

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 374 200

(51) Int. Cl.:

A61K 9/16 A61K 9/20 A61K 9/50

(2006.01) (2006.01)

(2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96) Número de solicitud europea: 08795541 .5
- 96 Fecha de presentación: 21.08.2008
- Número de publicación de la solicitud: 2079446
 Fecha de publicación de la solicitud: 22.07.2009
- 64) Título: FORMULACIÓN DE LIBERACIÓN PROLONGADA DE PALIPERIDONA.
- (30) Prioridad: 21.08.2007 US 935597 P

73) Titular/es:

TEVA PHARMACEUTICAL INDUSTRIES LTD. 5 BASEL STREET P.O. BOX 3190 49131 PETAH TIQVA, IL

45 Fecha de publicación de la mención BOPI: 14.02.2012

(72) Inventor/es:

FOX, Michael; DI CAPUA, Simona y REINBERG, Ronny

Fecha de la publicación del folleto de la patente: 14.02.2012

(74) Agente: Curell Aguilá, Mireya

ES 2 374 200 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Formulación de liberación prolongada de paliperidona.

5 Referencia cruzada a una solicitud relacionada

La presente solicitud reivindica los derechos de la solicitud provisional US nº 60/935.597, presentada el 21 de agosto de 2007.

La presente invención se refiere a composiciones farmacéuticas de liberación prolongada que comprenden paliperidona o una sal de la misma, y a un procedimiento para la preparación de las mismas.

Antecedentes de la invención

35

40

45

55

60

La paliperidona se describe en la patente US nº 4.804.663. El compuesto paliperidona difiere de la risperidona y de los compuestos relacionados de la técnica anterior descritos en las patentes US nº 4.352.811 y nº 4.458.076 en la sustitución en la posición 1 de la fracción piperidina.

La paliperidona (nº de registro de CAS 144598-75-4) presenta el nombre químico 4H-pirido[1,2-a]pirimidín-4-ona, 3-20 [2-[4-(6-fluoro-1,2-bencisoxazol-3-il)-1-piperidinil]etil]-6,7,8,9-tetrahidro-9-hidroxi-2-metilo. La paliperidona se encuentra representada por la fórmula estructural siguiente:

La paliperidona es prácticamente insoluble en agua, fácilmente soluble en cloruro de metileno y soluble en metanol y ácido hidroclórico 0,1 N. Además, debido a que la paliperidona presenta una vida media prolongada, de aproximadamente un día, no es un candidato típico para la administración prolongada. Sin embargo, algunos efectos secundarios, tales como ansiedad, somnolencia, mareo, estreñimiento y síntomas extrapiramidales, podrían estar relacionados con concentraciones elevadas en el plasma sanguíneo, limitando la posibilidad de administrar una única dosis diaria de liberación inmediata.

Una solicitud de patente publicada US nº 2004/0092534 da a conocer formulaciones de liberación prolongada y métodos para proporcionar una tasa creciente de liberación de paliperidona utilizando un comprimido en forma de cápsula. La forma de dosificación utiliza una membrana semipermeable que circunda a un núcleo de tres capas: la primera capa contiene cantidades reducidas de fármaco y un agente osmótico; la capa intermedia contiene cantidades mayores de fármaco y sin agente osmótico y la tercera capa es una capa de empuje. Además de dicha estructura de comprimido en forma de cápsula, existe por lo menos un orificio perforado a través de la membrana en el lado de la primera capa de fármaco. Toda este comprimido en forma de cápsula está diseñado para ser una forma de dosificación de una vez al día.

La solicitud de patente US nº de publicación US 2006/034927 se refiere también a una forma de dosificación de paliperidona para la liberación sostenida de un fármaco, comprendiendo una capa de retardo que comprende: (i) una matriz polimérica, e (ii) fármaco microencapsulado, en el que la capa de retardo se encuentra sustancialmente libre de fármaco no microencapsulado, y una segunda capa que comprende: (iii) una matriz polimérica y (iv) una matriz de fármaco no microencapsulado, en la que la segunda capa es adyacente a la capa de retardo.

La solicitud de patente US n° de publicación US2006/189635 se refiere a unas formas de dosificación de liberación sostenida de derivados de bencisoxazol.

La solicitud de patente US nº de publicación US2005/232990 se refiere a unas formas de dosificación de liberación sostenida de donepezilo, opcionalmente en combinación con antipsicóticos.

El documento WO n° 2004/108067 se refiere a unos sistemas de administración de fármaco programados que consisten de un núcleo y un recubrimiento.

El documento WO 2004/010981 se refiere a unas formas de dosificación para proporcionar una liberación controlada de paliperidona.

Las dificultades con las formas de dosificación expuestas anteriormente son su escasa rentabilidad, al requerir caros equipos muy especializados, lo que resulta en una producción relativamente pequeña de forma de dosificación final.

De acuerdo con lo expuesto anteriormente, sigue existiendo una necesidad de proporcionar unos medios alternativos de control de la administración.

5 Sumario de la invención

10

25

30

35

45

55

60

65

La presente invención proporciona un comprimido de liberación prolongada de paliperidona en forma de un comprimido de incrustación. El comprimido de incrustación comprende por lo menos un núcleo de incrustación y una capa externa: (a) el núcleo de incrustación comprende paliperidona no recubierta y por lo menos un polímero que puede retrasar la liberación de la paliperidona a partir del núcleo de incrustación y capaz de hincharse con la hidratación, en la que el núcleo de incrustación opcionalmente comprende además paliperidona recubierta, y (b) una capa exterior que comprende un excipiente farmacéutico que es sustancialmente insoluble en agua, en el que la capa exterior circunda parcialmente al núcleo de incrustación.

La invención proporciona una forma de dosificación para la liberación sostenida de paliperidona, en la que la forma de dosificación muestra una biodisponibilidad relativa, basada en la zona bajo la curva de concentración plasmática (AUC), durante el mismo periodo tras la administración oral en sujetos humanos, de entre aproximadamente 1,5 y aproximadamente 3,0, preferentemente de entre aproximadamente 1,7 y aproximadamente 3,0, y más preferentemente de entre aproximadamente 3,0, en comparación con los comprimidos de liberación prolongada INVEGA® comercializados que contienen la misma cantidad de paliperidona administrada a la misma dosis en humanos.

La invención también proporciona una forma de dosificación para la liberación sostenida de paliperidona, en la que la forma de dosificación muestra una C_{max} relativa, basada en las concentraciones plasmáticas en diversos periodos de tiempo tras la administración oral en sujetos humanos, de entre aproximadamente 1,6 y aproximadamente 3,0, preferentemente de entre aproximadamente 1,7 y aproximadamente 3,0, y más preferentemente de entre aproximadamente 2,0 y aproximadamente 3,0, en comparación con los comprimidos de liberación prolongada $INVEGA^{\textcircled{@}}$ comercializados que contienen la misma cantidad de paliperidona, administradas a la misma dosis en los sujetos humanos.

En otro aspecto, la invención proporciona un procedimiento de preparación del comprimido de incrustación de la invención, en el que el procedimiento comprende:

- (1) mezclar paliperidona y por lo menos un polímero capaz de retrasar la liberación de la paliperidona y capaz de hincharse tras la hidratación, en el que por lo menos parte de la paliperidona permanece sin recubrir, y
 - (2) cubrir parcialmente la mezcla de la etapa (1) con una capa exterior que comprende un excipiente farmacéutico que es sustancialmente insoluble en agua, con el fin de obtener el comprimido de incrustación.

40 Breve descripción de los dibujos

La figura 1 es un diagrama esquemático que representa una forma de realización del comprimido de incrustación de la presente invención, que comprende un núcleo de incrustación que contiene paliperidona no recubierta parcialmente circundada o incompletamente recubierta por una capa exterior insoluble inerte.

La figura 2 representa los perfiles de disolución de los comprimidos de liberación prolongada de paliperidona en forma de comprimidos multiestratificados preparados según el Ejemplo 8.

La figura 3 representa las concentraciones plasmáticas medias de cuadrados mínimos frente al tiempo tras la administración oral de los comprimidos multiestratificados de 6 mg de la presente invención en el Grupo experimental y la administración oral de los comprimidos de paliperidona INVEGA 6 mg comercializados en el grupo de referencia.

La figura 4 representa el logaritmo natural de las concentraciones plasmáticas medias de cuadrados mínimos frente al tiempo tras la administración oral de los comprimidos multiestratificados de 6 mg de la presente invención en el grupo experimental y la administración oral de los comprimidos de paliperidona INVEGA 6 mg comercializados en el grupo de referencia.

Descripción detallada de la invención

En la presente invención, la expresión "paliperidona recubierta" se refiere a una o más partículas de paliperidona que han sido microencapsuladas con por lo menos un material de microencapsulado. Dichos materiales comprenden de manera no limitativa, proteínas, polisacáridos, almidones, ceras, grasas, polímeros naturales y sintéticos, y resinas y/o combinaciones de los mismos. En la presente invención, la expresión "paliperidona no recubierta" se refiere a una o más partículas de paliperidona que no han sido microencapsuladas con ningún material de microencapsulado.

La expresión "microencapsulado con por lo menos un material de microencapsulado" se refiere a que las partículas de paliperidona se encuentran circundadas por una capa de por lo menos un material de microencapsulado sin ningún excipiente farmacéutico entre las partículas de paliperidona y la capa del material o materiales de microencapsulado.

5

10

15

20

30

En la presente invención, el término "polímero" comprende polímeros naturales y/o sintéticos y también puede referirse a una combinación de polímeros de diversos tipos. La expresión "polímero que presenta un efecto de retraso de la liberación de paliperidona" o "polímero capaz de retrasar la liberación de la paliperidona" incluye polímeros que forman una barrera superficial viscosa y gelatinosa o una capa de gel tras la hidratación, controlando esta capa de barrera o de gel la liberación de paliperidona a partir del centro de las partículas de paliperidona así como la penetración de líquidos hacia el mismo. Las características físicoquímicas de esta capa de barrera o de gel controlan la incorporación de agua y el mecanismo de liberación de paliperidona a partir de las partículas de paliperidona. La liberación de paliperidona puede producirse mediante difusión de la paliperidona a través de la capa de barrera o de gel, y preferentemente mediante erosión gradual de la capa de barrera o de gel. Los ejemplos adecuados del "polímero que presenta un efecto de retraso de la liberación de paliperidona" o del "polímero capaz de retrasar la liberación de la paliperidona" comprenden polivinilpirrolidona, óxido de polietileno, tal como POLYOX WSR-301, polisacáridos y derivados de celulosa hidrófilos, tales como metilcelulosa, hidroxipropilmetilcelulosa, hidroxietilcelulosa, hidroxipropilcelulosa, hidroxietilmetilcelulosa, carboximetilcelulosa y carboximetilcelulosa sódica. Los ejemplos preferidos del "polímero que presenta un efecto de retraso de la liberación de paliperidona" o del "polímero capaz de retrasar la liberación de la paliperidona" comprenden óxido de polietileno e hidroxipropilmetilcelulosa, tal como METHOCEL K15MP, K15M, K100M, K100LV, F4M, E4M, E3, E5, E10M, E15LV, E15LN, E15CLV, E50 y K3.

La expresión "capa de retardo" se refiere a una capa que funciona, por lo menos en parte, retrasando la liberación del fármaco a partir de la forma de dosificación, incluyendo la detención de la liberación durante un periodo de tiempo determinado.

En la invención, dos componentes (o dos capas) son "adyacentes" en el caso de que los dos componentes (o capas) se encuentren próximos físicamente entre sí. Preferentemente, los dos componentes (o las dos capas) se encuentran en contacto directo en por lo menos un punto.

En la invención, el término "núcleo" se refiere a un componente que se encuentra por lo menos parcialmente circundado o recubierto por otro componente.

Tal como se utiliza en la presente memoria, la expresión "cinética de liberación ascendiente" se refiere a que la cantidad de paliperidona liberada como función del tiempo se incrementa durante un periodo de tiempo, gradual y/o uniformemente, y no de un modo escalonado.

La expresión "forma de dosificación de liberación sostenida" se refiere a una forma de dosificación que libera el fármaco durante 4 a 24 horas. Las formas de dosificación muestran valores de t₉₀ de por lo menos 4 horas o más y preferentemente de hasta aproximadamente 24 horas o más, para la dosificación de una vez al día. Las formas de dosificación liberan fármaco continuamente durante periodos sostenidos de por lo menos aproximadamente 6 horas, preferentemente durante aproximadamente 8 horas o más y, en formas de realización particulares, durante aproximadamente 12 horas o más.

45

50

La invención se refiere a comprimidos de liberación prolongada de paliperidona en forma de comprimidos multiestratificados. El comprimido de incrustación comprende por lo menos un núcleo de incrustación y una capa exterior: (a) el núcleo de incrustación que comprende paliperidona no recubierta y por lo menos un polímero capaz de retrasar la liberación de la paliperidona a partir del núcleo de incrustación y capaz de hincharse al hidratarse, en las que el núcleo de incrustación opcionalmente puede comprender además paliperidona de recubrimiento, y (b) la capa exterior que comprende un excipiente farmacéutico que es sustancialmente insoluble en agua, en las que la capa exterior circunda parcialmente al núcleo de incrustación.

El "polímero o polímeros que pueden retrasar la liberación de paliperidona a partir del núcleo de incrustación y que 55 pueden hincharse al hidratarse" es por lo menos un polímero que forma una barrera superficial viscosa y gelatinosa o capa de gel tras la hidratación, controlando la capa de barrera o de gel la liberación de paliperidona a partir de las partículas de paliperidona y la penetración de líquidos en las mismas. La liberación de la paliperidona puede producirse mediante difusión de la misma a través de la capa de barrera o de gel, y/o mediante la erosión gradual de la capa de barrera o de gel. Los ejemplos adecuados del polímero comprenden polivinilpirrolidona, poli(óxido de etileno), tal como POLYOX WSR-301, polisacáridos y derivados hidrófilos de celulosa tales como metilcelulosa, 60 hidroxipropilcelulosa, hidroxietilmetilcelulosa, etilcelulosa, hidroxipropilmetilcelulosa, hidroxietilcelulosa, carboximetilcelulosa y carboximetilcelulosa sódica. Los ejemplos preferidos del "polímero que presenta un efecto de retraso de la liberación de paliperidona a partir de las partículas" comprenden óxido de polietileno e hidroxipropilmetilcelulosa, tal como METHOCEL K15MP, K15M, K100M, K100LV, F4M, E4M, E3, E5, E15M, E15LV, 65

E15LN, E15CLV, E50 y K3. Un "polímero o polímeros capaces de retrasar la liberación de paliperidona a partir del núcleo de incrustación y capaces de hincharse al hidratarse" es el óxido de polietileno.

El "excipiente farmacéutico que es sustancialmente insoluble en agua" de la capa exterior convierte a la capa exterior en sustancialmente insoluble en agua. Entre los ejemplos de un "excipiente farmacéutico que es sustancialmente insoluble en agua" en la capa exterior se incluyen polímeros farmacéuticamente aceptables que son sustancialmente insolubles en agua, tales como polímeros modificadores de la liberación de fármaco farmacéuticamente aceptables que son sustancialmente insolubles en agua. Entre los polímeros farmacéuticamente aceptables adecuados que son sustancialmente insolubles en agua se incluyen copolímeros catiónicos de acrilato de etilo y acrilato de metilo con grupos de amonio cuaternario, tales como EUDRAGIT RS y EUDRAGIT RL, copolímero de acrilato de etilo y metacrilato de metilo con grupos éster neutros, ésteres de celulosa, éteres de celulosa y ester-éteres de celulosa, etilcelulosa tal como ETHYL CELLULOSE T10 PHARM, acetato de celulosa, diacetato de celulosa, triacetato de celulosa y polímeros poliéster. Entre los ejemplos no limitativos de los polímeros poliéster que pueden utilizarse se incluyen poli(ε-caprolactona)s, poli(adipato de alquilenglicol)s, tal como poli(adipato de etilenglicol), poli(adipato de propilenglicol) y poli(adipato de butilenglicol), acetato de polivinilo y mezclas y copolímeros de los mismos. Un "excipiente farmacéutico que es sustancialmente insoluble en agua" preferente es la etilcelulosa.

5

10

15

25

50

65

El núcleo de incrustación preferentemente se encuentra en forma de un comprimido o lingote (slug) comprimido.

El núcleo de incrustación y la capa exterior independientemente pueden comprender además por lo menos otro excipiente farmacéutico, tal como rellenos, diluyentes, modificadores del pH, deslizantes, lubricantes, ligantes, colorantes y agentes saborizantes farmacéuticamente aceptables.

En algunas de las formas de realización del comprimido de incrustación de la invención, el núcleo de incrustación comprende aproximadamente 1% a 3% p/p de paliperidona, aproximadamente 2% a 5% p/p de relleno, tal como STARLAC, aproximadamente 5% a 15% p/p de modificador del pH, tal como carbonato de magnesio, aproximadamente 5% a 20% p/p de polímero modificador de la liberación, tal como óxido de polietileno, aproximadamente 0% a 1% de lubricante p/p, tal como ácido esteárico y aproximadamente 0% a 1% p/p de deslizante, tal como dióxido de silicio.

- 30 En algunas de las formas de realización del comprimido de incrustación de la invención, la capa exterior comprende aproximadamente 50% a 90% p/p de polímero modificador de la liberación, tal como etilcelulosa, aproximadamente 0% a 1% p/p de colorante, tal como óxido férrico amarillo NF y aproximadamente 0% a 1% p/p de lubricante, tal como ácido esteárico.
- La invención proporciona una forma de dosificación para la liberación sostenida de paliperidona, en la que la forma de dosificación muestra una biodisponibilidad relativa, basada en el área bajo la curva de concentración plasmática (AUC), durante un mismo periodo de tiempo, por ejemplo entre 0 y 96 horas, o entre 0 horas y el infinito, tras la administración oral, o por lo menos aproximadamente 1,5 horas, preferentemente por lo menos aproximadamente 1,7, y más preferentemente por lo menos aproximadamente 1,9 horas, que los comprimidos de liberación prolongada INVEGA® comercialmente disponibles que contienen la misma cantidad de paliperidona administradas a la misma dosis. Una biodisponibilidad relativa, basada en la AUC, de por lo menos aproximadamente 1,5, se refiere a que la AUC alcanzada en los sujetos humanos que han recibido la administración oral de la forma de dosificación según el primer aspecto de la invención es por lo menos aproximadamente 50% superior a la AUC, para el mismo periodo de tiempo, alcanzada en sujetos humanos que han recibido la administración oral de comprimidos de liberación prolongada INVEGA® comercialmente disponibles que contienen la misma cantidad de paliperidona, en las que la paliperidona se ha administrado a la misma dosis.

La invención también proporciona una forma de dosificación para la liberación sostenida de paliperidona, en la que la forma de dosificación muestra una biodisponibilidad relativa, basada en el área bajo la curva de concentración plasmática (AUC), durante un mismo periodo de tiempo, de entre aproximadamente 1,5 y aproximadamente 3,0, preferentemente de entre aproximadamente 1,7 y aproximadamente 3,0, y más preferentemente de entre aproximadamente 1,9 y aproximadamente 3,0, que los comprimidos de liberación prolongada INVEGA[®] comercialmente disponibles que contienen la misma cantidad de paliperidona administradas a la misma dosis.

Otro aspecto de la invención se refiere a una forma de dosificación para la liberación sostenida de paliperidona, en la que la forma de dosificación muestra una C_{max} relativa, basada en las concentraciones plasmáticas en diversos tiempos tras la administración oral en sujetos humanos, de por lo menos aproximadamente 1,6, preferentemente de por lo menos aproximadamente 1,7, y todavía más preferentemente de por lo menos aproximadamente 2,0 veces la de comprimidos de liberación prolongada INVEGA® comercialmente disponibles que contienen la misma cantidad de paliperidona, administradas a la misma dosis en los humanos.

La invención también proporciona una forma de dosificación para la liberación sostenida de paliperidona, en la que la forma de dosificación muestra una C_{max} relativa, basada en las concentraciones plasmáticas en diversos tiempos tras la administración oral en sujetos humanos, de entre aproximadamente 1,6 y aproximadamente 3,0, preferentemente de entre aproximadamente 1,7 y aproximadamente 3,0, y más preferentemente de entre aproximadamente 2,0 y aproximadamente 3,0 veces la de comprimidos de liberación prolongada INVEGA[®]

ES 2 374 200 T3

comercialmente disponibles que contienen la misma cantidad de paliperidona administradas a la misma dosis en los sujetos humanos.

La invención proporciona una forma de dosificación para la liberación sostenida de paliperidona, en la que la forma de dosificación muestra un perfil de disolución *in vitro* determinado utilizando un método de palas a 50 rpm en un medio de disolución de 500 ml de tampón fosfato 0,05 M, pH 6,8, 37°C, en el que el perfil de disolución es inferior a aproximadamente 10% de disolución en 4 horas, entre aproximadamente 10% y aproximadamente 25% de disolución en 8 horas, entre aproximadamente 40% y aproximadamente 60% de disolución en 16 horas y no inferior a aproximadamente 70% en 24 horas tras el inicio del estudio de disolución, respectivamente.

5

10

15

25

30

40

45

50

55

60

65

En un aspecto adicional, la invención proporciona un procedimiento para preparar el comprimido de incrustación de la invención, en el que el procedimiento comprende:

- (1) mezclar paliperidona y por lo menos un polímero capaz de retrasar la liberación de la paliperidona y capaz de hincharse al hidratarse, y
 - (2) parcialmente recubrir la mezcla de la etapa (1) con una capa exterior que comprende un excipiente farmacéutico que es sustancialmente insoluble en agua con el fin de obtener el comprimido de incrustación.
- 20 En una forma de realización preferida del procedimiento de preparación del comprimido de incrustación, la mezcla de la etapa (1) se comprime formando un lingote o comprimido antes de la etapa (2).

En una forma de realización preferida adicional del procedimiento de preparación del comprimido de incrustación, la mezcla de la etapa (1) se comprime en un lingote o comprimido antes de la etapa (2); el lingote o comprimido se mezcla con por lo menos un polímero capaz de retrasar la liberación de la paliperidona y capaz de hincharse al hidratarse formando una mezcla, y la mezcla se comprime en un comprimido antes de la etapa (2). Más preferentemente, se añade un relleno, modificador del pH, deslizante y/o lubricante en la etapa (1). Opcionalmente, el lingote o comprimido formados mediante compresión se muele antes de mezclarse con por lo menos un polímero capaz de retrasar la liberación de la paliperidona y capaz de hincharse al hidratarse, formando la mezcla que debe comprimirse en un comprimido antes de la etapa (2).

Preferentemente, durante el procedimiento de preparación del comprimido de incrustación, se comprime el producto de la etapa (2) con el fin de obtener el comprimido de incrustación.

Algunas de las formas de realización de los comprimidos multiestratificados tal como se ejemplifica en el Ejemplo 1 pueden prepararse según los ingredientes presentados en la tabla, a continuación.

Sin limitarse a ninguna hipótesis en particular, se cree que el comprimido de incrustación puede actuar en la liberación prolongada de la paliperidona según una teoría representada esquemáticamente en la figura 1, que muestra una forma de realización del comprimido de incrustación de la presente invención. El comprimido dibujado en el extremo izquierdo de la fig. 1 ilustra el comprimido de incrustación antes de la exposición a un medio acuoso, y los cuatro comprimidos dibujados a la derecha ilustran cuatro estadios del comprimido de incrustación expuesto a un medio acuoso para incrementar el periodo de tiempo, demostrando la formación de gel en el núcleo de incrustación y el hinchado gradual del gel del núcleo de incrustación debido a la absorción de agua por parte del núcleo de incrustación a través de la superficie no recubierta por la capa exterior insoluble inerte, resultando en un incremento gradual de la superficie libre del núcleo de incrustación, conduciendo a una liberación creciente de la paliperidona a partir del núcleo de incrustación.

En todos los aspectos de la invención descritos en la presente memoria, la composición farmacéutica comprende preferentemente además uno o más excipientes farmacéuticos.

La expresión "excipientes farmacéuticos" se refiere a cualquier sustancia farmacéuticamente aceptable, aparte de la sustancia farmacológica activa o forma de dosificación acabada, que han sido adecuadamente evaluadas para su seguridad y que se incluyen en los sistemas de administración de fármaco con los fines de: (a) ayudar en el procesamiento del sistema de administración de fármaco durante su preparación, (b) soportar, proteger o incrementar la estabilidad y/o biodisponibilidad de la sustancia farmacológica activa, (c) incrementar la aceptabilidad para el paciente de la sustancia farmacológica activa o de la forma de dosificación final, (d) incrementar la seguridad global, efectividad o administración de la sustancia farmacológica activa durante el almacenamiento o la utilización, o (e) ayudar a la identificación del producto. Los excipientes farmacéuticos se añaden para ayudar a la formulación y preparación de la forma de dosificación final para la administración en el paciente. Los excipientes farmacéuticos pueden mezclarse con la sustancia farmacológica activa para preparar la forma de dosificación final. Los ejemplos de "excipientes farmacéuticos" incluyen rellenos de grado farmacéutico, diluyentes, modificadores del pH, polímeros modificadores de la liberación, lubricantes, deslizantes, desintegrantes, portadores, agentes volumétricos, ligantes, agentes humectantes, colorantes (por ejemplo óxido férrico amarillo y óxido de hierro rojo) y agentes saborizantes. Otros excipientes que pueden incorporarse en la forma de dosificación final incluyen conservantes, surfactantes, antioxidantes y cualquier otro excipiente utilizado comúnmente en la industria farmacéutica.

ES 2 374 200 T3

Los rellenos y diluyentes adecuados comprenden de manera no limitativa, materiales derivados de celulosa tales como celulosa en polvo, celulosa microcristalina (por ejemplo Avicel[®]), celulosa microfina, metilcelulosa, etilcelulosa, hidroxietilcelulosa, hidroxipropilcelulosa (por ejempo Klucel[®]), hidroxipropilmetilcelulosa, sales de carboximetilcelulosa (tales como carboximetilcelulosa calcio) y otras celulosas sustituidas y no sustituidas; almidón, tales como almidón de maíz, almidón pregelatinizado; lactosa, preferentemente lactosa monohidrato (por ejemplo Pharmatose[®]); talco; ceras; azúcares; alcoholes de sacáridos, tales como manitol y sorbitol; polímeros y copolímeros de acrilato; dextranos; dextrina; dextrosa; maltodextrina; pectina; gelatina; diluyentes inorgánicos como carbonato de calcio, dihidrato de calcio fosfato dibásico, fosfato de calcio tribásico, sulfato de calcio, carbonato de magnesio, óxido de magnesio, cloruro sódico, materiales combinados como STARLAC y otros diluyentes conocidos de la industria farmacéutica. LOs rellenos más preferidos incluyen talco, lactosa monohidrato, almidón pregelatinizado, manitol o sorbitol. Un relleno todavía más preferente es STARLAC.

5

10

- Son modificadores del pH adecuados, compuestos tamponadores farmacéuticamente aceptables tales como carbonatos de metal alcalino-térreo, carbonatos de metal alcalino, bicarbonatos de metal alcalino-térreo, bicarbonatos de metal alcalino y óxido de magnesio, por ejemplo carbonato de magnesio, carbonato de calcio, bicarbonato de magnesio, bicarbonato de calcio, carbonato sódico, carbonato potásico, bicarbonato sódico y bicarbonato potásico. Un modificador del pH preferido es el carbonato de magnesio.
- Los desintegrantes adecuados incluyen la croscarmelosa sódica (por ejemplo AcDiSol® y Primellose®), la crospovidona (por ejemplo Kollidon® y Polysplasdone®), celulosa microcristalina, polacrilina potasio, celulosa en polvo, almidón pregelatinizado, glicolato de almidón sódico (por ejemplo Explotab® y Primoljel®) y el almidón. Los desintegrantes preferidos incluyen copovidona y celulosa microcristalina.
- Pueden añadirse deslizantes para mejorar el flujo de la composición sólida antes de la compactación y para incrementar la precisión de la dosificación, especialmente durante la compactación y el rellenado de las cápsulas. Entre los excipientes que pueden actuar como deslizantes se incluyen dióxido de silicio coloidal, trisilicato de magnesio, celulosa en polvo y talco. El deslizante preferido es el dióxido de silicio coloidal.
- Puede añadirse un lubricante a las composiciones farmacéuticas de la presente invención para reducir la adhesión y/o facilitar la liberación del producto respecto de, por ejemplo, la matriz. Los lubricantes adecuados comprenden de manera no limitativa, ácido esteárico, estearato de magnesio, estearato de calcio, monoestearato de glicerilo, palmitoestearato de glicerilo, aceite de ricino hidrogenado, aceite vegetal hidrogenado, aceite mineral, polietilenglicol, laurilsulfato sódico, estearilfumarato sódico, ácido esteárico, talco y estearato de cinc. Resultan preferidos el ácido esteárico y el estearato de magnesio.
 - Los portadores comprenden de manera no limitativa lactosa, azúcar blanco, cloruro sódico, glucosa, urea, almidón, carbonato de calcio, caolín, celulosa cristalina y ácido silícico.
- 40 Los ligantes comprenden de manera no limitativa, carboximetilcelulosa, shellac, metilcelulosa, hidroxipropilmetilcelulosa, HPMC, almidón y polivinilpirrolidona. Otros ligantes adecuados comprenden de manera no limitativa, goma acacia, almidón pregelatinizado, alginato sódico, glucosa y otros ligantes utilizados en los procedimientos de granulación húmeda y seca y de formación de comprimidos mediante compresión directa.
- Los agentes saborizantes e intensificadores del sabor hacen que la forma de dosificación resulte más comestible para el paciente. Los agentes saborizantes e intensificadores del sabor comunes para los productos farmacéuticos que pueden incluirse en la composición de la presente invención comprenden de manera no limitativa, maltol, vanillina, etilvanillina, mentol, ácido cítrico, ácido fumárico, etilmaltol y ácido tartárico.
- 50 Según la forma de realización preferida, la cantidad total de paliperidona en la forma de dosificación es de entre aproximadamente 1 mg y aproximadamente 15 mg.
 - Algunas de las formas de realización de la forma de dosificación de la invención no contienen paliperidona recubierta.
 - Algunas de las formas de realización de la forma de dosificación de la invención pueden contener paliperidona recubierta.
- En algunas de las formas de realización de la forma de dosificación de la invención, la forma de dosificación puede contener paliperidona recubierta conjuntamente con paliperidona no recubierta en uno o más de los componentes.
 - Los métodos para preparar multicapas se describen en W.C. Gunsel, Compression coated and layer tablets in Pharmaceutical Dosage Forms: Tablets, vol. nº 1, editado por H.H. Lieberman.

Ejemplos

5

Ejemplo 1 (comprimidos de liberación prolongada de paliperidona en forma de comprimidos multiestratificadas)

Formulación de un comprimido de incrustación de paliperidona

MATERIAL	Intervalo	mg por	FUNCIÓN
	en % p/p	comprimido	
Núcleos de incrustación			
PALIPERIDONA	1 a 3	6,0	API
STARLAC	2 a 5	12,0	Relleno
CARBONATO DE MAGNESIO USP	5 a 15	26,0	Modificador del pH
POLYOX WSR-301	5 a 20	40,0	Polímero modificador de la
			liberación
ÁCIDO ESTEÁRICO NF/EP	0 a 1	1,5	Lubricante
Dióxido de silicio NF (Syloid 244 FP)	0 a 1	0,5	Deslizante
Capa exterior			
ETILCELULOSA T10 PHARM	50 a 90	216,5	Polímero modificador de la
			liberación
ÓXIDO FÉRRICO AMARILLO NF	0 a 1	0,5	Colorante
ÁCIDO ESTEÁRICO NF/EP	0 a 1	2,0	Lubricante
Comprimido de incrustación final		305,0	

10 Los comprimidos de liberación prolongada de paliperidona en forma de comprimidos multiestratificados se prepararon siguiendo el procedimiento siguiente.

Procedimiento

30

35

40

- 15 1. Se tamizaron 90 gramos de paliperidona, 180 gramos de STARLAC, 390 gramos de carbonato de magnesio, 75 gramos de POLYOX WSR-301 y 7,5 gramos de dióxido de silicio y se mezclaron en un mezclador tipo V.
 - 2. Se tamizaron 15 gramos de ácido esteárico y se añadieron a la mezcla de la etapa 1 y se mezclaron.
- 20 3. La mezcla de la etapa 2 seguidamente se comprimieron en lingotes utilizando un punzón plano de 20 mm.
 - 4. Los lingotes se molieron utilizando un tamiz de 0,8 mm.
- 5. A continuación, se mezclaron 378,75 gramos de lingotes molidos con 272,5 gramos de POLYOX WSR-301 y 3,75 gramos de ácido esteárico tamizado en un mezclador tipo V.
 - 6. La mezcla de la etapa 5 seguidamente se comprimió formando comprimidos de 86 mg utilizando un punzón cóncavo normal de 5,5 mm, en la que se utilizaron comprimidos de 86 mg como los núcleos de incrustación en el resto del procedimiento.
 - 7. Se tamizaron 3.247,5 gramos de etilcelulosa T10 PHARM y 7,5 gramos de óxido férrico amarillo y se mezclaron en un mezclador tipo V.
 - 8. Se tamizaron 30 gramos de ácido esteárico y se añadieron a la mezcla de la etapa 7 y se mezclaron.

9. A continuación, se comprimieron nuevamente los comprimidos de la etapa 6 con la mezcla de la etapa 8 con el fin de crear una capa exterior incompleta de los comprimidos de la etapa 6 con el fin de formar comprimidos multiestratificados, que pesaban, cada una, 305 mg, como comprimidos de liberación prolongada de paliperidona, en el que cada uno de los comprimidos de la etapa 6 actuaba como el núcleo de incrustación para los comprimidos de liberación prolongada de paliperidona.

Ejemplo 2 (perfil de disolución de los comprimidos de incrustación)

La disolución de la paliperidona en los comprimidos de liberación prolongada de paliperidona preparados tal como se describe en el Ejemplo 8 se determinó utilizando un método de paletas a 50 rpm en un medio de disolución de 500 ml de tampón fosfato 0,05 M, pH 6,8, en la que se midió la disolución entre 0 y 1.440 minutos, es decir, entre 0 y 24 horas. Los datos de disolución se muestran en la fig. 2.

Ejemplo 3 (farmacocinética de los comprimidos de incrustación)

La farmacocinética de los comprimidos de liberación prolongada de paliperidona, en forma de comprimidos multiestratificados que contienen 6 mg de paliperidona, de la presente invención se determinó en un grupo de 16 sujetos humanos en los que se administraron por vía oral los comprimidos multiestratificados. A título comparativo, también se determinó la farmacocinética de los comprimidos de paliperidona comercialmente disponibles INVEGA 6 mg, en los 16 sujetos humanos tras la administración oral. Se midieron las concentraciones en plasma de paliperidona en los 16 sujetos humanos 0 a 96 horas después de la administración oral de los comprimidos de liberación prolongada de paliperidona de la presente invención (es decir, el grupo experimental) o después de la administración oral de los comprimidos de 6 mg de paliperidona INVEGA comercialmente disponibles (es decir, el grupo de referencia).

Las concentraciones plasmáticas medias de cuadrados mínimos frente al tiempo tras la administración oral del grupo experimental y del grupo de referencia se muestran en la figura 3. El logaritmo natural de las concentraciones plasmáticas medias de cuadrados mínimos frente al tiempo tras la administración oral del grupo experimental y el grupo de referencia se muestran en la figura 4. Los valores medios de los parámetros farmacocinéticos (PC) de los grupos experimental y de referencia se muestran en la tabla, a continuación. Valores medios de los parámetros farmacocinéticos

Parámetros farmacocinéticos	Grupo experimental	Grupo de referencia	
AUC _{96h} (h.ng/ml)	702,13	435,94	
AUC _{0-∞} (h.ng/ml)	733,43	461,10	
C _{max} (ng/ml)	22,33	12,82	
$T_{1/2}(h)$	20,17	19,96	
K _e	0,04	0,04	
LN AUC _{96h}	632,38	357,42	
LN AUC _{0-∞}	659,11	375,70	
LN C _{max}	20,33	10,59	

La proporción de los valores medios de los parámetros farmacocinéticos (PC) de los grupos experimental y de referencia, así como los intervalos de confianza (IC) al 90% se muestran en la tabla, a continuación.

Proporciones de val	es de valores medios de parámetros PC (grupo experimental/grupo de referencia)					
Parámetros PC	Proporción	Límite inferior de IC	Limite superior de IC	Efecto del tratamiento (p)		
AUC _{96h}	1,6106	1,2223	1,9990	0,0151		
AUC _{0-∞}	1,5906	1,2012	1,9800	0,0182		
C_{max}	1,7416	1,3451	2,1381	0,0053		
T _{1/2}	1,0109	0,9617	1,0600			
Ke	1,0041	0,9606	1,0477			
LN AUC _{96h}	1,7693	1,4459	2,1651	0,0002		
LN AUC _{0-∞}	1,7544	1,4356	2,1439	0,0002		
LN C _{max}	1,9192	1,5686	2,3481	0,0001		

25

5

10

15

REIVINDICACIONES

- Comprimidos de liberación prolongada de paliperidona en forma de un comprimido de incrustación que comprende:
 - (a) un núcleo de incrustación que comprende paliperidona no recubierta y por lo menos un polímero que puede retrasar la liberación de la paliperidona a partir del núcleo de incrustación y que puede hincharse al hidratarse; y
- 10 (b) una capa exterior que comprende un excipiente farmacéutico que es sustancialmente insoluble en agua, en el que la capa exterior circunda parcialmente el núcleo de incrustación.
 - 2. Comprimido de liberación prolongada según la reivindicación 1, en el que por lo menos un polímero del núcleo de incrustación se selecciona de entre el grupo constituido por polivinilpirrolidona, poli(óxido de etileno), polisacáridos, derivados hidrófilos de celulosa, metilcelulosa, etilcelulosa, hidroxipropilmetilcelulosa, hidroxietilmetilcelulosa, carboximetilcelulosa y carboximetilcelulosa sódica, siendo preferentemente dicho por lo menos un polímero del núcleo de incrustación seleccionado de entre el grupo constituido por metilcelulosa, etilcelulosa, hidroxipropilmetilcelulosa, hidroxietilmetilcelulosa, hidroxipropilmetilcelulosa, hidroxietilmetilcelulosa, carboximetilcelulosa y carboximetilcelulosa sódica, siendo más preferentemente dicho por lo menos un polímero del núcleo de incrustación seleccionado de entre el grupo constituido por poli(óxido de etileno) e hidroxipropilmetilcelulosa.
- Comprimido de liberación prolongada según la reivindicación 1 ó 2, en el que el excipiente farmacéutico que es sustancialmente insoluble en agua de la capa exterior es un polímero farmacéuticamente aceptable que es sustancialmente insoluble en agua, siendo preferentemente dicho polímero farmacéuticamente aceptable que es sustancialmente insoluble en agua seleccionado de entre el grupo constituido por copolímeros catiónicos de etilacrilato y metilacrilato con grupos de amonio cuaternario, copolímero de etilacrilato-metilmetacrilato con grupos éster neutros, ésteres de celulosa, éteres de celulosa y ester-éteres de celulosa, etilcelulosa tal como acetato de celulosa, diacetato de celulosa, triacetato de celulosa y polímeros poliéster, poli(ε-caprolactona)s, poli(adipato de alquilenglicol)s, poli(adipato de etilenglicol), poli(adipato de propilenglicol) y poli(adipato de butilenglicol), acetato de polivinilo y mezclas y copolímeros de los mismos.
 - 4. Comprimido de liberación prolongada según la reivindicación 3, en el que el polímero farmacéuticamente aceptable que es sustancialmente insoluble en agua es etilcelulosa.
 - 5. Comprimido de liberación prolongada según cualquiera de las reivindicaciones 1 a 3, en el que el núcleo de incrustación se encuentra en forma de un comprimido o lingote comprimido.
- 6. Comprimido de liberación prolongada según cualquiera de las reivindicaciones 1 a 3, en el que el núcleo de incrustación y/o la capa exterior comprenden además independientemente por lo menos otro excipiente farmacéutico.
 - 7. Comprimido de liberación prolongada según la reivindicación 6, en el que dicho por lo menos otro excipiente farmacéutico es seleccionado de entre el grupo constituido por rellenos, diluyentes, modificadores del pH, deslizantes, lubricantes, ligantes, colorantes y agentes saborizantes farmacéuticamente aceptables.
 - 8. Comprimido de liberación prolongada según cualquiera de las reivindicaciones 1 a 7, en el que:
- el núcleo de incrustación comprende paliperidona en aproximadamente 1% a 3% p/p, un relleno en aproximadamente 2% a 5% p/p, un modificador del pH en aproximadamente 5% a 15% p/p, un polímero modificador de la liberación en aproximadamente 5% a 20% p/p, un lubricante en aproximadamente 0% a 1% p/p y un deslizante en aproximadamente 0% a 1% p/p; y la capa exterior comprende un polímero modificador de la liberación en aproximadamente 50% a 90%, un colorante en aproximadamente 0% a 1% p/p y un lubricante en aproximadamente 0% a 1% p/p.
 - 9. Comprimido de liberación prolongada según la reivindicación 8, en el que:
 - el núcleo de incrustación comprende paliperidona en aproximadamente 1% a 3% p/p, STARLAC en aproximadamente 2% a 5% p/p, carbonato de magnesio USP en aproximadamente 5% a 15% p/p, poli(óxido de etileno) en aproximadamente 5% a 20% p/p, ácido esteárico NF en aproximadamente 0% a 1% p/p y dióxido de silicio NF en aproximadamente 0% a 1% p/p; y
 - la capa exterior comprende etilcelulosa en aproximadamente 50% a 90% p/p, óxido férrico amarillo NF en aproximadamente 0% a 1% p/p y ácido esteárico NF en aproximadamente 0% a 1% p/p.
 - 10. Procedimiento para preparar el comprimido de liberación prolongada según cualquiera de las reivindicaciones 1

65

60

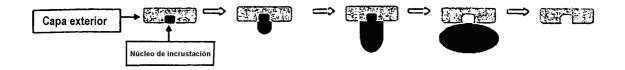
5

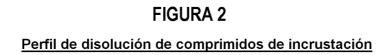
15

20

35

ES 2 374 200 T3


a 9, que comprende:


5

- (1) mezclar la paliperidona y por lo menos un polímero que puede retrasar la liberación de paliperidona y que puede hincharse al hidratarse; y
- (2) cubrir parcialmente la mezcla de la etapa (1) con una capa exterior que comprende un excipiente farmacéutico que es sustancialmente insoluble en agua, con el fin de obtener el comprimido de liberación prolongada en forma de un comprimido de incrustación.
- 10 11. Procedimiento según la reivindicación 10, en el que la mezcla de la etapa (1) se comprime en un lingote o comprimido antes de la etapa (2).
- 12. Procedimiento según la reivindicación 10, en el que la mezcla de la etapa (1) se comprime en un lingote o comprimido antes de la etapa (2); el lingote o comprimido se mezcla con por lo menos un polímero que puede retrasar la liberación de la paliperidona y que puede hincharse al hidratarse para formar una mezcla; y la mezcla se comprime en un comprimido antes de la etapa (2).
 - 13. Procedimiento según cualquiera de las reivindicaciones 10 a 12, en el que un relleno, un modificador del pH, un deslizante y/o un lubricante se añaden en la etapa (1).
 - 14. Procedimiento según la reivindicación 11 ó 12, en el que el lingote o comprimido formado mediante compresión se muele antes de mezclarse con dicho por lo menos un polímero que puede retrasar la liberación de paliperidona y que puede hincharse al hidratarse, para formar la mezcla que debe comprimirse en un comprimido antes de la etapa (2).
- 25
 15. Procedimiento según cualquiera de las reivindicaciones 10 a 14, en el que el producto de la etapa (2) se comprime para obtener el comprimido de incrustación.

FIGURA 1

Comprimido multicapa de paliperidona antes y después de la hidratación

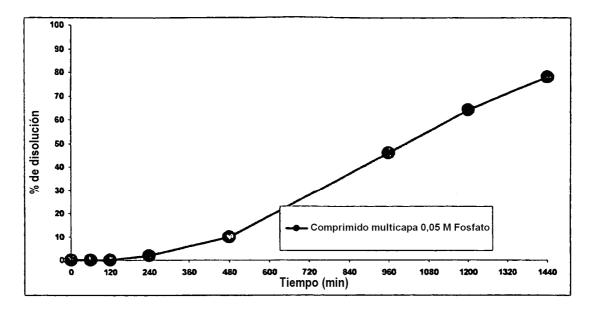


FIGURA 3

ESTUDIO DE LA PALIPERIDONA Nº 10836045 CONCENTRACIONES PLASMÁTICAS MEDIAS DE CUADRADOS MÍNIMOS (N=16)

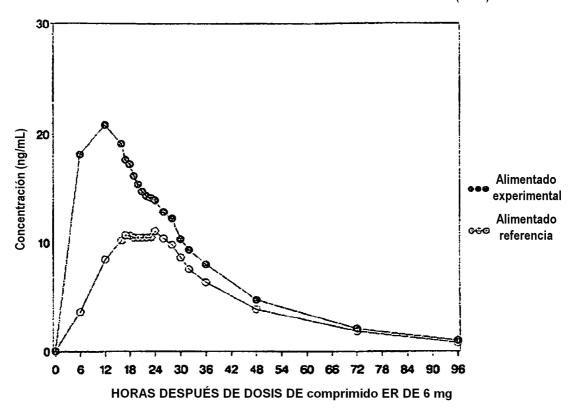
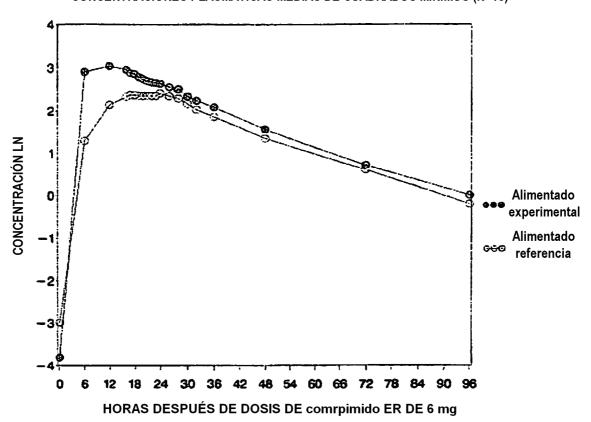



FIGURA 4

ESTUDIO DE LA PALIPERIDONA Nº 10836045 CONCENTRACIONES PLASMÁTICAS MEDIAS DE CUADRADOS MÍNIMOS (N=16)

