		А		
175		А		
215		А		
177		А		
217	А	А		А
218	Α	А	А	А
236	А			A
111				А
208	А			А
114	А			А
106	А	А	А	А
Ejemplo	Bacillus cereus ATCC 14579	Staphylococcus Epidermidis ATCC 12228	Staphylococcus haemolyticus ATCC 29970	Staphylococcus saprophyticus ATCC 15305
246	A	А	А	А

242	A	А	
135		А	
139	A	А	
287		А	
271	A		
282	A		
311	A		

Algunos de los ejemplos fueron también analizados en cuanto a su actividad contra aislados clínicos estafilocócicos. La tabla 4 muestra las CIMs de los ejemplos contra variados aislados clínicos. Las actividades fueron de nuevo calificadas como "A" si el CIM fue ≤8 micrograms/ml, 'B' si el CIM fue 16 a 64 micrograms/ml y 'C' si el CIM fue mayor que 64 micrograms/ml.

Tabla 3 CIMs contra diversas bacterias

Ejemplo-actividad

Organismo	No.	Oxacilina (S/R ¹)	Susceptibilidad Antibiótica ²	Otra información	217	236	218
S. aureus	0100	S		ATCC 29213	Α	Α	Α
	1134	S		Hospital	Α	Α	Α
	753	S		Hospital	Α	Α	Α
	1662	S		Hospital	Α	Α	Α
	1015	R	Van-S, LZD-S	Hospital	Α	Α	Α
	1135	R	Van-S, LZD-S	Hospital	Α	Α	Α
	2012	R	Van-I, LZD-S	Hospital	Α	Α	Α
	2018	R	Van-I, LZD-S	Hospital	Α	Α	Α
	1651	R	Van-S, LZD-S	Hospital	Α	Α	Α
	1652	R	Van-S, LZD-S	Hospital (G2576T,G)	Α	Α	Α
	1725	R	Van-S, LZD-S	Hospital (T2500T,A)	Α	Α	Α
	2011	R	Tet-R, MI-S	Hospital (G2576T)	А	А	Α

¹ S, susceptible; I, intermedio; R, resistente
² Van, vancomicina; LZD, linezolida; Tet, tetraciclina; MI, minociclina; CC, clindamicina; SXT, trimetroprim/sulfametoxazola; Doxi, doxiciclina; ELMI, Estreptogramina-lincosamida-macrolida inducible resistencia B; TMP, trimetoprima; Rif, rifampina

	757	R	Tet-R, MI-S	Hospital (tetK)	Α	Α	Α
	1729	R	Tet-R, MI-S	Hospital (tetM)	Α	Α	Α
	2147	R	CC-S, SXT-S	Comunidad	Α	Α	Α
	2142	R	CC-S, SXT-S	Comunidad	А	Α	Α
	2158	R	CC-R, Doxi-I	Comunidad	А	Α	Α
	2150	R	CC-S, SXT-S	Comunidad	А	Α	Α
	2149	R	CC-R (ELMI), SXT-S	Comunidad	А	Α	Α
	2175	R	TMP-R	Comunidad	А	Α	Α
Organismo	No.	Oxacilina (S/R ³)	Susceptibilidad Antibiótica ⁴	Otra información	217	236	218
	2143	R	Rif-R	Comunidad	А	Α	Α
S. epidermidis	835	S			А	Α	Α
	1139	S			Α	Α	Α
	831				А	А	А
	1142				А	А	А
	1144				Α	Α	Α

La actividad de algunos de los ejemplos fue probada también en un modelo de infección de septicemia Staphylococcus aureus en un ratón. La Tabla 5 muestra la supervivencia al día 7 de ratones infectados tratados con una dosis intraperitoneal única de 100 mg/kg de cada Ejemplo en una hora después de la inoculación intraperitoneal con una dosis letal de Staphylococcus aureus.

Tabla 5 Supervivencia Murina

Ejemplo	Porcentaje de supervivencia	
Control de Vehículo	0	
218	100	
106	100	
241	100	
247	100	
246	100	

 ³ S, susceptible; I, intermedio; R, resistente
 ⁴ Van, vancomicina; LZD, linezolida; Tet, trimetroprim/sulfametoxazola; Doxi, doxiciclina; ELMI, Estreptogramina-lincosamida-macrolida inducible resistencia B; TMP, trimetoprima; Rif, rifampina

tetraciclina; MI, minociclina; CC, clindamicina; SXT,

REIVINDICACIONES

1. El uso de un compuesto que es una benzamida o piridilamida sustituida de la fórmula (I) o una sal, hidrato, o solvato de los mismos, en la producción de un medicamento para su uso en el tratamiento de la infección bacteriana:

 R_2 O NH_2 R_2 O (I)

En donde

5

10

15

20

25

30

35

40

R representa hidrógeno o 1, 2 ó 3 substitutivos opcionales seleccionados de forma independiente de (C_1-C_6) alquilo, (C_2-C_6) alquenilo, (C_2-C_6) alquenilo, (C_1-C_6) alquinilo, (C_1-C_6) a

W es=C(R₁)-ó=N-:

 R_3 es un radical de la fórmula $-(Alk^1)_m-(Z)_p-(Alk^2)_n-Q$ en donde

m, p y n, son, independientemente, 0 ó 1, siempre que al menos uno de m, p y n sea 1,

Z es -O-, -S-, -S(O)-. -S(O₂)-. -NH-, -N(CH₃)-. -N(CH₂CH₃)-, -C(=O)-, -O-, -(C=O)-, -C(=O)-O-, un radical monocíclico, carbocíclico o heterocíclico divalente opcionalmente sustituido que tenga átomos de 3 a 6 anillos; o un radical heterocíclico bicíclico divalente opcionalmente sustituido que tenga átomos de 5 a 10 anillos;

 Alq^{1} y Alq^{2} son radicales de C_{1} - C_{6} alquileno, C_{2} - C_{6} alquenileno o C_{2} - C_{6} alquinileno opcionalmente sustituidos, que pueden, opcionalmente, terminar con o ser interrumpidos por $-O_{-}$, $-S_{-}$, $-S(O)_{-}$. $-S(O_{2})_{-}$. $-NH_{-}$, $-N(CH_{3})_{-}$. $-N(CH_{2}CH_{3})_{-}$; y

Q es hidrógeno, halógeno, nitrilo (-CN), o hidróxilo o un radical monocíclico, carbocíclico o heterocíclico opcionalmente sustituido que tenga átomos de 3 a 7 anillos; o un radical heterocíclico bicíclico opcionalmente sustituido que tenga átomos de 5 a 10 anillos; y en las definiciones de 2 Alq¹, Alq² y Q el término "sustituido" significa sustituido con hasta cuatro sustitutivos compatibles, cada uno de los cuales se selecciona de forma independiente de (C₁-C₆)alquilo, (C₂-C₆)alquenilo, (C₂-C_e)alquinilo, (C₁-C₆)alcóxido, hidróxido, hidróxido, hidróxido (C₁-C₆)alquilo, mercapto, mercapto(C₁-C₆)alquilo, (C₁-C₆)alquiltio, halo, (C₁-C₃)alquilo total o parcialmente fluorinado, (C₁-C₃)alcóxido o (C₁-C₃)alquiltio, nitro, nitrilo, (-CN), oxo (=O), fenilo, fenóxido, heteroarilo monocíclico o hteroarilóxido con átomos de 5 ó 6 anillos, -COOR^A, -COR^A, -OCOR^A, -SO₂R, -CONR^AR^B, -SO₂NR^AR^B, -NR^AR^B, -NR^BCOOR^A, -NR^BCOOR^A, -NR^BSO₂OR^A ó -NR^ACONR^AR^B en donde R^A y R^B son, independientemente, hidrógeno o un grupo (C₁-C₆)alquilo o, en el caso en donde R^A y R^B estén enlazados al mismo átomo N, R^A y R^B tomados en su conjunto con dicho nitrógeno pueden formar un anillo amino cíclico, y donde el sustitutivo es fenilo, fenóxido o heteroarilo o heteroarilóxido monocíclico con 5 ó 6 átomos, pudiendo ser su anilo fenilo o heteroarilo, en sí mismo, sustituido por cualquiera de los sustitutivos precedentes excepto fenilo, fenóxido, heteroarilo o heteroarilóxido.

2. El procedimiento según la reivindicación 1, en el que el compuesto fórmula (IA)

$$\begin{array}{c|c}
R_4 & O \\
\hline
NH_2 \\
R_5 \\
R_2 & O \\
\hline
R_3 & O \\
\end{array}$$
(IA)

Donde R_4 y R_5 son, de forma independiente, flúor o cloro, o uno de R_4 y R_5 es hidrógeno mientras que el otro es flúor o cloro y R_1 , R_2 y R_3 son como se define en la reivindicación 1.

5 3. El uso reivindicado en la reivindicación 1 en donde el compuesto tiene fórmula (IB)

$$R_2$$
 O NH_2 R_3 (IB)

10

20

Donde R₂ es hidrógeno, metilo o flúor; y R₃ son como se define en la reivindicación 1

- 4. El uso reivindicado en cualquiera de las reivindicaciones 1 a 3 en donde R₁ y R₂ son hidrógeno.
- 5. El uso reivindicado en cualquiera de las reivindicaciones 1 a 4 en donde p es 1, y Z es un radical carbocíclico o heterocíclico no aromático monocíclico opcionalmente sustituido que tenga átomos de 3 a 6 anillos; o un carbocíclico o heterocíclico no aromático bicíclico opcionalmente sustituido que tenga átomos de 5 a 10 anillos, que esté enlazado a la parte –(Alk¹)_m- de R₃ y a la parte -(Alk²)_n-Q de R₃ es vía carbono en anillo o átomos de nitrógeno.
- 6. El uso reivindicado en la reivindicación 2 en donde R₂ es hidrógeno y R₃ es quinolin-2-ilo, benzotiazol-2-ilo, tiazolopiridin-2-ilo, tiazol-2-ilo, tiazol-4-ilo, tiazol-5-ilo, oxadiazol-5-ilo, oxazol-2-ilo, oxazol-4-ilo, oxadiazol-3-ilo u oxazol-5-ilo opcionalmente sustituidos.
 - 7. El uso reivindicado en la reivindicación 6 en donde R₃ es sustituido por fenilo opcionalmente sustituido.
 - 8. El uso reivindicado en la reivindicación 6 en donde cualesquiera sustitutivos opcionales en R₃ se seleccionan de entre metilo, -OCH₃, -CF₃, -OCF₃, etilo, ciclopropilo, oxo, hidróxilo, -F, -Cl, -Br, ciano, acetilo, amino, metilamino, acetilamino, carbamato, -CONH₂, nitro, -COOH y -CH₂OH.
 - 9. Un compuesto que es una benzamida o piridilamida sustituida de la fórmula (I) o una sal, hidrato, o solvato de los mismos

Donde W es = $C(R_1)$ - ó =N-;

 R_1 , es hidrógeno y R_2 es metilo, hidrógeno o flúor; o R_1 y R_2 tomados en su conjunto son $-CH_2$ -, $-CH_2CH_2$ -, $-CH_2CH_2$ -, o, en cualquier orientación, $-O-CH_2$ -, ó OCH_2CH_2 -;

5 R₄ y R₅ son, de forma independiente, flúor o cloro, o uno de R₄ y R₅ es hidrógeno mientras que el otro es flúor o cloro:

R₃ es un radical seleccionado de aquellas de las siguientes fórmulas A-H, en las que cualquier posición vacante en el anillo es opcionalmente sustituida:

$$Q + \bigcup_{N} Q +$$

10

15

Donde Q es hidrógeno, halógeno, nitrilo o hidróxilo o un radical monocíclico, carbocíclico o heterocíclico opcionalmente sustituido que tenga átomos de 3 a 6 anillos; o un radical heterocíclico bicíclico opcionalmente sustituido que tenga átomos de 5 a 10 anillos; y en las definiciones de R₃ y Q el término "opcionalmente sustituido" tiene el mismo significado que en las definiciones de Z, Alq¹, Alq² y Q en la reivindicación 1.

- 10. Un compuesto como el reivindicado en la reivindicación 9 en donde W es =CH- y R₂ es hidrógeno.
- 11. Un compuesto como el reivindicado en la reivindicación 9 ó en la reivindicación 10 donde Q en el radical R_3 es hidrógeno o fenilo opcionalmente sustituido.
- 20 12. Un compuesto como el reivindicado en la reivindicación 9 ó en la reivindicación 10 donde R₃ es quinolin-2-ilo, benzotiazol-2-ilo, tiazol-2-ilo, tiazol-4-ilo, tiazol-5-ilo, oxadiazol-3-ilo, oxadiazol-5-ilo, oxazol-2-ilo, oxazol-4-ilo, oxazol-5-ilo o tiazolopiridin-2-ilo opcionalmente sustituidos.
 - 13. Un compuesto como el reivindicado en la reivindicación 12 en donde R_3 es sustituido por fenilo opcionalmente sustituido.

- 14. Un compuesto como el reivindicado en las reivindicaciones 9 a 13 en donde cualesquiera sustitutivos opcionales en R_3 se seleccionan de entre metilo, -OCH $_3$, -CF $_3$, -OCF $_3$, etilo, ciclopropilo, oxo, hidróxilo, -F, -CI, -Br, ciano, acetilo, amino, metilamino, acetilamino, carbamato, -CONH $_2$, nitro, -COOH y -CH $_2$ OH.
- 15. Un compuesto que es una piridilamida de la fórmula (ID) o una sal, hidrato, o solvato de los mismos

5

En donde R₂ es hidrógeno, metilo, o flúor; y R₃ es como se define en la reivindicación 9.

- 16. Un compuesto como el reivindicado en la reivindicación 15 en donde R₂ es hidrógeno.
- 17. Un compuesto como el reivindicado en la reivindicación 15 ó en la reivindicación 16 donde $\,Q$ en el radical $\,R_3$ es hidrógeno o fenilo opcionalmente sustituido.
- 18. Un compuesto como el reivindicado en la reivindicación 15 ó en la reivindicación 16 donde R₃ es quinolin-2ilo, benzotiazol-2-ilo, tiazol-2-ilo, tiazol-4-ilo, tiazol-5-ilo, oxadiazol-3-ilo, oxadiazol-5-ilo, oxazol-2-ilo, oxazol-4-ilo, oxazol-5-ilo o tiazolopiridin-2-ilo opcionalmente sustituidos.
 - 19. Un compuesto como el reivindicado en la reivindicación 18 donde R₃ es sustituido por fenilo opcionalmente sustituido.
- 20. Un compuesto como el reivindicado en la reivindicación 15 a 19 en donde cualesquiera sustitutivos opcionales en R₃ se seleccionan de entre metilo, -OCH₃, -CF₃, -OCF₃, etilo, ciclopropilo, oxo, hidróxilo, -F, -Cl, -Br, ciano, acetilo, amino, metilamino, acetilamino, carbamato, -CONH₂, nitro, -COOH y -CH₂OH.
 - 21. Una composición farmacéutica que comprende un compuesto como el reivindicado en cualquiera de las reivindicaciones 9 a 20, conjuntamente con un portador farmacéuticamente aceptable.