

(12)

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(51) Int. Cl.:

C07K 14/195 (2006.01) C12N 9/90 (2006.01) C12N 15/61 (2006.01) C12P 23/00 (2006.01)

(1) Número de solicitud: 201031068

SOLICITUD DE PATENTE

A1

22) Fecha de presentación: 14.07.2010 (71) Solicitante/s: Universidad de Cantabria Avda. de los Castros, s/n 39005 Santander, Cantabria, ES Consejo Superior de Investigaciones Científicas, Universitat de Barcelona y Universidad de Almería (43) Fecha de publicación de la solicitud: **30.01.2012** (72) Inventor/es: Sangari García, Félix Javier; García Lobo, Juan María; Rodríguez Concepción, Manuel; Pérez Gil, Jordi y Carretero Paulet, Lorenzo (43) Fecha de publicación del folleto de la solicitud: (74) Agente: Zea Checa, Bernabé 30.01.2012

54 Título: Nueva enzima para la biosíntesis de isoprenoides.

57 Resumen:

Nueva enzima para la biosíntesis de isoprenoides. Se ha encontrado una nueva enzima con actividad 1-desoxi-D-xilulosa 5-fosfato reductoisomerasa que cataliza la reacción de producción de 2-<u>C</u>-metil-D-eritritol 4-fosfato a partir de 1-desoxi-D-xilulosa 5-fosfato, que tiene la secuencia de aminoácidos SEQ ID NO: 41. La enzima es útil en la síntesis de isoprenoides, particularmente en la síntesis de 2-<u>C</u>-metil-D-eritritol 4-fosfato.

DESCRIPCIÓN

Nueva enzima para la biosíntesis de isoprenoides.

5 La presente invención se enmarca de manera general en el campo de la biología molecular y la microbiología. En particular, la invención se refiere a enzimas involucradas en la síntesis de isoprenoides en bacterias.

Estado de la técnica

- Los isoprenoides o terpenoides, uno de los grupos más abundantes de compuestos naturales, tienen papeles variados en la respiración, fotosíntesis, estructura de membranas, interacciones aleloquímicas, y regulación del crecimiento, entre otras. Todos los organismos de vida libre sintetizan isoprenoides a partir de los precursores de cinco átomos de carbono isopentenil difosfato (IPP), y su isómero en el doble enlace dimetilalil difosfato (DMAPP). Durante décadas se creyó que el IPP se sintetizaba exclusivamente a partir de acetil coenzima A mediante la ruta del mevalonato (MVA), y que luego se convertía en DMAPP mediante una IPP/DMAPP isomeraça (IDD). Sin embargo, a principios de los años
- 15 y que luego se convertía en DMAPP mediante una IPP/DMAPP isomerasa (IDI). Sin embargo, a principios de los años noventa del siglo pasado se descubrió que tanto el IPP como el DMAPP podían ser sintetizados simultáneamente a partir de piruvato y gliceraldehído 3-fosfato mediante una ruta alternativa conocida actualmente como ruta del 2-<u>C</u>metil-D-eritritol 4-fosfato (MEP), o también como la ruta no-mevalonato.
- 20 En estos momentos está bien establecido que la mayoría de organismos emplean tan sólo uno de las dos rutas de síntesis de isoprenoides. De este modo, arqueas (Archaebacteria), hongos y animales sintetizan IPP a partir de MVA, mientras que la mayoría de las bacterias (Eubacteria) sólo emplean la ruta MEP para la producción de precursores isoprenoides. Las plantas emplean ambas rutas, pero en diferentes compartimentos celulares: la ruta MVA sintetiza precursores isoprenoides citosólicos, mientras que la ruta MEP está localizada en los plástos.
- 25

Dado que la ruta MEP está ausente en los animales (incluidos los humanos) pero es esencial en un gran número de importantes patógenos bacterianos, se ha propuesto como una nueva diana prometedora para el desarrollo de nuevos agentes anti-infecciosos. Sin embargo, la información acerca de los posibles mecanismos de resistencia a un bloqueo de la ruta MEP es muy escasa. La resistencia a antibióticos puede ser originada por una exportación activa o un blo-

- 30 queo en la entrada del fármaco, por su inactivación dentro de la célula, por modificación genética de su diana protéica, o por el uso de una ruta alternativa no afectada por el inhibidor, por mencionar tan solo algunas posibilidades. El inhibidor mejor caracterizado de la ruta MEP es la fosmidomicina (FSM), identificada inicialmente como un antibiótico natural eficaz contra un amplio espectro de bacterias. La FSM es un inhibidor específico de la 1-desoxi-D-xilulosa 5-fosfato (DXP) reductoisomerasa (DXR), la enzima que cataliza la producción de MEP a partir de DXP de un modo
- dependiente de NADPH, en lo que constituye el primer paso específico de la ruta. La entrada de FSM en las células bacterianas es un proceso de transporte activo llevado a cabo por el transportador de glicerol 3-fosfato (GlpT) de un modo dependiente de cAMP. Un gen *glpT* deficiente en mutantes de *Escherichia coli*. o la ausencia de un homólogo de GlpT en otras bacterias como *Mycobacterium tuberculosis* conduce a una resistencia a FSM. La sobreexpresión del gen *fsr* de *E. coli*. que codifica una proteína similar a las proteínas bacterianas de exportación de fármacos, también conduce a la resistencia a FSM, probablemente porque esta proteína facilita la exportación del inhibidor. Más aún, se
- 40 conduce a la resistencia a FSM, probablemente porque esta proteina facilità la exportacion del inhibidor. Mas aun, se ha visto que varias mutaciones independientes son capaces de rescatar la supervivencia de cepas de *E. coli* deficientes en los dos primeros enzimas de la ruta MEP, DXP sintasa (DXS) y DXR, lo que sugiere que la bacteria puede responder a un bloqueo de estas actividades mediante el uso de otras enzimas que producen DXP o MEP cuando sufren mutaciones.
 - Además del estudio de las enzimas de la ruta MEP como dianas para el desarrollo de agentes anti-infecciosos, es igualmente de interés estudiar estas enzimas para mejorar los procedimientos a nivel industrial para la síntesis de isoprenoides. Los isoprenoides, gracias a su amplia diversidad estructural, poseen muchas aplicaciones en la industria, como por ejemplo, como fármacos, diluyentes, aromatizantes, biocombustibles, o insecticidas naturales. Algunos isoprenoides utilizados en la industria son los aceites esenciales, los carotenoides, los tocoferoles, el taxol, y la artemisina.
- 50 prenoides utilizados en la industria son los aceites esenciales, los carotenoides, los tocoferoles, el taxol, y la artemisina. Una alternativa muy prometedora para su producción industrial es la ingeniería metabólica de bacterias y plantas para ser utilizadas como biofactorías de isoprenoides de interés.

Hay un conocimiento muy limitado de las enzimas involucradas en la síntesis de isoprenoides en las diferentes es-55 pecies (bacterias, plantas, etc). Por lo tanto, es deseable ampliar este conocimiento y proporcionar nuevas herramientas 56 para avanzar en la síntesis y la aplicación industrial de estos compuestos.

Explicación de la invención

60 Los inventores han encontrado sorprendentemente una nueva clase de enzimas oxidoreductasas que cataliza la conversión de DXP a MEP para la síntesis de isoprenoides a través de la ruta MEP en células procariotas.

Los inventores han detectado que los genomas completamente secuenciados de un número de bacterias, incluida la patógena *Brucella abortus* 2308. contienen los genes de la vía MEP con la única excepción de la que codifica para DXR. La presente invención se refiere pues a la clonación del gen que codifica la enzima que es utilizada en estos organismos para producir MEP, la demostración de su actividad bioquímica tanto *in vivo* como *in vitro*. y la

estos organismos para producir MEP, la dem determinación de su distribución filogenética.

En esta descripción se utilizará DRL para denominar a la nueva clase de enzima identificada. DRL proviene de \underline{DXR} -Like.

La secuencia de aminoácidos de la proteína DRL de *B. abortus* 2308 clonada coincide con la secuencia descrita en el NCBI con referencia Swiss-Prot Q2YIM3, que corresponde a la secuencia de aminoácidos predicha a partir de la secuencia de nucleótidos *BAB2* 0264 con GeneID 3827542. En la referencia Q2YIM3 se describe esta secuencia como "oxidoreductasa putativa". Es decir, la definición de la posible función de la secuencia de aminoácidos se realizó automáticamente a partir de una predicción de función comparando secuencias de bases de datos. De la misma manera, en la referencia *BAB2* 0264 se describen como funciones putativas "homoserina deshidrogenasa predicha" y "proteína de unión a NAD(P)(+) con un dominio Rossmann-fold".

Lo anterior implica que la secuencia de nucleótidos y aminoácidos como tal está descrita, pero la actividad propuesta para la proteína es el resultado de una predicción; es decir, no se ha clonado físicamente y se desconoce su auténtica función biológica.

15

Contrariamente, los inventores han clonado la secuencia de nucleótidos y han encontrado que la proteína codificada (DRL) es una proteína funcional. Los inventores han encontrado que DRL es una enzima con actividad 1-desoxi D-xiluloxa 5-fosfato reductoisomerasa que cataliza la reacción de producción de MEP a partir de DXP de forma similar a la descrita para el enzima DXR.

20

25

30

35

La fosmidomicina, un inhibidor competitivo específico de DXR, inhibió el crecimiento de células de *B. abortus* que expresaban el transportador GlpT de *E. coli* (requerido para la entrada de fosmidomicina), confirmando que existe en estas bacterias una actividad similar a DXR *in vivo* (DRL). Se encontró que la proteína DRL de *B. abortus* pertenece a una familia de proteínas no caracterizadas y similares en secuencia a la homoserina deshidrogenasa. Experimentos posteriores confirmaron que DRL y DXR catalizan la misma reacción bioquímica *in vitro*.

La enzima activa DRL de *B. abortus* se caracteriza por ser un homodímero con un peso molecular determinado por cromatografía de exclusión molecular de 80 kDa (aproximadamente el doble que el tamaño deducido de la secuencia proteica). DRL presenta una actividad máxima en un pH entre 7.5 y 8, y una temperatura óptima entre 40 y 45°C. La curva de parámetros enzimáticos de Lineweaver-Burk indica una $V_{\text{max}} = 0.083 \ \mu\text{mol NADPH min}^{-1} \text{ mg}^{-1}$, una $k_{\text{cat}} = 0.065 \text{ s}^{-1}$, y una $K_{\text{m(DXP)}} = 109 \ \mu\text{M}$ para la enzima recombinante DRL.

Se realizó un análisis filogenético y funcional entre diferentes especies de bacterias y se detectó que otras bacterias además de *B. abortus* poseen proteínas homologas a DRL, que también complementan funcionalmente a la cepa EcAB4-10 de *E. coli* deficiente en DXR. Estas enzimas se agrupan dentro del mismo clado filogenético según se describe a continuación.

Como se describe detalladamente más adelante en el apartado de realizaciones particulares, las búsquedas con BLAST de posibles secuencias homologas a DRL se llevaron a cabo en la base de datos UniProt. Sólo se consideraron significativos aquellos resultados que correspondían a valores de E<10-3.

Los análisis filogenéticos se llevaron a cabo a partir de alineamientos de secuencias de proteínas obtenidos con CLUSTALW con los métodos de Máxima Verosimilitud (Maximum Likelihood, ML), Neighbor-Joining (NJ) y Máxima Parsimonia (Maximum Parsimony, MP). Los análisis por ML fueron llevados a cabo en PHYML v2.4.5, usando el modelo JTT de evolución de proteínas. Los análisis por NJ y MP se implementaron en MEGA 4.0. usando los parámetros por defecto.

Posteriormente se comprobó que diez de las secuencias identificadas procedentes de diferentes cepas bacterianas encontradas a partir de los análisis tenían actividad DRL (según se deduce de su capacidad para complementar la cepa mutante de *E. coli* EcAB4-10).

Además, por otra parte, se realizó un alineamiento de estas diez secuencias aminoacídicas para generar un perfil de HMM usando el programa HMMER (http://HMMER.janelia.org/). El perfil de HMM fue usado para modelar las DRL y en búsquedas de posibles homólogos de DRL en grandes bases de datos de proteínas como Pfam o UNIPROT. El protocolo completo aparece detallado más adelante. El análisis a partir del perfil HMM es la forma más sensible y específica para identificar con seguridad a los homólogos funcionales de DRL.

Así, la invención proporciona una enzima con actividad 1-desoxi D-xilulosa 5-fosfato reductoisomerasa que cataliza la reacción de producción de MEP a partir de DXP, que tiene la secuencia de aminoácidos SEQ ID NO: 60 41.

Para saber si una secuencia aminoacídica nueva ("secuencia incógnita") corresponde a una DRL funcional o bien si se quieren buscar en bases de datos nuevas enzimas DRL no identificadas hasta ahora, primero se realiza un BLASTp a partir de una secuencia query seleccionada del grupo que consiste en SEQ ID NO: 41-50 y los parámetros para el

65 BLAST indicados a continuación en una base de datos de proteínas. Si se obtiene un valor de E<10-3, la secuencia incógnita sería homologa a las DRL de SEQ ID NO: 41-50.

En particular, (a) se lanza un BLASTp contra una base de datos de proteínas con los parámetros por defecto: umbral esperado = 10 (en inglés "expect threshold"), tamaño de palabra = 3 ("word size"), matriz = BLOSUM62 ("matrix") coste de hueco = existencia:11 extensión:1 ("gap cost = existence:11 extension:1"), y utilizando como secuencia pregunta ("query") una de las secuencias SEQ ID NO: 41-50; y se seleccionan las secuencias obtenidas que tienen un valor esperado E<10-3; y (b) se hace un análisis filogenético de las secuencias obtenidas en el paso (a) mediante alineamiento de las secuencias con CLUSTALW con los métodos de Máxima Verosimilitud, Neighbor-Joining y/o Máxima Parsimonia; y se seleccionan las secuencias que pertenecen al mismo clado filogenético al que pertenecen las secuencias SEQ ID NO: 41-50.

10 Como alternativa, puede comprobarse si la secuencia incógnita se ajusta al perfil de HMM con el programa "hmmsearch" del paquete de aplicaciones HMMER, v. 2.3.3. Si se obtiene un valor E<10-3, se ajusta al perfil.

El siguiente paso es comprobar si esta secuencia agrupa dentro del clado filogenético DRL, que es el que agrupa a las DRL funcionales (es decir, aquellas capaces de sintetizar MEP a partir de DXP). Para ello se hace un análisis filogenético de las secuencias obtenidas a partir del BLAST o del perfil de HMM, mediante alineamiento de las secuencias con CLUSTALW con los métodos de Máxima Verosimilitud, Neighbor-Joining y/o Máxima Parsimonia; y se seleccionan las secuencias que pertenecen al mismo clado filogenético al que pertenecen las secuencias SEQ ID NO: 41-50.

En una realización particular, adicionalmente, se confirma la función *in vivo* de la secuencia incógnita identificada expresándola en una cepa defectiva en DXR (como por ejemplo la cepa de *E. coli* EcAB4-10). Si es capaz de complementar la pérdida de función de DXR en la cepa mutante, la enzima con secuencia incógnita es una DRL. Alternativamente, se puede confirmar la función de la secuencia incógnita identificada *in vitro* utilizando la correspondiente proteína purificada para ensayos de actividad enzimática en presencia de DXP, MgCl₂, DTT y NADPH. Se seleccionan aquellas secuencias que son capaces de oxidar el NADPH y producir MEP en estas condiciones. Estos procedimientos se describen en detalle más adelante en el apartado de realizaciones particulares.

En una realización de la invención, las enzimas, cuyas secuencias están descritas actualmente en las bases de datos de proteína, que cumplen con las características antes indicadas y que por lo tanto son DRL funcionales, son las que tienen una secuencia seleccionada del grupo que consiste en SEQ ID NO: 41-50.

30

5

En otra realización particular, la enzima tiene la secuencia SEQ ID NO: 41.

En otra realización particular, la enzima DRL es de *B. abortus*. y más particularmente de la cepa *B. abortus* 2308. 55 En otra realización particular, la enzima activa es un homodímero que tiene un peso molecular de 80 kDa y una actividad óptima a un pH de entre 7.5-8 y a una temperatura de entre 40-45°C.

Otro aspecto de la invención se refiere a un vector de expresión que comprende la secuencia de DNA que codifica para las enzimas DRL antes explicadas y que permite la expresión de la enzima DRL funcionalmente activa. Particularmente, la secuencia de DNA que codifica la enzima DRL es la secuencia del gen *BAB2 0264* (SEQ ID NO: 51). El vector de expresión es normalmente un plásmido o un cassette que se inserta en una célula hospedadora para la expresión de la enzima. Para permitir la expresión de la enzima DRL, la secuencia de DNA que la condifica se une operativamente a una secuencia promotora que es capaz de dirigir la expresión en la célula hospedadora deseada. El término "unido operativamente" se refiere a la asociación de secuencias de ácido nucleico en un único fragmento de acido nucleico de manera que la función de una secuencia es afectada por la otra. Un promotor está unido operativamente a una secuencia codificante cuando es capaz de efectuar la expresión de esa secuencia codificante. Además, el vector puede comprender otros elementos genéticos para conseguir con éxito, la transformación, selección y propagación de las células hospedadoras que contienen la secuencia de interés. En una realización preferida el vector es el plásmido pET23b y la célula hospedadora es *E. coli* BL21 (DE3)pLys.

50

La enzima DRL se obtiene por un método que comprende (a) transformar establemente células hospedadoras con la construcción de expresión que comprende la secuencia que codifica para la enzima DRL; y (b) cultivar las células en condiciones que permitan la expresión de la enzima. A partir de aquí, puede utilizarse el cultivo para la producción de isoprenoides.

55

Opcionalmente, a partir del cultivo celular puede aislarse y purificar la enzima para ser utilizada posteriormente para procedimientos industriales de síntesis de isoprenoides basados en la disponibilidad de una fuente abundante de enzima purificada. Al contrario que DXR, cuya acumulación está altamente regulada, la no existencia de homólogos de DRL en muchas eubacterias y en plantas permite su sobreproducción industrial a niveles elevados.

60

Otro aspecto de la invención se refiere al uso de la enzima DRL para la síntesis de isoprenoides y particularmente para la síntesis de MEP.

65

Así, otro aspecto se relaciona con un método de obtención de MEP que comprende: (a) expresar la enzima activa en un sistema celular; y (b) cultivar el sistema celular del paso (a) bajo condiciones y en un medio que permiten la producción y acumulación de MEP; por ejemplo, en cepas deficientes en actividad MEP citidililtransferasa que son incapaces de metabolizar el MEP.

También puede obtenerse MEP (a) proporcionando un sistema celular que permita la expresión de la enzima; (b) cultivando el sistema celular del paso (a) bajo condiciones que permiten la producción de la enzima; y (c) cultivando el sistema celular bajo condiciones y en un medio que permiten la producción y acumulación de MEP o bien purificando el enzima y utilizarlo en un sistema *in vitro* bajo condiciones y en un medio que permiten la obtención de MEP, donde el medio comprende un sustrato seleccionado del grupo que consiste en DXP y una mezcla de piruvato y gliceraldehído

5 el medio comprende un sustrato seleccionado del grupo que consiste en DXP y una mezcla de piruvato y gliceraldehído 3-fosfato. Si se utiliza la mezcla de piruvato y gliceraldehído 3-fosfato, el sistema *in vitro* comprende además enzima DXS purificada que permita el primer paso a DXP.

Otro aspecto de la presente invención es utilizar la nueva enzima DRL como target para identificar/diseñar inhibilo dores que puedan ser útiles como antibióticos contra diversos microorganismos. Así, la invención se relaciona también con un método de cribado para identificar potenciales agentes inhibidores de la enzima DRL, que comprende poner en contacto DRL con el potencial agente y analizar si hay inhibición. Por ejemplo, un método para evaluar si un agente tiene la capacidad de inhibir la enzima, comprende los pasos de (a) obtener la enzima purificada o no; (b) tratar la enzima DRL con el agente potencial inhibidor; (c) comparar la actividad de la DRL tratada con la actividad de una

- 15 DRL no tratada, seleccionando los compuestos que tienen actividad inhibitoria. DRL lleva a cabo la conversión de DXP en MEP con consumo concomitante de NADPH. La caída de la concentración de NADPH refleja el nivel de actividad de DRL, y puede ser seguida fácilmente mediante métodos ópticos, midiendo la absorbancia a 340 nm. Este método podría ser fácilmente escalable para realizar un cribado de alto rendimiento ("high-throughput screening", HTS).
- 20

A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes realizaciones preferidas se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones

particulares y preferidas aquí indicadas.

Descripción de los dibujos

30

25

La Fig. 1 muestra un esquema de la ruta MEP en bacterias. DXP, 1-desoxi-D-xilulosa 5-fosfato; MEP, 2-<u>C</u>-metil-D-eritritol 4-fosfato; CDP-ME, citidina difosfometileritritol; IPP, isopentenil difosfato; DMAPP, dimetilalil difosfato; Pir, piruvato; G3P, gliceraldehído 3-fosfato; B_6/B_{12} , vitaminas B_6/B_{12} ; Is, isoprenoides. Las enzimas están indicadas en negrita: DXS, DXP sintasa (EC 2.2.1.7); DXR, DXP reductoisomerasa (EC 1.1.1.267); MCT, MEP citidililtransferasa (EC 2.7.7.60). El paso inhibido por fosmidomicina (FSM) está señalado. Las flechas interrumpidas cerradas representan varios pasos. Las cepas de *E. coli* deficientes en las actividades DXS (EcAB4-2), DXR (EcAB4-10) o

- representan varios pasos. Las cepas de *E. coli* deficientes en las actividades DXS (ECAB4-2), DXR (ECAB4-10) o MCT (EcAB4-7) usadas aquí fueron construidas para utilizar MVA aportado exógenamente para la síntesis de IPP (representado con una flecha interrumpida abierta). La flecha puntuada cerrada marca la reacción catalizada por la enzima "DXR-like" (DRL).
- 40

45

35

La Fig. 2 muestra la complementación de cepas de *E. coli* deficientes en actividad DXR (EcAB4-10), DXS (EcAB4-2) o MCT (EcAB4-7) con un plásmido que expresa el gen *BAB2 0264* (pET-DRL). Los experimentos control fueron hechos con plásmidos que expresan los genes de *E. coli* que codifican DXR, DXS o MCT, y también los vectores vacíos (Ø). La capacidad del gen clonado para rescatar el crecimiento de las correspondientes cepas mutantes (es decir, su capacidad de complementación) fue establecida mediante la siembra por estría de colonias individuales en placas de cultivo suplementadas (+) o no (-) con 1 mM MVA como aparece indicado.

La Fig. 3 (A) muestra los cromatogramas de seguimiento de reacciones múltiples ("Multiple-reaction monitoring", MRM) de una mezcla de reacción que contiene MgCl₂, DTT, NADPH, y DXP antes (0 h) y 2 h después de añadir DRL recombinante. El panel inferior muestra el resultado después de la incubación durante 2h en ausencia de enzima, o con DXR purificada en lugar de DRL. El pico 1 corresponde a DXP (m/z 213/97, tiempo de retención ca. 9.15 min). El pico 2 corresponde a MEP (m/z 215/97, tiempo de retención ca. 9.90 min), como se demuestra comparando su espectro de masas con el del patrón de MEP (B). "a MEP" significa "MEP auténtico". (C) Cambios en los niveles de NADPH monitorizados por absorbancia a 340 nm en mezclas de reacción como las descritas en (B) después de añadir DRL recombinante (círculos). El inhibidor de DXR FSM se incorporó en las mezclas a la concentración indicada

- (μM) . Se muestra también un control sin DXP (cuadrados blancos). "R NADPH L" es "niveles de NADPH relativos". "P2" es "pico 2" y "In" es "Intensidad".
- La Fig. 4 muestra el análisis filogenético de los supuestos homólogos de DRL. Se construyó un árbol filogenético tras el análisis de Máxima Verosimilitud de las relaciones evolutivas entre los supuestos homólogos de DRL que se obtuvieron de las búsquedas BLAST con DRL de *B. abortus* como interrogante (Tabla 3). Los resultados están representados como un árbol circular sin raíz, dibujado a escala, con la longitud de las ramas proporcional al tiempo de evolución. Las secuencias que complementan la cepa de *E. coli* EcAB4-10 aparecen indicadas con un círculo negro, mientras que aquéllas que no complementan al mutante están indicadas con un círculo blanco. La letra dentro de los
- 65 círculos indica si la secuencia pertenece a un organismo que carece (A) o no (B) de DXR. El clado DRL que agrupa a todas las DRLs activas aparece resaltado.

La Fig. 5 muestra la determinación del valor de la concentración mínima inhibitoria ("Minimum Inhibitory Concentration", MIC) de FSM en *B. abortus* 2308. Diluciones consecutivas de FSM en medio BB fueron inoculadas con 10⁵ bacterias/ml, e incubadas durante 24 h a 37°C. Se incluyó un tubo control sin FSM. En la fila superior se muestra el resultado obtenido con la cepa silvestre *B. abortus* 2308: en la fila inferior, la misma cepa transformada con el plásmido pFJS251 que porta el gen *glpT* de *E. coli*.

La Fig. 6 muestra el mapa de las regiones genómicas de *B. abortus* clonadas en los plásmidos señalados que rescataron el crecimiento de las células de *E. coli* deficientes en DXR. Las regiones codificantes están representadas por flechas. La flecha correspondiente al gen *BAB2 0264* (que codifica DRL) está coloreada en gris.

10

15

5

La Fig. 7 muestra (A) el análisis por SDS-PAGE de la sobreexpresión y purificación de la proteína DRL de *B. abortus* fusionada a una cola de polihistidinas. Las calles corresponden a extractos celulares de *E. coli* BL21(DE3)pLys llevando la construcción pET-DRL antes (-) y después (+) de la inducción con IPTG; P, fracción precipitada (insoluble); S, fracción sobrenadante (soluble); E, fracción eluída con 150 mM de imidazol después de una cromatografía de afinidad en columnas de níquel. La posición de los marcadores de peso molecular se indica a la izquierda. (B) Determinación del peso molecular de DRL de *B. abortus* mediante cromatografía de exclusión por tamaños. DRL fusionada a una cola de histidinas y producida en *E. coli*. fue purificada, cargada en una columna de Superdex 200 HL 16/60, y eluída con 100 mM Tris-HCl pH=7.5, 300 mM NaCl, 1 mM DTT, y 2 mM MgCl₂ a 1 ml/min. El cromatograma muestra el pico de DRL que eluye a 76.5 min. (C) Gráfico de calibración usando los siguientes estándares: ribonuclea-sa A (13.7 kDa), anhidrasa carbónica (29 kDa), ovoalbúmina (44 kDa), conalbúmina (75 kDa), aldolasa (158 kDa), y ferritina (440 kDa). El peso molecular del pico de DRL se estimó ca. 80 kDa mediante análisis de regresión linear de

los tiempos de retención frente al peso molecular. "Ret t" es "tiempo de retención".

La Fig. 8 muestra el cálculo de pH y temperatura óptimos de DRL de *B. abortus*. La actividad fue monitorizada
en mezclas de reacción (100 μl) que contienen 100 mM Tris, 1.5 mM MgCl₂, 1 mM DTT, 0.15 mM DXP, 0.2 mM NADPH y 40 μg de enzima recombinante purificada, bien a 37°C en un rango de pH (A) o a diferentes temperaturas a un pH fijo de 7.5 (B). La actividad enzimática se dedujo de la disminución en la absorbancia a 340 nm conforme el NADPH fue oxidado, y representada de modo relativo al valor más alto. Se muestran la media y el error estándar de tres (n=3) ensayos. (C) Cálculo de las constantes de Michaelis-Menten. Los ensayos de actividad se llevaron a cabo a 40°C en 100 μl de una mezcla de reacción que contiene 100 mM Tris pH 7.5, 1.5 mM MgCl₂, 1 mM DTT, 0.2 mM NADPH (preparado fresco) y variando las concentraciones de DXP (25-500 μM) en presencia de 60 μg de DRL de *B. abortus* recombinante purificada. La velocidad fue calculada como disminución en unidades de absorbancia a 340 nm por minuto en un rango linear. La curva recíproca doble (Lineweaver-Burk) se hizo con los valores medios de experimentos triplicados (n=3).

35

La Fig. 9 muestra la complementación de células *E. coli* deficientes en DXR con las secuencias de DRL y DXR de bacterias de clase B. Las secuencias indicadas de DRL y DXR de *Roseobacter litoralis* Och 149, *Bacillus halodurans* C-125. y *Listeria monocytogenes* F2365 fueron amplificadas por PCR a partir de DNA genómico con los conjuntos de primeros descritos en la Tabla 1 y clonados en pJET1.2. Las correspondientes construcciones y el vector vacío control (Ø) se utilizaron para transformar células EcAB4-10. La habilidad del gen clonado para rescatar el crecimiento de las cepas deficientes en DXR se averiguó siguiendo el crecimiento en placas suplementadas (+) o no (-) con 1mM MVA

45 Exposición detallada de realizaciones particulares

Cepas bacterianas, medios y reactivos

como se indica.

La cepa *B. abortus* 2308 (NCBI taxonomy ID 359391) fue crecida en caldo Brucella (Brucella broth, BB) o placas de agar Brucella (Brucella agar, BA) (Pronadisa). Las cepas de *E. coli* fueron crecidas en caldo o placas de medio Luria-Bertani (LB). Cuando era requerido, los medios fueron suplementados con los siguientes antibióticos: 25 μ g/ml kanamicina, 100 μ g/ml ampicilina, 20 μ g/ml cloranfenicol. Cuando se indicó, el medio de cultivo fue también suplementado con diferentes concentraciones de FSM (Molecular Probes) o 1 mM MVA preparado a partir de un concentrado de mevalonato como está descrito (cf. M. Rodríguez-Concepción *et al.*, "Genetic evidence of branching

in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in *Escherichia coli*" *FEBS Lett* 2000. vol. 473, pp. 328-332). A menos que se indique de otra manera, los producto químicos y reactivos fueron obtenidos de Sigma-Aldrich. Las enzimas de restricción y de modificación de DNA fueron compradas de Promega. Los oligonucleótidos fueron sintetizados por Sigma-Aldrich, y aparecen mostrados en la Tabla 1.

TABLA 1

Oligonucleótidos utilizados

5	Organismo	Nombre	Secuencia
	Escherichia coli DH5α	GlpT_Sall.F	SEQ ID NO: 1
		GlpT_Pstl.R	SEQ ID NO: 2
10	Brucella abortus 2308	DRL_Ndel.F	SEQ ID NO: 3
		DRL_Xhol.R	SEQ ID NO: 4
	Ochrobactrum anthropi LMG3331	Oant_1387.DRL.F	SEQ ID NO: 5
15		Oant_1387.DRL.R	SEQ ID NO: 6
	Ochrobactrum anthropi LMG3331	Oant_4118.DRL.F	SEQ ID NO: 7
		Oant_4118.DRL.R	SEQ ID NO: 8
20	Mesorhizobium loti MAFF303099	MLL3630.DRL.F	SEQ ID NO: 9
20		MLL3630.DRL.R	SEQ ID NO: 10
	Mesorhizobium loti MAFF303099	MLR6497.DRL.F	SEQ ID NO: 11
		MLR6497.DRL.R	SEQ ID NO: 12
25	Bartonella henselae str Houston	BH12960.DRL.F	SEQ ID NO: 13
		BH12960.DRL.R	SEQ ID NO: 14
	Roseobacter litoralis Och 149	RLO149_05338.DRL.F	SEQ ID NO: 15
30		RLO149_05338.DRL.R	SEQ ID NO: 16
		RLO149_21444.DXR.R	SEQ ID NO: 17
		RLO149_21444.DXR.F	SEQ ID NO: 18
35	Bacillus halodurans C-125	BH0774.DRL.F	SEQ ID NO: 19
		BH0774.DRL.R	SEQ ID NO: 20
		BH2421.DXR.R	SEQ ID NO: 21
40		BH2421.DXR.F	SEQ ID NO: 22
40	Listeria monocytogenes F2365	LMOf2365_0575.DRL.F	SEQ ID NO: 23
		LMOf2365_0575.DRL.R	SEQ ID NO: 24
		LMOf2365_1334.DXR.R	SEQ ID NO: 25
45		LMOf2365_1334.DXR.F	SEQ ID NO: 26
	Finegoldia magna ATCC 29328	FMG_0520.DRL.F	SEQ ID NO: 27
		FMG_0520.DRL.R	SEQ ID NO: 28
50	Nostoc punctiforme PCC 73102	Npun_R1071.DRL.R	SEQ ID NO: 29
		Npun_R1071.DRL.F	SEQ ID NO: 30
	Anabaena variabilis PCC 7937	Ava_1114.DRL.F	SEQ ID NO: 31
55		Ava_1114.DRL.R	SEQ ID NO: 32
	Agrobacterium tumefaciens C58	Atu3161.DRL.F	SEQ ID NO: 33
		Atu3161.DRL.R	SEQ ID NO: 34
(a)	Candidatus Pelagibacter ubique	PU1002_02141.DRL.F	SEQ ID NO: 35
60	H1CC1002	PU1002_02141.DRL.R	SEQ ID NO: 36
	Mycobacterium smegmatis	MSMEG_0894.F	SEQ ID NO: 37
	mc(2)155	MSMEG_0894.R	SEQ ID NO: 38
65	Burkholderia cepacia J2315	BCAL1926.DRL.F	SEQ ID NO: 39
		BCAL1926.DRL.R	SEQ ID NO: 40

Clonado del gen glpT

El gen glpT fue aislado a partir de *E. coli* DH5 α mediante oligonucleótidos específicos del gen, y polimerasa Vent. Un fragmento de DNA del tamaño esperado fue obtenido y clonado en pJET.2 (Fermentas) y su secuencia nucleotídica determinada para descartar posibles mutaciones introducidas por la reacción de PCR. Para su expresión en células de *B. abortus*. la secuencia de glpT fue subclonada en pBBR1 MCS.

Construcción y cribado de una librería de <u>B. abortus</u> 2308

El DNA genómico fue extraído de células *B. abortus* 2308 conforme estaba descrito previamente (cf. FJ Sangari *et al.*, "Identification of *Brucella abortus* B19 vaccine strain by the detection of DNA polymorphism at the ery locus" *Vaccine* 1994. vol. 12, pp. 435-438). Tras la digestión parcial con *Sau*3A. se purificaron a partir del gel fragmentos de entre 3 y 6 kb, que se ligaron a pUC19 previamente digerido con *Bam*HI y defosforilado (Fermentas). Con la mezcla de ligación se transformó a *E. coli* DH5*a*, *y* se pleaueó an medio LB con ampieiline a una dencidad de 500 una forma entre de serviciona entre de serviciona entre de serviciona entre de serviciona entre de ligación se transformó a *E. coli* DH5*a*, *y* se pleaueó an medio LB con ampieiline a una dencidad de 500 una forma entre de serviciona entre de

¹⁵ de ligación se transformó a *E. coli* DH5 α , y se plaqueó en medio LB con ampicilina a una densidad de 500 ufc por placa para amplificar la librería. Se extrajo plásmido a partir de las células raspadas de las placas y mezcladas. Para el cribado, 1 μ g de este DNA se electroporó en la cepa deficiente en DXR EcAB4-10, y se seleccionaron los transformantes en placas de LB suplementadas con cloranfenicol (para seleccionar la interrupción del gen *dxr*), kanamicina (para seleccionar la presencia del operón MVA) y ampicilina (para seleccionar la incorporación de los plásmidos de la librería). Los plásmidos aislados de transformantes que eran capaces de formar colonias fueron secuenciados para

²⁰ la horena). Los plasificos alsiados de trai comprobar la identidad de los insertos.

Clonado de las secuencias DRL y ensayos de complementación

 ²⁵ El DNA genómico de bacterias que contenían posibles secuencias DRL fue amplificado con los pares de oligonucleótidos descritos en la Tabla 1. Fragmentos de DNA del tamaño esperado se purificaron y se analizaron mediante digestión con enzimas de restricción para confirmar su identidad. Los fragmentos positivos fueron clonados en pJET1.2 (Fermentas). El DNA plasmídico de dos clones independientes de cada construcción se usó para transformar células
 ³⁰ *E. coli* EcAB4-10. Se consideró que los fragmentos clonados codificaban enzimas DRL funcionales cuando permitieron el crecimiento de las células EcAB4-10 en ausencia de MVA. Cuando se indicó, las cepas de *E. coli* EcAB4-2 y EcAB4-7 fueron también usadas en ensayos de complementación como se describió previamente (cf. S. Sauret-Güeto *et al.*, "A mutant pyruvate dehydrogenase E1 subunit allows survival of *Escherichia coli* strains defective in 1-deoxy-D-xylulose 5-phosphate synthase" *FEBS Lett* 2006, vol. 580, pp. 736-740).

35

5

10

Producción de proteína DRL recombinante de B. abortus

Los oligonucleótidos con SEQ ID NO: 3-4 (Tabla 1) fueron usados para amplificar *BAB2 0264* sin el codón de parada a partir de DNA genómico de *B. abortus* 2308. El fragmento amplificado se clonó en el vector de expresión pET23b (Novagen) después de digerirlo con *NdeI* y *XhoI*. Después de la transformación de células de *E. coli* BL21 (DE3)pLys con la construcción resultante (pET-DRL), la producción de una proteína DRL quimérica con una cola de seis residuos de histidina en el extremo C-terminal fue inducida mediante la adición de 0.4 mM IPTG a cultivos con una DO₆₀₀=0.5. Después de 14 h de crecimiento a 28°C, las células bacterianas fueron recogidas por centrifugación, y las células sedimentadas fueron resuspendidas en Tampón A (40 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM DTT)

- (Roche) por cada 10 ml de tampón. Las células resuspendidas se incubaron a 4°C durante 10 min y tras una breve sonicación (4 pulsos de 30 sec a 30 W) el lisado celular fue centrifugado a 19.000 xg durante 20 min. El sobrenadante se incubó durante 10 min a 4°C con 1/7 volúmenes de sulfato de protamina al 1% (p/v) en agua y centrifugado a 37.000 xg durante 45 min. Siempre en una cámara fría, el sobrenadante limpio fue incubado durante 2 h con 2 ml
- ⁵⁰ de agarosa Ni-NTA (Qiagen) y la mezcla se cargó en una columna de cromatografía vacía "poly-prep" (Bio-Rad). Después de añadir 10 ml de tampón A y 5 ml de tampón de lavado (tampón A con 25 mM imidazol), la proteína DRL recombinante se eluyó con alícuotas de 0.75 ml de tampón de elución (tampón A suplementado con 150 mM imidazol). Las fracciones que contenían DRL se juntaron y guardaron a -20°C en glicerol al 50%.

55

Caracterización bioquímica de la enzima DRL de B. abortus

La proteína recombinante DRL purificada se utilizó para realizar ensayos de actividad DXR en mezclas de reacción con 15 μg de proteína purificada en Tris-HCl 100 mM pH 7.5, MgCl₂ 1,5 mM, DTT 1 mM, DXP 0.78 mM (Echelon) y
NADPH 1 mM. Se prepararon reacciones control con 15 μg de proteína DXR de *E. coli* recombinante o con agua. Tras incubar las reacciones a 37°C durante 2h, se diluyeron con agua en proporción 2:1 y la mezcla resultante se analizó por cromatografía líquida de altísimo rendimiento ("ultra-performance liquid chromatography", UPLC) acoplada a espectrometría de masas ("mass spectrometry", MS). La separación por UPLC se llevó a cabo en una columna Nucleodex β-OH 200 x 4 mm (Macherey Nagel) a un flujo de 0.75 ml/min con un divisor de flujo post-columna de 1:3.
Se utilizó un equipo Acquity UPLC System (Waters) provisto de una bomba binaria con acetonitrilo como solvente

65 Se utilizó un equipo Acquity UPLC System (Waters) provisto de una bomba binaria con acetonitrilo como solvente A y acetato amónico 10 mM pH 6.5 como solvente B en un gradiente A:B de 9:1 a 4:6 de 0 a 15 min y un flujo isocrático de 9:1 hasta el minuto 20. Los análisis de MS y MS/MS se realizaron con un espectrómetro de masas de

triple cuadrupolo API 3000 (Applied Biosystems) usando la fuente de turbonebulización en modo de ión negativo con los siguientes valores: -3500 V de voltaje capilar, 8 unidades arbitrarias de gas nebulizador (N2), 8 unidades arbitrarias de gas cortina (N2), 4 unidades arbitrarias de gas de colisión (N2), -30 V de potencial de desolvatación, potencial de enfoque de -200 V, potencial de entrada de -10 V, y energía de colisión de -30. Se realizó una adquisición de datos en

- 5 modo de barrido completo desde m/z 50 a m/z 800 usando un tiempo de ciclo de 2 segundos, un tamaño de paso de m/z 0,1 y una pausa entre barridos de 5 milisegundos. Las moléculas DXP y MEP se identificaron en modo de reacción de monitorización múltiple ("múltiple reaction monitoring", MRM) usando las transiciones 213/97 para DXP y 215/97 para MEP en Q1 y Q3, respectivamente, con una resolución de unidad y una pausa entre barridos de 5 milisegundos en ambos casos. Para obtener los espectros de masa de cada pico, se llevó a cabo un barrido de iones hijos seleccionando
- 10 la masa parental en Q1 y aplicando distintas energías de colisión para cada compuesto en Q3 (rampa lineal de -20 a -30 para DXP y de -20 a -35 para MEP).

Para el ensayo de inhibición con FSM y las estimaciones de los parámetros cinéticos, la actividad DXR se cuantificó a partir del cambio de absorbancia a 340 nm de la muestra de reacción como consecuencia de la oxidación del NADPH.

15

Análisis de la secuencia y análisis filogenético

Los genes codificantes de enzimas de biosíntesis de isoprenoides se obtuvieron mediante BLAST genómico a partir
de la base de datos del NCBI. Las búsquedas con BLAST de posibles secuencias homologas a DRL se llevaron a cabo en la base de datos UniProt. Sólo se consideraron significativos aquellos resultados que correspondían a valores de E<10-3. Los análisis filogenéticos se llevaron a cabo a partir de alineamientos de secuencias de proteínas obtenidos con CLUSTALW (cf. JD Thompson *et al.*, "The CLUSTAL_X windows interface: flexible strategies for múltiple sequence alignment aided by quality analysis tools", *Nucleic Acids Res* 1997, vol. 25, pp. 4876-4882) con los métodos de Máxima Verosimilitud (Maximum Likelihood, ML), Neighbor-Joining (NJ)y Máxima Parsimonia (Maximum Parsimony, MP). Los análisis por ML fueron llevados a cabo en PHYML v2.4.5, usando el modelo JTT de evolución de proteínas (cf. D.T. Jones DT *et al.*, "The rapid generation of mutation data matrices from protein sequences" *Comput Appl Biosci* 1992, vol 8, pp. 275-282; and S . *et al.*, "A simple, fast, and accurate algorithm to estimate large phylogenies by máximum likelihood" *Syst Biol* 2003. vol. 52, pp. 696-704). Los análisis por NJ y MP se implementaron en MEGA
4.0. usando los parámetros por defecto (cf. K. Tamura *et al.*, "MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software versión 4.0." *Mol Biol Evol* 2007. vol. 24, pp. 1596-1599). Para dotar de confianza estadística a la topología obtenida, se hizo un análisis de remuestreo (bootstrap analysis) con 1000 replicas en cada caso.

35 Células de <u>B. abortus</u> que expresan GlpT se vuelven sensibles a FSM

El genoma de *B. abortus* está completamente secuenciado, y carece de un gen codificante de DXR, pero sí que contiene un homólogo de DXS (la enzima que sintetiza DXP, el substrato para DXR) así como genes codificantes de la MEP citidilitransferasa (MCT) y del resto de enzimas de la ruta MEP requeridas para transformar MEP en IPP y DMAPP (Fig. 1). Esto sugiere que una proteína de *B. abortus* que no presenta homología en conjunto a DXR podría

- ⁴⁰ bMAAT (Fig. 1). Esto sugrere que una protenta de *B. abortus* que no presenta nontología en conjunto a *DAR* pourta ser la responsable de la transformación de DXP en MEP. Sin embargo, el crecimiento de células de *B. abortus* no fue inhibido por concentraciones de FSM de hasta 1 mg/ml. Este resultado sugiere que la enzima similar a DXR ("DXR-like", DRL) podría no ser inhibida por FSM o, de modo alternativo, que el inhibidor era degradado, expulsado, o no incorporado por las células vivas. Consistente con esta última posibilidad, el genoma de *B. abortus* no contiene ningún
- ⁴⁵ homólogo al transportador GlpT, que ha sido implicado en la incorporación de FSM al interior celular. Para investigar si una incorporación deficiente de FSM era la causa del fenotipo de resistencia de esta bacteria, el gen codificante del transportador GlpT de *E. coli* fue expresado en células de *B. abortus*. Como se muestra en la Fig. 5, los transformantes se hicieron sensibles a FSM con una concentración mínima inhibitoria (MIC) de 4 μ g/ml, confirmando que el fenotipo resistente de las células silvestres era resultado de tan sólo la ausencia de un mecanismo de entrada apropiado. Estos datos también sugieren que la actividad de la posible proteína DRL de *B. abortus* era de hecho inhibida por FSM,
- ⁵⁰ consistente con la hipótesis de que el mecanismo bioquímico usado por esta enzima alternativa para producir MEP a partir de DXP pudiera ser similar al usado por DXR.

La complementación de una cepa de <u>E. coli</u> deficiente en DXR conduce a la identificación de DRL

Para identificar el gen codificante de DRL en *B. abortus*. se construyó una librería genómica de esta bacteria y se usó para complementar a un mutante de *E. coli* deficiente en DXR. El genoma de la cepa *E. coli* EcAB4-10 contiene una deleción del gen *dxr* y un operón MVA sintético que permite la producción de IPP y DMAPP (y por lo tanto la supervivencia de las células) cuando se aporta MVA al medio de cultivo. Células competentes de

⁶⁰ EcAB4-10 se transformaron con la librería genómica de *B. abortus* y fueron plaqueadas en ausencia de MVA. Los plásmidos de transformantes positivos que crecieron sin MVA exógeno fueron secuenciados y mostraron contener fragmentos genómicos de *B. abortus* solapados que contenían los genes *BAB2 0264* y *BAB2 0265* (Fig. 6). *BAB2 0265* codifica para una hidrolasa de la familia HAD, mientras que *BAB2 0264* codifica para una proteína anotada como una oxidoreductasa putativa y fue seleccionado para experimentos posteriores. La transformación de células EcAB4-10

⁶⁵ con un vector que contenía tan sólo BAB2 0264 dio lugar a una complementación completa de la auxotrofía para MVA (Fig. 2), lo que sugiere que la proteína codificada (Q2YIM3) era la enzima DRL de *B. abortus* predicha. La misma construcción fue usada en experimentos de complementación con las cepas de *E. coli* EcAB4-2 y EcAB4-7, deficientes

en las actividades DXS y MCT respectivamente. Una proteína que catalice la misma reacción bioquímica que DXR no debería rescatar el crecimiento de las cepas EcAB4-2 (porque requeriría DXP, el producto de la actividad DXS) ni EcAB4-7 (ya que produciría MEP que necesita ser convertido en intermediarios posteriores de la ruta por la actividad MCT). Por el contrario, una proteína que usara un sustrato diferente de DXP para producir MEP o un intermediario

- 5 posterior rescataría el crecimiento de la cepa EcAB4-2, deficiente en DXS, mientras que una proteína que produjera un intermediario de la ruta posterior a MEP a partir de DXP u otro sustrato rescataría el crecimiento de la cepa EcAB4-7, deficiente en MCT. Como se muestra en la Fig. 2, la expresión de BAB2 0264 en estas cepas no rescata su auxotrofía para MVA. Estos resultados son una importante evidencia *in vivo* de que este gen codifica DRL, una enzima distinta de DXR que necesita el producto de DXS para sintetizar un producto requerido por la actividad MCT (i.e. usa
- DXP o un metabolito derivado para producir MEP o un precursor que podría ser transformado en MEP por E. coli).

DRL y DXR catalizan la misma reacción bioquímica

- La secuencia identificada de la proteína DRL de *B. abortus* no muestra homología general con secuencias de DXR sino con enzimas del tipo homoserina deshidrogenasas (HD). Una búsqueda de dominios funcionales detectó la existencia de un dominio N-terminal de unión a NAD(P) con un plegamiento tipo Rossman modificado, similar al que se encuentra en muchas deshidrogenasas. Esto, unido a los resultados *in vivo* (Fig 2 y Fig. 3A), sugería que DRL podría usar NADPH para catalizar una reacción muy similar (o incluso idéntica) a la catalizada por DXR. Para verificar esta posibilidad, se produjo en *E. coli* una versión recombinante de la proteína DRL de *B. abortus* fusionada
- a una cola de histidinas y se purificó (Fig. 3A) para ser usada en ensayos *in vitro* de actividad DXR. Ensayos control se realizaron con proteína recombinante purificada DXR de *E. coli*. y los productos de reacción se identificaron por UPLC-MS(/MS). Se encontró que las muestras que contenían o DRL o DXR producían MEP a partir de DXP de forma similar (Fig. 3A). La identidad del producto de reacción en las muestras con DRL se confirmó comparando su patrón de fragmentación con el de un patrón de MEP (Fig. 3B). Cuando se prepararon mezclas de reacción sin enzima o sin NAPDH solo se detectaron picos para DXP (Fig. 3A). Además, se observó que la actividad de la enzima DRL
- recombinante era sensible a la inhibición con FSM (Fig. 3C).
- Experimentos de cromatrografía de exclusión molecular mostraron que la enzima DRL activa es un homodímero
 (Fig. 7), como DXR (cf. PJ Proteau, "1-Deoxy-D-xylulose 5-phosphate reductoisomerase: an overview" *Bioorg Chem* 2004. vol. 32, pp. 483-493). También de forma similar a DXR, la actividad DRL tiene un pH óptimo de 7.5 a 8 y una temperatura óptima de 40 a 45°C (Fig. 8). La representación tipo Lineweaver-Burk para el cálculo de los parámetros cinéticos (Fig. 8) mostró una Vmax = 0.083 µmol NADPH min-1 mg-1, una kcat = 0.065 s-1, y una Km(DXP) = 109 µM para la proteína DRL recombinante. En las mismas condiciones experimentales, para DXR de *E. coli* se observó una Km(DXP) = 211 µM, del mismo orden que los valores reportados en la literatura para distintas enzimas DXR (CF. PJ Proteau, *supra*). En contraste, los valores de kcat para DXR (CF. PJ Proteau, *supra*) son entre 2 y 3 órdenes de magnitud mayores que los calculados para la DRL recombinante de *B. abortus*. En conjunto, DRL define una nueva alore de activadas de NADPL relacionados con existences tina UD que ostelizor la formación de son existences tina UD que ostelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina UD que sotelizor la formación de son existences tina
- clase de enzimas dependientes de NADPH relacionadas con oxidorreductasas tipo HD que catalizan la formación de MEP a partir de DXP de forma casi idéntica a DXR, aunque la tasa de conversión parece ser menor en el caso de DRL.
- 40

La distribución de secuencias DRL y DXR no es mutuamente excluyente en todos los organismos

La búsqueda de secuencias de proteínas similares a la de DRL de *B. abortus* (Q2YIM3) en las bases de datos de UNIPROT con el algoritmo BLAST identificó un total de 185 secuencias (Tabla 3). La mayoría de las bacterias solo mostraron 1 secuencia con homología a DRL, pero 17 cepas mostraron 2 y 3 cepas mostraron 3 (Tabla 4). Cuando se comparó la distribución de secuencias DRL putativas con la de enzimas de la ruta del MEP, se establecieron 3 clases de organismos (Tabla 4).

La primera (clase A) estaba formada por bacterias con secuencias de DRL en lugar de DXR en sus genomas. La mayoría de estas secuencias DRL (incluyendo la proteína de *B. abortus* identificada) eran de alfa-proteobacterias, pero también se encontraron algunas en firmicutes. En particular, las secuencias únicas de DRL encontradas en los genomas de la alfa-proteobacteria *Bartonella henselae* (Q6G2D9) o la firmicute *Finegoldia magna* (B0S038) fueron activas en experimentos de complementación de la cepa EcAB4-10 (Tabla 2). El mismo abordaje confirmó la actividad de las secuencias duplicadas de DRL presentes en el genoma de las alfa-proteobacterias *Ochrobactrum anthropi* (A6WYQ0 y A6X6G6) y *Mesorhizobium loti* (Q98FT2 y Q989B6).

60

La segunda (clase B) estaba formada por bacterias con secuencias codificantes tanto para DRL como para DXR (Tabla 4). De estas, las secuencias DRL de las alfa-proteobacterias Agrobacterium tumefaciens (A9CES2) y Candidatus Pelagibacter ubique (Q1V2P9), la beta-proteobacteria Burkholderia cepacia (B4EB12), la actinobacteria Mycobacterium smeqmatis (A0QQV9), y las cianobacterias Nostoc punctiforme (B2IVC2) y Anabaena variabilis (Q3ME48) no rescataron la pérdida de actividad DXR en células de E. coli (Tabla 2). En contraste, las secuencias de la alfa-proteobacteria Roseobacter litoralis (A9HDV1) y las firmicutes Listeria monocytogenes (Q723A4) y Bacillus halodurans (Q9KES5) fueron activas en ensayos de complementación (Tabla 2), lo que sugería que estos organismos podrían tener enzimas redundantes catalizando la producción de MEP. Sin embargo, únicamente las secuencias homologas a DXR de L. monocytogenes (Q720A5) y B. halodurans (Q9KA69) fueron capaces de complementar el mutante EcAB4-10 (Tabla 2). En contraste, las secuencias (Data 2). De na estaron la periodica de activa de teres de complementar el mutante EcAB4-

10 (Tabla 2 y Fig. 9). Por el contrario, la secuencia DXR de *R. litoralis* (A9GU34) era inactiva (Tabla 2 y Fig. 9), probablemente porque presenta muchos cambios de aminoácidos en posiciones que están altamente conservadas en

enzimas DXR funcionales de otras bacterias y plantas. Estos resultados indican que algunos organismos de clase B son funcionalmente equivalentes a los de la clase A en términos de la ruta MEP (i.e. tienen una enzima DRL activa pero carecen de una enzima DXR).

La Tabla 2 muestra los resultados de la complementación de la cepa EcAB4-10 de E. coli, que carece de DXR,

5 La tercera (clase C) estaba formada por bacterias con DRL pero sin enzimas de la ruta MEP. Este grupo incluye arqueobacterias y bacterias que no usan la ruta del MEP para la biosíntesis de isoprenoides (Tabla 4).

con las secuencias indicadas. Los valores de "identidad" (%) se indican relativos a la proteínas DRL de *B. abortus* (Q2YIM3). La columna "clase" indica la presencia de homólogos de DRL, DXR y/o otras enzimas de la ruta del MEP en el mismo organismo: A (+DRL, -DXR, +MEP), B (+DRL, +DXR, +MEP), C (+DRL, -DXR, -MEP). La columna "C-DRL" indica si las correspondientes secuencias DRL complementan (+) o no (-) la cepa EcAB4-10. La columna "C-DXR" indica si las correspondientes secuencias DXR complementan (+) o no (-) la cepa EcAB4-10 (Fig. 9); np, secuencia DXR no presente en el genoma; nt, secuencia DXR no ensayada en experimentos de complementación. La secuencias están divididas entre las que pertenecen al clado DRL que se muestra en la Fig. 4, y las que no pertenecen

15

al clado ("No clado").

10

	A. N.	Identidad	Organismo (cepa)		Clase	C-DRL	C-DXR
20	Clado						
	Q2YIM3 A6WYQ0	100 90	Brucella abortus 2308 Ochrobactrum anthropi	SEQ ID NO: 41 SEQ ID NO: 42	A A	+ +	np np
25	A6X6G6	75	Ochrobactrum anthropi LMG3331	SEQ ID NO: 43	А	+	np
	Q98FT2	73	Mesorhizobium loti MAFF303099	SEQ ID NO: 44	А	+	np
30	Q989B6	67	Mesorhizobium loti MAFF303099	SEQ ID NO: 45	A	+	np
	Q6G2D9	65	Bartonella henselae str Houston	SEQ ID NO: 46	А	+	np
	A9HDV1	62	Roseobacter litoralis Och 149	SEQ ID NO: 47	В	+	-
35	Q9KES5	43	Bacillus halodurans C-125	SEQ ID NO: 48	В	+	+
	Q4EIE8	40	Listeria monocytogenes F2365	SEQ ID NO: 49	В	+	+
40	B0S038	33	Finegoldia magna ATCC 29328	SEQ ID NO: 50	А	+	np
	NO Cla	do					
	B2IVC2	36	Nostoc punctiforme PCC 73102		В	-	nt
45	Q3ME48	35	Anabaena variabilis PCC 7937		В	-	nt
	A9CES2	35	Agrobacterium tumefaciens C58		В	-	nt
50	Q1V2P9	29	Candidatus Pelagibacter ubique HTCC1002		В	-	nt
	A0QQV9	32	Mycobacterium smegmatis mc(2)155		В	-	nt
	B4EB12	27	Burkholderia cepacia J2315		В	-	nt

55

Los homólogos de DRL se agrupan en un grupo monofilogenético (clado)

Cuando las secuencias aminoacídicas de DRL putativas identificadas en búsquedas con el algoritmo BLAST fueron sometidas a un análisis filogenético tipo "Maximum Likelihood" (ML), todas las secuencias de DRL activas en experimentos de complementación se agruparon en un único clado (Fig. 4 y Tabla 3). La identidad de secuencia de las proteínas de este clado oscila entre del 33% al 100% (Tabla 3). El clado DRL está respaldado por valores de "bootstrap" relativamente bajos (64), pero se obtuvo consistentemente empleando otros dos métodos independientes de reconstrucción filogenética ("Neighbour Joininig" y "Maximum Parsimony"). Todos los organismos de clase A tienen al menos una secuencia de DRL en este clado (Tabla 4). La única excepción es la proteína B5J045 de la cepa 307 de la alfa-proteobacteria *Octadecabacter antarcticus*. aunque en el genoma de la cepa 238 existe una secuencia DRL incluida en el clado (B5K941) (Tabla 4). El único organismo de clase C con una secuencia DRL en el clado es *Chloroflexus aurantiacus* (Tabla 4). El resto de secuencias del clado son de organismos de clase B (i.e., que presentan una secuencia DXR en sus genomas, aunque no necesariamente activa enzimáticamente; Tabla 2). La mayoría de estos

organismos eran firmicutes pero también están incluidas en el clado secuencias de la alfa-proteobacteria Roseobacter litoralis, la beta-proteobacteria Verminephrobacter eiseniae y la actinobacteria marina PHSC20C1 (Fig. 4 y Tabla 4). Todas las secuencias de organismos de clase B excluidas del clado DRL que se ensayaron en experimentos de complementación resultaron ser inactivas (Tabla 2), lo que indica que no eran enzimas DRL auténticas.

5

Generación de un perfil HMM a partir del análisis de las diez secuencias

Además, por otra parte, se realizó un alineamiento de las diez secuencias aminoacídicas verificadas como DRL activas (Tabla 2) para generar un perfil de HMM usando el programa HMMER (http://HMMER.janelia.org/). El perfil 10 de HMM fue usado para modelar las DRL y en búsquedas de posibles homólogos de DRL en grandes bases de datos de proteínas como Pfam o UNIPROT (cf. R. Apweiler et al., "UniProt: the Universal Protein knowledgebase", Nucleic Acids Res 2004. vol. 32, pp. 115-119). El protocolo completo aparece detallado a continuación:

(i) Alineamiento múltiple de secuencias de proteínas DRL. Las secuencias fueron alineadas con el programa 15 CLUSTALW usando los parámetros por defecto (cf. J.D. Thompson et al.,"CLUSTAL W: improving the sensitivity of progressive múltiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice" *Nucleic Acids Res* 1994, vol. 22, pp. 4673-4680). Los porcentajes de identidad a nivel de secuencia con respecto a la proteína DRL de *B. abortus* (Q2YIM3) eran altamente variables, oscilando entre un 90% (A6WYQ0; O. anthropi) y un 33% (BOS038; F. magna). Estos datos proporcionan una estimación de la distancia genética y evolutiva 20 entre las secuencias alineadas, revelando la elevada divergencia evolutiva entre las DRL funcionales.

(ii) Construcción de un perfil de HMM usando el programa hmmbuild del paquete de aplicaciones HMMER, v. 2.3.3. El programa hmmbuild lee un fichero en formato FASTA con el alineamiento de secuencias DRL, construye un perfil de HMM y lo graba en un fichero de salida. 25

(iii) Calibración del perfil de HMM usando "hmmcalibrate" del paquete de aplicaciones HMMER, v. 2.3.3.

(iv) Examen de la especificidad y sensibilidad del perfil de HMM en búsquedas de secuencias DRL: El perfil de HMM, una vez calibrado, fue usado como "query" para buscar secuencias DRL. Se usó para ello el programa "hmmsearch" del paquete de aplicaciones HMMER, v. 2.3.3. El programa "hmmsearch" lee un fichero HMMER con 30 un perfil de HMM, busca en una base de datos secuencias de proteínas con similitudes significativas y devuelve un listado de las secuencias resultantes ordenadas. La base de datos utilizada fue UNIPROT. Entre los mejores resultados aparecían las diez secuencias de DRL funcionales usadas para generar el perfil, con puntuaciones/valores-E de 860/0 (Q2YIM3; B. abortus) a 267/2.00E-69 (B0S038; F. magna). Sin embargo, seis secuencias adicionales que también 35 mostraban puntuaciones/valores-E significativos, desde 50/3E-04 (B4EB12, B. cepacia) a 243/2E-62 (B2IVC2, N. *punctiforme*). no consiguieron complementar el mutante de *E. coli dxr* defectivo EcAB4-10, lo que indicaba que no poseían actividad enzimática DRL. El programa "hmmsearch" fue también usado para buscar entre las secuencias de proteína incluidas en las bases de datos Pfram no encontrándose ninguna con puntuaciones/valores-E significativos.

40 Estos resultados indican que (i) las DRLs funcionales comparten similitud a nivel de secuencia significativa; (ii) los perfiles de HMM muestran gran sensibilidad para identificar con seguridad a los homólogos de DRL funcionales en las búsquedas en INTERPRO; y (iii) el perfil de HMM muestra suficiente especificidad para descartar aquellas secuencias previamente clasificadas en las familias de proteínas de Pfam. En conclusión, aunque el perfil de HMM funciona bien para identificar hipotéticos homólogos de DRL, algunas de las secuencias identificadas parecen corresponder 45 a homólogos divergidos funcionalmente para los que la actividad enzimática DRL se ha perdido o bien no ha sido adquirida a través de la evolución.

50

Para refinar la definición de DRL, se sometió a todas las secuencias con homología con DRL (Tabla 3) a un análisis filogenético a partir de alineamientos de secuencia de proteína obtenidos mediante CLUSTALW. Se usaron tres métodos de reconstrucción filogenética: máxima verosimilitud, máxima parsimonia y "neighbor-joining". Los análisis de verosimilitud fueron llevados a cabo con el programa PHYML v2.4.5, usando el modelo JTT de evolución de proteínas (cf. D.T. Jones et al., supra: S. Guindon and O. Gascuel, supra). Los análisis de "neighbor-joining" y máxima parsimonia se realizaron en MEGA 4.0, usando la configuración por defecto en cada caso (cf. K. Tamura et al., supra). Para dotar de confianza estadística a la topología del árbol obtenido, se llevó a cabo un análisis de "bootstrap" con 1000 replicaciones (cf. J. Felsenstein, "Confidence Limits on Phylogenies: An Approach Using the Bootstrap" 55 Evolution 1985. vol. 39, pp. 783-791).

Cuando las secuencias aminoacídicas identificadas a partir del perfil de HMM generado o a partir del BLASTp fueron sujetas a análisis filogenéticos por el método de máxima verosimilitud, se observó que todas las secuencias DRL 60 que habían mostrado ser funcionales en los ensavos de complementación agrupaban en un grupo monofilético o clado (Fig. 4). Dicho clado mostraba valores de "boostratp" relativamente bajos, pero era sistemáticamente obtenido por los dos métodos alternativos de reconstrucción filogenética que fueron empleados. De acuerdo a la teoría filogenética, las secuencias que agrupan en un clado son homologas y, por lo tanto, compartirían un ancestro común. Coherentemente, todas las secuencias fuera del clado DRL que fueron examinadas experimentalmente no fueron capaces de comple-

mentar el mutante EcAB4-10 (Tabla 2). Estos resultados indican que (i) las secuencias que agrupan dentro del clado DRL pertenecen a la familia DRL y comparten actividad enzimática DRL y (ii) las secuencias que muestran identidad de secuencia significativa con las DRL pero agrupan fuera del clado DRL no serían enzimas DRL funcionales.

TABLA 3

La columna "clase" indica la clasificación de las cepas bacterianas según la distribución de secuencias con homología a DRL, DXR y/o otras enzimas de la vía MEP en la misma cepa: A (+DRL, -DXR, +MEP), B (+DRL, +DXR, 5 +MEP), C (+DRL, -DXR, -MEP). ^(a)únicamente se indican los hits anotados como DXS. ^(b)indica enzima bifuncional MCT/MDS (IspD/IspF). La columna "DRL clado" indica las secuencias que pertenecen (+) o no (-) al clado DRL mostrado en la Fig. 4 Las secuencias DRL múltiples en la misma cepa están separadas por barras. La columna "C-DRL" indica las secuencias que complementan (+) o no (-) el mutante dxr *E. coli*. Las cepas de las que se ha analizado experimentalmente su secuencia están marcadas en negrita.

¹⁰

			Número de secuencias							ias		
			_		Vĺć	a Mi	EP					
			Sa	ß	Ľ	Ĭ	S	S	R		DRI	
15	Clase	Organismo	ă	6	ž	5	ž	Ξ	Ξ	DRL	clado	C-DRL
		Bartonella bacilliformis (strain ATCC										
		35685 / KC583)	1	0	1 ^b	1	1 ^b	1	1	1	+	
		Bartonella henselae	1	0	1 ⁵	1	1 ^b	1	1	1	+	+
20		Bartonella quintana	1	0	1 ^b	1	1 ^b	1	1	1	+	
20		Bartonella tribocorum (strain CIP	4	~	₄b	4	a b	4	4	4		
		1054767 IBS 506) Brucelle abertus	1	0	∎ ∎b		l ⊿b	1	1	1	+	
		Brucella abortus 2308	1	0	1° 4b	1	1° 4b	1	1	1	+	
		Brucella abortus S19	1	0	1 1 ^b	1	1 1Þ	1	1	1	+	+
25		Brucella canis ATCC 23365	1	0	∎ ∎b	1	ı ⊿b	1	1	1	- -	
		Brucella melitensis 16M	1	0	∎ ∎b	1	۱ م	1	1	1	т	
		Brucella menerisis Tom	1	0	l 4b	1	l ⊿b	1	1	1	+	
		Brucella ovis 03/290	1	0	1~	1	1° 4h	1	1	1	+	
30		Brucella suis 1330	1	0	1″	1	1°	1	1	1	+	
		Brucella suis ATGC 23445	1	0	1°	1	1°	1	1	1	+	
		Fulvimarina pelagi HTCC2506	1	0	1 [□]	1	1°	1	1	2	+/-	
		Aurantimonas sp. SI85-9A1	1	0	1 ^b	1	1 ^b	1	1	3	+/_/-	
25		Mesorhizobium sp. BNC1	1	0	1 ^b	1	1 ^b	1	1	1	+	
35		Ochrobactrum anthropi LMG3331	1	0	1 ^b	1	1 ^b	1	1	2	+/+	+/+
		Octadecabacter antarcticus 238	1	0	1 ⁰	1	1°	1	1	1	+	
		Octadecabacter antarcticus 307	1	0	1 ^b	1	1 ^b	1	1	1	-	
		Mesorhizobium loti MAFF303099	1	0	1 ^b	1	1 ^b	1	1	2	+/+	+/+
40		Anaerococcus hydrogenalis DSM		^								
		7404 Angerofustis stercoribominis DSM	1	U	1	1	1	1	1	1	+	
		17244	1	0	2	1	1	1	1	2	+/+	
		Finegoldia magna ATCC 29328	0	Ō	1	1	1	1	1	1	+	+
45		Parvimonas micra ATCC 33270	1	0	2	1	1	1	1	1	+	
-	В	Arthrobacter sp. (strain FB24)	1	1	1	1	1	1	1	1	-	
		Kineococcus radiotolerans (strain										
		ATCC BAA-149 / DSM 14245 /	4	n	4	1	1	1	4	1		
50		marine actinobacterium PHSC20C1	1	2 1	1b	1	1 1 ^b	1	1	1	-	
50		Mycobacterium smegmatis	1	1	•	I	I	•			•	
		mc(2)155	1	1	1	1	1	1	1	1	-	-
		Streptomyces griseus subsp. griseus										
		(strain JCM 4626 / NBRC 13350)	1	1	2	1	1	1	1	2	-/-	
55		Acidiphilium cryptum (strain JF-5)	1	1	1	1	1	1	1	1	-	
		Agrobacterium tumefaciens C58	1	1	1 ^b	1	1 ^b	1	1	1	-	-
		alpha proteobacterium BAL199	1	1	1 ^b	1	1°	1	1	1	-	
		Azorhizobium caulinodans (strain										
60		571)	1	1	1 ^b	1	1 ^b	1	1	1	_	
		Bradyrhizobium japonicum	1	1	1 ^b	1	1 ^b	1	1	1	_	
		Bradyrhizobium sp. (strain BTAi1 /		-	-			•	-	•		
		ATCC BAA-1182)	1	1	1b	1	1 ^b	1	1	1	-	
65		Bradyrhizobium sp. (strain ORS278)	1	1	1 ^b	1	1°	1	1	1	-	
05		Candidatus Pelagibacter sp.	0	1	1 ^b	1	1 ^b	1	0	1	_	
		Candidatus Pelagibacter ubique	U 4	ا ہے	1 0	ا بر	1	ן ג	4	ا بر	-	
		annandarda i alaginaarai unique	1	1	1	1	1	1	1	1	-	-

	HTCC1002										
	Hoeflea phototrophica DFL-43	1	1	1 ^b	1	1 ^b	1	1	2	-/-	
-	Magnetospirillum gryphiswaldense	0	1	1 ^b	1	1 ^b	1	0	1	-	
5	Methylobacterium nodulans ORS			h		Ь					
	2060	2	1	1°	1	1°	1	1	2	-/-	
	Methylobacterium radiotolerans										
	(strain ATCC 27329 / DSM 1819 /	2	1	1 ^b	4	1 ^b	1	4	4		
10	JCIVI 2031) Methylebaeterium en (strein 4.46)	2	1	∎ ∎p	1	۱ مه	1	1	1	-	
	Baracaceus danitrificans (strain 4-40)	2	1	1	T	1	1	1	2	-/-	
	1222)	1	1	1 ^b	1	1 ^b	1	1	1	_	
	Pelagibacter ubique	1	1	1 ^b	1	1 ^b	1	1	1	_	
15	Rhodobacter sphaeroides (strain	•		•	'	•		'	•		
	ATCC 17023 / 2.4.1 / NCIB 8253 /										
	DSM 158)	2	1	1	1	1	1	1	1	-	
	Rhodobacter sphaeroides (strain										
20	ATCC 17025 / ATH 2.4.3)	2	1	1	1	1	1	1	1	-	
-	Rhodobacter sphaeroides (strain										
	ATCC 17029 / ATH 2.4.9)	2	1	1	1	1	1	1	1	-	
	Rhodopseudomonas palustris (strain										
25	BisB5)	1	1	1 ^b	1	1 ^b	1	1	1	-	
25	Rhodospirillum rubrum (strain ATCC										
	11170 / NCIB 8255)	2	1	1 ^b	1	1 ^b	1	1	1	-	
	Roseobacter litoralis Och 149	2	1	1	1	1	1	1	1	+	+
20	Roseobacter sp. AzwK-3b	2	1	1 ^b	1	1 ^b	1	1	1	-	
30	Roseovarius sp. 217	2	1	1 ^b	1	1 ^b	1	1	1	-	
	Sphingomonas wittichii (strain RW1 /										
	DSM 6014 / JCM 10273)	1	1	1 ^b	1	1 ^b	1	1	1	-	
	Acidovorax avenae subsp. citrulli										
35	(strain AAC00-1)	1	1	1	1	1	1	1	1	-	
	Acidovorax sp. (strain JS42)	1	1	1	1	1	1	1	2	-/-	
	Azoarcus sp. (strain BH/2)	1	1	1	1	1	1	1	1	-	
	Azoarcus sp. (strain EbN1)										
40	(Aromatoleum aromaticum (strain EbN1))	1	1	1	1	1	1	1	1	_	
	Bordetella avium (strain 197N)	1	1	1	1	1	1	1	1	-	
	Bordetella bronchisentica			•	'	•		'	•	-,-	
	(Alcaligenes bronchisepticus)	1	1	1	1	1	1	1	1	_	
45	Bordetella parapertussis	1	1	1	1	1	1	1	1	-	
	Bordetella petrii (strain ATCC BAA-										
	461 / DSM 12804 / CCUG 43448)	1	1	1	1	1	1	1	2	-/-	
	Burkholderia ambifaria (strain ATCC										
50	BAA-244 / AMMD) (B. cepacia										
	(strain AMMD))	1	1	1	1	1	1	1	1	-	
	Burkholderia ambifaria (strain MC40-										
		1	1	1	1	1	1	1	1	-	
55	Burkholderia ambifaria IOP40-10	1	1	1	1	1	1	1	1	-	
	Burkholderia ambifaria MEX-5	1	1	0	1	1	1	1	1	-	
	Burkholderia cenocepacia (strain AU	1	1	1	1	1	1	1	1		
	Burkholderia cenocepacia (strain	I	1	I	ľ	ľ	,	I	I	-	
60	HI2424)	1	1	1	1	1	1	1	1	-	
50	Burkholderia cenocepacia (strain		-		-	-	-	-	-		
	MC0-3)	1	1	1	1	1	1	1	1	-	

	Burkholderia cenocepacia PC184	1	1	1	1	1	1	1	1	-	
	Burkholderia cepacia J2315	1	1	1	0	1	1	1	1	_	_
	Burkholderia dolosa AUO158	1	1	0	1	1	1	1	1	_	
5	Burkholderia graminis C4D1M	1	4	1	4	4	4	4	4		
	Burkholderia multivorana (atrain	I	I	I	I	I			I	-	
		1	1	1	1	1	1	1	1		
	Burkholderia phymatum (strain DSM	1	1	•	•	•	ľ	I	I	-	
10	17167 / STM815)	1	1	1	1	1	1	1	1	_	
10	Burkholderia phytofirmans (strain		1				•	•		-	
	DSM 17436 / Ps IN)	1	1	1	1	1	1	1	1	_	
	Burkholderia sp. (strain 383) (B			•	•	•	•	•			
	cepacia (strain ATCC 17760 / NCIB										
15	9086 / R18194))	1	1	1	1	1	1	1	1	_	
	Burkholderia sp. H160	1	1	1	1	1	1	1	1	_	
	Burkholderia vietnamiensis (strain			•	•	•	•	•		_	
	G4 / LMG 22486) (B. cenacia (strain										
	R1808))	1	1	1	1	1	1	1	1	_	
20	Burkholderia xenovorans (strain	•	•	•	•	•	•	•	•		
	L B400)	1	1	1	1	1	1	1	1	_	
	Chromobacterium violaceum	1	1	1	1	1	1	1	1	_	
										_	
25	LMC 19424) (Palstonia taiwapansis)	4	4	4	4	4	4		0	,	
	Dechleremence cremetice (strain	I	1		1		1		2	-/-	
		1	1	1	4	1	4	1	1		
	NUD) Ianthinghactorium sp. (strain	1	I	I		•	I	I	I	-	
	Marseille) (Minibacterium										
30	massilionsis)	1	1	1	1	1	1	1	1	_	
	Leptothriv cholodnii ATCC 51168 /	1	1				I	•		-	
	LMG 8142 / SP-6 (L. discophora SP-										
	6)	1	1	1	1	1	1	1	1	_	
35	Limnobacter sp. MED105	1	1	1	1	1	1	1	1	_	
	Methylibium petroleinbilum (strain				•					-	
	PM1)	1	1	1	1	1	1	1	2	-/-	
	Methylobacillus flagellatum	•	•	•	•	•	•	•	-	,	
	(Methylobacillus flagellatus)	1	1	1	1	1	1	1	1	-	
40	Methylobacillus flagellatus (strain KT	•	•	•	•	•	·	·	•		
	/ ATCC 51484 / DSM 6875)	1	1	1	1	1	1	1	1		
	Neisseria goporrhoeae (strain		1	•	•	•	•	•	I	-	
		1	1	1	1	1	1	1	1	_	
45	Nitrosomonas eutropha (strain C91)	1	1	1	1	1	1	1	1	_	
	Nitrosomonas eutropha (strain 091)	I	I	I		I	I	I	I	-	
	ATCC 25196 / NCIMB 11849)	1	1	1	1	1	1	1	1	-	
	Polaromonas naphthalenivorans										
50	(strain CJ2)	1	1	1	1	1	1	1	1	-	
	Polaromonas sp. (strain JS0667	4	4	4	4	4			0	,	
	ATCC BAA-500)	1	1	1	1	1	1		2	-/-	
		4	4	1	4	1	4	4	4		
55	STIRT) Bolynydooboator op (otroin OLW)	I	I	I	I	I			I	-	
		1	1	1	1	1	1	1	1		
	Raistonia eutropha $\Delta TCC 17600 /$	1	1		ľ		ľ	1	I	-	
	H16 / DSM 428 / Stanier 337										
	(Cupriavidus necator)	1	1	1	1	1	1	1	1	_	
60	Ralstonia eutropha (etrain IMP134)	•		•	•	•	•	·	•		
	(Alcaligenes eutrophus)	4	1	1	1	4	1	1	1		
	(vioungonoo outophuo)	1	1				1	1		-	

	Ralstonia metallidurans (strain CH34 / ATCC 43123 / DSM 2839)	1	1	1	1	1	1	1	1	_	
	Ralstonia pickettii (strain 12J)	1	1	1	1	1	1	1	1	_	
5	Ralstonia pickettii 12D	1	1	1	1	1	1	1	1	_	
	Ralstonia solanacearum	•	•	•	•	•	•	•			
	(Pseudomonas solanacearum)	1	1	1	1	1	1	1	2	-/-	
	Ralstonia solanacearum IPO1609	1	1	1	1	1	1	1	1	-	
10	Thiobacillus denitrificans (strain										
	ATCC 25259)	1	1	1	1	1	1	1	1	-	
	Variovorax paradoxus S110	1	1	1	1	1	1	1	3	-/-/-	
	Verminephrobacter eiseniae (strain										
15	EF01-2)	1	1	1	1	1	1	1	1	+	
	Anabaena sp. (strain PCC / 120)	1	1	1	1	1	1	1	1	-	
	Anabaena variabilis PCC 7937	1	1	1	1	1	1	1	1	-	-
	Cyanothece sp. PCC 7425	1	1	1	1	1	1	1	1	-	
20	Gloeobacter violaceus	1	1	1	1	1	1	1	2	-/-	
	Nodularia spumigena CCY 9414	1	1	1	1	1	1	1	2	-/-	
	Nostoc punctiforme PCC 73102	1	1	1	1	1	1	1	1	-	-
	Synechococcus sp. PCC 7335	1	1	1	1	1	1	1	1	-	
25	Anaeromyxobacter sp. (strain	1	4	٩Þ	4	٩b	4	4	4		
	Desulfococcus oleovorans (strain	1	1	1	_					-	
	DSM 6200 / Hxd3)	1	1	1	1	1	1	1	1	_	
	Desulfuromonas acetoxidans DSM	•	•	•	•	•		•	•		
30	684	1	1	1	1	1	1	1	1	-	
	Anaerostipes caccae DSM 14662	1	1	1	1	1	1	1	1	+	
	Bacillus clausii (strain KSM-K16)	1	1	1	1	1	1	1	1	+	
	Bacillus halodurans C-125	1	1	1	1	1	1	1	1	+	+
35	Bacillus pumilus (strain SAFR-032)	1	1	1	1	1	1	1	1	+	
	Bacillus pumilus ATCC 7061	1	1	1	1	1	1	1	1	+	
	Clostridium bartlettii DSM 16795	1	1	1	1	1	1	1	1	+	
	Clostridium bolteae ATCC BAA-613	1	1	2	1	1	1	1	1	-	
40	Clostridium difficile (strain 630)	1	1	1	1	1	1	1	1	+	
	Listeria innocua	1	1	2	1	1	0	0	1	+	
	Listeria monocytogenes	1	1	1	1	1	1	1	1	+	
	Listeria monocytogenes HCC23	1	1	2	1	1	0	0	1	+	
45	Listeria monocytogenes serotype										
	4b (strain F2365)	1	1	2	1	1	1	1	1	+	+
	Listeria monocytogenes str. 1/2a			-							
	F6854	1	1	2	1	1	1	1	1	+	
50	Listeria monocytogenes P14	1	1	1	1	0	1	1	1	+	
	LISTERIA WEISNIMERI SEROVAR OD (STRAIN										
	SI CC5334)	1	1	2	1	Λ	Λ	Λ	1	+	
	Paenibacillus sp. JDR-2	1	1	1	1	1	1	1	1	_	
55	Beggiatoa sp. PS	1	1	1	1	1	1	1	1	_	
	Marinobacter algicola DG893	1	1	1	1	1	1	1	1	_	
	Marinobacter sp. FL B17	1	1	1	1	1	1	1	1	_	
	Marinomonas sp. (strain MW/YI 1)	1	1	1	י 1	י 1	י 1	1	1	_	
60	Methylococcus cansulatus	1	1	1	1	1	1	1	1	-	
	Moritella sp. PE36	1	1	י 1	1	1	1	1	1	-	
	Oceanobacter sp. RED65	1	י 1	י 1	1	י 1	1	1	1	-	
	Pseudomonas aeruginosa	1	1	1	1	1	1	1	1	-	Í
65	r coudomonao aoraginosa	I	ı	1	I	1			I	-	I

		Pseudomonas aeruginosa (strain UCBPP-PA14)	1	1	1	1	1	1	1	1	-	
		Pseudomonas aeruginosa 2192	1	1	0	1	1	1	1	1	_	
5		Pseudomonas aeruginosa C3719	1	1	Õ	1	1	1	1	1	_	
U		Pseudomonas aeruginosa LESB58	1	1	1	1	1	1	1	1	_	
		Pseudomonas fluorescens (strain Pf- 5 / ATCC BAA-477)	1	1	1	1	1	1	1	1	-	
10		Pseudomonas fluorescens (strain Pf0-1)	1	1	1	1	1	1	1	1	-	
		Pseudomonas stutzeri (strain A1501)	1	1	1	1	1	1	1	1	-	
15		Xanthobacter autotrophicus (strain ATCC BAA-1158 / Py2)	1	1	1 ^b	1	1 ^b	1	1	1	-	
-		Xanthomonas campestris pv. campestris	1	1	1	1	1	1	1	1	-	
20		campestris (strain 8004) Xanthomonas campestris pv.	1	1	1	1	1	1	1	1	-	
20		campestris (strain B100)	1	1	1	1	1	1	1	1	-	
		Candidatus Methanosphaerula palustris E1-9c	0	0	0	0	0	0	0	1	-	
25		uncultured marine microorganism HF4000_005K23	0	0	0	0	0	0	0	1	-	
		Streptomyces glaucescens	0	0	0	0	0	0	0	1	-	
		Paracoccus methylutens	0	0	0	0	0	0	0	1	-	
		Methylobacillus glycogenes	0	0	0	0	0	0	0	1	-	
30		Coxiella burnetii RSA 334	0	0	0	0	0	0	0	1	-	
		Coxiella burnetii	0	0	0	0	0	0	0	1	-	
	с	Coxiella burnetii (strain CbuG_Q212) (Coxiella burnetii (strain Q212))	0	0	0	0	0	0	0	1	-	
35		Coxiella burnetii (strain CbuK_Q154) (Coxiella burnetii (strain Q154))	0	0	0	0	0	0	0	1	-	
		Coxiella burnetii (strain Dugway 5J108-111)	0	0	0	0	0	0	0	1	-	
40		Coxiella burnetii (strain RSA 331 / Henzerling II)	0	0	0	0	0	0	0	1	-	
		Chloroflexus aggregans DSM 9485	0	0	0	0	0	0	0	2	-/-	
45		Chloroflexus aurantiacus (strain ATCC 29366 / DSM 635 / J-10-fl)	0	0	0	0	0	0	0	3	+/-/-	

TABLA 4

Los "E-value" son relativos a la proteína DRL de *B. abortus* (Q2YIM3). La columna "DRL clado" indica las secuencias que pertenecen (+) o no (-) al clado DRL mostrado en la Fig. 4. La columna "C-DRL" indica las secuencias que complementan (+) o no (-) el mutante deficiente en DXR de *E. coli* (ver también Tabla 2). Las secuencias probadas y las correspondientes cepas se marcan en negrita. La columna "clase" indica la clasificación de las cepas bacterianas según la distribución de las secuencias con homología a DRL, DXR y/o otras enzimas de la vía MEP en la misma cepa: A (+DRL, -DXR, +MEP), B (+DRL, +DXR, +MEP), C (+DRL, -DXR, -MEP).

-			DRL		.
Organismo	Accession	E-value	clado	C-DRL	Clase
Brucella abortus (strain 2308)	Q2YIM3	0	+	+	Α
Brucella abortus	Q579l6	0	+		Α
Brucella abortus (strain S19) Brucella canis (strain ATCC 23365 /	B2SD59	0	+		Α
NCTC 10854)	A9MCQ0	0	+		Α
Brucella melitensis	Q8YD51	0	+		Α
Brucella ovis (strain ATCC 25840 / 63/290 / NCTC 10512)	A5VVN1	0	+		А
Brucella suis	Q8FV77	0	+		Α
Brucella suis (strain ATCC 23445 / N	СТС	0			
10510)	A9WVYU	0	+		A
Mesorhizobium sp. (strain BNC1)	Q11C19	0	+		Α
Ochrobactrum anthropi (ATCC 491 DSM 6882 / NCTC 12168)	88 / A6WYQ0	0	+	+	А
Ochrobactrum anthropi (ATCC 491	88 /				
DSM 6882 / NCTC 12168)	A6X6G6	0	+	+	Α
Rhizobium loti (Mesorhizobium lot	i) Q98FT2	0	+	+	<u> </u>
Bartonella henselae (Rochalimaea	000000				-
henselae)	Q6G2D9	1,00E-162	+	+	Α
/ IBS 506)	476 A9IWX4	1,00E-162	+		Α
Bartonella bacilliformis (strain ATCC		1 005 161	<u>ь</u>		^
Bartopolla quintana (Pochalimana	ATUTRO	1,000-101	Ŧ		A
quintana)	O6FYY9	1 00E-161	+		Δ
Rhizobium loti (Mesorhizobium lot	i) Q989B6	1,00E-161	+	+	Δ
Verminephrobacter eiseniae (strain EF01-2)	A1WK22	1.00E-157	+		в
Octadecabacter antarcticus 238	B5K941	1,00E-151	+		Δ
Roseobacter litoralis Och 149		1,00E-101	+	+	B
Fulvimarina pelagi HTCC2506		1,00E-101	+	•	Δ
Manganese-oxidizing bacterium (stra	in	1,000-125	•		~
SI85-9A1)	Q1YFT8	1,00E-123	+		Α
Bacillus halodurans	Q9KES5	6,00E-93	+	+	в
Anaerostipes caccae DSM 14662	B0MHR8	4,00E-88	+		в
Clostridium difficile (strain 630)	Q182A2	4,00E-88	+		в
Bacillus clausii (strain KSM-K16)	Q5WCY8	9,00E-88	+		в
marine actinobacterium PHSC20C1	A4AIF9	5,00E-87	+		в
Bacillus pumilus (strain SAFR-032)	A8FCZ5	6,00E-84	+		в
Bacillus pumilus ATCC 7061	B4AE91	1.00E-83	+		в
Anaerofustis stercoribominis DSM 17	244 B1C6E7	1.00E-81	+		Δ
Chloroflexus aurantiacus (ATCC 293	66 /				6
DSM 635 / J-10-11)	A9W9R9	4,00E-81	+		U ·
Anaerotustis stercorihominis DSM 17	244 B1CB96	5,00E-81	+		A
35897 / DSM 20650 / SI CC5334)	, 	3 00E-80	+		в
Listeria innocua	Q92EB0	2,00E-79	+		B
Clostridium bartlettii DSM 16795	B0A6H1	3,00E-79	+		В

	Listeria monocytogenes HCC23	B8DA79	5,00E-79	+		в	
	Listeria monocytogenes	Q8Y9I2	8,00E-79	+		В	
5	Listeria monocytogenes serotype 4b						
	(strain F2365)	Q723A4	8,00E-79	+	+	В	
	Listeria monocytogenes P14	Q4EIE8	8,00E-79	+		B B B B B B B C C B B B B B B B B B B B	
	Listeria monocytogenes str. 1/2a F6854	Q4EVU9	1,00E-78	+		В	
10	Finegoldia magna (ATCC 29328)						
	(Peptostreptococcus magnus)	B0S038	2,00E-69	+	+	Α	
	Parvimonas micra ATCC 33270	A8SLM3	3,00E-69	+		Α	
15	Rhodobacter sphaeroides (strain ATCC					_	
15	17025 / ATH 2.4.3)	A4WUK5	6,00E-66	-		В	
	Chloroflexus aggregans DSM 9485	B8GCI5	3,00E-65	-		С	
	Chloroflexus aurantiacus (strain ATCC					-	
20	29366 / DSM 635 / J-10-fl)	A9WJZ1	9,00E-64	-		C	
20	Gloeobacter violaceus	Q7NIH9	4,00E-63	-		В	
	Rhodobacter sphaeroides (ATCC 17023 /	. .				_	
	2.4.1 / NCIB 8253 / DSM 158)	Q3J1Z1	4,00E-63	-		В	
25	Rhodobacter sphaeroides (strain ATCC					_	
	17029 / ATH 2.4.9)	A3PK98	5,00E-63	-		в	
	Nostoc punctiforme (strain ATCC					-	
	291337 PCC 73102)	BZIVCZ	2,00E-62	-	-	В	
30	Xanthomonas campestris pv. campestris	DODTO				-	
	(strain B100)	BUR 181	2,00E-62	-		В	
	Gioeopacter violaceus		7,00E-62	-		В	
	Anaeromyxobacter sp. (strain FW109-5)		3,00E-61	-		В	
35	Limnobacier Sp. MED 105	ACGINU	3,00E-01	-			
	Cuapathaga an RCC 7425		4,00E-01	т		A D	
	Nedularia snumigana CCX 0414		2,000-00	-		D	
40	Anabaana sp (strain PCC 7120)	AUZEWU ORVTO3	1,00E-59	-		B	
40	Acidiphilium cryptum (strain, IE-5)		4,00E-59	-		B	
	Anabaona variabilis (strain ATCC	A01110	2,000-30	-		D	
	29413 / PCC 7937)	O3ME48	5 00E-58	_	_	в	
45	Acidovorax sp. (strain IS42)		2 00E-50	-		B	
10	Agrobacterium tumefaciens (strain	/////0///	2,000 07			5	
	C58 / ATCC 33970)	A9CES2	2 00E-57	-	-	в	
	Chloroflexus aggregans DSM 9485	B8G2T8	1.00E-56	-		c	
50	Rhodopseudomonas palustris (strain	200210	1,002 00			•	
	BisB5)	Q131D1	2,00E-56	-		В	
	Methylobacterium radiotolerans (ATCC						
	27329 / DSM 1819 / JCM 2831)	B1LSV9	6,00E-56	-		В	
55	Sphingomonas wittichii (strain RW1 /						
	DSM 6014 / JCM 10273)	A5VF13	6,00E-56	-		В	
	Streptomyces griseus subsp. griseus						
	(strain JCM 4626 / NBRC 13350)	Q53IE8	6,00E-56	-		В	
60	Streptomyces griseus subsp. griseus						
	(strain JCM 4626 / NBRC 13350)	B1W361	6,00E-56	-		В	
	Bradyrhizobium japonicum	Q89CI2	7,00E-56	-		В	
65	Kineococcus radiotolerans (ATCC BAA-						
05	149 / DSM 14245 / SRS30216)	A6W5H2	9,00E-56	-		В	
	Fulvimarina pelagi HTCC2506	Q0G3F9	1,00E-55	-		Α	

	Bradyrhizobium sp. (strain ORS278)	A4Z1N0	4,00E-55	-	В
	Variovorax paradoxus S110	B7YYT2	5,00E-55	-	В
5	Bordetella bronchiseptica (Alcaligenes				_
	bronchisepticus)	Q7WQA1	6,00E-55	-	В
	Xanthomonas campestris pv. campestris	Q8P954	6,00E-55	-	в
	Xanthomonas campestris pv. campestris				Б
10	(strain 6004)		0,00E-00	-	ь С
	Polaromonas sp. (strain JS666 / ATCC	A/UDF4	1,00⊏-04	-	C
	BAA-500)	Q12CU3	1,00E-54	-	В
15	Bordetella parapertussis	Q7WC97	2,00E-54	-	В
15	Chloroflexus aurantiacus (strain ATCC				
	29366 / DSM 635 / J-10-fl)	A9WI90	2,00E-54	-	С
	Bradyrhizobium sp. (strain BTAi1 / ATCC				Б
20	BAA-1182) Heeflee phototrophics DEL 42		3,00E-54	-	D
	Manganese-oxidizing bacterium (strain	ASDBLS	2,00E-55	-	D
	SI85-9A1)	Q1YMW1	2,00E-53	-	Α
	Streptomyces glaucescens	Q54201	8,00E-53	-	С
25	Bordetella petrii (strain ATCC BAA-461 /				
	DSM 12804 / CCUG 43448)	A9IDL3	2,00E-52	-	В
	Methylobacterium nodulans ORS 2060	B8IR91	4,00E-52	-	В
30	Azorhizobium caulinodans (strain ATCC				_
	43989 / DSM 5975 / ORS 571)	A8I2L2	5,00E-52	-	В
	alpha proteobacterium BAL199	A8TV43	6,00E-52	-	В
	P1DMWA-1)	A4S750	2 00E-51	-	в
35	Methylibium petroleiphilum (strain PM1)	A2SKW3	3.00E-51	-	В
	Methylobacterium sp. (strain 4-46)	B0UJP5	3.00E-51	-	B
	Methylobacterium nodulans ORS 2060	B8IHI2	9,00E-51	-	в
40	Methylobacterium sp. (strain 4-46)	B0UNE5	2,00E-50	-	В
40	Roseobacter sp. AzwK-3b	A6FTB1	3,00E-50	-	В
	Roseovarius sp. 217	A3W1Q2	3,00E-50	-	В
	Octadecabacter antarcticus 307	B5J045	7,00E-49	-	Α
45	Mycobacterium smegmatis (strain				_
	ATCC 700084 / mc(2)155)	A0QQV9	4,00E-48		В
	Xanthobacter autotrophicus (strain ATCC				
	BAA-1158 / Py2)		4,00E-48	-	В
50	Arthrobactor sp. (strain EB24)		5,00E-47	-	
	Annobacter sp. (strain FB24)	AUNTIU	1,00⊏-40	-	Б
	19424) (Ralstonia taiwanensis)	B3RD23	1 00E-46	-	в
55	Desulfococcus oleovorans (strain DSM	DOINDEO	1,002 10		-
	6200 / Hxd3)	A8ZXQ6	3,00E-46	-	В
	Bordetella avium (strain 197N)	Q2KZS1	2,00E-44	-	В
	Coxiella burnetii (strain RSA 331 /				0
60	Henzening II)		1,00E-43	-	
		AULDIS	1,00⊏-43	-	D
	Coxiella hurnetii	083425	2 00 -43	-	C
	Coxiella burnetii Coxiella burnetii (strain Chuk, 0154)	Q83AP5	2,00E-43	-	С
65	Coxiella burnetii Coxiella burnetii (strain CbuK_Q154) (Coxiella burnetii (strain Q154))	Q83AP5 B6J9D4	2,00E-43 2,00E-43	•	с с
65	Coxiella burnetii Coxiella burnetii (strain CbuK_Q154) (Coxiella burnetii (strain Q154)) Coxiella burnetii (strain Dugway 5J108-	Q83AP5 B6J9D4 A9KF08	2,00E-43 2,00E-43 2,00E-43	- -	с с с

	111)					
	Coxiella burnetii (strain CbuG_Q212)					
5	(Coxiella burnetii (strain Q212))	B6J325	4,00E-43	-		C
	Coxiella burnetii RSA 334	A9ZG83	5,00E-43	-		C
	Manganese-oxidizing bacterium (strain	041/1100				
	SI85-9A1) Candidatus Polagibactor ubiquo	QTTH52	6,00E-42	-		~
10	HTCC1002	Q1V2P9	1 00E-39	_	-	в
	Pelagibacter ubique	Q4FMC1	3 00E-39	-		в
	Magnetospirillum gryphiswaldense		1.00E-38	-		в
	Candidatus Pelagibacter sp. HTCC7211	B6BT86	3 00E-38	-		в
15	uncultured marine microorganism	202100	0,002 00			-
	HF4000_005K23	B3T0M6	4,00E-36	-		C
	Rhodospirillum rubrum (strain ATCC					
20	11170 / NCIB 8255)	Q2RPK9	1,00E-28	-		в
20	Pseudomonas stutzeri (strain A1501)	A4VLJ1	6,00E-28	-		в
	Paracoccus denitrificans (strain Pd 1222)	A1B7G7	5,00E-27	-		в
	Clostridium bolteae ATCC BAA-613	A8RH36	7,00E-27	-		в
25	Candidatus Methanosphaerula palustris		~ ~ ~ ~ ~			
20	E1-9c	B8GEI6	2,00E-26	-		C
	Methylobacillus flagellatus (strain KT /		7 005 00			
	ATCC 51484 / DSM 6875)	Q1H2H1	7,00E-08	-		B
30	Methylobacilius flagellatum		1,00E-07	-		<u> </u>
		P3/144	1,00E-07	-		
		QINZCO	4,00E-07	-		P
	Burkholderia phymatum (strain DSM	D21020	2 005 06			
35	Rurkholdoria vonovorans (strain L R400)	013700	3,000-00	_		
	Nitressessing multifermine (strain ATCC	Q15ZA0	3,00⊏-00	-		۲ I
	Nitrosospira multiormis (strain ATCC 25196 / NCIMB 11849)		3 005-06	_		в
	Desulfuromonas acetoxidans DSM 684		7.00E-00	-		B
40	Burkholderia sp. H160	B5WNE8	9.00E-06	-		в
	Azoarcus sp. (strain BH72)	A1K793	3.00E-05	-		в
	Burkholderia graminis C4D1M	B1FYR6	3.00E-05	-		в
45	Burkholderia phytofirmans (strain DSM		0,002.00			_
15	17436 / PsJN)	B2T3P9	3.00E-05	-		в
	Burkholderia sp. 383 (B. cepacia ATCC		_,			
	17760 / NCIB 9086 / R18194))	Q39FL7	3,00E-05	-		в
50	Burkholderia vietnamiensis G4 / LMG					
	22486 (B. cepacia R1808)	A4JET2	3,00E-05	-		в
	Ralstonia eutropha ATCC 17699 / H16 /					
	DSM 428 / Stanier 337 (Cupriavidus					
55	necator)	QUK9F8	3,00E-05	-		в
	Ralstonia eutropha (strain JMP134)	040700				
	(Alcaligenes eutrophus)	Q46256	3,00E-05	-		
	Register on DC	A25G14	4,00E-05	-		
60	Deyylaloa Sp. 75 Burkholdorio oonoonooio (otroin MOC 2)			-		
	Burkholderia multivorans (strain MCU-3)	DIJID4	0,00⊏-00	-		P
	17616 / 249)	A9AG59	8,00E-05	-		в
65	Dechloromonas aromatica (strain RCB)	Q47DF9	8,00E-05	-		в
-	- , , , , ,					

	-					
	Ralstonia solanacearum (Pseudomonas solanacearum)	08X7R8	8.00E-05	_		в
5	Azoarcus sp. (strain FbN1)		0,002 00			-
5	(Aromatoleum aromaticum (strain EbN1))	Q5P172	1,00E-04	-		в
	Burkholderia dolosa AUO158	A2W9R2	1,00E-04	-		В
	Cupriavidus taiwanensis R1 / LMG 19424					
10	(Ralstonia taiwanensis)	B3R2N4	1,00E-04	-		В
	Janthinobacterium sp. (strain Marseille)					
	(Minibacterium massiliensis)	A6SXK5	1,00E-04	-		В
	Thiobacillus denitrificans (strain ATCC	OBCIVIE				в
15	Acidovorax avenae subsp. citrulli (strain	QSSKID	1,00⊏-04	-		D
	AAC00-1)	A1TLJ1	2,00E-04	-		в
	Burkholderia ambifaria (strain MC40-6)	B1YRH5	2,00E-04	-		в
20	Burkholderia ambifaria MEX-5	B1T3P4	2,00E-04	-		в
20	Marinobacter sp. ELB17	A3J9B4	2,00E-04	-		В
	Oceanobacter sp. RED65	Q1N0D7	2,00E-04	-		В
	Ralstonia metallidurans (strain CH34 /					
25	ATCC 43123 / DSM 2839)	Q1LLY1	2,00E-04	-		В
	Burkholderia cenocepacia (strain AU					в
	1004) Burkholdoria concesso (strain H12424)		3,00E-04	-		D
	Burkholderia conoconacia PC184	AUK7A0	3,000-04	-		B
30	Burkholderia cenacia 12315 / I MG	A2 V X 30	3,000-04	_		<u> </u>
	16656 (B. cenocepacia J2315)	B4EB12	3 00E-04	-	-	в
	Methylococcus capsulatus	Q60B83	4.00E-04	-		B
35	Acidovorax sp. (strain JS42)	A1WAQ4	5.00E-04	-		В
	Burkholderia ambifaria ATCC BAA-244 /		_,			
	AMMD (B. cepacia AMMD)	Q0BES5	5,00E-04	-		в
	Burkholderia ambifaria IOP40-10	B1FNI3	5,00E-04	-		в
40	Paenibacillus sp. JDR-2	B1DDQ0	5,00E-04	-		в
	Pseudomonas fluorescens (strain Pf0-1)	Q3KHI6	5,00E-04	-		В
	Ralstonia pickettii (strain 12J)	B2UAT0	6,00E-04	-		В
	Ralstonia pickettii 12D	A7CD46	6,00E-04	-		в
45	Bordetella petrii (strain ATCC BAA-461 /					
	DSM 12804 / CCUG 43448)	A9IQR6	8,00E-04	-		в
	Leptothrix cholodnii ATCC 51168 / LMG					_
50	8142 / SP-6 (L. discophora SP-6)	B1Y1J3	8,00E-04	-		В
50	Marinomonas sp. (strain MWYL1)	A6W1T7	8,00E-04	-		в
	NCCP11945)	B4RI T7	8 00F-04	-		в
	Polynucleobacter necessarius (strain	BIILE	0,002 01			
55	STIR1)	B1XTP0	8,00E-04	-		В
	Pseudomonas fluorescens (strain Pf-5 /					
	ATCC BAA-477)	Q4KHP9	8,00E-04	-		в
	Ralstonia solanacearum (Pseudomonas					
60	solanacearum)	B5S1J7	8,00E-04	-		в
	Ralstonia solanacearum IPO1609	B5SLM8	8,00E-04	-		B
	Variovorax paradoxus S110	B/YY57	8,00E-04	-		В
65	Variovorax paradoxus S110	B/YHV6	8,00E-04	-		В
0.0	Iviarinobacter algicola DG893	A6F295	0,001	-		В
	I Nitrosomonas eutropha (strain C91)	QUAHQ4	0,001	-		В

	Nodularia spumigena CCY 9414 Polaromonas paphthalopiyorops (stroip	A0ZEU3	0,001	-	В
5	CJ2) Polaromonas sp. (strain JS666 / ATCC	A1VPG1	0,001	-	В
	BAA-500)	Q12BH5	0,001	-	В
	Pseudomonas aeruginosa Pseudomonas aeruginosa (strain	P29365	0,001	-	В
10	UCBPP-PA14)	Q02RK9	0,001	-	В
	Pseudomonas aeruginosa 2192	A3LEI7	0,001	-	В
	Pseudomonas aeruginosa C3719	A3KY07	0,001	-	В
	Pseudomonas aeruginosa LESB58	B7UZM6	0,001	-	В
15	Synechococcus sp. PCC 7335	B4WH29	0,001	-	В

REIVINDICACIONES

1. Enzima con actividad 1-desoxi-D-xilulosa 5-fosfato reductoisomerasa que cataliza la reacción de producción 5 de 2-<u>C</u>-metil-D-eritritol 4-fosfato (MEP) a partir de 1-desoxi-D-xilulosa 5-fosfato (DXP), que tiene la secuencia de aminoácidos SEQ ID NO: 41.

2. Enzima según la reivindicación 1, que es de Brucella abortus.

10 3. Enzima según la reivindicación 2, que es de *Brucella abortus* 2308.

4. Vector de expresión que permite la expresión en bacterias de la enzima definida en cualquiera de las reivindicaciones 1-3 activa, que comprende la secuencia de nucleótidos SEQ ID NO: 51.

5. Uso de una enzima según se define en cualquiera de las reivindicaciones 1-3, para la síntesis de isoprenoides.

6. Uso según la reivindicación 5, para la síntesis de MEP.

7. Método de obtención de MEP que comprende:

20

(a) expresar la enzima activa definida en cualquiera de las reivindicaciones 1-3 en un sistema celular; y

(b) cultivar el sistema celular del paso (a) bajo condiciones y en un medio que permiten la producción y acumulación de MEP.

25

8. Método de obtención de MEP que comprende:

(a) proporcionar un sistema celular que permita la expresión de la enzima definida en cualquiera de las reivindica-30 ciones 1-3;

(b) cultivar el sistema celular del paso (a) bajo condiciones que permiten la producción de la enzima; y

(c) cultivar el sistema celular bajo condiciones y en un medio que permiten la producción y acumulación de MEP
 o bien purificar el enzima y utilizarlo en un sistema *in vitro* bajo condiciones y en un medio que permiten la obtención de MEP, donde el medio comprende un sustrato seleccionado del grupo que consiste en DXP y una mezcla de piruvato y gliceraldehído 3-fosfato.

40

45

50

55

60

FIG. 1

FIG. 2

FIG. 3

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

LISTA DE SECUENCIAS

5	<110> Universidad de Cantabria Consejo Superior de Investigaciones Científicas Universidad de Barcelona Universidad de Almería	
	<120> Nueva enzima para la biosíntesis de isoprenoides	
10	<130> P1701ES00	
	<160> 51	
15	<170> PatentIn version 3.5	
	<210> 1	
20	<211> 30	
	<212> DNA	
	<213> Artificial	
25	<220>	
20	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 1	
30	catggtcgac agaaacggca ggttctctca	30
20	<210> 2	
	<210> 2	
25	<212> DNA	
33	<213> Artificial	
	-220-	
40	<220>	
40	<2257 ongonacionado para amprincación por r ex de Abry genomico bacemano	
	<400> 2	
	catgctgcag gtttttcagc gtcaatttca	30
45	<210> 3	
	<211> 27	
	<212> DNA	
50	<213> Artificial	
	<220>	
	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
55	<400> 3	
	ccgcatatga caacaaatgt ggcactg	27
60	<210> 4	
00	<211>29	
	<212> DNA	
	<213> Artificial Sequence	
65	<220>	
	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	

	<400> 4	
	atctcgagtt gccctaacat agcatcctg	29
5	<210> 5	
5	<211>20	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> oligonucleotido para amplificación por PCR de ADN genômico bacteriano	
15	<400> 5	
	cacgagatcg aaaggggata	20
	<210> 6	
20	<211>20	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	(220) ongonacionalo para ampinicación por rent de ribri genomico calennano	
30	<400> 6	
30	tctggttctc gaacctcacc	20
	<210>7	
	<211>20	
35	<212> DNA	
	<213> Artificial Sequence	
	<220>	
40	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 7	~ ~
45	tcgactgccg ttttaagtcc	20
	<210> 8	
	<211>20	
50	<212> DNA	
	<213> Artificial Sequence	
	<220>	
55	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 8	
		20
60	gigeriett lagergriet	20
	<210>9	
	<211>20	
65	<212> DNA	
	<213> Artificial Sequence	

<220>

<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano

5 <400>9

tcgtccattt ccacgatttt

- 10 <210> 10
 - <211> 20
- <212> DNA

<213> Artificial Sequence

15

<220>

- <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano
- 20 <400> 10

```
gaagcggcgg ataagataca
```

<210> 11

- ²⁵ <211> 20 <212> DNA <213> Artificial Sequence
- 30 <220>

<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano

<400> 11

ttatccagcc caacgaaaag

- <210>12
- ⁴⁰ <211> 20
 - <212> DNA

<213> Artificial Sequence

⁴⁵ <220>

<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano

```
<400> 12
```

gtcgatcgag ttgggaaagt

```
<210> 13
```

⁵⁵ <211> 20 <212> DNA <213> Artificial Sequence

60 <220>

<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano

₆₅ <400> 13

ccaccgcgat aatcctattt

20

20

20

	<210> 14 <211> 20 <212> DNA	
5	<213> Artificial Sequence	
10	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 14	
	gagggatcaa atggcaaaga	20
15	<210>15	
	<211> 20 <212> DNA	
	<212> DNA <213> Artificial Sequence	
20		
	<220>	
	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
25	<400> 15	
	agcagaggtg cttttcagga	20
	<210> 16	
30	<211>20	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 16	
40		20
	actigoggat caggaacato	20
	<210> 17	
45	<211> 20 <212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> oligonucleotido para amplificación por PCR de ADN genomico bacteriano	
	<400> 17	
55	gacaaggcca gaatgaaagc	20
	<210> 18	
	<211> 20	
60	<212> DNA	
	<213> Artificial Sequence	
	<220>	
65	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	

	<400> 18	
	ccaattgatc ggggtatctg	20
-	<210> 19	
5	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
10	-220	
	<220>	
	<2257 ongonacionado para amprincación por l'ex de ADIX genonneo bacemano	
15	<400> 19	
	ctttcaatgg cgaaacgaat	20
	<210> 20	
20	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
25	220	
	<220>	
	<225> ongonucleondo para amprincación por PCK de ADN genomico bacteriano	
30	<400> 20	
50	tcatctctta tgcccgctct	20
	<210> 21	
25	<211> 20	
35	<212> DNA	
	<213> Artificial Sequence	
	-220	
40	<220>	
	<2237 ongonacicondo para amplineación por l'ex de ADIV genomico bacemano	
	<400> 21	
45	caaactcgcg acacaagatg	20
	<210> 22	
	<211> 20	
50	<212> DNA	
	<213> Artificial Sequence	
	<220>	
55	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 22	
60	tcatgcccat cttgcattta	20
	<210> 23	
	<211>20	
65	<212> DNA	
	<213> Artificial Sequence	

	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
5	<400> 23	
	tgccggattg atagatgtga	20
10	<210> 24 <211> 20 <212> DNA	
	<213> Artificial Sequence	
15	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
20	<400>24 cctccttaga gggtgggaag	20
	<210> 25	
25	<212> DNA <213> Artificial Sequence	
30	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 25	
	aagcaaaaat tttcggtcca	20
35	<210> 26 <211> 20	
	<212> DNA	
40	<213> Artificial Sequence	
	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
45	<400> 26	
	taccagggca tggtggtatt	20
50	<210> 27 <211> 20 <212> DNA	
55	<213> Artificial Sequence	
22	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
60	<400>27 ttcatcggcg tattcttgtg	20
65	<210> 28 <211> 22 <212> DNA <213> Artificial Sequence	

	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
5	<400> 28	
	aaaatcagcc gaaatttcaa ag	22
10	<210> 29 <211> 20 <212> DNA	
	<213> Artificial Sequence	
15	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
20	<400>29 cacccctaca gccaattcat	20
25	<210> 30 <211> 20 <212> DNA <213> Artificial Sequence	
30	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
35	<400> 30 taatgtctcg tcaggcatgg	20
40	<210> 31 <211> 20 <212> DNA <213> Artificial Sequence	
45	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
50	<400> 31 aactatcccc atcggtagcc <210> 32 <211> 20 <212> DNA <213> Artificial Saguanca	20
22	<213> Artificial Sequence <220>	
60	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
-	<400> 32 actgacgcac cctaccaaac <210> 33	20
65	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	

	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
E	<400> 33	
3	gggaacgcat teteetcag	19
	<210>34	
10	<210> 54 <211> 20	
	<212> DNA	
	<213> Artificial Sequence	
15	<220>	
	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 34	
20	ccattggaca tgtcagcttc	20
	<210> 35	
25	<211> 20	
23	<212> DNA	
	<213> Artificial Sequence	
30	<220>	
50	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 35	
35	atgacggtat gcacccaaat	20
	<210> 36	
	<211> 20	
40	<212> DNA	
	<213> Artificial Sequence	
	<220>	
45	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano	
	<400> 36	
-	ggatggactg gccaatgtta	20
50	<210> 37	
	<211> 20	
	<212> DNA	
55	<213> Artificial Sequence	
	<400> 37	
60	atagateget gecaateeac	20
50	<210> 38	
	<211> 20	
	<212> DNA	
65	<213> Artificial Sequence	

	<220> <223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano													
5	<400> 38													
	gttcgacggt ctgaccaact													
10	⁰ <210> 39 <211> 19													
	<211> 19													
	<212> DNA													
15	<213> Artificial Sequence													
	<220>													
	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano													
20														
	<400> 39													
	assoctase ascetasee	19												
25	gaaceegae gaeergaee	ТЭ												
25	~210>_40													
	<210> 40													
	<211> 20													
30	<213> Artificial Sequence													
	<220>													
35	<223> oligonucleótido para amplificación por PCR de ADN genómico bacteriano													
00														
	<400> 40													
40	ggatgtcgga gaacgtatgg	20												
	<210>41													
	<211> 438													
45	<212> PRT													
	<213> Brucella abortus													
50	<400> 41													
50														
	Met Thr Thr Asn Val Ala Leu Val Gly Leu Ala Arg Asp Leu Ala Ala													
	1 5 10 15													
55														
	Arg Ala Glu Thr Gly Lys Pro Ile Arg Ile Gly Leu Ile Gly Ala Gly													
	20 25 30													
60														

	Glu	Met	Gly 35	Thr	Asp	Ile	Val	Thr 40	Gln	Val	Ala	Arg	Met 45	Gln	Gly	Ile
5	Glu	Val 50	Gly	Ala	Leu	Ser	Ala 55	Arg	Arg	Leu	Pro	Asn 60	Thr	Phe	Lys	Ala
10	Ile 65	Arg	Thr	Ala	Tyr	Gly 70	Asp	Glu	Glu	Asn	Ala 75	Arg	Glu	Ala	Thr	Thr 80
15	Glu	Ser	Ala	Met	Thr 85	Arg	Ala	Ile	Glu	Ala 90	Gly	Lys	Ile	Ala	Val 95	Thr
20	Asp	Asp	Asn	Asp 100	Leu	Ile	Leu	Ser	Asn 105	Pro	Leu	Ile	Asp	Val 110	Ile	Ile
25	Asp	Ala	Thr 115	Gly	Ile	Pro	Glu	Val 120	Gly	Ala	Glu	Thr	Gly 125	Ile	Ala	Ala
30	Ile	Arg 130	Asn	Gly	Lys	His	Leu 135	Val	Met	Met	Asn	Val 140	Glu	Ala	Asp	Val
35	Thr 145	Ile	Gly	Pro	Tyr	Leu 150	Lys	Ala	Gln	Ala	Asp 155	Lys	Gln	Gly	Val	Ile 160
40	Tyr	Ser	Leu	Gly	Ala 165	Gly	Asp	Glu	Pro	Ser 170	Ser	Cys	Met	Glu	Leu 175	Ile
45	Glu	Phe	Val	Ser 180	Ala	Leu	Gly	Tyr	Glu 185	Val	Val	Ser	Ala	Gly 190	Lys	Gly
45	Lys	Asn	Asn 195	Pro	Leu	Asn	Phe	Asp 200	Ala	Thr	Pro	Asp	Asp 205	Tyr	Arg	Gln
50	Glu	Ala 210	Asp	Arg	Arg	Asn	Met 215	Asn	Val	Arg	Leu	Leu 220	Val	Glu	Phe	Ile
55	Asp 225	Gly	Ser	Lys	Thr	Met 230	Val	Glu	Met	Ala	Ala 235	Ile	Ala	Asn	Ala	Thr 240
60	Gly	Leu	Val	Pro	Asp 245	Ile	Ala	Gly	Met	His 250	Gly	Pro	Arg	Ala	Ser 255	Ile
65	Asp	Gln	Leu	Ser 260	His	Thr	Leu	Ile	Pro 265	Gln	Ala	Glu	Gly	Gly 270	Val	Leu

		Ser	Lys	Ser 275	Gly	Val	Val	Asp	Tyr 280	Ser	Ile	Gly	Lys	Gly 285	Val	Ser	Pro
5		Gly	Val 290	Phe	Val	Val	Ala	Lys 295	Met	Asp	His	Pro	Arg 300	Leu	Asn	Glu	Arg
10		Leu 305	Glu	Asp	Leu	Lys	Ile 310	Gly	Lys	Gly	Pro	Tyr 315	Phe	Thr	Phe	His	Arg 320
15		Pro	Tyr	His	Leu	Thr 325	Ser	Leu	Glu	Val	Pro 330	Leu	Thr	Val	Ala	Arg 335	Val
20		Val	Leu	His	Gly 340	Lys	Thr	Asp	Met	Val 345	Pro	Leu	Pro	Lys	Pro 350	Val	Ala
25		Glu	Val	Cys 355	Ala	Val	Ala	Lys	Lys 360	Asp	Met	Gln	Pro	Gly 365	Glu	His	Leu
30		Asp	Ala 370	Ile	Gly	Gln	Tyr	Cys 375	Tyr	Arg	Ser	Trp	Ile 380	Met	Thr	Val	Pro
35		Glu 385	Ala	Arg	Ala	Ala	Lys 390	Ala	Ile	Pro	Cys	Gly 395	Leu	Leu	Gln	Asn	Gly 400
40		Thr	Val	Ile	Ala	Pro 405	Ile	Lys	Lys	Gly	Glu 410	Leu	Ile	Thr	Tyr	Ala 415	Asn
		Ala	Ala	Pro	Gln 420	Pro	Gly	Ser	Arg	Ile 425	Ala	Glu	Leu	Arg	Ala 430	Leu	Gln
45		Asp	Ala	Met 435	Leu	Gly	Gln										
50	<210> 4 <211> 4 <212> 1 <213> 0	42 438 PRT <i>Ochro</i>	bactrı	ım anı	thropi												
55	<400>4	42															
60		M∈ 1	et Tł	ır Tł	nr As	sn Va 5	al Al	la L€	eu Va	al Gl	.y L∈ 1(eu Al)	.a Ar	ng As	sp Le	eu Al 15	la Ala 5
65		Ar	rg Al	la Gl	Lu Th 2(nr GI)	Ly Ly	ys Pi	:0 I]	.e Ar 25	g Il	.e Gl	.y L∈	eu I]	le G1 30	.y A:)	la Gly
		Gl	lu Me	et Gl	Ly Tł	nr As	sp II	le Va	al Tł	ır Gl	n Va	al Al	.a Ar	ng Me	et Gl	.n Gi	ly Ile

			35					40					45			
5	Glu	Val 50	Gly	Ala	Leu	Ser	Ala 55	Arg	Arg	Leu	Pro	Asn 60	Thr	Phe	Lys	Ala
10	Val 65	Arg	Thr	Ala	Tyr	Gly 70	Asp	Glu	Glu	Asn	Ala 75	Arg	Glu	Ala	Arg	Thr 80
15	Glu	Ser	Ala	Met	Thr 85	Ser	Ala	Ile	Glu	Ser 90	Gly	Lys	Ile	Ala	Val 95	Thr
20	Asp	Asp	Asn	Asp 100	Leu	Ile	Leu	Ser	Asn 105	Pro	Leu	Leu	Asp	Val 110	Ile	Ile
20	Asp	Ala	Thr 115	Gly	Ile	Pro	Glu	Val 120	Gly	Ala	Gln	Thr	Gly 125	Ile	Lys	Ala
25	Ile	Arg 130	Asn	Gly	Lys	His	Leu 135	Val	Met	Met	Asn	Val 140	Glu	Ala	Asp	Val
30	Thr 145	Ile	Gly	Pro	Tyr	Leu 150	Lys	Ala	Glu	Ala	Asp 155	Lys	His	Gly	Val	Ile 160
35	Tyr	Ser	Leu	Gly	Ala 165	Gly	Asp	Glu	Pro	Ser 170	Ser	Cys	Met	Glu	Leu 175	Ile
40	Glu	Phe	Val	Ser 180	Ala	Met	Gly	His	Lys 185	Val	Val	Ala	Ala	Gly 190	Lys	Gly
45	Lys	Asn	Asn 195	Pro	Leu	Asn	Phe	Asp 200	Ala	Ile	Pro	Asp	Asp 205	Tyr	Gln	Glu
50	Glu	Ala 210	Asp	Arg	Arg	Asn	Met 215	Asn	Val	Arg	Leu	Leu 220	Val	Glu	Phe	Val
55	Asp 225	Gly	Ser	Lys	Thr	Met 230	Val	Glu	Met	Ala	Ala 235	Ile	Ala	Asn	Ala	Thr 240
33	Gly	Leu	Val	Pro	Asp 245	Ile	Ala	Gly	Met	His 250	Gly	Pro	Lys	Ala	Ala 255	Ile
60	Asp	Glu	Leu	Asn 260	Arg	Thr	Leu	Ile	Pro 265	Lys	Glu	Asp	Gly	Gly 270	Val	Leu
65	Asn	Lys	Thr 275	Gly	Val	Val	Asp	Tyr 280	Ser	Ile	Gly	Arg	Gly 285	Val	Ser	Pro

5	G	ly :	Val 290	Phe	Val	Ile	Ala	Lys 295	Met	Glu	His	Pro	Arg 300	Leu	Val	Glu	Arg
	Le 3(eu ()5	Glu	Asp	Leu	Lys	Met 310	Gly	Lys	Gly	Pro	Tyr 315	Phe	Thr	Phe	His	Arg 320
10	Pı	ro	Phe	His	Leu	Thr 325	Ser	Leu	Glu	Val	Pro 330	Leu	Thr	Val	Ala	Arg 335	Val
15	Vá	al :	Leu	His	Gly 340	Lys	Thr	Asp	Met	Val 345	Pro	Leu	Pro	Lys	Pro 350	Val	Ala
20	G	lu '	Val	Cys 355	Ala	Val	Ala	Lys	Lys 360	Asp	Leu	Gln	Pro	Gly 365	Asp	His	Leu
25	As	sp i	Ala 370	Ile	Gly	Gln	Tyr	Cys 375	Tyr	Arg	Ser	Trp	Ile 380	Met	Thr	Thr	Pro
30	G2 38	lu 2 85	Ala	His	Ala	Ala	Lys 390	Ala	Ile	Pro	Cys	Gly 395	Leu	Leu	Gln	Asn	Gly 400
35	Tł	nr '	Val	Ile	Ala	Pro 405	Ile	Arg	Lys	Gly	Glu 410	Leu	Ile	Thr	Tyr	Ala 415	Asn
40	A	la i	Ala	Pro	Gln 420	Pro	Gly	Ser	Lys	Ile 425	Ala	Glu	Leu	Arg	Ala 430	Leu	Gln
45	As	sp i	Lys	Met 435	Ile	Tyr	Gly										
50	<210> 43 <211> 439 <212> PR' <213> Oct) T hrob	actru	m ant	hropi												
	<400> 43																
55		Met 1	: Ala	a Th	r As	n Va 5	l Al	a Le	u Th	r Gl	y Le 10	u Al	a Ar	g As	p Me	t Gl 15	n Ala
60		Arc	ſ Ala	a As	p Se 20	r Gl	y Ar	g Pr	o Il	e Ar 25	g Il	e Gl	y Le	u Il	e Gl 30	y Se	er Gly
65		Glu	ı Met	t Gl 35	y Th	r As	p Il	e Va	.l Th 40	r Ar	g Va	l Al	a Hi	s Me 45	t Pr	o Gl	y Ile

	Glu	Val 50	Gly	Ala	Ile	Ser	Glu 55	Leu	Arg	Val	Pro	Asn 60	Ala	Leu	Lys	Ala
5	Val 65	Asp	Ile	Ala	Phe	Gln 70	Glu	Glu	Gly	His	Gly 75	Arg	Glu	Val	Ser	Thr 80
10	Ala	Ser	Asp	Leu	Thr 85	Ala	Ala	Met	Glu	Ala 90	His	Lys	Val	Ala	Val 95	Thr
15	Asp	Asn	Ala	Asn 100	Leu	Ile	Leu	Glu	Asn 105	Asp	Leu	Ile	Asp	Val 110	Val	Ile
20	Asp	Ala	Thr 115	Gly	Val	Pro	Ala	Val 120	Gly	Ala	Glu	Ile	Gly 125	Leu	Arg	Ala
25	Met	Glu 130	Tyr	Gly	Lys	His	Leu 135	Val	Met	Met	Asn	Val 140	Glu	Ala	Asp	Val
30	Thr 145	Ile	Gly	Ala	Tyr	Leu 150	Lys	Ala	Glu	Ala	Glu 155	Arg	Leu	Gly	Val	Thr 160
25	Tyr	Ser	Leu	Gly	Ala 165	Gly	Asp	Glu	Pro	Ser 170	Ser	Cys	Met	Glu	Leu 175	Ile
35	Glu	Phe	Val	Ser 180	Ala	Met	Gly	His	Pro 185	Ile	Val	Ala	Ala	Gly 190	Lys	Gly
40	Lys	Asn	Asn 195	Pro	Leu	Asn	Ile	Asp 200	Ala	Val	Pro	Asp	Gln 205	Tyr	Leu	Glu
45	Glu	Ala 210	Thr	Arg	Arg	Asn	Met 215	Asn	Val	Arg	Met	Leu 220	Val	Glu	Phe	Val
50	Asp 225	Gly	Ser	Lys	Thr	Met 230	Val	Glu	Met	Ala	Ala 235	Ile	Ala	Asn	Ala	Thr 240
55	Gly	Leu	Val	Pro	Asp 245	Lys	Ala	Gly	Met	His 250	Gly	Pro	Ala	Ala	Thr 255	Leu
60	Asp	Gln	Leu	Asn 260	Lys	Thr	Leu	Ile	Pro 265	Glu	Lys	Asp	Gly	Gly 270	Val	Leu
65	Ser	Lys	Val 275	Gly	Val	Val	Asp	Tyr 280	Ser	Ile	Gly	Lys	Gly 285	Val	Ala	Pro
	Gly	Val	Phe	Val	Val	Ala	Asp	Met	Ser	His	Pro	Arg	Ile	Ser	Glu	Arg

			290					295					300				
5	J	Met 305	Glu	Asp	Leu	Lys	Met 310	Gly	Lys	Gly	′ Pro	Tyr 315	Phe	Thr	Phe	His	Arg 320
10	:	Pro	Tyr	His	Leu	1 Thr 325	Ser	Leu	Glu	ı Val	. Pro 330	Leu	Thr	Cys	Ala	Arg 335	Val
15	,	Val	Leu	Tyr	Gly 340	y Lys	Pro	Asp	Met	Val 345	Pro	Leu	Ser	Lys	Pro 350	Val	Ala
20	(Glu	Val	Ala 355	Ala	Val	Ala	. Lys	Lys 360	Asp) Met	Gln	Pro	Gly 365	Glu	Lys	Leu
20	:	Asp	Ala 370	Ile	Gly	' Glu	Tyr	Cys 375	Tyr	Arg	r Ala	Trp	Ile 380	Met	Thr	Ser	Gly
25		Glu 385	Ala	Arg	- Asp) Ala	His 390	Ala	Ile	e Prc	o Cys	Gly 395	Leu	Leu	Gln	Gly	Gly 400
30		Ser	Val	Thr	Lys	Pro 405	Ile	Lys	Lys	Gly	, Glu 410	Leu	Ile	Thr	Tyr	Asp 415	Asn
35		Ala	Ala	Val	Ala 420	Pro	Gly	Ser	Lys	11e 425	e Ala	Glu	Leu	Arg	Ala 430	Arg	Gln
40	<210> 44	Asp	Lys	Leu 435	. Val	. Tyr	Gly	′Ala									
45	<210> 44 <211> 442 <212> PRT <213> Mes	Г sorhi	zobiu	m loti													
	<400> 44																
50	Me 1	et A	Ala	Ser	Asn	Ile 5	Ser	Leu	Thr	Gly	Leu 10	Ala	Arg	Asp	Leu	Asp 15	Glu
55	A	rg (Gly	Lys	Ser 20	Gly	Lys	Pro	Ile	Arg 25	Ile	Gly	Leu	Ile	Gly 30	Ser	Gly
60	G	lu N	1et	Gly 35	Thr	Asp	Ile	Val	Thr 40	Arg	Val	Ala	His	Met 45	Ser	Gly	Ile
65	G	lu]	Ile 50	Gly	Ala	Ile	Ser	Glu 55	Leu	Asn	Leu	Pro	Ala 60	Ala	Ser	Arg	Ala

	Val 65	Asp	Ile	Ala	Phe	Gln 70	Glu	Thr	Gly	His	Ala 75	Arg	Glu	Val	Ser	Asn 80
5	Ala	Ser	Ala	Met	Thr 85	Ala	Ala	Met	Glu	Ala 90	Gly	Lys	Val	Ala	Val 95	Thr
10	Asn	Asp	Ala	Ser 100	Leu	Val	Ile	Asn	Asn 105	Asp	Leu	Ile	Asp	Val 110	Val	Ile
15	Asp	Ala	Thr 115	Gly	Val	Pro	Ala	Val 120	Gly	Ala	Glu	Ile	Gly 125	Leu	Arg	Ala
20	Met	Glu 130	His	Gly	Lys	His	Leu 135	Val	Met	Met	Asn	Val 140	Glu	Ala	Asp	Val
25	Thr 145	Ile	Gly	Ala	Tyr	Leu 150	Lys	Ser	Glu	Ala	Asp 155	Arg	Leu	Gly	Val	Thr 160
30	Tyr	Ser	Leu	Gly	Ala 165	Gly	Asp	Glu	Pro	Ser 170	Ser	Cys	Met	Glu	Leu 175	Ile
35	Glu	Phe	Val	Ser 180	Ala	Met	Gly	His	Pro 185	Ile	Val	Ala	Ala	Gly 190	Lys	Gly
40	Lys	Asn	Asn 195	Pro	Leu	Asn	Ile	Asp 200	Ala	Thr	Pro	Pro	Ala 205	His	Glu	Glu
	Glu	Ala 210	Glu	Arg	Arg	His	Met 215	Asn	Val	Arg	Met	Leu 220	Val	Glu	Phe	Val
45	Asp 225	Gly	Ser	Lys	Thr	Met 230	Val	Glu	Met	Ala	Ala 235	Ile	Ala	Asn	Ala	Thr 240
50	Gly	Leu	Val	Pro	Asp 245	Lys	Ala	Gly	Met	His 250	Gly	Pro	Ala	Ala	Thr 255	Leu
55	Gly	Glu	Leu	Ser 260	Lys	Val	Leu	Val	Pro 265	Glu	Lys	Asp	Gly	Gly 270	Val	Leu
60	Ser	Arg	Val 275	Gly	Val	Val	Asp	Tyr 280	Ser	Ile	Gly	Lys	Gly 285	Val	Ala	Pro
65	Gly	Val 290	Phe	Val	Val	Ala	Asp 295	Met	Ser	His	Pro	Arg 300	Ile	Ser	Glu	Arg

	Met 305	Glu	l Asp	Leu	Lys	Met 310	Gly	' Lys	s Gly	' Pro	9 Tyr 315	Phe	e Thr	Phe	e His	8 Arg 320
5	Pro	o Tyr	His	Leu	Thr 325	Ser	Leu	ı Glu	ı Val	. Pro 330) Leu	. Thr	суз	3 Ala	Arc 335	y Val
10	Val	Leu	ı Tyr	Gly 340	Lys	Ala	Asp) Met	: Val 345	Pro) Leu	Ala	. Lys	9 Prc 350	val	. Ala
15	Glu	ı Val	. Ala 355	Ala	Val	Ala	Lys	5 Lys 360	s Asp)) Met	: Gln	Prc	Gly 365	y Glu	ı Lys	s Leu
20	Asp) Ala 370	lle	Gly	Glu	Tyr	Cys 375	Tyr	Arg	Ala	ı Trp) Ile 380	Met	: Thr	Ala	a Pro
	Glu 385	l Ala	His	Ala	Ala	Lys 390	Ala	. Ile	e Pro	о Суз	5 Gly 395	r Leu	Leu	ı Gln	Gl	7 Gly 400
25	Ser	Val	. Thr	Ala	Pro 405	Ile	Lys	Lys	s Gly	, Glu 410	ı Leu)	Ile	e Thr	Tyr	Ala 415	a Asn
30	Ala	Val	. Pro	Ala 420	Pro	Gly	Ser	: Lys	; Ile 425	e Ala	ı Glu	Leu	Arg	r Ala 430	Arc	g Gln
35	Asp) Lys	Leu 435	Val	Tyr	Gly	Thr	Val 440	. Gly	/ Ala	L					
40	<210> 45 <211> 433 <212> PRT <213> Mesorh	izobiu	m loti													
45	<400> 45															
	Met 1	Thr	Gly	Leu	Ala 5	Arg	Asp	Leu	Ala	Ser 10	Arg	Ala	Ala	Glu	Gly 15	Arg
50	Pro	Val	Arg	Ile 20	Gly	Val	Ile	Gly	Ser 25	Gly	Glu	Met	Gly	Thr 30	Asp	Leu
55	Val	Thr	Gln 35	Gly	Met	Leu	Met	Pro 40	Gly	Ile	Ser	Val	Cys 45	Ala	Val	Ser
60	Thr	Arg 50	Arg	Pro	His	Thr	Ala 55	Arg	Asp	Ala	Ile	Arg 60	Ile	Ala	Tyr	Gly
65	Asp 65	Glu	Ala	Met	Ala	Val 70	Glu	Ala	Asp	Ala	Ala 75	Ser	Lys	Val	Thr	Ala 80

	Ala	Ile	Glu	Ala	Gly 85	Lys	Ile	Ala	Val	Thr 90	Ser	Asn	Glu	Met	Leu 95	Val
5	Thr	Asn	Pro	Leu 100	Ile	Asp	Val	Val	Ile 105	Asp	Ala	Thr	Gly	Lys 110	Pro	Gly
10	Val	Ala	Ala 115	Asp	Phe	Asp	Leu	Met 120	Ala	Met	Glu	His	Gly 125	Lys	His	Leu
15	Val	Met 130	Met	Asn	Val	Glu	Ala 135	Asp	Val	Thr	Ile	Gly 140	Cys	Tyr	Leu	Lys
20	Gln 145	Gln	Ala	Asp	Arg	Leu 150	Gly	Val	Val	Tyr	Ser 155	Val	Gly	Ala	Gly	Asp 160
25	Glu	Pro	Ser	Ser	Cys 165	Met	Glu	Leu	Ile	Glu 170	Phe	Ala	Ser	Ala	Leu 175	Gly
30	Leu	Thr	Ile	Val 180	Ser	Ala	Gly	Lys	Gly 185	Lys	Asn	Asn	Pro	Leu 190	Asn	His
35	Asp	Ala	Met 195	Pro	Asp	Asp	Tyr	Arg 200	Glu	Glu	Ala	Ile	Arg 205	Arg	Asn	Met
40	Asn	Pro 210	Arg	Met	Leu	Val	Glu 215	Phe	Val	Asp	Gly	Ser 220	Lys	Thr	Met	Val
45	Glu 225	Met	Cys	Ala	Ile	Ala 230	Asn	Ala	Thr	Gly	Leu 235	Val	Pro	Asp	Val	Pro 240
43	Gly	Met	His	Gly	Pro 245	Lys	Ala	Asp	Arg	Asp 250	Asp	Leu	Val	Lys	Val 255	Leu
50	Ile	Pro	Arg	Glu 260	Asp	Gly	Gly	Leu	Leu 265	Leu	Lys	Lys	Gly	Val 270	Val	Asp
55	Tyr	Thr	Ile 275	Gly	Lys	Gly	Val	Ala 280	Pro	Gly	Val	Phe	Val 285	Ile	Val	Glu
60	Ala	Thr 290	His	Pro	Arg	Ile	Ile 295	Glu	Arg	Met	Asp	Asp 300	Leu	His	Ile	Gly
65	His 305	Gly	Pro	Tyr	Tyr	Ser 310	Leu	Phe	Arg	Pro	Tyr 315	His	Leu	Thr	Ser	Leu 320

	G	lu	Val	Pro	Leu	Thr 325	Ala	Ala	Arg	Ile	Val 330	Leu	Phe	Gly	Lys	Pro 335	Asp
5	Ме	et	Val	Pro	Leu 340	Pro	Arg	Pro	Val	Ala 345	Glu	Val	Cys	Ala	Val 350	Ala	Lys
10	A	rg	Asp	Leu 355	Ala	Ala	Gly	Glu	Thr 360	Phe	Asp	Ala	Ile	Gly 365	Glu	Thr	Cys
15	ΤŢ	yr	Arg 370	Ser	Trp	Thr	Met	Thr 375	Val	Gly	Glu	Ala	Arg 380	Ala	Gln	His	Ala
20	Va 38	al 85	Pro	Val	Gly	Leu	Leu 390	Glu	Gly	Gly	Lys	Val 395	Leu	Lys	Pro	Val	Arg 400
25	Γ	ys	Gly	Glu	Leu	Leu 405	Thr	Ala	Asp	Asn	Ala 410	Ala	Pro	Asp	Gln	Thr 415	Thr
30	A	rg	Leu	Phe	Ala 420	Leu	Arg	Arg	Leu	Gln 425	Asp	Glu	Met	Leu	Tyr 430	Gly	Ala
	As	зn															
35	<210> 46 <211> 445 <212> PRT																
35 40	<210> 46 <211> 445 <212> PRT <213> Barton <400> 46	nelli	a hen	selae													
354045	<210> 46 <211> 445 <212> PRT <213> Barton <400> 46 1	nella t i	<i>a hen</i> Ala	<i>selae</i> Ser	Asn	Val 5	Ser	Leu	Thr	Gly	Leu 10	Ala	His	Asp	Leu	Lys 15	Gln
35404550	<210> 46 <211> 445 <212> PRT <213> Barton <400> 46 1 Ar	nella ti	<i>a hen</i> Ala Ala	<i>selae</i> Ser Glu	Asn 20	Val 5 His	Ser Pro	Leu Pro	Thr Ile	Gly Arg 25	Leu 10 Ile	Ala Gly	His Leu	Asp Ile	Leu Gly 30	Lys 15 Cys	Gln Gly
3540455055	<210> 46 <211> 445 <212> PRT <213> Barton <400> 46 1 Ar	nella ti gi u I	<i>a hen</i> Ala Ala Met	selae Ser Glu Gly 35	Asn 20 Thr	Val 5 His Asp	Ser Pro Leu	Leu Pro Leu	Thr Ile Ser 40	Gly Arg 25 Ser	Leu 10 Ile Ile	Ala Gly Ala	His Leu His	Asp Ile Met 45	Leu Gly 30 Asp	Lys 15 Cys Gly	Gln Gly Ile
 35 40 45 50 55 	<210> 46 <211> 445 <212> PRT <213> Barton <400> 46 1 Ar Gl Th	nella ti u I r Y	<i>a hen</i> Ala Ala Met Val 50	selae Ser Glu Gly 35 Ala	Asn 20 Thr Ala	Val 5 His Asp Val	Ser Pro Leu Ala	Leu Pro Leu Thr 55	Thr Ile Ser 40 Arg	Gly Arg 25 Ser Thr	Leu 10 Ile Ile Pro	Ala Gly Ala Ser	His Leu His Arg 60	Asp Ile Met 45 Ile	Leu Gly 30 Asp Phe	Lys 15 Cys Gly Asp	Gln Gly Ile Ala
 35 40 45 50 55 60 	<210> 46 <211> 445 <212> PRT <213> Barton <400> 46 1 Ar Gl Th A1 65	nella giz u I	<i>a hen</i> Ala Ala Met Val 50 Arg	selae Ser Glu Gly 35 Ala Leu	Asn 20 Thr Ala Ala	Val 5 His Asp Val Tyr	Ser Pro Leu Ala Gly 70	Leu Pro Leu Thr 55 Glu	Thr Ile Ser 40 Arg Glu	Gly Arg 25 Ser Thr Gly	Leu 10 Ile Pro His	Ala Gly Ala Ser Val 75	His Leu His Arg 60 Arg	Asp Ile Met 45 Ile Glu	Leu Gly 30 Asp Phe Val	Lys 15 Cys Gly Asp Glu	Gln Gly Ile Ala Asn 80

					85					90					95	
5	Asn	Asp	Ile	Asp 100	Leu	Val	Leu	Arg	His 105	Glu	Gln	Ile	Asp	Ile 110	Ile	Val
10	Asp	Ala	Thr 115	Gly	Tyr	Pro	Glu	Ala 120	Gly	Ala	Glu	Ile	Gly 125	Phe	Lys	Ala
15	Leu	Glu 130	Asn	Asn	Lys	Asn	Leu 135	Val	Met	Met	Asn	Val 140	Glu	Ala	Asp	Val
20	Thr 145	Ile	Gly	Ala	Tyr	Leu 150	Lys	His	Glu	Ala	Glu 155	Lys	Gln	Gly	Leu	Ile 160
	Tyr	Thr	Leu	Gly	Ala 165	Gly	Asp	Glu	Pro	Thr 170	Ser	Cys	Met	Glu	Leu 175	Ile
25	Glu	Phe	Val	Ser 180	Ala	Leu	Gly	His	Lys 185	Ile	Val	Ala	Ala	Gly 190	Lys	Gly
30	Lys	Asn	Asn 195	Pro	Leu	Ile	Phe	Asp 200	Ala	Thr	Pro	Asp	Thr 205	Tyr	Glu	Glu
35	Glu	Ala 210	Leu	Arg	Arg	Asn	Met 215	Asn	Val	Arg	Met	Leu 220	Val	Glu	Phe	Ile
40	Asp 225	Gly	Ser	Lys	Thr	Met 230	Val	Glu	Met	Ala	Ala 235	Ile	Ala	Asn	Ala	Thr 240
45	Gly	Leu	Leu	Pro	Asp 245	Cys	Pro	Gly	Met	His 250	Gly	Pro	Gln	Ala	Ala 255	Leu
50	Lys	Asp	Leu	Asn 260	Lys	Ile	Leu	Ile	Pro 265	Lys	Gln	Asp	Gly	Gly 270	Ile	Leu
55	Glu	Gln	Cys 275	Gly	Val	Val	Asp	Tyr 280	Ser	Ile	Gly	Pro	Gly 285	Val	Ser	Pro
60	Gly	Val 290	Phe	Val	Ile	Ala	Glu 295	Ile	Ala	His	Pro	Arg 300	Leu	Arg	Glu	Arg
	Met 305	Glu	Asp	Leu	Lys	Met 310	Gly	Gln	Gly	Pro	Tyr 315	Phe	Thr	Phe	His	Arg 320
65	Pro	Tyr	His	Leu	Thr 325	Ala	Met	Glu	Val	Pro 330	Leu	Thr	Cys	Ala	Arg 335	Ile

]	Met	Leu	Tyr	Gly 340	Lys	Lys	Asp	Met	Ala 345	Pro	Leu	Asn	His	Pro 350	Val	Val
5		Glu	Val	Cys 355	Ala	Val	Ala	Lys	Lys 360	Asp	Leu	Tyr	Pro	Gly 365	Asp	Gln	Leu
10		Asp	Phe 370	Ile	Gly	Leu	Tyr	Ser 375	Tyr	Arg	Ala	Trp	Ile 380	Met	Asn	Ile	Ala
15		Glu 385	Ala	Arg	Met	His	Gln 390	Ala	Ile	Pro	Cys	Gly 395	Leu	Leu	Glu	Asn	Ala 400
20		Thr	Val	Thr	Ala	Glu 405	Ile	Lys	Lys	Asn	Glu 410	Leu	Ile	Thr	Val	His 415	Asn
25		Thr	Ala	Ile	Arg 420	Glu	Asp	Gln	Trp	Ile 425	Ala	Arg	Leu	Arg	Thr 430	Lys	Gln
30		Asp	Leu	Leu 435	Leu	Asn	Ala	Ser	Ser 440	Leu	Pro	Ser	His	Ala 445			
	<210>47																
35	<211> 443 <212> PR <213> Ros	Г seoba	cter li	toralis	,												
35 40	<211> 443 <212> PR <213> Ros <400> 47	ς Γ Seoba	cter lii	toralis	Jan	Tlo	Corr	Tou	The	Clu	Tou		3 2 2 2	¹ cro	Lou	Com	Clu
35 40	<211> 443 <212> PR <213> Ros <400> 47	s F seoba Met 1	cter lii Ala	<i>toralis</i> Ala	Asn	Ile 5	Ser	Leu	Thr	Gly	Leu 10	Ala	Arg	Asp	Leu	Ser 15	Glu
354045	<211> 443 <212> PR <213> Ros <400> 47	s F Met 1 Arg	<i>cter lii</i> Ala Ala	toralis Ala Ala	Asn Thr 20	Ile 5 Gly	Ser Lys	Leu Pro	Thr Val	Gly Arg 25	Leu 10 Ile	Ala Gly	Arg Leu	Asp Ile	Leu Gly 30	Ser 15 Ser	Glu Gly
35404550	<211> 443 <212> PR <213> Ros <400> 47	Glu	<i>cter lii</i> Ala Ala Met	Ala Ala Gly 35	Asn Thr 20 Thr	Ile 5 Gly Asp	Ser Lys Ile	Leu Pro Val	Thr Val Thr 40	Gly Arg 25 Arg	Leu 10 Ile Ala	Ala Gly Gly	Arg Leu Met	Asp Ile Met 45	Leu Gly 30 Asp	Ser 15 Ser Gly	Glu Gly Val
 35 40 45 50 55 	<211> 443 <212> PR <213> Ros <400> 47	Glu Glu	<i>cter li</i> Ala Ala Met Val 50	Ala Ala Gly 35 Ala	Asn Thr 20 Thr Ala	Ile 5 Gly Asp Ile	Ser Lys Ile Ser	Leu Pro Val Glu 55	Thr Val Thr 40 Val	Gly Arg 25 Arg Asn	Leu 10 Ile Ala Pro	Ala Gly Gly Ala	Arg Leu Met Ala 60	Asp Ile Met 45 Ala	Leu Gly 30 Asp His	Ser 15 Ser Gly Lys	Glu Gly Val Ala
 35 40 45 50 55 60 	<211> 443 <212> PR <213> Ros <400> 47	Glu Val 65	Cter li Ala Ala Met Val 50 Glu	Ala Ala Gly 35 Ala Ile	Asn Thr 20 Thr Ala Ala	Ile 5 Gly Asp Ile His	Ser Lys Ile Ser Ala 70	Leu Pro Val Glu 55 Ala	Thr Val Thr 40 Val Ala	Gly Arg 25 Arg Asn Gly	Leu 10 Ile Ala Pro Phe	Ala Gly Gly Ala Ser 75	Arg Leu Met Ala 60 Ala	Asp Ile Met 45 Ala Asp	Leu Gly 30 Asp His Ala	Ser 15 Ser Gly Lys Asn	Glu Gly Val Ala Ser 80

	Asp	Asn	Ala	Asp 100	Ala	Ile	Leu	Glu	Ser 105	Gly	Leu	Ile	Asp	Val 110	Val	Ile
5	Asp	Ala	Thr 115	Gly	Ile	Pro	Ala	Val 120	Gly	Ala	Glu	Ile	Gly 125	Leu	Arg	Ala
10	Met	Glu 130	Arg	Gly	Lys	His	Leu 135	Val	Met	Met	Asn	Val 140	Glu	Ala	Asp	Val
15	Thr 145	Ile	Gly	Ala	Tyr	Leu 150	Arg	Arg	Glu	Ala	Asn 155	Arg	Leu	Gly	Val	Val 160
20	Tyr	Ser	Leu	Gly	Ala 165	Gly	Asp	Glu	Pro	Ser 170	Ser	Cys	Met	Glu	Leu 175	Ile
25	Glu	Phe	Val	Ser 180	Ala	Met	Gly	His	Lys 185	Ile	Val	Cys	Ala	Gly 190	Lys	Gly
30	Lys	Asn	Asn 195	Pro	Leu	Asn	Phe	Asp 200	Ala	Ile	Pro	Glu	Ala 205	Tyr	Met	Glu
35	Glu	Ala 210	Ala	Arg	Arg	His	Met 215	Asn	Pro	Arg	Leu	Leu 220	Val	Glu	Phe	Val
	Asp 225	Gly	Ser	Lys	Thr	Ala 230	Val	Glu	Met	Cys	Ala 235	Ile	Gly	Asn	Ala	Thr 240
40	Gly	Leu	Ile	Pro	Asp 245	Cys	Asp	Gly	Met	His 250	Gly	Pro	Ala	Ala	Gly 255	Pro
45	Lys	Asp	Leu	Ala 260	Lys	Thr	Leu	Ile	Pro 265	Lys	Lys	Asp	Gly	Gly 270	Leu	Leu
50	Glu	Gly	Ile 275	Gly	Arg	Val	Asp	Tyr 280	Ser	Ile	Gly	Lys	Gly 285	Val	Ser	Pro
55	Gly	Val 290	Phe	Val	Ile	Ile	Glu 295	Ala	Glu	His	Pro	Arg 300	Ile	Arg	Glu	Arg
60	Leu 305	Lys	Asp	Leu	Lys	Met 310	Gly	Asp	Gly	Pro	Tyr 315	Phe	Glu	Phe	Ile	Arg 320
65	Pro	Tyr	His	Leu	Thr 325	Ser	Leu	Glu	Val	Pro 330	Leu	Thr	Cys	Ala	Arg 335	Ala
	Val	Leu	Tyr	Gly	Lys	Ala	Asp	Met	Val	Pro	Leu	Asp	Lys	Pro	Val	Ala

					340					345					350		
5		Glu	Val	Ala 355	Ala	Val	Ala	Lys	Arg 360	Asp	Leu	Lys	Ala	Gly 365	Glu	Thr	Leu
10		Asp	Gln 370	Ile	Gly	Glu	Tyr	Thr 375	Tyr	Arg	Ala	Trp	Ala 380	Met	Glu	Thr	Ser
15		Arg 385	Ala	Arg	Thr	Ala	Arg 390	Ala	Leu	Pro	Ala	Gly 395	Leu	Leu	Thr	Gly	Ala 400
20		Val	Thr	Thr	Ala	Ala 405	Ile	Ala	Lys	Gly	Glu 410	Leu	Ile	Thr	Ala	His 415	Asn
25		Thr	Thr	Leu	Pro 420	Asp	Ala	Arg	Ile	Val 425	Glu	Leu	Arg	Arg	Arg 430	Gln	Asp
25		Glu	Met	Ile 435	Tyr	Gly	Lys	Asp	Ala 440	Ala	Asn	Val					
30	<210> 48 <211> 43 <212> PF	9 RT															
35	<213> Ba	icillus	halod	lurans													
	<400> 48	Mot	Lou	Clu	Tlo	Acn	۸ra	Turc	Lou	Clu	Cln	Lou	Clu	Sor	Acro	Clu	Thr
40		nec 1	цец	Gτλ	TTE	5	ALÀ	цур	цец	Giù	10	цец	Giù	SET	тэр	15	TIIT
45		Ile	Ile	Arg	Val 20	Gly	Leu	Val	Gly	Ala 25	Gly	Gln	Met	Gly	Arg 30	Gly	Met
		Val	Ser	Gln 35	Ile	Glu	Ser	Met	Lys 40	Gly	Met	Arg	Val	Val 45	Val	Thr	Ala
50		Asp	Ile 50	Val	Leu	Glu	Asn	Val 55	Lys	Leu	Ala	Tyr	Glu 60	Arg	Ala	Gly	Val
55		Pro 65	Lys	Asp	Glu	Val	Ile 70	Glu	Thr	Asp	Glu	Ile 75	Ser	Lys	Ala	Ala	Asp 80
60		Ala	Ile	Gln	Ala	Gly 85	Lys	Val	Val	Ala	Thr 90	Gly	Asp	Ala	Glu	Leu 95	Val
65		Thr	Ala	Leu	Ser 100	Glu	Val	Asp	Val	Val 105	Val	Asp	Ala	Thr	Gly 110	Ile	Pro

	Asn	Ile	Gly 115	Ala	Lys	Ile	Ala	Trp 120	Asp	Ala	Ile	Leu	Asn 125	Lys	Lys	His
5	Ile	Val 130	Met	Leu	Asn	Val	Glu 135	Ala	Asp	Val	Thr	Val 140	Gly	Pro	Leu	Leu
10	Lys 145	Gln	Met	Ala	Asp	Ala 150	Cys	Gly	Val	Val	Tyr 155	Thr	Gly	Ser	Ala	Gly 160
15	Asp	Glu	Pro	Gly	Ala 165	Val	Met	Glu	Leu	Tyr 170	Asp	Phe	Ala	Asp	Ala 175	Leu
20	Gly	Phe	Glu	Val 180	Val	Ala	Leu	Gly	Lys 185	Gly	Lys	Asn	Asn	Pro 190	Leu	Asn
25	Val	Glu	Ala 195	Asn	Pro	Gln	Thr	Ala 200	Ala	Glu	Glu	Ala	Lys 205	Arg	Lys	Gly
30	Ala	Ser 210	Pro	Lys	Met	Leu	Ala 215	Ser	Phe	Gln	Asp	Gly 220	Thr	Lys	Thr	Met
25	Val 225	Glu	Met	Thr	Ala	Val 230	Ala	Asn	Ala	Thr	Gly 235	Phe	Leu	Pro	Asp	Lys 240
32	Pro	Gly	Met	Asn	Gly 245	Phe	Val	Gly	Thr	Val 250	Glu	Glu	Leu	Pro	Ala 255	Ile
40	Phe	Arg	Arg	Lys 260	Glu	Glu	Gly	Gly	Gln 265	Val	Glu	Asn	Glu	Arg 270	Ile	Val
45	Glu	Tyr	Ile 275	Asn	Gly	Val	Ala	Pro 280	Gly	Val	Phe	Ala	Ile 285	Val	Lys	Ser
50	Asp	Lys 290	Glu	Glu	Val	Asn	His 295	Glu	Met	Thr	Tyr	Leu 300	Ser	Met	Gly	Glu
55	Gly 305	Pro	Asn	Tyr	Val	Leu 310	Tyr	Arg	Pro	Tyr	His 315	Leu	Thr	Ser	Leu	Glu 320
60	Thr	Pro	Ile	Ser	Ile 325	Ala	Arg	Ala	His	Leu 330	Tyr	His	Glu	Ala	Thr 335	Ile
65	Ala	Pro	Trp	Gln 340	Gly	Leu	Gln	Ala	Glu 345	Thr	Val	Ala	Val	Ala 350	Lys	Lys

	Asp	Leu	Ala 355	Ala	Gly	Glu	Phe	Leu 360	Asp	Ser	Ile	Gly	Gly 365	Phe	Thr	Val
5	Tyr	Gly 370	Thr	Ile	Leu	Thr	Val 375	Thr	Asp	Ala	Lys	Glu 380	Lys	Gly	Ala	Leu
10	Pro 385	Ile	Gly	Leu	Val	Asp 390	Ala	His	Val	Gln	Val 395	Lys	Arg	Pro	Ile	Lys 400
15	Lys	Gly	Glu	Ile	Ile 405	Thr	Tyr	Asp	Asp	Val 410	Glu	Gln	Lys	Lys	Glu 415	Ser
20	Thr	Ile	Trp	Arg 420	Leu	Arg	Arg	Ile	Gln 425	Asp	Glu	Thr	Leu	Val 430	Gly	Lys
25	Arg	Glu	Leu 435	Glu	Ala	Lys	Val									
30	<210> 49 <211> 416 <212> PRT <213> Listeria	monoc	cytogei	nes												
	<400> 49															
35	Met 1	Thr	Leu	Tyr	Arg 5	Gln	Leu	Leu	Ala	Arg 10	Glu	Asn	Glu	Asn	Asn 15	Pro
40	Ile	Arg	Val	Gly 20	Val	Ile	Gly	Ala	Gly 25	Gln	Met	Gly	Phe	Gly 30	Met	Ile
45	Ser	Gln	Ile 35	Ala	Ala	Ile	Pro	Gly 40	Met	Ser	Ile	Val	Gly 45	Ile	Ser	Asp
50	Ile	His 50	Val	Glu	Ala	Ala	Gln 55	Lys	Ala	Ala	Asp	Ala 60	Tyr	Asn	Ala	Thr
55	Ala 65	Thr	Lys	Lys	Glu	Lys 70	Ile	Leu	Leu	Ser	Asn 75	Asp	Phe	Lys	Glu	Ile 80
55	Ile	His	Ser	Asp	Leu 85	Val	Glu	Val	Ile	Val 90	Asp	Ala	Thr	Gly	Val 95	Pro
60	Glu	Val	Gly	Ala 100	Lys	Ile	Ser	Leu	Glu 105	Thr	Leu	Leu	Ala	Lys 110	Lys	Gln
65	Leu	Val	Leu 115	Leu	Asn	Val	Glu	Ile 120	Asp	Ile	Thr	Ile	Gly 125	Pro	Leu	Met

5	Lys	Lys 130	Leu	Tyr	Asp	Ser	Ala 135	Gly	Leu	Val	Tyr	Thr 140	Gly	Ser	Asp	Gly
	Asp 145	Glu	Pro	Ala	Ala	Ile 150	Thr	Glu	Leu	Tyr	Glu 155	Phe	Ser	Lys	Ser	Met 160
10	Gly	Met	Glu	Val	Leu 165	Val	Ala	Gly	Lys	Gly 170	Lys	Asn	Asn	Lys	Leu 175	Lys
15	Ile	Ser	Ala	Asn 180	Pro	Asp	Ser	Cys	Gln 185	Ala	Glu	Ala	Asp	Gly 190	Lys	Asn
20	Met	Ala	Ser 195	His	Met	Leu	Ala	Ala 200	Phe	Gln	Asp	Gly	Thr 205	Lys	Thr	Met
25	Ala	Glu 210	Met	Asn	Leu	Leu	Ser 215	Asn	Ala	Ile	Gly	Tyr 220	Val	Pro	Asp	Val
30	Val 225	Gly	Met	His	Gly	Ile 230	Ser	Gly	Asp	Val	Asp 235	Ser	Val	Ile	Lys	Asp 240
35	Leu	Asp	Leu	Lys	Asp 245	Gln	Gly	Gly	Ile	Leu 250	Asn	Lys	Phe	Gly	Val 255	Val
40	Glu	Tyr	Val	Asp 260	Gly	Leu	Ala	Pro	Gly 265	Val	Phe	Val	Ile	Val 270	Lys	Gly
45	Gln	Asn	Glu 275	Gly	Val	Ser	His	Glu 280	Leu	Ser	Tyr	Leu	Met 285	Lys	Lys	Gly
45	Asp	Arg 290	Asp	His	His	Ile	Leu 295	Tyr	Arg	Pro	Tyr	His 300	Leu	Ala	Ser	Leu
50	Glu 305	Thr	Pro	Leu	Thr	Ile 310	Ala	Lys	Ala	Val	Leu 315	Asn	His	Asp	His	Ala 320
55	Ile	Val	Pro	Met	Gly 325	Ala	Pro	Val	Ser	Glu 330	Thr	Val	Ala	Val	Ala 335	Lys
60	Lys	Asp	Ile	Ala 340	Ala	Gly	Glu	Lys	Leu 345	Asp	Gly	Ile	Gly	Gly 350	Phe	Cys
65	Val	Arg	Gly 355	Val	Leu	Glu	Thr	His 360	Val	Asp	Met	Ala	Thr 365	Asn	Gly	His

	Ile	Pro 370	Ile	Gly	Leu	Ile	Ser 375	Gly	Glu	Val	Val	Ala 380	Arg	Arg	Asn	Ile
5	Lys 385	Ala	Gly	Thr	Phe	Ile 390	Thr	Asp	Glu	Asp	Val 395	Ser	Leu	Asp	Glu	Ser 400
10	Thr	Thr	Val	Trp	Lys 405	Leu	Arg	Lys	Leu	Gln 410	Asp	Glu	Thr	Phe	Asn 415	Lys
15	<210> 50 <211> 430 <212> PRT															
20	<213> Finegol	dia ma	igna													
	<400> 50															
25	Met 1	Asn	Lys	Met	Gln 5	Arg	Lys	Leu	Val	Asp 10	Leu	Asp	Asn	His	Gly 15	Gln
30	Lys	Val	Arg	Val 20	Gly	Leu	Val	Gly	Cys 25	Gly	Lys	Met	Gly	Ser 30	Gly	Leu
35	Val	Ser	Gln 35	Leu	Ser	Arg	Ile	Lys 40	Gly	Met	Arg	Pro	Ser 45	Val	Ile	Ile
40	Asp	Arg 50	His	Val	Asp	Lys	Cys 55	Val	Thr	Ala	Leu	Arg 60	Lys	Ala	Gly	Val
	Lys 65	Asp	Val	Asp	Ile	Val 70	Arg	Thr	Thr	Asp	Leu 75	Lys	Val	Ala	Glu	Asn 80
45	Ala	Ile	Lys	Asn	Asn 85	Ser	Phe	Val	Val	Ser 90	Asp	Asp	Tyr	Thr	Leu 95	Ser
50	Tyr	Lys	Leu	Asp 100	Met	Ile	Asp	Gly	Val 105	Ile	Asp	Ala	Thr	Gly 110	Asn	Pro
55	Pro	Phe	Gly 115	Thr	Gln	Leu	Ala	Val 120	Glu	Ser	Ile	Glu	His 125	Glu	Lys	His
60	Thr	Ile 130	Leu	Leu	Asn	Val	Glu 135	Cys	Asp	Ala	Val	Val 140	Gly	Pro	Ile	Leu
65	Asn 145	Glu	Met	Ala	Lys	Lys 150	Lys	Gly	Val	Val	Tyr 155	Thr	Gly	Ser	Ala	Gly 160
05	Asp	Glu	Pro	Gly	Ala	Ile	Ile	Gln	Leu	Ser	Asp	Phe	Ala	Leu	Gly	Leu

					165					170					175	
5	Gly	Phe	Lys	Leu 180	Leu	Ala	Val	Gly	Lys 185	Gly	Lys	Asn	Asn	Pro 190	Leu	Asp
10	Asn	Tyr	Thr 195	Asn	Glu	Asp	Ile	Leu 200	Arg	Glu	Glu	Ala	Leu 205	Ser	Lys	Gly
15	Leu	Val 210	Pro	Lys	Met	Leu	Thr 215	Ser	Phe	Val	Asp	Gly 220	Thr	Asn	Thr	Met
20	Ile 225	Glu	Leu	Thr	Ala	Val 230	Ala	Asn	Ala	Leu	Gly 235	Phe	Thr	Pro	Asp	Val 240
	Leu	Gly	Cys	His	Gly 245	Ile	Thr	Thr	Asn	Ile 250	His	Asp	Ile	Ala	Asp 255	Lys
25	Phe	Lys	Leu	Lys 260	Glu	Gln	Gly	Gly	Ile 265	Leu	Asn	Asn	Tyr	Asn 270	Ile	Val
30	Asp	Phe	Ala 275	Phe	Gly	Val	Ala	Pro 280	Gly	Val	Phe	Ala	Ile 285	Val	Thr	His
35	Asp	Thr 290	Asn	Glu	Val	His	Asp 295	Leu	Met	Glu	Tyr	Leu 300	Ser	Met	Gly	Lys
40	Gly 305	Pro	Asn	Tyr	Thr	Leu 310	Tyr	Arg	Pro	Tyr	His 315	Leu	Thr	Ser	Leu	Glu 320
45	Thr	Pro	Leu	Thr	Ile 325	Tyr	Asp	Ala	Ile	Val 330	Glu	Lys	Glu	Pro	Thr 335	Ile
50	Tyr	Pro	Lys	Tyr 340	Gly	Gln	Val	Ser	Asp 345	Thr	Ile	Thr	Val	Ala 350	Lys	Arg
55	Asp	Ile	Lys 355	Lys	Gly	Gln	Lys	Ile 360	Glu	Gly	Ile	Gly	Gly 365	His	Asp	Cys
	Phe	Gly 370	Lys	Ile	Thr	Ser	His 375	Lys	His	Gln	Met	Glu 380	Asn	Asn	Leu	Leu
60	Pro 385	Met	Pro	Ile	Ile	Thr 390	Glu	Lys	Thr	Thr	Ala 395	Lys	Val	Asp	Ile	Pro 400
65	Lys	Asp	Thr	Leu	Ile 405	Thr	Tyr	Asp	Met	Val 410	Asn	Leu	Asp	Glu	Asp 415	His

Ile Ile Thr Lys Leu Arg Lys Arg Gln Asp Glu Leu Gly Leu 420 425 430

5

<210> 51

<211> 1317

<212> DNA

¹⁰ <213> Brucella abortus

<400> 51

15	atgacaacaa	atgtggcact	ggtcgggctg	gcgcgcgatc	tcgcagcgcg	ggcggaaacc	60
	ggcaaaccga	tccgcatcgg	ccttatcggc	gcaggcgaaa	tgggcacgga	tatcgttaca	120
20	caggtggcac	ggatgcaggg	cattgaggtc	ggcgcccttt	ccgcccgccg	cctgcccaac	180
	actttcaagg	ccatccgcac	cgcctatggc	gacgaagaaa	acgcgcgcga	agccacgacc	240
25	gaatccgcaa	tgacccgcgc	catcgaagcg	ggcaagattg	ccgttactga	cgataacgac	300
20	ctgatcctct	ccaacccgct	catcgatgtc	atcatcgacg	cgacgggcat	tccggaagtg	360
	ggcgccgaga	caggcattgc	agccatccgc	aatggcaagc	accttgtcat	gatgaatgtc	420
30	gaggccgatg	tcaccattgg	cccatatctt	aaagcgcagg	ccgacaagca	gggcgtgatt	480
	tattcgctgg	gcgcgggtga	tgagccgtca	tcctgcatgg	aactgatcga	gtttgtttcg	540
35	gcccttggct	atgaagtggt	ttcggctggc	aagggcaaga	acaacccgct	caatttcgac	600
	gccacacccg	acgattacag	gcaagaagca	gaccgccgga	acatgaatgt	gcgcctgctg	660
40	gtcgagttta	tcgatggctc	caaaaccatg	gtggagatgg	cggcgattgc	caatgccacc	720
	ggccttgtgc	cggacattgc	cggcatgcac	ggcccccgcg	ccagcattga	ccagctaagc	780
45	cacacgctga	tcccacaggc	cgaaggcggc	gttctcagca	aaagcggcgt	ggttgattat	840
-10	tccatcggca	agggcgtttc	gccgggcgtg	ttcgtcgtgg	cgaagatgga	ccacccccgc	900
	ctcaacgaac	gtctggaaga	cctgaaaatc	ggcaaaggcc	cttatttcac	cttccaccgg	960
50	ccatatcatc	tgacttcact	tgaagtgccg	ctgaccgtcg	cccgcgtcgt	gcttcacggc	1020
	aagactgaca	tggtgccgct	gccaaagccg	gtggcggaag	tctgcgcggt	tgccaaaaag	1080
55	gacatgcagc	ccggcgagca	tctggacgct	atcggccaat	attgctaccg	ctcatggatc	1140
	atgacggtgc	cggaagcgcg	cgccgcgaag	gccattccct	gcggcctgct	ccagaacggc	1200
60	acggtcatcg	cgccgatcaa	aaaaggcgaa	ctcatcacct	atgccaatgc	cgccccgcag	1260
	cccggctcca	ggatcgcgga	actgcgcgct	ttgcaggatg	ctatgttagg	gcaatag	1317

65

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(21) N.º solicitud: 201031068

(2) Fecha de presentación de la solicitud: 14.07.2010

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

(5) Int. Cl.: Ver Hoja Adicional

DOCUMENTOS RELEVANTES

Categoría		Documentos citados	Reivindicaciones afectadas				
Х	CHAIN PSG et al. Whole-Genor Infection and Immunity. Diciembre	ne Analyses of Speciation Events in Pathogenic Brucellae. 2005. Vol. 73 (12), páginas 8353–8361, todo el documento.	1-4				
A	WO 02083720 A2 (BACHER A. & F páginas 1-5; reivindicaciones 1, 5,	ROHDICH F.) 24.10.2002, 10, 12, 15, 16.	1-8				
А	WO 0111055 A1 (BACHER A. & Zi página 2, línea 25 – página 3, línea	ENK M.) 15.02.2001, 18; reivindicaciones 1,2,12,14-17.	1-8				
A	WO 0211673 A2 (SMITHKLINE BE página 1, línea 29 – página 2, línea líneas 10-15.	ECHAM CORPORATION) 14.02.2002, 30; página 4, línea 28 – página 6, línea 8; página 8,	1-8				
A	ROHMER M et al. Isoprenoid bic drugs. Current Opinion in Investiga todo el documento.	synthesis as a novel target for antibacterial and antiparasitic tional Drugs. 2004. Vol. 5(2), páginas: 154-162,	1-8				
Categoría de los documentos citados X: de particular relevancia Y: de particular relevancia combinado con otro/s de la misma categoría A: refleja el estado de la técnica C: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de presenta de la solicitud E: documento anterior, pero publicado después de la fe de presentación de la solicitud							
El presente informe ha sido realizado							
Fecha	de realización del informe 28.11.2011	Examinador M. D. García Grávalos	Página 1/5				

CLASIFICACIÓN OBJETO DE LA SOLICITUD

C07K14/195 (2006.01) C12N9/90 (2006.01) C12N15/61 (2006.01) C12P23/00 (2006.01)

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)

C07K, C12N, C12P

Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

INVENES, EPODOC, WPI, MEDLINE, NPL, XPESP, EMBASE, BIOSIS, GOOGLE SCHOLAR, EBI.

Fecha de Realización de la Opinión Escrita: 28.11.2011

Declaración

Novedad (Art. 6.1 LP 11/1986)	Reivindicaciones	5-8	SI
	Reivindicaciones	1-4	NO
Actividad inventiva (Art. 8.1 LP11/1986)	Reivindicaciones	5-8	SI
	Reivindicaciones	1-4	NO

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.

1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	CHAIN PSG et al. Infection and Immunity. Diciembre 2005.	2005
	Vol. 73(12), páginas 8353–8361.	
D02	WO 02083720 A2	24.10.2002
D03	WO 0111055 A1	15.02.2001
D04	WO 0211673 A2	14.02.2002
D05	ROHMER M et al. Current Opinion in Investigational Drugs.	2004
	2004. Vol. 5(2), páginas: 154-162.	

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La presente solicitud divulga una enzima, aislada de la bacteria *Brucella abortus*, cepa 2308, que corresponde a la secuencia de aminoácidos definida como SEQ ID NO:41 (reivindicaciones 1-4), así como su uso para la síntesis de isoprenoides, particularmente de 2-C-metil-D-eritritol 4-fosfato (MEP) (reivindicaciones 5 y 6). La invención se refiere también a un método de obtención de MEP (reivindicaciones 7 y 8).

El documento D01 divulga la secuencia completa del genoma de *Brucella abortus*, cepa 2308, y un análisis de dicha secuencia comparándola con las correspondientes a los genomas de otras especies de *Brucella*, también patógenas para humanos, como *B. melitensis*, cepa 16M, *B. suis*, cepa 1330 y de *B. abortus*, cepa 9-941 (ver todo el documento).

El documento D02 divulga una proteína con actividad enzimática y su participación en la síntesis de isoprenoides. Se refiere también a la secuencia de nucleótidos que la codifica, así como a un vector que contiene dicha secuencia y a su expresión en un cultivo celular (ver páginas 1-5; reivindicaciones 1, 5, 10, 12, 15, 16).

El documento D03 divulga una enzima, así como el gen que la codifica, relacionada con la ruta alternativa (MEP) de biosíntesis de isoprenoides. Se refiere también a un vector que contiene dicha secuencia de nucleótidos y a su expresión en un cultivo celular (ver página 2, línea 25 - página 3, línea 18; reivindicaciones 1, 2, 12, 14-17).

El documento D04 divulga un péptido y el polinucleótido que lo codifica, aislado de la bacteria *Haemofilus influenza*, relacionado con la familia de enzimas reductoisomerasas. Se refiere también a un método para modular la actividad de esta enzima e interferir en la ruta alternativa de biosíntesis de isoprenoides (ver página 1, línea 29 - página 2, línea 30; página 4, línea 28 - página 6, línea 8; página 8, líneas 10-15).

El documento D05 divulga la ruta alternativa de biosíntesis de isoprenoides como una nueva diana terapéutica para *screening* de productos antibacterianos y antiparasitarios. Se refiere especialmente a la enzima DXP reductoisomerasa, a su papel en esta ruta de síntesis de isoprenoides y sugiere la búsqueda de otras enzimas con esta actividad (ver todo el documento).

1. NOVEDAD (Art. 6.1 y 8.1 LP 11/1986)

1.1. REIVINDICACIONES 1-8

La presente solicitud divulga una enzima, aislada de *Brucella abortus*, cepa 2308, que corresponde a la secuencia de aminoácidos definida como SEQ ID NO:41; y su uso para la síntesis de isoprenoides, particularmente de 2-C-metil-D-eritritol 4-fosfato (MEP).

El documento D01 se considera el más cercano al Estado de la Técnica ya que anticipa una enzima, aislada de *Brucella abortus*, cepa 2308, que corresponde a la secuencia de aminoácidos definida en la presente solicitud como SEQ ID NO:41. Esta secuencia de aminoácidos, así como la de nucleótidos que la codifica, se encuentran en la base de datos del NCBI con referencias *Swiss-Prot* Q2YIM3 para aminoácidos y BAB2_0264 para nucleótidos.

Según lo divulgado en el documento D01, las reivindicaciones 1-4 no cumplen con el requisito de novedad (Art. 6.1 LP 11/1986).

Las reivindicaciones 5-8 cumplen con el requisito de novedad (Art. 6.1 LP 11/1986)

2. ACTIVIDAD INVENTIVA (8.1 LP 11/1986)

2.1. REIVINDICACIONES 5-8

La diferencia entre el documento D01 y la presente invención radica en el uso de la enzima reivindicada para la síntesis de isoprenoides, particularmente de 2-C-metil-D-eritritol 4-fosfato (MEP). Aunque los documentos D02 y D03, anticipan enzimas relacionadas con la ruta alternativa de biosíntesis de isoprenoides, estas enzimas no se corresponden con la secuencia reivindicada, ni han sido aisladas de *Brucella abortus*.

En consecuencia, la invención tal y como se recoge en las reivindicaciones 5-8 cumple con el requisito de actividad inventiva (Art. 8.1 LP 11/1986).

Los documentos D04 y D05, se refieren al estado de la técnica y no se consideran relevantes en relación con el objeto de la invención.