

11 Número de publicación: 2 372 499

(2006.01) A61K 31/575 (2006.01) A61K 31/205 (2006.01) A61P 3/00 (2006.01)

$\overline{}$	`	•
(12	2)	TRADUCCIÓN DE PATENTE EUROPEA

Т3

- 96 Número de solicitud europea: 05722895 .9
- 96 Fecha de presentación: 08.02.2005
- Número de publicación de la solicitud: 1758590
 Fecha de publicación de la solicitud: 07.03.2007
- 64 Título: USO DE UN DETERGENTE PARA LA ELIMINACIÓN NO QUIRÚRGICA DE GRASA.
- 30 Prioridad: 19.05.2004 US 572879 P

73) Titular/es:

LOS ANGELES BIOMEDICAL RESEARCH INSTITUTE AT HARBOR-UCLA MEDICAL CENTER
1124 WEST CARSON STREET
TORRANCE, CA 90250-2064, US y
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

- Fecha de publicación de la mención BOPI: **20.01.2012**
- (72) Inventor/es:

KOLODNEY, Michael, S. y ROTUNDA, Adam, M.

- 45 Fecha de la publicación del folleto de la patente: 20.01.2012
- (74) Agente: de Elzaburu Márquez, Alberto

ES 2 372 499 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Uso de un detergente para la eliminación no quirúrgica de grasa

Campo de la invención

5

10

15

20

25

30

45

50

55

La presente invención se refiere a métodos cosméticos para la eliminación no quirúrgica de acumulaciones de grasa localizada. Específicamente, el método implica composiciones detergentes activas farmacológicamente que son adecuadas para inyectar directamente en un sitio de tratamiento de un paciente que necesita la eliminación de grasa sin necesidad de intervención quirúrgica.

Antecedentes de la invención

Los números que aparecen en paréntesis al final de una frase se refieren a las referencias concretas citadas al final de esta especificación, inmediatamente antes de las reivindicaciones.

Cada vez se utilizan con más frecuencia formulaciones que contienen fosfatidilcolina y sales biliares (formulaciones de sales biliares y fosfatidilcolina, PBF, por sus siglas en inglés) para tratar acumulaciones de grasa localizada (1-8). Varios estudios clínicos del tipo ensayo abierto han informado de resultados prometedores utilizando inyecciones de PBF para el tratamiento de acumulaciones de grasa localizada, incluyendo la hernia de grasa del párpado inferior (bolsas del párpado) y la lipodistrofia "de joroba de búfalo" (1-3).

La fosfatidilcolina es un fosfolípido natural que es un componente esencial de las membranas celulares y que es importante para la composición y reparación de la membrana celular normal. La fosfatidilcolina es también la forma principal de entrega del nutriente esencial colina. La propia colina es un precursor de la síntesis del neurotransmisor acetilcolina, del dador del grupo metilo betaína y de los fosfolípidos, incluyendo la fosfatidilcolina y la esfingomielina entre otros. La fosfatidilcolina está involucrada también en la exportación hepática de las lipoproteínas de densidad muy baja.

Las sales biliares se han usado para mejorar la solubilidad acuosa de la fosfatidilcolina y, más recientemente, de medicaciones como anfotericina B, Taxol® y diazepam (9-14). Fosfatidilcolina altamente purificada se puede combinar con la sal biliar secundaria desoxicolato de sodio, un antimicrobiano, alcohol bencílico y agua, para formar una preparación de micelas mixtas, estable, que se puede esterilizar y usar rápidamente para administración intravenosa (12). En otros países se comercializan preparaciones farmacéuticas de esta mezcla, conocida como Essentiale® y Lipostabil®, para el tratamiento de enfermedades del hígado e hiperlipidemia, respectivamente (12-15).

Rittes fue el primero en informar de que inyecciones de una PBF en la grasa subcutánea disminuían las hernias de grasa infraorbitales o bolsas en los párpados (1). Desde entonces, los médicos han venido usando preparaciones farmacéuticas, o similares, con mezclas de PBF, para tratar hernias de grasa menores en los párpados, así como depósitos de grasa en los muslos, el abdomen, en la parte superior de la espalda, en la barbilla o mentón y en los brazos (2, 3, 5). Estas PBFs no contienen a menudo los componentes como di-alfa-tocoferol (vitamina E), vitaminas B y monofosfato de adenosina que se encuentran de forma variable en Essentiale® y Lipostabi® (2,16).

Las formulaciones de fosfatidilcolina se asocian con sensaciones localizadas de quemazón, eritema, urticaria pasajera y grados variables de prurito, síntomas que normalmente desaparecen al cabo de unos pocos días. Se han descrito también secuelas más graves como ulceración y dolor. Se ha descrito una reacción granulomatosa infecciosa en el muslo de un paciente, en el lugar de numerosas inyecciones de fosfatidilcolina (7). Las dosis aumentadas de fosfatidilcolina inyectada tienen efectos secundarios comparables a los vistos cuando se emplean dosis grandes por vía oral o intravenosa de formulaciones de Lipostabil ®, entre los que se incluyen naúseas, diarreas, dolores abdominales y síncopes.

El mecanismo por el cual las formulaciones que contienen fosfatidilcolina provocan la reducción de los depósitos de grasa subcutánea es desconocido, si bien se han propuesto varios (4). El primero es que la fosfatidilcolina podría disminuir el tamaño de los lipocitos estimulando la actividad de la lipasa. De forma alternativa, se ha propuesto que las PBF funcionarían como un detergente que emulsionan las membranas celulares de los lipocitos. Durante décadas se han usado detergentes en medicina, específicamente como agentes esclerosantes utilizados comúnmente en escleroterapia (American College of Phlebology, 2003). Los detergentes poseen propiedades químicas únicas polares y no polares que facilitan la emulsión de sustancias insolubles disminuyendo la tensión superficial en su interfaz (17). De hecho, para romper o interrumpir la bicapa lipídica de las membranas celulares se utilizan comúnmente detergentes de laboratorio como Triton® X-100 y Empigen® BB. (10, 18-21). Dos componentes principales de las PBF, la fosfatidilcolina y el desoxicolato de sodio, tienen estas propiedades químicas excepcionales y por lo tanto se han usado, de forma independiente, como detergentes o agentes emulsionantes (9, 18, 20-25).

A medida que la población envejece y gana peso, cada vez se emplean más procedimientos quirúrgicos y no quirúrgicos para mejorar el aspecto de las personas. La liposucción es uno de los procedimientos de cirugía cosmética más populares y supone la eliminación quirúrgica de depósitos de grasa empleando succión y, de forma

opcional, empleando disoluciones para ayudar a la eliminación de grasa. La liposucción, denominada también lipoplastia o lipectomía de succión, es un procedimiento quirúrgico que elimina grasa mediante una incisión en la piel a través de la cual se inserta una cánula. La cánula se conecta a una fuente de succión y la grasa no deseada se aspira a través de la cánula y se desecha. La liposucción se lleva a cabo con anestesia local o general, según la cantidad y la ubicación de la grasa que se va a eliminar.

Las formas más comúnmente usadas de liposucción utilizan adicionalmente metodologías de inyección de fluidos en las que antes de la aspiración del tejido graso se inyecta en el lugar de tratamiento una disolución medicinal que contiene una mezcla de sales, un anestésico y un vasoconstrictor. La disolución medicinal ayuda a eliminar la grasa más fácilmente, disminuye las pérdidas de sangre y proporciona anestesia tanto durante la cirugía como después.

10 Como ejemplo de disoluciones coadyuvantes para liposucción se describe en la patente de Estados Unidos archivada el 22 de abril de 1997 y publicada con el número 5.891.083 el 6 abril de 1999 por Capella y Capella, la liposucción y una disolución de transporte que contiene un compuesto para un procedimiento quirúrgico mejorado para eliminar grasa subcutánea. En una realización el documento de la patente de Capella describe el compuesto como una enzima, en especial lipasa o colipasa. La enzima se añada a un vehículo como una disolución salina para proporcionar una disolución de lipólisis. En otra realización de la invención, Capella enseña que agentes 15 emulsionantes como las sales biliares pueden ser beneficiosos añadidos a la disolución como compuesto activo principal o combinados con otros. En todas las realizaciones de la invención de Capella, la disolución de lipólisis se administra durante un período de tiempo antes de la liposucción, para permitir que la disolución se infiltre en el tejido graso. En ninguna parte del documento de Capella se describe el uso de una disolución de lipólisis sola como medio 20 no quirúrgico para eliminar grasa del cuerpo. En todos los ejemplos y realizaciones específicas descritos en el documento de Capella, se emplea la liposucción como un procedimiento quirúrgico para la eliminación de grasa y la lipasa y las sales biliares se proporcionan como coadyuvantes para la liposucción.

Sin embargo, la liposucción y otros métodos quirúrgicos de eliminación de grasa se asocian con sucesos adversos significativos entre los que se incluyen hematomas temporales, hinchazón, entumecimiento, dolor, sensación de quemazón, riesgo de infección, cambios de pigmentación; la formación de coágulos de grasa o de coágulos de sangre que pueden migrar a las pulmones y pueden provocar la muerte; pérdidas excesivas de fluidos, que pueden conducir a shocks, o acumulaciones de fluidos que deben ser drenadas; quemaduras por fricción u otros daños a la piel o a los nervios o lesiones por perforación de órganos vitales. Adicionalmente, la liposucción requiere un tiempo de recuperación de una a dos semanas en el que el paciente no puede trabajar o realizar ciertas actividades cotidianas. Además, puesto que los procedimientos quirúrgicos como la liposucción requieren anestesia local y ocasionalmente general, hay riesgos significativos relacionados con la anestesia que están asociados con la eliminación quirúrgica de grasa.

Por lo tanto, sería conveniente disponer de un método para eliminar acumulaciones de grasa localizada que no requiera cirugía y que tenga pocos efectos secundarios adversos, comparado con los métodos actualmente disponibles.

Resumen de la invención

5

25

30

35

40

45

55

La presente invención proporciona un método cosmético para la eliminación no quirúrgica de acumulaciones de grasa localizada, que comprende administrar una composición que comprende desoxicolato de sodio en una concentración comprendida entre 0,001 % y 5 %, en el que la composición no contiene fosfatidilcolina. La invención proporciona también un método cosmético de eliminación no quirúrgica de acumulaciones localizadas de grasa que comprende administrar una composición que consiste esencialmente en desoxicolato de sodio en una concentración comprendida entre 0,001 % y 5 % junto con uno o más excipientes aceptables farmacológicamente. Antes del descubrimiento de la presente invención, se pensaba que las formulaciones de la técnica anterior (denominadas en lo sucesivo en este documento formulaciones de fosfatidilcolina y sales biliares o PBF) que contienen fosfatidilcolina (PC, por sus iniciales en inglés) y sales biliares usadas para disminuir los depósitos de grasa localizada funcionaban mediante la actividad de la fosfatidilcolina sola. Los detergentes como las sales biliares se añadían simplemente en pequeñas cantidades para dispersar la PC. Sin embargo, la presente invención demuestra, de manera inesperada, que sales biliares solas, como el desoxicolato de sodio, son los agentes activos responsables de la disminución de los depósitos de grasa localizada y poseen efectos detergentes sobre los tejidos muscular y conectivo.

Para los objetivos de la presente invención, entre los métodos no quirúrgicos cosméticos de eliminación de grasa no se incluyen la liposucción, la lipoplastia o la lipectomía de succión.

En una realización de la presente invención, la composición comprende adicionalmente al menos un excipiente aceptable farmacéuticamente y opcionalmente al menos un ingrediente activo adicional.

En otra realización de la presente invención, la composición médica contiene uno o más ingredientes activos adicionales. Uno o más ingredientes activos adicionales pueden ser agentes antiinflamatorios como un agente antiinflamatorio esteroideo o un agente antiinflamatorio no esteroideo, analgésicos y agentes de dispersión como una hialuronidasa o colagenasa.

En otra realización de la presente invención, la composición médica contiene excipientes aceptables

farmacéuticamente.

5

15

35

45

50

En una realización de la presente invención, el paciente es un ser humano.

En otra realización de la presente invención, el método no quirúrgico no incluye liposucción.

En realizaciones de la presente invención, la composición se administra mediante inyección subcutánea, directamente en el tejido graso.

En una realización de la presente invención, la acumulación de grasa localizada es una hernia grasa en el párpado inferior (bolsas en el párpado), un lipoma, lipodistrofia, lipodistrofia de "joroba de búfalo" o depósitos de grasa asociados con celulitis.

En otra realización de la presente invención, se proporcionaun método cosmético de eliminación no quirúrgica de acumulación de grasa localizada en un paciente con hernia de grasa en el párpado inferior que comprende administrar una composición que comprende desoxicolato de sodio en una concentración comprendida entre 0,001 % y 5 %, en el que la composición está libre de fosfatidilcolina.

En una realización de la presente invención se proporciona un método que no es liposucción para la eliminación no quirúrgica de depósitos de grasa localizada en un paciente, que comprende la administración no quirúrgica de una composición que consiste esencialmente en desoxicolato de sodio en una concentración comprendida entre 0,001 % y 5 %, opcionalmente en al menos un ingrediente activo adicional y la composición médica no incluye fosfatidilcolina.

Descripción breve de los dibujos

La figura 1 representa la estructura molecular de: (a) la fosfatidilcolina; (b) el desoxicolato de sodio y (c) el alcohol bencílico.

- La figura 2 representa los efectos de una formulación de sales biliares y fosfatidilcolina (fórmula PC, PBF) y de desoxicolato de sodio solo sobre la viabilidad de células cultivadas, según las enseñanzas de la presente invención: (a) ensayo MTS que mide la viabilidad de queratinocitos expuestos a la fórmula PC y al desoxicolato de sodio solo; (b) ensayo de la lactato dehidrogenasa (LDH) que mide la liberación de LDH por células expuestas a la fórmula PC y al desoxicolato de sodio solo.
- La figura 3 representa los efectos de la formulación PBF y del desoxicolato de sodio solo sobre tejido primario de grasa porcina, de acuerdo con las enseñanzas de la presente invención: (a) ensayo MTS que produce pigmento púrpura, lo que indica células vivas, en muestras de grasa tratadas con tampón PBS (tampón fosfato salino) como control negativo (- Cont), desoxicolato de sodio solo (DC), la formulación PBF (PC) y detergente Triton ® como control positivo (+ Cont); (b) comparación de la viabilidad de células grasas entre los diferentes tratamientos.
- La figura 4 representa la fluorescencia de calceína en muestras de grasa tratadas con desoxicolato de sodio solo (DC), la formulación PBF (PC), detergente Triton ® como control positivo (+ Cont) y tampón PBS como control negativo (- Cont), de acuerdo con las enseñanzas de la presente invención.
 - La figura 5 representa las microscopías ópticas de biopsias de piel porcina después de ser tratadas con composiciones preparadas según las enseñanzas de la presente invención, que muestran: (a) lipocitos de control y (b) lipocitos tras inyección de una formulación PBF (H&E, es decir, tinción hematoxilina-eosina, aumento original, x20); (c) lipocitos de control y (d) lipocitos tras inyección de desoxicolato de sodio solo (H&E, aumento original, x10); (e) músculo de control y (f) músculo tras la inyección de fosfatidilcolina sola (H&E, aumento original, x10); (g) grasa después de inyectar detergente Empigen ® (H&E, aumento original, x20).
- La figura 6 representa un lipoma eliminado de un paciente dos días después de una inyección con desoxicolato, de acuerdo con las enseñanzas de la presente invención: (a) patología en bruto y (b) histología (H&E, aumento original, x20).

Descripción detallada de la invención

La presente invención aborda el problema de las acumulaciones de grasa localizada en pacientes proporcionando un método no quirúrgico para eliminar depósitos de grasa mediante administración de concentraciones de detergentes solubilizantes de grasa en formulaciones aceptables farmacéuticamente.

Para tratar hernias de grasa infraorbitales y otras áreas de acumulación de grasa localizada se han utilizado inyecciones que emplean fórmulas de la técnica anterior (formulaciones de sales biliares y fosfatidilcolina, formulaciones PBF) que combinan fosfatidilcolina (PC) purificada y desoxicolato de sodio, una sal biliar utilizada para la solubilización de la fosfatidilcolina (1-8). Se ha postulado que el ingrediente activo en las formulaciones PBF es la fosfatidilcolina, sobre la base del papel de la fosfatidilcolina como emulsionante en la bilis y su uso en el tratamiento de la hiperlipidemia. (1, 2, 21, 25-27). En estas composiciones de la técnica anterior, detergentes como las sales biliares se añadían meramente para dispersar o solubilizar el supuesto ingrediente activo, es decir la PC. Sin embargo, hasta la fecha, no hay informes publicados que avalen esta teoría. De manera inesperada, los presentes

inventores han demostrado que la sal biliar era realmente el ingrediente activo en la emulsión de la grasa localizada.

Entre los detergentes, las sales biliares son solubilizantes especialmente potentes de las membranas de bicapas lipídicas (9, 20, 21, 23, 28). Todas las membranas celulares biológicas están compuestas por la misma estructura bilipídica y, por lo tanto, pueden someterse a solubilización con detergentes (10, 19, 34). La solubilización de las membranas celulares mediante un detergente implica la distribución del detergente entre las bicapas lipídicas, la desestabilización de la bicapa, su desintegración y la posterior formación de micelas mezcladas o mixtas (compuestas de detergente y lípido de la membrana celular) (10, 19, 21). Las sales biliares, como otros detergentes, disminuyen la tensión superficial en la frontera entre materiales inmiscibles y de este modo ayudan a la descomposición de los agregados grandes en otros más pequeños y en partículas más pequeñas. En los tejidos, estos agentes disuelven las membranas celulares y provocan la lisis celular. Se genera una respuesta inflamatoria, provocando que el cuerpo elimine el material solubilizado por el detergente.

5

10

15

20

25

30

35

40

60

Por esta razón, los presentes inventores compararon el desoxicolato de sodio con una formulación PBF completa utilizando un ensayo cuantitativo y simple que mide la viabilidad celular (figura 2a). No es posible aislar y ensayar la fosfatidilcolina pura debido a que es insoluble en disoluciones acuosas a menos que se combine con sustancias como las sales biliares (12). La fosfatidilcolina es muy soluble en etanol, metanol, cloroformo y otros disolventes orgánicos, pero sin embargo estos agentes pueden dañar las bicapas lipídicas (29-31). En experimentos preliminares, no hubo diferencia en la lisis celular y en la histología entre la PC aislada, pura y el etanol utilizado para disolverla. Aunque se ha demostrado que el alcohol bencílico, uno de los componentes de la fórmula PC, afecta a la fluidez de las membranas celulares, no es un detergente y, por lo tanto, su limitada cantidad en la fórmula tiene efectos líticos poco significativos sobre las membranas celulares (32, 33).

Debido a que es probable que la penetración en tejidos intactos pueda ser un factor limitante, se usaron cultivos celulares para determinar las diluciones de los reactivos (PBF y desoxicolato) necesarias para afectar a las células. El desoxicolato disminuyó profundamente la viabilidad de las células cultivadas en forma aproximadamente igual que la formulación PBF completa (figura 2a). Este hallazgo se reprodujo en tejidos cuando se exponía grasa porcina a PBF y a desoxicolato (figura 3). Estos resultados apoyan la observación no esperada de que el desoxicolato de sodio desempeña un papel activo y fundamental en la PBF.

Una hipótesis no vinculante de los presentes inventores fue que el desoxicolato y la PBF afectan a la viabilidad celular alterando las membranas celulares a través de la acción detergente. Se midió la lisis de las membranas en células cultivadas utilizando en ensayo de lactato dehidrogenasa (LDH) y utilizando calceína dentro del tejido, un marcador fluorescente que es retenido en las células con las membranas celulares intactas. El ensayo LDH mide la actividad de la LDH que es una enzima citosólica que es liberada cuando se produce la lisis de las células. Tanto los cultivos celulares tratados con la formulación PBF como los tratados con desoxicolato mostraron un aumento de la lisis de las células dependiente de la concentración (figura 2b). Además, los efectos líticos directos observados en cultivos celulares tratados con estos agentes sugieren que la actividad es independiente de la lipasa endógena. La calceína se perdió en las muestras de grasa expuestas a la formulación PBF, a desoxicolato y a Triton ® X-100, un conocido detergente de laboratorio (figura 4). Este hallazgo confirma que la desorganización de las membranas celulares se produce en tejido fresco expuesto tanto a la PBF como al desoxicolato.

Cuando se comparan los efectos de la PBF con los del desoxicolato en cultivos celulares se llega al sorprendente resultado de que el desoxicolato provocó similares pérdidas de viabilidad celular, pero menos lisis celular. Estas diferencias pueden ser dependientes de la concentración o podría haber efectos sinérgicos entre la fosfatidilcolina y el desoxicolato en la fórmula. No obstante, los datos demuestran que, a concentraciones similares a las que se usan clínicamente, el desoxicolato y la PBF tuvieron efectos similares sobre la histología del tejido y la viabilidad de las células. Considerados en conjunto, estos datos demuestran, de forma inesperada, que el desoxicolato actúa como componente activo en la PBF de la técnica anterior.

Con el fin de ilustrar el efecto de los detergentes sobre la histología de los tejidos se inyectó a piel porcina fresca PBF, desoxicolato y detergentes de laboratorio bien caracterizados (figura 5). Todos los reactivos provocaron una desorganización significativa de la organización de los lipocitos, comparados con una inyección de tampón fosfato salino (PBS, control). De forma similar, estos resultados se observaron con tejidos musculares y conectivos. La rápida disolución de las fronteras celulares provocada por las sustancias de ensayo y la similitud de sus efectos con los de detergentes bien caracterizados corroboran que la PBF y el desoxicolato funcionan como detergentes. La limitación con este modelo experimental es que no revela las verdaderas consecuencias que se producen tras la inyección en el tejido vivo. Resulta claro, a partir de informes clínicos, que, tras la inyección, se produce una enérgica respuesta inflamatoria, evidente en forma de eritema y edema (1-3). Las inflamaciones repetidas pueden conducir eventualmente a fibrosis, especialmente después de muchas inyecciones. Se ha informado de fibrosis en varios pacientes que desarrollaron nódulos firmes en los lugares de inyección después de administración de la PBF que no se solucionaron finalmente hasta varios meses más tarde. (35)

Los hallazgos histológicos revelan que la PBF y el desoxicolato solo inyectables provocan desorganización de la arquitectura de la grasa y del músculo, pero aparentemente no afectaron a la epidermis, a la dermis o anexos (figura 5). Sin embargo, el Empigen® BB, un potente detergente de laboratorio, tuvo profundos efectos histológicos sobre el colágeno dérmico (tejido conectivo). De manera alternativa, la grasa y el músculo pueden ser más sensibles al

ES 2 372 499 T3

tratamiento con detergentes que estas otras estructuras a las concentraciones ensayadas (similares a las que usan en la práctica clínica).

A través de una serie de experimentos de laboratorio que utilizan muestras frescas de tejido y cultivos celulares, los presentes inventores han demostrado que la PBF de la técnica anterior usada comúnmente en inyecciones subcutáneas para la disolución de grasa funciona principalmente provocando la lisis no específica de las membranas celulares. Las membranas celulares son constituyentes de todos los tipos de tejidos; específicamente, los presentes inventores demostraron que estos detergentes provocan la solubilización de grasa, músculo y tejido conectivo. Por lo tanto, los presentes inventores concluyen que el desoxicolato de sodio, la sal biliar que es el componente de la fórmula usado para disolver la fosfatidilcolina, era el principal ingrediente activo de estas formulaciones de la técnica anterior. Esta conclusión está apoyada por el hecho de que las sales biliares son potentes solubilizantes de las membranas celulares. Además, el mecanismo en la disolución de grasa por el PBF y el desoxicolato de sodio es probablemente la acción detergente.

5

10

20

25

30

35

40

45

50

55

En una realización de la presente invención, la composición incluye desoxicolato de sodio y excipientes farmacéuticamente aceptables en un vehículo acuoso.

Las composiciones producidas según la presente invención pueden incluir otros ingredientes activos, entre los que se incluyen, en cualquier combinación compatible, agentes de dispersión, productos que mejoran la penetración y excipientes farmacéuticamente aceptables.

Entre los vehículos acuosos farmacológicamente aceptables para las composiciones de la presente invención se puede incluir, por ejemplo, cualquier disolución líquida que sea capaz de disolver un detergente y que no sea tóxica para el individuo concreto que recibe la formulación. Entre los ejemplos de vehículos acuosos aceptables farmacéuticamente se incluyen, sin limitación, disolución salina, agua y ácido acético. Típicamente, los vehículos acuosos aceptables farmacéuticamente son estériles.

Las composiciones detergentes activas farmacológicamente útiles en realizaciones de la presente invención se formulan para la eliminación no quirúrgica de depósitos de grasa localizada. Según se usa en este documento, el término "no quirúrgico" se refiere a procedimientos médicos que no necesitan una incisión. Las inyecciones son ejemplos de procedimientos no quirúrgicos. La liposucción es un procedimiento quirúrgico.

En una realización de la presente invención, la composición detergente activa farmacológicamente se administra mediante inyección, por ejemplo, mediante inyección en bolo. Con el fin de ser eficaz, la composición detergente debe tener contacto directo con el tejido graso, con independencia de cómo se infunda. Las formulaciones detergentes se pueden inyectar subcutáneamente o se pueden infundir directamente en la grasa. Las formulaciones para inyección se pueden presentar en forma de dosis unitarias, por ejemplo en viales, o en depósitos para multidosis, con un conservante añadido. Las composiciones pueden tomar forma de suspensiones, disoluciones o emulsiones en vehículos acuosos u oleosos y pueden contener agentes de formulación como agentes de suspensión, estabilizantes o agentes de dispersión.

Un "excipiente aceptable farmacéuticamente" es un compuesto que es útil para preparar una composición farmacéutica que es generalmente, no tóxica y que no es indeseable ni biológicamente ni de otra manera e incluye excipientes que son aceptables para su uso veterinario o farmacéutico para humanos. Un excipiente aceptable farmacéuticamente tal y como se emplea en la especificación y en las reivindicaciones incluye tanto uno de tales excipientes como más de uno. Algunos ejemplos de excipientes adecuados son: lactosa, dextrosa, sacarosa, sorbitol, manitol, almidones, goma arábiga, fosfato de calcio, alginatos, tragacanto, gelatina, silicato de calcio, celulosa microcristalina, polivinilpirrolidona, fosfatidilcolina, celulosa, agua estéril, jarabe y metilcelulosa. Adicionalmente, las formulaciones pueden incluir: agentes lubricantes como talco, estearato de magnesio y aceite mineral; agentes de humectación; agentes de suspensión y emulsionantes y agentes conservantes como metil y propilhidroxibenzoatos y alcohol bencílico. Las composiciones de la presente invención se pueden formular de tal forma que proporcionen la liberación rápida, sostenida o retrasada del ingrediente activo tras la administración al paciente, utilizando procedimientos conocidos en la técnica.

Entre los excipientes adicionales adecuados para la formulación con las composiciones detergentes de la presente invención se incluyen favorecedores de la penetración y agentes de dispersión. Ejemplos no limitativos de agentes de dispersión que permiten la dispersión de medicamentos son la hialuronidasa y la colagenasa. La hialuronidasa funciona aumentando la permeabilidad de los tejidos y extendiendo o dispersando otros medicamentos. La colagenasa se ha utilizado para aislar adipocitos a partir de grasa subcutánea y no tiene efectos líticos sobre los propios adipocitos. Adicionalmente, la hialuronidasa y la colagenasa pueden facilitar la curación acelerando la eliminación del tejido necrótico después del tratamiento con las formulaciones detergentes de la presente invención.

Las composiciones detergentes activas farmacológicamente de la presente invención son útiles para tratar acumulaciones de grasa localizadas incluyendo las siguientes, si bien las posibilidades no se limitan a ellas: hernia grasa del párpado inferior, acumulaciones en la cintura, en las caderas y en otras áreas cosméticas, xantelasmas, lipomas y lipodistrofia, incluyendo la lipodistrofia "en joroba de búfalo" (3). En otra realización, las composiciones detergentes de la presente invención son útiles para tratar los depósitos asociados con la celulitis.

Los siguientes ejemplos se proporcionan para definir más precisamente y facilitar las composiciones y métodos de la presente invención.

Ejemplos

Ejemplo 1: Formulaciones de desoxicolato de sodio y fosfatidilcolina

La formulación de sal biliar y fosfatidilcolina (PBF) (5,0 % de PC altamente purificada derivada de soja, 4,75 % de desoxicolato de sodio y 0,9 % de alcohol bencílico en agua estéril, tabla 1) fue proporcionada por el proveedor Hopewell Pharmacy, Hopewell, NJ. El desoxicolato de sodio y el detergente Triton® X-100 (Triton®, alquilarilpolieteralcohol) se obtuvieron en Sigma-Aldrich Corp (St Louis, MO). El detergente Empigen® BB (Empigen®, laurildimetilbetaína) procedía de Calbiochem, Biosciences Inc., La Jolla, CA). Para el tampón PBS se utilizaron reactivos de stock (diluciones al 5 %).

En la figura 1 se representan la estructura molecular de: (a) la fosfatidilcolina, (b) el desoxicolato de sodio y (c) el alcohol bencílico.

Tabla 1. PBF invectable

20

25

30

	Fosfatidilcolina 5,00 % (peso/volumen)		
15	Desoxicolato de sodio	4,75 %	
	Alcohol bencílico	0,90 %	
	Agua	100 ml	

Ejemplo 2: Efectos de disoluciones de desoxicolato de sodio y de fosfatidilcolina sobre células cultivadas

Para medir la viabilidad de las células tras el tratamiento con detergente, se cultivaron células de tipo queratinocito humano HaCaT en DMEM (medio de cultivo Eagle modificado por Dulbecco, según sus siglas en inglés) suplementado con 10 % de suero fetal de ternera, penicilina y estreptomicina. Las células HaCaT fueron cultivadas en placas de 6 pocillos y se incubaron con PBF (fórmula PC) o desoxicolato de sodio al 0 %, 0,005 %, 0,050 % o 0,500 % durante 30 minutos a 37 °C antes de la determinación de la viabilidad de las células utilizando el ensayo MTS, que utiliza un compuesto de tetrazolio que produce un cambio de color cuando es bioreducido por células activas metabólicamente (ensayo de proliferación celular no radiactivo CellTiter 96® Aqueos, Promega Corp., Madison, Wi), La viabilidad celular se determinó mediante un espectrofotómetro de absorbancia (a 490 nm) después de una incubación de 4 horas con el ensayo a 37 °C. Para determinar la viabilidad celular en tejido fresco, se incubaron muestras de grasa durante 4 horas en placas de 24 pocillos con reactivos de stock y con el ensayo MTS. Luego se visualizó el cambio de color de las muestras de tejido y se midió la cantidad de MTS en sus sobrenadantes mediante absorbancia (a 490 nm). Todos los estudios se realizaron por triplicado. La absorbancia a 490 nm (OD 490) es proporcional al número de células vivas en el cultivo. La OD 490 de las muestras de control y de las muestras tratadas con las diluciones al 0,005 % de ambos compuestos fue parecida (figura 2a) lo que indica que, a esta concentración, el efecto de estas sustancias sobre la viabilidad celular es pequeño. La viabilidad celular dsiminuye progresivamente a concentraciones de 0,05 % y 0,5 % de ambas disoluciones.

Se determinó la lisis celular en respuesta al tratamiento con detergentes en células HaCaT incubadas con los reactivos a las diluciones celulares indicadas durante 30 minutos a 37 °C. Se midió la liberación de la lactatodehidrogenasa mediante la absorbancia (a 490 nm) después de 1 hora de incubación con el ensayo LDH, según las recomendaciones del fabricante (ensayo de citotoxicidad no radiactivo CytoTox 96®, Promega). Todos los estudios se realizaron por triplicado. La liberación de LDH es proporcional a la absorbancia a 490 nm (OD 490). La liberación de LDH de las células de control y de las incubadas con diluciones al 0,005 % de ambos compuestos resultó mínima (figura 2b). Se produjo un aumento progresivo en la liberación de LDH con concentraciones de 0,05 % y 0,5 % de la formulación PBF y del desoxicolato.

Ejemplo 3: Efectos de las disoluciones de desoxicolato de sodio y fosfatidilcolina sobre tejido porcino

Se obtuvo tejido porcino inmediatamente después del sacrificio del animal, se rasuró y se colocó en hielo durante un máximo de cuatro horas antes de su uso. Las muestras de grasa se obtuvieron eliminando la epidermis y la dermis de una biopsia obtenida por perforación con un escalpelo y se recortaron. Las muestras de grasa se cargaron con colorante calceína incubándolas durante 1 hora a 37 °C con Calceín-AM (Sigma). Se añadieron reactivos de stock a las muestras de grasa y se incubaron durante 30 minutos a 37 °C bajo agitación suave. Se determinó la retención de calceína mediante fluorescencia del tejido utilizando luz púrpura (411 nm) y observando visualmente la luz verde emitida (500 nm) utilizando filtros de emisión.

Se llevó a cabo el estudio histológico inyectando disoluciones de reactivos de stock (0,5 ml) en piel porcina de grosor completo a varios niveles (epidermis, dermis y tejido subcutáneo) con jeringas de 1,0 ml y agujas de 0,5 pulgadas y calibre 30. Se visualizó la profundidad de la aguja a lo largo del margen del tejido porcino con el propósito de saturar

el tejido objetivo. Tras una hora de incubación con PBS a 37 °C, se obtuvieron múltiples muestras de biopsias de 5,0 mm a partir de los sitios donde se había inyectado; cada condición se realizó por triplicado. Se fijó el tejido en formaldehido, se embebió en parafina y se tiñó con hematoxilina-eosina. Las muestras fueron evaluadas por un dermopatólogo certificado que no conocía el protocolo del tratamiento.

Se utilizó piel porcina fresca, en buen estado, para determinar si los efectos de estas sustancias detergentes sobre células cultivadas eran similares sobre tejidos. La figura 3a muestra la producción de pigmento púrpura oscuro (que indica células viables) en tejido graso tratado con el tampón PBS (control negativo) utilizando el ensayo MTS. Las disoluciones de PBS y de desoxicolato y detergente Triton® (control positivo) al 5 % mostraron una pérdida comparable de colorante púrpura (indicando la muerte de las células) en las muestras de grasa tratadas. La diferencia en la viabilidad de las células de grasa entre las disoluciones se cuantificó midiendo la absorbancia (a 490 nm) de los líquidos sobrenadantes recogidos de las muestras de grasa tratadas (figura 3b). Todos los reactivos tienen efectos significativos sobre la viabilidad de las células grasas del tejido fresco.

La lisis de las células se confirmó utilizando un ensayo de liberación del colorante calceína. La calceína se hace fluorescente tras su hidrólisis y es retenida en las células que tienen sus membranas celulares intactas. Debido a que no etiqueta las células muertas y a que se pierde bajo condiciones que provocan la lisis celular, la pérdida de la fluorescencia verde en las muestras de tejido graso cargadas con el colorante calceína indica la lisis de las células (figura 4). Las muestras tratadas con el desoxicolato, la PBF y el detergente Triton ® (control positivo) mostraron pérdidas similares de fluorescencia.

En la figura 5 se muestran los cambios histológicos resultantes de la inyección de PBF, desoxicolato y Empigen®. La formulación de sales biliares y fosfatidilcolina (figura 5b) y el desoxicolato (figura 5d) produjeron efectos histológicos similares a los causados por Empigen® (figura 5g) y Triton® (no mostrados), dos detergentes de laboratorio bien caracterizados. Estos cambios resultaron claros tanto en grasa como en músculo. Después de inyectar tanto la PBF (figura 5b) como el desoxicolato (figura 5d) se observaron marcados efectos de desdibujamiento y disolución de las membranas celulares de los adipocitos con desorganización se su arquitectura lobular normal. La figura 5f muestra el desorden y la atrofia de la fibra muscular después de la inyección de PBF. Cambios similares en el tejido muscular resultaron visibles en las muestras tratadas con desoxicolato y con los detergentes Triton® y Empigen®. No hubo cambios en la epidermis, en la dermis o en las estructuras anejas tras la inyección de los reactivos, con excepción de Empigen®, que provocó pérdida del teñido nuclear de los fibroblastos y hialinización del colágeno dérmico.

Ejemplo 4: Experiencia clínica con composiciones de desoxicolato de sodio

15

Se inyectaron disoluciones de desoxicolato de sodio (DC) sin fosfatidilcolina a pacientes que tenían lipomas, montones aislados y benignos de tejido adiposo, directamente en los lipomas. Los resultados de este estudio muestran que los efectos detergentes del desoxicolato observados sobre grasa en tejidos animales se pueden reproducir clínicamente en humanos. Todos los lipomas inyectados vieron reducido su tamaño tras al menos un tratamiento con diversas concentraciones de desoxicolato (tabla 2). Se extirpó un lipoma inyectado con DC al 1 % a un paciente tras el tratamiento y se llevó a cabo un análisis histológico y patológico del mismo. Dentro del lipoma extirpado, resulta sumamente visible la necrosis (figura 6a) con un área bien demarcada de hemorragia y necrosis sobre el borde lateral que se extiende en la parte media de la grasa del lipoma que contrasta con la grasa del lipoma normal que es de color más claro. El análisis histológico (figura 6b) revela un área bien definida de hemorragia y grasa necrótica así como una reacción inflamatoria significativa que contrasta con las células grasas transparentes redondas normales adyacentes.

Tabla 2. Disminución del	tamaño de lipoma	as tras el tratamiento con	DC

Lipoma	Tamaño (cm) antes del tratamiento	Tamaño (cm) después del tratamiento	Total de tratamientos (% de DC inyectado)
1	2,00 x 1,00	1,25 x 0,50	2 (2,5 %)
2	2,00	1,50 x 0,50	3 (5 % y 2,5 %)
3	2,00 x 2,50	2,00 x 1,00	3 (5 % y 2,5 %)
4	4,00 x 3,50	2,50 x 2,00	2 (1 %)
5	2,00 x 1,75	1,25	2 (1 %)
6	2,80	0,50	1 (5 %)
7	1,00	imperceptible	1 (1 %)

A menos que se indique lo contrario, debe entenderse que todos los números que expresan cantidades de ingredientes, propiedades como el peso molecular, condiciones de reacción, etcétera usados en la especificación y

en las reivindicaciones se pueden ver modificados en todos los casos por el término "aproximadamente". De acuerdo con ello, a menos que se indique lo contrario, los parámetros numéricos establecidos en la especificación siguiente y en las reivindicaciones anexas son aproximaciones que pueden variar dependiendo de las propiedades deseadas que se busca obtener con la presente invención. Como mínimo, y no como un intento de limitar la aplicación de la doctrina de equivalentes al alcance de las reivindicaciones, cada parámetro numérico debería interpretarse a la luz del número de cifras significativas que se indiquen y aplicando las técnicas normales de redondeo. A pesar de que los parámetros e intervalos numéricos que exponen el amplio alcance de la invención son aproximaciones, los valores numéricos indicados en los ejemplos específicos son indicados tan precisamente como es posible. Cualquier valor numérico, sin embargo, contiene inherentemente ciertos errores que resultan de la desviación estándar encontrada en sus respectivas medidas en los ensayos.

Debe interpretarse que los términos uno/una y el/la y referentes similares usados en el contexto de la descripción de la invención (especialmente en el contexto de las reivindicaciones siguientes) cubren tanto el singular como el plural, a menos que se indique otra cosa en el documento o que en el contexto haya elementos claramente contradictorios. Debe entenderse que la relación de intervalos de valores en este documento está meramente dirigida a servir como método taquigráfico para referirse de manera individual a cada valor distinto que cae dentro del intervalo. A menos que se indique otra cosa en el documento, cada valor individual se incorpora a la especificación como si se relacionase en el mismo de forma individual. Todos los métodos descritos en el documento se pueden llevar a cabo en cualquier orden adecuado a menos que se indique lo contrario en el texto o a menos que el contexto contradiga claramente esa posibilidad. Se pretende que el uso de cualquiera de los ejemplos o de todos ellos o del lenguaje de los ejemplos (por ejemplo "tal como") proporcionado en este documento meramente sirva para aclarar la invención y no implica una limitación sobre el alcance de la invención a menos que se reivindique otra cosa. Nada en el texto de la especificación debería interpretarse como que indica cualquier elemento no reivindicado como esencial para la invención.

No deben interpretarse como limitaciones los agrupamientos de elementos alternativos o realizaciones de la invención descritos en el documento. En el documento es posible referirse a cualquier miembro del grupo o reivindicarlo de manera individual o en cualquier combinación con otros miembros del grupo u otros elementos del documento. Se puede esperar que uno o más miembros de un grupo se puedan incluir o se puedan eliminar de un grupo por razones de conveniencia o de patentabilidad. Cuando se produce cualquiera de tales inclusiones o eliminaciones, se considera en el documento que la especificación contiene el grupo según se ha modificado cumpliendo de esta manera la descripción escrita de todos los grupos Markush utilizados en las reivindicaciones anexas.

En este documento se describen las realizaciones preferidas de esta invención, incluyendo el mejor modo conocido por los inventores de llevar a cabo la invención. Por supuesto, para las personas que tienen un conocimiento normal de la técnica resultarán claras variaciones sobre estas realizaciones preferidas, tras la lectura de la descripción precedente. Los inventores esperan que los técnicos competentes empleen tales variaciones de manera adecuada y los inventores desean que la invención se practique de otra forma que la descrita específicamente en el documento.

Referencias

5

10

15

20

25

30

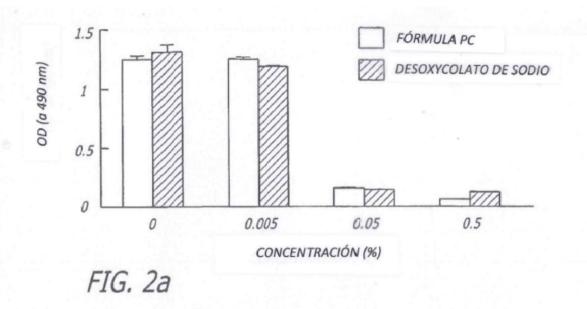
35

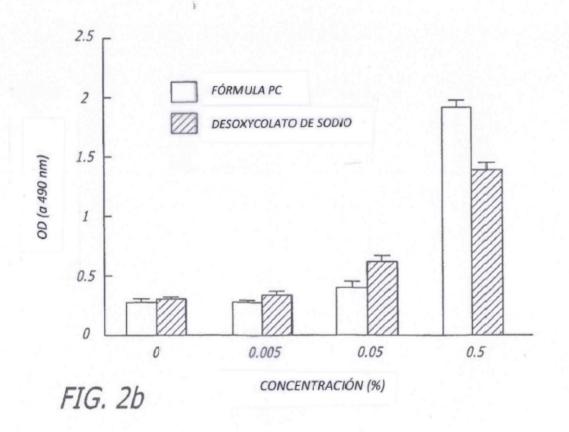
- 1. Rittes PG. The use of phosphatidylcholine for correction of lower lid bulging due to prominent fat pads. Dermatol Surg 2001, 27:391-2.
- 40 2. Ablon G, Rotunda AM. Treatment of lower eyelid fat pads using phosphatidylcholine: clinical trial and review. Derm Surgery 2004, 30:422-7.
 - 3. Serra M. Subcutaneous infiltralion wilh phosphatidylcholine solultion for treatment of buffalo hump and fatty pads. Antiviral Therapy 2001. 6:75-6.
 - 4. ASAPS. American Society for Aesthetic Plastic Surgery. Lipoplasty (liposuction) without surgery?, October, 2002.
- 45 5. Bauman LS. Phosphatidylcholine. Skin and Allergy News 2003, 34.
 - 6. Bales B. 'Fat dissolving' substance injects CCs of controversy. Skin and Allergy News 2003, 34.
 - 7. Bellman B. Phosphatidylcoline reaction. Skin and Allergy News 2003, 34.
 - 8. Victor S. Phosphatidylcholine works. Skin and Allergy News 2003, 34.
- 9. Lichtenberg D, Zilberman Y, Greenzaid P, Zamir S. Structural and kinetic studies on the solubilization of lecithin by sodium deoxycholate. Biochemistry 1979, 18:3517-25.
 - 10. Lichtenberg D, Robson RJ, Dennis EA. Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim Biophys Acta 1983, 737:285-304.
 - 11. Teelmann K, Schlappi B, Schupbach M, Kistler A. Preclinical safety evaluation of intravenously administered mixed mixed mixelles. Arzneimittelforschung 1984, 34:1517-23.

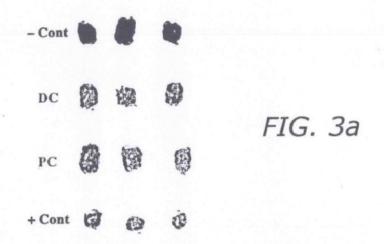
ES 2 372 499 T3

- 12. Durr M, Hager J, Lohr JP. Investigation on mixed micelle and liposome preparations for parental use on soya phosphatidylcholine. Eur J Pharm Biopharm 1994, 40:147~56.
- 13. Alkan-Onyuksel H, Ramakrishnan S. Chai HB, Pezzuto JM. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm Res 1994, 11:206·12.
- 5 14. Hammad MA, Muller BW. Increasing drug solubility by means of bile salt-phosphatidylcholine-based mixed micelles. Eur J Pharm Biopharm 1998. 46:361-7.
 - 15. Parnham MJ. Wendel A. Phospholipids and liposomes safety for cosmetical and pharmaceutical use. Nattermann Phospholipid GMBH Scientific Publication NO.2 1995.
 - 16. Lipostabil. Product insert Aventis Pharma. 2003.
- 10 17. Goldman L, Bennet JC, Cecil RL. Cecil Textbaok of Medicine. S1. Leuis, MO: W.B.Saunders Ca., 2001.
 - 18. Womack MD, Kendall DA, MacDonald RC. Detergent effects on enzyme activity and solubilization of lipid bilayer membranes. Biochim Biophys Acta 1983,733:210-5.
 - 19. Lichtenberg D. Characterization of the solubilization of lipid bilayers by surfactants. Biochim Biophys Acta 1985, 821:470-8.
- 20. Banerjee P, Joo JB, Buse JT. Dawson G. Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids 1995, 77:65-78.
 - 21 . Almgren M. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. Biochim Biophys Acta 2000, 1508:146-63.
- 22. Schuck S. Honsho M, Ekroos K, Shevchenko A, Simons K. Resistance of cell membranes to different detergents.
 20 Proc Natl Acad Sci 2003, 100:5795-800.
 - 23. Heerklotz H. Seelig J. Correlation of membrane/water partition coefficients of detergenls with the critical micelle concentration. Biophys J 2000. 78:2435-40.
 - 24. Learn about lecithins. Oxford, CT: American Lecithin Company, 2003.
- 25. Canty D, Zeisel S, Jolitz A. Lecithin and choline: research update on health and nutrition. Fort Wayne, IN: Central Soya Company, Inc., 1996.
 - 26. Feldman M. Scharschmidt BF, Sleisenger MH, Fordtran JS, Zorab R. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. New York: Saunders, 2002.
 - 27. Lipostabil. Rhone-Poulenc Rorer. Cologne, West Germany: Natterman International GMBH,1990.
 - 28. Jones MN. Surfactants in membrane solubilisation. Int J Pharm 1999, 177:137-59.
- 30 29. Gustafson C, Tagesson C. Influence of organic solvent mixtures on biological membranes. Br J Ind Med 1985,42:591.5.
 - 30. Lester DS, Baumann D. Action of organic solvents on protein kinase C. Eur J Pharmacol 1991, 206:301-8.
 - 31. Engelke M, Jessel R, Wiechmann A, Diehl HA. Effect of inhalation anaesthetics on the phase behaviour, permeability and order of phosphalidylcholine bilayers. Biophys Chem 1997,67:127-38,
- 35 32. Ebihara L, Hall JE, MacDonald RC, McIntosh TJ, Simon SA. Effect of benzyl alcohol on lipid bilayers. A comparison of bilayer systems. Biophys J 1979, 28:185-96.
 - 33. Gordon LM. Sauerheber RD. Esgate JA. Dipple I, Marchmont RJ. Houslay MD. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem 1980, 255:4519-27,
- 40 34. Singer SJ. Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972, 175:720-31.
 - 35. Rittes PG. The use of phosphatidylcholine for correction of localized fat deposits. Aesthetic Plast Surg 2003, 27:315-8.

REIVINDICACIONES


- 1. Un método cosmético de eliminación no quirúrgica de acumulaciones de grasa localizada, que comprende administrar una composición que comprende desoxicolato de sodio en una concentración comprendida entre 0,001 % y 5 %, en el que la composición está libre de fosfatidilcolina.
- 5 2. Un método cosmético de eliminación no quirúrgica de acumulaciones de grasa localizada, que comprende administrar una composición que consiste esencialmente en desoxicolato de sodio en una concentración comprendida entre 0,001 % y 5 % en combinación con uno o más excipientes aceptables farmacéuticamente.
 - 3. El método según la reivindicación 1 o la reivindicación 2, en el que la composición comprende desoxicolato de sodio en una concentración comprendida entre 0,001 % y 2,5 %, como 2,5 %.
- 10 4. El método según la reivindicación 3, en el que la composición comprende desoxicolato de sodio en una concentración comprendida entre 0.001 % v 1 %, como 1 %.


15


20

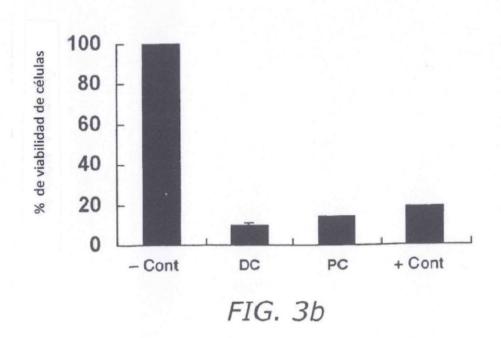

- 5. El método según una cualquiera de las reivindicaciones 1-4, en el que la composición comprende además uno o más ingredientes adicionales escogidos entre: agentes de dispersión, favorecedores de la penetración, agentes conservantes y excipientes aceptables farmacéuticamente, en el que el uno o más ingredientes adicionales no alteran materialmente la eficacia del detergente activo farmacológicamente a la hora de eliminar las acumulaciones de grasa localizada.
- 6. El método según la reivindicación 5, en el que uno de los uno o más ingredientes adicionales es alcohol bencílico y/o agua.
- 7. El método según la reivindicación 5, en el que el ingrediente o ingredientes adicionales se escoge entre un favorecedor de la penetración y un agente de dispersión.
 - 8. El método según la reivindicación 7, en el que el agente de dispersión se escoge entre hialuronidasa y colagenasa.
 - 9. El método según una cualquiera de las reivindicaciones 1-8, en el que la acumulación de grasa localizada es en un humano.
- 25 10. El método según la reivindicación 9, en el que la acumulación de grasa localizada es: hernia grasa del párpado inferior; depósitos de grasa en los muslos, abdomen, parte superior de la espalda, mentón o brazo o acumulaciones de grasa en la cintura o en las caderas.
 - 11. El método según una cualquiera de las reivindicaciones 1 a 10, en el que la composición es una composición inyectable.
- 30 12. El método según la reivindicación 11, en el que la composición se administra por vía subcutánea.

FIG. 1

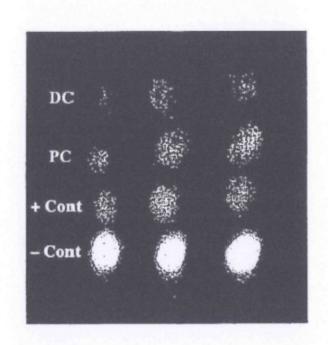


FIG. 4

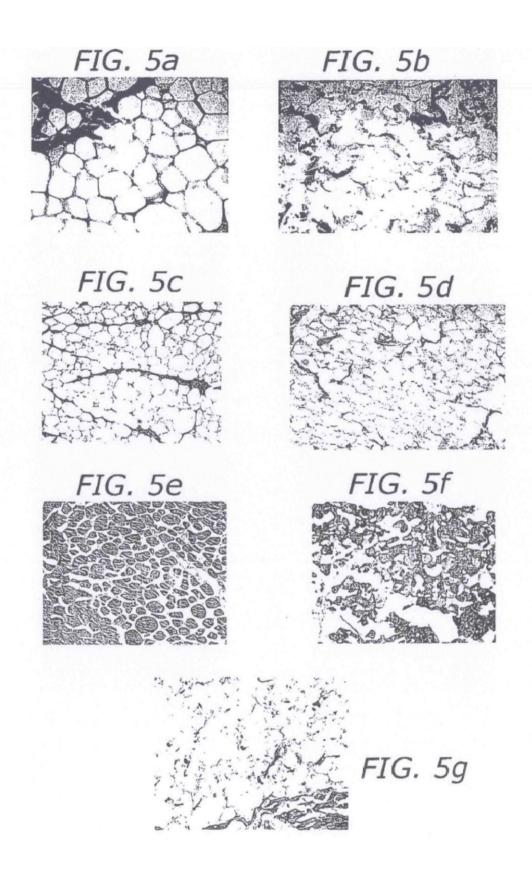


FIG. 6a

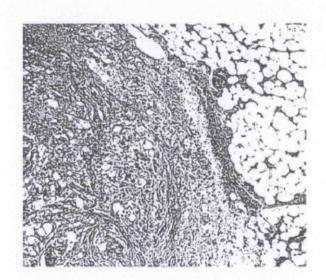


FIG. 6b