

11 Número de publicación: 2 372 350

51 Int. Cl.: **C07D 471/04**

'04 (2006.01)

T3

- 96 Número de solicitud europea: 08860474 .9
- 96 Fecha de presentación: 04.12.2008
- Número de publicación de la solicitud: 2229389
 Fecha de publicación de la solicitud: 22.09.2010
- (54) Título: COMPUESTOS DE ALQUINILARILO Y SALES DE LOS MISMOS, COMPOSICIONES FARMACÉUTICAS QUE COMPRENDEN LOS MISMOS, PROCEDIMIENTOS DE PREPARACIÓN DE LOS MISMOS Y USOS DE LOS MISMOS.
- ③ Prioridad: 11.12.2007 EP 07076073

73 Titular/es:

Bayer Pharma Aktiengesellschaft Müllerstrasse 178 13353 Berlin, DE

45 Fecha de publicación de la mención BOPI: 19.01.2012

72 Inventor/es:

HARTUNG, Ingo; BRIEM, Hans; KETTSCHAU, Georg; THIERAUCH, Karl-Heinz y BÖMER, Ulf

Fecha de la publicación del folleto de la patente: 19.01.2012

(74) Agente: Carpintero López, Mario

ES 2 372 350 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Compuestos de alquinilarilo y sales de los mismos, composiciones farmacéuticas que comprenden los mismos, procedimientos de preparación de los mismos y usos de los mismos

La presente invención se refiere a compuestos de alquinilarilo de fórmula general (I) y sales, N-óxidos y solvatos de los mismos, a composiciones farmacéuticas que comprenden dichos compuestos de alquinilarilo, a procedimientos de preparación de dichos compuestos de alquinilarilo, a compuestos intermedios útiles en dichos procedimientos, a usos de dichos compuestos intermedios en la preparación de dichos compuestos de alquinilarilo, además de a usos de dichos compuestos de alquinilarilo.

El crecimiento vascular desregulado desempeña una función crítica en una variedad de enfermedades inflamatorias, 10 en particular psoriasis, hipersensibilidad de tipo retardado, dermatitis de contacto, asma, esclerosis múltiple, reestenosis, artritis reumatoide y enfermedad inflamatoria del intestino. El crecimiento vascular anómalo también participa en enfermedades oculares neovasculares tales como degeneración macular senil y retinopatía diabética. Adicionalmente, el crecimiento vascular sostenido es aceptado como un distintivo en el desarrollo del cáncer (Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57). Mientras que los tumores crecen inicialmente tanto como una masa avascular como invitando a vasos huésped existentes, el crecimiento más allá de algunos mm³ de tamaño 15 depende de la inducción del neocrecimiento de vasos con el fin de proporcionar suficientemente al tumor, de oxígeno y nutrientes. La inducción de angiogénesis es un requisito previo para que el tumor supere un cierto tamaño (el llamado cambio angiogénico). Una red de interacciones de señalización complicada entre células cancerosas y el microentorno del tumor provoca la inducción del crecimiento de vasos a partir de vasculatura existente. La 20 dependencia de tumores de la neovascularización ha conducido a un nuevo paradigma de tratamiento en la terapia del cáncer (Ferrara y col. Nature 2005, 438, 967; Carmeliet Nature 2005, 438, 932). El bloqueo de la neovascularización de tumores por la inhibición mediada por moléculas pequeñas o anticuerpos de rutas de transducción de señales relevantes representa una gran promesa para extender las opciones de terapia actualmente disponibles.

El desarrollo del sistema cardiovascular implica dos etapas básicas. En la etapa inicial de la vasculogénesis, que sólo se produce durante el desarrollo embrionario, los angioblastos se diferencian en células endoteliales que posteriormente forman una red de vasos primitivos. La etapa posterior, llamada angiogénesis, implica la remodelación de la vasculatura inicial y el brote de nuevos vasos (Risau, W. Nature 1997, 386, 671; Jain, R. K. Nat. Med. 2003, 9, 685). Fisiológicamente, la angiogénesis se produce en formación de cicatrices, crecimiento muscular, el ciclo femenino y los estados de enfermedad anteriormente mencionados.

35

40

45

Se ha encontrado que los receptores tirosina cinasas de los (VEGFR) de la familia vascular de los factores de crecimiento endotelial (VEGF), los receptores del factor de crecimiento derivado de plaquetas (PDGFR) y el receptor tirosina cinasa Tie2 (tirosina cinasa con inmunoglobulina y dominio de homología del factor de crecimiento epidérmico) son esenciales para tanto la angiogénesis asociada al desarrollo como a enfermedad (Judah Folkman Nat. Rev. Drug Disc. 2007, 6, 273; Ferrara y col. Nat. Med. 2003, 9, 669; Rakesh K. Jain Nat. Med. 2003, 9, 685; Dumont y col. Genes Dev. 1994, 8, 1897; Sato y col. Nature 1995, 376, 70).

La inhibición de la señalización de VEGFR se ha validado recientemente como un paradigma de tratamiento antiangiogénico por la autorización de inhibidores de la señalización de VEGFR tales como Nexavar[®] para el tratamiento de carcinoma de células renales y anticuerpos para VEGF para el tratamiento de cáncer colorrectal (Avastin[®]) o degeneración macular senil (Macugen[®]).

Como la angiogénesis es un proceso complejo que combina diversos procesos funcionales, la regulación de la angiogénesis depende de múltiples rutas de señalización. Por tanto, sería de esperar que la inhibición combinada de más de una ruta de relevancia para la angiogénesis aumentara la eficacia antiangiogénica. Por otra parte, se espera que la terapia antiangiogénica en enfermedades cancerosas e incluso más en no cancerosas requiera la inhibición de procesos angiogénicos durante un tiempo prolongado, por ejemplo, por tratamiento continuo de pacientes con un fármaco antiangiogénico ("terapia crónica"). Con el fin de permitir el uso en pautas de dosificación continua para el tratamiento de enfermedades cancerosas e incluso más para el tratamiento de enfermedades no cancerosas, un agente antiangiogénico requeriría ser activo y selectivo para la inhibición de procesos angiogénicos, reduciéndose así la probabilidad de efectos secundarios adversos.

Se han desvelado pirazolopiridinas como sustancias antimicrobióticas (por ejemplo, Attaby y col., Phosphorus, Sulfur and Silicon and the related Elements 1999, 149, 49-64; Goda y col. Bioorg. Med. Chem. 2004, 12, 1845). El documento US5478830 desvela adicionalmente heterociclos fusionados para el tratamiento de aterosclerosis. Las pirazolopiridinas también se han descrito como inhibidores de PDE4 (documentos WO2006004188, US20060004003).

Cavasotto y col. (Bioorg. Med. Chem. Lett. 2006, 16, 1969) han publicado una 3-amino-1H-pirazolo[3,4-b]piridina individual con modesta actividad inhibitoria de EGFR. Se ha informado de 5-aril-1H-3-aminopirazolo[3,4-b]piridinas como inhibidores de GSK-3 (Whiterington y col. Bioorg. Med. Chem. Lett. 2003, 13, 1577). El documento WO 2003068773 desvela derivados de 3-aminopirazolopiridina como inhibidores de GSK-3.

El documento WO 2004113304 desvela 3-amino-indazoles como inhibidores de proteínas tirosina cinasas, particularmente como inhibidores como la cinasa VEGFR2. Los documentos WO 2006050109, WO 2006077319 y WO 2006077168 desvelan 3-aminopirazolopiridinas como inhibidores de tirosina cinasas.

El documento WO 2002024679 desvela pirazolopiridinas sustituidas con tetrahidropiridina como inhibidores de IKK. El documento WO 2004076450 desvela adicionalmente 5-heteroaril-pirazolopiridinas como inhibidores de p38. Los documentos US 20040192653 y US 20040176325, entre otros, desvelan 4-H-pirazolopiridinas como inhibidores de p38. El documento WO 2005044181 desvela pirazolopiridinas como inhibidores de Abl cinasas.

Hay una gran necesidad de un inhibidor de receptores tirosina cinasas que muestre inhibición equilibrada de la señalización de VEGFR2 y además inhibición de la señalización de PDGFRβ y/o Tie2, a la vez que sea selectivo contra aquellas tirosina cinasas cuya función funcional sea principalmente relevante para procesos no angiogénicos tales como, por ejemplo, TrkA y/o el receptor de insulina cinasa (InsR).

Por ejemplo, se sabe que la inhibición del InsR cinasa produce fenotipos diabéticos y efectos desventajosos sobre el hígado. El inhibidor del receptor de insulina/IGF-1, por ejemplo, NVP-ADW742, a concentraciones que inhiben tanto los receptores de insulina como de IGF-1 potenció fuertemente la muerte celular apoptósica inducida por ácido desoxicólico que, como consecuencia, predice fuertes efectos tóxicos del hígado en caso de flujo de bilis alterado (Dent y col. Biochem. Pharmacol. 2005, 70, 1685). Incluso peor, la inhibición del receptor de la insulina neuronal produce trastornos similares a Alzheimer en el metabolismo cerebral oxidativo/energético (Hoyer y col. Ann. N.Y. Acad. Sci. 1999, 893, 301). Se sabe que el sistema de señalización del factor de crecimiento nervioso/TrkA es importante para sistemas neuronales modulando el crecimiento, diferenciación y supervivencia de neuronas centrales y periféricas (Distefano y col. Annu. Rep. Med. Chem. 1993, 28, 11).

Se ha encontrado ahora que los compuestos de la presente invención no sólo muestran potente actividad como inhibidores de la actividad cinasa de VEGFR2, sino también un perfil de selectividad favorable dentro de la clase del receptor tirosina cinasa con potente coinhibición de PDGFRβ y/o Tie2, a la vez que es selectivo contra otras tirosina cinasas tales como el receptor de insulina cinasa o TrkA. Los compuestos preferidos de la presente invención muestran inhibición equilibrada de VEGFR2 y PDGFRβ y Tie2, a la vez que son >100 veces menos activos contra InsR y TrkA.

La solución al problema técnico novedoso anteriormente mencionado se logra proporcionando compuestos derivados, según la presente invención, de una clase de compuestos de alquinilarilo y sales, N-óxidos, solvatos y profármacos de los mismos, procedimientos de preparación de compuestos de alquinilarilo, una composición farmacéutica que contiene dichos alquinilarilos, uso de dichos compuestos de alquinilarilo y un procedimiento para tratar enfermedades con dichos compuestos de alquinilarilo, todos según la descripción, como se define en las reivindicaciones de la presente solicitud.

Los siguientes compuestos de fórmula (I), sales, *N*-óxidos, solvatos y profármacos de los mismos se denominan conjuntamente en lo sucesivo los "compuestos de la presente invención". Por tanto, la invención se refiere a compuestos de fórmula general (I):

$$(CH_2)_q$$
 $N-A-B$ E R^5 R^5 R^1 (I)

en la que:

 R^1

representa H o $-C(O)R^b$, o se selecciona del grupo que comprende, que consiste preferentemente en alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , en el que dichos

5

10

15

20

25

30

residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con $R^6;$

representa hidrógeno, halógeno, ciano, -NR^{d1}R^{d2}, -OR^c, -C(O)R^b, o se selecciona del grupo que comprende, que consiste preferentemente en alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo, heteroarilo, en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R^7 ;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , alcoxi C_1 - C_6 , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , hidroxi, amino, halógeno y ciano;

se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, - $C(O)R^b$, - $S(O)_2R^b$, - OR^c , - $NR^{d1}R^{d2}$ y - $OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo, heteroarilo, heterocicloalquilo C_3 - C_{10} y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con R^8 ;

se selecciona del grupo que comprende, que consiste preferentemente en alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, -C(O)R^b, -S(O)₂R^b, -OR^c, -NR^{d1}R^{d2} y -OP(O)(OR^c)₂;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno y alquilo C_1 - C_6 ;

se selecciona del grupo que comprende, que consiste preferentemente en hidroxilo, -OR c , -SR c , -NR $^{d1}R^{d2}$, alquilo $C_1\text{-}C_6$ y cicloalquilo $C_3\text{-}C_{10}$, en el que alquilo $C_1\text{-}C_6$ y cicloalquilo $C_3\text{-}C_{10}$ están opcionalmente sustituidos una o más veces con hidroxilo, halógeno o alcoxi $C_1\text{-}C_6$;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, -C(O)R $^{\rm e}$, alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, -OR $^{\rm f}$, -NR $^{\rm d1}$ R $^{\rm d2}$ o -OP(O)(OR $^{\rm f}$)₂;

se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, o representa un grupo -C(O)R e , -S(O) $_2$ R e o -C(O)NR g1 R g2 en los que alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, -NR g1 R g2 , -OR f , -C(O)R e , -S(O) $_2$ R e o -OP(O)(OR f) $_2$; o

junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , halógeno, -NR g1 R g2 , -OR f , -C(O)R e , -S(O)₂R e o -OP(O)(OR f)₂; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR d3 , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)₂-, y puede contener opcionalmente uno o más dobles enlaces

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 ,

 R^2

5

R³

 R^4 , R^5 , R^6 , R^7

15

R⁸

R^a 25

 R^b

30 R^c

35

 R^{d1} , R^{d2}

40

 $R^{d1} y R^{d2}$

50

45

55 R^{d3}

		cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ;	
	R ^e	se selecciona del grupo que comprende, que consiste preferentemente en -NR g1 R g2 , alquilo C ₁ -C ₆ , cicloalquilo C ₃ -C ₆ , alcoxi C ₁ -C ₆ , arilo y heteroarilo;	
5 10	R ^f	se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, -C(O)R $^{\rm e}$, alquilo C ₁ -C ₆ , haloalquilo C ₁ -C ₆ , cicloalquilo C ₃ -C ₁₀ , heterocicloalquilo C ₃ -C ₁₀ , arilo y heteroarilo, en el que alquilo C ₁ -C ₆ , haloalquilo C ₁ -C ₆ , cicloalquilo C ₃ -C ₁₀ , heterocicloalquilo C ₃ -C ₁₀ , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, alcoxi C ₁ -C ₆ , arilo o -NR $^{\rm g1}$ R $^{\rm g2}$;	
	R^{g1} , R^{g2}	se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo;	
15	R ^{g1} y R ^{g2} ,	junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , -alcoxi C_1 - C_6 , halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma	
20		diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR ^a , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o	
25	A	de forma diferente, con un grupo -C(O)-, -S(O)- y/o -S(O) ₂ -, y puede contener opcionalmente uno o más dobles enlaces; se selecciona del grupo que comprende, que consiste preferentemente en -C(O)-, -C(S)-, -C(=NR^a)-, -C(O)NR^a-, -C(=NR^a)NR^a-, -S(O)_2-, -S(O)(=NR^a)-, -S(=NR^a)_2-, -C(S)NR^a-, -C(O)C(O)-, -C(O)C(O)NR^a-, -C(O)NR^aC(O)-, -C(S)NR^aC(O)-y -C(O)NR^aC(S)-;	
30	В	es un enlace o se selecciona del grupo que comprende, que consiste preferentemente en alquileno C_1 - C_6 , cicloalquileno C_3 - C_{10} y heterocicloalquileno C_3 - C_{10} ;	
	D, E	son, independientemente entre sí, arileno o heteroarileno;	
	X_1, X_2, X_3	son, independientemente entre sí, CH o CR ² o un átomo de nitrógeno;	
	siendo cero, uno o dos de X_1,X_2,X_3	nitrógeno; y	
35	q	representa un número entero de 0, 1 ó 2;	
	o una sal, un N-óxido, un solvato o un profá	ármaco de los mismos,	
40	en la que, cuando uno o más de R ^a , R ^b , R ^c , R ^{d1} , R ^{d2} , R ^{d3} , R ^e , R ^f , R ^{g1} , R ^{g2} o R ^{g1} están presentes en una posición en la molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) R ^a , R ^b , R ^c , R ^{d1} , R ^{d2} , R ^{d3} , R ^e , R ^f , R ^{g1} , R ^{g2} o R ^{g1} tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en dicha primera posición en la molécula y en dicha segunda o posiciones adicionales en la molécula, siendo posible que las dos o más apariciones de R ^a , R ^b , R ^c , R ^{d1} , R ^{d2} , R ^{d3} , R ^e , R ^f , R ^{g1} , R ^{g2} o R ^{g1} dentro de una única molécula sean idénticas o diferentes. Por ejemplo, si R ^a está presente dos veces en la molécula, entonces el significado del primer R ^a puede ser, por ejemplo, H y el significado del segundo R ^a puede ser, por ejemplo, metilo.		
	Según una realización preferida, la presente invención se refiere a compuestos de fórmula (I), arriba, en la que:		
45	R ¹	representa H o -C(O)R ^b , o se selecciona del grupo que comprende, que consiste preferentemente en alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R^6 ;	
50	R^2	representa hidrógeno, halógeno, ciano, NR ^{d1} R ^{d2} , -OR ^c , -C(O)R ^b , o se selecciona del grupo que comprende, que consiste preferentemente en alquilo C ₄ -C ₆ , alquenilo C ₂	

alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo, heteroarilo, en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente

 R^3

5 R⁴. R⁵. R⁶. R⁷

10

15

 R^8

 R^a

R^b

 R^c

25

R^{d1}, R^{d2}

35

 $R^{d1} y R^{d2}$

40

45

 R^{d3}

50

55

 R^{e}

 R^f

entre sí, con R⁷;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , alcoxi C_1 - C_6 , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , hidroxi, amino, halógeno y ciano;

se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, - $C(O)R^b$, - $S(O)_2R^b$, - OR^c , - $NR^{d1}R^{d2}$ y - $OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo, heteroarilo, heterocicloalquilo C_3 - C_{10} y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con R^8 ;

se selecciona del grupo que comprende, que consiste preferentemente en alquilo $C_1\text{--}C_6,$ cicloalquilo $C_3\text{--}C_{10},$ heterocicloalquilo $C_3\text{--}C_{10},$ haloalquilo $C_1\text{--}C_6,$ haloalcoxi $C_1\text{--}C_6,$ arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, $\text{--}C(O)R^b,$ $\text{--}S(O)_2R^b,$ $\text{--}OR^c,$ $\text{--}NR^{d1}R^{d2}$ y $\text{--}OP(O)(OR^c)_2;$

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno y alquilo C_1 - C_6 ;

se selecciona del grupo que comprende, que consiste preferentemente en hidroxilo, $-OR^c$, $-SR^c$, $-NR^{d1}R^{d2}$, alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} , en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con hidroxilo, halógeno o alcoxi C_1 - C_6 ;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, $-C(O)R^e$, alquilo C_1-C_6 , haloalquilo C_1-C_6 , cicloalquilo C_3-C_{10} , heterocicloalquilo C_3-C_{10} , arilo y heteroarilo, en el que alquilo C_1-C_6 , haloalquilo C_1-C_6 , cicloalquilo C_3-C_{10} , heterocicloalquilo C_3-C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, $-OR^f$, $-NR^{d1}R^{d2}$ o $-OP(O)(OR^f)_2$;

se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, o representa un grupo -C(O)Re, -S(O)₂Re o -C(O)NRg¹Rg² en los que alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, -NRg¹Rg², -ORf, -C(O)Re, -S(O)₂Re o -OP(O)(ORf)₂; o

junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , halógeno, -NR $^{g1}R^{g2}$, -OR f , -C(O)R e , -S(O) $_2R^e$ o -OP(O)(OR f) $_2$; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR d3 , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O) $_2$ -, y puede contener opcionalmente uno o más dobles enlaces

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ;

se selecciona del grupo que comprende, que consiste preferentemente en -NR 91 R 92 , alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , alcoxi C_1 - C_6 , arilo y heteroarilo:

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, -C(O)R^e, alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-

 C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 , haloalquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, alcoxi C_1 - C_6 , arilo o -NR^{g1}R^{g2}; se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo

C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo;

junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , -alcoxi C_1 - C_6 , halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR a , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)2-, y puede contener opcionalmente uno o más dobles enlaces;

se selecciona del grupo que comprende, que consiste preferentemente en -C(O)- y $-C(O)NR^a$ -;

es un enlace o se selecciona del grupo que comprende, que consiste preferentemente en alquileno C_1 - C_3 y cicloalquileno C_3 - C_6 ;

son, independientemente entre sí, arileno o heteroarileno;

son, independientemente entre sí, CH o CR² o un átomo de nitrógeno;

nitrógeno; y

representa un número entero de 0, 1 ó 2;

o una sal, un N-óxido, un solvato o un profármaco de los mismos,

en la que, cuando uno o más de R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^{g1} , R^{g2} o R^g están presentes en una posición en la molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^{g1} , R^{g2} o R^g tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en dicha primera posición en la molécula y en dicha segunda o posiciones adicionales en la molécula, siendo posible que las dos o más apariciones de R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^g , R^g , R^g , R^g o R^g dentro de una única molécula sean idénticas o diferentes. Por ejemplo, si R^a está presente dos veces en la molécula, entonces el significado del primer R^a puede ser, por ejemplo, R^g están presente dos veces en por ejemplo, metilo.

Según una realización más preferida, la presente invención se refiere a compuestos de fórmula (I), arriba, en la que:

representa H o -C(O)R^b, o se selecciona del grupo que comprende, que consiste preferentemente en alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R^6 ;

representa hidrógeno, halógeno, ciano, $NR^{d1}R^{d2}$, $-OR^c$, $-C(O)R^b$, o se selecciona del grupo que comprende, que consiste preferentemente en alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo, heteroarilo, en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R^7 :

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , alcoxi C_1 - C_6 , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , hidroxi, amino, halógeno y ciano;

se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, - $C(O)R^b$, - $S(O)_2R^b$ - OR^c , - $NR^{d1}R^{d2}$ y - $OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo,

 $R^{g1} y R^{g2}$,

 R^{g1} . R^{g2}

10

15

5

A 20

В

D. E

 X_1, X_2, X_3

siendo cero, uno o dos de X₁, X₂, X₃

q

25

30

35

40

 R^1

 R^2

45

 R^3

50 R^4 , R^5 , R^6 , R^7

heteroarilo, heterocicloalquilo C_3 - C_{10} y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con R^8 ;

se selecciona del grupo que comprende, que consiste preferentemente en alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, -C(O) R^b , -S(O) $_2R^b$, -OR c , -NR $^{d1}R^{d2}$ y -OP(O)(OR c) $_2$;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno y alquilo C_1 - C_6 ;

se selecciona del grupo que comprende, que consiste preferentemente en hidroxilo, -OR c , -SR c , -NR $^{d1}R^{d2}$, alquilo $C_1\text{-}C_6$ y cicloalquilo $C_3\text{-}C_{10}$, en el que alquilo $C_1\text{-}C_6$ y cicloalquilo $C_3\text{-}C_{10}$ están opcionalmente sustituidos una o más veces con hidroxilo, halógeno o alcoxi $C_1\text{-}C_6$;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, $-C(O)R^e,$ alquilo $C_1\text{-}C_6,$ haloalquilo $C_1\text{-}C_6,$ cicloalquilo $C_3\text{-}C_{10},$ heterocicloalquilo $C_3\text{-}C_{10},$ arilo y heterocicloalquilo $C_1\text{-}C_6,$ cicloalquilo $C_3\text{-}C_{10},$ heterocicloalquilo $C_3\text{-}C_{10},$ arilo y heterocicloalquilo $C_3\text{-}C_{10},$ arilo y heterocicloalquilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, $-\text{OR}^f,$ $-\text{NR}^{d1}\text{R}^{d2}$ o $-\text{OP}(O)(\text{OR}^f)_2;$

se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, o representa un grupo -C(O)R e , -S(O) $_2$ R e o -C(O)NR g 1 g 1 g 2, en los que alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, -NR g 1 g 2, -OR f , -C(O)R e , -S(O) $_2$ R e 0 -OP(O)(OR f) $_2$; o

junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , halógeno, -NR g1 R g2 , -OR f , -C(O)R e , -S(O)₂R e o -OP(O)(OR f)₂; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR d3 , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)₂-, y puede contener opcionalmente uno o más dobles enlaces

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ;

se selecciona del grupo que comprende, que consiste preferentemente en -NR 91 R 92 , alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , alcoxi C_1 - C_6 , arilo y heteroarilo;

se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, -C(O)R $^{\rm e}$, alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, alcoxi C₁-C₆, arilo o -NR $^{\rm g1}$ R $^{\rm g2}$;

se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo;

junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido

R⁸

5

 R^a

10 R^b

R^c

20 R^{d1}, R^{d2}

25

 $R^{d1} v R^{d2}$

30

35

R^{d3}

R^e

 R^f

50

 R^{g1} , R^{g2}

55

 $R^{g1} y R^{g2}$

una o más veces, de la misma forma o de forma diferente, con alguilo C₁-C₆, -alcoxi C₁-C₆, halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma 5 diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NRa, oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)2-, y puede contener opcionalmente uno o más dobles enlaces; 10 Α se selecciona del grupo que comprende, que consiste preferentemente en -C(O)- y -C(O)NRa-: В es un enlace o se selecciona del grupo que comprende, que consiste preferentemente en alquileno C₁-C₃ y cicloalquileno C₃-C₆; D es fenileno: 15 Ε es arileno o heteroarileno: X_1, X_2, X_3 son, independientemente entre sí, CH o CR² o un átomo de nitrógeno; siendo cero, uno o dos de X₁, X₂, X₃ nitrógeno, y representa un número entero de 0, 1 ó 2; q o una sal, un N-óxido, un solvato o un profármaco de los mismos, en la que, cuando uno o más de R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^{g1} , R^{g2} o R^g están presentes en una posición en la molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^f , R^g , R20 R⁹¹, R⁹² o R⁸ tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en dicha primera posición en la molécula y en dicha segunda o posiciones adicionales en la molécula, siendo posible idénticas o diferentes. Por ejemplo, si Ra está presente dos veces en la molécula, entonces el significado del primer 25 R^a puede ser, por ejemplo, H y el significado del segundo R^a puede ser, por ejemplo, metilo. Según una realización más particularmente preferida, la presente invención se refiere a compuestos de fórmula (I), arriba, en la que: R^1 representa alquilo C₁-C₆; R^3 30 se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alguilo C₁-C₆ y halógeno; R^4 , R^5 se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, - $C(O)R^b$, - $S(O)_2R^b$, - OR^c , - $NR^{d1}R^{d2}$ y - $OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo, heteroarilo, 35 heterocicloalquilo C₃-C₁₀ y cicloalquilo C₃-C₁₀ están opcionalmente sustituidos una o más veces con R8; R^8 se selecciona del grupo que comprende, que consiste preferentemente en alquilo C₁-C₆, cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalquilo C_1 - C_6 , arilo, heteroarilo, 40 hidroxi, amino, halógeno, ciano, nitro, -C(O)R^b, -S(O)₂R^b, -OR^c, -NR^{d1}R^{d2} y -OP(O)(OR^c)₂; R^{a} es hidrógeno; R^b se selecciona del grupo que comprende, que consiste preferentemente en hidroxilo, -OR°, -SR°, -NR^{d1}R^{d2}, alquilo C₁-C₆ y cicloalquilo C₃-C₁₀, en el que alquilo C₁-C₆ y cicloalquilo C₃-C₁₀ están opcionalmente sustituidos una o más veces con hidroxilo, halógeno o alcoxi C1-C6; R^{c} se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, -C(O)Re, 45 alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, -ORf, - $NR^{d1}R^{d2}$ o $-OP(O)(OR^f)_2$; R^{d1}, R^{d2} se seleccionan, independientemente entre sí, del grupo que comprende, que consiste 50

preferentemente en hidrógeno, alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y

ES 2 372 350 T3

heteroarilo, o representa un grupo -C(O)Re, -S(O)2Re o -C(O)NRg1Rg2, en los que alquilo C1-C6, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos

		cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo estan opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, - $NR^{91}R^{92}$, $-OR^f$, $-C(O)R^e$, $-S(O)_2R^e$ o $-OP(O)(OR^f)_2$; o
5 10	R ^{d1} y R ^{d2} ,	junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , halógeno, -NR g1 R g2 , -OR f , -C(O)R e , -S(O) $_2$ R e o -OP(O)(OR f) $_2$; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR d3 , oxígeno o azufre, y puede
		interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo - $C(O)$ -, - $S(O)$ - y/o - $S(O)_2$ -, y puede contener opcionalmente uno o más dobles enlaces
15	R ^{d3}	se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ;
	R ^e	se selecciona del grupo que comprende, que consiste preferentemente en -NR g1 R g2 , alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , alcoxi C_1 - C_6 , arilo y heteroarilo;
20	R ^f	se selecciona del grupo que comprende, que consiste preferentemente en hidrógeno, -C(O)R $^{\rm e}$, alquilo C ₁ -C ₆ , haloalquilo C ₁ -C ₆ , cicloalquilo C ₃ -C ₁₀ , heterocicloalquilo C ₃ -C ₁₀ , arilo y heteroarilo, en el que alquilo C ₁ -C ₆ , haloalquilo C ₁ -C ₆ , cicloalquilo C ₃ -C ₁₀ , heterocicloalquilo C ₃ -C ₁₀ , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, alcoxi C ₁ -C ₆ , arilo o -NR $^{\rm g1}$ R $^{\rm g2}$;
25	R ⁹¹ , R ⁹²	se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo;
30	R ^{g1} y R ^{g2} ,	junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , -alcoxi C_1 - C_6 , halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR a , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo - $C(O)$ -, - $S(O)$ - y/o - $S(O)_2$ -, y puede contener opcionalmente uno o más dobles enlaces;
35	Α	se selecciona del grupo que comprende, que consiste preferentemente en -C(O)- y -C(O)NRª-;
	В	es un enlace o se selecciona del grupo que comprende, que consiste preferentemente en alquileno C_1 - C_3 y cicloalquileno C_3 - C_6 ;
	D	es fenileno;
	E	es arileno o heteroarileno;
40	X_1	es un grupo CH;
	X_2	es un átomo de nitrógeno; y
	X_3	es un grupo CH; y
	q	representa un número entero de 0, 1 ó 2;
	o una sal, un N-	óxido, un solvato o un profármaco de los mismos,
45	en la que, cuando uno o más de R ^a , R ^b , R ^c , R ^{d1} , R ^{d2} , R ^{d3} , R ^e , R ^f , R ^{g1} , R ^{g2} o R ⁸ están presentes en una posición en I molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) R ^a , R ^b , R ^c , R ^{d1} , R ^{d2} , R ^{d3} , R ^e , R R ^{g1} , R ^{g2} o R ⁸ tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente e	

Dentro del contexto de la presente solicitud, los términos que se mencionan en esta descripción y en las

R^a puede ser, por ejemplo, H y el significado del segundo R^a puede ser, por ejemplo, metilo.

R^{g1}, R^{g2} o R⁸ tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en

dicha primera posición en la molécula y en dicha segunda o posiciones adicionales en la molécula, siendo posible que las dos o más apariciones de R^a, R^b, R^c, R^{d1}, R^{d2}, R^{d3}, R^e, R^f, R^{g1}, R^{g2} o R⁸ dentro de una única molécula sean idénticas o diferentes. Por ejemplo, si R^a está presente dos veces en la molécula, entonces el significado del primer

reivindicaciones tienen preferentemente los siguientes significados:

15

20

25

30

35

40

45

El término "alquilo" debe entenderse que significa preferentemente alquilo ramificado y sin ramificar que significa, por ejemplo, metilo, etilo, n-propilo, iso-propilo, n-butilo, iso-butilo, terc-butilo, sec-butilo, pentilo, iso-pentilo, hexilo, heptilo, octilo, nonilo y decilo e isómeros de los mismos.

- El término "haloalquilo" debe entenderse que significa preferentemente alquilo ramificado y sin ramificar, como se define arriba, en el que uno o más de los sustituyentes de hidrógeno se sustituye de la misma forma o de forma diferente con halógeno. Particularmente preferentemente, dicho haloalquilo es, por ejemplo clorometilo, fluoropropilo, fluorometilo, difluorometilo, triclorometilo, 2,2,2-trifluoroetilo, pentafluoroetilo, bromobutilo, trifluorometilo, yodoetilo e isómeros de los mismos.
- El término "alcoxi" debe entenderse que significa preferentemente alcoxi ramificado y sin ramificar que significa, por ejemplo, metoxi, etoxi, propiloxi, iso-propiloxi, butiloxi, iso-butiloxi, terc-butiloxi, sec-butiloxi, pentiloxi, iso-pentiloxi, hexiloxi, heptiloxi, octiloxi, noniloxi, deciloxi, undeciloxi y dodeciloxi e isómeros de los mismos.
 - El término "haloalcoxi" debe entenderse que significa preferentemente alcoxi ramificado y sin ramificar, como se define arriba, en el que uno o más de los sustituyentes de hidrógeno se sustituye de la misma forma o de forma diferente con halógeno, por ejemplo, clorometoxi, fluorometoxi, pentafluoroetoxi, fluoropropiloxi, difluorometiloxi, triclorometoxi, 2,2,2-trifluoroetoxi, bromobutiloxi, trifluorometoxi, yodoetoxi, e isómeros de los mismos.
 - El término "cicloalquilo" debe entenderse que significa preferentemente un grupo cicloalquilo C₃-C₁₀, más particularmente un grupo cicloalquilo saturado del tamaño de anillo indicado, que significa, por ejemplo, un grupo ciclopropilo, ciclobutilo, ciclohexilo, ciclohexilo, ciclohetilo, ciclooctilo, ciclononilo o ciclodecilo; y también que significa un grupo cicloalquilo insaturado que contiene uno o más dobles enlaces en el esqueleto de C, por ejemplo, un grupo cicloalquenilo C₃-C₁₀ tal como, por ejemplo, un grupo ciclopropenilo, ciclobutenilo, ciclopentenilo, ciclohexenilo, ciclohexenilo, ciclohetenilo, ciclononenilo o ciclodecenilo, en el que el enlace de dicho grupo cicloalquilo al resto de la molécula puede proporcionarse al doble enlace o enlace sencillo; y que también significa un grupo cicloalquilo saturado o insaturado tal que está opcionalmente sustituido una o más veces, independientemente entre sí, con un grupo alquilo C₁-C₆ y/o un halógeno y/o un grupo OR^f y/o un grupo NR^{g1}R^{g2}; tal como, por ejemplo, un grupo 2-metil-ciclopropilo, un grupo 2,2-dimetilciclopropilo, un grupo 3-hidroxiciclopentilo, un grupo 3-hidroxiciclopentilo, un grupo 3-hidroxiciclopentilo o un grupo 4-dimetilaminociclohexilo.
 - El término "heterocicloalquilo" debe entenderse que significa preferentemente un grupo cicloalquilo C₃-C₁₀, como se define arriba, que muestra el número indicado de átomos de anillo, en el que uno o más átomos de anillo son (a) heteroátomo(s) tal(es) como NH, NR^{d3}, O S, o (a) grupo(s) tal(es) como C(O), S(O), S(O)₂, o establecido de otro modo, en un grupo cicloalquilo C_n (en el que n es un número entero de 3, 4, 5, 6, 7, 8, 9 ó 10), uno o más átomos de carbono están sustituidos con dicho(s) heteroátomo(s) o dicho(s) grupo(s) para dar un grupo cicloheteroalquilo C_n tal; y que también significa un grupo heterocicloalquilo insaturado que contiene uno o más dobles enlaces en el esqueleto de C, en el que el enlace de dicho grupo heterocicloalquilo al resto de la molécula puede proporcionarse al doble enlace o enlace sencillo; y que también significa un grupo heterocicloalquilo saturado o insaturado tal que está opcionalmente sustituido una o más veces, independientemente entre sí, con un grupo alquilo C₁-C₆ y/o un halógeno y/o un grupo OR^f y/o un grupo NR^{g1}R^{g2}. Por tanto, dicho grupo cicloheteroalquilo C_n se refiere, por ejemplo, a un heterocicloalquilo de tres miembros expresado como heterocicloalquilo C3 tal como oxiranilo (C3). Otros ejemplos de heterocicloalquilos son oxetanilo (C₄), aziridinilo (C₃), azetidinilo (C₄), tetrahidrofuranilo (C₅), pirrolidinilo (C₅), morfolinilo (C_6), ditianilo (C_6), tiomorfolinilo (C_6), piperidinilo (C_6), tetrahidropiranilo (C_6), piperazinilo (C_6), tritianilo (C_6) , homomorfolinilo (C_7) , homopiperazinilo (C_7) y quinuclidinilo (C_8) ; dicho grupo cicloheteroalquilo también se ejemplo. 4-metilpiperazinilo. 3-metil-4-metilpiperazina, 3-fluoro-4-metilpiperazina, 4dimetilaminopiperidinilo, 4-metilaminopiperidinilo, 4-aminopiperidinilo, 3-dimetilaminopiperidinilo, 3metilaminopiperidinilo, 3-aminopiperidinilo, 4-hidroxipiperidinilo, 3-hidroxipiperidinilo, 2-hidroxipiperidinilo, 4-metilpiperidinilo, 3-metilpiperidinilo, 3-dimetilaminopirrolidinilo, 3-metilpiperidinilo, 3-aminopirrolidinilo o metilmorfolinilo.
 - El término "halógeno" o "Hal" debe entenderse que significa preferentemente flúor, cloro, bromo o yodo.
- El término "alquenilo" debe entenderse que significa preferentemente alquenilo ramificado y sin ramificar, por ejemplo, un grupo vinilo, propen-1-ilo, propen-2-ilo, but-1-en-1-ilo, but-1-en-2-ilo, but-2-en-1-ilo, but-2-en-2-ilo, but-1-en-3-ilo, 2-metil-prop-2-en-1-ilo, o 2-metil-prop-1-en-1-ilo, e isómeros de los mismos.
 - El término "alquinilo" debe entenderse que significa preferentemente alquinilo ramificado y sin ramificar, por ejemplo un grupo etinilo, prop-1-in-1-ilo, but-1-in-1-ilo, but-2-in-1-ilo o but-3-in-1-ilo, e isómeros de los mismos.
- Como se usa en este documento, el término "arilo" se define en cada caso como que tiene 3-12 átomos de carbono, preferentemente 6-12 átomos de carbono, tal como, por ejemplo, ciclopropenilo, fenilo, tropilo, indenilo, naftilo, azulenilo, bifenilo, fluorenilo, antracenilo, etc., prefiriéndose fenilo.

Como se usa en este documento, el término "heteroarilo" se entiende que significa un sistema de anillo aromático

que comprende 3-16 átomos de anillo, preferentemente 5 ó 6 ó 9 ó 10 átomos, y que contiene al menos un heteroátomo que puede ser idéntico o diferente, siendo dicho heteroátomo tal como nitrógeno, NH, NR^{d3}, oxígeno o azufre, y puede ser monocíclico, bicíclico, o tricíclico, y además, en cada caso, puede estar benzocondensado. Preferentemente, heteroarilo se selecciona de tienilo, furanilo, pirrolilo, oxazolilo, tiazolilo, imidazolilo, pirazolilo, isoxazolilo, isotiazolilo, oxadiazolilo, triazolilo, tiadiazolilo, tia-4H-pirazolilo, etc., y benzoderivados de los mismos tales como, por ejemplo, benzofuranilo, benzotienilo, benzoxazolilo, bencimidazolilo, benzotriazolilo, indolilo, isoindolilo, etc.; o piridilo, piridazinilo, pirimidinilo, pirazinilo, triazinilo, etc., y benzoderivados de los mismos tales como, por ejemplo, quinolinilo, isoquinolinilo, etc.; o azocinilo, indolizinilo, purinilo, etc., y benzoderivados de los mismos; o cinnolinilo, ftalazinilo, quinazolinilo, quinoxalinilo, naftpiridinilo, pteridinilo, carbazolilo, acridinilo, fenazinilo, fenotiazinilo, xantenilo u oxepinilo, etc.

El término "alquileno" como se usa en este documento en el contexto de los compuestos de fórmula general (I) debe entenderse que significa una cadena de alquilo opcionalmente sustituida o "amarre" que tiene 1, 2, 3, 4, 5 ó 6 átomos de carbono, es decir, un grupo -CH₂- opcionalmente sustituido ("metileno" o "amarre de un solo miembro" o, por ejemplo, -C(Me)₂-), -CH₂-CH₂- ("etileno", "dimetileno", o "amarre de dos miembros"), -CH₂-CH₂-CH₂- ("propileno", "trimetileno" o "amarre de tres miembros"), -CH₂-C

El término "cicloalquileno" como se usa en este documento en el contexto de los compuestos de fórmula general (I) debe entenderse que significa un anillo de cicloalquilo opcionalmente sustituido que tiene 3, 4, 5, 6, 7, 8, 9 ó 10, preferentemente 3, 4, 5 ó 6, átomos de carbono, es decir, un anillo de ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclobetilo, ciclopentilo o ciclohecxilo opcionalmente sustituido, preferentemente un anillo de ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo.

El término "heterocicloalquileno" como se usa en este documento en el contexto de los compuestos de fórmula general (I) debe entenderse que significa un anillo de cicloalquileno como se define antes, pero que contiene al menos un heteroátomo que puede ser idéntico o diferente, siendo dicho heteroátomo tal como NH, NR^{d3}, oxígeno o azufre

El término "arileno" como se usa en este documento en el contexto de los compuestos de fórmula general (I) debe entenderse que significa un sistema aromático de arileno monocíclico o policíclico opcionalmente sustituido, por ejemplo, arileno, naftileno y biarileno, preferentemente un anillo de fenilo o "amarre" opcionalmente sustituido que tiene 6 ó 10 átomos de carbono. Más preferentemente, dicho amarre de arileno es un anillo que tiene 6 átomos de carbono, es decir, un anillo de "fenileno". Si se usa el término "arileno" o, por ejemplo, "fenileno" debe entenderse que los residuos de enlace pueden estar dispuestos entre sí en posición orto, para y meta, por ejemplo, un resto opcionalmente sustituido de estructura:

35

5

10

15

20

25

en la que las posiciones de enlace en los anillos se muestran como enlaces no unidos.

5

10

15

35

40

45

El término "heteroarileno" como se usa en este documento en el contexto de los compuestos de fórmula general (I) debe entenderse que significa un sistema aromático de heteroarileno monocíclico o policíclico opcionalmente sustituido, por ejemplo, heteroarileno, benzoheteroarileno, preferentemente un heterociclo de 5 miembros opcionalmente sustituido tal como, por ejemplo, furano, pirrol, pirazol, tiazol, oxazol, isoxazol o tiofeno o "amarre", o un heterociclo de 6 miembros tal como, por ejemplo, piridina, pirimidina, pirazina, piridazina. Más preferentemente, dicho amarre de heteroarileno es un anillo que tiene 6 átomos de carbono, por ejemplo, una estructura opcionalmente sustituida como se muestra antes para los restos de arileno, pero que contiene al menos un heteroátomo que puede ser idéntico o diferente, siendo dicho heteroátomo tal como nitrógeno, NH, NR^{d3}, oxígeno o azufre. Cuando se usa el término "heteroarileno" debe entenderse que los residuos de enlace pueden disponerse entre sí en posición orto, para y meta.

Como se usa en este documento, el término " C_1 - C_6 ", como se usa en todo este texto, por ejemplo, en el contexto de la definición de "alquilo C_1 - C_6 " o "alcoxi C_1 - C_6 " debe entenderse que significa un grupo alquilo que tiene un número finito de átomos de carbono de 1 a 6, es decir, 1, 2, 3, 4, 5 ó 6 átomos de carbono. Debe entenderse adicionalmente que dicho término " C_1 - C_6 " debe interpretarse como cualquier subintervalo comprendido en su interior, por ejemplo, C_1 - C_6 , C_2 - C_5 , C_3 - C_4 , C_1 - C_2 , C_1 - C_3 , C_1 - C_4 , C_1 - C_5 , C_1 - C_6 ; preferentemente C_1 - C_2 , C_1 - C_3 , C_1 - C_4 , C_1 - C_5 , C_1 - C_6 ; más preferentemente C_1 - C_4 .

Similarmente, como se usa en este documento, el término "C₂-C₆" como se usa en todo este texto, por ejemplo, en el contexto de las definiciones de "alquenilo C₂-C₆" y "alquinilo C₂-C₆", debe entenderse que significa un grupo alquenilo o un grupo alquinilo que tiene un número finito de átomos de carbono de 2 a 6, es decir, 2, 3, 4, 5 ó 6 átomos de carbono. Debe entenderse adicionalmente que dicho término "C₂-C₆" debe interpretarse como cualquier subintervalo comprendido en su interior, por ejemplo, C₂-C₆, C₃-C₅, C₃-C₄, C₂-C₃, C₂-C₄, C₂-C₅; preferentemente C₂-C₃.

Como se usa en este documento, el término "C₃-C₁₀" como se usa en todo este texto, por ejemplo, en el contexto de las definiciones de "cicloalquilo C₃-C₁₀" o "heterocicloalquilo C₃-C₁₀", debe entenderse que significa un grupo cicloalquilo que tiene un número finito de átomos de carbono de 3 a 10, es decir, 3, 4, 5, 6, 7, 8, 9 ó 10 átomos de carbono, preferentemente 3, 4, 5 ó 6 átomos de carbono. Debe entenderse adicionalmente que dicho término "C₃-C₁₀" debe interpretarse como cualquier subintervalo comprendido en su interior, por ejemplo, C₃-C₁₀, C₄-C₉, C₅-C₈, C₆-C₇, preferentemente C₃-C₆.

Como se usa en este documento, el término " C_3 - C_6 " como se usa en todo este texto, por ejemplo, en el contexto de las definiciones de "cicloalquilo C_3 - C_6 " o "heterocicloalquilo C_3 - C_6 ", debe entenderse que significa un grupo cicloalquilo que tiene un número finito de átomos de carbono de 3 a 6, es decir, 3, 4, 5 ó 6 átomos de carbono. Debe entenderse adicionalmente que dicho término " C_3 - C_6 " debe interpretarse como cualquier subintervalo comprendido en su interior, por ejemplo, C_3 - C_4 , C_4 - C_6 , C_5 - C_6 .

Como se usa en este documento, el término " C_6 - C_{11} " como se usa en todo este texto, por ejemplo, en el contexto de las definiciones de "arilo C_6 - C_{11} ", debe entenderse que significa un grupo arilo que tiene un número finito de átomos de carbono de 5 a 11, es decir, 5, 6, 7, 8, 9, 10 ó 11 átomos de carbono, preferentemente 5, 6 ó 10 átomos de carbono. Debe entenderse adicionalmente que dicho término " C_6 - C_{11} " debe interpretarse como cualquier subintervalo comprendido en su interior, por ejemplo, C_5 - C_{10} , C_6 - C_9 , C_7 - C_8 ; preferentemente C_6 - C_6 .

Como se usa en este documento, el término " C_5 - C_{10} " como se usa en todo este texto, por ejemplo, en el contexto de las definiciones de "heteroarilo C_5 - C_{10} ", debe entenderse que significa un grupo heteroarilo que tiene un número finito de átomos de carbono de 5 a 10, además del uno o más heteroátomos presentes en el anillo, es decir, 5, 6, 7, 8, 9 ó 10 átomos de carbono, preferentemente 5, 6 ó 10 átomos de carbono. Debe entenderse adicionalmente que dicho término " C_5 - C_{10} " debe interpretarse como cualquier subintervalo comprendido en su interior, por ejemplo, C_6 - C_9 , C_7 - C_8 , C_7 - C_8 ; preferentemente C_5 - C_6 .

Como se usa en este documento, el término " C_1 - C_3 " como se usa en todo este texto, por ejemplo, en el contexto de las definiciones de "alquileno C_1 - C_3 ", debe entenderse que significa un grupo alquileno como se define arriba que

tiene un número finito de átomos de carbono de 1 a 3, es decir, 1, 2 ó 3. Debe entenderse adicionalmente que dicho término " C_1 - C_3 " debe interpretarse como cualquier subintervalo comprendido en su interior, por ejemplo, C_1 - C_2 o C_2 - C_3 .

Como se usa en este documento, la expresión "una o más veces", por ejemplo, en la definición de los sustituyentes de los compuestos de las fórmulas generales de la presente invención, se entiende que significa "una, dos, tres, cuatro o cinco veces, particularmente una, dos, tres o cuatro veces, más particularmente una, dos o tres veces, incluso más particularmente una o dos veces".

5

15

20

25

30

35

45

50

55

El término "isómeros" debe entenderse que significa compuestos químicos con el mismo número y tipos de átomos que otra especie química. Hay dos clases principales de isómeros, isómeros constitucionales y estereoisómeros.

10 El término "isómeros constitucionales" debe entenderse que significa compuestos químicos con el mismo número y tipos de átomos, pero están conectados en secuencias diferentes. Hay isómeros funcionales, isómeros estructurales, tautómeros o isómeros de valencia.

En "estereoisómeros", los átomos están conectados secuencialmente de la misma forma, de forma que fórmulas condensadas para dos moléculas isoméricas son idénticas. Sin embargo, los isómeros se diferencian de forma que los átomos están dispuestos en el espacio. Hay dos subclases principales de estereoisómeros; isómeros conformacionales, que se convierten entre sí mediante rotaciones alrededor de enlace sencillos, e isómeros configuracionales, que no son fácilmente interconvertibles.

Los isómeros configuracionales comprenden a su vez enantiómeros y diaestereómeros. Los enantiómeros son estereoisómeros que están relacionados entre sí como imágenes especulares. Los enantiómeros pueden contener cualquier número de centros estereogénicos, con tal que cada centro sea la imagen especular exacta del centro correspondiente en la otra molécula. Si uno o más de estos centros se diferencian en configuración, las dos moléculas ya no son imágenes especulares. Los estereoisómeros que no son enantiómeros se llaman diaestereómeros.

Con el fin de limitar tipos diferentes de isómeros entre sí se hace referencia a IUPAC Rules Section E (Pure Appl Chem 45, 11-30, 1976).

Los compuestos de la presente invención según la fórmula (I) pueden existir en forma libre o en forma de sal. Una sal farmacéuticamente aceptable adecuada de los compuestos de alquinilarilo de la presente invención puede ser, por ejemplo, una sal de adición de ácido de un compuesto de alquinilarilo de la invención que es suficientemente básica, por ejemplo, una sal de adición de ácido con, por ejemplo, un ácido inorgánico u orgánico, por ejemplo, ácido clorhídrico, bromhídrico, sulfúrico, fosfórico, trifluoroacético, para-toluenosulfónico, metilsulfónico, cítrico, tartárico, succínico o maleico. Además, otra sal farmacéuticamente aceptable adecuada de un compuesto de alquinilarilo de la invención que es suficientemente ácida es una sal de metal alcalino, por ejemplo, una sal de sodio o de potasio, una sal de metal alcalinotérreo, por ejemplo, una sal de calcio o de magnesio, una sal de amonio o una sal con una base orgánica que proporciona un catión fisiológicamente aceptable, por ejemplo, una sal con N-metil-glucamina, dimetil-glucamina, etil-glucamina, lisina, 1,6-hexadiamina, etanolamina, glucosamina, sarcosina, serinol, tris-hidroximetilaminometano, aminopropanodiol, base de Sovak, 1-amino-2,3,4-butanotriol.

Los compuestos de la presente invención según la fórmula (I) pueden existir como N-óxidos que se definen porque pueden oxidar al menos un nitrógeno de los compuestos de fórmula general (I).

Los compuestos de la presente invención según la fórmula (I) pueden existir como solvatos, en particular como hidratos, en los que los compuestos de la presente invención según la fórmula (I) pueden contener disolventes polares, en particular agua, como elemento estructural de la red cristalina de los compuestos. La cantidad de disolventes polares, en particular agua, puede existir en una relación estequiométrica o no estequiométrica. En el caso de solvatos estequiométricos son posibles, por ejemplo, hidratos, hemi-, (semi-), mono-, sesqui-, di-, tri-, tetra-, penta-, etc., solvatos o hidratos.

Los compuestos de la presente invención según la fórmula (I) pueden existir como profármacos, por ejemplo, como en ésteres hidrolizables *in vivo*. Como se usa en este documento, el término "éster hidrolizable *in vivo*" se entiende que significa un éster hidrolizable *in vivo* de un compuesto de fórmula (I) que contiene un grupo carboxi o hidroxilo, por ejemplo, un éster farmacéuticamente aceptable que se hidroliza en el cuerpo humano o animal para producir el ácido o alcohol parental. Ésteres farmacéuticamente aceptables adecuados para grupos carboxi incluyen, por ejemplo, ésteres alquílicos, cicloalquílicos y fenilalquílicos opcionalmente sustituidos, en particular bencílicos, éster alcoxi C₁-C₆-metílicos, por ejemplo metoximetilo, ésteres alcanoiloxi C₁-C₆-metílicos, por ejemplo pivaloiloximetilo, ésteres ftalidílicos, ésteres cicloalcoxi C₃-C₁₀-carboniloxi-alquílicos C₁-C₆, por ejemplo 1-ciclohexilcarboniloxietilo; ésteres 1,3-dioxolen-2-onilmetílicos, por ejemplo, 5-metil-1,3-dioxolen-2-onilmetilo; y ésteres alcoxi C₁-C₆-carboniloxietílicos, por ejemplo, 1-metoxicarboniloxietilo, y pueden formarse en cualquier grupo carboxi en los compuestos de la presente invención. Un éster hidrolizable *in vivo* de un compuesto de fórmula (I) que contiene un grupo hidroxilo incluye ésteres inorgánicos tales como ésteres de fosfato y éteres α-aciloxialquílicos y compuestos relacionados que como resultado de la hidrólisis *in vivo* de la rotura de ésteres dan el grupo hidroxilo parental. Ejemplos de éteres α-aciloxialquílicos incluyen acetoximetoxi y 2,2-dimetilpropioniloximetoxi. Una selección de

grupos formadores de ésteres hidrolizables *in vivo* para hidroxilo incluyen alcanoílo, benzoílo, fenilacetilo y benzoílo sustituido y fenilacetilo, alcoxicarbonilo (para dar ésteres de carbonato de alquilo), dialquilcarbamoílo y N-(dialquilaminoetil)-N-alquilcarbamoílo (para dar carbamatos), dialquilaminoacetilo y carboxiacetilo.

Los compuestos de la presente invención según la fórmula (I) y sales, solvatos, N-óxidos y profármacos de los mismos pueden contener uno o más centros asimétricos. Pueden estar presentes átomos de carbono asimétricos en la configuración (R) o (S) o la configuración (R,S). También pueden estar presentes sustituyentes en un anillo en forma tanto cis como trans. Se pretende que todas las configuraciones (incluyendo enantiómeros y diaestereómeros) estén incluidas dentro del alcance de la presente invención. Estereoisómeros preferidos son aquellos con la configuración que produce la actividad biológica más deseable. Dentro del alcance de la presente invención también están incluidos isómeros configuracionales separados, puros o parcialmente purificados, o mezclas racémicas de los compuestos de la presente invención. La purificación de dichos isómeros y la separación de dichas mezclas isoméricas puede llevarse a cabo por técnicas convencionales conocidas en la técnica.

5

10

15

25

30

40

50

Otra realización de la presente invención se refiere a compuestos intermedios, en particular compuestos de fórmulas 1, 3, 5 y 15. Otra realización de la presente invención se refiere al uso de dichos compuestos de fórmulas generales 1, 3, 5 y 15 para la preparación de un compuesto de fórmula general (I) como se define arriba.

Los compuestos de la presente invención pueden usarse en el tratamiento de enfermedades de crecimiento vascular desregulado o enfermedades que van acompañadas de crecimiento vascular desregulado. Especialmente, los compuestos interfieren eficazmente con la señalización de VEGFR2 y PDGFRβ y/o de Tie2, a la vez que muestran selectividad favorable contra otras tirosina cinasas tales como, por ejemplo, TrkA y/o el receptor de insulina cinasa.

Por tanto, otro aspecto de la presente invención es un uso del compuesto de fórmula general (I) descrita arriba para preparar una composición farmacéutica para el tratamiento de enfermedades de crecimiento vascular desregulado o de enfermedades que van acompañadas de crecimiento vascular desregulado.

En particular, dicho uso es en el tratamiento de enfermedades, en el que las enfermedades son tumores y/o metástasis de los mismos. Los compuestos de la presente invención pueden usarse en particular en la terapia y la prevención de crecimiento tumoral y metástasis, especialmente en tumores sólidos de todas las indicaciones y etapas con o sin pretratamiento si el crecimiento tumoral va acompañado de angiogénesis persistente, que incluyen principalmente todos los tumores sólidos, por ejemplo, tumores de mama, colon, renales, ovario, próstata, de tiroides, pulmón y/o cerebrales, melanoma, o metástasis de los mismos.

Adicionalmente, dicho uso es en el tratamiento de leucemia mielógena crónica (o "LMC"), leucemia mielógena aguda (o "LMA"), leucemia linfática aguda, leucemia linfocítica aguda (o "LLA"), leucemia linfocítica crónica, leucemia linfática crónica (o "LLC"), además de otras hiperplasias de precursores mieloides tales como policitemia verdadera y mielofibrosis.

Otro uso es en el tratamiento de enfermedades, en el que las enfermedades son retinopatía, otras enfermedades dependientes de angiogénesis del ojo, en particular rechazo de trasplante de córnea o degeneración macular senil.

Todavía otro uso es en el tratamiento de artritis reumatoide, y otras enfermedades inflamatorias asociadas a angiogénesis, en particular psoriasis, hipersensibilidad de tipo retardado, dermatitis de contacto, asma, esclerosis múltiple, reestenosis, hipertensión pulmonar, accidente cerebrovascular y enfermedades inflamatorias del intestino tales como, por ejemplo, enfermedad de Crohn.

Otro uso es en la supresión del desarrollo de la formación de placas ateroscleróticas y para el tratamiento de enfermedad coronaria y arterial periférica.

Otro uso es en el tratamiento de enfermedades asociadas a proliferación estromal o caracterizadas por reacciones estromales patológicas y para el tratamiento de enfermedades asociadas a deposición de fibrina o de matriz extracelular tales como, por ejemplo, fibrosis, cirrosis, síndrome del túnel carpiano.

Otro uso adicional es en el tratamiento de enfermedades ginecológicas en las que puede inhibirse la inhibición de procesos angiogénicos, inflamatorios y estromales con carácter patológico tales como, por ejemplo, endometriosis, preeclampsia, hemorragia posmenopáusica e hiperestimulación ovárica.

Otro uso es en el tratamiento de enfermedades, en las que las enfermedades son ascitis, edema tal como edema asociado a tumor cerebral, traumatismo por alta altitud, edema cerebral inducido por hipoxia, edema pulmonar y edema macular o edema tras quemaduras y traumatismo, enfermedad pulmonar crónica, síndrome disneico del adulto, resorción ósea y para el tratamiento de enfermedades proliferantes benignas tales como mioma, hiperplasia prostática benigna.

Otro uso es en cicatrización para la reducción de la formación de cicatrices y para la reducción de la formación de cicatrices durante la regeneración de nervios dañados.

Otro aspecto adicional de la invención es un procedimiento para tratar una enfermedad de crecimiento vascular

desregulado o enfermedades que van acompañadas de crecimiento vascular desregulado, administrando una cantidad eficaz de un compuesto de fórmula general (I) descrita arriba.

En particular, las enfermedades de dicho procedimiento son tumores y/o metástasis de los mismos, en particular tumores sólidos de todas las indicaciones y etapas con o sin pretratamiento si el crecimiento tumoral va acompañado de angiogénesis persistente, que incluye principalmente todos los tumores sólidos, por ejemplo, tumores de mama, colon, renales, ovario, próstata, de tiroides, pulmón y/o cerebrales, melanoma, o metástasis de los mismos.

5

10

15

25

40

45

Adicionalmente, enfermedades de dicho procedimiento son leucemia mielógena crónica (o "LMC"), leucemia mielógena aguda (o "LMA"), leucemia linfática aguda, leucemia linfocítica aguda (o "LLA"), leucemia linfática crónica, leucemia linfática crónica (o "LLC"), además de otras hiperplasias de precursores mieloides tales como policitemia verdadera y mielofibrosis.

Otras enfermedades de dicho procedimiento son retinopatía, otras enfermedades dependientes de angiogénesis del ojo, en particular rechazo de trasplante de córnea o degeneración macular senil. Otras enfermedades de dicho procedimiento son artritis reumatoide, y otras enfermedades inflamatorias asociadas a angiogénesis, en particular psoriasis, hipersensibilidad de tipo retardado, dermatitis de contacto, asma, esclerosis múltiple, reestenosis, hipertensión pulmonar, accidente cerebrovascular y enfermedades inflamatorias del intestino tales como, por eiemplo, enfermedad de Crohn.

Otras enfermedades de dicho procedimiento son el desarrollo de placas ateroscleróticas y enfermedades coronarias y arteriales periféricas.

Otras enfermedades de dicho procedimiento son enfermedades asociadas a proliferación estromal o caracterizadas por reacciones estromales patológicas y enfermedades asociadas a deposición de fibrina o de matriz extracelular tales como, por ejemplo, fibrosis, cirrosis, síndrome del túnel carpiano.

Otras enfermedades de dicho procedimiento son enfermedades ginecológicas en las que puede inhibirse la inhibición de procesos angiogénicos, inflamatorios y estromales con carácter patológico tales como, por ejemplo, endometriosis, preeclampsia, hemorragia posmenopáusica e hiperestimulación ovárica.

Otras enfermedades de dicho procedimiento son ascitis, edema tal como edema asociado a tumor cerebral, traumatismo por alta altitud, edema cerebral inducido por hipoxia, edema pulmonar y edema macular o edema tras quemaduras y traumatismo, enfermedad pulmonar crónica, síndrome disneico del adulto, resorción ósea y enfermedades proliferantes benignas tales como mioma, hiperplasia prostática benigna.

Otro aspecto de la presente invención es una composición farmacéutica que comprende un compuesto de fórmula general (I) como se define anteriormente, o que puede obtenerse mediante un procedimiento descrito en la presente invención, o una sal farmacéuticamente aceptable o un N-óxido o un solvato o un profármaco de dicho compuesto, y un diluyente o vehículo farmacéuticamente aceptable, siendo la composición particularmente apta para el tratamiento de enfermedades de crecimiento vascular desregulado o de enfermedades que van acompañadas de crecimiento vascular desregulado como se ha explicado anteriormente.

Con el fin de usar los compuestos de la presente invención como productos farmacéuticos, los compuestos o mezclas de los mismos pueden proporcionarse en una composición farmacéutica que, además de los compuestos de la presente invención para administración enteral, oral o parenteral, contiene material de base inerte orgánico o inorgánico farmacéuticamente aceptable adecuado, por ejemplo, agua purificada, gelatina, goma arábiga, lactato, almidón, estearato de magnesio, talco, aceites vegetales, polialquilenglicol, etc.

Las composiciones farmacéuticas de la presente invención pueden proporcionarse en una forma sólida, por ejemplo, como comprimidos, comprimidos recubiertos de azúcar, supositorios, cápsulas o en forma líquida, por ejemplo, como una disolución, suspensión o emulsión. La composición farmacéutica puede contener adicionalmente sustancias auxiliares, por ejemplo, conservantes, estabilizadores, agentes humectantes o emulsionantes, sales para aiustar la presión osmótica o tampones.

Para administraciones parenterales (incluyendo intravenosa, subcutánea, intramuscular, intravascular o infusión) se prefieren disoluciones o suspensiones de inyección estériles, especialmente disoluciones acuosas de los compuestos en polihidroxietoxi que contiene aceite de ricino.

Las composiciones farmacéuticas de la presente invención pueden contener adicionalmente agentes tensioactivos, por ejemplo, sales de ácido galénico, fosfolípidos de origen animal o vegetable, mezclas de los mismos y liposomas y partes de los mismos.

Para administración oral se prefieren comprimidos, comprimidos recubiertos de azúcar o cápsulas con talco y/o vehículos y aglutinantes que contienen hidrocarburos, por ejemplo, lactosa, almidón de maíz y de patata. Es posible otra administración en forma líquida, por ejemplo, como zumo, que contiene edulcorante si fuera necesario.

La dosificación variará necesariamente dependiendo de la vía de administración, edad, peso del paciente, el tipo y gravedad de la enfermedad que está tratándose y factores similares. Una dosis puede administrarse como dosis unitaria o en partes de la misma y distribuirse durante el día. Por consiguiente, la dosificación óptima puede ser determinada por el médico que está tratando a cualquier paciente particular.

Es posible que los compuestos de fórmula general (I) de la presente invención vayan a usarse solos o, de hecho, en combinación con uno o más fármacos adicionales, particularmente fármacos contra el cáncer o composiciones de los mismos. Particularmente, es posible que dicha combinación sea una entidad de composición farmacéutica unitaria, por ejemplo, una formulación farmacéutica unitaria que contiene uno o más compuestos según la fórmula general (I) junto con uno o más fármacos adicionales, particularmente fármacos contra el cáncer, o en una forma, por ejemplo, un "kit de partes" que comprende, por ejemplo, una primera parte distinta que contiene uno o más compuestos según la fórmula general (I), y una o más partes distintas adicionales cada una que las contiene uno o más fármacos adicionales, particularmente fármacos contra el cáncer. Más particularmente, dicha primera parte distinta puede usarse concomitantemente con dicha una o más partes distintas adicionales, o secuencialmente. Además, es posible que los compuestos de fórmula general (I) de la presente invención vayan a usarse en combinación con otros paradigmas de tratamiento, particularmente otros paradigmas de tratamiento contra el cáncer tales como, por ejemplo, radioterapia.

Otro aspecto de la presente invención es un procedimiento que puede usarse para preparar los compuestos según la presente invención.

20

25

30

35

40

45

La siguiente tabla enumera las abreviaturas usadas en este párrafo y en la sección de ejemplos en la medida en que no se explican dentro del siguiente cuerpo. Las formas de los picos de RMN se establecen a medida que aparecen en los espectros, no se han considerado posibles efectos de mayor orden. Los nombres químicos se generaron usando AutoNom2000 como se implementa en MDL ISIS Draw. En algunos casos se usaron nombres generalmente aceptados de reactivos comercialmente disponibles en lugar de los nombres generados por AutoNom2000. Las reacciones empleando irradiación con microondas puede realizarse con un horno microondas Biotage Initator® opcionalmente equipado con una unidad robótica. Los tiempos de reacción informados empleando calentamiento con microondas pretenden entenderse como tiempos de reacción fijos después de alcanzarse la temperatura de reacción indicada. Los compuestos y productos intermedios producidos según los procedimientos de la invención pueden requerir purificación. La purificación de compuestos orgánicos es muy conocida para el experto en la materia y puede haber varias formas para purificar el mismo compuesto. En algunos casos puede no ser necesaria la purificación. En algunos casos, los compuestos pueden purificarse por cristalización. En algunos casos, las impurezas pueden eliminarse por agitación usando un disolvente adecuado. En algunos casos, los compuestos pueden purificarse por cromatografía, particularmente cromatografía ultrarrápida, usando, por ejemplo, cartuchos de gel de sílice precargados, por ejemplo, de Separtis tales como gel de sílice Isolute® Flash o gel de sílice Isolute® Flash NH₂ en combinación con un autopurificador Flashmaster II (Argonaut/Biotage) y eluyentes tales como gradientes de hexano/acetato de etilo o DCM/etanol. En algunos casos, los compuestos pueden purificarse por HPLC preparativa usando, por ejemplo, un autopurificador Waters equipado con un detector de matriz de diodos y/o espectrómetro de masas de ionización por electropulverización en línea en combinación con una columna de fase inversa precargada adecuada y eluyentes tales como gradientes de agua y acetonitrilo que pueden contener aditivos tales como ácido trifluoroacético o amoniaco acuoso. En algunos casos, los procedimientos de purificación como se han descrito anteriormente pueden proporcionar aquellos compuestos de la presente invención que poseen una funcionalidad suficientemente básica o ácida en forma de una sal tal como, en el caso de un compuesto de la presente invención que es suficientemente básico, por ejemplo, una sal de trifluoroacetato o formiato. o. en el caso de un compuesto de la presente invención que es suficientemente ácido, por ejemplo, una sal de amonio. Una sal de este tipo puede tanto transformarse en su forma de base libre como de ácido libre, respectivamente, por diversos procedimientos conocidos para el experto en la materia, o usarse como sales en posteriores ensayos biológicos. Debe entenderse que la forma específica (por ejemplo, sal, base libre, etc.) de un compuesto de la presente invención cuando se aísla como se describe en este documento no es necesariamente la única forma en la que dicho compuesto puede aplicarse a un ensayo biológico con el fin de cuantificar la actividad biológica específica.

Abreviatura	Significado
Ac	acetilo
Вос	terc-butiloxicarbonilo
а	ancho
CI	ionización química
d	doblete
dd	doblete de dobletes

ES 2 372 350 T3

(continuación)

Abreviatura	Significado
ddd	doblete de dobletes de dobletes
dt	doblete de tripletes
dc	doblete de cuartetes
DCM	diclorometano
DIPEA	N,N-diisopropiletilamina
DMF	N,N-dimetilformamida
DMSO	sulfóxido de dimetilo
eq.	equivalente
ESI	ionización por electropulverización
PG	procedimiento general
HPLC	cromatografía líquida de alta resolución
EM-CL	espectrometría de masas-cromatografía líquida
m	multiplete
mc	multiplete centrado
EM	espectrometría de masas
RMN	espectroscopía de resonancia magnética nuclear: los desplazamientos químicos (δ) se facilitan en ppm.
Pg	grupo protector
С	cuartete
ar	a reflujo
t.a. o ta	temperatura ambiente
S	singlete
sept.	septuplete
t	triplete
TBAF	fluoruro de tetra-N-butilamonio
TEA	trietilamina
TLC	cromatografía en capa fina
TFA	ácido trifluoroacético
THF	tetrahidrofurano
TMS	trimetilsililo
Т3Р	anhídrido cíclico de ácido 1-propanofosfórico

Los siguientes esquemas y procedimientos generales ilustran rutas de síntesis generales para los compuestos de fórmula general (I) de la invención y no pretenden ser limitantes. Es obvio para el experto en la materia que el orden de las transformaciones como se ejemplifica en los Esquemas 1 a 11 puede modificarse de diversas formas. Por

tanto, no se pretende que el orden de las transformaciones ejemplificadas en los Esquemas 1 a 11 sea limitante. Además, la interconversión de sustituyentes, por ejemplo, de residuos R^1 , R^2 , R^3 , R^4 , R^5 , R^a , R^b , R^c , R^d ,

Esquema 1:

5

10

15

20

25

30

35

40

$$(CH_2)_q \longrightarrow NH$$

$$(CH_2)_q \longrightarrow N-A-B \longrightarrow R^5$$

$$R^3$$

Esquema 1 Procedimiento general para la preparación de compuestos de fórmula general (I) por funcionalización de aminas de fórmula general 1 en la que A, B, D, E, R^a , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en la descripción y reivindicaciones de la presente invención.

Los compuestos de fórmula general (I) pueden sintetizarse según el procedimiento representado en el **Esquema 1** a partir de aminas de fórmula general **1** mediante reacción con, por ejemplo, un isocianato adecuadamente funcionalizado (que conduce a ureas), un cloruro de sulfonilo adecuadamente funcionalizado (que conduce a sulfonilamidas) o un cloruro de ácido adecuadamente funcionalizado (que conduce a amidas carboxílicas) en presencia de una base adecuada según sea necesario, por ejemplo, piridina o trietilamina, que también puede usarse como disolvente, opcionalmente en presencia de un disolvente inerte, por ejemplo, diclorometano, acetonitrilo, DMF o THF, a temperaturas que oscilan de -20°C al punto de ebullición del disolvente, por lo que se prefiere temperatura ambiente.

Una variedad de isocianatos adecuados para la transformación anteriormente descrita se describe en la bibliografía o está comercialmente disponible. El experto en la materia conoce bien procedimientos alternativos de formación de ureas que pueden ser de especial importancia en casos en los que los isocianatos respectivos no estén fácilmente disponibles (véanse el Esquema 2, 3, 4 para procedimientos más específicos de formación de urea a modo de ejemplo).

Los procedimientos para la preparación de cloruros de (hetero)arilsulfonilo funcionalizados también son conocidos para el experto en la materia. La introducción de grupos sulfonilo puede llevarse a cabo por sulfonilación o por oxidación de tioles. Los cloruros de sulfonilo pueden estar accesibles a su vez a partir de ácidos sulfónicos mediante reacción con, por ejemplo, cloruro de tionilo, cloruro de sulfurilo, pentacloruro de fósforo, oxitricloruro de fósforo o cloruro de oxalilo.

En el caso de la transformación de aminas de fórmula general 1 en amidas de fórmula general (I) [siendo A -C(O)-], también es posible hacer reaccionar aminas de fórmula general 1 con un éster apropiado según un procedimiento descrito en J. Org. Chem. 1995, 8414, en presencia de trimetilaluminio y en disolventes adecuados tales como tolueno a temperaturas de 0°C al punto de ebullición del disolvente. Sin embargo, para la formaciones de amidas, también están disponibles todos los procedimientos que son conocidos de la química de los péptidos para el experto en la materia. Por ejemplo, el ácido correspondiente, que puede obtenerse a partir del éster correspondiente por saponificación, puede hacerse reaccionar con aminas de fórmula general 1 en disolventes polares apróticos tales como, por ejemplo, DMF mediante un derivado de ácido activado que puede obtenerse, por ejemplo, con

hidroxibenzotriazol y una carbodiimida tal como, por ejemplo, diisopropilcarbodiimida (DIC) a temperaturas de entre 0°C y el punto de ebullición del disolvente, preferentemente a 80°C, o si no con reactivos preformados tales como, por ejemplo, hexafluorofosfato de O-(7-azabenzotriazol-1-il)-1,1,3,3-tetrametiluronio (HATU) (véase, por ejemplo, Chem. Comm. 1994, 201) a temperaturas de entre 0°C y el punto de ebullición del disolvente, preferentemente a temperatura ambiente, o si no con agentes de activación tales como diciclohexilcarbodiimida (DCC)/dimetilaminopiridina (DMAP) o *N*-etil-*N*'-dimetilaminopropilcarbodiimida (EDCI)/dimetilaminopiridina (DMAP) o T3P (anhídrido cíclico de ácido 1-propanofosfórico). Puede ser necesaria la adición de una base adecuada tal como, por ejemplo, *N*-metilmorfolina, TEA, DIPEA. La formación de amidas también puede llevarse a cabo por el haluro de ácido (que puede formarse a partir de un ácido carboxílico mediante reacción con, por ejemplo, isobutirocloroformiato), imidazolida (que puede formarse a partir de un ácido carboxílico mediante reacción con, por ejemplo, carbonildiimidazolida) o azida (que puede formarse a partir de un ácido carboxílico mediante reacción con, por ejemplo, difenilfosforilazida (DPPA).

Los ácidos carboxílicos requeridos para las reacciones de acoplamiento de amida anteriormente descritas están tanto comercialmente disponibles como accesibles a partir de ésteres carboxílicos o nitrilos comercialmente disponibles. Alternativamente, los (hetero)arilos que llevan un sustituyente metilenonitrilo están fácilmente accesibles a partir de los haluros respectivos mediante una reacción de sustitución nucleófila (por ejemplo, cianuro de potasio, yoduro de potasio cat., etanol/agua). La incorporación de funcionalidad adicional en materiales de partida comercialmente disponibles puede llevarse a cabo por una multitud de reacciones de transformación aromáticas conocidas para el experto en la materia que incluyen, pero no se limitan a, halogenaciones electrófilas, nitraciones electrófilas, acilaciones de Friedel-Crafts, desplazamiento nucleófilo de flúor por nucleófilos de oxígeno o nitrógeno, reacciones de desplazamiento de haluros bencílicos con nucleófilos adecuados y transformación de ácidos (hetero)arilcarboxílicos en amidas y posterior reducción en aminas bencílicas, por lo que los tres últimos procedimientos son de particular relevancia para la introducción de cadenas laterales de éter, amino y/o aminometileno.

Los nitrilos y ésteres bencílicos (y análogos de heteroarilo de los mismos) pueden alquilarse eficientemente en la posición bencílica en condiciones básicas y posteriormente hidrolizarse a los ácidos alquilados correspondientes. Las condiciones para □-alquilaciones de nitrilos y ésteres incluyen, pero no se limitan a, el uso de bromuros de alquilo o yoduros de alquilo como electrófilos en condiciones básicas en presencia o ausencia de un catalizador de transferencia de fases en un sistema de disolventes mono o bifásico. Particularmente, los nitrilos α,α-dialquilados están accesibles usando yoduros de alquilo en exceso como especies electrófilas. Más particularmente, usando 1,□-dihaloalquilos como electrófilos, los restos de cicloalquilo pueden instalarse en la posición bencílica de nitrilos y ésteres (J. Med. Chem. 1975, 18, 144; documento WO2003022852). Incluso más particularmente, usando un 1,2-dihaloetano tal como, por ejemplo, 1,2-dibromoetano o 1-bromo-2-cloroetano, un anillo de ciclopropano puede instalarse en la posición bencílica de un nitrilo o éster. La hidrólisis de nitrilos para dar ácidos carboxílicos puede llevarse a cabo, como conoce el experto en la materia, bajo condiciones mediadas por ácido o base.

Esquema 2:

5

10

15

20

25

30

35

40

$$(CH_{2})_{q} \longrightarrow NH$$

$$+ H_{2}N - B \longrightarrow R^{5}$$

$$R^{1}$$

$$1$$

$$2$$

$$(CH_{3})_{q} \longrightarrow NH$$

$$CH_{3})_{q} \longrightarrow NH$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

Esquema 2 Procedimiento más específico para la preparación de compuestos de fórmula general la haciendo reaccionar aminas de fórmula general **1** con (hetero)arilaminas de fórmula general **2** en presencia de trifosgeno, por ejemplo, en la que B, D, E, R^3 , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en la descripción y reivindicaciones de la presente invención.

Un procedimiento alternativo más específico de generación de ureas de fórmula general la se representa en el **Esquema 2.** En este caso, la formación de urea a partir de aminas de fórmula general 1 puede lograrse mediante

acoplamiento con una segunda amina funcionalizada de fórmula general **2** mediante transformación *in situ* de una de las aminas reactantes en el cloruro de carbamoílo, carbamato de arilo o alquenilo respectivo (véase, por ejemplo, J. Org. Chem. 2005, 70, 6960, y referencias citadas en su interior). Este procedimiento puede proporcionar una alternativa a la formación y aislamiento del isocianato respectivo derivado de una de las aminas de partida (véase, por ejemplo, Tetrahedron Lett. 2004, 45, 4769). Más particularmente, las ureas de fórmula **Ia** pueden formarse a partir de dos aminas adecuadamente funcionalizadas y un equivalente de fosgeno adecuado, preferentemente trifosgeno, en un disolvente inerte, preferentemente acetonitrilo, a temperaturas que oscilan de -20°C al punto de ebullición del disolvente, por lo que se prefiere la temperatura ambiente.

Esquema 3:

5

10

15

20

25

Esquema 3 Procedimientos alternativos más específicos para la preparación de compuestos de fórmula general **la** tanto transformando las aminas de fórmula general **1** en sus carbamatos de isopropenilo correspondientes de fórmula general **3** y posterior reacción con (hetero)arilaminas de fórmula general **2** como haciendo reaccionar las aminas de fórmula general **1** con carbamatos de isopropenilo de fórmula general **4** en la que B, D, E, R^a , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en la descripción y reivindicaciones de la presente invención.

El procedimiento alternativo anteriormente mencionado para generar ureas de fórmula general **la** empleando carbamatos de alquenilo, por ejemplo, carbamatos de isopropenilo, se representa en más detalle en el **Esquema 3**. En analogía a la publicación anteriormente citada (J. Org. Chem. 2005, 70, 6960), la transformación de aminas de fórmula general **1** en sus carbamatos de isopropenilo respectivos de fórmula general **3** puede llevarse a cabo mediante reacción con cloroformiato de isopropenilo en presencia de una base apropiada tal como, por ejemplo, *N*-metilmorfolina en un disolvente adecuado tal como, por ejemplo, THF. Los carbamatos de isopropenilo de fórmula general **3** pueden entonces hacerse reaccionar, después del aislamiento o *in situ*, con (hetero)arilaminas de fórmula general **2** en presencia de una base adecuada tal como, por ejemplo, *N*-metilpirrolidina en un disolvente adecuado tal como, por ejemplo, THF para dar ureas de fórmula general **1a**. Alternativamente, las (hetero)arilaminas de fórmula general **2** pueden transformarse en sus carbamatos de isopropenilo correspondientes de fórmula general **4** empleando condiciones que se han descrito anteriormente y posteriormente hacerse reaccionar con aminas de fórmula general **1** en condiciones que se han descrito anteriormente para dar ureas de fórmula general **1a**.

Esquema 4:

$$(CH_1)_{A_1} \longrightarrow (CH_2)_{A_1} \longrightarrow (CH_$$

Esquema 4 Procedimientos adicionales más específicos para la preparación de compuestos de fórmula general **la** tanto transformando aminas de fórmula general **1** en sus carbamatos de fenilo correspondientes de fórmula general **5** y posterior reacción con (hetero)arilaminas de fórmula general **2** como haciendo reaccionar aminas de fórmula general **1** con carbamatos de isopropenilo de fórmula general **6** en la que B, D, E, R^a , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en la descripción y reivindicaciones de la presente invención.

Un procedimiento adicional para generar ureas de fórmula general **Ia** empleando carbamatos de arilo, por ejemplo, carbamatos de fenilo o 4-nitro-carbamatos de fenilo en analogía a los procedimientos descritos, por ejemplo, en los documentos WO2007064872 o W02005110994 se ejemplifica en el **Esquema 4**. La transformación de aminas de fórmula general **1** en sus carbamatos de fenilo respectivos de fórmula general **5** puede llevarse a cabo mediante reacción con cloroformiato de fenilo en presencia de una base apropiada tal como, por ejemplo, carbonato sódico en un disolvente adecuado tal como, por ejemplo, THF. Los carbamatos de fenilo de fórmula general **5** pueden entonces hacerse reaccionar, después del aislamiento o *in* situ, con (hetero)arilaminas de fórmula general **2** en presencia de una base adecuada tal como, por ejemplo, piridina en un disolvente adecuado tal como, por ejemplo, THF para dar ureas de fórmula general **1a**. Alternativamente, las (hetero)arilaminas de fórmula general **2** pueden transformarse en sus carbamatos de fenilo correspondientes de fórmula general **6** empleando condiciones que se han descrito anteriormente y hacerse reaccionar posteriormente con aminas de fórmula general **1** en condiciones que se han descrito anteriormente para dar ureas de fórmula general **Ia**.

Los procedimientos para la preparación de (hetero)arilaminas funcionalizadas como componentes de acoplamiento para las transformaciones anteriormente descritas son muy conocidos para el experto en la materia. A partir de (hetero)arilaminas o nitro(hetero)arilenos comercialmente disponibles pueden aplicarse transformaciones muy conocidas que incluyen, pero no se limitan a, alquilaciones, sustituciones nucleófilas o electrófilas, acilaciones, halogenaciones, nitraciones, sulfonilaciones, acoplamientos catalizados por metales (de transición), metalaciones, transposiciones, reducciones y/u oxidaciones para preparar aminas funcionalizadas que van a usarse en la etapa de formación de ureas. Además de los procedimientos específicos facilitados en la siguiente sección experimental, pueden encontrarse procedimientos detallados en la bibliografía científica y de patentes (véanse, por ejemplo, los documentos WO2005051366, WO2005110410, WO2005113494, WO2006044823 y WO2006124462; WO2007064872 y WO2005110994).

30

5

10

15

20

Esquema 5:

Esquema 5 Secuencia de reacción para la preparación de aminas especialmente adecuadas de fórmula general **2**' para las formaciones de urea según los Esquemas 2, 3 y 4, en la que ácidos (hetero)arilcarboxílicos de fórmula general **7** se transforman en alcoholes bencílicos de fórmula general **8**, luego en bromuros bencílicos de fórmula general **9**, luego se hacen reaccionar con aminas de fórmula general **10** en aminas de fórmula general **11** y finalmente se transforman en aminas de fórmula general **2**' en la que B, E, R^5 , R^{d1} y R^{d2} son como se definen en la descripción y reivindicaciones de la presente invención.

Una secuencia de reacción para la preparación de (hetero)arilaminas especialmente adecuadas para los procedimientos de formación de ureas anteriormente descritos se representa en el **Esquema 5.** Ácidos (hetero)arilcarboxílicos de fórmula general **7** puede reducirse a alcoholes bencílicos de fórmula general **8** bajo condiciones estándar que son conocidas para el experto en la materia, por ejemplo, mediante reacción con el complejo de borano-THF o borohidruro de sodio/yodo. La bromación de alcoholes bencílicos de fórmula general **8** que conduce a bromuros bencílicos de fórmula general **9** es factible empleando, por ejemplo, tetrabromuro de carbono en presencia de trifenilfosfina. La reacción de bromuros bencílicos de fórmula general **9** con aminas de fórmula general **10** da lugar a aminas bencílicas de fórmula general **11** que posteriormente pueden reducirse bajo condiciones estándar que son conocidas para el experto en la materia, por ejemplo, por hidrogenación catalizada por paladio o mediante reacción con cloruro de estaño (II) en aminas de fórmula general **2'**.

Esquema 6:

5

10

15

Esquema 6 Otra secuencia de reacción para la preparación de aminas especialmente adecuadas de fórmula general **2**" y **2**" para las formaciones de urea según el Esquema 2 en la que fluoruros de (hetero)arilo de fórmula general **12** se hacen reaccionar tanto con aminas de fórmula general **10** como con alcoholes de fórmula general **14** dando después de la posterior nitrorreducción aminas de fórmula general **2**" o fórmula general **2**", respectivamente, en las que B, E, R⁴, R^c, R^{d1} y R^{d2} son como se definen en la descripción y reivindicaciones de la presente invención.

Otras secuencias de reacción para la preparación de (hetero)arilaminas especialmente adecuadas para los procedimientos de formación de ureas anteriormente descritos se representan en el Esquema 6. Los fluoruros de (hetero)arilo de fórmula general 12 se hacen reaccionar con aminas de fórmula general 10 en una reacción de sustitución aromática nucleófila en presencia de una base adecuada tal como, por ejemplo, bicarbonato sódico en un disolvente adecuado tal como, por ejemplo, DMF con calentamiento, opcionalmente por irradiación con microondas, para formar anilinas de fórmula general 13. Alternativamente, la reacción con alcoholes de fórmula general 14 en presencia de una base adecuada tal como, por ejemplo, carbonato de cesio, opcionalmente con calentamiento, da lugar a nitroéteres de fórmula general 15. La posterior nitrorreducción conduce a aminas de fórmula general 2" o fórmula general 2", respectivamente.

Esquema 7:

5

10

15

20

25

30

35

40

45

Las aminas de fórmula general 1 son accesibles, por ejemplo, por acoplamiento catalizado por metal de transición de un 4-haluro apropiado de fórmula general 15 con alquinos terminales (con T = H) o sus trialquilsilanos respectivos, especialmente sus derivados de trimetilsilano (con R = Me₃Si) de fórmula general 16, seguido de nitrorreducción empleando condiciones estándar que son conocidas para el experto en la materia tales como, por ejemplo, hidrogenación catalizada por paladio, reducción con cloruro de estaño (II) dihidratado, reducción con cloruro de hierro/de amonio, reducción con cloruro de titanio (III) o reducción con cinc/ácido clorhídrico y opcionalmente seguido de introducción de grupos Ra por, por ejemplo, alquilación básica o alquilación reductora (Esquema 7). Más particularmente, los productos intermedios de fórmula 17 pueden prepararse a partir de un haluro 15 por reacciones de acoplamiento de tipo Sonogashira catalizadas por paladio con alguinos terminales (con T = H) o sus trialquilsilanos respectivos, especialmente sus derivados de trimetilsilano (con R = Me₃Si) de fórmula general 16. Los acoplamientos catalizados por metal de transición de haluros de (hetero)arilo con alquinos y trialquilsililalquinos son muy conocidos para el experto en la materia (véanse, por ejemplo, (a) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874; (b) Negishi, E.-i., Anastasia, L. Chem. Rev. 2003, 103, 1979; see also: (c) Eur. J. Org. Chem. 2005, 20, 4256; (d) J. Org. Chem. 2006, 71, 2535 y referencias en su interior; (e) Chem. Commun. 2004, 17, 1934). En el llamado acoplamiento de Sonogashira, la reacción de alguinos terminales (con T = H) con haluros de (hetero)arilo es producida por cantidades catalíticas de una sal de paladio en presencia de una sal de cobre y una base. Se han publicado diversas combinaciones de catalizador de paladio/co-catalizador/ligando/base/disolvente en la bibliografía científica que permite un ajuste de las condiciones de reacción requeridas con el fin de permitir un amplio conjunto de grupos funcionales adicionales sobre tales componentes de acoplamiento (véanse las referencias en las revisiones anteriormente citadas). Adicionalmente, los procedimientos recientemente desarrollados que emplean, por ejemplo, acetiluros de cinc, sales de alquinilmagnesio o sales de trifluoroborato de alquinilo amplían adicionalmente el alcance de este procedimiento. Alternativamente, empleando ciertas bases tales como, por ejemplo, fluoruro de tetra-N-butilamonio, los alquinos sustituidos con trialquilsililo tales como, por ejemplo, trimetilsililalquinos pueden acoplarse bajo condiciones de Sonogashira con haluros de (hetero)arilo.

Esquema 8:

Alternativamente, los productos intermedios de fórmula general 1 son accesibles por los acoplamientos de tipo Sonogashira anteriormente mencionados de haluros de fórmula general 15 con alquinos de fórmula general 18 en condiciones que se han descrito antes (Esquema 8). En algunos casos, la introducción de un grupo protector de amina puede facilitar la reacción de acoplamiento ejemplificada en el Esquema 8. Grupos protectores apropiados y su introducción y escisión son muy conocidos para el experto en la materia (véase, por ejemplo, T.W. Greene y P.G.M. Wuts en Protective Groups in Organic Synthesis, 3ª edición, Wiley 1999).

Los alquinos de fórmula general **16** y **18** son accesibles, por ejemplo, a partir de los haluros de nitro o amino(hetero)arilo respectivos por acoplamientos de tipo Sonogashira con acetilenos mono-protegidos en condiciones que se han descrito antes, seguido opcionalmente de escisión del grupo de protección. Acetilenos mono-protegidos particularmente adecuados para este procedimiento son acetileno protegido con TMS y 2-metil-but-3-in-2-ol. La escisión del grupo protector respectivo puede llevarse a cabo, por ejemplo, mediante tratamiento con fluoruro de tetra-*N*-butilamonio (TBAF) o carbonato de potasio en el caso del uso de TMS-acetileno, o mediante tratamiento con base en el caso del uso de 2-metil-but-3-in-2-ol. Debe observarse que, como se ha descrito arriba, los alquinos protegidos con trialquilsililo pueden usarse directamente en acoplamientos de tipo Sonogashira empleando, por ejemplo, fluoruro de tetra-*N*-butilamonio (TBAF) como base. Alternativamente, los compuestos de fórmula general **16** y **18** son accesibles a partir de sus carbaldehídos respectivos por, por ejemplo, (a) homologación de Corey-Fuchs (Tetrahedron Lett. 1972, 14, 3769), (b) reacción con TMS-diazometano (Chem. Comm. 1973, 151), (c) reacción con el reactivo de Gilbert-Seyferth (J. Org. Chem. 1971, 36, 1379; J. Org. Chem. 1996, 61, 2540) o (d) reacción con el diazofosfonoéster de Ohira-Bestmann (Synth. Commun. 1989, 19, 561; Synlett 1996, 521).

Esquema 9:

10

15

20

25

30

Esquema 9 Procedimiento general para la preparación de compuestos de fórmula general (I) por acoplamiento catalizado por metal de transición de haluros de fórmula general **15** con alquinos de fórmula general **19** en la que A, B, D, E, R^a , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en la descripción y reivindicaciones de la presente

invención y X representa Cl, Br o I, y T representa H o un grupo trialquilsililo tal como, por ejemplo, un grupo trimetilsililo.

Una alternativa más convergente al procedimiento ejemplificado antes se representa en el **Esquema 9**, en el que compuestos de la presente invención de fórmula general (I) se preparan por un acoplamiento catalizado por metal de transición de un precursor de halo apropiado de fórmula general 15 y alquinos apropiadamente sustituidos de fórmula general 19. Más particularmente, los compuestos de la presente invención pueden prepararse a partir de un haluro 15 por reacciones de acoplamiento de tipo Sonogashira catalizadas con paladio con (hetero)arilalquinos 19. Los (hetero)arilalquinos funcionalizados de fórmula general 19 pueden prepararse, por ejemplo, por formación de ureas o formación de sulfonamidas o acoplamiento de amida de anilinas consiguientemente sustituidas (por ejemplo, de fórmula general 18).

Esquema 10:

5

10

15

20

25

30

35

40

45

Esquema 10 Procedimiento general para la preparación de 4-haluros de fórmula general **15** por transformación de carbaldehídos de fórmula general **20** en sus hidrazonas respectivas de fórmula general **21** y ciclación en la que R^1 , X_1 , X_2 y X_3 son como se definen en la descripción y reivindicaciones de la presente invención y X representa CI, Br o I

Los haluros de fórmula general 15 son accesibles, por ejemplo, como se representa en el Esquema 10 a partir de carbaldehídos de fórmula general 10 por transformación en hidrazonas de fórmula 21 y posterior ciclación. Debe entenderse que la formación y ciclación de hidrazonas puede llevarse a cabo en una transformación preparativa o. alternativamente, en dos etapas separadas. Más particularmente, los carbaldehídos de fórmula 20 pueden hacerse reaccionar con hidracina (por ejemplo, hidracina hidratada) o hidracinas sustituidas en un disolvente apropiado, preferentemente en 1-propanol, a una temperatura apropiada, preferentemente a 100 a 120°C, para dar hidrazonas de fórmula 21 o haluros de fórmula 15. Las hidrazonas aisladas de fórmula 21 pueden ciclarse a haluros de fórmula 15, por ejemplo, aplicando condiciones básicas, preferentemente haciendo reaccionar con hidruro de sodio en un disolvente apropiado, preferentemente DMF, o aplicando condiciones ácidas, por ejemplo, tratando con, por ejemplo, TFA o ácido acético en un disolvente apropiado. Están comercialmente disponibles una variedad de bloques de construcción de hidracinas sustituidas según se requiera para la conversión de carbaldehídos de fórmula 20 en productos intermedios de fórmula 21 y/o 15, tanto en forma de su base libre como diversos tipos de sales (por ejemplo, clorhidratos, oxalatos) que pueden transformarse en sus bases libres respectivas por tratamiento alcalino tanto antes de la ciclación como in situ. Adicionalmente, las alquil-, alil- y bencilhidracinas sustituidas (o sus sales de clorhidrato respectivas) están accesibles a partir de los haluros de alquilo, alilo y bencilo respectivos, preferentemente los bromuros de alquilo, alilo y bencilo respectivos, por reacción de sustitución nucleófila con una hidracina protegida tal como BocNHNH2 en un disolvente inerte, preferentemente metanol, en presencia de un promotor de amina, por ejemplo, trietilamina, a temperaturas que oscilan de temperatura ambiente hasta el punto de ebullición del disolvente, opcionalmente seguido de desprotección empleando condiciones conocidas para el experto en la materia, preferentemente, en el caso de desprotección de Boc, mediante tratamiento con ácido clorhídrico en una mezcla de éter dietílico y metanol (para un procedimiento representativo véase J. Med. Chem. 2006, 49, 2170). Como alternativa al uso de hidracina hidratada en la transformación ejemplificada en el Esquema 10, en su lugar pueden usarse análogos protegidos, por ejemplo, Boc-hidracina (también conocida como carbazato de terc-butilo), bencilhidracina o para-metoxibencilhidracina. La eliminación del grupo protector respectivo es factible por transformaciones convencionales que son conocidas para el experto en la materia, por ejemplo, mediante hidrogenación, tratamiento con ácido o tratamiento con base. Los carbaldehídos de fórmula general 20 están tanto comercialmente disponibles como pueden sintetizarse, por ejemplo, a partir de las dihalopiridinas respectivas por reacciones de formilación, más particularmente por metalación seguida de formilación de las especies metaladas respectivas (véase, por ejemplo, Tetrahedron Lett. 1996, 37, 2565, documentos US 6232320 o WO 2005110410).

Como se ha establecido anteriormente, el orden de las transformaciones como se ejemplifica en esquemas previos no pretende ser limitante. Por ejemplo, los carbaldehídos de fórmula 20 también pueden acoplarse de forma cruzada con un alquino apropiadamente sustituido, por ejemplo, de fórmula 16 ó 18 ó 19, seguido de ciclación mediante

reacción con, por ejemplo, hidracina hidratada o una hidracina sustituida para dar compuestos de fórmula 1 o I.

Esquema 11:

5

10

20

25

40

Esquema 11 Procedimiento general para la preparación de 3-amino-4-haluros de fórmula general **23** por transformación de (hetero)arilnitrilos de fórmula general **22** con hidracina o hidracinas sustituidas en las que R^1 , X_1 , X_2 y X_3 son como se definen en la descripción y reivindicaciones de la presente invención y X representa X_1 .

Alternativamente, los (hetero)arilnitrilos de fórmula general 22 pueden ciclarse con hidracina (por ejemplo, hidracina hidratada) o hidracinas sustituidas para dar 3-amino-4-haluros de fórmula general 23, que posteriormente pueden hacerse reaccionar con alquinos de fórmulas generales 16 ó 19. La desaminación de los productos intermedios así formados, por ejemplo, mediante transformación en sus sales de diazonio respectivas y posterior tratamiento ácido conduce a productos intermedios de fórmula general 1 o compuestos de la presente invención de fórmula I.

PROCEDIMIENTOS GENERALES

En los párrafos posteriores se describen procedimientos generales detallados para la síntesis de productos intermedios clave y compuestos de la presente invención.

15 Procedimiento general 1 (PG 1): Formación de hidrazonas

El carbaldehído de heteroarilo respectivo se disolvió en alcohol 1-propílico (~ 4-5 ml por mmol de carbaldehído), se trató con la hidracina respectiva (1,5-3,0 eq.) y posteriormente se calentó a 100-120°C en un horno microondas (Biotage Initiator®). La mezcla de reacción se concentró, el residuo se repartió entre agua y acetato de etilo, la fase acuosa se reextrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío dando el producto deseado, que normalmente se usó en la posterior ciclación sin más etapas de purificación.

Procedimiento general 2 (PG 2): Ciclación de hidrazonas

La hidrazona respectiva (preparada como se describe en PG 1) se disolvió en THF seco (~ 9 ml por mmol de hidrazona), se trató con hidruro de sodio al 50-60% (1,2 a 2,2 eq.) y posteriormente se sometió a reflujo durante 90 min. La mezcla de reacción se inactivó con agua, se extrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío. El precipitado se filtró y posteriormente se trituró con éter diisopropílico dando el producto deseado. La cromatografía ultrarrápida del agua madre proporcionó un segundo lote del producto analíticamente puro. Alternativamente, en la mayoría de los casos, la concentración de la mezcla de reacción bruta a sequedad proporcionó el producto ciclado con suficiente pureza para posteriores transformaciones.

Procedimiento general 3a (PG 3a): Acoplamiento de Sonogashira (Condiciones A)

30 Se pesan un equivalente del producto intermedio de halopirimidina, yoduro de cobre (I) (0,2 eq.) y diclorobis(trifenilfosfina)paladio (II) (Pd(PPh₃)₂Cl₂)(0,1 eq.) en un matraz con llave, se ponen bajo una atmósfera de argón y se disuelven en DMF seca (1 ml por mmol de haluro). El compuesto de etinil(hetero)arilo respectivo (1,2 eq.) y trietilamina (5-10 eq.) se añaden secuencialmente y la mezcla resultante se agita a ta (a menos que se observe de otro modo) hasta que el análisis por CCF o EM-CL muestra el consumo completo del compuesto de haluro de partida. La mezcla de reacción se reparte entre DCM y agua, la fase acuosa se extrae con DCM (3x) y las fases orgánicas combinadas se secan y se concentran a vacío. El compuesto diana se aísla por cristalización y/o purificación por cromatografía ultrarrápida y/o HPLC preparativa.

Procedimiento general 3b (PG 3b): Acoplamiento de Sonogashira (Condiciones B)

Se añade diclorobis(trifenilfosfina)paladio (II) (PdCl₂(PPh₃)₂) (5-10% en moles) a una mezcla del haluro respectivo (1 eq), yoduro de cobre (I) (10-20% en moles), el alquino respectivo (1-1,5 eq) en THF dopado con trietilamina (2-10 eq). La mezcla se calienta a reflujo en un matriz tapado durante 18 h. Después de enfriarse hasta temperatura ambiente se añade agua y acetato de etilo y la fase orgánica se separa, se filtra y se concentra a vacío y se purifica por HPLC.

Procedimiento general 3c (PG 3c): Acoplamiento de Sonogashira (Condiciones C)

A una mezcla del haluro respectivo en THF (5 ml por mmol de haluro) se añaden el alquino (normalmente 1,5 - 2,0 eq), diclorobis(trifenilfosfina)paladio (II) (PdCl₂(PPh₃)₂) (5-10% en moles), yoduro de cobre (I) (20% en moles) y una disolución 1 M de fluoruro de tetra-*N*-butilamonio en THF (2,0 - 3,0 eq.) bajo atmósfera inerte a temperatura ambiente. Entonces, la mezcla se deja reaccionar durante 30 min a 80°C en un horno microondas. Después de enfriarse hasta temperatura ambiente, la mezcla se diluye con agua y se extrae repetidamente con diclorometano. Las fases orgánicas combinadas se secan sobre sulfato de magnesio y se evaporan. La cromatografía en columna o la HPLC preparativa dan el compuesto diana puro.

Procedimiento general 4 (PG): Desililación de trimetilsililalquinos

A una disolución del (trimetilsilil)alquino respectivo en THF (aprox. 10 ml por g de alquinos) se añade una disolución 1 M de fluoruro de tetra-*N*-butilamonio en THF (1,65 eq.), y la mezcla resultante se agita a temperatura ambiente hasta que la reacción se haya completado (normalmente después de aprox. 3 h). El producto se aísla por dilución con agua, extracción con, por ejemplo, diclorometano y cromatografía en columna (si se requiere).

Procedimiento general 5 (PG 5): Formación de ureas (Condiciones A)

La (hetero)arilamina respectiva (1 eq.) se disolvió en DCM (5-10 ml por mmol de amina) y se trató con el isocianato respectivo (comercialmente disponible) (1-1,2 eq.). La mezcla de reacción se agitó a temperatura ambiente hasta que la CCF y/o EM/CL indicó el consumo completo de la anilina de partida (normalmente durante la noche). La mezcla de reacción se concentró a vacío, el residuo se recogió en acetato de etilo y se añadió agua, las fases se separaron y la fase acuosa se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron y se concentraron a vacío. El residuo se purificó opcionalmente por cromatografía ultrarrápida y/o trituración y/o HPLC preparativa.

Procedimiento general 6 (PG 6): Formación de ureas (Condiciones B)

Se disolvieron 1,2 eq. de una (hetero)arilamina (normalmente la menos funcionalizada de las dos aminas que van a acoplarse) en acetonitrilo (~ 8 ml por mmol de amina), se trataron con trifosgeno (0,4 eq.) y se agitaron a temperatura ambiente durante 1 h, tras lo cual se añadió la segunda (hetero)arilamina (normalmente la más funcionalizada de las dos aminas que van a acoplarse) y la agitación continuó a t.a. hasta que la CCF y/o EM-CL indicó la conversión completa. La mezcla de reacción se concentró a vacío, el residuo se recogió en acetato de etilo y se añadió agua, las fases se separaron y la fase acuosa se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron y se concentraron a vacío. El residuo se purificó opcionalmente por cromatografía ultrarrápida y/o trituración y/o HPLC preparativa.

Procedimiento general 7 (PG 7): Formación de ureas con carbamatos de fenilo

La (hetero)arilamina respectiva (1 eq.) se disolvió en THF (~ 10 ml por mmol de amina) y se trató con piridina (40 eq.) y el éster fenílico de ácido (hetero)arilcarbámico respectivo (1 eq.; preparado a partir del precursor de (hetero)arilamina respectivo mediante tratamiento con cloroformiato de fenilo en analogía a los procedimientos descritos en los documentos WO2007064872 o WO2005110994). La mezcla de reacción se calentó a 100°C durante 15 min en un horno microondas Biotage Initiator, tras lo cual el análisis por EM-CL mostró normalmente la renovación completa (si no, el calentamiento a 100°C continuó hasta que el análisis por EM-CL mostró la completitud de la renovación). La mezcla de reacción se concentró a vacío y el residuo se aisló tanto por trituración como por purificación por cromatografía ultrarrápida o por HPLC preparativa.

40 Procedimiento general 8 (PG 8): Formación de carbamatos de isopropenilo

En analogía a J. Org. Chem. 2005, 70, 6960.

25

30

35

45

La (hetero)arilamina respectiva (1 eq.) se disolvió en THF (~ 2,5 ml por mmol de amina) y se trató con N-metilmorfolina (1,2 eq.). La disolución resultante se enfrió a 4°C y se trató gota a gota con formiato de cloro-isopropenilo (1,2 eq.). La agitación continuó a ta hasta que el análisis por CCF o EM-CL mostró la completitud de la renovación. La mezcla de reacción se inactivó con agua y normalmente se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron y se concentraron a vacío. La trituración del residuo proporcionó el carbamato diana.

Procedimiento general 9 (PG 9): Formación de ureas con carbamatos de isopropenilo

En analogía a J. Org. Chem. 2005, 70, 6960.

La (hetero)arilamina respectiva (1 eq.) se disolvió en THF (~ 4 ml por mmol de amina) y se trató con *N*-metilpirrolidina (0,2 eq.) y el éster isopropenílico de ácido (hetero)arilcarbámico respectivo (1 - 1,5 eq.). La mezcla se agitó durante la noche a 55°C. El tratamiento final extractivo seguido de trituración y/o purificación por cromatografía ultrarrápida y/o HPLC preparativa proporcionó la urea diana.

Procedimiento general 10 (PG 10): Formación de amidas

La (hetero)arilamina respectiva (1 eq.) y el ácido carboxílico respectivo (1,05 eq.) se disolvieron en acetato de etilo (0,1 - 0,2 M) y se trataron con T3P (disolución al 50% en acetato de etilo, 1,2 eq.). La mezcla resultante se calentó a 70°C hasta la renovación final (basándose en el análisis por CCF o EM-CL). La mezcla de reacción se repartió entre acetato de etilo y agua, las fases acuosas se reextrajeron con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío. El residuo se purificó opcionalmente adicionalmente por trituración o separación por cromatografía ultrarrápida o HPLC preparativa.

SÍNTESIS DE PRODUCTOS INTERMEDIOS CLAVE

Producto intermedio 1.1

5

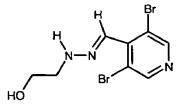
10

15

20

25

30


Preparación de N-[1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-N'-metil-hidracina

En analogía a PG 1, 2,15 g de 3,5-dibromo-piridin-4-carbaldehído (8,12 mmoles, 1 eq; comercialmente disponible o preparado como se describe en los documentos US6232320 o WO2005110410) se disolvieron en 36 ml de alcohol 1-propílico, se trataron con 0,65 ml de *N*-metilhidracina (12,17 mmoles, 1,5 eq.) y se calentaron a 100°C durante 30 min (empleando un horno microondas Biotage Initiator® en modo discontinuo). La mezcla de reacción se concentró, el residuo se repartió entre agua y acetato de etilo, la fase acuosa se reextrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío dando 2,29 g del producto deseado (7,82 mmoles, rendimiento del 96%), que se usó en la posterior ciclación sin más etapas de purificación.

RMN 1 H (d₆-DMSO; 300 MHz): 8,57 - 8,63 (m, 3 H); 7,22 (s, 1 H); 2,86 (d, 3 H). EM (ESI): $[M+H]^{+}$ = 294 (patrón de isótopo de Br_2)

Producto intermedio 1.2

Preparación de 2-{N'-[1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-hidrazino}-etanol

En analogía a GP1, 468 mg de 3,5-dibromo-piridin-4-carbaldehído (1,77 mmoles, 1 eq; comercialmente disponible o preparado como se describe en los documentos US6232320 o WO2005110410) se disolvieron en 8 ml de alcohol 1-propílico, se trataron con 0,36 ml de 2-hidrazino-etanol (5,3 mmoles, 3 eq.) y se calentaron a 120°C durante 30 min (empleando un horno microondas Biotage Initiator®). La mezcla de reacción se concentró, el residuo se repartió entre agua y acetato de etilo, la fase acuosa se reextrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío dando 530 mg del producto deseado (1,64 mmoles, rendimiento del 93%), que se usó en la posterior ciclación sin más etapas de purificación.

RMN ¹H (d₆-DMSO; 300 MHz): 8,59 (s, 2 H); 8,55 (t, 1 H); 7,51 (s, 1 H); 4,70 (t, 1 H); 3,58 (c, 2 H); 3,25 (c, 2 H).

EM (ESI): $[M+H]^+$ = 324 (patrón de isótopo de Br_2)

Producto intermedio 1.3

Preparación de [1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-hidracina

En analogía a PG 1, 54 mg de 3,5-dibromo-piridin-4-carbaldehído (0,2 mmoles, 1 eq; comercialmente disponible o preparado como se describe en los documentos US6232320 o WO2005110410) se disolvieron en 1 ml de alcohol 1-propílico, se trataron con 30 µl de 80% de hidracina hidratada (0,61 mmoles, 3 eq.) y se calentaron a 120°C durante 30 min (empleando un horno microondas Biotage Initiator[®]). El precipitado se filtró y se lavó con alcohol 1-propílico frío dando 27 mg de la hidrazona (0,1 mmoles, rendimiento del 50%).

RMN ¹H (d₆-DMSO; 400 MHz): 8,61 (s, 2 H); 7,96 (s, 2 H); 7,72 (s, 1 H).

EM (EM-CL): >90% de pureza; [M+H]⁺ = 279 (patrón de isótopo de Br₂)

Producto intermedio 1.4

10

25

30

Preparación de éster terc-butílico del ácido N'-[1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-hidracinacarboxílico

- En analogía a PG 1, 1,37 g de 3,5-dibromo-piridin-4-carbaldehído (5,17 mmoles, 1 eq; comercialmente disponible o preparado como se describe en los documentos US6232320 o WO2005110410) se disolvieron en 24 ml de alcohol 1-propílico, se trataron con 2,05 g de carbazato de *terc*-butilo (15,5 mmoles, 3 eq.) y se calentaron a 120°C durante 30 min (empleando un horno microondas Biotage Initiator[®] en modo discontinuo). El precipitado se filtró y se lavó con alcohol 1-propílico frío dando 1,66 g de la Boc-hidrazona (4,37 mmoles, rendimiento del 85%).
- 20 RMN ¹H (d₆-DMSO; 400 MHz): 11,36 (a, 1 H); 8,74 (s, 2 H); 8,04 (s, 1 H); 1,44 (s, 9 H).

Producto intermedio 1.5

Preparación de N-[1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-N'-etil-hidracina

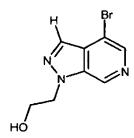
En analogía a PG 1, 2,65 g de 3,5-dibromo-piridin-4-carbaldehído (10 mmoles, 1 eq; comercialmente disponible o preparado como se describe en los documentos US6232320 o WO2005110410) se disolvieron en 32 ml de alcohol 1-propílico, se trataron con 2,25 g de *N*-etilhidracina (sal de oxalato; 15 mmoles, 1,5 eq.) y se calentaron a 100°C durante 30 min (empleando un horno microondas Biotage Initiator[®] en modo discontinuo). La mezcla de reacción se concentró, el residuo se repartió entre disolución ac. conc. de bicarbonato sódico y acetato de etilo, la fase acuosa se reextrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío dando 3,08 g del producto deseado (10 mmoles, rendimiento cuantitativo), que se usó en la posterior ciclación sin más etapas de purificación.

RMN ¹H (d₆-DMSO; 300 MHz): 8,60 (s, 2 H); 8,53 (t, 1 H); 7,40 (s, 1 H); 3,18 (dc, 2 H); 1,16 (t, 3 H).

Producto intermedio 2.1

Preparación de 4-bromo-1-metil-1H-pirazolo[3,4-c]piridina

En analogía a PG 2, 5,34 g de N-[1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-N'-metilhidracina (**Producto intermedio 1.1**, 18,23 mmoles, 1 eq) se disolvieron en 163 ml de THF seco, se trataron a ta con 994 mg de hidruro de sodio al 50-60% (22,78 mmoles, 1,2 eq) y posteriormente se sometieron a reflujo durante 90 min. La mezcla de reacción se inactivó con agua, se extrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío. El precipitado se filtró y posteriormente se trituró con éter diisopropílico dando 1,71 g del producto deseado. La cromatografía ultrarrápida del agua madre proporcionó un segundo lote del producto analíticamente puro.


10 RMN ¹H (d₆-DMSO; 400 MHz): 9,16 (s, 1 H); 8,34 (s, 1 H); 8,16 (s, 1 H); 4,17 (s, 3 H).

EM (ESI): $[M+H]^{+}$ = 212 (patrón de isótopo de Br).

Producto intermedio 2.2

5

Preparación de 2-(4-bromo-pirazolo[3,4-c]piridin-1-il)-etanol

En analogía a GP2, 520 mg de 2-{N'-[1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-hidrazino}-etanol (**Producto intermedio 1.2**, 1,61 mmoles, 1 eq) se disolvieron en 14 ml de THF seco, se trataron a ta con 155 mg de hidruro de sodio al 50-60% (3,54 mmoles, 2,2 eq) y posteriormente se sometieron a reflujo durante 90 min. La mezcla de reacción se inactivó con agua, se extrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío dando 424 mg de un producto bruto, que se purificó opcionalmente adicionalmente por trituración o cromatografía ultrarrápida.

 $EM-CL: [M+H]^{+} = 243$ (patrón de isótopo de Br)

Producto intermedio 2.3

Preparación de 4-bromo-1H-pirazolo[3,4-c]piridina

En analogía a PG 2, 578 mg de [1-(3,5-dibromo-piridin-4-il)-met-(E)-iliden]-hidracina (**Producto intermedio 1.3**, 2,07 mmoles, 1 eq) se disolvieron en 18 ml de THF seco, se trataron a ta con 200 mg de hidruro de sodio al 50-60% (4,56 mmoles, 2,2 eq) y posteriormente se sometieron a reflujo durante 90 min. La mezcla de reacción se inactivó con agua, se extrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío.

EM (EM-CL): $[M+H]^+$ = 198 (patrón de isótopo de Br₂)

Producto intermedio 2.4

Preparación de 4-bromo-1-etil-1H-pirazolo[3,4-c]piridina

En analogía a PG 2, 2,1 g de **Producto intermedio 1.5** (6,83 mmoles, 1 eq) se disolvieron en 60 ml de THF seco, se trataron a ta con 372 mg de hidruro de sodio al 50-60% (8,53 mmoles, 1,25 eq) y posteriormente se sometieron a reflujo durante 90 min. La mezcla de reacción se inactivó con agua, se extrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío. El precipitado se filtró y posteriormente se trituró con éter diisopropílico dando 1,6 g del producto deseado (rendimiento cuantitativo).

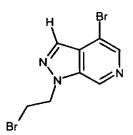
RMN ¹H (d₆-DMSO; 400 MHz): 9,20 (s, 1 H); 8,34 (s, 1 H); 8,18 (s, 1 H); 4,56 (c, 2 H); 1,42 (t, 3 H).

10 Producto intermedio 2.5

5

15

25


Preparación de 4-bromo-1-(2-metoxi-etil)-1H-pirazolo[3,4-c]piridina

Una disolución de 675 mg de 2-(4-bromo-pirazolo[3,4-c]piridin-1-il)-etanol (Producto intermedio 2.2; 2,79 mmoles, 1 eq.) en 33 ml de THF se trató a ta con 183 mg de hidruro de sodio (suspensión al 55-60%; 4,18 mmoles, 1,5 eq.) y se agitó durante 30 min, tras lo cual se añadieron 0,194 ml de yoduro de metilo (3,07 mmoles, 1,1 eq.) y la agitación continuó durante 2 h. La mezcla de reacción se inactivó con agua, se extrajo con acetato de etilo, las fases orgánicas combinadas se secaron y se concentraron a vacío. La cromatografía ultrarrápida proporcionó 500 mg del compuesto diana de éter metílico correspondiente (1,95 mmoles, rendimiento del 70%).

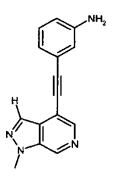
Producto intermedio 2.6

20 Preparación de 4-bromo-1-(2-bromo-etil)-1H-pirazolo[3,4-c]piridina

Una disolución de 709 mg de 2-(4-bromo-pirazolo[3,4-c]piridin-1-il)-etanol (Producto intermedio 2.2; 2,93 mmoles, 1 eq.) en 3 ml DMF se trató a ta con 1,93 g de trifenilfosfina (7,32 mmoles, 2,5 eq.) y 1,94 g de tetrabromuro de carbono (5,86 mmoles, 2 eq.) y se agitó durante 90 min a ta. La mezcla de reacción se inactivó con agua, se extrajo con DCM, las fases orgánicas combinadas se secaron y se concentraron a vacío. La cromatografía ultrarrápida proporcionó 290 mg del compuesto de bromo (0,95 mmoles, rendimiento del 33%).

RMN ¹H (d₆-DMSO; 300 MHz): 9,25 (s, 1 H); 8,37 (s, 1 H); 8,27 (d, 1 H); 4,98 (t, 2 H); 3,96 (t, 2 H).

Producto intermedio 2.7


Preparación de 4-bromo-1-(2-metansulfonil-etil)-1H-pirazolo[3,4-c]piridina

Se disolvieron 100 mg de 4-bromo-1-(2-bromo-etil)-1H-pirazolo[3,4-c]piridina (Producto intermedio 2.6; 0,33 mmoles, 1 eq.) en 5 ml de etanol y se trataron con 150 mg de metilsulfinato de sodio (1,5 mmoles, 4,5 eq.) y se calentó a 120°C durante 4 h en un horno microondas Biotage Initiator. La mezcla de reacción se inactivó con agua, se extrajo con DCM, las fases orgánicas combinadas se secaron y se concentraron a vacío proporcionando el Producto intermedio bruto 2.7, que se usó sin más purificación en las posteriores transformaciones.

EM (EM-CL): $[M+H]^+$ = 304/306 (patrón de isótopo de Br)

Producto intermedio 3.1

Preparación de 3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenilamina

10

15

En una adaptación de PG 3c, 639 mg de 4-bromo-1-metil-1H-pirazolo[3,4-c]piridina (**Producto intermedio 2.1**, 3 mmoles, 1 eq), 931 mg de 3-trimetilsilaniletinil-fenilamina (4,9 mmoles, 1,6 eq.), 106 mg de diclorobis(trifenilfosfina)paladio (II) (PdCl₂(PPh₃)₂) (0,15 mmoles, 5% en moles) y 115 mg de yoduro de cobre (I) (0,6 mmoles, 0,2 eq.) se disolvieron en 15 ml de THF (0,2 M) y se trataron con 3,6 ml de disolución de fluoruro de tetra-n-butilamonio (1,0 M en THF, 3,6 mmoles, 1,2 eq.). La mezcla resultante se calentó a 80°C en un horno microondas Biotage Initiator durante 30 min. El tratamiento final extractivo seguido de cromatografía en columna proporcionó el compuesto diana.

RMN 1 H (d₆-DMSO; 300 MHz): 9,23 (s a, 1 H); 8,44 (s a, 1 H); 8,30 (s, 1 H); 7,11 (t, 1 H); 6,81 - 6,86 (m, 2 H); 6,66 (ddd, 1 H); 5,31 (s a, 2 H); 4,22 (s, 3 H).

20 Producto intermedio 3.2

Preparación de 4-metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenilamina

En una adaptación de PG 3c, 640 mg de 4-bromo-1-metil-1H-pirazolo[3,4-c]piridina (**Producto intermedio 2.1**, 3 mmoles, 1 eq), 1000 mg de 3-trimetilsilaniletinil-fenilamina (4,92 mmoles, 1,63 eq.), 106 mg de

diclorobis(trifenilfosfina)paladio (II) ($PdCl_2(PPh_3)_2$) (0,15 mmoles, 5% en moles) y 115 mg de yoduro de cobre (I) (0,6 mmoles, 0,2 eq.) se disolvieron en 15 ml de THF (0,2 M) y se trataron con 3,6 ml de disolución de fluoruro de tetra-nbutilamonio (1,0 M en THF, 3,6 mmoles, 1,2 eq.). La mezcla resultante se calentó a 80°C en un horno microondas Biotage Initiator durante 30 min. El tratamiento final extractivo seguido de cromatografía en columna proporcionó 460 mg del compuesto diana (rendimiento del 58%).

RMN 1 H (d₆-DMSO; 300 MHz): 9,15 (s a, 1 H); 8,37 (s a, 1 H); 8,20 (s, 1 H); 6,96 (d, 1 H); 6,79 (d, 1 H); 6,55 (dd, 1 H); 5,02 (s a, 2 H); 4,18 (s, 3 H); 2,32 (s, 3 H).

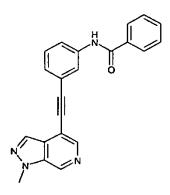
Producto intermedio 3.3

Preparación de 4-fluoro-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenilamina

10

15

5


En una adaptación de PG 3c, 1000 mg de 4-bromo-1-metil-1H-pirazolo[3,4-c]piridina (**Producto intermedio 2.1**, 4,7 mmoles, 1 eq), 1590 mg de 4-fluoro-3-trimetilsilaniletinil-fenilamina (7,69 mmoles, 1,63 eq.), 165 mg de diclorobis(trifenilfosfina)paladio (II) (PdCl₂(PPh₃)₂) (0,24 mmoles, 5% en moles) y 179 mg de yoduro de cobre (I) (0,94 mmoles, 0,2 eq.) se disolvieron en 8 ml de THF (0,2 M) y se trataron con 16,5 ml de disolución de fluoruro de tetra-n-butilamonio (1,0 M en THF, 16,5 mmoles, 3,5 eq.). La mezcla resultante se calentó a 80°C en un horno microondas Biotage Initiator durante 30 min. El tratamiento final extractivo proporcionó el producto bruto que se usó sin más purificación.

RMN 1 H (d₆-DMSO; 300 MHz): 9,20 (s a, 1 H); 8,40 (s a, 1 H); 8,19 (s, 1 H); 6,98 (t, 1 H); 6,79 (dd, 1 H); 6,63 (ddd, 1 H); 5,15 (s a, 2 H); 4,18 (s, 3 H).

20 SÍNTESIS DE COMPUESTOS DE EJEMPLO

Compuesto de ejemplo 1.1

Preparación de N-[3-(1-metil-1H-pirazolo[3.4-c]piridin-4-iletinil)-fenill-benzamida

25

30

En una adaptación de PG 3c, 60 mg de 4-bromo-1-metil-1H-pirazolo[3,4-c]piridina (**Producto intermedio 2.1**, 0,28 mmoles, 1 eq), 140 mg de N-(3-trimetilsilaniletinil-fenil)-benzamida (0,48 mmoles, 1,68 eq.), 10 mg de diclorobis(trifenilfosfina)paladio (II) ($PdCl_2(PPh_3)_2$) (0,014 mmoles, 5% en moles) y 10,8 mg de yoduro de cobre (I) (0,057 mmoles, 0,2 eq.) se disolvieron en 1,4 ml de THF (0,2 M) y se trataron con 0,35 ml de disolución de fluoruro de tetra-n-butilamonio (1,0 M en THF, 0,35 mmoles, 1,25 eq.). La mezcla resultante se calentó a 80°C en un horno microondas Biotage Initiator durante 30 min. El tratamiento final extractivo seguido de purificación por cromatografía en columna y HPLC preparativa proporcionó el compuesto diana.

RMN 1 H (d₆-DMSO; 300 MHz): 10,41 (s, 1 H); 9,25 (s a, 1 H); 8,49 (s a, 1 H); 8,37 (s, 1 H); 8,17 (s, 1 H); 8,00 (d, 2 H); 7,87 (dt, 1 H); 7,53 - 7,66 (m, 3 H); 7,44 - 7,51 (m, 2 H); 4,24 (s, 3 H).

Compuesto de ejemplo 1.2

Preparación de N-[4-metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-benzamida

En analogía a PG 10, 78 mg de 4-metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenilamina (Producto intermedio 3.2; 0,3 mmoles, 1 eq.) se trataron con 38 mg de ácido benzoico (0,31 mmoles, 1,05 eq.) y 0,21 ml de disolución de T3P (50% en acetato de etilo, 0,36 mmoles, 1,2 eq.) en 2,2 ml de acetato de etilo dando el producto diana.

RMN 1 H (d₆-DMSO; 300 MHz): 10,33 (s, 1 H); 9,23 (s, 1 H); 8,49 (s, 1 H); 8,30 (s, 1 H); 8,12 (d, 1 H); 7,97 - 8,02 (m, 2 H); 7,76 (dd, 1 H); 7,53 - 7,65 (m, 3 H); 7,37 (d, 1 H); 4,24 (s, 3 H); 2,54 (s, 3 H).

Los siguientes Compuestos de ejemplo 1.3 a 1.9 se prepararon en analogía al Compuesto de ejemplo 1.2 y PG 10 por formación de amidas de los productos intermedios 3.1 ó 3.2 ó 3.3 respectivos con ácidos carboxílicos fácilmente disponibles.

Ejemplo	Estructura	Nombre	Datos analíticos
1.3	3 5 2 2 2 2 2	2,4-Dicloro-N-[3-(1-metil-1H- pirazolo[3,4-c]piridin-4- iletinil)-fenil]-benzamida	RMN ¹ H:
1.4		2,4-Dicloro-N-[4-metil-3-(1- metil-1H-pirazolo[3,4- c]piridin-4-iletinil)-fenil]- benzamida	RMN ¹ H: (d6-DMSO, 300 MHz) 10,59 (s, 1 H); 9,19 (s, 1 H); 8,44 (s, 1 H); 8,25 (s, 1 H); 8,00 (d, 1 H); 7,75 (d, 1 H); 7,63 (d, 1 H); 7,55 (td, 2 H); 7,33 (d, 1 H); 4,19 (s, 3 H). EM (ESI): [M+H] ⁺ = 435/437 (patrón de isótopo de Cl ₂).
1.5		N-[3-(1-Metil-1H-pirazolo[3,4- c]piridin-4-iletinil)-fenil]-3- trifluorometil-benzamida	RMN ¹ H: (d6-DMSO, 300 MHz) 10,62 (s, 1 H); 9,23 (s, 1 H); 8,48 (s, 1 H); 8,37 (s, 1 H); 8,34 (s, 1 H); 8,30 (d, 1 H); 8,14 (s, 1 H); 8,00 (d, 1 H); 7,80 - 7,90 (m, 2 H); 7,47 - 7,54 (m, 2 H); 4,24 (s, 3 H). EM (ESI): [M+H] [†] = 421.

[-	(continuación)		
Ejemplo	Estructura	Nombre	Datos analíticos
1.6		N-[4-Metil-3-(1- metil-1H- pirazolo[3,4-c]piridin-4-iletinil)- fenil]-3-trifluorometil- benzamida	RMN ¹ H: (d6-DMSO, 300 MHz) 10,50 (s, 1H); 9,18 (s, 1 H); 8,43 (s, 1 H); 8,29 (s, 1 H); 8,26 (s, 1 H); 8,24 (s, 1 H); 8,04 (d, 1 H); 7,95 (d, 1 H); 7,78 (t, 1 H); 7,72 (dd, 1H); 7,34 (d, 1 H); 4,19 (s, 3 H). EM (ESI): [M+H] ⁺ = 435.
1.7		2-Fluoro-5-metil-N-[3-(1-metil- 1H-pirazolo[3,4-c]piridin-4- iletinil)-fenil]-benzamida	RMN ¹ H: (d6-DMSO, 300 MHz) 10,55 (s, 1 H); 9,23 (s, 1 H); 8,48 (s, 1 H); 8,37 (s, 1 H); 8,11 (s, 1 H); 7,74 - 7,80 (m, 1 H); 7,46 - 7,52 (m, 3 H); 7,40 (ddd, 1 H); 7,26 (dd, 1 H); 4,24 (s, 3 H); 2,36 (s, 3 H). EM (ESI): [M+H] ⁺ = 385.
1.8		2-Fluoro-5-metil-N-[4-metil-3- (1-metil-1H-pirazolo[3,4- c]piridin-4-iletinil)-fenil]- benzamida	RMN ¹ H: (d6-DMSO, 300 MHz) 10,40 (s, 1 H); 9,19 (s, 1 H); 8,44 (s, 1 H); 8,25 (s, 1 H); 8,01 (d, 1 H); 7,61 (dd, 1 H); 7,44 (dd, 1 H); H); 7,61 (dd, 1 H); 7,44 (dd, 1 H); H); 4,19 (s, 3 H); 2,31 (s, 3 H). EM (ESI): [M+H] ⁺ = 399.
1.9		N-[4-Fluoro-3-(1-metil-1H- pirazolo[3,4-c]piridin-4-iletinil)- fenil]-3-trifluorometil- benzamida	RMN ¹ H: (d6-DMSO, 400 MHz) 10,62 (s, 1 H); 9,25 (s, 1 H); 8,47 (s, 1 H); 8,29 (s, 1 H); 8,26 (s, 1 H); 8,25 (d, 1 H); 8,14 (dd, 1 H); 7,96 (d, 1 H); 7,84 (ddd, 1 H); 7,78 (t, 1 H); 7,40 (t, 1 H); 4,21 (s, 3 H). EM (ESI): [M+H] ⁺ = 439.

Compuesto de ejemplo 2.1

Preparación de 1-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-fenil-urea

En analogía a PG 5, 100 mg de 3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenilamina (Producto intermedio 3.1, 0,26 mmoles, 1 eq.) se trataron con 31 µl de isocianato de fenilo (0,29 mmoles, 1,1 eq.) en 2,6 ml de DCM a ta. El tratamiento acuoso seguido de purificación por HPLC proporcionó el compuesto diana.

RMN 1 H (d₆-DMSO; 300 MHz): 9,18 (s a, 1 H); 8,82 (s, 1 H); 8,74 (s, 1 H); 8,49 (s a, 1 H); 8,33 (s, 1 H); 7,84 (s, 1 H); 7,40 - 7,45 (m, 3 H); 7,35 (t, 1 H); 7,24 - 7,29 (m, 3 H); 6,95 (t, 1 H); 4,19 (s, 3 H).

EM (ESI): $[M+H]^{+} = 368$.

10 Compuesto de ejemplo 2.2

Preparación de 1-[4-metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-fenil-urea

En analogía a PG 5, 200 mg de 4-metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinilfenilamina (Producto intermedio 3.2, 0,4 mmoles, 1 eq.) se trataron con 47 μ l de isocianato de fenilo (0,44 mmoles, 1,1 eq.) en 4 ml de DCM a ta. El tratamiento acuoso seguido de purificación por HPLC proporcionó el compuesto diana.

RMN 1 H (d₆-DMSO; 300 MHz): 9,23 (s a, 1 H); 8,74 (s, 1 H); 8,72 (s, 1 H); 8,48 (s a, 1 H); 8,31 (s, 1 H); 7,84 (d, 1 H); 7,48 (d, 1 H); 7,36 (dd, 1 H); 7,27 - 7,32 (m, 3 H); 6,98 (tt, 1 H); 4,24 (s, 3 H); 2,52 (s, 3 H; parcialmente oscurecido por la señal de DMSO).

EM (ESI): $[M+H]^+ = 382$.

15

20 Los siguientes Compuestos de ejemplo 2.3 a 2.6 se prepararon en analogía a los Compuesto de ejemplo 2.1 y 2.2 y PG 5 por formación de ureas de los Productos intermedios 3.1 ó 3.2 ó 3.3 respectivos con isocianatos comercialmente disponibles.

Ejemplo	Estructura	Nombre	Datos analíticos
2.3		1-[3-(1-Metil)-1H- pirazolo[3,4-c]piridin-4- iletinil)-fenil]-3-(3- trifluorometil-fenil)-ureafenil)- urea	RMN ¹ H: (d6-DMSO, 400 MHz) 9,18 (s a, 1 H); 9,16 (s, 1 H); 8,98 (s, 1 H); 8,43 (s a, 1 H); 8,34 (s, 1 H); 8,01 (s, 1 H); 7,85 (s, 1 H); 7,56 (d, 1 H); 7,49 (t, 1 H); 7,43 (d, 1 H); 7,36 (t, 1 H); 7,28 - 7,32 (m, 2 H); 4,19 (s, 3 H). EM (ESI): [M+H] ⁺ = 436.

(continuación

Ejemplo	Estructura	Nombre	Datos analíticos	
2.4		1-[4-Metil-3-(1-metil-1H- pirazolo[3,4-c]piridin-4-iletinil)- fenil]-3-(3-trifluorometil-fenil)- urea	RMN ¹ H:	
2.5		1-(2-Fluoro-5-metil-fenil)-3-[3- (1-metil-1H-pirazolo[3,4- c]piridin-4-iletinil)-fenil]-urea	RMN ¹ H: (d6-DMSO, 300 MHz) 9,20 (s, 1 H); 9,18 (s, 1 H); 8,53 (d, 1 H); 8,43 (s, 1 H); 8,33 (s, 1 H); 7,95 (dd, 1 H); 7,87 (s, 1 H); 7,28 - 7,38 (m, 3 H); 6,75 - 6,80 (m, 1 H); 7,08 (dd, 1 H); 4,19 (s, 3 H); 2,23 (s, 3 H). EM (ESI): [M+H]+ = 400.	
2.6		1-[4-Fluoro-3-(1-metil-1H- pirazolo[3,4-1H-pirazolo[3,4- c]piridin-4-iletinil)-fenil]-3-(3- trifluorometil-fenil)-urea	RMN ¹ H: (d6-DMSO, 300 MHz) 9,23 (s, 1H); 9,15 (s, 1 H); 8,97 (s, 1 H); 8,46 (s, 1H); 8,26 (s, 1 H); 7,99 (s a, 1 H); 7,88 (dd, 1 H); 7,56 (d, 1 H); 7,44 - 7,50 (m, 2 H); 7,28 - 7,32 (m, 2 H); 4,20 (s, 3 H). EM (ESI): [M+H] ⁺ = 454.	

Compuesto de ejemplo 3.1

5

10

Preparación de 1-[2-(3-fluoro-fenil)-5-isopropil-2H-pirazol-3-il]-3-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-urea

En analogía a PG 7, 150 mg de 3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenilamina (Producto intermedio 3.1, 0,6 mmoles, 1 eq.) se disolvieron en 2 ml de piridina y 7 ml de THF, se trataron con 205 mg de éster fenílico de ácido [2-(3-fluoro-fenil)-5-isopropil-2H-pirazol-3-il]-carbámico (0,6 mmoles, 1 eq.). La mezcla de reacción se calentó a 100°C durante 15 min (Biotage Initiator). La mezcla de reacción se concentró y el compuesto diana se aisló por purificación por HPLC preparativa.

RMN 1 H (d₆-DMSO; 400 MHz): 9,19 (s a, 2 H); 8,57 (s a, 1 H); 8,41 (s a, 1 H); 8,31 (s, 1 H); 7,81 (s, 1 H); 7,51 - 7,56 (m, 1 H); 7,27 - 7,42 (m, 5 H); 7,20 - 7,24 (m, 1 H); 6,33 (s, 1 H); 4,19 (s, 3 H); 2,87 (sept., 1 H); 1,20 (d, 6 H).

EM (EM-CL-ESI): $[M+H]^{+} = 494$.

El siguiente Compuesto de ejemplo 3.2 se sintetizó en analogía a PG 7 y el Compuesto de ejemplo 3.1 haciendo reaccionar el Producto intermedio 3.1 con el carbamato de fenilo respectivo.

Ejemplo	Estructura Nombre		Datos analíticos	
			RMN ¹ H:	
			(d6-DMSO, 400 MHz)	
3.2		1-[5-Isopropil-2-(3-metoxi- fenil)-2H-pirazol-3-il]-3-[3-(1- metil-1H-pirazolo[3,4- c]piridin-4-iletinil)-fenil]-urea	9,21 (s, 1 H); 9,18 (s a, 1 H); 8,48 (s, 1 H); 8,42 (s a, 1 H); 8,31 (s, 1 H); 7,81 (s, 1 H); 7,27 - 7,42 (m, 4 H); 7,06 - 7,08 (m, 2 H); 6,95 (dd, 1 H); 6,32 (s, 1 H); 4,19 (s, 3 H); 3,77 (s, 3 H); 2,86 (sept., 1 H); 1,20 (d, 6 H).	
	F •		EM (ESI):	
			$[M+H]^+ = 506.$	

Compuesto de ejemplo 4.1

5 Preparación de 1-[4-(4-metil-piperazin-1-ilmetil)-3-trifluorometil-fenil]-3-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-urea

124 mg de 3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenilamina (Producto intermedio 3.1, 0,5 mmoles, 1 eq.) se disolvieron en 9 ml de acetonitrilo y se trataron con 163 mg de 4-(4-metilpiperazin-1-ilmetil)-3-trifluorometil-fenilamina (0,6 mmoles, 1 eq.) y 59 mg de trifosgeno (0,2 mmol). La mezcla de reacción se agitó a ta durante 4 h después de añadirse las mismas cantidades de trifosgeno y 4-(4-metil-piperazin-1-ilmetil)-3-trifluorometil-fenilamina una vez más y la agitación a ta continuó durante 16 h. El tratamiento final extractivo seguido de purificación por HPLC proporcionó el compuesto diana puro.

RMN ¹H (d₆-DMSO; 300 MHz): 9,18 (s, 1 H); 9,07 (s a, 1 H); 8,92 (s a, 1 H); 8,43 (s, 1 H); 8,33 (s, 1 H); 7,95 (s a, 1 H); 7,84 (s a, 1 H); 7,60 (d, 1 H); 7,54 (dd, 1 H); 7,43 (dt, 1 H); 7,36 (t, 1 H); 7,30 (dt, 1 H); 4,19 (s, 3 H); 3,49 (s, 2 H); 2,22 - 2,39 (m, 8 H); 2,12 (s, 3 H).

DESCRIPCIÓN DE ENSAYOS BIOLÓGICOS

En los siguientes párrafos se describe una selección de ensayos para perfilar los compuestos de la presente invención.

20 Ensayo 1: Ensayo de ELISA de Tie2

10

25

La actividad celular de los compuestos de la presente invención como inhibidores de la actividad de cinasa de Tie2 se midió empleando un ensayo de ELISA de Tie2 como se describe en los siguientes párrafos. En este documento, cultivos de células CHO que se transfectan establemente por técnicas conocidas con Tie2 usando deficiencia de DHFR como marcador de selección se estimulan por angiopoyetina 2. La autofosforilación específica de receptores de Tie2 se cuantifica con un ELISA de tipo sándwich usando anticuerpos anti-Tie2 para atrapar y anticuerpos anti-fosfotirosina acoplados a HRP para la detección.

Materiales:

5

30

40

45

50

Placa de cultivo de tejido de 96 pocillos, estéril, Greiner Placa FluoroNunc de 96 pocillos MaxiSorp Surface C, Nunc

Placa de 96 pocillos de polipropileno para la dilución de compuesto en DMSO

CHO Tie2/DHFR (células transfectadas)

PBS-; PBS++, DMSO

Medio MEM alfa con Glutamax-I sin ribonucleósidos y

Desoxirribonucleósidos (Gibco nº 32561-029) con SBF al 10% después de diálisis y 1% de PenStrep

10 Tampón de lisis: 1 comprimido de inhibidor de proteasas "Complete"

1 tapón de vanadato (1 ml > 40 mg/ml; disolución de trabajo 2 mM) Añadir 50 ml con tampón Duschl pH 7,6

Anticuerpo anti-Tie2-1:425 en tampón de recubrimiento a pH 9.6

15 Disolución madre: 1,275 mg/ml > trabajo: 3 μg/ml

PBST: 2 botellas de PBS (10x) + 10 ml de Tween, enrasar con agua desmineralizada RotiBlock 1 : 10 en agua desmineralizada

Anti-fosfotirosina conjugada con HRP 1 : 10000 en 3% de TopBlock

3% de TopBlock en PBST

20 Sustrato de ELISA BM Chemiluminescence (POD)

Disolución B 1: 100 de disolución A

Medio de cultivo celular SF9

Ang2-Fc en medio de cultivo celular SF9

Experimentos con células:

Dispensar 5 x 10⁴ células / pocillo / 98 μl en placa de cultivo de tejido de 96 pocillos

Incubar a 37°C / 5% de CO₂

Después de 24 h añadir compuestos según concentraciones deseadas

También añadir a valores de control y estimulados sin compuestos 2 µl de DMSO

Y mezclar durante algunos min a temperatura ambiente

Añadir 100 µl de Ang2-Fc a todos los pocillos, excepto al control, que recibe medio de insecto

Incubar 20 min a 37°C. Lavar 3x con PBS++

Añadir 100 ul de tampón de lisis / pocillo v agitar un par de min a temperatura ambiente

Guardar los lisados a 20°C antes de utilizarlos para el ELISA

35 Realización del ELISA de tipo sándwich:

Recubrir placa FluoroNunc de 96 pocillos MaxiSorp Surface C con mAb anti-Tie2 1 : 425 en tampón de recubrimiento a pH 9,6; 100 µl / pocillo durante la noche a 4°C

Lavar 2x con PBST

Bloquear las placas con 250 μ l / pocillo de RotiBlock 1 : 10 en agua desmineralizada

Incubar durante 2 h a temperatura ambiente o durante la noche a 4°C agitando

Lavar 2x en PBST

Añadir los lisados descongelados a los pocillos e incubar durante la noche agitando a 4°C

Lavar 2x con PBST

Añadir 100 µl / pocillo de anti-fosfotirosina conjugada con HRP 1 : 10000 en 3% de TopBlock (3% de

TopBlock en PBST) e incubar durante la noche con agitación

Lavar 6x con PBST

Añadir 100 µl / pocillo de sustrato de ELISA BM Chemiluminescence (POD)

disoluciones 1 y 2 (1 : 100)

Determinar la luminiscencia con LumiCount.

Ensayo 2: Ensayo de HTRF de Tie-2-cinasa

La actividad inhibitoria de Tie2 de compuestos de la presente invención se cuantificó empleando dos ensayos de HTRF de Tie2 como se describe en los siguientes párrafos.

Como cinasa se usó una proteína de fusión recombinante de GST y los dominios intracelulares de Tie-2, expresados en células de insecto (Hi-5) y purificados por cromatografía de afinidad en Glutation-Sepharose. Alternativamente puede usarse la proteína de fusión GST-Tie2 comercialmente disponible (Upstate Biotechnology, Dundee, Escocia). Como sustrato para la reacción de cinasa se usó el péptido biotinilado biotina-Ahx-EPKDDAYPLYSDFG (extremo C en forma de amida) que puede comprarse, por ejemplo, de la empresa Biosynthan GmbH (Berlin-Buch, Alemania). La detección del producto fosforilado se logra específicamente por un complejo de detección trimérico que consiste en el sustrato fosforilado, estreptavidina-XLent (SA-XLent) que se une a biotina, y el anticuerpo anti-fosfotirosina PT66 marcado con criptato de europio que se une a tirosina fosforilada.

Tie-2 (3,5 ng/punto de medición) se incubó durante 60 min a 22°C en presencia de adenosina-tri-fosfato 10 μM (ATP) y péptido de sustrato 1 μM (biotina-Ahx-EPKDDAYPLYSDFG-NH₂) con diferentes concentraciones de compuestos de prueba (0 μM y concentraciones en el intervalo 0,001 - 20 μM) en 5 μl de tampón de ensayo [Hepes 50 mM/NaOH a pH 7, MgCl₂ 10 mM, MnCl₂ 0,5 mM, ditiotreitol 1,0 mM, 0,01% de NP40, mezcla de inhibidor de proteasa ("Complete sin EDTA" de Roche, 1 comprimido por 2,5 ml), 1% (v/v) de sulfóxido de dimetilo]. La reacción se detuvo mediante la adición de 5 μl de un tampón acuoso (Hepes 25 mM/NaOH a pH 7,5, 0,28 % (peso/volumen) de albúmina de suero bovino) que contenía EDTA (90 mM) y los reactivos de detección de HTRF (fluorescencia homogénea resuelta en el tiempo) estreptavidina-XLent (0,2 μM, de Cis Biointernational, Marcoule, Francia) y el quelato PT66-Eu (0,3 ng/μl; un anticuerpo anti-fosfotirosina marcado con quelato de europio de Perkin Elmer).

La mezcla resultante se incubó 1 h a 22°C para permitir la unión del péptido fosforilado biotinilado a estreptavidina-XLent y el quelato de PT66-Eu. Posteriormente, la cantidad de péptido de sustrato fosforilado se evaluó por medición de la transferencia de energía de resonancia del quelato de PT66-Eu a estreptavidina-XLent. Por tanto, las emisiones de fluorescencia a 620 nm y 665 nm después de la excitación a 350 nm se midieron en un lector de HTRF, por ejemplo, Rubystar (BMG Labtechnologies, Offenburg, Alemania) o Viewlux (Perkin-Elmer). La relación de las emisiones a 665 nm y a 622 nm se tomó como medida de la cantidad de péptido de sustrato fosforilado. Los datos se normalizaron (reacción enzimática sin inhibidor = 0% de inhibición, todos los otros componentes del ensayo pero sin enzima = 100% de inhibición) y se calcularon valores de Cl₅₀ por un ajuste de 4 parámetros usando un software interno.

Ensayo 3: Ensayo de HTRF de Tie-2-cinasa alternativo

10

15

20

25

30

35

40

45

50

55

Como cinasa se usó una proteína de fusión recombinante de GST y los dominios intracelulares de Tie-2, expresados en células de insecto (Hi-5) y purificados por cromatografía de afinidad en Glutation-Sepharose. Como sustrato para la reacción de cinasa se usó el péptido biotinilado biotina-Ahx-EPKDDAYPLYSDFG (extremo C en forma de amida) que puede comprarse, por ejemplo, de la empresa Biosynthan GmbH (Berlin-Buch, Alemania).

Para la activación, Tie-2 se incubó a una conc. de 12,5 ng/ μ l durante 20 min a 22°C en presencia de adenosina-trifosfato 250 μ M (ATP) en tampón de ensayo [Hepes 50 mM/NaOH a pH 7, MgCl₂ 10 mM, MnCl₂ 0,5 mM, ditiotreitol 1,0 mM, 0,01% de NP40, mezcla de inhibidor de proteasa ("Complete sin EDTA" de Roche, 1 comprimido por 2,5 ml)].

Para la posterior reacción de cinasa, la Tie-2 preactivada (0,5 ng/punto de medición) se incubó durante 20 min a 22°C en presencia de adenosina-tri-fosfato 10 μ M (ATP) y péptido de sustrato 1 μ M (biotina-Ahx-EPKDDAYPLYSDFG-NH₂) con diferentes concentraciones de compuestos de prueba (0 μ M y concentraciones en el intervalo 0,001 - 20 μ M) en 5 μ I de tampón de ensayo [Hepes 50 mM/NaOH a pH 7, MgCl₂ 10 mM, MnCl₂ 0,5 mM, orto-vanadato de sodio 0,1 mM, ditiotreitol 1,0 mM, 0,01% de NP40, mezcla de inhibidor de proteasa ("Complete sin EDTA" de Roche, 1 comprimido por 2,5 mI), 1% (v/v) de sulfóxido de dimetilo]. La reacción se detuvo mediante la adición de 5 μ I de un tampón acuoso (Hepes 25 mM/NaOH a pH 7,5, 0,28% (peso/volumen) de albúmina de suero bovino) que contiene EDTA (90 mM) y los reactivos de detección de HTRF (fluorescencia homogénea resuelta en el tiempo) estreptavidina-XLent (0,2 μ M, de Cis Biointernational, Marcoule, Francia) y el quelato PT66-Eu (0,3 ng/ μ I; un anticuerpo anti-fosfotirosina marcado con quelato de europio de Perkin Elmer).

La mezcla resultante se incubó 1 h a 22°C para permitir la unión del péptido fosforilado biotinilado a estreptavidina-XLent y el quelato PT66-Eu. Posteriormente, la cantidad de péptido de sustrato fosforilado se evaluó por medición de la transferencia de energía de resonancia del quelato PT66-Eu a estreptavidina-XLent. Por tanto, las emisiones de fluorescencia a 620 nm y 665 nm después de la excitación a 350 nm se midieron en un lector de HTRF, por ejemplo, Rubystar (BMG Labtechnologies, Offenburg, Alemania) o Viewlux (Perkin-Elmer). La relación de las emisiones a 665 nm y a 622 nm se tomó como medida de la cantidad de péptido de sustrato fosforilado. Los datos se normalizaron (reacción enzimática sin inhibidor = 0% de inhibición, todos los otros componentes del ensayo pero sin enzima = 100% de inhibición) y se calcularon valores de Cl₅₀ por un ajuste de 4 parámetros usando un software interno.

Ensayo 4: Ensayo de HTRF de receptor de insulina

La actividad inhibitoria de los compuestos contra la actividad de cinasa del receptor de insulina se cuantificó empleando el ensayo de HTRF de Ins-R como se describe en los siguientes párrafos.

Como cinasa se usó el dominio de cinasa recombinante marcado con GST del receptor de la insulina humana (Ins-

R, comprado de ProQinase, Friburgo, Alemania) expresado en células SF-9. Como sustrato para la reacción de cinasa se usó poli-(Glu,Tyr) biotinilado (Cis Biointernational, Francia).

El Ins-R se incubó durante 20 min a 22°C en presencia de diferentes concentraciones de compuestos de prueba en 5 μ l de tampón de ensayo [Hepes 50 mM/NaOH a pH 7, MnCl₂ 15 mM, ditiotreitol 1 mM, orto-vanadato de sodio 0,1 μ M, 0,015% (v/v) de PEG20000, adenosina-tri-fosfato 10 μ M (ATP), 0,3 μ g/ml de sustrato, 1% (v/v) de sulfóxido de dimetilo]. La concentración de Ins-R se ajustó dependiendo de la actividad del lote de enzima y se eligió de forma apropiada para tener el ensayo en el intervalo lineal, concentraciones típicas estuvieron en el intervalo de 10 μ g/ μ l. La reacción se detuvo mediante la adición de 5 μ l de una disolución de reactivos de detección de HTRF (estreptavidina-XLent 0,1 μ M y quelato PT66-Eu 1 nM, un anticuerpo anti-fosfotirosina marcado con quelato de europio de Perkin Elmer) en una disolución de EDTA acuosa (EDTA 80 mM, 0,2% (peso/volumen) de albúmina de suero bovino en Hepes 50 mM/NaOH a pH 7.0).

La mezcla resultante se incubó 1 h a 22°C para permitir la unión del péptido fosforilado biotinilado a estreptavidina-XLent y el quelato PT66-Eu. Posteriormente, la cantidad de sustrato fosforilado se evaluó por medición de la transferencia de energía de resonancia del quelato PT66-Eu a estreptavidina-XLent. Por tanto, las emisiones de fluorescencia a 620 nm y 665 nm después de la excitación a 350 nm se midieron en un lector de HTRF, por ejemplo, Rubystar (BMG Labtechnologies, Offenburg, Alemania) o Viewlux (Perkin-Elmer). La relación de las emisiones a 665 nm y a 622 nm se tomó como medida de la cantidad de sustrato fosforilado. Los datos se normalizaron (reacción enzimática sin inhibidor = 0% de inhibición, todos los otros componentes del ensayo pero sin enzima = 100% de inhibición) y se calcularon valores de CI₅₀ por un ajuste de 4 parámetros usando un software interno.

20 Ensayo 5: Ensayo de HTRF de VEGFR2

5

10

15

25

30

50

55

La actividad inhibitoria de VEGFR2 de los compuestos de la presente invención se cuantificó empleando el ensayo de HTRF de VEGFR2 como se describe en los siguientes párrafos.

Como cinasa se usó el dominio de cinasa recombinante marcado con GST de VEGFR2 humano expresado en células SF-9. Como sustrato para la reacción de cinasa se usó el péptido biotinilado biotina-Ahx-DFGLARDMYDKEYYSVG (extremo C en forma ácida) que puede comprarse, por ejemplo, de la empresa Biosynthan GmbH (Berlin-Buch, Alemania). VEGFR2 se incubó durante 45 min a 22°C en presencia de diferentes concentraciones de compuestos de prueba en 5 μl de tampón de ensayo [Hepes 50 mM/NaOH a pH 7,0, MgCl₂ 25 mM, MnCl₂ 5 mM, ditiotreitol 1,0 mM, orto-vanadato de sodio 0,1 mM, adenosina-tri-fosfato 10 μM (ATP), sustrato 0,5 μM, 0,001% (v/v) de Nonidet-P40 (Sigma), 1% (v/v) de sulfóxido de dimetilo]. La concentración de VEGFR2 se ajustó dependiendo de la actividad del lote de enzima y se eligió de forma apropiada para tener el ensayo en el intervalo lineal. La reacción se detuvo mediante la adición de 5 μl de una disolución de reactivos de detección de HTRF (estreptavidina-XLent 0,1 μM y quelato PT66-Eu 2 nM, un anticuerpo anti-fosfotirosina marcado con quelato de europio de Perkin Elmer) en una disolución de EDTA acuosa (EDTA 125 mM, 0,2% (peso/volumen) de albúmina de suero bovino en Hepes 50 mM/NaOH a pH 7,0).

La mezcla resultante se incubó durante 1 h a 22°C para permitir la unión del péptido fosforilado biotinilado a estreptavidina-XLent y el quelato PT66-Eu. Posteriormente, la cantidad de sustrato fosforilado se evaluó por medición de la transferencia de energía de resonancia del quelato PT66-Eu a estreptavidina-XLent. Por tanto, las emisiones de fluorescencia a 620 nm y 665 nm después de la excitación a 350 nm se midieron en un lector de HTRF, por ejemplo, Rubystar (BMG Labtechnologies, Offenburg, Alemania) o Viewlux (Perkin-Elmer). La relación de las emisiones a 665 nm y a 622 nm se tomó como medida de la cantidad de sustrato fosforilado. Los datos se normalizaron (reacción enzimática sin inhibidor = 0% de inhibición, todos los otros componentes del ensayo pero sin enzima = 100% de inhibición) y se calcularon valores de Cl₅₀ por un ajuste de 4 parámetros usando un software interno.

Ensayo 6: Ensayo de HTRF de PDGFRβ

La actividad inhibitoria de PDGFRβ de los compuestos de la presente invención se cuantificó empleando el ensayo de HTRF de PDGFRβ como se describe en los siguientes párrafos.

Como cinasa se usó una proteína de fusión de GST-His que contenía un fragmento del extremo C de PDGFRβ humano (aminoácidos 561 - 1106, expresados en células de insecto [SF9] y purificados por cromatografía de afinidad, comprados de Proqinase [Freiburg i.Brsg., Alemania]. Como sustrato para la reacción de cinasa se usó el copolímero de poli-Glu, Tyr biotinilado (4:1) (nº 61GT0BLA) de Cis Biointernational (Marcoule, Francia).

Para el ensayo, 50 nl de una disolución 100 veces concentrada del compuesto de prueba en DMSO se pipetearon en una placa de microtitulación de 384 pocillos de bajo volumen negra (Greiner Bio-ona, Frickenhausen, Alemania), se añadieron 2 μ l de una disolución de PDGFRen tampón de ensayo acuoso [Hepes 50 mM/NaOH a pH 7,5, MgCl₂ 10 mM, ditiotreitol 2,5 mM, 0,01% (v/v) de Triton-X100 (Sigma)] y la mezcla se incubó durante 15 min a 22°C para permitir la unión previa de los compuestos de prueba a la enzima antes de empezar la reacción de cinasa. Entonces, la reacción de cinasa se inició mediante la adición de 3 μ l de una disolución de adenosina-tri-fosfato (ATP, 16,7 μ M => la conc. final en el volumen de ensayo de 5 μ l es 1,36 μ g/ml [~ 30 nM]) en tampón de ensayo, y la mezcla resultante se incubó durante

un tiempo de reacción de 25 min a 22°C. La concentración de PDGFR β en el ensayo se ajusó dependiendo de la actividad del lote de enzima y se eligió de forma apropiada para tener el ensayo en el intervalo lineal, concentraciones de enzima típicas estuvieron en el intervalo de aproximadamente 125 pg/µl (conc. final en el volumen de ensayo de 5 µl). La reacción se detuvo mediante la adición de 5 µl de una disolución de reactivos de detección de HTRF (estreptavidina-XLent 200 nM [Cis Biointernational] y quelato PT66-Eu 1,4 nM, un anticuerpo anti-fosfotirosina marcado con quelato de europio de Perkin Elmer) en una disolución de EDTA acuosa (EDTA 100 mM, 0,2% (peso/volumen) de albúmina de suero bovino en Hepes 50 mM/NaOH a pH 7,5).

La mezcla resultante se incubó 1 h a 22°C para permitir la unión del péptido fosforilado biotinilado a estreptavidina-XLent y el quelato PT66-Eu. Posteriormente, la cantidad de sustrato fosforilado se evaluó por medición de la transferencia de energía de resonancia del quelato PT66-Eu a estreptavidina-XLent. Por tanto, las emisiones de fluorescencia a 620 nm y 665 nm después de la excitación a 350 nm se midieron en un lector de HTRF, por ejemplo, Rubystar (BMG Labtechnologies, Offenburg, Alemania) o Viewlux (Perkin-Elmer). La relación de las emisiones a 665 nm y a 622 nm se tomó como medida de la cantidad de sustrato fosforilado. Los datos se normalizaron (reacción enzimática sin inhibidor = 0% de inhibición, todos los otros componentes del ensayo pero sin enzima = 100% de inhibición). Normalmente, los compuestos de prueba se probaron en la misma placa de microtitulación a 10 concentraciones diferentes en el intervalo de 20 μ M a 1 nM (20 μ M, 6,7 μ M, 2,2 μ M, 0,74 μ M, 0,25 μ M, 82 nM, 27 nM, 9,2 nM, 3,1 nM y 1 nM, series de dilución preparadas antes del ensayo al nivel de las disoluciones madre 100 veces conc. por diluciones seriadas 1:3) en valores por duplicado para cada concentración y se calcularon valores de Cl₅₀ por un ajuste de 4 parámetros usando un software interno.

20 Ensayo 7: Ensayo de HTRF de TrkA

5

10

15

25

30

35

40

45

50

55

La actividad inhibitoria de Trk-A de los compuestos de la presente invención se cuantificó empleando el ensayo de HTRF de Trk-A como se describe en los siguientes párrafos.

Como cinasa se usó una proteína de fusión de GST-His que contenía un fragmento del extremo C de Trk-A humana (aminoácidos G443 - G796, expresados en células de insecto [SF9] y purificados por cromatografía de afinidad, comprados de Proqinase [Freiburg i.Brsg., Alemania]. Como sustrato para la reacción de cinasa se usó el copolímero de poli-Glu, Tyr biotinilado (4:1) (nº 61GT0BLA) de Cis Biointernational (Marcoule, Francia). Para el ensayo, 50 nl de una disolución 100 veces concentrada del compuesto de prueba en DMSO se pipetearon en una placa de microtitulación de 384 pocillos de bajo volumen negra (Greiner Bio-ona, Frickenhausen, Alemania), se añadieron 2 µl de una disolución de TrkA en tampón de ensayo acuoso [MOPS 8 mM/NaOH a pH 7,0, Mg(OAc)₂ 10 mM, ditiotreitol 1 mM, 0,01% (v/v) de NP-40 (Fluka), EDTA 0,2 mM] y la mezcla se incubó durante 15 min a 22°C para permitir la unión previa de los compuestos de prueba a la enzima antes de empezar la reacción de cinasa. Entonces, la reacción de cinasa se inició mediante la adición de 3 µl de una disolución de adenosina-tri-fosfato (ATP, 16,7 μM => la conc. final en el volumen de ensayo de 5 μl es 10 μM) y sustrato (2,27 μg/ml => la conc. final en el volumen de ensayo de 5 µl es 1,36 µg/ml [~ 30 nM]) en tampón de ensayo y la mezcla resultante se incubó durante un tiempo de reacción de 60 min a 22°C. La concentración de Trk-A en el ensayo se ajustó dependiendo de la actividad del lote de enzima y se eligió de forma apropiada para tener el ensayo en el intervalo lineal, concentraciones de enzima típicas estuvieron en el intervalo de aproximadamente 60 pg/µl (conc. final en el volumen de ensayo de 5 µl). La reacción se detuvo mediante la adición de 5 µl de una disolución de reactivos de detección de HTRF (estreptavidina-XLent 200 nM [Cis Biointernational] y quelato PT66-Eu 1,4 nM, un anticuerpo anti-fosfotirosina marcado con quelato de europio de Perkin Elmer) en una disolución de EDTA acuosa (EDTA 100 mM, 0,2% (peso/volumen) de albúmina de suero bovino en Hepes 50 mM/NaOH a pH 7,5).

La mezcla resultante se incubó 1 h a 22°C para permitir la unión del péptido fosforilado biotinilado a estreptavidina-XLent y el quelato PT66-Eu. Posteriormente, la cantidad de sustrato fosforilado se evaluó por medición de la transferencia de energía de resonancia del quelato PT66-Eu a estreptavidina-XLent. Por tanto, las emisiones de fluorescencia a 620 nm y 665 nm después de la excitación a 350 nm se midieron en un lector de HTRF, por ejemplo, Rubystar (BMG Labtechnologies, Offenburg, Alemania) o Viewlux (Perkin-Elmer). La relación de las emisiones a 665 nm y a 622 nm se tomó como medida de la cantidad de sustrato fosforilado. Los datos se normalizaron (reacción enzimática sin inhibidor = 0% de inhibición, todos los otros componentes del ensayo pero sin enzima = 100% de inhibición). Normalmente, los compuestos de prueba se probaron en la misma placa de microtitulación a 10 concentraciones diferentes en el intervalo de 20 μ M a 1 nM (20 μ M, 6,7 μ M, 2,2 μ M, 0,74 μ M, 0,25 μ M, 82 nM, 27 nM, 9,2 nM, 3,1 nM y 1 nM, series de dilución preparadas antes del ensayo al nivel de las disoluciones madre 100 veces conc. por diluciones seriadas 1:3) en valores por duplicado para cada concentración y se calcularon valores de Cl₅₀ por un ajuste de 4 parámetros usando un software interno.

Ensayos adicionales: Ensayo de unión al filtro radioenzimático Upstate KinaseProfiler®:

Ensayo de unión al filtro radioenzimático Upstate KinaseProfiler™

Los compuestos de la presente invención se evalúan para su capacidad para inhibir miembros individuales del panel de las cinasas. Los compuestos se prueban por duplicado a una concentración final de 10 µM siguiendo este protocolo genérico. Obsérvese que la composición del tampón de cinasa y los sustratos varían para las diferentes cinasas incluidas en el panel de "Upstate KinaseProfiler™. El tampón de cinasa (2,5 µl, 10x - que contiene MnCl₂ si

se requiere), cinasa activa (0,001 - 0,01 unidades; 2,5 μ l), péptido específico o de Poli(Glu4-Tyr) (5 - 500 μ M o 0,01 mg/ml) en tampón de cinasa y tampón de cinasa (50 μ M; 5 μ l) se mezclan en un Eppendorf sobre hielo. Se añade una mezcla de Mg/ATP (10 μ l; MgCl $_2$ 67,5 (o 33,75) mM, ATP 450 (o 225) μ M y 1 μ Ci/ μ l de [γ - 32 P]-ATP (3000 Ci/mmol)) y la reacción se incuba a aproximadamente 30°C durante aproximadamente 10 minutos. La mezcla de reacción se aplica en puntos (20 μ l) sobre P81 de 2 cm x 2 cm (fosfocelulosa, para sustratos de péptido positivamente cargados) o cuadrado de papel Whatman nº 1 (para el péptido Poli(Glu4-Tyr)). Los cuadrados de ensayo se lavan 4 veces, durante 5 minutos cada uno, con 0,75% de ácido fosfórico y se lavan una vez con acetona durante 5 minutos. Los cuadrados de ensayo se transfieren a un vial de centelleo, se añaden 5 ml de mezcla de centelleo y la incorporación de 32 P (cpm) al sustrato de péptido se cuantifica con un contador de centelleo Beckman. Para cada reacción se calcula la inhibición en porcentaje.

Otros protocolos de ensayo de cinasa que pueden usarse se facilitan en el documento "KinaseProfiler" Service Assay Protocols", publicado por Millipore Corporation en http://www.millipore.com/techpublications/tech1/cd1000enus, que se incorpora por este documento por referencia en su totalidad.

15 DATOS BIOLÓGICOS

5

10

20

Se encontró que los compuestos de la presente invención poseían inhibición equilibrada de cinasa VEGFR2 y cinasa PDGFRβ y/o cinasa Tie2 con un perfil de selectividad favorable dentro de la clase de tirosina cinasas. Los compuestos preferidos de la presente invención muestran, por ejemplo, selectividad contra el receptor de insulina (InsR) y/o el receptor del factor de crecimiento nervioso TrkA. Compuestos más preferidos de la presente invención inhiben potentemente cinasa VEGFR2 y PDGFRβ y Tie2, a la vez que son selectivos contra InsR y TrkA.

Los datos seleccionados se facilitan en la siguiente tabla. Los valores de Cl_{50} se convirtieron en valores de pCl_{50} , es decir, -log Cl_{50} en concentración molar.

Ejemplo nº	Actividad enzimática de Tie 2	Actividad enzimática de VEGFR2	Actividad enzimática de PDGFRβ	Actividad enzimática de TrkA	Actividad enzimática de InsR
	(ensayo 2)	(ensayo 5)	(ensayo 6)	(ensayo 7)	(ensayo 4)
1,5	+	+	+		
1,6	+	+	+		
1,9	+	+			
2,1	+	+	+		
2,4	+	+	+		
2,6	+	+			

⁻⁻ representa pCI₅₀ < 5,0

⁻ representa pCI₅₀ 5,0 - 6,0

⁺ representa pCI₅₀ > 6,0

REIVINDICACIONES

1. Un compuesto de fórmula general (I):

$$(CH_2)_q$$
 R^3 R^4 R^5 R^5

en la que:

10

15

20

25

30

35

40

 R^1 representa H o -C(O)R^b, o se selecciona del grupo de alquilo C_1 - C_6 , alquenilo C_2 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R^6 ;

 R^2 representa hidrógeno, halógeno, ciano, -N $R^{d1}R^{d2}$, -O R^c , -C(O) R^b , o se selecciona del grupo de alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo, heteroarilo, en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R^7 ; R^3 se selecciona del grupo de hidrógeno, alquilo C_1 - C_6 , alcoxi C_1 - C_6 , haloalquilo C_1 - C_1 - C_1 - C_1 - C_2 - C_1 - C_2 - C_1 - C_2 - C_2 - C_1 - C_2 -C

hidroxi, amino, halógeno y ciano; R^4 , R^5 , R^6 , R^7 se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, - $C(O)R^b$, - $S(O)_2R^b$, - OR^c , - OR^d R^{d2} y - $OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo, heteroarilo, heterocicloalquilo C_3 - C_{10} y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con R^8 :

 R^8 se selecciona del grupo de alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, - $C(O)R^b$, - $S(O)_2R^b$, - OR^c , - $NR^{d1}R^{d2}$ y - $OP(O)(OR^c)_2$;

R^a se selecciona del grupo de hidrógeno y alquilo C₁-C₆;

 R^b se selecciona del grupo de hidroxilo, $-OR^c$, $-SR^c$, $-NR^{d1}R^{d2}$, alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} , en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con hidroxilo, halógeno o alcoxi C_1 - C_6 ;

 R^c se selecciona del grupo de hidrógeno, $-C(O)R^e$, alquilo C_1-C_6 , haloalquilo C_1-C_6 , cicloalquilo C_3-C_{10} , heterocicloalquilo C_3-C_{10} , arilo y heteroarilo, en el que alquilo C_1-C_6 , haloalquilo C_1-C_6 , cicloalquilo C_3-C_{10} , heterocicloalquilo C_3-C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, $-OR^f$, $-NR^{d1}R^{d2}$ o $-OP(O)(OR^f)_2$;

 R^{d1} , R^{d2} se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, o representan un grupo - $C(O)R^e$, - $S(O)_2R^e$ o - $C(O)NR^{g1}R^{g2}$ en los que alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, - $NR^{g1}R^{g2}$, - OR^f , - $C(O)R^e$, - $S(O)_2R^e$ o - $OP(O)(OR^f)_2$; o

 R^{d1} y R^{d2} , junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , halógeno, $-NR^{g1}R^{g2}$, $-OR^f$, $-C(O)R^e$, $-S(O)_2R^e$ o $-OP(O)(OR^f)_2$; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR^{d3} , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o $-S(O)_2$ -, y puede contener opcionalmente uno o más dobles enlaces

 R^{d3} se selecciona del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ;

 R_{-}^{e} se selecciona del grupo de -NR^{g1}R^{g2}, alquilo C₁-C₆, cicloalquilo C₃-C₆, alcoxi C₁-C₆, arilo y heteroarilo; Rf se selecciona del grupo de hidrógeno, -C(O)Re, alquilo C1-C6, haloalquilo C1-C6, cicloalquilo C3-C10, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo. halógeno, alcoxi C₁-C₆, arilo o -NR^{g1} R^{g2};

R⁹¹, R⁹² se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C₁-C₆, cicloalquilo C₃- C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo;

y R⁹², junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C₁-C₆, -alcoxi C₁-C₆, halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NRa, oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)₂-, y puede contener opcionalmente uno o más dobles enlaces;

A se selecciona del grupo de $-C(O)^-$, $-C(S)^-$, $-C(=NR^a)^-$, $-C(O)NR^a^-$, $-C(=NR^a)NR^a^-$, $-S(O)_2^-$, $-S(O)(=NR^a)^-$, $-S(O)_2^-$, -SS(=NR^a)₂-, -C(S)NR^a-, -C(O)C(O)-, -C(O)C(O)NR^a-, -C(O)NR^aC(O)-, -C(S)NR^aC(O)- y -C(O)NR^aC(S)-; B es un enlace o se selecciona del grupo de alquileno C₁-C₆, cicloalquileno C₃-C₁₀ y heterocicloalquileno C_3-C_{10} ;

D, E son, independientemente entre sí, arileno o heteroarileno;

X₁, X₂, X₃ son, independientemente entre sí, CH o CR² o un átomo de nitrógeno: 20 siendo cero, uno o dos de X₁, X₂, X₃ nitrógeno; y q representa un número entero de 0, 1 ó 2;

5

10

15

25

30

35

40

45

50

55

60

o una sal, un N-óxido o un solvato del mismo, en la que, cuando uno o más de R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^{g1} , R^{g2} o R^g están presentes en una posición en la molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) Ra, Rb, Rc, Rd, Rd2, Rd3, Re, Rf, Rg1, Rg2 o R8 tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en dicha primera posición en la molécula y en dicha segunda o posiciones adicionales en la molécula, siendo posible que las dos o más apariciones de R^a, R^b, R^c, R^{d1}, R^{d2}, R^{d3}, R^e, R^f, R^{g1}, R^{g2} o R^{g3} dentro de una única molécula sean idénticas o diferentes. Por ejemplo, si R^a está presente dos veces en la molécula, entonces el significado del primer Ra puede ser, por ejemplo, H y el significado del segundo Ra puede ser, por ejemplo, metilo.

2. El compuesto según la reivindicación 1, en el que:

 R^1 representa H o $-C(O)R^b$, o se selecciona del grupo de alquilo C_1-C_6 , alquenilo C_2-C_6 , alquinilo C_2-C_6 , alquinilo C_3-C_6 , alquenilo C_4-C_6 , alquenilo C_5-C_6 , alquenilo cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, en el que dichos residuos están sin sustituir o sustituidos una o

más veces, independientemente entre sí, con R^6 ; R^2 representa hidrógeno, halógeno, ciano, $NR^{d1}R^{d2}$, $-OR^c$, $-C(O)R^b$, o se selecciona del grupo de alquilo C_1 -C₆, alquenilo C₂-C₆, alquinilo C₂-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo, heteroarilo, en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R⁷ R³ se selecciona del grupo de hidrógeno, alquilo C₁-C6, alcoxi C₁-C6, haloalquilo C₁-C6, haloalcoxi C₁-C6,

hidroxi, amino, halógeno y ciano; R^4 , R^5 , R^6 , R^7 se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_4 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, - $C(O)R^b$, - $S(O)_2R^b$, - OR^c , - $NR^{d1}R^{d2}$ y - $OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo, heteroarilo, heterocicloalquilo C₃-C₁₀ y cicloalquilo C₃-C₁₀ están opcionalmente sustituidos una o más

 R^8 se selecciona del grupo de alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, $-C(O)R^b$, $-S(O)_2R^b$, $-OR^c$, $-NR^{d1}R^{d2}$ $y - OP(O)(OR^c)_2;$

 R^a se selecciona del grupo de hidrógeno y alquilo C_1 - C_6 ; R^b se selecciona del grupo de hidroxilo, -O R^c , -S R^c , -N $R^{d1}R^{d2}$, alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} , en el que alquilo C₁-C₆ y cicloalquilo C₃-C₁₀ están opcionalmente sustituidos una o más veces con hidroxilo, halógeno o alcoxi C₁-C₆;

 $R^c \ se \ selecciona \ del \ grupo \ de \ hidrógeno, \ -C(O)R^e, \ alquilo \ C_1-C_6, \ haloalquilo \ C_1-C_6, \ cicloalquilo \ C_3-C_{10},$ heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, -OR f , -NR d1 R d2 o -OP(O)(OR f)₂;

 R^{d1} , R^{d2} se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, o representa un grupo $-C(O)R^e$, $-S(O)_2R^e$ o $-C(O)NR^{g1}R^{g2}$, en los que alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, $-NR^{g1}R^{g2}$, $-OR^f$, $-C(O)R^e$, $-S(O)_2R^e$ o $-OP(O)(OR^f)_2$; o

R^{d1} y R^{d2}, junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C₁-C₆, halógeno, -NR^{g1}R^{g2}, -OR^f, -C(O)R^e, -S(O)₂R^e o -OP(O)(OR^f)₂; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NR^{d3}, oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)2-, y puede contener opcionalmente uno o más dobles enlaces

R^{d3} se selecciona del grupo de hidrógeno, alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆ y cicloalquilo C₃-C₁₀ están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ; R_{\cdot}^e se selecciona del grupo de -NR^{g1}R^{g2}, alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , alcoxi C_1 - C_6 , arilo y heteroarilo;

Rf se selecciona del grupo de hidrógeno, -C(O)Re, alquilo C1-C6, haloalquilo C1-C6, cicloalquilo C3-C10, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆, haloalquilo C₁-C₆ cicloalquilo, C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, alcoxi C₁-C₆, arilo o -NR^{g1}R^{g2}

R⁹¹. R⁹² se seleccionan, independientemente entre sí, del grupo de hidrógeno, alguilo C₁-C₆, cicloalguilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo;

R^{g1} y R^{g2}, junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alguilo C₁-C₆, -alcoxi C₁-C₆, halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo de NH, NRa, oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)₂-, y puede contener opcionalmente uno o más dobles enlaces;

A se selecciona del grupo de -C(O)- y -C(O)NR^a-;

B es un enlace o se selecciona del grupo de alquileno C₁-C₃ y cicloalquileno C₃-C₆;

D, E son, independientemente entre sí, arileno o heteroarileno;

X₁, X₂, X₃ son, independientemente entre sí, CH o CR² o un átomo de nitrógeno;

siendo cero, uno o dos de X₁, X₂, X₃ nitrógeno; y

q representa un número entero de 0, 1 ó 2;

5

10

15

20

25

30

35

40

45

50

60

o una sal, un N-óxido o un solvato del mismo, en el que, cuando uno o más de R^a, R^b, R^c, R^{d1}, R^{d2}, R^{d3}, R^e, R^f, R^{g1}, R^{g2} o R⁸ están presentes en una posición en la molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) Ra, Rb, Rc, Rd1, Rd2, Rd3, Re, Rf, Rg1 Rg2 o R8 tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en dicha primera posición en la molécula y en dicha segunda o posiciones adicionales en la molécula, siendo posible que las dos o más apariciones de R^a, R^b, R^c, R^{d1}, R^{d2}, R^{d3}, R^e, R^f, R^{g1}, R^{g2} o R^{g3} dentro de una única molécula sean idénticas o diferentes. Por ejemplo, si R^a está presente dos veces en la molécula, entonces el significado del primer

Ra puede ser, por ejemplo, H y el significado del segundo Ra puede ser, por ejemplo, metilo.

3. El compuesto según la reivindicación 1 ó 2, en el que:

R¹ representa H o -C(O)R^b, o se selecciona del grupo de alquilo C₁-C₆, alquenilo C₂-C₆, alquinilo C₂-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R⁶

R² representa hidrógeno, halógeno, ciano, NR^{d1}R^{d2}, -OR^c, -C(O)R^b, o se selecciona del grupo de alquilo C₁-C₆, alquenilo C₂-C₆, alquinilo C₂-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo, heteroarilo, en el que dichos residuos están sin sustituir o sustituidos una o más veces, independientemente entre sí, con R⁷; R³ se selecciona del grupo de hidrógeno, alquilo C₁-C6, alcoxi C₁-C6, haloalquilo C₁-C6, haloalcoxi C₁-C6,

hidroxi, amino, halógeno y ciano; R^4 , R^5 , R^6 , R^7 se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, $-C(O)R^b$, $-S(O)_2R^b$, $-OR^c$, $-NR^{d1}R^{d2}$ y $-OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo, heteroarilo, heterocicloalquilo C_3 - C_{10} y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con R8;

veces con R⁻;

R⁸ se selecciona del grupo alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, haloalquilo C₁-C₆,

R⁸ se selecciona del grupo alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, haloalquilo C₁-C₆,

R⁸ se selecciona del grupo alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, haloalquilo C₁-C₆, haloalcoxi C₁-C₆, arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, -C(O)R^b, -S(O)₂R^b, -OR^c, -NR^c

R^a se selecciona del grupo de hidrógeno y alquilo C₁-C₆;

R^b se selecciona del grupo de hidroxilo, -OR^c, -SR^c, -NR^{d1}R^{d2}, alquilo C₁-C₆ y cicloalquilo C₃-C₁₀, en el que 55 alquilo C₁-C₆ y cicloalquilo C₃-C₁₀ están opcionalmente sustituidos una o más veces con hidroxilo, halógeno

> R^c se selecciona del grupo de hidrógeno, -C(O)R^e, alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo, en el que alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, -OR f , -NR d1 R d2 o -OP(O)(OR f)₂;

> R^{d1} , R^{d2} se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, o representa un grupo - $C(O)R^e$, - $S(O)_2R^e$ o - $C(O)NR^{91}R^{92}$,

en los que alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, -NR g1 R g2 , -OR t , -C(O)R e , -S(O) $_2$ R e o -OP(O)(OR t) $_2$; o

R^{d1} y R^{d2}, junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C₁-C₆, halógeno, -NR^{g1}R^{g2}, -OR^f, -C(O)R^e, -S(O)₂R^e o -OP(O)(OR^f)₂; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo de NH, NR^{d3}, oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)- s(O)- v/O -S(O)- v/O

, -S(O)- y/o -S(O)₂-, y puede contener opcionalmente uno o más dobles enlaces R^{d3} se selecciona del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ; R_2^e se selecciona del grupo de -NR $_3^{g1}$ R $_3^{g2}$, alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , arilo y heteroarilo;

R° se selecciona del grupo de -NR 9 'R 92 , alquilo C $_1$ -C $_6$, cicloalquilo C $_3$ -C $_6$, alcoxi C $_1$ -C $_6$, arilo y heteroarilo; R f se selecciona del grupo de hidrógeno, -C(O)R e , alquilo C $_1$ -C $_6$, haloalquilo C $_1$ -C $_6$, cicloalquilo C $_3$ -C $_{10}$, heterocicloalquilo C $_3$ -C $_{10}$, arilo y heteroarilo, en el que alquilo C $_1$ -C $_6$, haloalquilo C $_1$ -C $_6$, cicloalquilo C $_3$ -C $_{10}$, heterocicloalquilo C $_3$ -C $_{10}$, arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, alcoxi C $_1$ -C $_6$, arilo o -NR 91 R 92 ;

 R^{91} , R^{92} se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo;

 R^{g1} y R^{g2} , junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C_1 - C_6 , -alcoxi C_1 - C_6 , halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo de NH, NR^a , oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o - $S(O)_2$ -, y puede contener opcionalmente uno o más dobles enlaces:

A se selecciona del grupo de -C(O)- y -C(O)NRa-;

B es un enlace o se selecciona del grupo de alquileno C₁-C₃ y cicloalquileno C₃-C₆;

30 D es fenileno;

5

10

15

20

25

35

40

45

50

55

60

E es arileno o heteroarileno;

 X_1 , X_2 , X_3 son, independientemente entre sí, CH o CR^2 o un átomo de nitrógeno; siendo cero, uno o dos de X_1 , X_2 , X_3 nitrógeno, y

q representa un número entero de 0, 1 ó 2;

o una sal, un N-óxido o un solvato del mismo, en la que, cuando uno o más de R^a, R^b, R^c, R^{d1}, R^{d2}, R^{d3}, R^e, R^f, R^{g1}, R^{g2} o R^{g4} están presentes en una posición en la molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) R^a, R^b, R^c, R^{d1}, R^{d2}, R^{d3}, R^e, R^f, R^{g1}, R^{g2} o R^{g4} tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en dicha primera posición en la molécula y en dicha segunda o posiciones adicionales en la molécula, siendo posible que las dos o más apariciones de R^a, R^b, R^c, R^{d1}, R^{d2}, R^{d3}, R^e, R^f, R^{g1}, R^{g2} o R^{g4} dentro de una única molécula sean idénticas o diferentes. Por ejemplo, si R^a está presente dos veces en la molécula, entonces el significado del primer R^a puede ser, por ejemplo, H y el significado del segundo R^a puede ser, por ejemplo, metilo.

4. El compuesto según una cualquiera de las reivindicaciones 1 a 3, en el que:

R¹ representa alquilo C₁-C₆;

R³ se selecciona del grupo de hidrógeno, alquilo C₁-C₆ y halógeno;

 R^4 , R^5 se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_1 - C_6 , haloalcoxi C_1 - C_6 , arilo, heteroarilo, hidroxi, amino, halógeno, ciano, nitro, $-C(O)R^b$, $-S(O)_2R^b$, $-OR^c$, $-NR^{d1}R^{d2}$ y $-OP(O)(OR^c)_2$, en los que alquilo C_1 - C_6 , arilo, heteroarilo, heteroarilo, heteroarilo quilo C_3 - C_{10} y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con R^8 :

 R^8 se selecciona del grupo de alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , haloalquilo C_3 - C_1 0, haloalquilo C_1 C_1

R^a es hidrógeno;

R^b se selecciona del grupo de hidroxilo, -OR^c, -SR^c, -NR^{d1}R^{d2}, alquilo C₁-C₆ y cicloalquilo C₃-C₁₀, en el que alquilo C₁-C₆ y cicloalquilo C₃-C₁₀ están opcionalmente sustituidos una o más veces con hidroxilo, halógeno o alcoxi C₁-C₆:

 R^c se selecciona del grupo de hidrógeno, $-C(O)R^e$, alquilo C_1-C_6 , haloalquilo C_1-C_6 , cicloalquilo C_3-C_{10} , heterocicloalquilo C_3-C_{10} , arilo y heteroarilo, en el que alquilo C_1-C_6 , haloalquilo C_1-C_6 , cicloalquilo C_3-C_{10} , heterocicloalquilo C_3-C_{10} , arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo, halógeno, arilo, $-OR^f$, $-NR^{d1}R^{d2}$ o $-OP(O)(OR^f)_2$;

 R^{d1} , R^{d2} se seleccionan, independientemente entre sí, del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, o representa un grupo - $C(O)R^e$, - $S(O)_2R^e$ o - $C(O)NR^{91}R^{92}$,

en el que alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos una o más veces, de la misma forma o de forma diferente, con halógeno, hidroxi o el grupo arilo, $-NR^{g1}R^{g2}$, $-OR^f$, $-C(O)R^e$, $-S(O)_2R^e$ o $-OP(O)(OR^f)_2$; o R^{d1} y R^{d2} , junto con el átomo de nitrógeno al que esta

, junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alquilo C₁-C₆, halógeno, -NR^{g1}R^{g2}, -OR^f, -C(O)R^e, -S(O)₂R^e o -OP(O)(OR^f)₂; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo de NH, NR^{d3}, oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)₂-, y puede contener opcionalmente uno o más dobles enlaces

 R^{d3} se selecciona del grupo de hidrógeno, alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 y cicloalquilo C_3 - C_{10} están opcionalmente sustituidos una o más veces con alquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , hidroxilo, halógeno, haloalquilo C_1 - C_6 o alcoxi C_1 - C_6 ; R_1^e se selecciona del grupo de -NR^{g1}R^{g2}, alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , arilo y heteroarilo;

 R^f se selecciona del grupo de hidrógeno, $-C(O)R^e$, alquilo C_1 - C_6 , haloalquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C_3 - C_{10} , arilo y heteroarilo, en el que alquilo C_1 - C_6 , haloalquilo C_1 - C_6 , cicloalquilo C_3 - C_{10} , heterocicloalquilo C₃-C₁₀, arilo y heteroarilo están opcionalmente sustituidos una o más veces con hidroxilo. halógeno, alcoxi C₁-C₆, arilo o -NR^{g1}R^{g2}

 R^{g1} , R^{g2} se seleccionan, independientemente entre sí, del grupo que comprende, que consiste preferentemente en hidrógeno, alquilo C₁-C₆, cicloalquilo C₃-C₁₀, heterocicloalquilo C₃-C₁₀, arilo y heteroarilo:

R⁹¹ y R⁹², junto con el átomo de nitrógeno al que están unidos, forman un anillo de heterocicloalquilo de 3 a 10 miembros que está opcionalmente sustituido una o más veces, de la misma forma o de forma diferente, con alguilo C₁-C₆, -alcoxi C₁-C₆, halógeno o hidroxi; por lo que el esqueleto de carbono de este anillo de heterocicloalquilo puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un miembro del grupo que comprende, que consiste preferentemente en NH, NRa, oxígeno o azufre, y puede interrumpirse opcionalmente una o más veces, de la misma forma o de forma diferente, por un grupo -C(O)-, -S(O)- y/o -S(O)2-, y puede contener opcionalmente uno o más dobles enlaces;

A se selecciona del grupo de -C(O)- y -C(O)NRa-;

B es un enlace o se selecciona del grupo de alquileno C₁-C₃ y cicloalquileno C₃-C₆;

D es fenileno:

E es arileno o heteroarileno:

X₁ es un grupo CH;

X₂ es un átomo de nitrógeno;

X₃ es un grupo CH; y 35

5

10

15

20

25

30

40

50

55

60

q representa un número entero de 0, 1 ó 2:

o una sal, un N-óxido o un solvato del mismo, en la que, cuando uno o más de R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^{g1} , R^{g2} o R^g están presentes en una posición en la molécula, además de en una o más posiciones adicionales en la molécula, dicho(s) R^a , R^b , R^c , R^{d1} , R^{d2} , R^{d3} , R^e , R^f , R^f , R^g ¹, R⁹² o R⁸ tiene (tienen), independientemente entre sí, los mismos significados que se definen anteriormente en idénticas o diferentes. Por ejemplo, si Ra está presente dos veces en la molécula, entonces el significado del primer R^a puede ser, por ejemplo, H y el significado del segundo R^a puede ser, por ejemplo, metilo.

45 5. El compuesto según una cualquiera de las reivindicaciones 1 a 4 que se selecciona del grupo que consiste en:

N-[3-(1-Metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-benzamida;

N-[4-Metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-benzamida;

2,4-Dicloro-N-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-benzamida;

2,4-Dicloro-N-[4-metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-benzamida;

N-[3-(1-Metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-trifluorometil-benzamida;

N-[4-Metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-trifluorometil-benzamida;

2-Fluoro-5-metil-N-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-benzamida;

2-Fluoro-5-metil-N-[4-metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-benzamida;

1-[3-(1-Metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-fenil-urea;

1-[4-Metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-fenil-urea;

1-[3-(1-Metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-(3-trifluorometil-fenil)-urea;

1-[4-Metil-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-(3-trifluorometilfenil)-urea;

1-(2-Fluoro-5-metil-fenil)-3-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-urea;

1-[2-(3-Fluoro-fenil)-5-isopropil-2H-pirazol-3-il]-3-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-urea;

1-[5-lsopropil-2-(3-metoxi-fenil)-2H-pirazol-3-il]-3-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-urea;

N-[4-Fluoro-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-trifluorometil-benzamida;

1-[4-Fluoro-3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-3-(3-trifluorometilfenil)-urea; y

1-[4-(4-Metil-piperazin-1-ilmetil)-3-trifluorometil-fenil]-3-[3-(1-metil-1H-pirazolo[3,4-c]piridin-4-iletinil)-fenil]-urea.

6. Un procedimiento de preparación de un compuesto de fórmula general (I) según una cualquiera de las reivindicaciones 1 a 5, comprendiendo dicho procedimiento la etapa de permitir que un compuesto intermedio de fórmula general 1:

5

10

en la que D, R^a , R^1 , R^3 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5, reaccione con un electrófilo tal como un isocianato adecuadamente funcionalizado (que conduce a una urea), un cloruro de sulfonilo adecuadamente funcionalizado (que conduce a una sulfonilamida) o un cloruro de ácido adecuadamente funcionalizado (que conduce a una amida carboxílica), opcionalmente en presencia de una base adecuada tal como, por ejemplo, piridina o trietilamina dando así un compuesto de fórmula I:

en la que A, B, D, E, R^a , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5.

7. Un procedimiento de preparación de un compuesto de fórmula general (I) según una cualquiera de las reivindicaciones 1 a 5, comprendiendo dicho procedimiento la etapa de permitir que un compuesto intermedio de fórmula general 1:

en la que D, R^a , R^1 , R^3 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5,

reaccione con un ácido carboxílico adecuadamente funcionalizado, opcionalmente en presencia de un agente de acoplamiento tal como, por ejemplo, T3P, opcionalmente en presencia de una base adecuada tal como, por ejemplo, trietilamina dando así un compuesto de fórmula I:

en la que A, B, D, E, R^a , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5.

8. Un procedimiento de preparación de un compuesto de fórmula general (la):

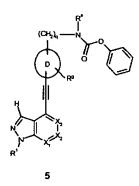
5

10

en la que B, D, E, R^a , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5, comprendiendo dicho procedimiento la etapa de permitir que un compuesto intermedio de fórmula general 1:

en la que D, R^a , R^1 , R^3 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5, reaccione con una (hetero)arilamina de fórmula general 2:

- en la que B, E, R⁴ y R⁵ son como se definen en una cualquiera de las reivindicaciones 1 a 5, 5 en presencia de un agente carbonilante tal como, por ejemplo, trifosgeno dando así un compuesto de la fórmula la anteriormente mencionada.
 - 9. Un procedimiento de preparación de un compuesto de fórmula general (la):


en la que B, D, E, R^a, R¹, R³, R⁴, R⁵, X₁, X₂, X₃ y q son como se definen en una cualquiera de las reivindicaciones 1 a 10 5, comprendiendo dicho procedimiento la etapa de permitir que un compuesto intermedio de fórmula general 3:

en la que D, Ra, R1, R3, X1, X2, X3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5, reaccione con una (hetero)arilamina de fórmula general 2:

en la que B, E, R⁴ y R⁵ son como se definen en una cualquiera de las reivindicaciones 1 a 5, dando así un compuesto de la fórmula la anteriormente mencionada.

10. Un procedimiento de preparación de un compuesto de fórmula general (la) :

en la que B, D, E, R^a , R^1 , R^3 , R^4 , R^5 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5, comprendiendo dicho procedimiento la etapa de permitir que un compuesto intermedio de fórmula general 5:

10

5

en la que D, R^a , R^1 , X_1 , X_2 , X_3 y q son como se definen en una cualquiera de las reivindicaciones 1 a 5, reaccione con una (hetero)arilamina de fórmula general 2:

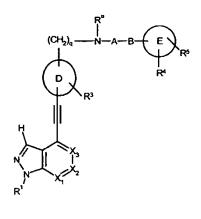
en la que B, E, R⁴ y R⁵ son como se definen en una cualquiera de las reivindicaciones 1 a 5,

dando así un compuesto de la fórmula la anteriormente mencionada.

15

11. Un procedimiento de preparación de un compuesto de fórmula general (I) según una cualquiera de las reivindicaciones 1 a 5, comprendiendo dicho procedimiento la etapa de permitir que un compuesto intermedio de fórmula general 15:

15


en la que R¹, X₁, X₂ y X₃ son como se definen en una cualquiera de las reivindicaciones 1 a 5, y X representa un átomo de halógeno, reaccione por una reacción de acoplamiento, por ejemplo, un acoplamiento catalizado por metal de transición, con un compuesto de fórmula general 19:

19

5

15

en la que D, R^a, R³, R⁴, R⁵ y q son como se definen en una cualquiera de las reivindicaciones 1 a 5, y T representa un átomo de hidrógeno o un grupo trialquilsililo, por ejemplo, un grupo trimetilsililo, dando así un compuesto de fórmula (I):

(1)

- en la que A, B, D, E, R^a, R¹, R³, R⁴, R⁵, X₁, X₂, X₃ y q son como se definen en una cualquiera de las reivindicaciones 1 a 5.
 - 12. Una composición farmacéutica que comprende un compuesto de fórmula general (I) según una cualquiera de las reivindicaciones 1 a 5, o que puede obtenerse mediante un procedimiento según una cualquiera de las reivindicaciones 6 a 11, o una sal farmacéuticamente aceptable o un N-óxido o un solvato de dicho compuesto, y un diluyente o vehículo farmacéuticamente aceptable.
 - 13. Uso de un compuesto de una cualquiera de las reivindicaciones 1 a 5 para preparar una composición farmacéutica para el tratamiento de enfermedades de crecimiento vascular desregulado o de enfermedades que van acompañadas de crecimiento vascular desregulado.
 - 14. Uso según la reivindicación 13, en el que dichas enfermedades son tumores y/o metástasis de los mismos.
- 20 15. Uso según la reivindicación 13, en el que dichas enfermedades se seleccionan del grupo de leucemia mielógena

ES 2 372 350 T3

crónica, leucemia mielógena aguda, leucemia linfática aguda, leucemia linfocítica aguda, leucemia linfocítica crónica, leucemia linfática crónica, además de otras hiperplasias de precursor mieloide tales como policitemia verdadera y mielofibrosis, o son retinopatía, otras enfermedades dependientes de angiogénesis del ojo, en particular rechazo de trasplante de córnea o degeneración macular senil, o son artritis reumatoide, y otras enfermedades inflamatorias asociadas a angiogénesis, en particular psoriasis, hipersensibilidad de tipo retardado, dermatitis de contacto, asma, esclerosis múltiple, reestenosis, hipertensión pulmonar, accidente cerebrovascular y enfermedades inflamatorias del intestino tales como enfermedad de Crohn, o son enfermedad coronaria y arterial periférica y para la supresión de formación de placas ateroscleróticas, o son enfermedades asociadas a proliferación estromal o caracterizadas por enfermedades de reacciones estromales patológicas asociadas a deposición de fibrina o de matriz extracelular tales como fibrosis, cirrosis, síndrome del túnel carpiano, o son enfermedades ginecológicas en las que puede inhibirse la inhibición de procesos angiogénicos, inflamatorios y estromales con carácter patológico tales como endometriosis, preeclampsia, hemorragia posmenopáusica e hiperestimulación ovárica, o son ascitis, edema tal como edema asociado a tumor cerebral, traumatismo por alta altitud, edema cerebral inducido por hipoxia, edema pulmonar y edema macular o edema tras quemaduras y traumatismo, enfermedad pulmonar crónica, síndrome disneico del adulto, resorción ósea y enfermedades proliferantes benignas tales como mioma, hiperplasia prostática benigna, o son cicatrización, particularmente para la reducción de la formación de cicatrices, y para la reducción de la formación de cicatrices durante regeneración de nervios dañados.

5

10

15