

11 Número de publicación: 2 371 566

51 Int. Cl.: F17C 13/06 F17C 3/00

(2006.01) (2006.01)

12	TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 07731898 .8
- 96 Fecha de presentación: 17.04.2007
- Número de publicación de la solicitud: 2016329
 Fecha de publicación de la solicitud: 21.01.2009
- (54) Título: CAPERUZA DE PROTECCIÓN PARA RECIPIENTE Y RECIPIENTE PROVISTO CON DICHA CAPERUZA.
- 30 Prioridad: 03.05,2006 FR 0651578

73) Titular/es:

L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE 75, QUAI D'ORSAY 75007 PARIS, FR

- 45 Fecha de publicación de la mención BOPI: 05.01.2012
- (72) Inventor/es:

MORETTI, Alessandro; LIGONESCHE, Renaud y CANNET, Gilles

- (45) Fecha de la publicación del folleto de la patente: **05.01.2012**
- (74) Agente: de Elzaburu Márquez, Alberto

ES 2 371 566 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Caperuza de protección para recipiente y recipiente provisto con dicha caperuza

10

40

45

55

La presente invención se refiere a una caperuza de protección para recipiente así como a un recipiente provisto de una caperuza de este tipo.

5 La invención se refiere de modo más particular a una caperuza de protección para recipiente de fluido, en particular para botella de gas a presión, que comprende un cuerpo de cubierta y a un anillo que forma una interfaz de montaje del cuerpo de cubierta en el recipiente.

La protección contra los choques y las agresiones diversas de las válvulas o válvulas reguladoras de presión que equipan a las botellas de fluido a presión es realizada en general por un accesorio denominado caperuza que puede ser « abierto » o « cerrado » (véase la norma NF E29-649). Las características generales y las prestaciones de estas caperuzas están descritas por ejemplo en la norma NF EN 962.

Una caperuza cerrada ofrece una protección completa de la válvula cuando ésta está colocada, pero debe ser retirada para dar acceso a la citada válvula. Así, la caperuza cerrada no protege a la válvula cuando la botella está en curso de utilización.

- 15 Las caperuzas abiertas son relativamente simples cuando éstas están concebidas para proteger válvulas clásicas. En general, las caperuzas son más sofisticadas en las válvulas con reguladores de presión integrados (RDI) debido a sus espacios libres que permiten el acceso a los mandos y la visibilidad de manómetros (véase a título de ejemplo el documento FR 2 774 452 A1). El diseño de una caperuza debe tener en cuenta varios requisitos a veces contradictorios. Así, para asegurar su función de protección al tiempo que permita el acceso a la válvula y que asegure una 20 buena ergonomía de utilización (para el transporte de la botella como para el relleno o el trasvase del fluido), la caperuza debe ser lo más englobadora posible. Además, para permitir la inspección y el mantenimiento de la válvula la caperuza debe ser muy abierta y/o desmontable. Una caperuza desmontable es interesante para el mantenimiento de la válvula pero también para el mantenimiento de la propia caperuza (operaciones de pintura, de limpieza, de reparación o de recambio). Sin embargo, la colocación y la retirada de la caperuza deben ser relativamente simples 25 y la fijación debe ser suficientemente fiable para evitar el aflojamiento o la pérdida de la caperuza durante las manipulaciones y el transporte. Para permitir el acceso a los mandos y la visibilidad de los manómetros o de otros componentes, la caperuza debe quedar colocada de modo preciso en altura como angularmente con respecto a la válvula.
- Finalmente, la caperuza debe acomodarse al tipo de fijación disponible en la botella a la que equipa (como por ejemplo un « collarín » de acuerdo con la norma NF EN 962). Sin embargo, existen diferentes tipos de fijación para las caperuzas de protección: collarines lisos, collarines fileteados con diferentes diámetros (especialmente 78 mm y 80 mm). Los collarines tienen en general un diámetro exterior superior a la envuelta espacial de la mayoría de las válvulas clásicas. Esto permite montar la caperuza en una válvula ya montada en el recipiente. Sin embargo, un gran número de válvulas, y especialmente de válvulas con reguladores de presión integrados (RDI), tienen una envuelta espacial superior al diámetro exterior de los collarines.

Esto tiene como consecuencia que es necesario, ya sea prever una caperuza desmontable que pueda ser ensamblada a la botella sin desmontar la válvula, o bien montar la válvula después de la caperuza. En este último caso, esto impide el desmontaje de la caperuza sin el desmontaje previo de la válvula. Conviene señalar que el montaje de la válvula es una operación delicada debido especialmente a la necesidad de respetar un par de apriete con respecto a la botella. El desmontaje de la válvula puede conducir por su parte a dañar la válvula, por ejemplo por un desgaste del filete cónico del collarín o del marcado de las superficies en contacto con la herramienta de apriete y de aflojamiento.

El documento US 4.880.134 describe una caperuza de protección lisa que se fija a su recipiente por medio de un anillo de adaptación roscado. Sin embargo, esta solución no está adaptada a las válvulas cuya envuelta espacial no entre en el diámetro del anillo de adaptación. El documento US 4 352 370 describe un recipiente que comprende una válvula y una caperuza de protección.

De acuerdo con otras soluciones conocidas, la caperuza puede ser realizada en dos partes que pinzan un collarín liso. Sin embargo, esta solución no es conveniente para los collarines fileteados y solamente está adaptada a un solo perfil de collarín (diámetro y altura).

50 Un objetivo de la presente invención es paliar todos o parte de los anteriormente citados inconvenientes de la técnica anterior.

A tal fin, el recipiente según la invención es de acuerdo con la reivindicación 1. Por otra parte, modos de realización de la invención pueden comprender una o varias de las características siguientes:

- el anillo presenta una elasticidad para permitir un agrandamiento y/o un estrechamiento temporal de la abertura durante una colocación y/o una retirada,

- la extremidad del anillo situada de modo sensiblemente diametralmente opuesta a la abertura presenta una zona debilitada y/o deformada con respecto al res-to del anillo,
- el anillo presenta una superficie interior destinada a ser montada en una superficie exterior de un recipiente y una superficie exterior destinada a cooperar con una superficie de un cuerpo de cubierta para el montaje de este último en el recipiente, siendo la superficie interior del anillo lisa o presentando relieves de anclaje tales como un roscado para cooperar con una superficie conjugada de un recipiente,
 - la superficie exterior del anillo comprende un perfil de anclaje o de posicionamiento destinado a cooperar con un perfil complementario de una superficie del cuerpo de cubierta,
 - la superficie exterior del anillo comprende al menos un hueco y/o un relieve,
- el cuerpo de cubierta comprende al menos dos partes aptas para ser solidarizadas,
 - el cuerpo de cubierta comprende al menos dos partes aptas para ser solidarizadas de modo que aprieten el anillo contra un recipiente,
 - el anillo está dimensionado de modo que presenta una holgura con respecto a las dimensiones exteriores del collarín.
- 15 el anillo forma una anilla abierta,

5

- las al menos dos partes del cuerpo de cubierta comprenden medios de fijación del tipo de bridas y tornillos,
- las al menos dos partes del cuerpo de cubierta comprenden aberturas previstas para la visibilidad y/o el acceso a órganos situados en el interior de la caperuza,
- las al menos dos partes del cuerpo de cubierta forman una caja, preferentemente metálica,
- el anillo comprende metal y/o una aleación metálica y/o un material de tipo plástico.

De acuerdo con una particularidad ventajosa, el cuerpo de cubierta puede quedar fijado al collarín por medio de una interfaz que comprende un anillo partido cuya superficie interior está roscada para cooperar con el fileteado del collarín

El perfil exterior del anillo es una superficie de revolución que coopera con un perfil complementario situado en la superficie interna de la caperuza o cuerpo de cubierta.

La ranura del anillo partido es de una anchura dimensionada tal que el citado anillo pueda ser colocado cuando la válvula o la válvula con regulador de presión integrado (RDI) estén ya instaladas en la botella. Preferentemente, el collarín está fileteado y el anillo partido roscado. Así, es posible enroscar el anillo en el collarín para situarle a la altura ideal para el posicionamiento relativo de la caperuza y de la válvula o RDI.

- Para facilitar la colocación y la retirada de la caperuza, ésta puede estar fraccionada en al menos dos partes que en primer lugar son ensambladas sin apriete particular sobre el anillo. Esto permite posicionar angularmente la caperuza con respecto a la válvula. A continuación conviene apretar el ensamblaje de las diferentes partes de la caperuza o del cuerpo de cubierta, para bloquear de modo concomitante la caperuza contra el anillo partido y el anillo partido contra el collarín de la botella. Así pues, el anillo partido puede ser mecanizado con una ligera holgura con respecto
- al collarín lo que simplifica su mecanizado y su colocación. Esta holgura puede ser absorbida durante el apriete del cuerpo de cubierta. Para aumentar el efecto de apriete entre el anillo partido y el collarín, la inercia del anillo partido puede ser reducida localmente por ejemplo en la zona diametralmente opuesta a su ranura. A tal efecto, es posible practicar una muesca y/o una perforación que el especialista en la materia sabrá disponer para conciliar su eficacia y su facilidad de obtención.
- Para adaptarse a diferentes tipos de botellas, una misma caperuza puede ser montada en anillos partidos de diferentes formas o tamaños interiores. Un mismo anillo partido puede igualmente recibir diferentes caperuzas. Esto puede permitir renovar cuerpos de cubierta sin cambiar el anillo de interfaz de montaje.
- La caperuza puede ser utilizada con collarines lisos por medio de la adopción de anillos partidos adaptados en consecuencia. En esta variante, la finura y la precisión del posicionamiento en altura del anillo en el collarín son ligeramente menores en comparación con la solución en la cual el anillo partido está roscado y enroscado en un collarín fileteado. No obstante, pueden ser corregidas diferencias de altura, ya sea por la utilización de anillos partidos diferentes si las diferencias son genéricas, o bien por la utilización de calas de espesor partidas como el anillo e introducidas debajo de este último para obtener la cota en altura deseada.
- Otra solución puede consistir en utilizar anillos partidos que presenten un perfil exterior descentrado con respecto al espesor. Es decir, que la parte en saliente o en hueco de la superficie exterior del anillo esté más próxima a uno de los costados (superior o inferior) del anillo que al otro costado (inferior o superior) del anillo.

Así, montando el anillo con el costado en relieve hacia arriba, la caperuza se encontrara montada en posición relativamente alta. Recíprocamente, montando el costado en relieve hacia arriba, la caperuza se encontrará montada en posición relativamente baja. Para facilitar la elección del anillo partido y su orientación, puede ser realizada fácilmente una plantilla que lleve diferentes muescas. En variante, medios de metrología automáticos podrán guiar al operario.

Para botellas de collarín liso y de bloqueo por un anillo de retención (del tipo anillo elástico tales como la descrita en el documento US 3 776 412, el bloqueo en traslación del anillo partido puede ser asegurado por un anillo elástico idéntico al utilizado con la caperuza giratoria. El apriete del cuerpo de cubierta fija entonces la posición angular y anula la holgura entre la caperuza y la botella.

10 Otras particularidades y ventajas se pondrán de manifiesto con la lectura de la descripción que sigue, hecha refiriéndose a las figuras, en las cuales:

5

25

35

- la figura 1 representa una vista en perspectiva de la parte superior de una botella de gas a presión provista de una válvula con regulador de presión integrado y desprovista de caperuza de protección,
- las figuras 2 a 6 representan vistas en perspectiva que ilustran una sucesión de etapas de montaje, en el recipiente de la figura 1, de una caperuza de protección de acuerdo con un ejemplo de realización de la invención,
 - la figura 7 representa una vista en perspectiva y agrandada del recipiente de la figura 1 equipado con una caperuza de protección montada y de acuerdo con un ejemplo de realización de la invención.
 - La figura 1 representa una botella 1 de gas a presión equipada con una válvula 2 con regulador de presión integrado que, clásicamente, comprende medios de mando y manómetros.
- Refiriéndose a las figuras 2 a 7, se va a describir ahora una sucesión de etapas del montaje de un ejemplo de realización de una caperuza de protección de acuerdo con la invención.
 - Refiriéndose ahora a la figura 2, un anillo partido 3 está presentado en una posición que permite su colocación por traslación alrededor del collarín 4 de la botella 1 (flecha T). De modo más preciso, el anillo 3 puede ser insertado o enfilado alrededor de la válvula y/o en la parte superior del collarín 4 de la botella 1 por medio de una traslación del anillo 3 según una dirección sensiblemente perpendicular al eje vertical de la botella 1. Es decir, que el anillo 3 puede ser colocado alrededor de la base de la válvula 2 o a nivel de la parte superior del collarín 4 según una dirección sensiblemente transversal al eje de la botella 1.
- La superficie interior 23 del anillo 3 está roscada para cooperar con un fileteado conjugado formado en el collarín 4. La superficie exterior 33 del anillo 3 comprende un nervio periférico destinado a cooperar con una garganta conjugada formada en una superficie interior de un cuerpo de cubierta destinado a ser montado en el anillo 3 (véase lo que sigue).
 - La anchura de la ranura 13 del anillo 3 está dimensionada para permitir el paso de la válvula a través de la ranura 13 hacia el interior del anillo 3. Cuando el anillo 3 partido es colocado encima del collarín 4 de la botella 1, los ejes de la botella 1 y del anillo 3 están sensiblemente confundidos. En esta posición, el anillo 3 puede ser enroscado en el collarín 4 por rotación (flecha R figura 3).
 - Las dimensiones del anillo 3 pueden ser determinadas con una holgura suficiente para hacer fácil el enroscado del anillo 3. En efecto, al final del ensamblaje de la caperuza, el anillo 3, que tiene una cierta elasticidad debido a su ranura 13, quedará apretado sobre el collarín 4 y la holgura quedara absorbida.
- Las figuras 4 y 5 ilustran el posicionamiento de las dos semicaperuzas 5, 6 que serán apretadas contra el anillo 3 partido por dos tornillos 7. A tal efecto, las dos semicaperuzas 5, 6 comprenden en su parte inferior una semibrida 8 cuya superficie interior es de forma complementaria de la superficie exterior 33 del anillo 3 (una garganta en este ejemplo de realización). Los tornillos 7 están previstos para cooperar con ánimas roscadas formadas a través de las bridas 8 de las semicaperuzas 5, 6. Naturalmente, puede preverse cualquier otro medio de fijación de las dos semicaperuzas 5, 6 que forman el cuerpo de cubierta, como por ejemplo pasadores, grapas elásticas, fijaciones de leva como las ruedas de bicicleta, clavijas como los andamios, clips, collarines de tipo « sujetacables », remaches de tipo « pop ». La elección del sistema de fijación estará guiada especialmente por la facilidad o la dificultad de desmontaje prevista, pudiendo acumular la fijación una función de sello de inviolabilidad.
 - De este modo, una vez apretadas las dos semicaperuzas 5, 6 alrededor del anillo 3 montado en el collarín 4, la caperuza ensamblada es solidaria del anillo 3 que a su vez está bloqueado contra el collarín 4.
- La figura 6 ilustra piezas complementarias posibles para el ensamblaje de la caperuza: un pomo 9 de manipulación que comprende en su parte inferior una longitud fileteada 19, una arandela 10 y una brida 11 almenada roscada en su centro. Así, la longitud fileteada 19 del pomo 9 puede ser enroscada en la brida 11 almenada después de la colocación de la brida 11 debajo de una porción (vástagos que forman una parrilla) que constituye la parte superior de las semicaperuzas 5, 6.

ES 2 371 566 T3

En variante, el pomo puede estar libre en rotación para facilitar el rodaje de la botella.

5

10

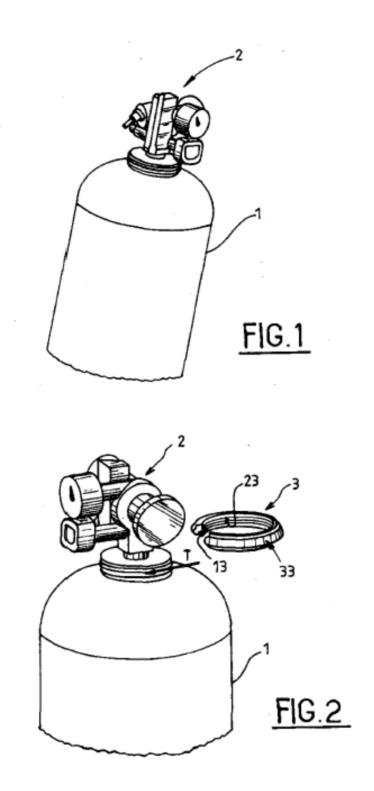
Así, como se ve en la figura 7, la brida 11 almenada une entre sí las partes superiores de las dos semicaperuzas 5, 6 cooperando con la arandela 10 y el pomo 9. Esto confiere una buena rigidez al conjunto de la caperuza. Preferentemente, el apriete del pomo 9 enroscado en la brida 11 almenada queda asegurado por medios clásicos y conocidos por el especialista en la materia entre las arandelas elásticas (por ejemplo del tipo « Grower » NFE 25215, abanico NFE 27626, ...), frenos de filete, una contratuerca, una tuerca con anillo de Nilón (DIN 985, « Nylfix ») etc ...

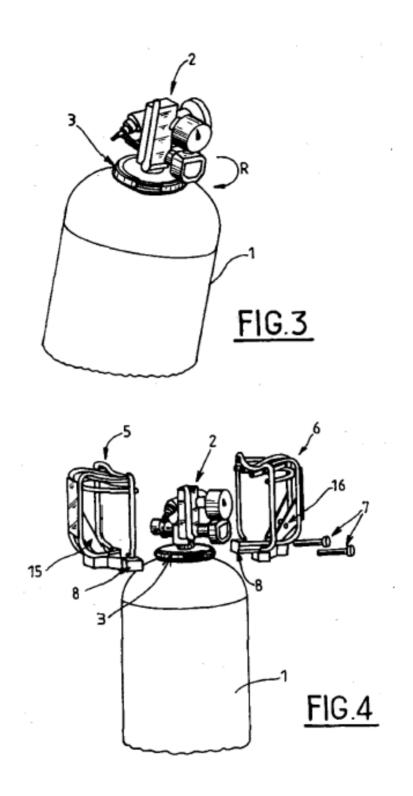
Naturalmente, la unión mecánica entre las partes superiores de las dos semicaperuzas 5, 6 no está limitada al ejemplo descrito anteriormente. Así, por ejemplo, las partes superiores de las semicaperuzas 5, 6 pueden quedar fijadas por cualquier otro medio equivalente, por ejemplo por sistemas de anclaje complementarios llevados por las semicaperuzas 5. 6.

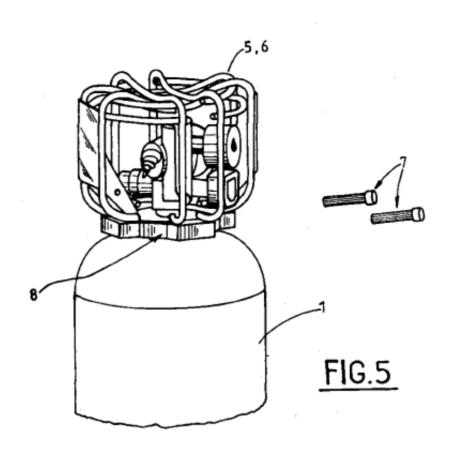
Del mismo modo, la estructura de la caperuza no está limitada al ejemplo de realización descrito en el cual está formada una caja metálica con posibles refuerzos 15, 16 (véase la figura 4). Así, el cuerpo de cubierta que forma la caperuza puede tener cualquier forma y estructura de protección, y comprender cualquier otro material o combinación de material y especialmente plástico.

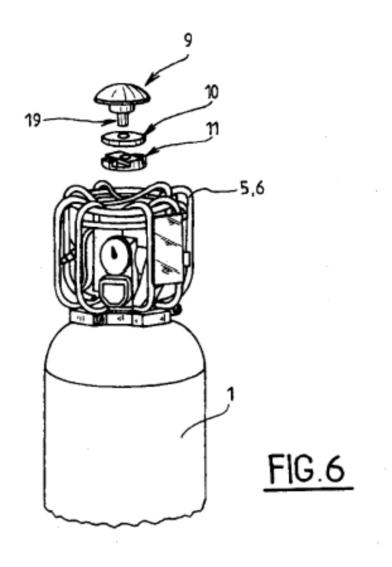
- Por ejemplo, el cuerpo de cubierta puede comprender una única parte envolvente parcialmente abierta y que coopere con una brida de fijación. Es decir que, con respecto al ejemplo de realización de las figuras 2 a 7, una de las dos semicaperuzas tiene una forma más envolvente y la otra caperuza es reemplazada únicamente por una pieza de montaje (semibrida por ejemplo) que no participa o participa poco en la protección de la válvula.
- Así pues, se concibe fácilmente que al tiempo que es de estructura simple y poco costosa, la invención presenta numerosas ventajas con respecto a las soluciones conocidas. Así, la caperuza objeto de la invención permite a la vez:
 - englobar lo mejor posible a las válvulas o las válvulas con reguladores de presión integrados,
 - dejar un acceso a los mandos y la visibilidad de los componentes que deben ser vistos,
 - un montaje, un posicionamiento y un desmontaje fáciles sin necesidad de desmontaje de la válvula,
- una adaptación a un gran número de botellas diferentes al tiempo que conserva una estructura relativamente estándar.

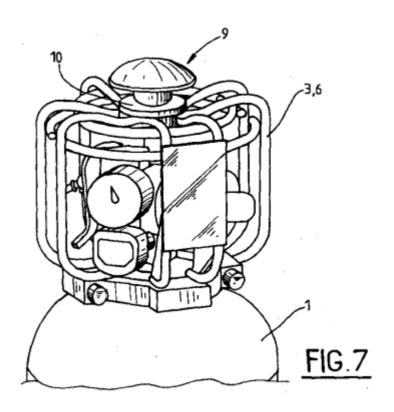
REIVINDICACIONES


1. Recipiente de fluido, en particular para botella de gas a presión, que comprende una válvula (2) y una caperuza de protección, comprendiendo la caperuza un cuerpo de cubierta (5, 6), y un anillo (3) distinto del cuerpo de cubierta (5, 6), formando el anillo una entidad física distinta del cuerpo de cubierta y del recipiente y que forma una interfaz de montaje destinada a quedar interpuesta entre el recipiente y el cuerpo de cubierta (5, 6), siendo el anillo (3) partido, es decir que presenta una abertura (13) única en su circunferencia prevista para su colocación o su retirada con respecto al recipiente, estando prevista la abertura (13) del anillo (3) para formar, durante una colocación o una retirada del anillo, un paso para una porción o una sección del recipiente o de un órgano montado en el recipiente tal como una válvula, caracterizado porque el cuerpo de cubierta (5, 6) comprende al menos dos partes aptas para ser solidarizadas de modo que aprietan el anillo (3) contra el recipiente.


5


10


20


- 2. Recipiente de acuerdo con la reivindicación 1, caracterizado porque el anillo (3) presenta una elasticidad para permitir un agrandamiento y/o un estrechamiento temporal de la abertura (13) durante una colocación y/o una retirada.
- 3. Recipiente de acuerdo con una cualquiera de las reivindicaciones 1 o 2, caracterizado porque la extremidad del anillo (3) situada de modo sensiblemente diametralmente opuesto a la abertura (13) presenta una zona debilitada y/o deformada con respecto al resto del anillo (3).
 - 4. Recipiente de acuerdo con una cualquiera de las reivindicaciones 1 a 3, caracterizado porque el anillo (3) presenta una superficie interior (23) destinada a ser montada en una superficie exterior de un recipiente y una superficie exterior (33) destinada a cooperar con una superficie de un cuerpo de cubierta (5, 6) para el montaje de este último en el recipiente, siendo la superficie interior (23) del anillo (3) lisa o presentando relieves de anclaje tales como un roscado para cooperar con una superficie conjugada de un recipiente,
 - 5. Recipiente de acuerdo con la reivindicación 4, caracterizado porque la superficie exterior (33) del anillo (3) comprende un perfil de anclaje o de posicionamiento destinado a cooperar selectivamente con un perfil complementario de una superficie del cuerpo de cubierta (5, 6).
- 25 6. Recipiente de acuerdo con la reivindicación 5, caracterizado porque la superficie exterior (33) del anillo (3) comprende al menos un hueco y/o un relieve.
 - 7. Recipiente de acuerdo con una cualquiera de las reivindicaciones 1 a 6, caracterizado porque el anillo forma una anilla abierta.
- 8. Recipiente de acuerdo con una cualquiera de las reivindicaciones 1 a 7, caracterizado porque comprende un collarín (4) formado alrededor de un orificio de entrada y/o de salida de fluido, siendo montado el anillo (3) de la caperuza alrededor del collarín (4).

