

11 Número de publicación: 2 373 424

(5) Int. Cl.:
A61L 29/08 (2006.01)
A61L 31/10 (2006.01)
C08G 18/12 (2006.01)
C08G 18/28 (2006.01)
C09D 175/02 (2006.01)
C09D 175/04 (2006.01)

$\overline{}$		
้ 1 2	2) TD A DLICCIÓNI DE DAT	ENITE ELIDADEA
12	2) TRADUCCIÓN DE PAT	ENTE EURUPEA

T3

- 96 Número de solicitud europea: 09722095 .8
- 96 Fecha de presentación: 16.03.2009
- Número de publicación de la solicitud: 2265295
 Fecha de publicación de la solicitud: 29.12.2010
- (54) Título: DISPERSIONES HIDRÓFILAS DE POLIURETANO.
- 30 Prioridad: 20.03.2008 EP 08153053

(73) Titular/es:

Bayer MaterialScience AG 51368 Leverkusen, DE

45 Fecha de publicación de la mención BOPI: 03.02.2012

72 Inventor/es:

KÖCHER, Jürgen y RISCHE, Thorsten

(45) Fecha de la publicación del folleto de la patente: 03.02.2012

(74) Agente: Carpintero López, Mario

ES 2 373 424 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Dispersiones hidrófilas de poliuretano

5

10

15

20

30

35

40

45

50

La presente invención se refiere a una composición de recubrimiento en forma de una dispersión de poliuretano que puede usarse para la preparación de recubrimientos hidrófilos. Otro objeto de la presente invención es un procedimiento para la preparación de una composición de recubrimiento correspondiente, así como el uso de la composición de recubrimiento, especialmente para recubrir aparatos médicos.

El uso de aparatos médicos, por ejemplo de catéteres, puede mejorarse enormemente equipándolos con superficies hidrófilas. La inserción y el desplazamiento de catéteres urinarios o para vasos sanguíneos se facilitan por el hecho de que las superficies hidrófilas adsorben una película de agua en contacto con sangre u orina. Mediante esto se reduce el rozamiento de la superficie del catéter con las paredes de los vasos, de manera que el catéter puede colocarse y moverse más fácilmente. También pueden mojarse directamente los aparatos antes de la intervención para reducir el rozamiento mediante la formación de una película de agua homogénea. Los pacientes afectados tienen menos dolores, y de esta manera se reduce el riesgo de lesionar las paredes de los vasos. Además, en la aplicación de catéteres en contacto con sangre siempre existe el riesgo de que se formen coágulos de sangre. En este contexto, los recubrimientos hidrófilos se consideran en general útiles para recubrimientos antitrombogénicos.

Para la fabricación de superficies correspondientes son adecuados en principio recubrimientos de poliuretano que se preparan a partir de soluciones o dispersiones de poliuretanos correspondientes.

Así, el documento US 5.589.563 describe el uso de recubrimientos con grupos terminales superficialmente modificados para polímeros usados en el sector de la biomedicina que también pueden usarse para el recubrimiento de aparatos médicos. Los recubrimientos resultantes se preparan a partir de soluciones o dispersiones y los recubrimientos poliméricos comprenden diferentes grupos terminales que se seleccionan de aminas, alcanoles fluorados, polidimetilsiloxanos y poli(óxidos de etileno) terminados con amina. Sin embargo, estos polímeros no presentan propiedades satisfactorias como recubrimiento para aparatos médicos, especialmente en cuanto a la hidrofilia requerida.

25 El documento DE 199 14 882 A1 se refiere a poliuretanos, poliuretanoureas o poliureas en forma dispersa o disuelta que se sintetizan a partir de

- (a) al menos un componente de poliol,
- (b) al menos un componente de di-, tri- y/o poliisocianato,
- (c) al menos un componente estructural hidrófilo, no iónico o potencialmente iónico constituido por compuestos con al menos un grupo reactivo con grupos isocianato y al menos una cadena de poliéter hidrófila y/o por compuestos con al menos un grupo capaz de formar sales, que dado el caso está presente al menos parcialmente neutralizado, y al menos un grupo reactivo con grupos isocianato,
- (d) al menos un componente estructural distinto de (a) a (c) del intervalo de peso molecular 32 a 500 con al menos un grupo reactivo con grupos isocianato y
- (e) al menos un agente de bloqueo monofuncional. Las dispersiones de polímero que forzosamente presentan un agente de bloqueo monofuncional se usan en ensimajes.

El documento DE 199 14 885 A1 se refiere a dispersiones basadas en poliuretanos, poliuretano-poliureas o poliureas que preferiblemente representan productos de reacción de

- a) al menos un componente de poliol,
- b) al menos un componente de di-, tri- y/o poliisocianato,
- c) dado el caso al menos un componente estructural (potencialmente) iónico constituido por compuestos con al menos un grupo reactivo con grupos NCO y al menos un grupo capaz de formar sales, que dado el caso está presente al menos parcialmente neutralizado,
- d) dado el caso al menos un componente estructural no iónicamente hidrófilo constituido por compuestos mono- a tetrafuncionales en el sentido de la reacción de adición de isocianato que presentan al menos una cadena de poliéter hidrófila.
- e) dado el caso al menos un componente estructural distinto de a) a d) del intervalo de peso molecular 32 a 2500 con grupos reactivos con grupos isocianato y
- f) 0,1 al 15 % en peso de al menos un agente de bloqueo monofuncional que está constituido por al menos el 50 % de dimetilpirazol,

ascendiendo la suma de a) a f) al 100 % y no pudiendo ser ni c) ni d) 0 y usándose en cantidad tal que se forme una dispersión estable. Las dispersiones se usan, entre otras cosas, para el recubrimiento de sustratos minerales, para el barnizado y el sellado de madera y materias derivadas de la madera, para el barnizado y el recubrimiento de superficies metálicas, barnizado y recubrimiento de plásticos, así como el recubrimiento de textiles y cuero.

Estas dispersiones de poliuretanourea conocidas por el estado de la técnica no se usan para fines médicos, es decir, para recubrir aparatos médicos. Además, los recubrimientos de poliuretanourea conocidos hasta la fecha presentan frecuentemente desventajas ya que no están configurados de forma suficientemente hidrófila para una aplicación

como recubrimiento de aparatos médicos.

5

10

15

20

25

30

35

40

En este contexto, el documento US 5.589.563 recomienda grupos terminales superficialmente modificados para polímeros biomédicos que pueden usarse para el recubrimiento de aparatos médicos. Estos polímeros comprenden diferentes grupos terminales que se seleccionan de aminas, alcanoles fluorados, polidimetilsiloxanos y poli(óxido de etileno) terminados con amina. Sin embargo, estos polímeros no presentan propiedades satisfactorias como recubrimiento para aparatos médicos, especialmente en cuanto a la hidrofilia requerida.

Por tanto, es objetivo de la presente invención proporcionar dispersiones de poliuretanourea que puedan usarse para el equipamiento de aparatos médicos con superficies hidrófilas. Como estas superficies se usan frecuentemente en contacto con sangre, las superficies de estos materiales también poseerán una buena compatibilidad con la sangre y especialmente reducirán el riesgo de formación de coágulos de sangre.

Son objeto de esta invención dispersiones de poliuretanourea que pueden usarse para el equipamiento de aparatos médicos con superficies hidrófilas.

Las dispersiones de poliuretanourea según la invención se caracterizan porque comprenden

- (1) al menos una poliuretanourea que está terminada con una unidad de copolímero de poli(óxido de etileno) y poli(óxido de propileno), y
- (2) al menos un poliolcarbonato.

Según la invención se encontró que las composiciones de estas poliuretanoureas específicas son excelentemente adecuadas como recubrimientos de aparatos médicos, proveen a éstos de un recubrimiento deslizante excelente y al mismo tiempo reducen el riesgo de formación de coágulos de sangre durante el tratamiento con el aparato médico.

Las poliuretanoureas en el sentido de la presente invención son compuestos poliméricos que presentan

(a) al menos dos unidades de repetición que contienen grupos uretano de la siguiente estructura general

al menos una unidad de repetición que contiene grupos urea

Las composiciones de recubrimiento que van a usarse según la invención se basan en poliuretanoureas que esencialmente no presentan modificación iónica. En el marco de la presente invención se entiende por esto que las poliuretanoureas que van a usarse según la invención no presentan esencialmente grupos iónicos como especialmente grupos sulfonato, carboxilato, fosfato y fosfonato.

Por el término "esencialmente ninguna modificación iónica" se entiende en el marco de la presente invención que una modificación iónica está presente como máximo en una proporción del 2,50 % en peso, preferiblemente como máximo del 2,00 % en peso, especialmente como máximo del 1,50 % en peso, con especial preferencia como máximo del 1,00 % en peso, especialmente como máximo del 0,50 % en peso, siendo lo más preferido cuando no está presente absolutamente ninguna modificación iónica de la poliuretanourea prevista según la invención.

Las poliuretanoureas según la invención son preferiblemente esencialmente moléculas lineales, pero también pueden ser ramificadas, lo que sin embargo se prefiere menos. Por moléculas esencialmente lineales se entiende sistemas ligeramente reticulados que presentan un poliolcarbonato con una funcionalidad hidroxilo promedio de preferiblemente 1,7 a 2,3, especialmente de 1,8 a 2,2, con especial preferencia de 1,9 a 2,1. Los sistemas de este tipo todavía pueden dispersarse de manera satisfactoria.

El peso molecular promedio en número de las poliuretanoureas preferiblemente usadas según la invención asciende preferiblemente a 1000 a 200000, con especial preferencia a 5000 a 100000. A este respecto, el peso molecular promedio en número se mide contra poliestireno como patrón en dimetilacetamida a 30 ºC.

Poliuretanoureas

45 A continuación se describen más detalladamente las poliuretanoureas según la invención.

Las poliuretanoureas según la invención se preparan mediante reacción de componentes estructurales que comprenden al menos un componente de poliolcarbonato, un componente de polioscianato, un componente de éter de polioxialquileno, un componente de diamina y/o aminoalcohol y dado el caso un componente de poliol.

A continuación se describen ahora más detalladamente los componentes estructurales individuales.

5 (a) Poliolcarbonato

10

15

La poliuretanourea según la invención comprende unidades que tienen su origen en al menos un policarbonato que contiene grupos hidroxilo (poliolcarbonato).

En principio, para la introducción de unidades basadas en un policarbonato que contiene grupos hidroxilo son adecuados poliolcarbonatos, es decir, compuestos polihidroxílicos con una funcionalidad hidroxilo promedio de 1,7 a 2,3, preferiblemente de 1,8 a 2,2, con especial preferencia de 1,9 a 2,1. Por tanto, el policarbonato se forma preferiblemente esencialmente lineal y sólo presenta una reticulación tridimensional insignificante.

Como policarbonatos que presentan grupos hidroxilo se consideran policarbonatos del peso molecular (peso molecular determinado por el índice de OH; DIN 53240) de preferiblemente 400 a 6000 g/mol, con especial preferencia de 500 a 5000 g/mol, especialmente de 600 a 3000 g/mol, que pueden obtenerse, por ejemplo, mediante reacción de derivados de ácido carbónico como carbonato de difenilo, carbonato de dimetilo o fosgeno con polioles, preferiblemente dioles. Como dioles de este tipo se consideran, por ejemplo, etilenglicol, 1,2- y 1,3-propanodiol, 1,3- y 1,4-butanodiol, 1,6-hexanodiol, 1,8-octanodiol, neopentilglicol, 1,4-bishidroximetilciclohexano, 2-metil-1,3-propanodiol, 2,2,4-trimetilpentano-1,3-diol, di-, tri- o tetraetilenglicol, dipropilenglicol, polipropilenglicoles, dibutilenglicol, polibutilenglicoles, bisfenol A, tetrabromobisfenol A, pero también dioles modificados con lactona.

El componente de diol contiene preferiblemente del 40 al 100 % en peso de hexanodiol, preferiblemente de 1,6-hexanodiol y/o derivados de hexanodiol, preferiblemente aquellos que, además de grupos OH terminales, presentan grupos éter o éster, por ejemplo, productos que se obtuvieron mediante reacción de 1 mol de hexanodiol con al menos 1 mol, preferiblemente 1 a 2 moles, de caprolactona o por eterificación de hexanodiol consigo mismo dando di- o trihexilenglicol. También pueden usarse poliéter-polidiolcarbonatos. Los policarbonatos de hidroxilo serán esencialmente lineales. Sin embargo, dado el caso pueden ramificarse ligeramente por la incorporación de componentes polifuncionales, especialmente polioles de bajo peso molecular. Para esto son adecuados, por ejemplo, glicerina, trimetilolpropano, 1,2,6-hexanotriol, 1,2,4-butanotriol, trimetilolpropano, pentaeritritol, quinitol, manitol, sorbitol, metilglucósido o 1,3,4,6-dianhidrohexitoles. Se prefieren aquellos policarbonatos basados en 1,6-hexanodiol, así como co-dioles de acción modificadora como, por ejemplo, 1,4-butanodiol o también de ε-caprolactona. Otros polidiolcarbonatos preferidos son aquellos basados en mezclas de 1,6-hexanodiol y 1,4-butanodiol.

(b) Poliisocianato

La poliuretanourea según la invención presenta además unidades que tienen su origen en al menos un poliisocianato.

35 Como poliisocianatos (b) pueden usarse todos los isocianatos aromáticos, aralifáticos, alifáticos y cicloalifáticos conocidos para el experto de una funcionalidad NCO promedio ≥ 1, preferiblemente ≥ 2, por separado o en mezclas discrecionales entre sí, siendo irrelevante si éstos se prepararon según el procedimiento con fosgeno o libre de fosgeno. Éstos también pueden presentar estructuras de iminooxadiazindiona, isocianurato, uretdiona, uretano, alofanato, biuret, urea, oxadiazintriona, oxazolidinona, acilurea y/o de carbodiimida. Los poliisocianatos pueden usarse por separado o en mezclas discrecionales entre sí.

Preferiblemente se usan isocianatos de la serie de los representantes alifáticos o cicloalifáticos, presentando éstos un esqueleto básico de carbono (sin los grupos NCO contenidos) de 3 a 30, preferiblemente de 4 a 20 átomos de carbono.

Compuestos especialmente preferidos del componente (b) se corresponden con el tipo previamente mencionado con 45 grupos NCO alifática y/o cicloalifáticamente unidos como, por ejemplo, éter bis-(isocianatoalquílico), bis- y tris-(isocianatoalquil)bencenos, bis- y tris-(isocianatoalquil)toluenos, así como bis- y tris-(isocianatoalquil)xilenos, propanodiisocianatos, butanodiisocianatos, pentanodiisocianatos, hexanodiisocianatos hexametilendiisocianato, HDI), heptanodiisocianatos, octanodiisocianatos, nonanodiisocianatos (por ejemplo, trimetil-HDI (TMDI) generalmente como mezcla de los isómeros 2,4,4 y 2,2,4), nonanotriisocianatos (por ejemplo, 4-50 isocianatometil-1,8-octanodiisocianato), decanodiisocianatos, decanotriisocianatos, undecanodiisocianatos, undecanotriisocianatos, dodecanodiisocianatos, dodecanotriisocianatos, 1,3-, así $bis (isociana to metil) ciclohexanos \quad (H_6 XDI), \quad 3-isociana to metil-3,5,5-trime til ciclohexilisociana to \quad (isoforon diisociana to metil-3,5,5-trime til ciclohexilisociana to metil-3,5,5-trim$ IPDI), bis-(4-isocianatociclohexil)metano (H₁₂MDI) o bis-(isocianatometil)norbornano (NBDI).

Compuestos muy especialmente preferidos del componente (b) son hexametilendiisocianato (HDI), trimetil-HDI (TMDI), 2-metilpentano-1,5-diisocianato (MPDI), isoforondiisocianato (IPDI), 1,3-, así como 1,4-bis(isocianatometil)ciclohexano (HeXDI), bis(isocianatometil)norbornano (NBDI), 3(4)-isocianatometil-1-metil-

ciclohexilisocianato (IMCI) y/o 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) o mezclas de estos isocianatos. Otros ejemplos son derivados de los diisocianatos anteriores con estructura de uretdiona, isocianurato, uretano, alofanato, biuret, iminooxadiazindiona y/o de oxadiazintriona con más de dos grupos NCO.

La cantidad de constituyente (b) en la composición de recubrimiento que va a usarse según la invención asciende preferiblemente a 1,0 a 4,0 moles, con especial preferencia a 1,2 a 3,8 moles, especialmente a 1,5 a 3,5 moles, respectivamente referido al constituyente (a) de la composición de recubrimiento que va a usarse según la invención.

(c) Éter de polioxialquileno

5

15

20

25

40

45

La poliuretanourea según la invención presenta unidades que tienen su origen en un copolímero de poli(óxido de tileno) y poli(óxido de propileno). Estas unidades de copolímeros están presentes en la poliuretanourea como grupos terminales.

Compuestos no iónicamente hidrofilizantes (c) son, por ejemplo, poliéteralcoholes de poli(óxido de alquileno) monohidroxílicos que presentan de media estadística 5 a 70, preferiblemente 7 a 55, unidades de óxido de etileno por molécula como son accesibles de forma en sí conocida por alcoxilación de moléculas de iniciador adecuadas (por ejemplo, en Ullmanns Enzyklopädie der technischen Chemie, 4ª edición, tomo 19, Verlag Chemie, Weinheim pág. 31-38).

Moléculas de iniciador adecuadas son, por ejemplo, monoalcoholes saturados como metanol, etanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, los pentanoles, hexanoles, octanoles y nonanoles isoméricos, n-decanol, n-dodecanol, n-tetradecanol, n-hexadecanol, n-octadecanol, ciclohexanol, los metilciclohexanoles isoméricos o hidroximetilciclohexano, 3-etil-3-hidroximetiloxetano o alcohol tetrahidrofurfurílico, éteres monoalquílicos de dietilenglicol como, por ejemplo, éter monobutílico de dietilenglicol, alcoholes insaturados como alcohol alílico, alcohol 1,1-dimetilalílico o alcohol oleico, alcoholes aromáticos como fenol, los cresoles o metoxifenoles isoméricos, alcoholes aralifáticos como alcohol bencílico, alcohol anísico o alcohol cinamílico, monoaminas secundarias como dimetilamina, dietilamina, dipropilamina, disopropilamina, dibutilamina, bis-(2-etilhexil)-amina, N-metil- y N-etilciclohexilamina o diciclohexilamina, así como aminas secundarias heterocíclicas como morfolina, pirrolidina, piperidina o 1H-pirazol. Las moléculas de iniciador preferidas son monoalcoholes saturados. Como molécula de iniciador se usa con especial preferencia éter monobutílico de dietilenglicol.

Los óxidos de alquileno óxido de etileno y óxido de propileno pueden usarse en orden discrecional o también en mezcla en la reacción de alcoxilación.

En el caso de los poliéteralcoholes de poli(óxido de alquileno) se trata de poliéteres de poli(óxido de alquileno) mixtos de óxido de etileno y óxido de propileno cuyas unidades de óxido de alquileno están constituidas preferiblemente por al menos el 30 % en moles, con especial preferencia por al menos 40 % en moles, de unidades de óxido de etileno. Compuestos no iónicos preferidos son poliéteres de poli(óxido de alquileno) mixtos monofuncionales que presentan al menos el 40 % en moles de unidades de óxido de etileno y como máximo el 60 % en moles de unidades de óxido de propileno.

El peso molar promedio del éter de polioxialquileno asciende preferiblemente a 500 g/mol a 5000 g/mol, con especial preferencia a 1000 g/mol a 4000 g/mol, especialmente a 1000 a 3000 g/mol.

La cantidad de constituyente (c) en la composición de recubrimiento que va a usarse según la invención asciende preferiblemente a 0,01 a 0,5 moles, con especial preferencia a 0,02 a 0,4 moles, especialmente a 0,04 a 0,3 moles, respectivamente referidos al constituyente (a) de la composición de recubrimiento que va a usarse según la invención.

Además, según la invención pudo mostrarse que las poliuretanoureas con grupos terminales que se basan en éteres de polioxialquileno mixtos de poli(óxido de etileno) y poli(óxido de propileno) son especialmente adecuadas para generar recubrimientos con una alta hidrofilia. Como se muestra más adelante en comparación con poliuretanoureas que sólo están terminadas con poli(óxido de etileno), los recubrimientos según la invención producen un ángulo de contacto claramente bajo y, por tanto, están configurados de forma más hidrófila.

(d) Diamina o aminoalcohol

La poliuretanourea según la invención presenta unidades que tienen su origen en al menos una diamina o un aminoalcohol.

Para la preparación de los recubrimientos de poliuretano según la invención se usan los llamados extensores de cadenas (d). Extensores de cadenas de este tipo son di- o poliaminas, así como hidrazidas, por ejemplo, hidracina, 1,2-etilendiamina, 1,2- y 1,3-diaminopropano, 1,4-diaminobutano, 1,6-diaminohexano, isoforondiamina, mezclas de isómeros de 2,2,4- y 2,4,4-trimetilhexametilendiamina, 2-metilpentametilendiamina, dietilentriamina, 1,3- y 1,4-xililendiamina, α,α,α',α'-tetrametil-1,3- y -1,4-xililendiamina y 4,4-diaminodiciclohexilmetano, dimetiletilendiamina, hidracina, dihidrazida de ácido adípico, 1,4-bis(aminometil)ciclohexano, 4,4'-diamino-3,3'-dimetildiciclohexilmetano y

otros di- y tetraalquil (C_1-C_4) -diciclohexilmetanos, por ejemplo, 4,4'-diamino-3,5-dietil-3',5'-diisopropildiciclohexilmetano.

Como diaminas o aminoalcoholes se consideran en general diaminas o aminoalcoholes de bajo peso molecular que contienen hidrógeno activo con diferente reactividad hacia grupos NCO como compuestos que, además de un grupo amino primario, también presentan grupos amino secundarios, o además de un grupo amino (primario o secundario) también grupos OH. Ejemplos de éstas son aminas primarias y secundarias como 3-amino-1-metilaminopropano, 3-amino-1-etilaminopropano, 3-amino-1-metilaminopropano, además de aminoalcoholes como N-aminoetiletanolamina, etanolamina, 3-aminopropanol, neopentanolamina y con especial preferencia dietanolamina.

10 El constituyente (d) de la composición de recubrimiento que va a usarse según la invención puede usarse en su preparación como extensor de cadenas y/o como terminación de cadenas.

La cantidad de constituyente (d) en la composición de recubrimiento que va a usarse según la invención asciende preferiblemente a 0,05 a 3,0 moles, con especial preferencia a 0,1 a 2,0 moles, especialmente a 0,2 a 1,5 moles, referidos respectivamente al constituyente (a) de la composición de recubrimiento que va a usarse según la invención.

(e) Polioles

5

15

25

30

40

En otra forma de realización, la poliuretanourea según la invención comprende adicionalmente unidades que tienen su origen en al menos otro poliol.

Los otros polioles de bajo peso molecular usados para la síntesis de las poliuretanoureas (e) producen generalmente 20 un refuerzo y o una ramificación de la cadena polimérica. El peso molecular asciende preferiblemente a 62 a 500 g/mol, con especial preferencia a 62 a 400 g/mol, especialmente a 62 a 200 g/mol.

Polioles adecuados pueden contener grupos alifáticos, alicíclicos o aromáticos. Aquí son de mencionar, por ejemplo, los polioles de bajo peso molecular con hasta aproximadamente 20 átomos de carbono por molécula como, por ejemplo, etilenglicol, dietilenglicol, trietilenglicol, 1,2-propanodiol, 1,3-propanodiol, 1,4-butanodiol, 1,3-butilenglicol, ciclohexanodiol, 1,4-ciclohexanodimetanol, 1,6-hexanodiol, neopentilglicol, éter dihidroxietílico de hidroquinona, bisfenol A (2,2-bis(4-hidroxifenil)propano), bisfenol A hidrogenado (2,2-bis(4-hidroxiciclohexil)propano), así como trimetilolpropano, glicerina o pentaeritritol y mezclas de éstos, y dado el caso también otros polioles de bajo peso molecular. También pueden usarse ésterdioles como, por ejemplo, éster de ácido α -hidroxibutil- ϵ -hidroxiciclico) de ácido adípico o éster bis(β -hidroxietílico) de ácido tereftálico.

La cantidad de constituyente (e) en la composición de recubrimiento que va a usarse según la invención asciende preferiblemente a 0,1 a 1,0 mol, con especial preferencia a 0,2 a 0,9 moles, especialmente a 0,2 a 0,8 moles, referidos respectivamente al constituyente (a) de la composición de recubrimiento que va a usarse según la invención

35 (f) Otras unidades estructurales que contienen amina y/o hidroxi (componente estructural)

La reacción del componente que contienen isocianato (b) con los compuestos con funcionalidad hidroxi o amina (a), (c), (d) y dado el caso (e) se realiza normalmente manteniendo un ligero exceso de NCO en comparación con los compuestos hidroxílicos o de amina reactivos. Mediante la dispersión en agua se hidrolizan restos de grupos isocianato en grupos amina. Pero en el caso concreto puede ser importante bloquear el resto restante de grupos isocianato antes de la dispersión del poliuretano.

Por tanto, los recubrimientos de poliuretanourea previstos según la invención también pueden contener componentes estructurales (f) que se encuentran respectivamente en los extremos de cadena y terminan éstas. Estas unidades estructurales se derivan, por una parte, de compuestos monofuncionales reactivos con grupos NCO como monoaminas, especialmente aminas mono-secundarias, o monoalcoholes.

45 Aquí son de mencionar, por ejemplo, etanol, n-butanol, éter monobutílico de etilenglicol, 2-etilhexanol, 1-octanol, 1-dodecanol, 1-hexadecanol, metilamina, etilamina, propilamina, butilamina, octilamina, laurilamina, estearilamina, isononiloxipropilamina, dimetilamina, dietilamina, dipropilamina, dibutilamina, N-metilaminopropilamina, dietil(metil)aminopropilamina, morfolina, piperidina y derivados sustituidos adecuados de los mismos.

Como las unidades estructurales (f) se usan esencialmente en los recubrimientos según la invención para destruir el exceso de NCO, la cantidad requerida depende esencialmente de la cantidad del exceso de NCO y no puede especificarse en general.

En una forma de realización preferida de la presente invención se omite el componente (f), de manera que la poliuretanourea según la invención sólo comprende los constituyentes (a) a (d) y dado el caso el componente (e). Además, se prefiere que la poliuretanourea según la invención esté constituida por los constituyentes (a) a (d) y

dado el caso el componente (e), es decir, que no comprenda ningún otro componente estructural.

(g) Otros constituyentes

5

10

15

35

40

45

La poliuretanourea según la invención puede contener además otros constituyentes habituales para el fin previsto como aditivos y cargas. Un ejemplo de éstos son principios activos farmacológicos y aditivos que promueven la liberación de principios activos farmacológicos (aditivos eluyentes de fármacos, de "drug-eluting-additives"), así como de fármacos.

Fármacos que pueden usarse en los recubrimientos según la invención sobre los aparatos médicos son, en general, por ejemplo, agentes tromborresistentes, agentes antibióticos, agentes antitumorales, hormonas de crecimiento, agentes antivíricos, agentes antiangiogénicos, agentes angiogénicos, agentes antiinflamatorios, agentes reguladores del ciclo celular, agentes genéticos, hormonas, así como sus homólogos, derivados, fragmentos, sales farmacéuticas y combinaciones de los mismos.

Por tanto, ejemplos específicos de fármacos de este tipo incluyen agentes tromborresistentes (no trombogénicos) u otros agentes para suprimir una trombosis aguda, estenosis o reestenosis tardía de las arterias, por ejemplo, heparina, estreptocinasa, urocinasa, activador del plasminógeno tisular, agente anti-tromboxano-B₂; agente anti-B-tromboglobulina, prostaglandina E, aspirina, dipiridimol, agente anti-tromboxano-A₂, anticuerpo monoclonal murino 7E3, triazolopirimidina, ciprosteno, hirudina, ticlopidina, nicorandilo, etc. Un factor de crecimiento también puede usarse como fármaco para suprimir hiperplasia fibromuscular en el sitio de estenosis arterial, o puede usarse cualquier otro inhibidor discrecional del crecimiento celular en el sitio de estenosis.

El fármaco también puede estar constituido por un vasodilatador para contrarrestar vasoespasmos, por ejemplo, un agente antiespasmolítico como papaverina. El fármaco puede ser en sí un agente vasoactivo como antagonistas del calcio, o agonistas o antagonistas α- y β-adrenérgicos. Adicionalmente, el agente terapéutico puede ser un agente adherente biológico como cianoacrilato de calidad médica o fibrina que se usa, por ejemplo, para pegar una válvula de tejido a la pared de una arteria coronaria. El agente terapéutico puede ser además un agente antineoplásico como 5-fluorouracilo, preferiblemente con un vehículo de liberación controlada para el agente (por ejemplo, para la aplicación de un agente antineoplásico de liberación controlada continua en un sitio de tumor).

El agente terapéutico puede ser un antibiótico, preferiblemente en combinación con un vehículo de liberación controlada para la liberación continua del recubrimiento de un aparato médico en un foco de infección localizado dentro del cuerpo. Similarmente, el agente terapéutico puede contener esteroides con el fin de suprimir una inflamación en tejido localizado o por otros motivos.

- 30 Ejemplos específicos de fármacos adecuados comprenden:
 - (a) Heparina, sulfato de heparina, hirudina, ácido hialurónico, sulfato de condroitina, sulfato de dermatano, sulfato de queratano, agentes líticos, incluidos urocinasa y estreptocinasa, sus homólogos, análogos, fragmentos, derivados y sales farmacéuticas de los mismos;
 - (b) agentes antibióticos como penicilinas, cefalosporinas, vacomicinas, aminoglucósidos, quinolonas, polimixinas, eritromicinas; tetraciclinas, cloranfenicoles, clindamicinas, lincomicinas, sulfonamidas, sus homólogos, análogos, derivados, sales farmacéuticas y mezclas de los mismos;
 - (c) paclitaxel, docetaxel, inmunosupresores como sirolimus o everolimus, agentes alquilantes incluidos mecloretamina, clorambucilo, ciclofosfamida, melfalan e ifosfamida; antimetabolitos incluidos metotrexato, 6-mercaptopurina, 5-fluorouracilo y citarabina; alcaloides de las plantas incluidos vinblastina; vincristina y etopósido; antibióticos incluidos doxorubicina, daunomicina, bleomicina y mitomicina; nitrosourea incluidos carmustina y lomustina; iones inorgánicos incluido cisplatino; modificadores de la reacción biológica incluido interferón; agentes angiostatínicos y agentes endostatínicos; enzimas incluida asparaginasa; y hormonas incluidos tamoxifeno y flutamida, sus homólogos, análogos, fragmentos, derivados, sales farmacéuticas y mezclas de los mismos; y
 - (d) agentes antivíricos como amantadina, rimantadina, rabavirina, idoxuridina, vidarabina, trifluridina, aciclovir, ganciclocir, zidovudina, fosfonoformiatos, interferones, sus homólogos, análogos, fragmentos, derivados, sales farmacéuticas y mezclas de los mismos; y
 - e) agentes antiinflamatorios como, por ejemplo, ibuprofeno, dexametasona o metilprednisolona.

En una forma de realización preferida, la composición de recubrimiento prevista según la invención comprende una poliuretanourea que se sintetiza a partir de

- a) al menos un poliolcarbonato;
- b) al menos un poliisocianato;
- c) al menos un éter de polioxialquileno mixto monofuncional de poli(óxido de etileno) y poli(óxido de

propileno); y

d) al menos una diamina o un aminoalcohol.

En otra forma de realización de la presente invención, la composición de recubrimiento prevista según la invención comprende una poliuretanourea que se sintetiza a partir de

- a) al menos un poliolcarbonato;
- b) al menos un poliisocianato;
- c) al menos un éter de polioxialquileno mixto monofuncional de poli(óxido de etileno) y poli(óxido de propileno);
- d) al menos una diamina o un aminoalcohol; y
- 10 e) al menos un poliol.

En otra forma de realización de la presente invención, la composición de recubrimiento prevista según la invención comprende una poliuretanourea que se sintetiza a partir de

- a) al menos un poliolcarbonato;
- b) al menos un poliisocianato;
- c) al menos un éter de polioxialquileno mixto monofuncional de poli(óxido de etileno) y poli(óxido de propileno);
- d) al menos una diamina o un aminoalcohol;
- e) al menos un poliol; y
- f) al menos un monómero que contiene amina o hidroxilo que se encuentra en los extremos de cadena del polímero.

Como ya se ha mencionado, una forma de realización muy especialmente preferida de la presente invención consiste en que la poliuretanourea según la invención sólo está constituida por los constituyentes (a) a (d) y dado el caso (e).

Según la invención también se prefieren poliuretanoureas que se sintetizan a partir de

- a) al menos un poliolcarbonato con un peso molar promedio entre 400 g/mol y 6000 g/mol y una funcionalidad hidroxilo de 1,7 a 2,3, o mezclas de poliolcarbonatos de este tipo;
- b) al menos un poliisocianato alifático, cicloalifático o aromático o mezclas de poliisocianatos de este tipo en una cantidad por mol del poliolcarbonato de 1,0 a 4,0 moles;
- c) al menos un éter de polioxialquileno mixto monofuncional de poli(óxido de etileno) y poli(óxido de propileno) o una mezcla de poliéteres de este tipo con un peso molar promedio entre 500 g/mol y 5000 g/mol en una cantidad por mol del poliolcarbonato de 0,01 a 0,5 moles;
- d) al menos una diamina alifática o cicloalifática o al menos un aminoalcohol, como los llamados extensores de cadenas, o mezclas de compuestos de este tipo en una cantidad por mol del poliolcarbonato de 0,05 a 3,0 moles;
- e) dado el caso uno o varios polioles alifáticos de cadena corta con un peso molar entre 62 g/mol y 500 g/mol en una cantidad por mol del poliolcarbonato de 0,1 a 1,0 mol; y
- f) dado el caso unidades estructurales que contienen amina u OH que se encuentran en los extremos de cadenas del polímero y terminan éstas.

Según la invención también se prefieren poliuretanoureas que se sintetizan a partir de

- a) al menos un poliolcarbonato con un peso molar promedio entre 500 g/mol y 5000 g/mol y una funcionalidad hidroxilo de 1,8 a 2,2, o a partir de mezclas de poliolcarbonatos de este tipo;
 - b) al menos un poliisocianato alifático, cicloalifático o aromático o mezclas de poliisocianatos de este tipo en una cantidad por mol del poliolcarbonato de 1,2 a 3,8 moles;
 - c) al menos un éter de polioxialquileno mixto monofuncional de poli(óxido de etileno) y poli(óxido de propileno) o una mezcla de poliéteres de este tipo con un peso molar promedio entre 1000 g/mol y 4000

8

5

15

20

30

25

35

40

45

g/mol en una cantidad por mol del poliolcarbonato de 0,02 a 0,4 moles;

5

15

20

30

35

40

45

50

- d) al menos una diamina alifática o cicloalifática o al menos un aminoalcohol, como los llamados extensores de cadenas, o mezclas de compuestos de este tipo en una cantidad por mol del poliolcarbonato de 0,1 a 2.0 moles:
- e) dado el caso uno o varios polioles alifáticos de cadena corta con un peso molar entre 62 g/mol y 400 g/mol en una cantidad por mol del poliolcarbonato de 0,2 a 0,9 moles; y
- f) dado el caso unidades estructurales que contienen amina u OH que se encuentran en los extremos de cadenas del polímero y terminan éstas.

Según la invención también se prefieren adicionalmente poliuretanoureas que se sintetizan a partir de

- a) al menos un poliolcarbonato con un peso molar promedio entre 600 g/mol y 3000 g/mol y una funcionalidad hidroxilo de 1,9 a 2,1, o a partir de mezclas de poliolcarbonatos de este tipo;
 - b) al menos un poliisocianato alifático, cicloalifático o aromático o mezclas de poliisocianatos de este tipo en una cantidad por mol del poliolcarbonato de 1,5 a 3,5 moles;
 - c) al menos un éter de polioxialquileno mixto monofuncional de poli(óxido de etileno) y poli(óxido de propileno) o una mezcla de poliéteres de este tipo con un peso molar promedio entre 1000 g/mol y 3000 g/mol en una cantidad por mol del poliolcarbonato de 0,04 a 0,3 moles;
 - d) al menos una diamina alifática o cicloalifática o al menos un aminoalcohol, como los llamados extensores de cadenas, o mezclas de compuestos de este tipo en una cantidad por mol del poliolcarbonato de 0,2 a 1,5 moles;
 - e) dado el caso uno o varios polioles alifáticos de cadena corta con un peso molar entre 62 g/mol y 200 g/mol en una cantidad por mol del poliolcarbonato de 0,2 a 0,8 moles; y
 - f) dado el caso unidades estructurales que contienen amina u OH que se encuentran en los extremos de cadenas del polímero y terminan éstas.

La composición de recubrimiento se aplica sobre un aparato médico.

25 <u>Uso de la composición de recubrimiento según la invención en forma de una dispersión</u>

La composición de recubrimiento según la invención en forma de una dispersión puede usarse además para formar un recubrimiento sobre un aparato médico.

El término "aparato médico" debe entenderse ampliamente en el marco de la presente invención. Ejemplos no limitantes adecuados de aparatos médicos (incluidos instrumentos) son lentes de contacto; cánulas; catéteres, por ejemplo, catéteres urológicos como catéteres urinarios o catéteres ureterales; catéteres venosos centrales; catéteres venosos o catéteres de entrada o salida; globos de dilatación; catéteres para angioplastia y biopsia; catéteres que se usan para introducir una prótesis endovascular, de un filtro de embolia o de un filtro en la vena cava; catéteres con globo u otros aparatos médicos expansibles; endoscopios; laringoscopios; aparatos traqueales como tubos endotraqueales, respiradores y otros aparatos de aspiración traqueal; catéteres de lavado broncoalveolar; catéteres que se usan en la angioplastia coronaria; varillas de guía, guías de inserción y similares; tapones vasculares; componentes de marcapasos; implantes cocleares; tubos de implante dental para la alimentación, tubos de drenaje; y alambres de guía.

Además, las soluciones de recubrimiento según la invención pueden usarse para la preparación de recubrimientos protectores, por ejemplo, para guantes, prótesis endovasculares y otros implantes; tubos para sangre extracorporal (fuera del cuerpo) (tubos de conducción de sangre); membranas, por ejemplo, para diálisis; filtros para sangre; aparatos para apoyar la circulación; material de vendaje para el cuidado de heridas; bolsas de orina y bolsas colectoras para estoma. También se incluyen implantes que contienen un agente médicamente eficaz como agentes médicamente eficaces para prótesis endovasculares o para superficies de globos o para anticonceptivos.

Normalmente, el aparato médico está formado por catéteres, endoscopios, laringoscopios, tubos endotraqueales, sondas de alimentación, varillas de guía, prótesis endovasculares y otros implantes.

Como sustrato de la superficie que va a recubrirse se consideran muchos materiales como metales, textiles, cerámicas o plásticos, prefiriéndose el uso de plásticos para la fabricación de aparatos médicos.

Según la invención se encontró que pueden generarse aparatos médicos con superficies compatibles con la sangre muy hidrófilas y, por tanto, deslizantes usando para el recubrimiento de los aparatos médicos dispersiones de poliuretano estabilizadas no iónicas acuosas del tipo anteriormente descrito. Las composiciones de recubrimiento anteriormente descritas se obtienen preferiblemente como dispersiones acuosas y se aplican sobre la superficie de

los aparatos médicos.

10

25

Preparación de la dispersión de recubrimiento

Los constituyentes de los recubrimientos descritos más detalladamente anteriormente se hacen reaccionar en general de forma que inicialmente se prepare un prepolímero con funcionalidad isocianato libre de grupos urea mediante reacción de los constituyentes (a), (b), (c) y dado el caso (e), ascendiendo la relación de la cantidad de sustancia de grupos isocianato con respecto a grupos reactivos con isocianato del poliolcarbonato preferiblemente a 0,8 a 4,0, con especial preferencia a 0,9 a 3,8, especialmente a 1,0 a 3,5.

En una forma de realización alternativa también puede hacerse reaccionar primero el constituyente (a) por separado con el isocianato (b). Entonces, después puede realizarse la adición de los constituyentes (c) y (e) y su reacción. A continuación, en general, los grupos isocianato restantes se someten a extensión o terminación de cadenas aminofuncional antes, durante o después de la dispersión en agua, encontrándose la relación de equivalentes de grupos reactivos con isocianato de los compuestos usados para la extensión de cadenas con respecto a los grupos isocianato libres del prepolímero preferiblemente entre el 40 y el 150 %, con especial preferencia entre el 50 y el 120 %, especialmente entre el 60 y el 120 % (constituyente (d)).

Las dispersiones de poliuretano según la invención se preparan a este respecto preferiblemente según el llamado procedimiento con acetona. Para la preparación de la dispersión de poliuretano según este procedimiento con acetona, normalmente los constituyentes (a), (c) y (e), que no deben presentar grupos amino primarios o secundarios, y el componente de poliisocianato (b) se disponen completa o parcialmente para la preparación de un prepolímero de poliuretano con funcionalidad isocianato y dado el caso se diluyen con un disolvente miscible con agua, pero inerte a grupos isocianato, y se calientan a temperaturas en el intervalo de 50 a 120 °C. Para acelerar la reacción de adición de isocianato pueden usarse los catalizadores conocidos en la química de los poliuretanos, por ejemplo, dilaurato de dibutilestaño. Se prefiere la síntesis sin catalizador.

Disolventes adecuados son los disolventes cetofuncionales alifáticos habituales como, por ejemplo, acetona, butanona que pueden añadirse no sólo al principio de la preparación, sino dado el caso también en partes posteriormente. Se prefieren acetona y butanona. También pueden usarse otros disolventes como, por ejemplo, xileno, tolueno, ciclohexano, acrilato de butilo, acetato de metoxipropilo, disolventes con unidades de éter o éster y separarse por destilación completa o parcialmente o permanecer completamente en la dispersión.

A continuación se dosifican los constituyentes de (c) y (e) dado el caso todavía no añadidos al principio de la reacción.

30 En una forma preferida, el prepolímero se prepara sin la adición de disolvente y sólo para la extensión de cadenas se diluye con un disolvente adecuado, preferiblemente acetona.

En la preparación del prepolímero de poliuretano, la relación de la cantidad de sustancia de grupos isocianato con respecto a grupos reactivos con isocianato asciende preferiblemente a 0,8 a 4,0, con especial preferencia a 0,9 a 3,8, especialmente a 1,0 a 3,5.

La reacción para dar el prepolímero se realiza parcialmente o completamente, pero preferiblemente completamente. Así se obtienen prepolímeros de poliuretano que contienen grupos isocianato libres en sustancia o en disolución.

A continuación, en otra etapa de procedimiento, en caso de que no se haya producido o sólo parcialmente, el prepolímero obtenido se disuelve con ayuda de cetonas alifáticas como acetona o butanona.

A continuación se hacen reaccionar posibles componentes con funcionalidad NH₂, NH y/o con funcionalidad OH con los grupos isocianato todavía restantes. A este respecto, esta extensión / terminación de cadenas puede realizarse o bien en disolvente antes de la dispersión, durante la dispersión o bien en agua después de la dispersión. La extensión de cadenas se realiza preferiblemente antes de la dispersión en agua.

Si para la extensión de cadenas se usan compuestos correspondientemente a la definición de (d) con grupos NH₂ o NH, la extensión de cadenas de los prepolímeros se realiza preferiblemente antes de la dispersión.

45 El grado de extensión de las cadenas, es decir, la relación de equivalentes de grupos reactivos con NCO de los compuestos usados para la extensión de cadenas con respecto a grupos NCO libres del prepolímero se encuentra preferiblemente entre el 40 y el 150 %, con especial preferencia entre el 50 y el 120 %, especialmente entre el 60 y el 120 %.

Los componentes amínicos (d) pueden usarse dado el caso en forma diluida en agua o en disolvente en el procedimiento según la invención, por separado o en mezclas, siendo posible en principio cualquier orden de adición.

Si se usan conjuntamente agua o disolventes orgánicos como diluyentes, entonces el contenido de diluyentes asciende preferiblemente al 70 al 95 % en peso.

La preparación de la dispersión de poliuretano a partir de los prepolímeros se realiza a continuación de la extensión de cadenas. Para esto, o bien el polímero de poliuretano disuelto y de cadenas extendidas se incorpora en el agua de dispersión dado el caso con fuerte cizallamiento como, por ejemplo, fuerte agitación, o bien por el contrario el agua de dispersión se agita en las soluciones de prepolímero. Preferiblemente, el agua se añade al prepolímero disuelto.

5

10

40

45

50

A continuación, el disolvente todavía contenido en las dispersiones después de la etapa de dispersión se elimina normalmente por destilación. También es posible ya una eliminación durante la dispersión.

El contenido de sólidos de la dispersión de poliuretano después de la síntesis se encuentra entre el 20 y el 70 % en peso, preferiblemente del 20 al 65 % en peso. Para los ensayos de recubrimiento, estas dispersiones pueden diluirse discrecionalmente con agua para poder ajustar de forma variable el espesor del recubrimiento. Son posibles todas las concentraciones del 1 al 60 % en peso, se prefieren concentraciones en el intervalo del 1 al 40 % en peso.

A este respecto pueden alcanzarse espesores de capa discrecionales como, por ejemplo, de algunos 100 nm hasta algunos 100 µm, siendo también posible en el marco de la presente invención mayores y menores espesores.

Los materiales de poliuretano para el recubrimiento de los aparatos médicos pueden diluirse con agua a cualquier valor deseado mediante dilución de las dispersiones acuosas según la invención. Además, pueden añadirse espesantes para dado el caso poder elevar la viscosidad de las dispersiones de poliuretano. También son posibles otros aditivos como, por ejemplo, antioxidantes, materiales de tampón para ajustar el valor de pH o pigmentos. Además, dado el caso todavía pueden usarse otros aditivos como coadyuvantes para el tacto, colorantes, agentes de mateado, estabilizadores de UV, estabilizadores a la luz, agentes de hidrofobización, agentes de hidrofilización y/o agentes nivelantes.

Entonces, a partir de estas dispersiones se preparan los recubrimientos médicos por el procedimiento previamente descrito.

Según la invención se ha comprobado que los recubrimientos resultantes sobre los aparatos médicos se diferencian dependiendo de si el recubrimiento se prepara a partir de una dispersión o de una solución.

A este respecto, los recubrimientos según la invención sobre aparatos médicos presentan ventajas cuando se obtienen a partir de dispersiones de las composiciones de recubrimiento anteriormente descritas ya que las dispersiones de los sistemas de recubrimiento según la invención conducen a recubrimientos sobre los aparatos médicos que no presentan restos de disolventes orgánicos, es decir, desde el punto de vista tóxico son en general inocuos, y al mismo tiempo conducen a una hidrofilia más pronunciada, lo que puede identificarse, por ejemplo, en un bajo ángulo de contacto. Para esto se remite a los ensayos y ensayos comparativos explicados más adelante.

A este respecto, los aparatos médicos pueden recubrirse mediante distintos procedimientos con las dispersiones de poliuretano hidrófilas según la invención. Técnicas de recubrimiento adecuadas para esto son, por ejemplo, aplicación con rasqueta, impresión, recubrimiento por transferencia, pulverización, recubrimiento por centrifugación o inmersión.

Las dispersiones acuosas de poliuretano que se usan como sustancia de partida para la preparación de los recubrimientos pueden prepararse según procedimientos discrecionales, prefiriéndose sin embargo el procedimiento con acetona previamente descrito.

A este respecto pueden recubrirse muchos sustratos como metales, textiles, cerámicas y plásticos. Se prefiere el recubrimiento de aparatos médicos que están hechos de metales o plástico. Como metales pueden mencionarse, por ejemplo: acero inoxidable quirúrgico o aleaciones de níquel-titanio. Son concebibles muchos materiales poliméricos a partir de los cuales puede construirse el aparato médico, por ejemplo, poliamida; poliestireno; policarbonato; poliéter; poliéster; poli(acetato de vinilo); cauchos naturales y sintéticos; copolímeros de bloques de estireno y compuestos insaturados como etileno, butileno e isopreno; polietileno o copolímeros de polietileno y polipropileno; silicona; poli(cloruro de vinilo) (PVC) y poliuretanos. Para la mejor adhesión del poliuretano hidrófilo sobre el aparato médico, otros recubrimientos adecuados pueden aplicarse como sustrato antes de la aplicación de estos materiales de recubrimiento hidrófilos.

Adicionalmente a las propiedades hidrófilas de la mejora de la capacidad de deslizamiento, las composiciones de recubrimiento previstas según la invención también destacan por una alta compatibilidad con la sangre. A causa de esto, un trabajo con estos recubrimientos también es especialmente ventajoso en contacto con la sangre. En comparación con los polímeros del estado de la técnica, los materiales muestran una tendencia a la coagulación reducida en contacto con la sangre.

Las ventajas de los catéteres según la invención con los recubrimientos de poliuretano hidrófilos se exponen en los siguientes ejemplos mediante ensayos comparativos.

Ejemplos

5

20

25

30

50

La determinación del contenido de NCO de las resinas descritas en los ejemplos y ejemplos de comparación se realizó por valoración según DIN EN ISO 11909.

La determinación de los contenidos de sólidos se realizó según DIN-EN ISO 3251. Se secó 1 g de dispersión de poliuretano a 115 °C hasta constancia de peso (15-20 min) mediante un secadero por infrarrojos.

La medición del tamaño medio de partícula de las dispersiones de poliuretano se realiza con ayuda de High Performance Particle Sizer (HPPS 3.3) de la empresa Malvern Instruments.

A menos que se observe de otro modo, los datos de cantidades especificados en % se entienden como % en peso y se refieren a la dispersión acuosa obtenida.

10 Sustancias y abreviaturas usadas:

Desmophen C2200: poliolcarbonato, índice de OH 56 mg de KOH/g, peso molecular promedio en número

2000 g/mol (Bayer, MaterialScience AG, Leverkusen, DE)

Desmophen C1200: poliolcarbonato, índice de OH 56 mg de KOH/g, peso molecular promedio en número

2000 g/mol (Bayer MaterialScience AG, Leverkusen, DE)

15 Desmophen XP 2613 poliolcarbonato, índice de OH 56 mg de KOH/g, peso molecular promedio en número

2000 g/mol (Bayer MaterialScience AG, Leverkusen, DE)

PolyTHF[®] 2000: poliol de tetrametilenglicol, índice de OH 56 mg de KOH/g, peso molecular promedio en

número 2000 g/mol (BASF AG, Ludwigshafen, DE)

Poliéter LB 25: (poliéter monofuncional basado en óxido de etileno/óxido de propileno, peso molecular

promedio en número 2250 g/mol, índice de OH 25 mg de KOH/g (Bayer MaterialScience

AG, Leverkusen, DE)

Ejemplo 1:

Este ejemplo describe la preparación de una dispersión de poliuretanourea según la invención.

277,2 g de Desmophen C 2200, 33,1 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 3 h 40 min se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 15 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 41,5 % y un tamaño medio de partícula de 164 nm.

Ejemplo 2:

Este ejemplo describe la preparación de una dispersión de poliuretanourea según la invención.

35 269,8 g de Desmophen C 2200, 49,7 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 100 °C. Después de 21,5 h se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 41,3 % y un tamaño medio de partícula de 109 nm.

Ejemplo 3:

45 Este ejemplo describe la preparación de una dispersión de poliuretanourea según la invención.

277,2 g de Desmophen C 1200, 33,1 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 2,5 h se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso

de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 40,4 % y un tamaño medio de partícula de 146 nm.

5 Ejemplo 4:

10

15

20

25

Este ejemplo describe la preparación de una dispersión de poliuretanourea según la invención.

282,1 g de Desmophen C 2200, 22,0 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 21,5 h se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 41,7 % y un tamaño medio de partícula de 207 nm.

Ejemplo 5:

Este ejemplo describe la preparación de una dispersión de poliuretanourea según la invención.

269,8 g de Desmophen XP 2613, 49,7 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 70 min se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 41,2 % y un tamaño medio de partícula de 112 nm.

Ejemplo 6:

Este ejemplo describe la preparación de una dispersión de poliuretanourea según la invención.

249,4 g de Desmophen C 2200, 33,1 g del poliéter LB 25, 1,9 g de trimetilolpropano y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 4 h 20 min se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 720 g de acetona y a continuación se dosificó a 40 °C una solución de 3,3 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 15 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 38,9 % y un tamaño medio de partícula de 144 nm.

Ejemplo 7:

282,1 g de Desmophen XP 2613, 22,0 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 70 min se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 38,3 % y un tamaño medio de partícula de 215 nm.

Ejemplo 8:

50

Este ejemplo describe la preparación de una dispersión de poliuretanourea como producto de comparación con el Ejemplo 1 según la invención. Se cambió Desmophen C2200 por PolyTHF 2000.

277,2 g de PolyTHF 2000, 33,1 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 $^{\circ}$ C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 $^{\circ}$ C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 $^{\circ}$ C. Después de 18 h se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 $^{\circ}$ C en 711 g de

acetona y a continuación se dosificó a 40 ºC una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 40,7 % y un tamaño medio de partícula de 166 nm.

Ejemplo 9:

5

20

25

35

40

Este ejemplo describe la preparación de una dispersión de poliuretanourea como producto de comparación con el Ejemplo 2 según la invención. Se cambió Desmophen C2200 por PolyTHF 2000.

269,8 g de PolyTHF 2000, 49,7 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 100 °C. Después de 17,5 h se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 41,6 % y un tamaño medio de partícula de 107 nm.

Ejemplo 10:

Este ejemplo describe la preparación de una dispersión de poliuretanourea como producto de comparación con el Ejemplo 4 según la invención. Se cambió Desmophen C2200 por PolyTHF 2000.

282,1 g de PolyTHF 2000, 22,0 g del poliéter LB 25 y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 21,5 h se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 37,5 % y un tamaño medio de partícula de 195 nm.

30 Ejemplo 11: Preparación de los recubrimientos y medición del ángulo de contacto estático

Los recubrimientos para la medición del ángulo de contacto estático se prepararon sobre portaobjetos de vidrio de 25 x 75 mm de tamaño con ayuda de una recubridora por centrifugación (RC5 Gyrset 5, Karl Süss, Garching, Alemania). Para esto, un portaobjetos se sujetó sobre la placa de muestra de la recubridora por centrifugación y se cubrió homogéneamente con aproximadamente 2,5 - 3 g de dispersión de poliuretano sin diluir acuosa. Mediante la rotación de la placa de muestra durante 20 s a 1300 revoluciones por minuto se obtuvo un recubrimiento homogéneo que se secó 15 min a 100 °C y después 24 h a 50 °C. Los portaobjetos recubiertos obtenidos se sometieron directamente a una medición del ángulo de contacto.

Se realiza una medición del ángulo de contacto estático de los recubrimientos obtenidos sobre los portaobjetos. Mediante el aparato de medición del ángulo de contacto de vídeo OCA20 de la empresa Dataphysics con inyección controlada con ordenador, sobre la muestra se aplican 10 gotas de agua Millipore y se mide su ángulo de contacto de humectación estático. Previamente se elimina la carga estática (en caso de que esté presente) sobre la superficie de la muestra mediante un secador antiestático.

•		
PELÍCULA DE PU	ÁNGULO DE CONTACTO [º]	
Ejemplo 1	<10	
Ejemplo 2	11	
Ejemplo 3	14	
Ejemplo 4	20	
Ejemplo 5	14	

Tabla 1: Mediciones del ángulo de contacto estático

(continuación)

Ejemplo 6	26
Ejemplo 7	41
Ejemplo de comparación 8	66
Ejemplo de comparación 9	62
Ejemplo de comparación 10	77

Como muestra la Tabla 1, los recubrimientos que contienen policarbonato de los Ejemplos 1 a 7 según la invención dan recubrimientos extraordinariamente hidrófilos con ángulos de contacto estáticos ≤ 45º. Los recubrimientos de los Ejemplos 1 a 6 dan recubrimientos extraordinariamente hidrófilos con ángulos de contacto estáticos < 30º. Por el contrario, los recubrimientos que contienen PolyTHF de los Ejemplos de comparación 7 a 10 son esencialmente apolares, a pesar de que la composición de estos recubrimientos es por lo demás idéntica a la de los Ejemplos 1, 2 y 4

Además, los datos que se dan a conocer en "Evaluation of a poly(vinylpyrrolidone)-coated biomaterial for urological use"; M.M. Tanney, S.P. Gorman, Biomaterials 23 (2002), 4601 - 4608, muestran que el ángulo de contacto del poliuretano se encuentra en aproximadamente 97º y del poliuretano recubierto con PVP en aproximadamente 50º.

Ejemplo 12: Medición de los parámetros de coagulación

5

10

15

20

25

30

A partir de la dispersión de poliuretano del Ejemplo 1 se preparó una película para estudios de contacto con la sangre por recubrimiento por centrifugación sobre vidrio. La superficie de muestra se depositó en una cámara de incubación esterilizada en autoclave y se incubó con 1,95 ml de sangre. La construcción exacta del experimento se describe en U. Streller y col. J. Biomed. Mater. Res B, 2003, 668, 379-390.

La sangre venosa necesaria para el experimento se extrajo mediante una cánula de 19 G de un donante masculino que no había tomado ningún medicamento durante al menos 10 días. La coagulación se previno mediante la adición de heparina (2 Ul/ml). La sangre así preparada se cargo luego en la cámara de incubación equipada con la superficie de poliuretano previamente acondicionada térmicamente a 37 °C y se incubó 2 h con rotación permanente de la cámara a 37 °C. Como materiales de comparación se usaron vidrio y politetrafluoroetileno (PTFE). El vidrio es una superficie fuertemente activante para la coagulación de la sangre, mientras que el PTFE es un polímero que es un material aceptable para muchas aplicaciones (véase U. Streller y col. J. Biomed. Mater. Res B, 2003, 66B, 379-390).

Después de realizarse la incubación se midieron tres parámetros:

Complejo trombina-antitrombina (Enzygnost TAT micro, Dade Behring GmbH, Marburgo, Alemania)

Factor plaquetario 4 (kit completo de PF 4 para ELISA de Haemochrom Diagnostica GmbH, Essen, Alemania)

La reducción de trombocitos se midió en sangre anticoagulada con EDTA mediante un sistema de recuento de células automático (AcTdiff de la empresa Coulter, Krefeld, Alemania).

Tabla 2: Complejo trombina-antitrombina

Superficie	Complejo trombina-antitrombina (µg/ml)
Poliuretano del Ejemplo 1	27,7
PTFE	33,4

Tabla 3: Factor plaquetario 4

Superficie	Complejo trombina-antitrombina (UI/mI)
Poliuretano del Ejemplo 1	29,7
Vidrio	377,2
PTFE	59,2

15

Tabla 4: Reducción de trombocitos en sangre

Superficie	Número de trombocitos (% de reducción)
Poliuretano del Ejemplo 1	-0,3
Vidrio	17,9
PTFE	5,7

Los tres parámetros de la sangre medidos muestran que el poliuretano hidrófilo del Ejemplo 1 activa la coagulación sólo de una forma muy moderada. El complejo trombina-antitrombina como medida para la activación de la cascada de coagulación intrínseca muestra que el propio poliuretano genera valores más bajos en comparación con el PTFE considerado como muy compatible con la sangre y de esta manera se provoca una activación todavía menor.

El factor plaquetario 4 es un marcador de la activación de los trombocitos. Esta parte celular de la coagulación también sólo lo activa a un pequeño grado el poliuretano hidrófilo. El PTFE muy compatible con la sangre provoca una mayor activación. La reducción de los trombocitos también es evidente para el vidrio y también el PTFE, lo que significa que una parte de los trombocitos se fija por adición a estas superficies. Por el contrario, en el poliuretano hidrófilo del Ejemplo 1 prácticamente no puede apreciarse ninguna reducción.

Ejemplo 13:

5

10

15

20

25

30

45

Este ejemplo describe la síntesis de una dispersión acuosa con unidades estructurales de poli(óxido de etileno) terminales como material de comparación con los ejemplos según la invención en los que se usa un poliuretano que está terminado por un copolímero de poli(óxido de etileno) y poli(óxido de propileno). El poliéter LB 25 usado en el sentido de la presente invención se cambia en este ejemplo por las mismas cantidades molares de un éter de poli(óxido de etileno) puro comparable.

277,2 g de Desmophen C 2200, 29,4 g de éter monometílico de polietilenglicol 2000 (fuente: Fluka, nº CAS 9004-74-4) y 6,7 g de neopentilglicol se dispusieron a 65 °C y se homogeneizaron 5 min por agitación. A esta mezcla se añadieron a 65 °C en el transcurso de 1 min primero 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y después 11,9 g de isoforondiisocianato. Se calentó a 110 °C. Después de 35 min se alcanzó el valor de NCO teórico. El prepolímero preparado se disolvió a 50 °C en 711 g de acetona y a continuación se dosificó a 40 °C una solución de 4,8 g de etilendiamina en 16 g de agua en el transcurso de 10 min. El tiempo de agitación ascendió a 5 min. A continuación se dispersó en el transcurso de 15 min mediante la adición de 590 g de agua. Siguió la eliminación del disolvente mediante destilación a vacío. Se obtuvo una dispersión de poliuretano estable durante el almacenamiento con un contenido de sólidos del 40,0 % y un tamaño medio de partícula de 130 nm.

Como se ha descrito en el Ejemplo 11, se preparó un recubrimiento sobre vidrio mediante recubrimiento por centrifugación y se determinó el ángulo de contacto estático de este recubrimiento. Se obtuvo un ángulo de contacto estático de 45º. La comparación de este valor con el valor para el recubrimiento del Ejemplo 1 (< 10º, véase la Tabla 1 en el Ejemplo 11) muestra que el uso del monol mixto de poli(óxido de etileno)-poli(óxido de propileno) LB 25 en comparación con el monol de poli(óxido de etileno) puro hace posible ángulos de contacto claramente más bajos y, por tanto, recubrimientos más hidrófilos.

Ejemplo 14:

Este ejemplo describe la síntesis del polímero de poliuretanourea del Ejemplo 1 según la invención como ejemplo de comparación en solución orgánica.

A una mezcla de 277,2 g de Desmophen C 2200, 33,1 g de LB 25, 6,7 g de neopentilglicol se añaden a 60 °C 71,3 g de 4,4'-bis(isocianatociclohexil)metano (H₁₂MDI) y 11,9 g de isoforondiisocianato. La mezcla se calentó a 110 °C y se hizo reaccionar hasta un contenido de NCO constante de 2,4. Se dejó enfriar y se diluyó con 475 g de tolueno y 320 g de isopropanol. A temperatura ambiente se añadió en el transcurso una solución de 4,8 g de etilendiamina en 150 g de 1-metoxipropan-2-ol. Después de completarse la adición se agitó 2 h. Se obtuvieron 1350 g de una solución de 40 poliuretano al 30,2 % en tolueno/isopropanol/1-metoxipropan-2-ol con una viscosidad de 607 mPas a 23 °C.

Como se ha descrito en el Ejemplo 11, se preparó un recubrimiento sobre vidrio mediante recubrimiento por centrifugación y se determinó el ángulo de contacto estático de este recubrimiento. Se determinó un ángulo de contacto estático de 27º. La comparación de este valor con el valor para el recubrimiento del Ejemplo 1 (< 10º, véase la Tabla 1 en el Ejemplo 11), un recubrimiento estructuralmente igual, pero disperso en agua, muestra que los recubrimientos de dispersión acuosa dan recubrimientos más hidrófilos en comparación con recubrimientos que se obtienen a partir de soluciones correspondientes.

REIVINDICACIONES

- 1. Composición de recubrimiento en forma de una dispersión, caracterizada porque comprende una poliuretanourea que
 - (1) está terminada con una unidad de copolímero de poli(óxido de etileno) y poli(óxido de propileno), y
 - (2) comprende al menos un poliolcarbonato que contiene grupos hidroxilo.
- 2. Composición de recubrimiento según la reivindicación 1, **caracterizada porque** la poliuretanourea presenta unidades que se derivan de al menos un isocianato alifático, cicloalifático o aromático.
- 3. Composición de recubrimiento según la reivindicación 1 ó 2, **caracterizada porque** la poliuretanourea presenta una modificación iónica máxima del 2,5 % en peso.
- 4. Composición de recubrimiento según una de las reivindicaciones 1 a 3, **caracterizada porque** el recubrimiento presenta una poliuretanourea que se sintetiza a partir de
 - a) al menos un poliolcarbonato con un peso molar promedio entre 400 g/mol y 6000 g/mol y una funcionalidad hidroxilo de 1,7 a 2,3, o a partir de mezclas de poliolcarbonatos de este tipo;
 - b) al menos un poliisocianato alifático, cicloalifático o aromático o mezclas de poliisocianatos de este tipo en una cantidad por mol del poliolcarbonato de 1,0 a 4,0 moles;
 - c) al menos un éter de polioxialquileno mixto monofuncional de poli(óxido de etileno) y poli(óxido de propileno) o una mezcla de poliéteres de este tipo con un peso molar promedio entre 500 g/mol y 5000 g/mol en una cantidad por mol del poliolcarbonato de 0,01 a 0,5 moles;
 - d) al menos una diamina alifática o cicloalifática o al menos un aminoalcohol, como los llamados extensores de cadena, o mezclas de compuestos de este tipo en una cantidad por mol del poliolcarbonato de 0,05 a 3.0 moles:
 - e) dado el caso uno o varios polioles alifáticos de cadena corta con un peso molar entre 62 g/mol y 500 g/mol en una cantidad por mol del poliolcarbonato de 0,1 a 1,0 mol; y
- dado el caso unidades estructurales que contienen amina u OH que se encuentran en los extremos de las cadenas del polímero y terminan éstas.
 - 5. Procedimiento para la preparación de una dispersión de poliuretanourea según una de las reivindicaciones 1 a 4 que comprende las siguientes etapas de procedimiento:
 - (I) disponer los constituyentes (a), (b), (c) y dado el caso (e) y dado el caso diluir con un disolvente miscible con aqua, pero inerte a grupos isocianato;
 - (II) calentar la composición que puede obtenerse a partir de (I) a temperaturas en el intervalo de 50 a 120 °C:
 - (III) dosificar los constituyentes de (c) y (e) dado el caso todavía no añadidos al principio de la reacción;
 - (IV) disolver el prepolímero obtenido con avuda de cetonas alifáticas:
 - (V) añadir el constituyente (d) para la extensión de cadenas;
 - (VI) añadir agua para la dispersión; y

5

15

20

30

35

- (VII) eliminar la cetona alifática, preferiblemente mediante destilación.
- 6. Composición de recubrimiento en forma de una dispersión que puede obtenerse según el procedimiento según la reivindicación 5.
- 7. Uso de una solución de recubrimiento según una de las reivindicaciones 1 a 4 ó 6 para el recubrimiento de al menos un aparato médico.