

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 375 479

51 Int. Cl.: **C07D 239/42 A01N 43/54**

(2006.01) (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 04814481 .0
- 96 Fecha de presentación: 16.12.2004
- 97 Número de publicación de la solicitud: 1694651
 97 Fecha de publicación de la solicitud: 30.08.2006
- 54 Título: PIRIMIDINAS HERBICIDAS.
- 30) Prioridad: 19.12.2003 US 531300 P 03.08.2004 US 598397 P

73 Titular/es:

E.I. DU PONT DE NEMOURS AND COMPANY 1007 MARKET STREET WILMINGTON, DE 19898, US

- Fecha de publicación de la mención BOPI: 01.03.2012
- 72 Inventor/es:

CLARK, David, Alan; FINKELSTEIN, Bruce, Lawrence; ARMEL, Gregory, Russell y WITTENBACH, Vernon, Arie

- Fecha de la publicación del folleto de la patente: 01.03.2012
- (74) Agente: de Elzaburu Márquez, Alberto

ES 2 375 479 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCION

Pirimidinas herbicidas

5

10

CAMPO DE LA INVENCIÓN

Esta invención se refiere a ciertas pirimidinas, sus N-óxidos, sales y composiciones agrícolamente adecuadas, y métodos de su uso para controlar vegetación no deseada.

<u>ANTECEDENTES DE LA INVENCIÓN</u>

El control de vegetación no deseada es extremadamente importante para conseguir alta eficacia en los cultivos. Es muy deseable la consecución del control selectivo del crecimiento de malas hierbas en cultivos tales como arroz, soja, remolacha azucarera, cereales (maíz), patata, trigo, cebada, tomate y cultivos de plantaciones, entre otros. El crecimiento libre de malas hierbas en tales cultivos útiles puede causar reducción significativa de la productividad y conducir de ese modo a mayores costes al consumidor. También es importante el control de vegetación no deseada en áreas de no cultivo. Muchos productos están disponibles en el mercado para estos fines, pero sigue existiendo por ahora la necesidad de nuevos compuestos que sean más eficaces, menos costosos, menos tóxicos, más seguros desde el punto de vista medioambiental o que tengan diferentes modos de acción.

La publicación de la solicitud de patente mundial WO 92/05159-A revela pirimidinas útiles como protectores de 15 plantas, especialmente fungicidas. La publicación de la solicitud de patente EP-136976-A2 revela pirimidinas como reguladoras del crecimiento vegetal. La patente de U.S. 5.324.710 revela derivados heterociclocarboxamida sulfonados de pirimidinas como herbicidas y reguladores de cultivo. Diversos derivados fenilsustituidos de aminopirimidinas se describen también en Clark et al., J. Chem. Soc. C, 1969, 10, p 1408 y J. Am. Chem. Soc, 80. 20 1958, pp 2829-2832.

SUMARIO DE LA INVENCIÓN

Esta invención se dirige a un compuesto de Fórmula I que incluye todos los isómeros geométricos y estereoisómeros, sus N-óxidos o sales agrícolamente adecuadas, composiciones agrícolas que los contienen y su uso como herbicidas:

I

en la que

25

R¹ es ciclopropilo opcionalmente sustituido con 1-5 R⁵, isopropilo opcionalmente sustituido con 1-5 R⁶, o fenilo opcionalmente sustituido con 1-3 R⁷; R^2 es $((O)_iC(R^{15})(R^{16}))_kR$;

30 R es CO₂H o una sal, éster, carboxamida, alcilhidrazida, imidato, tioimidato, amidina, haluro de acilo, anhídrido de ácido, éter, acetal, ortoéster, carboxaldehido, oxima, hidrazona, tioácido, tioéster, ditioéster, o nitrilo derivado del mismo.

R³ es halógeno, OR²⁰, OR²¹ o N(R²²)R²³:

 R^4 es $-N(R^{24})R^{25}$ o $-NO_2$; cada R^5 y R^6 es independientemente halógeno, alquilo(C_1 - C_6), halo-alquilo(C_1 - C_6), alquenilo(C_2 - C_6), 35 $halo-alquenilo(C_2-C_6), \ alcoxi(C_1-C_3), \ halo-alcoxi(C_1-C_2), \ alquil(C_1-C_3)-tio\ o\ halo-alquil(C_1-C_2)-tio;$ cada R^7 es independientemente halógeno, ciano, nitro, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_4), cicloalquilo(C_3 - C_6), halo-cicloalquilo(C_3 - C_6), hidroxi-alquilo(C_1 - C_4), alcoxialquilo(C_2 - C_4), halo-alcoxialquilo(C_2 - C_4), alguenilo(C_2 - C_4), halo-alquenilo(C₂-C₄), alquinilo(C₃-C₄), halo-alquinilo(C₃-C₄), hidroxi, alcoxi(C₁-C₄), halo-alcoxi(C₁-C₄), alquenil(C₂-C₄), halo-alquinilo(C₃-C₄), halo-al C_4)-oxi, halo-alquenil(C_2 - C_4)-oxi, alquinil(C_3 - C_4)-oxi, halo-alquinil(C_3 - C_4)-oxi, alquinil(C_1 - C_4)-tio, halo-alquinil(C_1 - C_4)-tio, 40

 $alguil(C_1-C_4)$ -sulfinilo, halo-alguil(C_1-C_4)-sulfinilo, alguil(C_1-C_4)-sulfonilo, halo-alguil(C_1-C_4)-sulfonilo, halo-alguil(C_1-C_4)-sulfonilo, halo-alguil(C_1-C_4)-sulfonilo, alguil(C_1-C_4)-sulfonilo, halo-alguil(C_1-C_4 tio, halo-alquenil(C_2 - C_4)-tio, alquenil(C_2 - C_4)-sulfinilo, halo-alquenil(C_2 - C_4)-sulfinilo, halo-alquenil(C_2 - C_4)-sulfinilo, halo $alquenil(C_2-C_4)-sulfonilo, \quad alquinil(C_3-C_4)-tio, \quad halo-alquinil(C_3-C_4)-tio, \quad alquinil(C_3-C_4)-sulfinilo, \quad halo-alquinil(C_3-C_4)-tio, \quad alquinil(C_3-C_4)-tio, \quad halo-alquinil(C_3-C_4)-tio, \quad halo-alquini$ $alquinil(C_3-C_4)-sulfonilo, \quad halo-alquinil(C_3-C_4)-sulfonilo,$ sulfinilo. alquil(C_1 - C_4)-amino, dialquil(C_2 - C_8)-amino, (alquil)cicloalquil(C₄-C₆)-amino, cicloalquil(C₃-C₆)-amino, alquilcarbonilo(C_2 - C_6), alcoxicarbonilo(C_2 - C_6),

45 alquilaminocarbonilo(C₂-C₆), dialquilaminocarbonilo(C₃-C₈), trialquil(C_3 - C_6)-sililo, fenilo, fenoxi y anillos heteroaromáticos de 5 ó 6 miembros, cada fenilo, fenoxi y anillo heteroaromático de 5 ó 6 miembros opcionalmente sustituido con uno a tres sustituyentes independientemente seleccionados de R⁴⁵; o dos R⁷ adyacentes se consideran conjuntamente como -OCH₂O-, -CH₂CH₂O-, -OCH(CH₃)O-,

50 -OC(CH₃)₂O-, -OCF₂O-, -CF₂CF₂O-, -OCF₂CF₂O- o -CH=CH-CH=CH-;

```
R^{15} es H, halógeno, alquilo(C_1-C_4), halo-alquilo(C_1-C_4), hidroxi, alcoxi(C_1-C_4) o alquilcarboniloxi(C_2-C_4);
                 R^{16} es H, halógeno, alquilo(C_1-C_4) o halo-alquilo(C_1-C_4); o
                 R<sup>15</sup> y R<sup>16</sup> se consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que
                 están unidos, un resto carbonilo;
   5
                          es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o halo-alquilo(C<sub>1</sub>-C<sub>3</sub>);
                 R^{21} es H, alquilo(C_1-C_4) o halo-alquilo(C_1-C_3);
                 R^{22} y R^{23} son independientemente H o alquilo(C<sub>1</sub>-C<sub>4</sub>);
                 R^{24} es H, alquilo(C_1-C_4) opcionalmente sustituido con 1-2 R^{30}, alquenilo(C_2-C_4) opcionalmente sustituido con 1-2 R^{31},
                  o alquinilo(C<sub>2</sub>-C<sub>4</sub>) opcionalmente sustituido con 1-2 R<sup>32</sup>; o R<sup>24</sup> es C(=O)R<sup>33</sup>, nitro, OR<sup>34</sup>, S(O)<sub>2</sub>R<sup>35</sup>, N(R<sup>36</sup>)R<sup>37</sup> o
                 N = C(R^{62})R^{6}
10
                 R^{25} es H, alquilo(C_1-C_4) opcionalmente sustituido con 1-2 R^{30} o C(=O)R^{33}; o R^{24} y R^{25} se consideran conjuntamente como un radical seleccionado de -(CH_2)<sub>4</sub>-, -(CH_2)<sub>5</sub>-, -CH_2CH=CHCH_2- y -
                  (CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-, cada radical opcionalmente sustituido con 1-2 R<sup>38</sup>; o
                  R^{24} y R^{25} se consideran conjuntamente como =C(R^{39})N(R^{40})R^{41} o =C(R^{42})OR^{43};
                  cada R^{30}, R^{31} y R^{32} es independientemente halógeno, alcoxi(C_1-C_3), halo-alcoxi(C_1-C_3), alquil(C_1-C_3)-tio, halo-alcoxi(C_1-C_3), alquil(C_1-C_3).
15
                 alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-amino, dialquil(C_2-C_4)-amino, o alcoxicarbonilo(C_2-C_4); cada R^{33} es independientemente H, alquilo(C_1-C_14), halo-alquilo(C_1-C_3), alcoxi(C_1-C_4), fenilo, fenoxi o benciloxi; R_{c}^{34} es H, alquilo(C_1-C_4), halo-alquilo(C_1-C_3) o CHR<sup>66</sup>C(O)OR<sup>67</sup>;
                 R^{35} es alquilo(C_1-C_4) o halo-alquilo(C_1-C_3);
                 R^{36} es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o C(=O)R^{64}
20
                 R^{37} es H o alquilo(C<sub>1</sub>-C<sub>4</sub>);
                  cada R^{38} es independientemente halógeno, alquilo(C_1-C_3), alcoxi(C_1-C_3), halo-alcoxi(C_1-C_3), alquil(C_1-C_3)-tio, halo-alcoxi(C_1-C_3), alquil(C_1-C_3)-tio, halo-alcoxi(C_1-C_3).
                  alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-amino, dialquil(C_2-C_4)-amino o alcoxicarbonilo(C_2-C_4);
                           es H o alquilo(C_1-C_4);
                 R es n o aiquilo(C<sub>1</sub>-C<sub>4</sub>),

R^{40} y R^{41} son independientemente H o alquilo(C<sub>1</sub>-C<sub>4</sub>); o

R^{40} y R^{41} se consideran conjuntamente como -(CH<sub>2</sub>)<sub>4</sub>-, -(CH<sub>2</sub>)<sub>5</sub>-, -CH<sub>2</sub>CH=CHCH<sub>2</sub>- o -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-;
25
                  R^{42} es H o alquilo(C_1-C_4);
                  R^{43} es alquilo(C_1-C_4);
                  cada R<sup>45</sup> es independientemente halógeno, ciano, nitro, alquilo(C<sub>1</sub>-C<sub>4</sub>), halo-alquilo(C<sub>1</sub>-C<sub>4</sub>), cicloalquilo(C<sub>3</sub>-C<sub>6</sub>),
30
                 halo-cicloalquilo(C_3-C_6), alquenilo(C_2-C_4), halo-alquenilo(C_2-C_4), alquinilo(C_3-C_4), halo-alquinilo(C_3-C_4), alcoxi(C_1-C_4),
                 halo-alcoxi(C_1-C_4), \ alquil(C_1-C_4)-tio, \ halo-alquil(C_1-C_4)-tio, \ alquil(C_1-C_4)-sulfinilo, \ alquil(C_1-C_4)-sulfonilo, \ alquil(C_1-C_4)-sulfonilo,
                                         dialquil(C_2-C_8)-amino, \quad cicloalquil(C_3-C_6)-amino, \quad (alquil)cicloalquil(C_4-C_6)-amino, \quad alquilcarbonilo(C_2-C_4), \quad (alquil)cicloalquil(C_4-C_6)-amino, \quad (alquil)cicloalquil(C
                  alcoxicarbonilo(C_2-C_6), alquilaminocarbonilo(C_2-C_6), dialquilaminocarbonilo(C_3-C_6) o trialquil(C_3-C_6)-sililo;
                 R<sup>62</sup> es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o fenilo opcionalmente sustituido con 1-3 R<sup>65</sup>;
                 R^{63} es H o alquilo(C<sub>1</sub>-C<sub>4</sub>); o R^{62} y R^{63} se consideran conjuntamente como -(CH<sub>2</sub>)<sub>4</sub>- o -(CH<sub>2</sub>)<sub>5</sub>-;
35
                 R^{64} es H, alquilo(C_1-C_14), halo-alquilo(C_1-C_3), alcoxi(C_1-C_4), fenilo, fenoxi o benciloxi; cada R^{65} es independientemente CH<sub>3</sub>, Cl o OCH<sub>3</sub>;
                 R^{66} es H, alquilo(C_1-C_4) o alcoxi(C_1-C_4);
                 R<sup>67</sup> es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o bencilo;
40
                 jes 0 ó 1; y
                 k es 0 ó 1;
                 a condición de que:
                             (a) cuando k es 0, entonces j es 0;
                             (c) cuando R<sup>1</sup> es fenilo sustituido con CI en cada una de las posiciones meta, el fenilo está sustituido también
45
                             con R<sup>7</sup> en la posición para;
                             (d) cuando R<sup>1</sup> es fenilo sustituido con R<sup>7</sup> en la posición para, dicho R<sup>7</sup> es distinto de terc-butilo, ciano o fenilo
                            opcionalmente sustituido:
                             (e) cuando R1 es ciclopropilo o isopropilo opcionalmente sustituido con 1-5 R6, entonces R es distinto de
                             C(=W)N(R<sup>b</sup>)S(O)<sub>2</sub>R<sup>c</sup>-R<sup>d</sup> donde W es O, S, NR<sup>8</sup> o NORe; R<sup>b</sup> es hidrógeno, alquilo(C<sub>1</sub>-C<sub>4</sub>), alquenilo(C<sub>2</sub>-C<sub>6</sub>) o
50
                            alquinilo(C<sub>2</sub>-C<sub>6</sub>); R<sup>c</sup> es un enlace directo o CHR<sup>f</sup>, O, NR<sup>e</sup> o NOR<sup>e</sup>; R<sup>d</sup> es un heterociclo opcionalmente sustituido
                            o radical aromático carbocíclico que tiene 5 a 6 átomos de anillo, estando el radical opcionalmente condensado
                             con un anillo de 5 ó 6 miembros aromático o no aromático; cada Re es independientemente H, alquilo(C<sub>1</sub>-C<sub>3</sub>),
                            halo-alquilo(C<sub>1</sub>-C<sub>3</sub>) o fenilo: y R<sup>f</sup> es H, alquilo(C<sub>1</sub>-C<sub>3</sub>) o fenilo;
                 Más particularmente, esta invención se refiere a un compuesto de Fórmula I, que incluye todos sus isómeros
55
                  geométricos y estereoisómeros, N-óxidos o sales agrícolamente adecuadas. Esta invención se refiere también a una
                  composición herbicida que comprende una cantidad eficazmente herbicida de un compuesto de la Fórmula I y al
```

menos uno de un tensioactivo, un diluyente sólido o un diluyente líquido. Esta invención también se refiere a un método para controlar el crecimiento de vegetación no deseada que comprende poner en contacto la vegetación o su medio ambiente con unas cantidades eficazmente herbicidas de un compuesto de la Fórmula I (por ejemplo,

como una composición descrita en este documento). Esta invención se refiere también a una mezcla herbicida que comprende una cantidad eficazmente herbicida de un compuesto de la Fórmula I y una cantidad eficaz de al menos un ingrediente activo adicional seleccionado del grupo consistente en otro herbicida y un antídoto de herbicidas. Esta invención se refiere además a una composición herbicida que comprende una cantidad eficazmente herbicida de un

60

compuesto de la Fórmula I, una cantidad eficaz de al menos un ingrediente activo adicional seleccionado del grupo consistente en otro herbicida y un antídoto de herbicidas, y al menos uno de un tensioactivo, un diluyente sólido o un diluyente líquido.

DETALLES DE LA INVENCIÓN

20

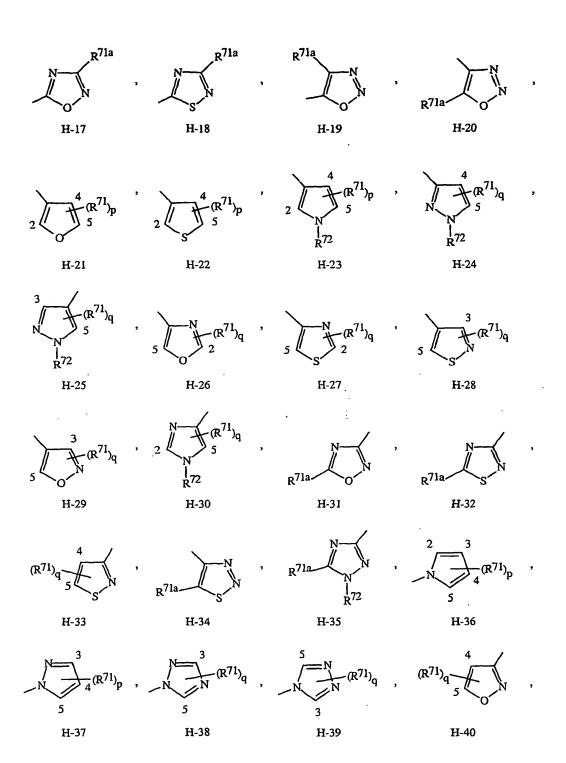
25

30

35

40

45


50

Según se usan en esta invención, se quiere que los términos o expresiones "comprende", "que comprende", "incluye", "que incluye", "tiene", "que tiene", u otra cualquiera de sus variaciones, abarquen una inclusión no exclusiva. Por ejemplo, una composición, un procedimiento, un método, un artículo o un aparato que comprenda una lista de elementos no está necesariamente limitado solo a esos elementos sino que puede incluir otros elementos no expresamente nombrados o inherentes a tal composición, procedimiento, método, artículo o aparato. Además, a menos que se exprese lo contrario, "o" se refiere a una "o" inclusiva y no a una "o" exclusiva. Por ejemplo, una condición A o B es satisfecha por cualquiera de los siguientes: A es verdadero (o está presente) y B es falso (o no está presente), A es falso (o no está presente) y B es verdadero (o está presente), y tanto A como B son verdaderos (o están presentes).

Asimismo, se pretende que los artículos indefinidos "un" y "uno(a)" que preceden a un elemento o componente de la invención no sean restrictivos con respecto al número de casos (es decir, sucesos) del elemento o componente. Por lo tanto "un" o "uno(a)" deben leerse para que incluyan uno o al menos uno, y la forma singular de la palabra del elemento o componente también incluye el plural a menos que el número signifique obviamente el singular.

En las indicaciones anteriores, el término "alquillo", usado sólo o en palabras compuestas tales como "alquiltio" o "haloalquilo" incluye alquilo de cadena lineal o ramificada, tal como metilo, etilo, n-propilo, i-propilo, o los diferentes isómeros de butilo, pentilo o hexilo. "Alquenilo" incluye alquenos de cadena lineal o ramificados tales como etenilo, 1-propenilo, 2-propenilo, y los diferentes isómeros de butenilo, pentenilo y hexenilo. "Alquenilo" también incluye polienos tales como 1,2-propadienilo y 2,4-hexadienilo. "Alquinilo" incluye alquinos de cadena lineal o ramificados tales como etinilo, 1-propinilo, 2-propinilo y los diferentes isómeros de butinilo, pentinilo y hexinilo. "Alquinilo" también puede incluir restos compuestos por múltiples triples enlaces tales como 2,5-hexadiinilo. "Alcoxi" incluye, por ejemplo, metoxi, etoxi, n-propiloxi, isopropiloxi y los diferentes isómeros de butoxi, pentoxi y hexiloxi. "Alcoxialquilo" se refiere a una sustitución alcoxi sobre alquilo. Los ejemplos de "alcoxialquilo" incluyen CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂ y CH₃CH₂OCH₂CH₂. "Alqueniloxi" incluye restos alqueniloxi de cadena lineal o ramificada. Los ejemplos de "alqueniloxi" incluyen H₂C=CHCH₂O, (CH₃)CH=CHCH₂O y CH₂=CHCH₂CH₂O. "Alquiniloxi" incluye restos alquiniloxi de cadena lineal o ramificada. Los ejemplos de "alquiniloxi" incluyen HC≡CCH₂O y CH₃C≡CCH₂O. "Alquiltio" incluye restos alquiltio ramificados o de cadena lineal tales como metiltio, etiltio, y los diferentes isómeros de propiltio y butiltio. "Alquilsulfinilo" incluye ambos enantiómeros de un grupo alquil-sulfinilo. Los ejemplos de "alquilsulfinilo" incluyen $CH_3S(O)$, $CH_3CH_2S(O)$, $CH_3CH_2CH_2S(O)$, $(CH_3)_2CHS(O)$ y los diferentes isómeros de butilsulfinilo. Los ejemplos de "alquilsulfonilo" incluyen $CH_3S(O)_2$, $CH_3CH_2S(O)_2$, $CH_3CH_2CH_2S(O)_2$, $(CH_3)_2CHS(O)_2$ y los diferentes isómeros de butilsulfonilo. "Alquilamino", "dialquilamino", "alqueniltio", "alquenilsulfinilo", "alquenilsulfonilo", "alquiniltio", "alquinilsulfinilo", "alquinilsulfonilo" y similares se definen de forma análoga a los ejemplos anteriores. "Cicloalquilo" incluye, por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo y ciclohexilo. Los ejemplos de "cicloalquilalquilo" incluyen ciclopropilmetilo, ciclopentiletilo, y otros restos cicloalquilo unidos a grupos alquilo de cadena lineal o ramificados. "Alquilcicloalquilo" indica sustitución con alquilo en un resto cicloalquilo. Los ejemplos incluyen 4-metilciclohexilo y 3-etilciclopentilo. La expresión "anillo heteroaromático" incluye heterociclos completamente aromáticos. "Aromático" indica que cada uno de los átomos del anillo está básicamente en el mismo plano y tiene un orbital p perpendicular al plano del anillo, y en el que (4n + 2) electrones π , donde n es 0 o un número entero positivo, están asociados con el anillo para cumplir con la regla de Hückel. La expresión radical aromático carbocíclico es sinónima de la expresión radical aromático isocíclico. Se conoce en la técnica una amplia variedad de métodos de síntesis para permitir la preparación de anillos heterocíclicos aromáticos; para revisiones exhaustivas ver la serie de ocho volúmenes de Comprehensive Heterocyclic Chemistry, redactores jefes A. R. Katritzky y C. W. Rees, Pergamon Press, Oxford, 1984, y la serie de doce volúmenes de Comprehensive Heterocyclic Chemistry II, redactores jefes A. R. Katritzky, C. W. Rees y E. F. V. Scriven, Pergamon Press, Oxford, 1996. Los anillos heteroaromáticos de 5 y 6 miembros descritos para R⁷ comprenden típicamente 1 a 4 miembros anulares heteroatómicos, miembros heteroatómicos seleccionados de 0-4 átomos de N, 0-1 de O y 0-1 de S. La exposición 1 muestra ejemplos de anillos heteroaromáticos; H-1 a H-55 se han de interpretar como ilustrativos y no limitantes de los anillos heteroaromáticos dentro del alcance de la presente invención.

Exposición 1

en la que cada R⁷¹ es independientemente R⁴⁵; R^{71a}, R⁷² y R⁷³ son independientemente H o R⁴⁵; p es un número entero de 0 a 3; y q es un número entero de 0 a 2.

5

10

15

20

25

30

Las referencias en el presente documento a grupos R⁷, H-1 a H-55, se refieren a los mostrados en la exposición 1.

El experto en la técnica apreciará que no todos los heterociclos que contienen nitrógeno pueden formar *N*-óxidos, ya que el nitrógeno requiere un solo par de electrones disponible para oxidación al óxido; un especialista en la técnica reconocerá qué heterociclos que contienen nitrógeno pueden formar *N*-óxidos. Un especialista en la técnica también reconocerá qué aminas terciarias pueden formar *N*-óxidos. Los métodos sintéticos para la preparación de *N*-óxidos de heterociclos y aminas terciarias son muy bien conocidos por un especialista en la técnica, incluyendo la oxidación de heterociclos y aminas terciarias con peroxiácidos tales como ácido peracético y *m*-cloroperbenzoico (MCPBA), peróxido de hidrógeno, hidroperóxidos de alquilo tales como hidroperóxido de *t*-butilo, perborato de sodio y dioxiranos tales como dimetildioxirano. Estos métodos para la preparación de *N*-óxidos se han descrito y revisado exhaustivamente en la bibliografía, véase, por ejemplo: T. L. Gilchrist en Comprehensive Organic Syntesis, vol. 7, pp. 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler y B. Stanovnik en Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton y A. McKillop, Eds., Pergamon Press; M. R. Grimmett y B. R. T. Keene en Advances in Heterocyclic Chemistry, vol. 43, págs. 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler y B. Stanovnik en Advances in Heterocyclic Chemistry, Vol. 9, págs. 285-291, A. R. Katritzky y A. J. Boulton, Eds., Academic Press; y G. W. H. Cheeseman y E. S. G. Werstiuk en Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky y A. J. Boulton, Eds., Academic Press.

El término "halógeno", sólo o en palabras compuestas tales como "haloalquilo", incluye flúor, cloro, bromo o yodo. Además, cuando se usa en palabras compuestas tales como "haloalquilo", dicho alquilo puede estar parcial o totalmente sustituido con átomos de halógeno que pueden ser iguales o diferentes. Los ejemplos de "haloalquilo" incluyen F₃C, ClCH₂, CF₃CH₂ y CF₃CCl₂. Los términos "haloalquenilo", "haloalquinilo", "haloalcoxi", "haloalquiltio" y similares, se definen de forma análoga al término "haloalquilo". Los ejemplos de "haloalquenilo" incluyen (Cl)₂C=CHCH₂ y CF₃CH₂CH=CHCH₂. Los ejemplos de "haloalquinilo" incluyen HCC≡CHCl, CF₃C≡C, CCl₃C≡C y FCH₂C≡CCH₂. Los ejemplos de "haloalcoxi" incluyen CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O y CF₃CH₂O. Los ejemplos de "haloalquiltio" incluyen CCl₃S, CF₃S, CCl₃CH₂S y ClCH₂CH₂CH₂S. Los ejemplos de "haloalquilsulfinilo" incluyen CF₃S(O), CCl₃S(O), CF₃CH₂S(O) y CF₃CF₂S(O). Los ejemplos de "haloalquilsulfonilo" incluyen CF₃S(O)₂, CCl₃S(O)₂, CCl₃

El número total de átomos de carbono en un grupo sustituyente se indica mediante el sufijo "C_i-C_j" en el que i y j son números de 1 a 14. Por ejemplo, alquil(C₁-C₃)-sulfonilo designa de metilsulfonilo a propilsulfonilo. Alcoxialquilo C₂ indica CH₃OCH₂; alcoxialquilo C₃ indica, por ejemplo, CH₃CH(OCH₃), CH₃OCH₂CH₂ o CH₃CH₂OCH₂; y alcoxialquilo C₄ indica los diversos isómeros de un grupo alquilo sustituido con un grupo alcoxi que contiene un total de cuatro átomos de carbono, donde los ejemplos incluyen CH₃CH₂CH₂OCH₂ y CH₃CH₂OCH₂CH₂. Los ejemplos de "alquilcarbonilo" incluyen C(O)CH₃, C(O)CH₂CH₂CH₃ y C(O)CH(CH₃)₂. Los ejemplos de "alcoxicarbonilo" incluyen CH₃OC(=O), CH₃CH₂OC(=O), (CH₃)₂CHOC(=O) y los diferentes isómeros de butoxi- o pentoxicarbonilo. En las indicaciones anteriores, cuando un compuesto de Fórmula I está comprendido por uno o más anillos heterocíclicos, todos los sustituyentes están unidos a estos anillos a través de cualquier carbono o nitrógeno disponible por reemplazo de un hidrógeno en dicho carbono o nitrógeno.

Cuando un compuesto se sustituye con un sustituyente que lleva un subíndice (por ejemplo, $(R^d)_{1-3}$) que indica que el número de casos (es decir, sucesos) de dicho sustituyente puede variar, o el sustituyente está precedido por un intervalo numérico (por ejemplo, 1-3 R^d) que el indica que el número de casos de dicho sustituyente puede variar, entonces cuando el número de dichos casos es mayor que 1, cada caso se selecciona independientemente del grupo de radicales definidos para el sustituyente. Además, cuando el subíndice indica un intervalo, por ejemplo $(R^d)_{i-j}$, entonces el número de casos de sustituyente puede seleccionarse entre los números enteros comprendidos entre i y j, inclusive.

"-CH[C(O)O(CH₂)_m]" significa

5

10

15

20

25

30

35

40

45

"-CH[O(CH₂)_n]" significa

Cuando un grupo contiene un sustituyente que puede ser hidrógeno, por ejemplo R¹⁵ o R³⁴, entonces, cuando este sustituyente se toma como hidrógeno, se reconoce que esto es equivalente a que dicho grupo no está sustituido.

Los compuestos de esta invención pueden existir como uno o más estereoisómeros. Los diversos estereoisómeros incluyen enantiómeros, diastereómeros, atropisómeros e isómeros geométricos. Un experto en la materia apreciará que un estereoisómero puede ser más activo y/o puede mostrar efectos beneficiosos cuando está enriquecido con respecto al otro u otros estereoisómeros o cuando se separa del otro u otros estereoisómeros. Además, el especialista sabe como separar, enriquecer y/o preparar de forma selectiva dichos estereoisómeros. Por lo tanto, la presente invención comprende compuestos seleccionados de la Fórmula I, *N*-óxidos y las sales agrícolamente adecuadas del mismo. Los compuestos de la invención pueden estar presentes como una mezcla de estereoisómeros, estereoisómeros individuales, o como una forma ópticamente activa.

Se cree que los compuestos de la Fórmula I, donde R es CO₂H (es decir, una función de ácido carboxílico), son los compuestos que se unen a un sitio activo sobre una enzima o receptor de planta causando efecto herbicida sobre la planta. Otros compuestos de la Fórmula I donde el sustituyente R es un grupo que se puede transformar dentro de las plantas o el medio ambiente a una función de ácido carboxílico (es decir, CO₂H) proporcionan efectos herbicidas similares y están dentro del alcance de la presente invención. Por tanto, "un derivado de CO₂H eficazmente herbicida" cuando se usa para describir el sustituyente R en la Fórmula I se define como cualquier sal, éster, carboxamida, acilhidrazida, imidato, tioimidato, amidina, haluro de acilo, cianuro de acilo, anhídrido de ácido, éter, acetal, ortoéster, carboxaldehido, oxima, hidrazona, tioácido, tioéster, ditioléster, nitrilo o cualquier otro derivado de ácido carboxílico conocido en la técnica que no extingue la actividad herbicida del compuesto de la Fórmula I y se hidroliza o se puede hidrolizar, oxidar, reducir o en otro caso metabolizado en las plantas o suelo para proporcionar la función de ácido carboxílico, que dependiendo del pH, está en la forma disociada o no disociada.

Sales agrícolamente adecuadas de los compuestos de la invención son sales formadas por contacto con ácidos o bases o por intercambio iónico de tal manera que las sales derivadas retienen suficiente solubilidad en agua para biodisponibilidad y por tanto eficacia herbicida y los contraiones de las sales son adecuados para usar en agricultura. Las sales agrícolamente adecuadas de los compuestos de la invención incluyen sales de adición de ácidos con ácidos inorgánicos u orgánicos tales como ácido bromhídrico, clorhídrico, nítrico, fosfórico, sulfúrico, acético, butírico, fumárico, láctico, maleico, malónico, oxálico, propiónico, salicílico, tartárico, 4-toluenosulfónico o valérico. Las sales agrícolamente adecuadas de los compuestos de la invención incluyen también las formadas con bases fuertes (por

ejemplo, hidróxidos de sodio, potasio, litio o amonio cuaternario) o aminas. Un experto en la técnica sabe que debido a que en el medio ambiente y bajo condiciones fisiológicas las sales de los compuestos de la invención están en equilibrio con sus correspondientes formas no salinas, las sales agrícolamente adecuadas comparten la utilidad biológica de las formas no salinas.

- Particularmente útiles son las sales agrícolamente adecuadas de compuestos de la fórmula I donde R es CO₂H (que incluye cuando R² es CO₂H) formadas con bases fuertes o aminas. Como es bien sabido en la técnica, el contacto de un grupo ácido carboxílico (CO2H) con una base causa desprotonación para dar el correspondiente ión carboxilato (CO2[©]) y un contraión típicamente cargado positivamente derivado de la base. Una serie amplia de contraiones forma sales agrícolamente adecuadas de compuestos de la Fórmula I donde R es CO₂H porque la 10 mayor parte de las sales derivadas tienen suficiente solubilidad en agua para biodisponibilidad. Ilustrativas y de particular interés son las sales de la Fórmula I en las que R es CO₂H donde el contraión es un catión de metal alcalino tal como litio, sodio o potasio, amonio cuaternario tal como tetrametilamonio, sulfonio ternario tal como trimetilsulfonio, o derivado de una amina tal como dimetilamina, dietanolamina (diolamina), trietanolamina (trolamina).
- También son particularmente útiles los derivados éster y tioéster de CO₂H como R en los compuestos de la Fórmula 15 I. Como es bien conocido en la técnica, los grupos éster (es decir, CO_2R^{AL}) resultan de la condensación de una función de ácido carboxílico (CO_2H) con un alcohol (es decir, $R^{AL}OH$) donde R^{AL} es el radical derivado del alcohol; se conoce una amplia serie de métodos para preparar tales ésteres. Análogamente, los grupos tioéster de fórmula C(O)SRAL se pueden considerar conceptualmente como el producto de condensación de una función de ácido carboxílico con un tioalcohol (llamado frecuentemente mercaptano) de fórmula RALSH; se conoce una variedad de 20 métodos para preparar tales tioésteres. Como los compuestos de la Fórmula I donde R es CO₂H son activos como herbicidas y sus ésteres y tioésteres derivados son susceptibles de hidrólisis (a R que es CO₂H) particularmente en presencia de enzimas hidrolíticas, los compuestos de la Fórmula I donde R1 es un éster (es decir, CO₂RAL) o tioéster (es decir, C(O)SR^{AL}) son generalmente útiles como herbicidas. De los derivados de CO₂H eficamente herbicidas, los derivados éster y tioéster, particularmente los derivados éster, están entre los más útiles y convenientemente preparados. Si el radical R^{AL} tiene más de una función OH o SH, el radical se puede condensar entonces con más 25 de un sistema anular pirimidínico de la Fórmula I que tiene CO₂H como R. Como los derivados resultantes multiesterificados se pueden hidrolizar al compuesto de la Fórmula I que tiene CO2H como R, dichos derivados multiesterificados están entre los derivados de CO₂H eficazmente herbicidas. Ilustrativos y de interés son los compuestos 30 éster y tioéster de la Fórmula I en la que R, que es CO₂H, se esterifica con metanol, etanol, butanol, 2-butoxietanol, 2-etilhexanol, isopropanol, 2-metilpropanol (isobutanol), isómeros de octanol (isoctanol) y etanotiol para formar éster metílico, etílico, butílico, 2-butoxietílico, 2-etilhexílico, isopropílico, 2-metilpropílico, isoctílico y tioetílico, respectivamente. De particular interés son los ésteres metílicos y etílicos.

Las realizaciones de la presente invención incluyen:

```
35
          Forma de realización 1. Un compuesto de la Fórmula I donde j es 0.
          Forma de realización 2. Un compuesto de la Fórmula I donde k es 0.
          Forma de realización 3. Un compuesto de la Fórmula I donde R<sup>15</sup> es H.
          Forma de realización 4. Un compuesto de la forma de realización 3, donde R<sup>16</sup> es H.
          Forma de realización 5. Un compuesto de la Fórmula I, donde
```

R es CO_2R^{12} , CH_2OR^{13} , $CH(OR^{46})(OR^{47})$, CHO, $C(=NOR^{14})H$, $C(=NNR^{48}R^{49})H$, $C(=O)N(R^{18})R^{19}$, $C(=S)OR^{50}$, $C(=O)SR^{51}$, $C(=S)SR^{52}$ o $C(=NR^{53})YR^{54}$. R^{12} es H, $-CH[C(O)O(CH_2)m]$, $-N=C(R^{55})R^{56}$; o un radical seleccionado de alquilo (C_1-C_{14}) , cicloalquilo (C_3-C_{12}) , 40 alquilcicloalquilo(C_4 - C_{12}), cicloalquilalquilo(C_4 - C_{12}), alquenilo(C_2 - C_{14}), alquinilo(C_2 - C_{14}) y fenilo, cada radical opcionalmente sustituido con 1-3 R²⁷; o

R¹² es un radical divalente que une la función éster carboxílico CO₂R¹² de cada uno de los dos sistemas de 45 anillos pirimidínicos, seleccionado el radical divalente de - CH_2 -, - $(CH_2)_2$ -, - $(CH_2)_3$ - y - $CH(CH_3)CH_2$ -; R^{13} es H, alquilo(C_1 - C_1 0) opcionalmente sustituido con 1-3 R^{28} , o bencilo; R^{14} es H, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_4) o bencilo;

 R_{40}^{18} es H, alquilo(C_1 - C_4), hidroxi, alcoxi(C_1 - C_4) o S(O)₂ R_{57}^{57} ;

 R^{19} es H o alquilo(C_1 - C_4); 50

60

cada R²⁷ es independientemente halógeno, ciano, hidroxicarbonilo, alcoxicarbonilo(C₂-C₄), hidroxi, alcoxi(C₁-C₄), $halo-alcoxi(C_1-C_4),\ alquil(C_1-C_4)-tio,\ halo-alquil(C_1-C_4)-tio,\ amino,\ alquil(C_1-C_4)-amino,\ dialquil(C_2-C_4)-amino,\ dialquil(C_2-C_4$ CH[O(CH₂)_n] o fenilo opcionalmente sustituido con 1-3 R⁴⁴; o

dos R^{27} se consideran conjuntamente como -OC(O)O- o -O(C(R^{58})(R^{58}))₁₋₂O-; o dos R^{27} se consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que 55 están unidos, un resto carbonilo:

 $cada \ R^{28} \ es \ independientemente \ halógeno, \ alcoxi(C_1-C_4), \ halo-alcoxi(C_1-C_4), \ alquil(C_1-C_4)-tio, \ halo-alquil(C_1-C_4)-tio, \ halo-alquil(C_1-C_4)$ tio, amino, alquil(C₁-C₄)-amino o dialquil(C₂-C₄)-amino; o

dos R²⁸ se consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que están unidos, un resto carbonilo;

cada R⁴⁴ es independientemente halógeno, alquilo(C₁-C₄), halo-alquilo(C₁-C₃), hidroxi, alcoxi(C₁-C₄), halo $alcoxi(C_1-C_3), \ alquil(C_1-C_3)-tio, \ halo-alquil(C_1-C_3)-tio, \ amino, \ alquil(C_1-C_3)-amino, \ dialquil(C_2-C_4)-amino, \ o \ nitro; \ R^{46} \ y \ R^{47} \ son \ independient emente \ alquilo(C_1-C_4) \ o \ halo-alquilo(C_1-C_3); \ o$

 $R^{48} \ es \ H, \ alquilo(C_1-C_4), \ halo-alquilo(C_1-C_4), \ alquilcarbonilo(C_2-C_4), \ alcoxicarbonilo(C_2-C_4) \ o \ bencilo;$

R⁴⁶ y R⁴⁷ se consideran conjuntamente como -CH₂CH₂-, -CH₂CH(CH₃)- o -(CH₂)₃-;

```
R^{49} es H, alquilo(C_1-C_4) o halo-alquilo(C_1-C_4); R^{50}, R^{51} y R^{52} son H; o un radical selectionado de alquilo(C_1-C_{14}), cicloalquilo(C_3-C_{12}), alquilcicloalquilo(C_4-C_{12}), R^{51} y R^{52} son H; o un radical selectionado de alquilo(C_1-C_1), cicloalquilo(C_3-C_1), alquilcicloalquilo(C_4-C_1), R^{51} y R^{52} son H; o un radical selectionado de alquilo(C_1-C_1), cicloalquilo(C_3-C_1), alquilcicloalquilo(C_4-C_1), R^{51} y R^{52} son H; o un radical selectionado de alquilo(C_1-C_1), cicloalquilo(C_3-C_1), alquilcicloalquilo(C_4-C_1-C_1), and alquilcicloalquilo(C_3-C_1), alquilcicloalquilo(C_3-C_1), alquilcicloalquilo(C_3-C_1-C_1), alquilcicloalquilo(C_3-C_1-C_1), alquilcicloalquilo(C_3-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-
  5
                   cicloalquilalquilo(C<sub>4</sub>-C<sub>12</sub>), alquenilo(C<sub>2</sub>-C<sub>14</sub>) y alquinilo(C<sub>2</sub>-C<sub>14</sub>), cada radical opcionalmente sustituido con 1-3 R<sup>2</sup>
                   Y es O, S o NR<sup>61</sup>
                   R^{53} es H, alquilo(C_1-C_3), halo-alquilo(C_1-C_3), alcoxialquilo(C_2-C_4), OH o alcoxi(C_1-C_3);
                   R^{54} es alquilo(C_1-C_3), halo-alquilo(C_1-C_3) o alcoxialquilo(C_2-C_4); o
                   R<sup>53</sup> y R<sup>54</sup> se consideran conjuntamente como -(CH<sub>2</sub>)<sub>2</sub>-, -CH<sub>2</sub>CH(CH<sub>3</sub>)- o -(CH<sub>2</sub>)<sub>3</sub>-; R<sup>55</sup> y R<sup>56</sup> son independientemente alquilo(C<sub>1</sub>-C<sub>4</sub>); R<sup>57</sup> es alquilo(C<sub>1</sub>-C<sub>4</sub>), halo-alquilo(C<sub>1</sub>-C<sub>3</sub>) o NR<sup>59</sup>R<sup>60</sup>;
10
                   cada R^{58} se selecciona independientemente de H y alquilo(C_1-C_4); R^{59} y R^{60} son independientemente H o alquilo(C_1-C_4); R^{61} es H, alquilo(C_1-C_3), halo-alquilo(C_1-C_3) o alcoxialquilo(C_2-C_4);
                   m es un número entero de 2 a 3; y
15
                   n es un número entero de 1 a 4.
                   Forma de realización 6. Un compuesto de la Fórmula I en la que cuando R<sup>1</sup> es opcionalmente ciclopropilo
                   sustituido, R<sup>2</sup> es entonces distinto de alcoxialquilo o alquiltioalquilo.
                   Forma de realización 7. Un compuesto de la Fórmula I donde R<sup>2</sup> es distinto de alcoxialquilo o alquiltioalquilo.
                   Forma de realización 8. Un compuesto de la forma de realización 5 donde
20
                   R<sup>2</sup> es CO_2R^{12}, CH_2OR^{13}, CH(OR^{46})(OR^{47}), CHO, C(=NOR^{14})H, C(=NNR^{48}R^{49})H, (O)_jC(R^{15})(R^{16})CO_2R^{17}, C(=O)N(R^{18})R^{19}, C(=S)OR^{50}, C(=O)SR^{51}, C(=S)SR^{52} o C(=NR^{53})YR^{54}; R^{17} es alquilo(C_1-C_{10}) opcionalmente sustituido con 1-3 R^{29}, o bencilo; y cada R^{29} es independientemente halógeno, alcoxi(C_1-C_4), halo-alcoxi(C_1-C_4), alquil(C_1-C_4)-tio, halo-alquil(C_1-C_4)-
                   tio, amino, alquil(C_1-C_4)-amino o dialquil(C_2-C_4)-amino.
25
                   Forma de realización 9. Un compuesto de la forma de realización 8 en el que cuando R<sup>2</sup> es CH<sub>2</sub>OR<sup>13</sup>, entonces
                   R<sup>13</sup> es distinto de alquilo.
                   Forma de realización 10. Un compuesto de la forma de realización 8 en el que cuando R<sup>2</sup> es CH<sub>2</sub>OR<sup>13</sup>, entonces
                   R<sup>13</sup> es distinto de alquilo opcionalmente sustituido.
                   Forma de realización 11. Un compuesto de la forma de realización 8 donde R<sup>2</sup> es distinto de CH<sub>2</sub>OR<sup>13</sup>.
30
                   Forma de realización 12. Un compuesto de la forma de realización 8 donde j es 0.
                   Forma de realización 13. Un compuesto de la forma de realización 12 donde R<sup>2</sup> es CO<sub>2</sub>R<sup>12</sup>, CH<sub>2</sub>OR<sup>13</sup>, CHO o
                   CH<sub>2</sub>CO<sub>2</sub>R<sup>1</sup>
                   Forma de realización 14. Un compuesto de la forma de realización 13 donde R<sup>2</sup> es CO<sub>2</sub>R<sup>12</sup>.
                   Forma de realización 14. Un compuesto de la forma de realización 13 donde R es CO<sub>2</sub>R .

Forma de realización 15. Un compuesto de la forma de realización 14 donde R es H, alquilo(C<sub>1</sub>-C<sub>8</sub>) o alquilo(C<sub>1</sub>) sustituido con fenilo opcionalmente sustituido con 1-3 R<sup>44</sup>.

Forma de realización 16. Un compuesto de la forma de realización 15 donde R es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o alquilo(C<sub>1</sub>) sustituido con fenilo opcionalmente sustituido con 1-3 R<sup>44</sup>.
35
                   Forma de realización 17. Un compuesto de la forma de realización 16 donde R<sup>12</sup> es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o bencilo.
                   Forma de realización 18. Un compuesto de la Fórmula I donde R<sup>2</sup> es CO<sub>2</sub>H, una sal suya agrícolamente
40
                   adecuada o un derivado éster o tioéster del mismo.
                   Forma de realización 19. Un compuesto de la forma de realización 18 donde R<sup>2</sup> es CO₂H, una sal agrícolamente
                   adecuada o un derivado éster del mismo.
                   Forma de realización 20. Un compuesto de la Fórmula I donde R<sup>1</sup> es ciclopropilo opcionalmente sustituido con 1-5
                   R^5.
45
                   Forma de realización 21. Un compuesto de la Fórmula I donde R<sup>1</sup> es isopropilo opcionalmente sustituido con 1-5
                   Forma de realización 22. Un compuesto de la Fórmula I donde R<sup>1</sup> es fenilo opcionalmente sustituido con 1-3 R<sup>7</sup>. Forma de realización 23. Un compuesto de la Fórmula I donde R<sup>1</sup> es ciclopropilo opcionalmente sustituido con 1-5
                   R<sup>5</sup> o isopropilo opcionalmente sustituido con 1-5 R<sup>6</sup>.
50
                   Forma de realización 24. Un compuesto de la Fórmula I donde R<sup>1</sup> es ciclopropilo opcionalmente sustituido con 1-5
                   R<sup>5</sup> o fenilo opcionalmente sustituido con 1-3 R<sup>7</sup>
                   Forma de realización 25. Un compuesto de la Fórmula I donde R<sup>1</sup> es isopropilo opcionalmente sustituido con 1-5
                   R<sup>6</sup> o fenilo opcionalmente sustituido con 1-3 R<sup>7</sup>.
                   Forma de realización 26. Un compuesto de la Fórmula I donde R<sup>1</sup> es distinto de ciclopropilo.
Forma de realización 27. Un compuesto de la Fórmula I donde R<sup>1</sup> es ciclopropilo opcionalmente sustituido con 1-2
55
                   R<sup>6</sup> o fenilo opcionalmente sustituido con 1-3 R<sup>7</sup>.
                   Forma de realización 28. Un compuesto de la forma de realización 27 donde R1 es ciclopropilo opcionalmente
                   sustituido con 1-2 R<sup>6</sup>.
                   Forma de realización 29. Un compuesto de la forma de realización 27 donde R1 es ciclopropilo o fenilo
60
                   opcionalmente sustituido con 1-3 R<sup>7</sup>.
                   Forma de realización 30. Un compuesto de la forma de realización 28 donde R<sup>1</sup> es ciclopropilo. Forma de realización 31. Un compuesto de la forma de realización 27 donde R<sup>1</sup> es fenilo opcionalmente sustituido
```

con un radical R⁷ en la posición para y opcionlamente con 1-2 R⁷ en otras posiciones.

65

Forma de realización 32. Un compuesto de la forma de realización 27 donde R¹ es ciclopropilo o fenilo sustituido

Forma de realización 33. Un compuesto de la forma de realización 32 donde R¹ es ciclopropilo o fenilo sustituido con un radical halógeno, metilo o metoxi en la posición para y opcionalmente con 1-2 radicales seleccionados de halógeno y metilo en otras posiciones.

- Forma de realización 34. Un compuesto de la forma de realización 33 donde R1 es ciclopropilo o fenilo sustituido 5 con un radical halógeno en la posición para y opcionalmente con 1-2 radicales seleccionados de halógeno y metilo en otras posiciones.
 - Forma de realización 35. Un compuesto de la forma de realización 34 donde R¹ es ciclopropilo o fenilo sustituido con un radical Br o Cl en la posición para y opcionalmente con 1-2 radicales seleccionados de halógeno y metilo en otras posiciones.
- Forma de realización 36. Un compuesto de la forma de realización 35 donde R¹ es fenilo sustituido con un radical 10 Br o Cl en la posición para y opcionalmente con 1-2 radicales seleccionados de halógeno y metilo en otras
 - Forma de realización 37. Un compuesto de la forma de realización 35 donde R¹ es ciclopropilo o fenilo sustituido con un radical Br o Cl en la posición para.
- Forma de realización 38. Un compuesto de la forma de realización 37 donde R1 es fenilo sustituido con un radical 15 Br o Cl en la posición para.

 - Forma de realización 39. Un compuesto de la Fórmula I donde R⁷ es distinto de ciano.
 Forma de realización 40. Un compuesto de la Fórmula I donde R⁷ se selecciona de otros distintos de fenilo, fenoxi y anillos heteroatómicos de 5 y 6 miembros opcionalmente sustituidos.
- Forma de realización 41. Un compuesto de la Fórmula I donde cada R⁷ se selecciona independientemente de 20 halógeno, alquilo(C_1 - C_2), halo-alquilo(C_1 - C_2), alcoxi(C_1 - C_2) o halo-alcoxi(C_1 - C_2); o dos R^7 adyacentes se consideran conjuntamente como -OCH₂O-, -CH₂CH₂O-, -OCH(CH₃)O-, -OC(CH₃)₂O-, -OCF₂O-, -CF₂CF₂O-, -OCF₂CF₂O- o -CH=CH-CH=CH-.
- Forma de realización 42. Un compuesto de la forma de realización 41 donde cada R⁷ se selecciona independientemente de halógeno, alquilo(C₁-C₂), halo-alquilo(C₁-C₂), alcoxi(C₁-C₂) o halo-alcoxi(C₁-C₂); o dos R⁷ 25 adyacentes se consideran conjuntamente como -OCH2O-, -CH2CH2O-, -OCH(CH3)O- o -OCF2O-.
 - Forma de realización 43. Un compuesto de la forma de realización 42 donde cada R⁷ se selecciona independientemente de halógeno, alquilo (C_1-C_2) , fluoro-alquilo (C_1) , alcoxi (C_1-C_2) o fluoro-alcoxi (C_1) .
 - Forma de realización 44. Un compuesto de la Fórmula I donde cada R⁷ se selecciona independientemente de halógeno, metilo v metoxi.
 - Forma de realización 45. Un compuesto de la forma de realización 44 donde cada R⁷ se selecciona independientemente de halógeno y metilo.
 - Forma de realización 46. Un compuesto de la forma de realización 45 donde cada R⁷ se selecciona independientemente de F, Cl y Br.
- Forma de realización 47. Ún compuesto de la forma de realización 46 donde cada R⁷ se selecciona 35 independientemente de CI y Br.

30

- Forma de realización 48. Un compuesto de la Fórmula I donde R³ es distinto de ciano. Forma de realización 49. Un compuesto de la Fórmula I donde R³ es distinto de nitro. Forma de realización 50. Un compuesto de la Fórmula I donde R³ es halógeno, nitro, OR²⁰, SR²¹ o N(R²²)R²³.
- 40 Forma de realización 51. Un compuesto de la forma de realización 50 donde R³ es halógeno.
 - Forma de realización 52. Un compuesto de la forma de realización 51 donde R³ es Br o Cl.

 - Forma de realización 53. Un compuesto de la forma de realización 51 donde R³ es Cl. Forma de realización 54. Un compuesto de la Fórmula I donde R⁴ es -N(R²⁴)R²⁵. Forma de realización 55. Un compuesto de la Fórmula I donde R²⁴ es distinto de alquinilo(C₂-C₄) opcionalmente sustituido con 1-2 R³².
- 45 Forma de realización 56. Un compuesto de la Fórmula I donde R²⁴ es H, C(O)R³³ o alquilo(C₁-C₄) opcionalmente sustituido con R^{30} ; R^{25} es H o alquilo(C_1 - C_2); o R^{24} y R^{25} se consideran conjuntamente como = $C(R^{39})N(R^{40})R^{41}$ Forma de realización 57. Un compuesto de la forma de realización 56 donde R^{24} es H, $C(O)CH_3$ o alquilo(C_1 - C_4) opcionalmente sustituido con R^{30} ; y R^{25} es H o alquilo(C_1 - C_2). Forma de realización 58. Un compuesto de la forma de realización 57 donde R^{24} y R^{25} son independientemente H
- 50
 - Forma de realización 59. Un compuesto de la forma de realización 58 donde R²⁴ y R²⁵ son H.
 - Forma de realización 60. Un compuesto de la Fórmula I donde R³⁰ es halógeno, metoxi, fluoro-alcoxi(C₁), metiltio, fluoro-alquil(C₁)-tio, amino, metilamino, dimetilamino o metoxicarbonilo.
- Forma de realización 61. Un compuesto de la Fórmula I donde R³³ es H o alquilo(C₁-C₃). 55
 - Forma de realización 62. Un compuesto de la forma de realización 61 donde R³³ es CH₃.

 - Forma de realización 63. Un compuesto de la Fórmula I donde R³⁹ es H o alquilo(C₁-C₂). Forma de realización 64. Un compuesto de la Fórmula I donde R⁴⁰ y R⁴¹ son independientemente H o alquilo(C₁-C₂).
- Forma de realización 65. Un compuesto de la Fórmula I donde R³ es distinto de OH. 60
 - Forma de realización 66. Un compuesto de la Fórmula I donde R³ es distinto de OR²⁰
 - Forma de realización 67. Un compuesto de la Fórmula I en la que cuando j es 1 y R1 es isopropilo sustituido con al menos un R⁶ que es halógeno, R²⁴ y R²⁵ son entonces H cada uno.

 Forma de realización 68. Un compuesto de la Fórmula I en la que cuando j es 1, R¹ es isopropilo opcionalmente
- sustituido, los R²⁴ y R²⁵ son cada uno H. 65

- Forma de realización 69. Un compuesto de la Fórmula I en la que cuando j es 1, R²⁴ y R²⁵ son entonces H cada
- Forma de realización 70. Un compuesto de la Fórmula I en la que cuando j es 1, R⁶ es entonces distinto de halógeno.
- Forma de realización 71. Un compuesto de la Fórmula I en la que cuando j es 1, R¹ es entonces distinto de 5 isopropilo opcionalmente sustituido.
 - Forma de realización 72. Un compuesto de la Fórmula I en la que cuando j es 1, R1 es entonces ciclopropilo opcionalmente sustituido con 1-5 R⁵, isopropilo, o fenilo opcionalmente sustituido con 1-3 R⁷.
- Forma de realización 73. Un compuesto de la Fórmula I en la que cuando j es 1, R1 es entonces ciclopropilo, isopropilo. o fenilo opcionalmente sustituido con 1-3 R⁷. 10
 - Forma de realización 74. Un compuesto de la Fórmula I en la que cuando R¹ es fenilo opcionalmente sustituido con 1-3 R⁷, entonces R es distinto de ciano.
 - Forma de realización 75. Un compuesto de la Fórmula I donde R es distinto de ciano.
- Forma de realización 76. Un compuesto de la forma de realización 5 en el que cuando R¹ es fenilo opcionalmente sustituido con 1-3 R7, entonces R es CO₂R12 15
 - Forma de realización 77. Un compuesto de la forma de realización 5 donde R es CO₂R¹².
 - Forma de realización 78. Un compuesto de la forma de realización 8 en el que cuando R¹ es fenilo opcionalmente sustituido con 1-3 R⁷, entonces R² es CO₂R¹².
 - Forma de realización 79. Un compuesto de la forma de realización 8 donde R² es CO₂R¹².
- Forma de realización 80. Un compuesto de la Fórmula I en la que cuando R^1 es fenilo opcionalmente sustituido con 1-3 R^7 , entonces R^{24} es H, $C(=O)R^{33}$, nitro, OR^{34} , $S(O)_2R^{35}$ o $N(R^{36})R^{37}$, y R^{25} es H o $C(=O)R^{33}$. 20
 - Forma de realización 81. Un compuesto de la Fórmula I en la que cuando R^1 es fenilo opcionalmente sustituido con 1-3 R^7 , entonces R^{24} y R^{25} son cada uno H. Forma de realización 82. Un compuesto de la Fórmula I donde R^{24} es H, C(=O) R^{33} , nitro, OR^{34} , S(O)₂ R^{35} o
- $N(R^{36})R^{37}$, y R^{25} es H o $C(=O)R^{33}$. Forma de realización 83. Un compuesto de la Fórmula I donde R^{24} y R^{25} son cada uno H. 25

 - Forma de realización 84. Un compuesto de la Fórmula I en la que cuando R¹ es ciclopropilo o isopropilo
- opcionalmente sustituido con 1-5 R^6 , entonces R es distinto de $C(=W^1)N(R^{b1})S(O)_2-R^{cd}$ donde W comprende al menos un átomo; R^{b1} comprende al menos un átomo y R^{cd} comprende al menos un átomo. Forma de realización 85. Un compuesto de la Fórmula I en la que cuando R^1 es ciclopropilo opcionalmente sustituido con 1-5 R^5 o isopropilo opcionalmente sustituido con 1-5 R^5 o isopropilo opcionalmente sustituido con 1-5 R^6 , entonces R es distinto de $C(=W^1)N(R^{b1})S(O)_2-R^{cd}$ donde W comprende al menos un átomo; R^{b1} comprende al menos un átomo y R^{cd} 30 comprende al menos un átomo.
 - Forma de realización 86. Un compuesto de la Fórmula I donde R es distinto de C(=W1)N(Rb1)S(O)2-Rcd donde W comprende al menos un átomo; R^{b1} comprende al menos un átomo y R^{cd} comprende al menos un átomo. Forma de realización 87. Un compuesto de la forma de realización 5 donde R¹⁸ es H, alquilo(C₁-C₄), hidroxi o
 - alcoxi(C_1 - C_4).
 - Forma de realización 88. Un compuesto de la forma de realización 8 donde R¹⁸ es H, alquilo(C₁-C₄), hidroxi o alcoxi(C_1 - C_4).
- Forma de realización 89. Un compuesto de la Fórmula I donde cada R⁵ y R⁶ es independientemente halógeno, 40 alquilo(C_1 - C_2) o halo-alquilo(C_1 - C_2).
 - Forma de realización 90. Un compuesto de la Fórmula I donde R^{15} es H, halógeno, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_4), hidroxi, alcoxi(C_1 - C_4) o alguilcarboniloxi(C_2 - C_4).
- Forma de realización 91. Un compuesto de la Fórmula I donde R^{16} es H, halógeno, alquilo(C_1 - C_4) o haloalquilo(C_1 - C_4). 45
 - Forma de realización 92. Un compuesto de la Fórmula I donde R^{24} es H, alquilo(C_1 - C_4) opcionalmente sustituido con 1-2 R^{30} , alquenilo(C_2 - C_4) opcionalmente sustituido con 1-2 R^{31} , o alquinilo(C_2 - C_4) opcionalmente sustituido con 1-2 R^{32} ; o R^{24} es R^{30} , nitro, R^{30} , nitro, R^{30} , R^{30} , o R^{30} , R^{30} . Forma de realización 93. Un compuesto de la Fórmula I donde cada R^{33} es independientemente H, alquilo(R^{30} - R^{30}).
- halo-alquilo(C_1 - C_3), alcoxi(C_1 - C_4), fenoxi o benciloxi. 50
 - Forma de realización 94. Un compuesto de la Fórmula I donde R^{34} es H, alquilo(C_1 - C_4) o halo-alquilo(C_1 - C_3). Forma de realización 95. Un compuesto de la Fórmula I donde R^{36} es H o alquilo(C_1 - C_4).

 - Forma de realización 96. Un compuesto de la forma de realización 5, donde R¹² es H; o un radical seleccionado de alquilo(C_1 - C_{14}), cicloalquilo(C_3 - C_{12}), alquilcicloalquilo(C_4 - C_{12}), cicloalquilalquilo(C_4 - C_{12}), alquenilo(C_2 - C_{14}) y alquinilo(C_2 - C_{14}), cada radical opcionalmente sustituido con 1-3 R²⁷; o -N=C(R⁵⁵)R⁵⁶.
- 55 Forma de realización 97. Un compuesto de la forma de realización 5 donde cada R27 es independientemente halógeno, hidroxicarbonilo, alcoxicarbonilo(C₂-C₄), hidroxi, alcoxi(C₁-C₄), halo-alcoxi(C₁-C₄), alquil(C₁-C₄)-tio, haloalquil(C_1 - C_4)-tio, amino, alquil(C_1 - C_4)-amino, dialquil(C_2 - C_4)-amino, -CH[O(CH₂)_n] o fenilo opcionalmente sustituido con 1-3 R⁴⁴; o dos R²⁷ se consideran conjuntamente como -OC(O)O- o -O(C(R⁵⁸)(R⁵⁸))₁₋₂O-; o dos R²⁷ se
- consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que están unidos, 60 un resto carbonilo.
 - Forma de realización 98. Un compuesto de la forma de realización 5 donde R⁵³ es H, alquilo(C₁-C₃), haloalquilo(C_1 - C_3) o alcoxialquilo(C_2 - C_4).

Las combinaciones de formas de realización 1-98 se ilustran por:

35

Forma de realización A. Un compuesto de la Fórmula I donde

```
Formal de realización A. On compuesto de la Formala Ludide R^2 es CO_2R^{12}, CH_2OR^{13}, CH(OR^{46})(OR^{47}), CHO, C(=NOR^{14})H, C(=NNR^{48}R^{49})H, (O)_jC(R^{15})(R^{16})CO_2R^{17}, C(=O)N(R^{18})R^{19}, C(=S)OR^{50}, C(=O)SR^{51}, C(=S)SR^{52} o C(=NR^{53})YR^{54}; R^{12} es H, -CH(C(O)O(CH_2)m^-], -N=C(R^{55})R^{56}; o un radical seleccionado de alquilo(C_1-C_{14}), cicloalquilo(C_3-C_{12}), -N=C(R^{55})R^{56}; o un radical seleccionado de alquilo(C_1-C_{14}), -N=C(R^{55})R^{56}; o un radical seleccionado de alquilo-N=C(R^{55})R^{56}; o un radical seleccionado de alquilo-N=
   5
                        alquilcicloalquilo(C_4-C_{12}), cicloalquilalquilo(C_4-C_{12}), alquenilo(C_2-C_{14}), alquinilo(C_2-C_{14}) y fenilo, cada radical
                        opcionalmente sustituido con 1-3 R<sup>27</sup>; o
                        R<sup>12</sup> es un radical divalente que une la función éster carboxílico CO<sub>2</sub>R<sup>12</sup> de cada uno de los dos sistemas de
                        anillos pirimidínicos, seleccionado el radical divalente de -CH_2-, -(CH_2)_2-, -(CH_2)_3- y -CH(CH_3)CH_2-; R_1^{13} es H, alquilo(C_1-C_{10}) opcionalmente sustituido con 1-1 R_2^{28}, o bencilo;
                        R^{14} es H, alquilo(C_1-C_4), halo-alquilo(C_1-C_4) o bencilo;
10
                        R^{17} es alquilo(C_1-C_{10}) opcionalmente sustituido con 1-3 R^{29}, o bencilo;
                        R^{18} es H, alquilo(C<sub>1</sub>-C<sub>4</sub>), hidroxi, alcoxi(C<sub>1</sub>-C<sub>4</sub>) o S(O)<sub>2</sub>R^{57};
                        R^{19} es H o alquilo(C_1-C_4);
                        cada R<sup>27</sup> es independientemente halógeno, ciano, hidroxicarbonilo, alcoxicarbonilo(C<sub>2</sub>-C<sub>4</sub>), hidroxi, alcoxi(C<sub>1</sub>-C<sub>4</sub>).
                       halo-alcoxi(C_1-C_4), alquil(C_1-C_4)-tio, halo-alquil(C_1-C_4)-tio, amino, alquil(C_1-C_4)-amino, dialquil(C_2-C_4)-amino, CH[O(CH<sub>2</sub>)<sub>n</sub>] o fenilo opcionalmente sustituido con 1-3 R<sup>44</sup>; o
15
                       dos R^{27} se consideran conjuntamente como -OC(O)O- o -O(C(R^{58})(R^{58}))<sub>1-2</sub>O-; o dos R^{27} se consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que
                        están unidos, un resto carbonilo:
                        cada R<sup>28</sup> es, independientemente, halógeno; alcoxi(C<sub>1</sub>-C<sub>4</sub>), halo-alcoxi(C<sub>1</sub>-C<sub>4</sub>), alquil(C<sub>1</sub>-C<sub>4</sub>)-tio, halo-alquil(C<sub>1</sub>-C<sub>4</sub>)-
20
                        tio; amino, alquil(C<sub>1</sub>-C<sub>4</sub>)-amino o dialquil(C<sub>2</sub>-C<sub>4</sub>)-amino; o
                        dos R<sup>28</sup> se consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que
                        están unidos, un resto carbonilo;
                        cada R<sup>29</sup> es independientemente halógeno, alcoxi(C<sub>1</sub>-C<sub>4</sub>), halo-alcoxi(C<sub>1</sub>-C<sub>4</sub>), alquil(C<sub>1</sub>-C<sub>4</sub>)-tio, halo-alquil(C<sub>1</sub>-C<sub>4</sub>)-
                        tio, amino, alquil(C<sub>1</sub>-C<sub>4</sub>)-amino o dialquil(C<sub>2</sub>-C<sub>4</sub>)-amino;
25
                        cada R<sup>44</sup> es independientemente halógeno, alquilo(C<sub>1</sub>-C<sub>4</sub>), halo-alquilo(C<sub>1</sub>-C<sub>3</sub>), hidroxi, alcoxi(C<sub>1</sub>-C<sub>4</sub>), halo-
                       alcoxi(C_1-C_3), alquil(C_1-C_3)-tio, halo-alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-amino, dialquil(C_2-C_4)-amino, o nitro; R^{46} y R^{47} so consideran conjuntamente como -CH_2CH_2-, -CH_2CH(CH_3)- o -(CH_2)<sub>3</sub>-; R^{48} es H, alquilo(C_1-C_4), halo-alquilo(C_1-C_4), alquilo(C_1-C_4), alquilo(C_1-C
30
                       R^{49} es H, alquilo(C_1-C_4) o halo-alquilo(C_1-C_4); R^{50}, R^{51} y R^{52} son H; o un radical seleccionado de alquilo(C_1-C_{14}), cicloalquilo(C_3-C_{12}), alquilcicloalquilo(C_4-C_{12}), R^{51} y R^{52} son H; o un radical seleccionado de alquilo(C_3-C_{14}), cada radical opcionalmente sustituido con 1-3 R^{27};
                        Y es O, S o NR<sup>6</sup>
                       \begin{array}{l} R^{53} \text{ es H, alquilo}(C_1\text{-}C_3), \text{ halo-alquilo}(C_1\text{-}C_3), \text{ alcoxialquilo}(C_2\text{-}C_4), \text{ OH o alcoxi}(C_1\text{-}C_3); \\ R^{54}_{22} \text{ es alquilo}(C_1\text{-}C_3), \text{ halo-alquilo}(C_1\text{-}C_3) \text{ o alcoxialquilo}(C_2\text{-}C_4); \text{ o} \end{array}
35
                       R <sup>53</sup> y R<sup>54</sup> se consideran conjuntamente como -(CH<sub>2</sub>)<sub>2</sub>-, -CH<sub>2</sub>CH(CH<sub>3</sub>)- o -(CH<sub>2</sub>)<sub>3</sub>-; R<sup>55</sup> y R<sup>56</sup> son independientemente alquilo(C<sub>1</sub>-C<sub>4</sub>); R<sup>57</sup> es alquilo(C<sub>1</sub>-C<sub>4</sub>), halo-alquilo(C<sub>1</sub>-C<sub>3</sub>) o NR<sup>59</sup>R<sup>60</sup>;
                        cada R^{58} se selecciona independientemente de H y alquilo(C_1-C_4); R^{59} y R^{60} son independientemente H o alquilo(C_1-C_4);
40
                        R<sup>61</sup> es alquilo(C<sub>1</sub>-C<sub>3</sub>), halo-alquilo(C<sub>1</sub>-C<sub>3</sub>) o alcoxialquilo(C<sub>2</sub>-C<sub>4</sub>);
                        m es un número entero de 2 a 3; y
                        n es un número entero de 1 a 4.
                        Forma de realización B. Un compuesto de la forma de realización A donde R<sup>3</sup> es halógeno.
45
                        Forma de realización C. Un compuesto de la forma de realización B donde R<sup>1</sup> es ciclopropilo o fenilo sustituido
                        con un radical halógeno, metilo o metoxi en la posición para y opcionalmente con 1-2 radicales seleccionados de
                        halógeno y metilo en otras posiciones; y R4 es -N(R24)R2
                        Forma de realización D. Un compuesto de la forma de realización C en el que R^2 es CO_2R^{12}, CH_2OR^{13}, CHO o CH_2CO_2R^{17}.
50
                        Forma de realización E. Un compuesto de la forma de realización D en el que R<sup>24</sup> es H, C(O)R<sup>33</sup> o alquilo(C<sub>1</sub>-C<sub>4</sub>)
                        opcionalmente sustituido con R<sup>30</sup>; R<sup>25</sup> es H o alquilo(C<sub>1</sub>-C<sub>2</sub>); o R<sup>24</sup> y R<sup>25</sup> se consideran conjuntamente como
                        =C(R^{39})N(R^{40})R^{47}
                        Forma de realización F. Un compuesto de la forma de realización E en el que R^2 es CO_2R^{12}; y R^{24} y R^{25} son H.
                        Forma de realización G. Un compuesto de la forma de realización F donde R<sup>12</sup> es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o bencilo.
55
                 Las formas de realización específicas incluyen compuestos de la Fórmula I seleccionados del grupo que consiste en:
                        6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de metilo,
                        6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de etilo,
                        6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de fenilmetilo.
                        sal monosódica de ácido 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxílico,
60
                        6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de metilo,
                        6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de fenilmetilo.
                        sal monosódica de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico,
```

6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de etilo.

6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de metilo, 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de etilo, ácido 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxílico, 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de etilo, 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de metilo, y ácido 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxílico,

5

15

20

25

30

35

40

45

50

Dignas de mención también como formas de realización son las composiciones herbicidas de la presente invención que comprenden los compuestos de las formas de realización descritas anteriormente.

Esta invención se refiere también a un método para controlar vegetación no deseada, que comprende aplicar al lugar de la vegetación cantidades eficazmente herbicidas de los compuestos de la invención (por ejemplo, como una composición descrita en el presente documento). De interés como formas de realización relativas a los métodos de uso son las que implican los compuestos de las formas de realización descritas anteriormente.

Es de destacar un compuesto de la Fórmula I que incluye todos los isómeros geométricos y estereoisómeros, N-óxidos o sus sales agrícolamente adecuadas, composiciones agrícolas que los contienen y su uso como herbicidas donde R^2 es CO_2R^{12} , CH_2DR^{13} , CHO, C(=NDR14)H, $C(R^{16})(R^{16})(C^{16})(R^{18})(C^{16})(R^{18})R^{19}$, cada R^7 es independientemente halógeno, alquilo $(C_1$ - $C_4)$, halo-alquilo $(C_1$ - $C_3)$, alcoxi(C_1 - C_3), halo-alcoxi(C_1 - C_3), alquilicorolaquilo(C_1 - C_3)-tio; R^{12} es H; o un radical seleccionado de alquilo(C_1 - C_4), cicloalquilo(C_3 - C_{12}), alquilicolaquilo(C_4 - C_{12}), cicloalquilo(C_1 - C_1), alquenilo(C_2 - C_1 4) y alquinilo(C_2 - C_1 4), cada radical opcionalmente sustituido con 1-3 R^{27} ; R^{13} es H, alquilo(C_1 - C_1 0) opcionalmente sustituido con 1-1 R^{28} o bencilo; R^{14} es H, alquilo(C_1 - C_4 1) halo-alquilo(C_1 - C_4 2), R^{15} y R^{16} son independientemente but R^{10} and R^{10} y R^{10} son independientemente halógeno, alquilo(C_1 - C_4 2), halo-alquilo(C_1 - C_4 3), halo-alcoxi(C_1 - C_4 3), halo-alcoxi(C_1 - C_4 4), halo-alquilo(C_1 - C_4 4), halo-alquilo(C_1 - C_4 5), halo-alquilo(C_1 - C_4 6), halo-alquilo(C_1 - C_4 7)-tio, halo-alquilo(C_1 - C_4 8), halo-alcoxi(C_1 - C_4 9), alquili(C_1 - C_4 9-tio, halo-alquili(C_1 - C_4 9)-amino, dialquili(C_2 - C_4 9-amino, cHIPO(C_1 1) of fenilo opcionalmente sustituido con 1-3 R^{14} 5, odos R^{27} 5 es independientemente halógeno, alcoxi(C_1 - C_4 6), halo-alcoxi(C_1 - C_4 6), halo-alquili(C_1 - C_4 6)-tio, halo-alquili(C_1 - C_4 7)-tio, halo-alquili(C_1 - C_4 8)-amino o dialquili(C_2 - C_4 9-amino; cada R^{30} 6 es independientemente halógeno, hidroxi, alcoxi(C_1 - C_4 6), halo-alquili(C_1 - C_4 7)-tio, halo-alquili(C_1 - C_4 7)-tio, halo-alquili(C_1 - C_4 8)-tio, halo-alquili(C_1 - C_4 9)-tio, halo-alquili(C_1 - C_4 9)-tio, halo-

Los compuestos de la Fórmula I se pueden preparar mediante uno o más de los siguientes métodos y variaciones como se describen en los Esquemas 1 a 7 y texto que acompaña. Las definiciones de R, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R¹⁸, R¹⁹, R¹⁹, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, R²⁷, R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, R³⁴, R³⁵, R³⁶, R³⁶, R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, Y, j, k y n en los compuestos de las Fórmulas I a 12 más adelante son como las definidas anteriormente en el sumario de la invención y descripción de las formas de realización a menos que se indique de otro modo.

Los compuestos de la Fórmula I se pueden preparar a partir de cloruros de la Fórmula 2 por reacción con aminas de la Fórmula 3, opcionalmente en presencia de una base tal como trietilamina o carbonato potásico como se indica en el Esquema 1. La reacción se puede realizar en una variedad de disolventes que incluyen tetrahidrofurano, *p*-dioxano, etanol y metanol con temperaturas óptimas que varían desde temperatura ambiente a 200°C. El método del esquema 1 se ilustra en la etapa C del Ejemplo 1, etapas D1 y D2 del Ejemplo 2, y etapa B del Ejemplo 4.

Esquema 1

Los compuestos de la Fórmula 2 se pueden preparar a partir de compuestos hidroxílicos de la Fórmula 4 (que pueden existir en la forma ceto) por reacción con un reactivo de cloración tal como oxicloruro de fósforo o cloruro de tionilo, opcionalmente en presencia de una base tal como *N,N*-dimetilamina como se muestra en el Esquema 2. La reacción se puede realizar sola o en presencia de un disolvente tal como *N,N*-dimetilformamida a temperaturas que varían desde temperatura ambiente a 120 °C. El método del esquema 2 se ilustra en la etapa C del Ejemplo 1, etapas C1 y C2 del Ejemplo 2, y etapa B del Ejemplo 4.

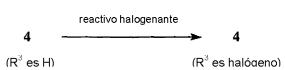
Esquema 2

Los compuestos de la Fórmula 4 se pueden preparar por condensación de amidinas de la Fórmula 5 con cetoésteres de la Fórmula 6 en disolventes tales como metanol o etanol a temperaturas que varían desde temperatura ambiente a la temperatura de reflujo del disolvente como se muestra en el Esquema 3. Opcionalmente se puede usar una base tal como un alcóxido metálico o 1,1,3,3-tetrametilguanidina. El método del Esquema 3 se ilustra en la etapa A de los ejemplos 1 y 4, y en las etapas A1 y A2 del ejemplo 2.

Esquema 3 NH NH₂ + R² R³ 6

donde R⁸⁰ es un resto de carbonos tal como alguilo, preferiblemente alguilo(C₁-C₂).

5


10

20

25

Los compuestos de la Fórmula 4 donde R³ es un halógeno se pueden preparar a partir de compuestos de la Fórmula 4 donde R³ es hidrógeno por reacción con un halógeno tal como bromo o un reactivo halogenante tal como una *N*-halosuccinimida o un haluro de sulfurilo en una variedad de disolventes que incluyen ácido acético, *N*,*N*-dimetilformamida, diclorometano y tetracloruro de carbono a temperaturas que varían de 0-100°C como se muestra en el Esquema 4. El método del Esquema 4 se ilustra en la etapa B de los ejemplos 1, y en las etapas B1 y B2 del ejemplo 2.

Esquema 4

También, los compuestos de la Fórmula I donde R³ es un halógeno se pueden preparar a partir de compuestos de la Fórmula I donde R³ es hidrógeno por reacción con un reactivo halogenante análogo al método del Esquema 4. Este método alternativo se ilustra en la etapa C del Ejemplo 4.

Una preparación particularmente útil de compuestos de la Fórmula 4 donde R^3 es un halógeno y R^2 es CO_2R^{12} es la reacción de compuestos de la Fórmula 4 donde R^3 es hidrógeno y R^2 es $CH(OR^{12})_2$ con un reactivo halogenante y reactivo oxidante tal como una N-halosuccinimida o bromo (cuando R^3 es bromo) en un disolvente tal como diclorometano, triclorometano o tetraclorometano a temperaturas que varían desde temperatura ambiente a la temperatura de reflujo del disolvente como se muestra en el Esquema 5.

Esquema 5

5

10

15

20

Los compuestos de la Fórmula 5 y 6 están disponibles comercialmente o se pueden preparar por métodos conocidos. (Ver, por ejemplo: P. J. Dunn en *Comprehensive Organic Functional Group Transformations*, A. R. Katritzky, O. Meth-Cohn; C.W. Rees Eds, Pergamon Press; Oxford, 1995; vol. 5, pp 741-782; T.L. Gillchrist en *Comprehensive Organic Functional Group Transformations*, A. R. Katritzky, O. Meth-Cohn, C.W. Rees Eds., Pergamon Press; Oxford, 1995; vol. 6, pp. 601-637 y B. R. Davis, P. J. Garratt en *Comprehensive Organic Synthesis*, B. M. Trost Ed., Pergamom Press; Oxford, 1991; vol. 2, pp 795-803.)

Alternativamente, los compuestos de la Fórmula I se pueden preparar a partir de los correspondientes compuestos de la Fórmula 7 donde X¹ es un grupo eliminable, tal como un halógeno o un grupo alquilsulfonilo (por ejemplo, metanosulfonilo, trifluorometanosulfonilo, bencenosulfonilo), como se muestra en el Esquema 6.

Esquema 6 MIRI 8 Catalizador de Pd I (R1 es ciclopropilo, isopropilo o fenilo opcionalmente sustituido)

donde M¹ es B(OH)₂, Sn(*n*-Bu)₃, MgX¹ or ZnX¹; R¹ es ciclopropilo opcionalmente sustituido, isopropilo opcionalmente sustituido o fenilo opcionalmente sustituido; y X¹ es un grupo eliminable. Este método implica reacción catalizada por paladio de un compuesto de la Fórmula 7 con un compuesto de la Fórmula 8 en forma de un ácido borónico (por ejemplo, M¹ es B(OH)₂), un reactivo organoestánnico (por ejemplo, M¹ es Sn(*n*-Bu)₃), un reactivo de Grignard (por ejemplo, M¹ es MgX¹) o un reactivo de organozinc (por ejemplo, M¹ es ZnX¹). (Ver, por ejemplo: N. Ali, A. McKillop, M. Mitchell, R. Rebelo, A. Ricardo, P. Wallbank, *Tetrahedron*, 1992, 48, 8117-8126; J. Solberg, K. Undheim, *Acta Chem. Scand*, 1989, 43, 62-68, V. Bonnet, F. Mongin, F. Trécourt, G. Quéguiner y P. Knochel, *Tetrahedron*, 2002, 58, 4429-4438.)

Los compuestos de la Fórmula 7 donde X¹ es un halógeno se pueden preparar a partir de dihalocompuestos de la Fórmula 12 con una amina de la Fórmula 3 opcionalmente catalizados por una base tal como trietilamina o carbonato potásico en una variedad de disolventes que incluyen tetrahidrofurano y diclorometano a temperaturas que varían desde 0°C a la temperatura de reflujo del disolvente como se muestra en el Esquema 7.

Esquema 7 R 7 (X¹ es halógeno) 12 (X¹ es halógeno)

Los compuestos de la Fórmula 12 se pueden preparar por métodos conocidos. (Ver, por ejemplo, H. Gershon, *J. Org. Chem.*, 1962, 27, 3507-3510.)

Como se muestra en el Esquema 8, los compuestos de la Fórmula I donde R^2 es CO_2R^{12} se pueden preparar también a partir de compuestos de la Fórmula 13 por medio de una reacción de carbonilación. Condiciones típicas son 1-10 atmósferas de monóxido de carbono en presencia de un catalizador de platino en una mezcla de un alcohol y otro disolvente tal como N,N dimetilformamida, N-metilpirrolidinona o tetrahidrofurano a temperaturas que varían desde temperatura ambiente a 150°C:

5

15

20

Esquema 8

R1

$$R^3$$

Co

Catalizador de Pd

 $R^{12}OH$

13 (X^2 es Cl o Br)

Como se muestra en el Esquema 9, los compuestos de la fórmula 13 se pueden preparar a partir de compuestos de la Fórmula 14 por reacción con aminas de la Fórmula 3 en una reacción análoga al método del Esquema 1.

Como se muestra en el Esquema 10, se pueden preparar compuestos de la Fórmula 14 a partir de dioles de la Fórmula 15 por reacción con un agente halogenante tal como oxicloruro de fósforo u oxibromuro de fósforo en una reacción análoga al método del Esquema 2. (Ver H. Gershon, R. Braun, A. Scala y R. Rodin, *J. Med. Chem.* 1964, 7, 808-811 y M. H. Norman, N. Chen, Z. Chen, C. Fotsch, N. Han, R. Hurt, T. Jenkins J. Kincaid, L. Liu, Y. Lu, O. Moreno, V. J. Santora, J.D. Sonnenberg y W. Karbon, *J. Med. Chem.* 2000, 43, 4288-4312 para ejemplos de este método y para ejemplos de preparación de compuestos de la Fórmula 15.)

Los compuestos de la Fórmula I donde R^2 comprende una función éster (por ejemplo CO_2R^{12} donde R^{12} es distinto de H) se pueden preparar a partir de los correspondientes compuestos ácidos carboxílicos de la Fórmula I (por ejemplo, donde R^{12} es H) por una variedad de métodos de esterificación conocidos en la técnica. Un método se ilustra en el ejemplo 3. En cambio, se pueden preparar compuestos ácidos carboxílicos de la Fórmula I a partir de los comrrespondientes compuestos éster por una variedad de métodos de hidrólisis conocidos en la técnica, tales como la saponificación.

Se aprecia que algunos reactivos y condiciones de reacción descritos anteriormente para preparar compuestos de fórmula I pueden no ser compatibles con ciertas funcionalidades presentes en los productos intermedios. En estos casos, la incorporación de secuencias de protección/desprotección o interconversiones de grupos funcionales en la síntesis ayudará a obtener los productos deseados. El uso y elección de los grupos protectores será evidente para un experto en la síntesis química (véase, por ejemplo, T. W. Greene, P. G. M. Wuts, *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). Un experto en la técnica reconocerá que, en algunos casos, después de la introducción de un reactivo dado como se representa en cualquier esquema individual, puede ser necesario

realizar etapas sintéticas rutinarias adicionales no descritas con detalle para completar la síntesis de compuestos de fórmula I. Un experto en la técnica también reconocerá que puede ser necesario realizar una combinación de las etapas ilustradas en los esquemas anteriores en un orden distinto al supuesto por la secuencia particular presentada para preparar los compuestos de fórmula I.

5 El experto en la técnica reconocerá también que los compuestos de Fórmula I y los intermedios descritos en la presente memoria se pueden someter a diversas reacciones electrofílicas, nucleofílicas, radicalarias, organometálicas, de oxidación, y de reducción para añadir sustituyentes o modificar los sustituyentes existentes.

Se cree que el experto en la materia, usando la descripción anterior, puede utilizar la presente invención sin elaboración adicional en su alcance más completo. Por lo tanto, los siguientes Ejemplos pretenden ser únicamente ilustrativos y no limitantes de la descripción de ningún modo. Las etapas en los siguientes Ejemplos ilustran un procedimiento para cada etapa en una transformación sintética global, y el material de partida para cada etapa puede no haber sido preparado necesariamente por una ejecución preparativa particular cuyo procedimiento se describe en otros Ejemplos o Etapas. Los porcentajes están en peso excepto para los de disolventes cromatográficos o cuando se indique de otro modo. Las partes y porcentajes para las mezclas de disolventes cromatográficos están en volumen a menos que se indique de otro modo. Los espectros de ¹H RMN se expresan en ppm a campo bajo con respecto al tetrametilsilano; "s" significa singlete, "d" significa doblete, "t" significa triplete, "q" significa cuartete, "m" significa multiplete, "dd" significa doblete de dobletes, "ddd" significa singlete ancho, "br d" significa doblete ancho.

20 Ejemplo 1

45

50

Preparación de 6-amino-5-bromo-2-ciclopropil-4-primidincarboxilato de etilo (Compuesto 1) y 6-amino-5-bromo-2-ciclopropil-4-primidincarboxilato de metilo (Compuesto 2)

Etapa A: Preparación de 2-ciclopropil-6-(dietoximetil)-4(1H)-pirimidinona

A una mezcla de 4,4-dietoxi-3-oxobutanoato de etilo (preparado de acuerdo con el método de E. Graf, R. Troschutz, Synthesis, 1999, 7, 1216; 10,0 g, 46 mmoles) y monohidrocloruro de ciclopropanocarboximidamida (Lancaster Synthesis, 5,0 g, 41 mmoles) en metanol (100 mL) se añadió una disolución de metóxido sódico en metanol (5,4 M, 8,4 mL, 46 mmoles). La mezcla de reacción se agitó durante una noche. El disolvente se separó con un evaporador rotatorio. Se añadió diclorometano y la mezcla se filtró. El disolvente se separó del filtrado con un evaporador rotatorio. El residuo se purificó por cromatografía líquida preparativa de media presión (MPLC) (acetato de etilo al 35→100% en hexanos como eluyente) para proporcionar el compuesto del título como un sólido blanco (4,67 g).

 1 H RMN (CDCI $_{3}$) δ 6,55 (s, 1H), 5,10 (s, 1H), 3,61 (m, 4H), 1,91 (m, 1H), 1,23 (m, 8H), 1,09 (m, 2H).

Además se obtuvieron 3,24 g de un producto no deshidratado. Este material se pudo convertir en el compuesto del título sometiéndolo a reflujo en metanol con una cantidad catalítica de *p*-toluensulfonato de piridinio.

Etapa B: Preparación de 5-bromo-2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxilato de etilo

A una disolución de 2-ciclopropil-6-(dietoximetil)-4(1*H*)-pirimidinona (es decir, el producto del título de la etapa A) (2,9 g, 12,1 mmoles) en diclorometano (75 mL) se añadió *N*-bromosuccinimida (4,76 g, 26,8 mmoles). La mezcla de reacción se agitó durante una noche. El disolvente se separó con un evaporador rotatorio. El residuo se purificó por MPLC (metanol al 1→4% en diclorometano como eluyente) para proporcionar el compuesto del título como un sólido blanco (2,68 g).

¹H NMR (CDCl₃) δ 4,43 (q, 2H), 1,90 (m, 1H), 1,41 (t, 3H), 1,30 (m, 2H), 1,20 (m, 2H).

Etapa C: Preparación de 6-amino-5-bromo-2-ciclopropil-4-primidincarboxilato de etilo y 6-amino-5-bromo-2-ciclopropil-4-primidincarboxilato de metilo

A una disolución de 5-bromo-2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxilato de etilo (es decir, el producto de la etapa B) (1,07 g, 3,7 mmoles) en *N*,*N*-dimetilformamida (15 mL) se añadió cloruro de tionilo (0,54 mL, 7,5 mmoles). La mezcla de reacción se agitó durante 2 h. El disolvente se separó con un evaporador rotatorio. El residuo se disolvió en diclorometano, se lavó con bicarbonato sódico acuoso saturado y se secó (Na₂SO₄). El disolvente se separó con un evaporador rotatorio. El residuo se disolvió en tetrahidrofurano (2 mL), y se añadió una disolución metanólica de amoníaco (7 N, 2 mL). La mezcla de reacción se colocó en un vial sellado y se calentó en un reactor de microondas a 125°C durante 2h. La mezcla de reacción se dejó en reposo durante el fin de semana. Se añadió diclorometano y la mezcla de reacción se filtró. El disolvente se separó con un evaporador rotatorio. El residuo se purificó por MPLC (acetato de etilo al 10→30% en hexanos como eluyente) para proporcionar el compuesto del título, un compuesto de la presente invención, como un sólido blanco (0,52 q).

¹H RMN (CDCl₃) δ 5,40 (br s, 2H), 4,44 (q, 2H), 2,05 (m, 1H), 1,01 (t, 3H), 1,05 (m, 2H), 0,99 (m, 2H).

También se aisló a partir de la purificación por MPLC el correspondiente éster metílico, es decir, 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxilato de metilo, un compuesto más de la presente invención, como un sólido blanco (0,06 g).

 1 H NMR (CDCl₃) δ 5,40 (br s, 2H), 3,97 (s, 3H), 2,05 (m, 1H), 1,05 (m, 2H), 0,99 (m, 2H).

5 Ejemplo 2

10

15

20

25

30

50

Preparación de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico (Compuesto 135)

Etapa A1: Preparación de ácido 2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico

A una mezcla de sal sódica de oxalacetato de dietilo (150 g, 714 mmoles) en metanol (300 mL) y agua (150 mL) calentada a 30°C se añadió hidróxido sódico acuoso al 50% (56 g, 700 mmoles) en agua (60 mL) durante 30 minutos, tiempo durante el cual la temperatura permaneció a 25-30°C y el pH a 11-12. Después la mezcla agitada se calentó durante 30 min más a 35°C. A esta mezcla se añadió monohidrocloruro de ciclopropanocarboximidamida (64 g, 530 moles) en porciones durante 15 minutos. La disolución naranja se calentó a 50°C durante 30 minutos y se mantuvo a esa temperatura durante 3 h. La mezcla de reacción se enfrió a 35°C, y se añadió ácido clorhídrico concentrado (ca. 70 g, 0,7 moles) gradualmente (dando por resultado formación de espuma) durante 30 minutos a 30-40°C hasta que el pH era aproximadamente 1,5-2,5. La mezcla se concentró con un evaporador rotatorio a 35-40°C para separar alcoholes, se agitó durante 3-4 h a 25°C para completar la cristalización del producto. Tras enfriar la mezcla a 0 °C, el sólido se recogió por filtración. El sólido se lavó con agua (2 x 60 mL), se secó por succión, y después se secó en un horno a vacío a 60°C para proporcionar el compuesto del título como un sólido beis (ca. 60 g).

¹H NMR (DMSO-*d*₆) δ 6,58 (s, 1H), 1,95 (m, 1H), 1,0 (m, 4H).

Etapa A2: Otra preparación de ácido 2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico

A una mezcla de sal sódica de oxalacetato de dietilo (210 g, 950 mmoles) en metanol (500 mL) y agua (400 mL) se añadió hidróxido sódico acuoso al 50% (80 g, 1,0 moles) en agua (60 mL) durante 30 minutos, tiempo durante el cual la temperatura permaneció a 25-30°C y el pH a 11-12. Después la mezcla agitada se calentó durante 30 min más a 30°C. A esta mezcla se añadió monohidrocloruro de ciclopropanocarboximidamida (110 g, 910 mol). La disolución naranja se calentó a 50°C durante 30 minutos y se mantuvo a esa temperatura durante 5 h. La mezcla de reacción se enfrió a 30°C y se concentró a la mitad del volumen a presión reducida a 35-40°C y se añadió ácido clorhídrico concentrado (140 g, 1,4 moles) gradualmente (dando por resultado formación de espuma) durante 30 minutos a 25-30°C hasta que el pH era aproximadamente 1-2. La mezcla se agitó a 5°C durante 1 h para completar la cristalización del producto. Tras enfriar la mezcla a 0 °C, el sólido se recogió por filtración. El sólido se lavó con agua (3 x 60 mL), se secó por succión, y después se secó en un horno a vacío a 70°C para proporcionar el compuesto del título como un sólido beis (100 g); m.p. 235-236 °C (desc.).

¹H NMR (DMSO-*d*₆) δ 6,58 (s, 1H), 1,95 (m, 1H), 1,0 (m, 4H).

Etapa B1: Preparación de ácido 5-cloro-2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico

A una mezcla de ácido 2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico (es decir, el producto de la etapa A1 o A2) (9,2 g, 52 mmoles) en agua (30 mL) y ácido clorhídrico concentrado (22 g, 220 mmoles) a 15°C se añadió gota a gota disolución de hipoclorito sódico acuoso (al 11%, 40 g, 59 mmoles) durante 15 minutos de manera que con enfriamiento la mezcla de reacción se mantuvo a 15-20°C. Después la mezcla se mantuvo a 20-25°C durante 1 h. Se añadió bisulfito sódico sólido (ca. 2 g), y después se añadió gota a gota disolución de hidróxido sódico acuoso (al 50%, 8 g, 0,10 moles) de manera que con enfriamiento la mezcla de reacción se mantuvo a 25°C aproximadamente. La mezcla se enfrió a 10°C, y el producto suspendido se aisló por filtración y se lavó con una mínima cantidad de agua fría. El producto se secó después a peso constante en horno de vacío a 50°C para proporcionar el compuesto del título (7,5 g).

¹H NMR (DMSO-d₆) δ 13,4 (br s, 1H), 1,95 (m, 1H), 1,0 (m, 4H).

45 <u>Etapa B2</u>: <u>Otra preparación de ácido 5-cloro-2-ciclopropil-1,6-dihidro-6-oxo-4-pirimid</u>incarboxílico

A una mezcla de ácido 2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico (es decir, el producto de la etapa A1 o A2) (184 g, 1,02 moles) en agua (45 mL) y ácido clorhídrico concentrado (292 g, 3 moles) a 8-12°C se añadió gota a gota disolución acuosa de hipoclorito sódico (al 8,4%, 1,02 kg, 1,15 moles) durante 2 h de manera que con enfriamiento la mezcla de reacción se mantuvo a 8-10°C. La mezcla se mantuvo después a 10-12°C durante 1 h y la conversión se monitorizó por HPLC. Cuando quedaba menos del 5% del material de partida se añadió bisulfito sódico sólido hasta que se obtuvo una prueba negativa con papel de almidón y KI. La mezcla se enfrió a 5°C, y el producto suspendido se aisló por filtración y se lavó con una mínima cantidad de agua fría. El producto se secó después a peso constante en horno de vacío a 50°C para proporcionar el compuesto del título (194 g); m.p. 189-190°C.

¹H NMR (DMSO-d₆) δ 13,4 (br s, 1H), 1,95 (m, 1H), 1,0 (m, 4H).

Etapa C1: Preparación de ácido 5,6-dicloro-2-ciclopropil-4-pirimidincarboxílico

Se combinaron oxicloruro de fósforo (14 mL, 23 g, 0,15 moles) y ácido 5-cloro-2-ciclopropil-1,6-dihidro-6-oxo-4-primidincarboxílico (es decir, el producto de la etapa B1 o B2) (75 g, 300 mmoles) y se calentaron a 85°C durante 3 h. La mezcla de reacción se enfrió a 30°C y se añadió durante 30 minutos a una mezcla de acetonitrilo (50 mL) y agua helada (80 mL), con la temperatura mantenida a 5-10°C y el pH mantenido en el intervalo 1-3 co-añadiendo amoníaco acuoso (al 28%). El pH se ajustó a aproximadamente 2, la mezcla se concentró a 25°C con un evaporador rotatorio para separar el acetonitrilo, y el producto precipitado se aisló por filtración y se lavó con agua (2 x 25 mL). El sólido se secó en un horno a vacío para proporcionar el compuesto del título (ca. 7,0 g).

10 ¹H NMR (DMSO- d_6) δ 2,23 (m, 1H), 1,2 (m, 2H), 1,0 (m, 2H).

Etapa C2: Otra preparación de ácido 5,6-dicloro-2-ciclopropil-4-pirimidincarboxílico

Se combinaron oxicloruro de fósforo (200 mL, 328 g, 2,14 moles) y ácido 5-cloro-2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico (es decir, el producto de la etapa B1 o B2) (96,8 g, 451 mmoles) y se calentaron a 90°C durante 5 h. La mezcla de reacción se enfrió a 50-60°C y se concentró a presión reducida hasta la mitad del volumen. Tras enfriar a 30°C la mezcla de reacción se añadió durante 60 minutos a una mezcla de *t*-butanol (200 mL) y agua (300 mL), con la temperatura mantenida a 8-10°C. La mezcla se sembró, se añadió agua (300 mL) gradualmente a 10-15°C y la mezcla se agitó durante 1 h. Tras enfriar a 5°C el producto precipitado se aisló por filtración y se lavó con agua (3 x 50 mL). El sólido se secó en un horno a vacío para proporcionar el compuesto del título (93 g).

¹H NMR (DMSO-*d*₆) δ 2,23 (m, 1H), 1,2 (m, 2H), 1,0 (m, 2H).

20 <u>Etapa D1: Preparación de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico</u>

Una mezcla de ácido 5,6-dicloro-2-ciclopropil-4-pirimidincarboxílico (es decir, el producto de la etapa C1 o C2) (5,1 g, 22 mmoles), agua (30 mL) y amoníaco acuoso (al 28%, 8 g, 130 mmoles) se calentó a 80°C durante 3 h. La disolución se concentró a 50°C y una presión de 70 torr (9,3 kPa) hasta aproximadamente la mitad del volumen para separar la mayor parte del exceso de amoníaco. La suspensión resultante se agitó a 20°C, se acidificó a pH 2 con ácido clorhídrico acuoso, se enfrió a 5°C y se filtró. El sólido aislado se secó en un horno a vacío para proporcionar el producto del título (4,2 g), un compuesto de la presente invención.

¹H NMR (DMSO-d₆) δ 13,4 (br s, 1H), 1,95 (m, 1H), 1,0 (m, 4H).

Etapa D2: Otra reparación de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico

Una mezcla de ácido 5,6-dicloro-2-ciclopropil-4-pirimidincarboxílico (es decir, el producto de la etapa C1 o C2) (280 g, 1,2 moles), agua (1,26 L) y amoníaco acuoso (al 28%, 350 g, 5,76 moles) se calentó a 80°C durante 5 h. La disolución se concentró a 50°C y una presión de 70 torr (9,3 kPa) hasta aproximadamente la mitad del volumen para separar la mayor parte del exceso de amoníaco. La suspensión resultante se agitó a 20°C, se acidificó a pH 1-2 con ácido clorhídrico acuoso, se enfrió a 5°C y se filtró. El sólido aislado se secó en un horno a vacío para proporcionar el producto del título (270 g), un compuesto de la presente invención.

¹H NMR (DMSO-d₆) δ 13,4 (br s, 1H), 1,95 (m, 1H), 1,0 (m, 4H).

Ejemplo 3

15

25

30

35

40

50

Preparación de 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxilato de metilo (Compuesto 9)

A una disolución de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico (es decir, el producto de la etapa D1 o D2 del ejemplo 2) (2,0 g, 8,5 mmoles) en metanol (20 mL) se añadió gota a gota cloruro de tionilo (4 mL, 70 mmoles). La mezcla se calentó a reflujo durante 24 h. Se añadió ácido sulfúrico concentrado (5 gotas), y la mezcla de reacción se calentó a reflujo durante 16 h. Después de enfriar la mezcla se añadió agua (30 mL), y se añadió gota a gota amoníaco acuoso (al 28%, 10 mL). La mezcla se enfrió a 5°C y el sólido se aisló por filtración, se lavó con agua y se secó en un horno de vacío a 40°C para proporcionar el producto del título (2,3 g), un compuesto de la presente invención.

45 ¹H NMR (CDCl₃) δ 5,41 (br s, 2H), 3,98 (s, 3H), 2,06 (m, 1H), 1,04 (m, 2H), 1,00 (m, 2H).

Otra preparación de 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxilato de metilo

A una disolución de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico (es decir, el producto de la etapa D1 o D2 del ejemplo 2) (8,5 g, 40 mmoles) en metanol (120 mL) se añadió gota a gota con enfriamiento cloruro de tionilo (15 mL, 200 mmoles). La mezcla se calentó a 60°C durante 24 h. La mezcla se concentró al 25% del volumen original y se diluyó con agua (100 mL). Se añadió el indicador de pH fenolftaleína, y se añadió hidróxido sódico acuoso al 10% gota a gota con enfriamiento a 10-20°C para llevar el pH a 8-10. El sólido se aisló por filtración, se

lavó con agua y se secó en un horno de vacío a 50-60°C para proporcionar el producto del título (7,3 g), un compuesto de la presente invención.

¹H NMR (CDCl₃) δ 5,41 (br s, 2H), 3,98 (s, 3H), 2,06 (m, 1H), 1,04 (m, 2H), 1,00(m, 2H).

Ejemplo 4

10

20

30

40

5 Preparación de ácido 6-amino-5-cloro-2-(4-clorofenil)-4--pirimidincarboxílico (Compuesto 65)

Etapa A: Preparación de ácido 2-(4-clorofenil)-1,6-dihidro-6-oxo-4-pirimidincarboxílico

A una mezcla de sal sódica de oxalacetato de dietilo (123,2 g, 586 mmoles) en agua (750 mL) se añadió lentamente hidróxido sódico acuoso (al 50%, 47 g, 586 mmoles). Después de 1 h los sólidos se habían disuelto. Se añadió después monohidrocloruro de 4-clorobencenocarboximidamida (111,95 g, 586 mmoles), y la mezcla se calentó a 70°C durante una noche. Tras enfriar a temperatura ambiente se añadió lentamente ácido clorhídrico concentrado (que causa la formación de espuma) hasta que el pH se redujo a 1,5. El sólido se aisló por filtración y se lavó con agua y metanol. El sólido se trituró después dos veces con metanol caliente, se lavó repetidamente con ácido clorhídrico 1 N, después una vez con metanol y se secó para proporcionar el compuesto del título (66,07 g).

¹H NMR (DMSO-*d*₆) δ 8,23 (d, 2H), 7,65 (d, 2H), 6,90 (s, 1H).

15 Etapa B: Preparación de ácido 6-amino-2-(4-clorofenil)-4-pirimidincarboxílico

A oxicloruro de fósforo (180 mL) se añadió ácido 2-(4-clorofenil))-1,6-dihidro-6-oxo-4-pirimidincarboxílico (es decir, el producto de la etapa A) (81,81 g, 326 mmoles). La mezcla se calentó a 90°C durante 2,5 h. Tras enfriar a temperatura ambiente la mezcla de reacción se añadió lentamente a acetonitrilo:agua 1:2 (1,5 L) mientras se mantenía la temperatura entre 35 y 45°C. Después de agitar la mezcla de reacción a temperatura ambiente durante 30 minutos, el sólido resultante se aisló por filtración y se lavó con agua. El sólido se combinó después con amoníaco acuoso (al 5%, 2,1 L) y se calentó a 80°C durante 18 h. Después de 2 días a temperatura ambiente el sólido se aisló por filtración y se lavó con agua. Un segundo lote se obtuvo enfriando el filtrado y filtrando de nuevo. Los sólidos combinados se secaron para proporcionar el compuesto del título (58,8 g).

¹H NMR (DMSO- d_6) δ 8,33 (d, 2H), 7,51 (d, 2H). 6,89 (s, 2H), 6,81 (s, 1H).

25 <u>Etapa C: Preparación de ácido 6-amino-5-cloro-2-(4-clorofenil)-4-pirimidincarboxílico</u>

A una disolución de ácido 6-amino-2-(4-clorofenil)-4-pirimidincarboxílico (es decir, el producto de la etapa B) (75 g, 300 mmoles) en *N,N*-dimetilformamida (300 mL) a 50°C se añadió en porciones *N*-clorosuccinimida (44,1 g, 330 mmoles). La temperatura de la mezcla de reacción aumentó exotérmicamente a 65°C. Después la mezcla de reacción se calentó a 55°C durante 3 h. Se añadió en porciones más *N*-clorosuccinimida (14 g, 90 mmoles), y la mezcla de reacción se mantuo a 55°C durante 30 minutos. Se añadió agua tras enfriar la mezcla de reacción. El sólido resultante se aisló por filtración, se lavó con agua, se disolvió en acetato de etilo, se lavó con agua y secó. El disolvente se separó usando un evaporador rotatorio para proporcionar el producto del título, un compuesto de la presente invención, como un sólido de color canela (73,68 g).

¹H NMR (DMSO-*d*₆) δ 8,28 (d, 2H), 7,70 (br s, 2H), 7,58 (d, 2H).

35 Ejemplo 5

Preparación de 6-amino-5-cloro-2-(4-clorofenil)-4-pirimidincarboxilato de etilo (Compuesto 64)

A una disolución de ácido 6-amino-5-cloro-2-(4-clorofenil)-4-pirimidincarboxílico (es decir, el producto del ejemplo 4, etapa C) (20,0 g, 70,4 mmoles) en etanol (70 mL) se añadió cloruro de tionilo (5,14 mL, 70,4 mmoles) mientras se mantenía la temperatura por debajo de 15°C usando un baño de hielo. La mezcla de reacción se calentó después a reflujo durante una noche. Se añadió agua. Se añadió entonces hidróxido sódico acuoso (al 50%) con enfriamiento externo para ajustar el pH a 7. El sólido resultante se aisló por filtración y se secó para proporcionar el producto del título, un compuesto de la presente invención, como un sólido ligeramente beis (20,1 g).

¹H NMR (CDCl₃) δ 8,31 (d, 2H), 7,42 (d, 2H), 5,50 (br s, 2H), 4,50 (q, 2H), 1,47 (t, 3H).

Mediante los procedimientos descritos en el presente documento, junto con métodos conocidos en la técnica, se pueden preparar los siguientes compuestos de las Tablas 1 a 4. En las Tablas que se muestran a continuación se usan las siguientes abreviaturas: *t* significa terciario, *i* significa iso, Me significa metilo, Et significa etilo, Pr significa propilo, *i*-Pr significa isopropilo, Bu significa butilo, *t*-Bu significa *terc*-butilo, CN significa ciano, y S(O)₂Me significa metilsulfonilo. "O" significa carga formal negativa, y "⊕" significa carga formal positiva.

Tabla 1

R ¹ es ciclopropilo: R ³ es Cl.	R ¹ es ciclopropilo; R ³ es F.	R ¹ es ciclopropilo: R ³ es Br.	R ¹ es ciclopropilo: R ³ es I.
$\frac{R^2}{R}$	$\frac{R^2}{R}$	$\frac{R^2}{R}$	$\frac{R^2}{R}$
 CO₂H	 CO₂H	 CO₂H	 CO₂H
CO ₂ Me	CO ₂ Me	CO ₂ Me	CO₂Me
CO₂Et	CO₂Et	CO₂Et	CO₂Et
CO₂Pr	CO₂Pr	CO₂Pr	CO₂Pr
CO ₂ <i>i</i> Pr			
CO ₂ t-Bu	CO ₂ t-Bu	CO ₂ t-Bu	CO₂ <i>t</i> -Bu
CO ₂ ciclohexilo	CO ₂ ciclohexilo	CO ₂ ciclohexilo	CO₂ciclohexilo
CO₂hexilo	CO₂hexilo	CO₂hexilo	CO ₂ hexilo
CO ₂ CH ₂ ciclohexilo	CO₂CH₂ciclohexilo	CO₂CH₂ciclohexilo,	CO ₂ CH ₂ ciclohexilo
CO ₂ CH ₂ Ph			
CO ₂ CH(Me)Ph	CO₂CH(Me)Ph	CO₂CH(Me)Ph	CO ₂ CH(Me)Ph
CO ₂ CH ₂ (4-CI-Ph)			
CO ₂ CH ₂ (3-F-Ph)			
CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂
CO ₂ CH ₂ CH ₂ OMe			
CO ₂ CH ₂ CH ₂ OH			
CO ₂ CH ₂ (3-oxetanilo)			
CH ₂ OH	CH₂OH	CH ₂ OH	CH ₂ OH
CH₂OMe	CH₂OMe	CH₂OMe	CH ₂ OMe
CH ₂ CO ₂ Me			
CH(OH)CO ₂ Me	CH(OH)CO ₂ Me	CH(OH)CO ₂ Me	CH(OH)CO ₂ Me
$CH(OC(=O)Me)CO_2Me$	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me
СНО	СНО	СНО	СНО
C(=NOH)H	C(=NOH)H	C(=NOH)H	C(=NOH)H
C(=NOMe)H	C(=NOMe)H	C(=NOMe)H	C(=NOMe)H
C(=O)NH ₂	C(=O)NH ₂	C(=O)NH ₂	C(=O)NH ₂
C(=O)NHMe	C(=O)NHMe	C(=O)NHMe	C(=O)NHMe
C(=O)NMe ₂	C(=O)NMe ₂	C(=O)NMe ₂	C(=O)NMe ₂
CO₂Ph	CO₂Ph	CO₂Ph	CO₂Ph

R ¹ es ciclopropilo; R ³ es Cl.	R ¹ es ciclopropilo; R ³ es F.	R ¹ es ciclopropilo; R ³ es Br.	R ¹ es ciclopropilo; R ³ es I.
\underline{R}^2	R^2	R^2	R^2
$C(O)O^{\Theta}$ $H_3N^{\oplus}Me$	C(O)O ^Θ H ₃ N [⊕] Me	C(O)O ^Θ H ₃ N [⊕] Me	C(O)O ^O H₃N [⊕] Me
C(O)O [⊖] H₃N [⊕] <i>i</i> -Pr	C(O)O ^Θ H ₃ N [⊕] <i>i</i> -Pr	C(O)O ^Θ H ₃ N [⊕] <i>i</i> -Pr	C(O)O ^Θ H ₃ N [⊕] <i>i</i> -Pr
$C(O)O^{\Theta} H_3N^{\oplus}Pr$	C(O)O ^Θ H ₃ N [⊕] Pr	C(O)O ^Θ H ₃ N [⊕] Pr	C(O)O ^O H₃N [⊕] Pr
$C(O)O^{\Theta} H_3N^{\oplus}$ butilo	C(O)O ^Θ H ₃ N [⊕] butilo	C(O)O ^Θ H ₃ N [⊕] butilo	C(O)O ^O H ₃ N [⊕] butilo
C(O)O ^Θ H ₃ N [⊕] hexilo	C(O)O ^Θ H ₃ N [⊕] hexilo	C(O)O ^Θ H ₃ N [⊕] hexilo	C(O)O ^O H ₃ N [⊕] hexilo
$C(O)O^{\Theta} H_3N^{\oplus}$ octilo	C(O)O ^Θ H ₃ N [⊕] octilo	C(O)O ^Θ H ₃ N [⊕] octilo	C(O)O ^O H ₃ N [⊕] octilo
C(O)O ^O H₃N [⊕] hexadecilo	C(O)O ^Θ H ₃ N [⊕] hexadecilo	C(O)O ^Θ H ₃ N [⊕] hexadecilo	C(O)O ^O H₃N [⊕] hexadecilo
$C(O)O^{\Theta} H_3N^{\oplus}$ octadecilo	C(O)O ^Θ H ₃ N [⊕] octadecilo	C(O)O ^Θ H ₃ N [⊕] octadecilo	C(O)O ^O H₃N [⊕] octadecilo
C(O)O ^Θ H ₃ N [⊕] ciclohexilo	C(O)O ^Θ H ₃ N [⊕] ciclohexilo	C(O)O ^Θ H ₃ N [⊕] ciclohexilo	C(O)O ^Θ H ₃ N [⊕] ciclohexilo
$C(O)O^{\Theta} H_2N^{\oplus}(Et)_2$	$C(O)O^{\Theta} H_2N^{\oplus}(Et)_2$	$C(O)O^{\Theta} H_2N^{\oplus}(Et)_2$	$C(O)O^{\Theta} H_2N^{\oplus}(Et)_2$
C(O)O [⊖]	C(O)O [⊖]	C(O)O [⊖]	C(O)O [⊖]
$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$	$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$	$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$	$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$
C(O)O ^Θ	C(O)O ^Θ	C(O)O ^Θ	C(O)O ^Θ
$H_2N^{\oplus}[CH_2(CH_2)_2CH_2]$	$H_2N^{\oplus}[CH_2(CH_2)_2CH_2]$	$H_2N^{\oplus}[CH_2(CH_2)_2CH_2]$	$H_2N^{\oplus}[CH_2(CH_2)_2CH_2]$
$C(O)O^{\Theta} HN^{\oplus}(Et)_3$	C(O)O ^O HN [⊕] (Et) ₃	C(O)O ^O HN [⊕] (Et) ₃	C(O)O ^O HN [⊕] (Et) ₃
$C(O)O^\Theta N^\oplus(Me)_4$	C(O)O ^O N [⊕] (Me) ₄	C(O)O ^O N [⊕] (Me) ₄	C(O)O ^O N [⊕] (Me) ₄
$C(O)O^{\Theta}\:N^{\oplus}(Me)_{3}CH_{2}Ph$	C(O)O ^O N [⊕] (Me) ₃ CH ₂ Ph	C(O)O ^O N [⊕] (Me) ₃ CH ₂ Ph	C(O)O ^O N [⊕] (Me) ₃ CH ₂ Ph
$C(O)O^{\odot} S^{\oplus}(Me)_3$	C(O)O ^Θ S [⊕] (Me) ₃	C(O)O ^O S [⊕] (Me) ₃	C(O)O ^O S [⊕] (Me) ₃
C(O)O ^O K [⊕]	C(O)O [⊙] K [⊕]	C(O)O ^Θ K [⊕]	C(O)O ^Θ K [⊕]
CO ₂ H	CO₂H	CO₂H	CO₂H
CO ₂ Me	CO ₂ Me	CO₂Me	CO ₂ Me
CO ₂ Et	CO ₂ Et	CO ₂ Et	CO ₂ Et
CO ₂ Pr	CO ₂ Pr	CO ₂ Pr	CO ₂ Pr
CO ₂ iPr	CO ₂ iPr	CO₂ <i>i</i> Pr	CO ₂ iPr
CO ₂ t-Bu	CO₂ <i>t</i> -Bu	CO₂ <i>t</i> -Bu	CO ₂ t-Bu
CO ₂ ciclohexilo	CO ₂ ciclohexilo	CO ₂ ciclohexilo	CO ₂ ciclohexilo
CO ₂ hexilo	CO ₂ hexilo	CO₂hexilo	CO ₂ hexilo
CO ₂ CH ₂ ciclohexilo	CO ₂ CH ₂ ciclohexilo	CO ₂ CH ₂ ciclohexilo	CO ₂ CH ₂ ciclohexilo
CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph
CO₂CH(Me)Ph	CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph
CO ₂ CH ₂ (4-Cl-Ph)	CO ₂ CH ₂ (4-Cl-Ph)	CO ₂ CH ₂ (4-Cl-Ph)	CO ₂ CH ₂ (4-Cl-Ph)
CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)
CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂

R ¹ es ciclopropilo; R ³ es Cl.	R ¹ es ciclopropilo; R ³ es F.	R ¹ es ciclopropilo; R ³ es Br.	R ¹ es ciclopropilo; R ³ es I.
<u>R</u> ²	R^2	R^2	R^2
CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe
CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH
CO ₂ CH ₂ (3-oxetanilo)	CO ₂ CH ₂ (3-oxetanilo)	CO ₂ CH ₂ (3-oxetanilo)	CO ₂ CH ₂ (3-oxetanilo)
CH ₂ OH	CH₂OH	CH₂OH	CH₂OH
CH ₂ OMe	CH₂OMe	CH₂OMe	CH ₂ OMe
CH ₂ CO ₂ Me	CH ₂ CO ₂ Me	CH ₂ CO ₂ Me	CH ₂ CO ₂ Me
CH(OH)CO ₂ Me	CH(OH)CO₂Me	CH(OH)CO₂Me	CH(OH)CO₂Me
CHO	СНО	СНО	СНО
CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me
C(=NOH)H	C(=NOH)H	C(=NOH)H	C(=NOH)H
C(=NOMe)H	C(=NOMe)H	C(=NOMe)H	C(=NOMe)H
$C(=O)NH_2$	C(=O)NH ₂	C(=O)NH ₂	C(=O)NH ₂
C(=O)NHMe	C(=O)NHMe	C(=O)NHMe	C(=O)NHMe
C(=O)NMe ₂	C(=O)NMe ₂	C(=O)NMe ₂	C(=O)NMe ₂
CO ₂ Ph	CO ₂ Ph	CO ₂ Ph	CO ₂ Ph
C(O)O ^Θ H ₃ N [⊕] Me	C(O)O [©] H ₃ N [⊕] Me	C(O)O ^Θ H ₃ N [⊕] Me	C(O)O ^Θ H ₃ N [⊕] Me
C(O)O ^O H ₃ N [⊕] <i>i</i> -Pr	C(O)O ^Θ H ₃ N [⊕] <i>i</i> -Pr	C(O)O ^Θ H ₃ N [⊕] <i>i</i> -Pr	C(O)O ^O H ₃ N [⊕] <i>i</i> -Pr
$C(O)O^{\Theta} H_3N^{\oplus}Pr$	C(O)O ^Θ H ₃ N [⊕] Pr	C(O)O ^Θ H ₃ N [⊕] Pr	C(O)O ^O H ₃ N [⊕] Pr
$C(O)O^{\Theta} H_3N^{\oplus}$ butilo	C(O)O ^Θ H ₃ N [⊕] butilo	C(O)O ^Θ H ₃ N [⊕] butilo	C(O)O ^O H ₃ N [⊕] butilo
$C(O)O^{\Theta} H_3N^{\oplus}$ hexilo	C(O)O ^Θ HH ₃ N [⊕] hexilo	C(O)O ^Θ H ₃ N [⊕] hexilo	C(O)O [⊙] H ₃ N [⊕] hexilo
$C(O)O^{\Theta} H_3N^{\oplus}$ octilo	C(O)O ^Θ H ₃ N [⊕] octilo	C(O)O ^Θ H ₃ N [⊕] octilo	C(O)O ^Θ H ₃ N [⊕] octilo
C(O)O ^O H₃N [⊕] hexadecilo	C(O)O ^O H ₃ N [⊕] hexadecilo	C(O)O ^Θ H ₃ N [⊕] hexadecilo	C(O)O ^O H ₃ N [⊕] hexadecilo
C(O)O ^Θ H ₃ N [⊕] octadecilo	C(O)O ^Θ H ₃ N [⊕] octadecilo	C(O)O ^Θ H ₃ N [⊕] octadecilo	C(O)O ^Θ H ₃ N [⊕] octadecilo
C(O)O ^Θ H ₃ N [⊕] ciclohexilo	C(O)O ^Θ H ₃ N [⊕] ciclohexilo	C(O)O ^Θ H ₃ N [⊕] ciclohexilo	C(O)O ^Θ H ₃ N [⊕] ciclohexilo
$C(O)O^{\Theta} H_2N^{\oplus}(Et)_2$	$C(O)O^{\Theta}H_2N^{\oplus}(Et)_2$	C(O)O ^Θ H ₂ N [⊕] (Et) ₂	$C(O)O^{\Theta} H_2N^{\oplus}(Et)_2$
C(O)O [⊖]	C(O)O [⊖]	C(O)O [⊖]	C(O)O [⊖]
$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$	$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$	$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$	$H_2N^{\oplus}[(CH_2)_2O(CH_2)_2]$
C(O)O ^Θ	C(O)O [⊙]	C(O)O ^Θ	C(O)O [⊙]
$H_2N^{\oplus}[CH_2(CH_2)CH_2]$	H ₂ N [⊕] [CH ₂ (CH ₂)CH ₂]	H ₂ N [⊕] [CH ₂ (CH ₂)CH ₂]	H ₂ N [⊕] [CH ₂ (CH ₂)CH ₂]
C(O)O ^Θ HN [⊕] (Et) ₃	C(O)O ^Θ HN [⊕] (Et) ₃	C(O)O ^Θ HN [⊕] (Et) ₃	C(O)O ^O HN [⊕] (Et) ₃
C(O)O ^Θ N [⊕] (Me) ₄	C(O)O ^Θ N [⊕] (Me) ₄	C(O)O [⊙] N [⊕] (Me) ₄	C(O)O [⊙] N [⊕] (Me) ₄
C(O)O ^O N [⊕] (Me) ₃ CH ₂ Ph	C(O)O ^O N [⊕] (Me) ₃ CH ₂ Ph	C(O)O ^O N [⊕] (Me) ₃ CH ₂ Ph	C(O)O ^O N [⊕] (Me) ₃ CH ₂ Ph
C(O)O ^O S [⊕])(Me) ₃	C(O)O ^O S [⊕])(Me) ₃	C(O)O ^O S [⊕])(Me) ₃	C(O)O ^Θ S [⊕] (Me) ₃
· / /· /-			

R ¹ es ciclopropilo; R ³ es Cl.	R ¹ es ciclopropilo; R ³ es F.	R ¹ es ciclopropilo; R ³ es Br.	R ¹ es ciclopropilo; R ³ es I.
<u>R</u> ²	<u>R</u> ²	<u>R</u> ²	<u>R</u> ²
C(O)O ^O K [⊕]	C(O)O [©] K [⊕]	C(O)O [©] K [⊕]	C(O)O ^O K [⊕]

Tabla 2

R^{1} N NH_{2}				
R ² es CO ₂ H; R ³ es Cl.	R ² es CO₂Me; R ³ es Cl.	R ² es CO₂Et; R ³ es Cl.		
<u>R</u> ¹	R^1	\underline{R}^1		
<i>i</i> -Pr	<i>i</i> -Pr	<i>i</i> -Pr		
1-Me-ciclopropilo	1-Me-ciclopropilo	1-Me-ciclopropilo		
2-Me-ciclopropilo	2-Me-ciclopropilo	2-Me-ciclopropilo		
2-F-ciclopropilo	2-F-ciclopropilo	2-F-ciclopropilo		
2-CI-ciclopropilo	2-CI-ciclopropilo	2-CI-ciclopropilo		
2,2-di-F-ciclopropilo	2,2-di-F-ciclopropilo	2,2-di-F-ciclopropilo		
2,2-di-Cl-ciclopropilo	2,2-di-Cl-ciclopropilo	2,2-di-Cl-ciclopropilo		
1,2-di-F-ciclopropilo	1,2-di-F-ciclopropilo	1,2-di-F-ciclopropilo,		
2,2,3,3-tetra-F-ciclopropilo	2,2,3,3-tetra-F-ciclopropilo	2,2,3,3-tetra-F-ciclopropilo		
1,2,2,3,3-penta-F-ciclopropilo	1,2,2,3,3-penta-F-ciclopropilo	1,2,2,3,3-penta-F-ciclopropilo		
Ph	Ph	Ph		
4-CI-Ph	4-CI-Ph	4-CI-Ph		
4-F-Ph	4-F-Ph	4-F-Ph		
3-OMe-Ph	3-OMe-Ph	3-OMe-Ph		
4-Br-Ph	4-Br-Ph	4-Br-Ph		
4-I-Ph	4-I-Ph	4-I-Ph		
4-CF3-Ph	4-CF ₃ -Ph	4-CF ₃ -Ph		
4-OCHF ₂ -Ph	4-OCHF ₂ -Ph	4-OCHF ₂ -Ph		
4-OCF ₃ -Ph	4-OCF ₃ -Ph	4-OCF ₃ -Ph		
4-SCF ₃ -Ph	4-SCF₃-Ph	4-SCF ₃ -Ph		
4-SCHF ₂ -Ph	4-SCHF ₂ -Ph	4-SCHF ₂ -Ph		
4-CN-Ph	4-CN-Ph	4-CN-Ph		
4-CO₂Me-Ph	4-CO₂Me-Ph	4-CO₂Me-Ph		
2,4-di-Cl-Ph	2,4-di-CI-Ph	2,4-di-Cl-Ph		
2-F-4-CI-Ph	2-F-4-Cl-Ph	2-F-4-CI-Ph		
3,4-di-Cl-Ph	3,4-di-Cl-Ph	3,4-di-Cl-Ph		

2-MeO-ciclopropilo	2-MeO-ciclopropilo	2-MeO-ciclopropilo
2-MeS-ciclopropilo	2-MeS-ciclopropilo	2-MeS-ciclopropilo
CH(Me)CH₂OMe	CH(Me)CH ₂ OMe	CH(Me)CH₂OMe
<i>i</i> -Pr	<i>i</i> -Pr	<i>i</i> -Pr
1-Me-ciclopropilo	1-Me-ciclopropilo	1-Me-ciclopropilo
2-Me-ciclopropilo	2-Me-ciclopropilo	2-Me-ciclopropilo
2-F-ciclopropilo	2-F-ciclopropilo	2-F-ciclopropilo
2-CI-ciclopropilo	2-Cl-ciclopropilo	2-CI-ciclopropilo
2,2-di-F-ciclopropilo	2.2-di-F-ciclopropilo	2,2-di-F-ciclopropilo
2,2-di-Cl-ciclopropilo	2,2-di-Cl-ciclopropilo	2,2-di-Cl-ciclopropilo
1,2-di-F-ciclopropilo	1,2-di-F-ciclopropilo	1,2-di-F-ciclopropilo
2,2,3,3-tetra-F-ciclopropilo	2,2,3,3-tetra-F-ciclopropilo	2,2,3,3-tetra-F-ciclopropilo
1,2,2,3,3-penta-F-ciclopropilo	1,2,2,3,3-penta-F-ciclopropilo	1,2,2,3,3-penta-F-ciclopropilo
Ph	Ph	Ph
4-CI-Ph	4-Cl-Ph	4-CI-Ph
4-F-Ph	4-F-Ph	4-F-Ph
3-OMe-Ph	3-OMe-Ph	3-OMe-Ph
4-Br-Ph	4-Br-Ph	4-Br-Ph
4-1-Ph	4-I-Ph	4-I-Ph
4-CF ₃ -Ph	4-CF ₃ -Ph	4-CF ₃ -Ph
4-OCHF2-Ph	4-OCHF ₂ -Ph	4-OCHF ₂ -Ph
4-OCF₃-Ph	4-OCF ₃ -Ph	4-OCF ₃ -Ph
4-SCF ₃ -Ph	4-SCF ₃ -Ph	4-SCF ₃ -Ph
4-SCHF ₂ -Ph	4-SCHF ₂ -Ph	4-SCHF ₂ -Ph
4-CN-Ph	4-CN-Ph	4-CN-Ph
4-CO ₂ Me-Ph	4-CO₂Me-Ph	4-CO₂Me-Ph
2,4-di-Cl-Ph	2,4-di-Cl-Ph	2,4-di-Cl-Ph
2-F-4-Cl-Ph	2-F-4-Cl-Ph	2-F-4-Cl-Ph
3,4-di-Cl-Ph	3,4-di-Cl-Ph	3,4-di-Cl-Ph
2-MeO-ciclopropilo	2-MeO-ciclopropilo	2-MeO-ciclopropilo
2-MeS-ciclopropilo	2-MeS-ciclopropilo	2-MeS-ciclopropilo
CH(Me)CH₂OMe	CH(Me)CH ₂ OMe	CH(Me)CH ₂ OMe
	ı	I

Tabla 3

 R^1 es ciclopropilo; R^2 es CO_2Me . R^1 es ciclopropilo; R^2 es CO_2Et . R^3

CN CN

 NO_2 NO_2 OMe

SMe SMe

 NH_2 NH_2 NHMe

NMe₂ NMe₂

Tabla 4

$$\mathbb{R}^2$$
 \mathbb{R}^3

	Kr I	N KT	
R¹ es ciclopropilo; R² es CO₂Me; R³ es Cl.	R ¹ es ciclopropilo; R ² es CO ₂ Me; R ³ es Br.	R ¹ es ciclopropilo; R ² es CO ₂ Et; R ³ es Cl.	R ¹ es ciclopropilo; R ² es CO ₂ Et; R ³ es Br.
<u>R</u> ⁴	<u>R</u> ⁴	<u>R</u> ⁴	<u>R</u> ⁴
NO ₂	NO ₂	NO ₂	NO ₂
NHMe	NHMe	NHMe	NHMe
NMe ₂	NMe ₂	NMe ₂	NMe ₂
N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]	N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]	N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]	N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]
NHC(=O)Me	NHC(=O)Me	NHC(=O)Me	NHC(=O)Me
NHC(=O)OMe	NHC(=O)OMe	NHC(=O)OMe	NHC(=O)OMe
NHS(O) ₂ Me	NHS(O) ₂ Me	NHS(O) ₂ Me	NHS(O)₂Me
NHNH ₂	NHNH ₂	NHNH ₂	NHNH ₂
NHNO ₂	NHNO ₂	NHNO ₂	NHNO ₂
N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂
NHOH	NHOH	NHOH	NHOH
NHOMe	NHOMe	NHOMe	NHOMe
NHCH ₂ CO ₂ Me	NHCH ₂ CO ₂ Me	NHCH ₂ CO ₂ Me	NHCH ₂ CO ₂ Me
ļ		ļ	

R ¹ es ciclopropilo; R ² es CO ₂ Me; R ³ es CI.	R ¹ es ciclopropilo; R ² es CO ₂ Me; R ³ es Br.	R ¹ es ciclopropilo; R ² es CO ₂ Et; R ³ es CI.	R ¹ es ciclopropilo; R ² es CO ₂ Et; R ³ es Br.
<u>R</u> ⁴	<u>R</u> ⁴	<u>R</u> ⁴	<u>R</u> ⁴
NHCH ₂ CO ₂ Et			
NHCH ₂ CH ₂ OH			
NHCH ₂ CH ₂ OMe			
NHCH ₂ CH ₂ NMe ₂			
NO_2	NO ₂	NO ₂	NO ₂
NHMe	NHMe	NHMe	NHMe
NMe ₂	NMe ₂	NMe ₂	NMe ₂
N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]	N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]	N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]	N[-CH ₂ CH ₂ OCH ₂ CH ₂ -]
NHC(=O)Me	NHC(=O)Me	NHC(=O)Me	NHC(=O)Me
NHC(=O)OMe	NHC(=O)OMe	NHC(=O)OMe	NHC(=O)OMe
NHS(O)₂Me	NHS(O)₂Me	NHS(O)₂Me	NHS(O) ₂ Me
NHNH ₂	NHNH ₂	NHNH ₂	NHNH ₂
NHNO ₂	NHNO ₂	NHNO ₂	NHNO ₂
N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂
NHOH	NНОН	NНОН	NНОН
NHOMe	NHOMe	NHOMe	NHOMe
NHCH ₂ CO ₂ Me			
NHCH ₂ CO ₂ Et			
NHCH ₂ CH ₂ OH			
NHCH ₂ CH ₂ OMe			
NHCH ₂ CH ₂ NMe ₂			

Formulación/Utilidad

10

15

Los compuestos de esta invención se usarán generalmente como una formulación o composición con un vehículo agrícola adecuado que comprende al menos uno de un diluyente líquido, un diluyente sólido o un tensioactivo. Los ingredientes de la formulación o composición se seleccionan para que sean coherentes con las propiedades físicas del ingrediente activo, modo de aplicación y factores medioambientales tales como tipo de tierra, humedad y temperatura. Las formulaciones útiles incluyen líquidos tales como soluciones (incluyendo concentrados emulsionables), suspensiones, emulsiones (incluyendo microemulsiones y/o suspoemulsiones) y similares, que opcionalmente pueden estar espesadas en geles. Las formulaciones útiles incluyen además sólidos tales como polvos finos, polvos normales, gránulos, glóbulos, comprimidos, películas (incluyendo revestimiento de semillas), y similares que pueden ser dispersables en agua ("humectables") o solubles en agua. El ingrediente activo puede estar (micro)encapsulado y formando una suspensión o formulación sólida; como alternativa, la formulación entera del ingrediente activo puede estar encapsulada (o "recubierta"). La encapsulación puede controlar o retrasar la liberación del ingrediente activo. Las formulaciones pulverizables pueden extenderse en medios adecuados y usarse en volúmenes de pulverización de aproximadamente uno a varios cientos de litros por hectárea. Las composiciones de alta concentración se usan principalmente como intermedios para la formulación adicional.

Las formulaciones contendrán típicamente cantidades eficaces de ingrediente activo, diluyente y tensioactivo, dentro de los siguientes intervalos aproximados que constituyen hasta 100 por ciento en peso

Porcentaje en Peso

	Ingrediente activo	Diluyente	Tensioactivo
Gránulos, Comprimidos y Polvos Dispersables en Agua o Solubles en Agua.	0,001-90	0-99,999	0-15
Suspensiones, Emulsiones, Disoluciones (incluyendo Concentrados Emulsionables)	1-50	40-99	0-50
Polvos de Espolvoreo	1-25	70-99	0-5
Gránulos y Comprimidos	0,001-99	5-99,999	0-15
Composiciones a Alta Concentración	90-99	0-10	0-2

Los diluyentes sólidos típicos se describen en Watkins, et al., *Handbook of Insecticide Dust Diluents and Carriers*, 2ª Ed., Dorland Books, Caldwell, New Jersey. Los diluyentes líquidos típicos se describen en Marsden, *Solvents Guide*, 2ª Ed., Interscience, Nueva York, 1950. *McCutcheon's Detergents and Emulsifiers Annual*, Allured Publ. Corp., Ridgewood, New Jersey, así como Sisely y Wood, *Enciclopedia of Surface Active Agents*, Chemical Publ. Co., Inc., Nueva York, 1964, muestra tensoactivos y usos recomendados. Todas las formulaciones pueden contener cantidades menores de aditivos para reducir la espuma, el apelmazamiento, la corrosión, el crecimiento microbiológico y similares, o espesantes para aumentar la viscosidad.

Los tensioactivos incluyen, por ejemplo, alcoholes polietoxilados, alquilfenoles polietoxilados, ésteres de ácidos grasos de sorbitan polietoxilados, sulfosuccinatos de dialquilo, sulfatos de alquilo, sulfonatos de alquilbenceno, organosiliconas, *N,N*-dialquiltauratos, sulfonatos de lignina, condensados de naftalensulfonato y formaldehído, policarboxilatos, ésteres de glicerol, copolímeros de bloques de poli(oxietileno)/poli(oxipropileno), y alquilpoliglicósidos donde el número de unidades de glucosa, denominado grado de polimerización (D.P.), puede estar en el intervalo de 1 a 3 y las unidades de alquilo pueden estar en el intervalo de C₆ a C₁₄ (véase *Pure and Applied Chemistry 72*, 1255-1264). Los diluyentes sólidos incluyen, por ejemplo, arcillas tales como bentonita, montmorillonita, atapulgita y caolín, almidón, azúcar, sílice, talco, tierras diatomeas, urea, carbonato de calcio, carbonato y bicarbonato de sodio, y sulfato de sodio. Los diluyentes líquidos incluyen, por ejemplo, agua, *N,N*-dimetilformamida, dimetilsulfóxido, *N*-alquilpirrolidona, etilenglicol, poli(propilenglicol), propilencarbonato, ésteres dibásicos, parafinas, alquilbencenos, alquilnaftalenos, glicerina, triacetina, aceites de oliva, ricino, colza, linaza, tung, sésamo, maíz, coco, semilla de algodón, semilla de soja, semilla de colza y coco, ésteres de ácidos grasos, cetonas tales como ciclohexanona, 2-heptanona, isoforona y 4-hidroxi-4-metil-2-pentanona, acetatos tales como acetato de hexilo, acetato de heptilo y acetato de octilo, y alcoholes tales como metanol, ciclohexanol, decanol, alcohol bencílico y alcohol tetrahidrofurfurílico.

10

15

20

25

30

35

40

Las formulaciones útiles de esta invención también pueden contener materiales conocidos como adyuvantes de formulación incluyendo antiespumantes, formadores de película y tintes y son muy conocidos por los expertos en la técnica. Los antiespumantes pueden incluir líquidos dispersables en agua que comprenden poliorganosiloxanos tales como Rhodorsil® 416. Los formadores de película pueden incluir acetatos de polivinilo, copolímeros de acetato de polivinilo, copolímeros de polivinilo, copolímeros de alcohol de polivinilo y ceras. Los tintes pueden incluir composiciones de colorantes líquidos dispersables en agua tales como colorante rojo Pro-Ized®. Cualquier experto en la técnica apreciará que esto es una lista no exhaustiva de adyuvantes de formulación. Los ejemplos de adyuvantes de formulación adecuados incluyen los mencionados en este documento y los mencionados en McCutcheon's 2001, Volumen 2: Functional Materials, publicado por MC Publishing Company y la publicación PCT WO 03/024222.

Las soluciones, que incluyen concentrados emulsionables, se pueden preparar por simple mezcla de los ingredientes. Los polvos finos y polvos normales pueden prepararse por mezclado y, habitualmente, por molido en un molinillo de martillos o molinillo de energía de fluidos. Las suspensiones se preparan habitualmente por molido húmedo; véase, por ejemplo, el documento U.S. 3,060,084. Los gránulos y aglomerados pueden prepararse por pulverización del material activo sobre vehículos granulares preformados o por técnicas de aglomeración. Véase Browning, "Agglomeration", *Chemical Engineering*, 4 de diciembre de 1967, pp. 147-48, *Perry's Chemical Engineer's Handbook*, 4ª Ed., McGraw-Hill, New York, 1963, páginas 8-57 y siguientes, y el documento WO 91/13546. Los aglomerados pueden prepararse como se describe en el documento U.S. 4.172.714. Los gránulos dispersables en agua y solubles en agua pueden prepararse como se muestra en los documentos U.S. 4.144.050, U.S. 3.920.442 y DE 3.246.493. Los comprimidos pueden prepararse como se muestra en los documentos U.S. 5.180.587, U.S. 5.232.701 y U.S. 5.208.030. Las películas pueden prepararse como se muestra en los documentos GB 2.095.558 y U.S. 3.299.566.

Para información adicional respecto a la técnica de la formulación, véanse T. S. Woods, "The Formulator's Toolbox - Product Forms for Modern Agriculture" en *Pesticide Chemistry and Bioscience, The Food-Environment Challenge*, T. Brooks y T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal

Society of Chemistry, Cambridge, 1999, pp. 120-133. Véanse también los documentos U.S. 3,235,361, de la Col. 6, línea 16 a la Col. 7, línea 19 y los Ejemplos 10-41; el documento U.S. 3.309.192, Col. 5, línea 43 a Col. 7, línea 62 y los Ejemplos 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 y 169-182; el documento U.S. 2,891,855, Col. 3, línea 66 a Col. 5, línea 17 y los Ejemplos 1-4; Klingman, *Weed Control as a Science*, John Wiley y Sons, Inc., New York, 1961, pp. 81-96; Hance et ál., *Weed Control Handbook*, 8ª Ed., Blackwell Scientific Publications, Oxford, 1989; y *Developments in formulation technology*, PJB Publications, Richmond, Reino Unido, 2000.

En los siguientes Ejemplos, todos los porcentajes están en peso y todas las formulaciones se preparan por las rutas convencionales. Los números de compuesto se refieren a los compuestos en las Tablas de índice A-D.

Ejemplo A

5

10

Compuesto 4			10,09
Gránulo			
Ejemplo C			
	Montmorillonita (calcinada)	23,0%.	
	Silicoaluminato de sodio	6,0%	
	Ligninsulfonato de sodio	4,0%	
	Eter de poli(etilenglicol) y dodecilfenol	2,0%	
	Compuesto 2	65,0%	
	Polvo Humectable		
Ejemplo B			
	sílice fina amorfa sintética	1,0%.	
	aerogel de sílice	0,5%	
	Compuesto 1	98,5%	
	Concentrado de Alta Potencia		

Ejemplo D

Suspensión Acuosa			
Compuesto 9	25,0%		
atapulgita hidratada	3,0%		
Ligninsulfonato de calcio en bruto	10,0%		
dihidrogenofosfato sódico	0,5%		
Agua	61,5%.		

Gránulos de atapulgita (bajo contenido en materia volátil, 0,71/0,30 mm; Tamices U.S.S. № 25-50)

90,0%.

Ejemplo E

Aglomerado Extrudido	
Compuesto 1	25,0%
Sulfato de sodio anhidro	10,0%
Ligninsulfonato de calcio en bruto	5,0%
Alquilnaftalensulfonato sódico	1,0%
Bentonita de calcio/magnesio	59,0%.

Ejemplo F

5

10

15

20

35

	Microemulsión	
	Compuesto 2	1,0%
	triacetina	30,0%
	$alquil(C_8\hbox{-} C_{10})\hbox{-poliglic\'osido}$	30,0%
	Monooleato de glicerilo	19,0%
	Agua	20,0%.
Ejemplo G		
	Polvo Humectable	
	Compuesto 9	65,0%
	Eter de poli(etilenglicol) y dodecilfenol	2,0%
	Ligninsulfonato de sodio	4,0%
	Silicoaluminato de sodio	6,0%
	Montmorillonita (calcinada)	23,0%.

Los resultados de las pruebas indican que los compuestos de la presente invención son herbicidas pre-emergentes y/o post-emergentes muy activos y/o reguladores del crecimiento vegetal. Muchos de ellos tienen utilidad para control en pre-emergencia y post-emergencia de malas hierbas de amplio espectro en áreas donde se desea el control completo de toda la vegetación tales como alrededor de tanques de almacenamiento de combustible, áreas de almacenamiento industrial, terrenos de aparcamiento, autocines, campos de aviación, riberas de ríos, riegos y otros canales de agua, alrededores de carteleras y estructuras de carreteras y ferrocarriles. Muchos de los compuestos de esta invención, en virtud del metabolismo selectivo en cultivos frente a malas hierbas, o por actividad selectiva in situ de la inhibición fisiológica en cultivos y malas hierbas, o por colocación selectiva sobre o dentro del medio ambiente de una mezcla de cultivos y malas hierbas, son útiles para el control selectivo de césped y malas hierbas de hoja ancha dentro de una mezcla de cultivo/malas hierbas. Un experto en la técnica reconocerá que la combinación preferida de estos factores de selectividad dentro de un compuesto o grupo de compuestos se puede determinar fácilmente realizando ensayor biológicos y/o bioquímicos de rutina. Los compuestos de esta invención pueden mostrar tolerancia a cultivos agronómicos importantes que incluyen, pero no se limitan a, alfalfa, cebada, algodón, trigo, colza, remolacha azucarera, cereal (maíz), sorgo, soja, arroz, avena, cacahuetes, verduras, tomate, patata, cultivos de plantaciones perennes que incluyen café, cacao, aceite de palma, caucho, caña de azúcar, cítricos, vid, árboles frutales, nogales, plátano, llantén, piña, lúpulo, té y bosques tales como eucaliptos y coníferas (por ejemplo, pino de incienso) y especies de césped (por ejemplo, césped azul Kentucky, césped San Agustín, cañuela Kentucky y césped Bermuda). Los compuestos de esta invención se pueden usar en cultivos transformados o generados genéticamente para incorporar resistencia a herbicidas, expresar proteínas tóxicas a plagas de invertebrados (tales como la toxina de Bacillus thuringiensis), y/o expresar otras características útiles. Los expertos en la materia reconocerán que no todos los compuestos son igualmente eficaces contra todas las malas hierbas. Alternativamente, los compuestos del tema son útiles para modificar el crecimiento de las plantas.

Como los compuestos de la invención tienen tanto actividad herbicida preemergente como postemergente, para controlar la vegetación no deseada matando o dañando la vegetación o reduciendo su crecimiento los compuestos se pueden aplicar útilmente por una variedad de métodos que implican poner en contacto una cantidad eficazmente herbicida de un compuesto de la invención, o una composición que comprende dicho compuesto y al menos uno de un tensioactivo, un diluyente sólido o un diluyente líquido, con las hojas u otra parte de la vegetación no deseada o con el medio ambiente de la vegetación no deseada tal como el suelo o agua en que la vegetación no deseada está creciendo o que rodea la semilla u otro propágulo de la vegetación no deseada.

Una cantidad eficazmente herbicida de los compuestos de esta invención está determinada por un número de factores. Estos factores incluyen: formulación seleccionada, método de aplicación, cantidad y tipo de vegetación presente, condiciones de cultivo, etc. En general, una cantidad eficazmente herbicida de los compuestos de esta invención es aproximadamente 0,0001 a 20 kg/ha con un intervalo preferido de aproximadamente 0,001 a 5 kg/ha y un intervalo más preferido de aproximadamente 0,004 a 3 kg/ha. Un experto en la técnica puede determinar fácilmente la cantidad eficazmente herbicida necesaria para el nivel deseado de control de malas hierbas.

10

15

20

25

30

35

40

45

50

55

60

65

Los compuestos de esta invención se pueden usar solos o en combinación con otros herbicidas, insecticidas y fungicidas, y otras sustancias químicas agrícolas tales como fertilizantes. Mezclas de los compuestos de la invención con otros herbicidas pueden ampliar el espectro de actividad frente a especies adicionales de malas hierbas, y suprimir la proliferación de biotipos resistentes cualesquiera. Una mezcla de uno o más de los herbicidas siguientes con un compuesto de esta invención puede ser particularmente útil para el control de malas hierbas: acetocloro, acifluorfen y su sal sódica, aclonifen, acroleina (2-propenal), alacloro, alloxidim, ametrina, amicarbazona, amidosulfuron, aminopiralida, amitrol, sulfamato amónico, anilofos, asulam, atrazina, azimsulfuron, beflubutamida, benazolina, benazolina-etilo, benfluralina, benfuresato, bensulfuron-metilo, bensulida, bentazona, benzobiciclon, benzofenap, bifenox, bilanafos, bispiribac y su sal sódica, bromacilo, bromobutida, bromofenoxim, bromoxinilo, octanoato de bromoxinilo, butacloro, butafenacilo, butamifos, butralina, butroxidim, butilato, cafenstrol, carbetamida, carfentrazona-etilo, categuina, clometoxifen, cloramben, clorbromuron, clorflurenol-metilo, cloridazona, clorimuronetilo, clorotoluron, clorprofam, clorsulfuron, clortal-dimetilo, clortiamida, cinidon-etilo, cinmetilina, cinosulfuron, clefoxidim, cletodim, clodinafop-propargilo, clomazona, clomeprop, clopiralida, clopiralida-olamina, cloransulammetilo, sulfato de cobre, CUH-35 (2-[[[4-cloro-2-fluoro-5-[(1-metil-2-propinil)oxi]fenil](3-fluorobenzoil)amino]carbonil]-1-ciclohexen-1-carboxilato de 2-metoxietilo), cumiluron, cianazina, cicloato, ciclosulfamuron, cicloxidim, cihalofopbutilo, 2,4-D y sus ésteres butotílico, butílico, isoctílico e isopropílico y sus sales de dimetilamonio, diolamina y trolamina, daimuron, dalapon, dalapon-sodio, dazomet, 2,4-DB y sus sales de dimetilamonio, potasio y sodio, desmedifam, desmetrina, dicamba y sus sales de diglicolamonio, dimetilamonio, potasio y sodio, diclobenil, diclorprop, diclofop-metilo, diclosulam, metilsulfato de difenzoquat, diflufenican, diflufenzopir, dimefuron, dimepiperato, dimethaclor, dimetametrina, dimetenamida, dimetenamida-P, dimetipin, ácido dimetilarsínico y su sal sódica, dinitramina, dinoterb, difenamida, dibromuro de diquat, ditiopir, diuron, DNOC, endotal, epoprodan, EPTC, esprocarb, etalfluralina, etametsulfuron-metilo, etofumesato, etoxifen, etoxisulfuron, etobenzanida, fenoxaprop-etilo, fenoxaprop-P-etilo, fentrazamida, fenuron, fenuron-TCA, flamprop-metilo, flamprop-M-isopropilo, flamprop-M-metilo, flazasulfuron, florasulam, fluazifop-butilo, fluazifop-P-butilo, flucarbazona, flucarbazona-sodio, flucetosulfuron, flucloralina, flufenacet, flufenpir, flufenpir-etilo, flumetsulam, flumiclorac-pentilo, flumioxazin, fluometuron, fluoroglicofen-etilo, flupirsulfuron-metilo y su sal sódica, flurenol, flurenol-butilo, fluridona, flurocloridona, fluroxipir, flurtamona, flutiacet-metilo, fomesafen, foramsulfuron, fosamina-amonio, glufosinato, glufosinato-amonio, glifosato y sus sales tales como de amonio, isopropilamonio, potasio, sodio (incluyendo sesquisodio) y trimesio (llamada alternativamente sulfosato), halosulfuron-metilo, haloxifop-etotilo, haloxifop-metilo, hexazinona, HOK-201 (N-(2,4difluorofenil)-1,5-dihidro-N-(1-metiletil)-5-oxo-1-[(tetrahidro-2H-piran-2-il)-metil]-4H-1,2,4-triazol-4-carboxamida), imazametabenz-metilo, imazamox, imazapic, imazapir, imazaquin, imazaquin-amonio, imazetapir, imazetapiramonio, imazosulfuron, indanofan, yodosulfuron-metilo, ioxinilo, octanoato de ioxinilo, ioxinil-sodium, isoproturon, isouron, isoxaben, isoxaflutol, isoxaclortol; isoxadifen, KUH-021 (N-[2-[(4,6-dimetoxi-2-pirimidinil)hidroximetil]-6-(metoximetil)fenil]-1,1-difluorometanosulfonamida), lactofen, lenacil, linuron, hidrazida maleica, MCPA y sus sales (por ejemplo, MCPA-dimetilamonio, MCPA-potasio y MCPA-sodio), ésteres (por ejemplo, MCPA-2-etilhexilo, MCPAbutotilo) y tioésteres (por ejemplo, MCPA-tioetilo), MCPB y sus sales (por ejemplo, MCPB-sodio) y ésteres (por ejemplo, MCPB-etilo), mecoprop, mecoprop-P, mefenacet, mefluidida, mesosulfuron-metilo, mesotriona, metamsodio, metamifop, metamitron, metazacloro, metabenztiazuron, ácido metilarsónico y sus sales cálcica, monoamónica, monosódica y disódica, metildimron, metobenzuron, metobromuron, metolacloro, S-metolacloro, metosulam, metoxuron, metribuzin, metsulfuron-metilo, molinato, monolinuron, naproanilida, napropamida, naptalam, neburon, nicosulfuron, norflurazon, orbencarb, orizalina, oxadiargilo, oxadiazon, oxasulfuron, oxaziclomefona, oxifluorfen, dicloruro de paraquat, pebulato, ácido pelargónico, pendimetalina, penoxsulam, pentanocloro, pentoxazona, perfluidona, petoxiamida, fenmedifam, picloram, picloram-potasio, picolinafen, pinoxaden, piperofos, primisulfuron-metilo, prodiamina, profoxidim, prometon, prometrina, propacloro, propaquizafop, propazina, profam, propisocloro, propoxicarbazona, propoxicarbazona-sodio, propizamida, prosulfocarb, prosulfuron, piraclonilo, piraflufen-etilo, pirazogilo, pirazolato, pirazolinato, pirazosifen, pirazosulfuronetilo, piribenzoxim, piributicarb, piridato, piriftalid, piriminobac-metilo, piritiobac, piritiobac-sodio, quinclorac, quinmerac, quinoclamina, quizalofop-etilo, quizalofop-P-etilo, quizalofop-P-tefurilo, rimsulfuron, setoxidim, siduron, simazina, simetrina, sulcotriona, sulfentrazona, sulfometuron-metilo, sulfosulfuron, 2,3,6-TBA, TCA, TCA-sodio, tebutam, tebutiuron, tepraloxidim, terbacil, terbumeton, terbutilazina, terbutrina, tenilcloro, tiazopir, tifensulfuronmetilo, tiobencarb, tiocarbazil, tralkoxidim, tri-alato, triasulfuron, triaziflam, tribenuron-metilo, triclopir, triclopir, butotilo, triclopir-trietilamonio, tridifano, trietazina, trifloxisulfuron, trifluralina, triflusulfuron-metilo, tritosulfuron y vernolato. Otros herbicidas incluyen también bioherbicidas tales como Alternaria destruens Simmons, Colletotrichum gloeosporiodes (Penz.) Penz. & Sacc., Drechsiera monoceras (MTB-951), Myrothecium verrucaria (Albertini & Schweinitz) Ditmar: Fries, Phytophthora palmivora (Butl.) Butl. and Puccinia thlaspeos Schub. Combinaciones de compuestos de la invención con otros herbicidas pueden dar por resultado un efecto mayor que el aditivo (es decir, sinérgico) sobre malas hibertas y/o un efecto menor que aditivo (es decir, acción antídota) en cultivos u otras plantas deseables. En ciertos casos, combinaciones con otros herbicidas que tienen un espectro de control similar pero diferente modo de acción serán particularmente convenientes para prevenir el desarrollo de malas hierbas resistentes. Las cantidades eficazmente herbicidas de compuestos de la invención así como cantidades eficazmente herbicidas de otros herbicidas se pueden determinar fácilmente por un experto en la técnica mediante simple experimentación.

Para mejor control de la vegetación no deseada (por ejemplo, frecuencia de uso inferior, espectro más amplio de malas hierbas controladas, o mayor seguridad de cultivo) o para prevenir el desarrollo de malas hierbas resistentes se prefieren mezclas de un compuesto de esta invención con un herbicida seleccionado del grupo consistente en

10

15

20

25

30

35

40

45

50

55

60

65

diuron, hexazinona, terbacil, bromacilo, glifosato (en particular glifosato de isopropilamonio, glifosato sódico, glifosato potásico, glifosato trimésico), glufosinato (en particular glufosinato amónico), azimsulfuron, clorsulfuron, etametsulfuron-metilo, clorimuron-etilo, bensulfuron-metilo, rimsulfuron, sulfometuron-metilo, metsulfuron-metilol, nicosulfuron, tribenuron-metilo, tifensulfuron-metilo, flupirsulfuron-metilo, flupirsulfuro metilo, primisulfuron-metilo, trifloxisulfuron, foramsulfuron, mesosulfuron-metilo, yodosulfuron-metilo, isoproturon, ametrina, amitrol, dicloruro de paraquat, dibromuro de diquat, atrazina, metribuzin, acetocloro, metolacloro, Smetolacloro, alacloro, pretilacloro, setoxidim, tralkoxidim, cletodim, cihalofop-butilo, quizalofop-etilo, diclofop-metilo, clodinafop-propargilo, fenoxaprop-etilo, dimetenamida, flufenacet, picloram, prodiamina, fosamina-amonio, 2,4-D, 2,4-DB, dicamba, penoxsulam, flumetsulam, naptalam, pendimetalina, orizalina, MCPA (y sus sales de dimetilamonio, potasio y sodio), MCPA-isooctilo, MCPA-tioetilo, mecoprop, clopiralida, aminopiralida, triclopir, fluroxipir, diflufenzopir, imazapir, imazetapir, imazamox, picolinafen, oxifluorfen, oxadiazon, carfentrazona-etilo, sulfentrazona, flumioxazin, diflufenican, bromoxinilo, propanilo, tiobencarb, molinato, fluridona, mesotriona, sulcotriona, isoxaflutol, isoxaben, clomazona, anilofos, beflubutamida, benfuresato, bentazona, benzobiciclon, benzofenap, bromobutida, butacloro, butamifos, cafenstrol, clomeprop, dimepiperato, dimetametrina, daimuron, esprocarb, etobenzanida, fentrazamida, indanofan, cumiluron, mefenacet, oxaziclomefona, oxadiargilo, pentoxazona, piraclonilo, pirazolato, piributicarb, pirifitalid, piriminobac-metilo, tenilcloro, bispiribac-sodio, clefoxidim, sulfato de cobre, cinosulfuron, ciclosulfamuron, etoxisulfuron, epoprodan, flucetosulfuron, imazosulfuron, metamifop, pirazosulfuron-etilo, quinclorac, flucarbazona-sodio, propoxicarbazona-sodio, amicarbazona, florasulam, triasulfuron, triaziflam, pinoxaden, tritosulfuron, amidosulfuron, metosulam, sulfosulfuron, piraflufen-etilo, HOK-201, KUH-021 y CUH-35. Se seleccionan mezclas específicamente preferidas (los números de compuesto se refieren a compuestos de las Tablas Indice A-D) del grupo: compuesto 4 y diuron; compuesto 9 y diuron; compuesto 58 y diuron; compuesto 64 y diuron; compuesto 65 (y sus sales) y diuron; compuesto 94 y diuron; compuesto 95 (y sus sales) y diuron; compuesto 96 y diuron; compuesto 135 (y sus sales) y diuron; compuesto 4 y hexazinona; compuesto 9 y hexazinona; compuesto 58 y hexazinona; compuesto 64 y hexazinona; compuesto 65 (y sus sales) y hexazinona; compuesto 94 y hexazinona; compuesto 95 (y sus sales) y hexazinona; compuesto 96 y hexazinona; compuesto 135 (y sus sales) y hexazinona; compuesto 4 y terbacil; compuesto 9 y terbacil; compuesto 58 y terbacil; compuesto 64 y terbacil; compuesto 65 (y sus sales) y terbacil; compuesto 94 y terbacil; compuesto 95 (y sus sales) y terbacil; compuesto 96 y terbacil; compuesto 135 (y sus sales) y terbacil; compuesto 4 y bromacilo; compuesto 9 y bromacilo; compuesto 58 y bromacilo; compuesto 64 y bromacilo; compuesto 65 (y sus sales) y bromacilo; compuesto 94 y bromacilo; compuesto 95 (y sus sales) y bromacilo; compuesto 96 y bromacilo; compuesto 135 (y sus sales) y bromacilo; compuesto 4 y glifosato; compuesto 9 y glifosato; compuesto 58 y glifosato; compuesto 64 y glifosato; compuesto 65 (y sus sales) y glifosato; compuesto 94 y glifosato; compuesto 95 (y sus sales) y glifosato; compuesto 96 y glifosato; compuesto 135 (y sus sales) y glifosato; compuesto 4 y glufosinato; compuesto 9 y glufosinato; compuesto 58 y glufosinato; compuesto 64 y glufosinato; compuesto 65 (y sus sales) y glufosinato; compuesto 94 y glufosinato; compuesto 95 (y sus sales) y glufosinato; compuesto 96 y glufosinato; compuesto 135 (y sus sales) y glufosinato; compuesto 4 y azimsulfuron; compuesto 9 y azimsulfuron; compuesto 58 y azimsulfuron; compuesto 64 y azimsulfuron; compuesto 65 (y sus sales) y azimsulfuron; compuesto 94 y azimsulfuron; compuesto 95 (y sus sales) y azimsulfuron; compuesto 96 y azimsulfuron; compuesto 135 (y sus sales) y azimsulfuron; compuesto 4 y clorsulfuron; compuesto 9 y clorsulfuron; compuesto 58 y clorsulfuron; compuesto 64 y clorsulfuron; compuesto 65 (y sus sales) y clorsulfuron; compuesto 94 y clorsulfuron; compuesto 95 (y sus sales) y clorsulfuron; compuesto 96 y clorsulfuron; compuesto 135 (y sus sales) y clorsulfuron; compuesto 4 y etametsulfuron-metilo; compuesto 9 y etametsufuron-metilo; compuesto 58 y etametsulfuron-metilo; compuesto 64 y etametsulfuron-metilo; compuesto 65 (y sus sales) y etametsulfuron-metilo; compuesto 94 y etametsulfuron-metilo; compuesto 95 (y sus sales) y etametsulfuron-metilo; compuesto 96 y etametsulfuron-metilo; compuesto 135 (y sus sales) y etametsulfuron-metilo; compuesto 4 y clorimuron-etilo; compuesto 9 y clorimuron-etilo; compuesto 58 y clorimuron-etilo; compuesto 64 y clorimuron-etilo; compuesto 65 (y sus sales) y clorimuron-etilo; compuesto 94 y clorimuron-etilo; compuesto 95 (y sus sales) y clorimuron-etilo; compuesto 96 y clorimuron-etilo; compuesto 135 (y sus sales) y clorimuron-etilo; compuesto 4 y bensulfuron-metilo; compuesto 9 y bensulfuron-metilo; compuesto 58 y bensulfuron-metilo; compuesto 64 y bensulfuron-metilo; compuesto 65 (y sus sales) y bensulfuron-metilo; compuesto 94 y bensulfuronmetilo; compuesto 95 (y sus sales) y bensulfuron-metilo; compuesto 96 y bensulfuron-metilo; compuesto 135 (y sus sales) y bensulfuron-metilo; compuesto 4 y rimsulfuron; compuesto 9 y rimsulfuron; compuesto 58 y rimsulfuron; compuesto 64 y rimsulfuron; compuesto 65 (y sus sales) y rimsulfuron; compuesto 94 y rimsulfuron; compuesto 95 (y sus sales) y rimsulfuron; compuesto 96 y rimsulfuron; compuesto 135 (y sus sales) y rimsulfuron; compuesto 4 y sulfometuron-metilo; compuesto 9 y sulfometuron-metilo; compuesto 58 y sulfometuron-metilo; compuesto 64 y sulfometuron-metilo; compuesto 65 (y sus sales) y sulfometuron-metilo; compuesto 94 y sulfometuron-metilo; compuesto 95 (y sus sales) y sulfometuron-metilo; compuesto 96 y sulfometuron-metilo; compuesto 135 (y sus sales) y sulfometuron-metilo; compuesto 4 y metsulfuron-metilo; compuesto 9 y metsulfuron-metilo; compuesto 58 y metsulfuron-metilo; compuesto 64 y metsulfuron-metilo; compuesto 65 (y sus sales) y metsulfuron-metilo; compuesto 94 y metsulfuron-metilo; compuesto 95 (y sus sales) y metsulfuron-metilo; compuesto 96 y metsulfuron-metilo; compuesto 135 (y sus sales) y metsulfuron-metilo; compuesto 4 y nicosulfuron; compuesto 9 y nicosulfuron; compuesto 58 y nicosulfuron; compuesto 64 y nicosulfuron; compuesto 65 (y sus sales) y nicosulfuron; compuesto 94 y nicosulfuron; compuesto 95 (y sus sales) y nicosulfuron; compuesto 96 y nicosulfuron; compuesto 135 (y sus sales) y nicosulfuron; compuesto 4 y tribenuron-metilo; compuesto 9 y tribenuron-metilo; compuesto 58 y tribenuronmetilo; compuesto 64 y tribenuron-metilo; compuesto 65 (y sus sales) y tribenuron-metilo; compuesto 94 y tribenuron-metilo; compuesto 95 (y sus sales) y tribenuron-metilo; compuesto 96 y tribenuron-metilo; compuesto 135 (y sus sales) y tribenuron-metilo; compuesto 4 y tifensulfuron-metilo; compuesto 9 y tifensulfuron-metilo; compuesto

10

15

20

25

30

35

40

45

50

55

60

65

58 y tifensulfuron-metilo; compuesto 64 y tifensulfuron-metilo; compuesto 65 (y sus sales) y tifensulfuron-metilo; compuesto 94 y tifensulfuron-metilo; compuesto 95 (y sus sales) y tifensulfuron-metilo; compuesto 96 y tifensulfuronmetilo; compuesto 135 (y sus sales) y tifensulfuron-metilo; compuesto 4 y flupirsulfuron-metilo; compuesto 9 y flupirsulfuron-metilo; compuesto 58 y flupirsulfuron-metilo; compuesto 64 y flupirsulfuron-metilo; compuesto 65 (y sus sales) y flupirsulfuron-metilo; compuesto 94 y flupirsulfuron-metilo; compuesto 95 (y sus sales) y flupirsulfuron-metilo; compuesto 96 y flupirsulfuron-metilo; compuesto 135 (y sus sales) y flupirsulfuron-metilo; compuesto 4 y flupirsulfuron-metil-sodio; compuesto 9 y flupirsulfuron-metil-sodio; compuesto 58 y flupirsulfuron-metil-sodio; compuesto 64 y flupirsulfuron-metil-sodio; compuesto 65 (y sus sales) y flupirsulfuron-metil-sodio; compuesto 94 y flupirsulfuron-metil-sodio; compuesto 95 (y sus sales) y flupirsulfuron-metil-sodio; compuesto 96 y flupirsulfuron-metilsodio; compuesto 135 (y sus sales) y flupirsulfuron-metil-sodio; compuesto 4 y halosulfuron-metilo; compuesto 9 y halosulfuron-metilo; compuesto 58 y halosulfuron-metilo; compuesto 64 y halosulfuron-metilo; compuesto 65 (y sus sales) y halosulfuron-metilo; compuesto 94 y halosulfuron-metilo; compuesto 95 (y sus sales) y halosulfuron-metilo; compuesto 96 y halosulfuron-metilo; compuesto 135 (y sus sales) y halosulfuron-metilo; compuesto 4 y primisulfuronmetilo; compuesto 9 y primisulfuron-metilo; compuesto 58 y primisulfuron-metilo; compuesto 64 y primisulfuronmetilo; compuesto 65 (y sus sales) y primisulfuron-metilo; compuesto 94 y primisulfuron-metilo; compuesto 95 (y sus sales) y primisulfuron-metilo; compuesto 96 y primisulfuron-metilo; compuesto 135 (y sus sales) y primisulfuronmetilo: compuesto 4 y trifloxisulfuron; compuesto 9 y trifloxisulfuron; compuesto 58 y trifloxisulfuron; compuesto 64 y trifloxisulfuron; compuesto 65 (y sus sales) y trifloxisulfuron; compuesto 94 y trifloxisulfuron; compuesto 95 (y sus sales) y trifloxisulfuron; compuesto 96 y trifloxisulfuron; compuesto 135 (y sus sales) y trifloxisulfuron; compuesto 4 y foramsulfuron; compuesto 9 y foramsulfuron; compuesto 58 y foramsulfuron; compuesto 64 y foramsulfuron; compuesto 65 (y sus sales) y foramsulfuron; compuesto 94 y foramsulfuron; compuesto 95 (y sus sales) y foramsulfuron; compuesto 96 y foramsulfuron; compuesto 135 (y sus sales) y foramsulfuron; compuesto 4 y mesosulfuron-metilo; compuesto 9 y mesosulfuron-metilo; compuesto 58 y mesosulfuron-metilo; compuesto 64 y mesosulfuron-metilo; compuesto 65 (y sus sales) y mesosulfuron-metilo; compuesto 94 y mesosulfuron-metilo; compuesto 95 (y sus sales) y mesosulfuron-metilo; compuesto 96 y mesosulfuron-metilo; compuesto 135 (y sus sales) y mesosulfuron-metilo; compuesto 4 y yodosulfuron-metilo; compuesto 9 y yodosulfuron-metilo; compuesto 58 y yodosulfuron-metilo; compuesto 64 y yodosulfuron-metilo; compuesto 65 (y sus sales) y yodosulfuron-metilo; compuesto 94 y yodosulfuron-metilo; compuesto 95 (y sus sales) y yodosulfuron-metilo; compuesto 96 y yodosulfuron-metilo; compuesto 135 (y sus sales) y yodosulfuron-metilo; compuesto 4 e isoproturon; compuesto 9 e isoproturon; compuesto 58 e isoproturon; compuesto 64 e isoproturon; compuesto 65 (y sus sales) e isoproturon; compuesto 94 e isoproturon; compuesto 95 (y sus sales) e isoproturon; compuesto 96 e isoproturon; compuesto 135 (y sus sales) e isoproturon; compuesto 4 y ametrina; compuesto 9 y ametrina; compuesto 58 y ametrina; compuesto 64 y ametrina; compuesto 65 (y sus sales) y ametrina; compuesto 94 y ametrina; compuesto 95 (y sus sales) y ametrina; compuesto 96 y ametrina; compuesto 135 (y sus sales) y ametrina; compuesto 4 y amitrol; compuesto 9 y amitrol; compuesto 58 y amitrol; compuesto 64 y amitrol; compuesto 65 (y sus sales) y amitrol; compuesto 94 y amitrol; compuesto 95 (y sus sales) y amitrol; compuesto 96 y amitrol; compuesto 135 (y sus sales) y amitrol; compuesto 4 y dicloruro de paraquat; compuesto 9 y dicloruro de paraquat; compuesto 58 y dicloruro de paraquat; compuesto 64 y dicloruro de paraquat; compuesto 65 (y sus sales) y dicloruro de paraquat; compuesto 94 y dicloruro de paraquat; compuesto 95 (y sus sales) y dicloruro de paraquat; compuesto 96 y dicloruro de paraquat; compuesto 135 (y sus sales) y dicloruro de paraquat; compuesto 4 y dibromuro de diquat; compuesto 9 y dibromuro de diquat; compuesto 58 y dibromuro de diquat; compuesto 64 y dibromuro de diquat; compuesto 65 (y sus sales) y dibromuro de diquat; compuesto 94 y dibromuro de diquat; compuesto 95 (y sus sales) y dibromuro de diquat; compuesto 96 y dibromuro de diquat; compuesto 135 (y sus sales) y dibromuro de diquat; compuesto 4 y atrazina; compuesto 9 y atrazina; compuesto 58 y atrazina; compuesto 64 y atrazina; compuesto 65 (y sus sales) y atrazina; compuesto 94 y atrazina; compuesto 95 (y sus sales) y atrazina; compuesto 96 y atrazina; compuesto 135 (y sus sales) y atrazina; compuesto 4 y metribuzin; compuesto 9 y metribuzin; compuesto 58 y metribuzin; compuesto 64 y metribuzin; compuesto 65 (y sus sales) y metribuzin; compuesto 94 y metribuzin; compuesto 95 (y sus sales) y metribuzin; compuesto 96 y metribuzin; compuesto 135 (y sus sales) y metribuzin; compuesto 4 y acetocloro; compuesto 9 y acetocloro; compuesto 58 y acetocloro; compuesto 64 y acetocloro; compuesto 65 (y sus sales) y acetocloro; compuesto 94 y acetocloro; compuesto 95 (y sus sales) y acetocloro; compuesto 96 y acetocloro; compuesto 135 (y sus sales) y acetocloro; compuesto 4 y metolacloro; compuesto 9 y metolacloro; compuesto 58 y metolacloro; compuesto 64 y metolacloro; compuesto 65 (y sus sales) y metolacloro; compuesto 94 y metolacloro; compuesto 95 (y sus sales) y metolacloro; compuesto 96 y metolacloro; compuesto 135 (y sus sales) y metolacloro; compuesto 4 y S-metolacloro; compuesto 9 y S-metolacloro; compuesto 58 y S-metolacloro; compuesto 64 y S-metolacloro; compuesto 65 (y sus sales) y S-metolacloro; compuesto 94 y S-metolacloro; compuesto 95 (y sus sales) y S-metolacloro; compuesto 96 y S-metolacloro; compuesto 135 (y sus sales) y S-metolacloro; compuesto 4 y alacloro; compuesto 9 y alacloro; compuesto 58 y alacloro; compuesto 64 y alacloro; compuesto 65 (y sus sales) y alacloro; compuesto 94 y alacloro; compuesto 95 (y sus sales) y alacloro; compuesto 96 y alacloro; compuesto 135 (y sus sales) y alacloro; compuesto 4 y pretilacloro; compuesto 9 y pretilacloro; compuesto 58 y pretilacloro; compuesto 64 y pretilacloro; compuesto 65 (y sus sales) y pretilacloro; compuesto 94 y pretilacloro; compuesto 95 (y sus sales) y pretilacloro; compuesto 96 y pretilacloro; compuesto 135 (y sus sales) y pretilacloro; compuesto 4 y setoxidim; compuesto 9 y setoxidim; compuesto 58 y setoxidim; compuesto 64 y setoxidim; compuesto 65 (y sus sales) y setoxidim; compuesto 94 y setoxidim; compuesto 95 (y sus sales) y setoxidim; compuesto 96 y setoxidim; compuesto 135 (y sus sales) y setoxidim; compuesto 4 y tralkoxidim; compuesto 9 y tralkoxidim; compuesto 58 y tralkoxidim; compuesto 64 y tralkoxidim; compuesto 65 (y sus sales) y tralkoxidim; compuesto 94 y tralkoxidim; compuesto 95 (y sus sales) y tralkoxidim; compuesto 96 y tralkoxidim; compuesto 135 (y sus sales) y tralkoxidim; compuesto 4 y

10

15

20

25

30

35

40

45

50

55

60

65

cletodim; compuesto 9 y cletodim; compuesto 58 y cletodim; compuesto 64 y cletodim; compuesto 65 (y sus sales) y cletodim; compuesto 94 y cletodim; compuesto 95 (y sus sales) y cletodim; compuesto 96 y cletodim; compuesto 135 (y sus sales) y cletodim; compuesto 4 y cihalofop-butilo; compuesto 9 y cihalofop-butilo; compuesto 58 y cihalofopbutilo; compuesto 64 y cihalofop-butilo; compuesto 65 (y sus sales) y cihalofop-butilo; compuesto 94 y cihalofopbutilo; compuesto 95 (y sus sales) y cihalofop-butilo; compuesto 96 y cihalofop-butilo; compuesto 135 (y sus sales) y cihalofop-butilo; compuesto 4 y quizalofop-etilo; compuesto 9 y quizalofop-etilo; compuesto 58 y quizalofop-etilo; compuesto 64 y quizalofop-etilo; compuesto 65 (y sus sales) y quizalofop-etilo; compuesto 94 y quizalofop-etilo; compuesto 95 (y sus sales) y quizalofop-etilo; compuesto 96 y quizalofop-etilo; compuesto 135 (y sus sales) y quizalofop-etilo; compuesto 4 y diclofop-metilo; compuesto 9 y diclofop-metilo; compuesto 58 y diclofop-metilo; compuesto 64 y diclofop-metilo; compuesto 65 (y sus sales) y diclofop-metilo; compuesto 94 y diclofop-metilo; compuesto 95 (y sus sales) y diclofop-metilo; compuesto 96 y diclofop-metilo; compuesto 135 (y sus sales) y diclofop-metilo; compuesto 4 y clodinafop-propargilo; compuesto 9 y clodinafop-propargilo; compuesto 58 y clodinafop-propargilo; compuesto 64 y clodinafop-propargilo; compuesto 65 (y sus sales) y clodinafop-propargilo; compuesto 94 y clodinafop-propargilo; compuesto 95 (y sus sales) y clodinafop-propargilo; compuesto 96 y clodinafop-propargilo; compuesto 135 (y sus sales) y clodinafop-propargilo; compuesto 4 y fenoxaprop-etilo; compuesto 9 y fenoxaprop-etilo; compuesto 58 y fenoxaprop-etilo; compuesto 64 y fenoxaprop-etilo; compuesto 65 (y sus sales) y fenoxaprop-etilo; compuesto 94 y fenoxaprop-etilo; compuesto 95 (y sus sales) y fenoxaprop-etilo; compuesto 96 y fenoxaprop-etilo; compuesto 135 (y sus sales) y fenoxaprop-etilo; compuesto 4 y dimetenamida; compuesto 9 y dimetenamida; compuesto 58 y dimetenamida; compuesto 64 y dimetenamida; compuesto 65 (y sus sales) y dimetenamida; compuesto 94 y dimetenamida; compuesto 95 (y sus sales) y dimetenamida; compuesto 96 y dimetenamida; compuesto 135 (y sus sales) y dimetenamida; compuesto 4 y flufenacet; compuesto 9 y flufenacet; compuesto 58 y flufenacet; compuesto 64 y flufenacet; compuesto 65 (y sus sales) y flufenacet; compuesto 94 y flufenacet; compuesto 95 (y sus sales) y flufenacet; compuesto 96 y flufenacet; compuesto 135 (y sus sales) y flufenacet; compuesto 4 y picloram; compuesto 9 y picloram; compuesto 58 y picloram; compuesto 64 y picloram; compuesto 65 (y sus sales) y picloram; compuesto 94 y picloram; compuesto 95 (y sus sales) y picloram; compuesto 96 y picloram; compuesto 135 (y sus sales) y picloram; compuesto 4 y prodiamina; compuesto 9 y prodiamina; compuesto 58 y prodiamina; compuesto 64 y prodiamina; compuesto 65 (y sus sales) y prodiamina; compuesto 94 y prodiamina; compuesto 95 (y sus sales) y prodiamina; compuesto 96 y prodiamina; compuesto 135 (y sus sales) y prodiamina; compuesto 4 y fosamina-amonio; compuesto 9 y fosamina-amonio; compuesto 58 y fosamina-amonio; compuesto 64 y fosamina-amonio; compuesto 65 (y sus sales) y fosamina-amonio; compuesto 94 y fosaminaamonio; compuesto 95 (y sus sales) y fosamina-amonio; compuesto 96 y fosamina-amonio; compuesto 135 (y sus sales) y fosamina-amonio; compuesto 4 y 2,4-D; compuesto 9 y 2,4-D; compuesto 58 y 2,4-D; compuesto 64 y 2,4-D; compuesto 65 (y sus sales) y 2,4-D; compuesto 94 y 2,4-D; compuesto 95 (y sus sales) y 2,4-D; compuesto 96 y 2,4-D; D; compuesto 135 (y sus sales) y 2,4-D; compuesto 4 y 2,4-DB; compuesto 9 y 2,4-DB; compuesto 58 y 2,4-DB; compuesto 64 y 2,4-DB; compuesto 65 (y sus sales) y 2,4-DB; compuesto 94 y 2,4-DB; compuesto 95 (y sus sales) y 2,4-DB; compuesto 96 y 2,4-DB; compuesto 135 (y sus sales) y 2,4-DB; compuesto 4 y dicamba; compuesto 9 y dicamba; compuesto 58 y dicamba; compuesto 64 y dicamba; compuesto 65 (y sus sales) y dicamba; compuesto 94 y dicamba; compuesto 95 (y sus sales) y dicamba; compuesto 96 y dicamba; compuesto 135 (y sus sales) y dicamba; compuesto 4 y penoxsulam; compuesto 9 y penoxsulam; compuesto 58 y penoxsulam; compuesto 64 y penoxsulam; compuesto 65 (y sus sales) y penoxsulam; compuesto 94 y penoxsulam; compuesto 95 (y sus sales) y penoxsulam; compuesto 96 y penoxsulam; compuesto 135 (y sus sales) y penoxsulam; compuesto 4 y flumetsulam; compuesto 9 y flumetsulam; compuesto 58 y flumetsulam; compuesto 64 y flumetsulam; compuesto 65 (y sus sales) y flumetsulam; compuesto 94 y flumetsulam; compuesto 95 (y sus sales) y flumetsulam; compuesto 96 y flumetsulam; compuesto 135 (y sus sales) y flumetsulam; compuesto 4 y naptalam; compuesto 9 y naptalam; compuesto 58 y naptalam; compuesto 64 y naptalam; compuesto 65 (y sus sales) y naptalam; compuesto 94 y naptalam; compuesto 95 (y sus sales) y naptalam; compuesto 96 y naptalam; compuesto 135 (y sus sales) y naptalam; compuesto 4 y pendimetalina; compuesto 9 y pendimetalina; compuesto 58 y pendimetalina; compuesto 64 y pendimetalina; compuesto 65 (y sus sales) y pendimetalina; compuesto 94 y pendimetalina; compuesto 95 (y sus sales) y pendimetalina; compuesto 96 y pendimetalina; compuesto 135 (y sus sales) y pendimetalina; compuesto 4 y orizalina; compuesto 9 y orizalina; compuesto 58 y orizalina; compuesto 64 y orizalina; compuesto 65 (y sus sales) y orizalina; compuesto 94 y orizalina; compuesto 95 (y sus sales) y orizalina; compuesto 96 y orizalina; compuesto 135 (y sus sales) y orizalina; compuesto 4 y MCPA (y sus sales y (tio)ésteres); compuesto 9 y MCPA (y sus sales y (tio)ésteres); compuesto 58 y MCPA (y sus sales y (tio)ésteres); compuesto 64 y MCPA (y sus sales y (tio)ésteres); compuesto 65 (y sus sales) y MCPA (y sus sales y (tio)ésteres); compuesto 94 y MCPA (y sus sales y (tio)ésteres); compuesto 95 (y sus sales) y MCPA.(y sus sales y (tio)ésteres); compuesto 96 y MCPA (y sus sales y (tio)ésteres); compuesto 135 (y sus sales) y MCPA.(y sus sales y (tio)ésteres); compuesto 4 y mecoprop; compuesto 9 y mecoprop; compuesto 58 y mecoprop; compuesto 64 y mecoprop; compuesto 65 (y sus sales) y mecoprop; compuesto 94 y mecoprop; compuesto 95 (y sus sales) y mecoprop; compuesto 96 y mecoprop; compuesto 135 (y sus sales) y mecoprop; compuesto 4 y clopiralida; compuesto 9 y clopiralida; compuesto 58 y clopiralida; compuesto 64 y clopiralida; compuesto 65 (y sus sales) y clopiralida; compuesto 94 y clopiralida; compuesto 95 (y sus sales) y clopiralida; compuesto 96 y clopiralida; compuesto 135 (y sus sales) y clopiralida; compuesto 4 y aminopiralida; compuesto 9 y aminopiralida; compuesto 58 y aminopiralida; compuesto 64 y aminopiralida; compuesto 65 (y sus sales) y aminopiralida; compuesto 94 y aminopiralida; compuesto 95 (y sus sales) y aminopiralida; compuesto 96 y aminopiralida; compuesto 135 (y sus sales) y aminopiralida; compuesto 4 y triclopir; compuesto 9 y triclopir; compuesto 58 y triclopir; compuesto 64 y triclopir; compuesto 65 (y sus sales) y triclopir; compuesto 94 y triclopir; compuesto 95 (y sus sales) y triclopir; compuesto 96 y triclopir; compuesto 135 (y sus sales) y triclopir; compuesto 4

10

15

20

25

30

35

40

45

50

55

60

65

y fluroxipir; compuesto 9 y fluroxipir; compuesto 58 y fluroxipir; compuesto 64 y fluroxipir; compuesto 65 (y sus sales) y fluroxipir; compuesto 94 y fluroxipir; compuesto 95 (y sus sales) y fluroxipir; compuesto 96 y fluroxipir; compuesto 135 (y sus sales) y fluroxipir; compuesto 4 y diflufenzopir; compuesto 9 y diflufenzopir; compuesto 58 y diflufenzopir; compuesto 64 y diflufenzopir; compuesto 65 (y sus sales) y diflufenzopir; compuesto 94 y diflufenzopir; compuesto 95 (y sus sales) y diflufenzopir; compuesto 96 y diflufenzopir; compuesto 135 (y sus sales) y diflufenzopir; compuesto 4 e imazapir; compuesto 9 e imazapir; compuesto 58 e imazapir; compuesto 64 e imazapir; compuesto 65 (y sus sales) e imazapir; compuesto 94 e imazapir; compuesto 95 (y sus sales) e imazapir; compuesto 96 e imazapir; compuesto 135 (y sus sales) e imazapir; compuesto 4 e imazetapir; compuesto 9 e imazetapir; compuesto 58 e imazetapir; compuesto 64 e imazetapir; compuesto 65 (y sus sales) e imazetapir; compuesto 94 e imazetapir; compuesto 95 (y sus sales) e imazetapir; compuesto 96 e imazetapir; compuesto 135 (y sus sales) e imazetapir; compuesto 4 e imazamox; compuesto 9 e imazamox; compuesto 58 e imazamox; compuesto 64 e imazamox; compuesto 65 (y sus sales) e imazamox; compuesto 94 e imazamox; compuesto 95 (y sus sales) e imazamox; compuesto 96 e imazamox; compuesto 135 (y sus sales) e imazamox; compuesto 4 y picolinafen; compuesto 9 y picolinafen; compuesto 58 y picolinafen; compuesto 64 y picolinafen; compuesto 65 (y sus sales) y picolinafen; compuesto 94 y picolinafen; compuesto 95 (y sus sales) y picolinafen; compuesto 96 y picolinafen; compuesto 135 (y sus sales) y picolinafen; compuesto 4 y oxifluorfen; compuesto 9 y oxifluorfen; compuesto 58 y oxifluorfen; compuesto 64 y oxifluorfen; compuesto 65 (y sus sales) y oxifluorfen; compuesto 94 y oxifluorfen; compuesto 95 (y sus sales) y oxifluorfen; compuesto 96 y oxifluorfen; compuesto 135 (y sus sales) y oxifluorfen; compuesto 4 y oxadiazon; compuesto 9 y oxadiazon; compuesto 58 y oxadiazon; compuesto 64 y oxadiazon; compuesto 65 (y sus sales) y oxadiazon; compuesto 94 y oxadiazon; compuesto 95 (y sus sales) y oxadiazon; compuesto 96 y oxadiazon; compuesto 135 (y sus sales) y oxadiazon; compuesto 4 y carfentrazona-etilo; compuesto 9 y carfentrazona-etilo; compuesto 58 y carfentrazona-etilo; compuesto 64 y carfentrazona-etilo; compuesto 65 (y sus sales) y carfentrazona-etilo; compuesto 94 y carfentrazona-etilo; compuesto 95 (y sus sales) y carfentrazona-etilo; compuesto 96 y carfentrazona-etilo; compuesto 135 (y sus sales) y carfentrazona-etilo; compuesto 4 y sulfentrazona; compuesto 9 y sulfentrazona; compuesto 58 y sulfentrazona; compuesto 64 y sulfentrazona; compuesto 65 (y sus sales) y sulfentrazona; compuesto 94 y sulfentrazona; compuesto 95 (y sus sales) y sulfentrazona; compuesto 96 y sulfentrazona; compuesto 135 (y sus sales) y sulfentrazona; compuesto 4 y flumioxazin; compuesto 9 y flumioxazin; compuesto 58 y flumioxazin; compuesto 64 y flumioxazin; compuesto 65 (y sus sales) y flumioxazin; compuesto 94 y flumioxazin; compuesto 95 (y sus sales) y flumioxazin; compuesto 96 y flumioxazin; compuesto 135 (y sus sales) y flumioxazin; compuesto 4 y diflufenican; compuesto 9 y diflufenican; compuesto 58 y diflufenican; compuesto 64 y diflufenican; compuesto 65 (y sus sales) y diflufenican; compuesto 94 y diflufenican; compuesto 95 (y sus sales) y diflufenican; compuesto 96 y diflufenican; compuesto 135 (y sus sales) y diflufenican; compuesto 4 y bromoxinilo; compuesto 9 y bromoxinilo; compuesto 58 y bromoxinilo; compuesto 64 y bromoxinilo; compuesto 65 (y sus sales) y bromoxinilo; compuesto 94 y bromoxinilo; compuesto 95 (y sus sales) y bromoxinilo; compuesto 96 y bromoxinilo; compuesto 135 (y sus sales) y bromoxinilo; compuesto 4 y propanilo; compuesto 9 y propanilo; compuesto 58 y propanilo; compuesto 64 y propanilo; compuesto 65 (y sus sales) y propanilo; compuesto 94 y propanilo; compuesto 95 (y sus sales) y propanilo; compuesto 96 y propanilo; compuesto 135 (y sus sales) y propanilo; compuesto 4 y tiobencarb; compuesto 9 y tiobencarb; compuesto 58 y tiobencarb; compuesto 64 y tiobencarb; compuesto 65 (y sus sales) y tiobencarb; compuesto 94 y tiobencarb; compuesto 95 (y sus sales) y tiobencarb; compuesto 96 y tiobencarb; compuesto 135 (y sus sales) y tiobencarb; compuesto 4 y fluridona; compuesto 9 y fluridona; compuesto 58 y fluridona; compuesto 64 y fluridona; compuesto 65 (y sus sales) y fluridona; compuesto 94 y fluridona; compuesto 95 (y sus sales) y fluridona; compuesto 96 y fluridona; compuesto 135 (y sus sales) y fluridona; compuesto 4 y mesotriona; compuesto 9 y mesotriona; compuesto 58 y mesotriona; compuesto 64 y mesotriona; compuesto 65 (y sus sales) y mesotriona; compuesto 94 y mesotriona; compuesto 95 (y sus sales) y mesotriona; compuesto 96 y mesotriona; compuesto 135 (y sus sales) y mesotriona; compuesto 4 y sulcotriona; compuesto 9 y sulcotriona; compuesto 58 y sulcotriona; compuesto 64 y sulcotriona; compuesto 65 (y sus sales) y sulcotriona; compuesto 94 y sulcotriona; compuesto 95 (y sus sales) y sulcotriona; compuesto 96 y sulcotriona; compuesto 135 (y sus sales) y sulcotriona; compuesto 4 e isoxaflutol; compuesto 9 e isoxaflutol; compuesto 58 e isoxaflutol; compuesto 64 e isoxaflutol; compuesto 65 (y sus sales) e isoxaflutol; compuesto 94 e isoxaflutol; compuesto 95 (y sus sales) e isoxaflutol; compuesto 96 e isoxaflutol; compuesto 135 (y sus sales) e isoxaflutol; compuesto 4 e isoxaben; compuesto 9 e isoxaben; compuesto 58 e isoxaben; compuesto 64 e isoxaben; compuesto 65 (y sus sales) e isoxaben; compuesto 94 e isoxaben; compuesto 95 (y sus sales) e isoxaben; compuesto 96 e isoxaben; compuesto 135 (y sus sales) e isoxaben; compuesto 4 y clomazona; compuesto 9 y clomazona; compuesto 58 y clomazona; compuesto 64 y clomazona; compuesto 65 (y sus sales) y clomazona; compuesto 94 y clomazona; compuesto 95 (y sus sales) y clomazona; compuesto 96 y clomazona; compuesto 135 (y sus sales) y clomazona; compuesto 4 y beflubutamida; compuesto 9 y beflubutamida; compuesto 58 y beflubutamida; compuesto 64 y beflubutamida; compuesto 65 (y sus sales) y beflubutamida; compuesto 94 y beflubutamida; compuesto 95 (y sus sales) y beflubutamida; compuesto 96 y beflubutamida; compuesto 135 (y sus sales) y beflubutamida; compuesto 4 y benfuresato; compuesto 9 y benfuresato; compuesto 58 y benfuresato; compuesto 64 y benfuresato; compuesto 65 (y sus sales) y benfuresato; compuesto 94 y benfuresato; compuesto 95 (y sus sales) y benfuresato; compuesto 96 y benfuresato; compuesto 135 (y sus sales) y benfuresato; compuesto 4 y bentazona; compuesto 9 y bentazona; compuesto 58 y bentazona; compuesto 64 y bentazona; compuesto 65 (y sus sales) y bentazona; compuesto 94 y bentazona; compuesto 95 (y sus sales) y bentazona; compuesto 96 y bentazona; compuesto 135 (y sus sales) y bentazona; compuesto 4 y benzobiciclon; compuesto 9 y benzobiciclon; compuesto 58 y benzobiciclon; compuesto 64 y benzobiciclon; compuesto 65 (y sus sales) y benzobiciclon; compuesto 94 y benzobiciclon; compuesto 95 (y sus sales) y benzobiciclon; compuesto 96 y benzobiciclon; compuesto 135 (y sus sales) y benzobiciclon; compuesto 4 y

5

10

15

20

25

30

35

40

45

50

55

60

65

benzofenap; compuesto 9 y benzofenap; compuesto 58 y benzofenap; compuesto 64 y benzofenap; compuesto 65 (y sus sales) y benzofenap; compuesto 94 y benzofenap; compuesto 95 (y sus sales) y benzofenap; compuesto 96 y benzofenap; compuesto 135 (y sus sales) y benzofenap; compuesto 4 y bromobutida; compuesto 9 y bromobutida; compuesto 58 y bromobutida; compuesto 64 y bromobutida; compuesto 65 (y sus sales) y bromobutida; compuesto 94 y bromobutida; compuesto 95 (y sus sales) y bromobutida; compuesto 96 y bromobutida; compuesto 135 (y sus sales) y bromobutida; compuesto 4 y butacloro; compuesto 9 y butacloro; compuesto 58 y butacloro; compuesto 64 y butacloro; compuesto 65 (y sus sales) y butacloro; compuesto 94 y butacloro; compuesto 95 (y sus sales) y butacloro; compuesto 96 y butacloro; compuesto 135 (y sus sales) y butacloro; compuesto 4 y cafenstrol; compuesto 9 y cafenstrol; compuesto 58 y cafenstrol; compuesto 64 y cafenstrol; compuesto 65 (y sus sales) y cafenstrol; compuesto 94 y cafenstrol; compuesto 95 (y sus sales) y cafenstrol; compuesto 96 y cafenstrol; compuesto 135 (y sus sales) y cafenstrol; compuesto 4 y clomeprop; compuesto 9 y clomeprop; compuesto 58 y clomeprop; compuesto 64 y clomeprop; compuesto 65 (y sus sales) y clomeprop; compuesto 94 y clomeprop; compuesto 95 (y sus sales) y clomeprop; compuesto 96 y clomeprop; compuesto 135 (y sus sales) y clomeprop; compuesto 4 y dimepiperato; compuesto 9 y dimepiperato; compuesto 58 y dimepiperato; compuesto 64 y dimepiperato; compuesto 65 (y sus sales) y dimepiperato; compuesto 94 y dimepiperato; compuesto 95 (y sus sales) y dimepiperato; compuesto 96 y dimepiperato; compuesto 135 (y sus sales) y dimepiperato; compuesto 4 y dimetametrina; compuesto 9 y dimetametrina; compuesto 58 y dimetametrina; compuesto 64 y dimetametrina; compuesto 65 (y sus sales) y dimetametrina; compuesto 94 y dimetametrina; compuesto 95 (y sus sales) y dimetametrina; compuesto 96 y dimetametrina; compuesto 135 (y sus sales) y dimetametrina; compuesto 4 y diamuron; compuesto 9 y diamuron; compuesto 58 y diamuron; compuesto 64 y diamuron; compuesto 65 (y sus sales) y diamuron; compuesto 94 y diamuron; compuesto 95 (y sus sales) y diamuron; compuesto 96 y diamuron; compuesto 135 (y sus sales) y diamuron; compuesto 4 y esprocarb; compuesto 9 y esprocarb; compuesto 58 y esprocarb; compuesto 64 y esprocarb; compuesto 65 (y sus sales) y esprocarb; compuesto 94 y esprocarb; compuesto 95 (y sus sales) y esprocarb; compuesto 96 y esprocarb; compuesto 135 (y sus sales) y esprocarb; compuesto 4 y etobenzanida; compuesto 9 y etobenzanida; compuesto 58 y etobenzanida; compuesto 64 y etobenzanida; compuesto 65 (y sus sales) y etobenzanida; compuesto 94 y etobenzanida; compuesto 95 (y sus sales) y etobenzanida; compuesto 96 y etobenzanida; compuesto 135 (y sus sales) y etobenzanida; compuesto 4 y fentrazamida; compuesto 9 y fentrazamida; compuesto 58 y fentrazamida; compuesto 64 y fentrazamida; compuesto 65 (y sus sales) y fentrazamida; compuesto 94 y fentrazamida; compuesto 95 (y sus sales) y fentrazamida; compuesto 96 y fentrazamida; compuesto 135 (y sus sales) y fentrazamida; compuesto 4 e indanofan; compuesto 9 e indanofan; compuesto 58 e indanofan; compuesto 64 e indanofan; compuesto 65 (y sus sales) e indanofan; compuesto 94 e indanofan; compuesto 95 (y sus sales) e indanofan; compuesto 96 e indanofan; compuesto 135 (y sus sales) e indanofan; compuesto 4 y cumiluron; compuesto 9 y cumiluron; compuesto 58 y cumiluron; compuesto 64 y cumiluron; compuesto 65 (y sus sales) y cumiluron; compuesto 94 y cumiluron; compuesto 95 (y sus sales) y cumiluron; compuesto 96 y cumiluron; compuesto 135 (y sus sales) y cumiluron; compuesto 4 y mefenacet; compuesto 9 y mefenacet; compuesto 58 y mefenacet; compuesto 64 y mefenacet; compuesto 65 (y sus sales) y mefenacet; compuesto 94 y mefenacet; compuesto 95 (y sus sales) y mefenacet; compuesto 96 y mefenacet; compuesto 135 (y sus sales) y mefenacet; compuesto 4 y oxaziclomefona; compuesto 9 y oxaziclomefona; compuesto 58 y oxaziclomefona; compuesto 64 y oxaziclomefona; compuesto 65 (y sus sales) y oxaziclomefona; compuesto 94 y oxaziclomefona; compuesto 95 (y sus sales) y oxaziclomefona; compuesto 96 y oxaziclomefona; compuesto 135 (y sus sales) y oxaziclomefona; compuesto 4 y oxadiargilo; compuesto 9 y oxadiargilo; compuesto 58 y oxadiargilo; compuesto 64 y oxadiargilo; compuesto 65 (y sus sales) y oxadiargilo; compuesto 94 y oxadiargilo; compuesto 95 (y sus sales) y oxadiargilo; compuesto 96 y oxadiargilo; compuesto 135 (y sus sales) y oxadiargilo; compuesto 4 y pentoxazona; compuesto 9 y pentoxazona; compuesto 58 y pentoxazona; compuesto 64 y pentoxazona; compuesto 65 (y sus sales) y pentoxazona; compuesto 94 y pentoxazona; compuesto 95 (y sus sales) y pentoxazona; compuesto 96 y pentoxazona; compuesto 135 (y sus sales) y pentoxazona; compuesto 4 y piraclonilo; compuesto 9 y piraclonilo; compuesto 58 y piraclonilo; compuesto 64 y piraclonilo; compuesto 65 (y sus sales) y piraclonilo; compuesto 94 y piraclonilo; compuesto 95 (y sus sales) y piraclonilo; compuesto 96 y piraclonilo; compuesto 135 (y sus sales) y piraclonilo; compuesto 4 y pirazolato; compuesto 9 y pirazolato; compuesto 58 y pirazolato; compuesto 64 y pirazolato; compuesto 65 (y sus sales) y pirazolato; compuesto 94 y pirazolato; compuesto 95 (y sus sales) y pirazolato; compuesto 96 y pirazolato; compuesto 135 (y sus sales) y pirazolato; compuesto 4 y piributicarb; compuesto 9 y piributicarb; compuesto 58 y piributicarb; compuesto 64 y piributicarb; compuesto 65 (y sus sales) y piributicarb; compuesto 94 y piributicarb; compuesto 95 (y sus sales) y piributicarb; compuesto 96 y piributicarb; compuesto 135 (y sus sales) y piributicarb; compuesto 4 y piriftalid; compuesto 9 y piriftalid; compuesto 58 y piriftalid; compuesto 64 y piriftalid; compuesto 65 (y sus sales) y piriftalid; compuesto 94 y piriftalid; compuesto 95 (y sus sales) y piriftalid; compuesto 96 y piriftalid; compuesto 135 (y sus sales) y piriftalid; compuesto 4 y piriminobac-metilo; compuesto 9 y piriminobac-metilo; compuesto 58 y piriminobac-metilo; compuesto 64 y piriminobac-metilo; compuesto 65 (y sus sales) y piriminobac-metilo; compuesto 94 y piriminobac-metilo; compuesto 95 (y sus sales) y piriminobac-metilo; compuesto 96 y piriminobac-metilo; compuesto 135 (y sus sales) y piriminobac-metilo; compuesto 4 y tenilcloro; compuesto 9 y tenilcloro; compuesto 58 y tenilcloro; compuesto 64 y tenilcloro; compuesto 65 (y sus sales) y tenilcloro; compuesto 94 y tenilcloro; compuesto 95 (y sus sales) y tenilcloro; compuesto 96 y tenilcloro; compuesto 135 (y sus sales) y tenilcloro; compuesto 4 y bispiribac-sodio; compuesto 9 y bispiribac-sodio; compuesto 58 y bispiribac-sodio; compuesto 64 y bispiribac-sodio; compuesto 65 (y sus sales) y bispiribac-sodio; compuesto 94 y bispiribac-sodio; compuesto 95 (y sus sales) y bispiribac-sodio; compuesto 96 y bispiribac-sodio; compuesto 135 (y sus sales) y bispiribac-sodio; compuesto 4 y clefoxidim; compuesto 9 y clefoxidim; compuesto 58 y clefoxidim; compuesto 64 y clefoxidim; compuesto 65 (y sus sales) y clefoxidim;

5

10

15

20

25

30

35

40

45

50

55

60

65

compuesto 94 y clefoxidim; compuesto 95 (y sus sales) y clefoxidim; compuesto 96 y clefoxidim; compuesto 135 (y sus sales) y clefoxidim; compuesto 4 y cinosulfuron; compuesto 9 y cinosulfuron; compuesto 58 y cinosulfuron; compuesto 64 y cinosulfuron; compuesto 65 (y sus sales) y cinosulfuron; compuesto 94 y cinosulfuron; compuesto 95 (y sus sales) y cinosulfuron; compuesto 96 y cinosulfuron; compuesto 135 (y sus sales) y cinosulfuron; compuesto 4 y ciclosulfamuron; compuesto 9 y ciclosulfamuron; compuesto 58 y ciclosulfamuron; compuesto 64 y ciclosulfamuron; compuesto 65 (y sus sales) y ciclosulfamuron; compuesto 94 y ciclosulfamuron; compuesto 95 (y sus sales) y ciclosulfamuron; compuesto 96 y ciclosulfamuron; compuesto 135 (y sus sales) y ciclosulfamuron; compuesto 4 y etoxisulfuron; compuesto 9 y etoxisulfuron; compuesto 58 y etoxisulfuron; compuesto 64 y etoxisulfuron; compuesto 65 (y sus sales) y etoxisulfuron; compuesto 94 y etoxisulfuron; compuesto 95 (y sus sales) y etoxisulfuron; compuesto 96 y etoxisulfuron; compuesto 135 (y sus sales) y etoxisulfuron; compuesto 4 y epoprodan; compuesto 9 y epoprodan; compuesto 58 y epoprodan; compuesto 64 y epoprodan; compuesto 65 (y sus sales) y epoprodan; compuesto 94 y epoprodan; compuesto 95 (y sus sales) y epoprodan; compuesto 96 y epoprodan; compuesto 135 (y sus sales) y epoprodan; compuesto 4 y flucetosulfuron; compuesto 9 y flucetosulfuron; compuesto 58 y flucetosulfuron; compuesto 64 y flucetosulfuron; compuesto 65 (y sus sales) y flucetosulfuron; compuesto 94 y flucetosulfuron; compuesto 95 (y sus sales) y flucetosulfuron; compuesto 96 y flucetosulfuron; compuesto 135 (y sus sales) y flucetosulfuron; compuesto 4 e imazosulfuron; compuesto 9 e imazosulfuron; compuesto 58 e imazosulfuron; compuesto 64 e imazosulfuron; compuesto 65 (y sus sales) e imazosulfuron; compuesto 94 e imazosulfuron; compuesto 95 (y sus sales) e imazosulfuron; compuesto 96 e imazosulfuron; compuesto 135 (y sus sales) e imazosulfuron; compuesto 4 y metamifop; compuesto 9 y metamifop; compuesto 58 y metamifop; compuesto 64 y metamifop; compuesto 65 (y sus sales) y metamifop; compuesto 94 y metamifop; compuesto 95 (y sus sales) y metamifop; compuesto 96 y metamifop; compuesto 135 (y sus sales) y metamifop; compuesto 4 y pirazosulfuron-etilo; compuesto 9 y pirazosulfuron-etilo; compuesto 58 y pirazosulfuron-etilo; compuesto 64 y pirazosulfuron-etilo; compuesto 65 (y sus sales) y pirazosulfuron-etilo; compuesto 94 y pirazosulfuron-etilo; compuesto 95 (y sus sales) y pirazosulfuron-etilo; compuesto 96 y pirazosulfuron-etilo; compuesto 96 y pirazosulfuron-etilo; compuesto 135 (y sus sales) y pirazosulfuron-etilo; compuesto 4 y quinclorac; compuesto 9 y quinclorac; compuesto 58 y quinclorac; compuesto 64 y quinclorac; compuesto 65 (y sus sales) y quinclorac; compuesto 94 y quinclorac; compuesto 95 (y sus sales) y quinclorac; compuesto 96 y quinclorac; compuesto 135 (y sus sales) y quinclorac; compuesto 4 y flucarbazona-sodio; compuesto 9 y flucarbazona-sodio; compuesto 58 y flucarbazona-sodio; compuesto 64 y flucarbazona-sodio; compuesto 65 (y sus sales) y flucarbazona-sodio; compuesto 94 y flucarbazonasodio; compuesto 95 (y sus sales) y flucarbazona-sodio; compuesto 96 y flucarbazona-sodio; compuesto 135 (y sus sales) y flucarbazona-sodio; compuesto 4 y propoxicarbazona-sodio; compuesto 9 y propoxicarbazona-sodio; compuesto 58 y propoxicarbazona-sodio; compuesto 64 y propoxicarbazona-sodio; compuesto 65 (y sus sales) y propoxicarbazona-sodio; compuesto 94 y propoxicarbazona-sodio; compuesto 95 (y sus sales) y propoxicarbazonasodio; compuesto 96 y propoxicarbazona-sodio; compuesto 135 (y sus sales) y propoxicarbazona-sodio; compuesto 4 y amicarbazona; compuesto 9 y amicarbazona; compuesto 58 y amicarbazona; compuesto 64 y amicarbazona; compuesto 65 (y sus sales) y amicarbazona; compuesto 94 y amicarbazona; compuesto 95 (y sus sales) y amicarbazona; compuesto 96 y amicarbazona; compuesto 135 (y sus sales) y amicarbazona; compuesto 4 y florasulam; compuesto 9 y florasulam; compuesto 58 y florasulam; compuesto 64 y florasulam; compuesto 65 (y sus sales) y florasulam; compuesto 94 y florasulam; compuesto 95 (y sus sales) y florasulam; compuesto 96 y florasulam; compuesto 135 (y sus sales) y florasulam; compuesto 4 y triasulfuron; compuesto 9 y triasulfuron; compuesto 58 y triasulfuron; compuesto 64 y triasulfuron; compuesto 65 (y sus sales) y triasulfuron; compuesto 94 y triasulfuron; compuesto 95 (y sus sales) y triasulfuron; compuesto 96 y triasulfuron; compuesto 135 (y sus sales) y triasulfuron; compuesto 4 y triaziflam; compuesto 9 y triaziflam; compuesto 58 y triaziflam; compuesto 64 y triaziflam; compuesto 65 (y sus sales) y triaziflam; compuesto 94 y triaziflam; compuesto 95 (y sus sales) y triaziflam; compuesto 96 y triaziflam; compuesto 135 (y sus sales) y triaziflam; compuesto 4 y pinoxaden; compuesto 9 y pinoxaden; compuesto 58 y pinoxaden; compuesto 64 y pinoxaden; compuesto 65 (y sus sales) y pinoxaden; compuesto 94 y pinoxaden; compuesto 95 (y sus sales) y pinoxaden; compuesto 96 y pinoxaden; compuesto 135 (y sus sales) y pinoxaden; compuesto 4 y tritosulfuron; compuesto 9 y tritosulfuron; compuesto 58 y tritosulfuron; compuesto 64 y tritosulfuron; compuesto 65 (y sus sales) y tritosulfuron; compuesto 94 y tritosulfuron; compuesto 95 (y sus sales) y tritosulfuron; compuesto 96 y tritosulfuron; compuesto 135 (y sus sales) y tritosulfuron; compuesto 4 y amidosulfuron; compuesto 9 y amidosulfuron; compuesto 58 y amidosulfuron; compuesto 64 y amidosulfuron; compuesto 65 (y sus sales) y amidosulfuron; compuesto 94 y amidosulfuron; compuesto 95 (y sus sales) y amidosulfuron; compuesto 96 y amidosulfuron; compuesto 135 (y sus sales) y amidosulfuron; compuesto 4 y metosulam; compuesto 9 y metosulam; compuesto 58 y metosulam; compuesto 64 y metosulam; compuesto 65 (y sus sales) y metosulam; compuesto 94 y metosulam; compuesto 95 (y sus sales) y metosulam; compuesto 96 y metosulam; compuesto 135 (y sus sales) y metosulam; compuesto 4 y sulfosulfuron; compuesto 9 y sulfosulfuron; compuesto 58 y sulfosulfuron; compuesto 64 y sulfosulfuron; compuesto 65 (y sus sales) y sulfosulfuron; compuesto 94 y sulfosulfuron; compuesto 95 (y sus sales) y sulfosulfuron; compuesto 96 y sulfosulfuron; compuesto 135 (y sus sales) y sulfosulfuron; compuesto 4 y piraflufen-etilo; compuesto 9 y piraflufen-etilo; compuesto 58 y piraflufen-etilo; compuesto 64 y piraflufen-etilo; compuesto 65 (y sus sales) y piraflufen-etilo; compuesto 94 y piraflufen-etilo; compuesto 95 (y sus sales) y piraflufen-etilo; compuesto 96 y piraflufen-etilo; compuesto 135 (y sus sales) y piraflufen-etilo; compuesto 4 y HOK-201; compuesto 9 y HOK-201; compuesto 58 y HOK-201; compuesto 64 y HOK-201; compuesto 65 (y sus sales) y HOK-201; compuesto 94 y HOK-201; compuesto 95 (y sus sales) y HOK-201; compuesto 96 y HOK-201; compuesto 135 (y sus sales) y HOK-201; compuesto 4 y KUH-021; compuesto 9 y KUH-021; compuesto 58 y KUH-021; compuesto 64 y KUH-021; compuesto 65 (y sus sales) y KUH-021; compuesto 94 y KUH-021; compuesto 95 (y sus sales) y KUH-021; compuesto 96 y KUH-021; compuesto 135 (y sus sales) y KUH-

021; compuesto 4 y CUH-35; compuesto 9 y CUH-35; compuesto 58 y CUH-35; compuesto 64 y CUH-35; compuesto 65 (y sus sales) y CUH-35; compuesto 94 y CUH-35; compuesto 95 (y sus sales) y CUH-35; compuesto 96 y CUH-35; compuesto 135 (y sus sales) y CUH-35. Las proporciones de los compuestos de la invención con otros ingredientes activos herbicidas en composiciones herbicidas están generalmente en la relación de 100:1 a 1:100, más generalmente 10:1 a 1:10 y lo más generalmente 5:1 a 1:5 en peso. Las relaciones óptimas se pueden determinar fácilmente por los expertos en la técnica basadas en el espectro del control de malas hierbas deseado.

5

10

15

20

25

30

35

40

45

Particularmente dignas de mención por su eficacia mayor que la aditiva (es decir, sinérgica) sobre ciertas malas hierbas son las mezclas de compuestos de la invención con inhibidores del transporte de auxinas (fitotropinas), siendo un ejemplo la combinación del compuesto 1 (6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxilato de etilo) con diflufenzopir. Los inhibidores del transporte de auxinas son sustancias químicas que inhiben el transporte de auxinas en las plantas, tal como por enlace con una proteína transportadora de auxinas. Otros ejemplos de inhibidores de transporte de auxinas incluyen naptalam (conocido también como ácido N-(1-naftil)ftalámico y ácido 2-[(1-naftalenilamino)carbonil]benzoico), ácido 9-hidroxifluoren-9-carboxílico y ácido 2,3,5-triyodobenzoico. Por tanto, un aspecto de la presente invención se refiere a una mezcla herbicida que comprende cantidades sinérgicamente eficaces de un compuesto de la reivindicación 1 y un inhibidor de transporte de auxinas. Se pueden determinar fácilmente cantidades sinérgicamente eficaces de inhibidores de transporte de auxinas con los compuestos de la invención.

Los compuestos de esta invención se pueden usar también en combinación con antídotos de herbicidas tales como benoxacor, BCS (1-bromo-4-[(clorometil)sulfonil]benceno), cloquintocet-mexilo, ciometrinilo, diclormid, 2-(diclorometil)-2-metil-1,3-dioxolano (MG 191), fenclorazol-etilo, fenclorim, flurazol, fluxofenim, furilazol, isoxadifenetilo, mefenpir-etilo, metoxifenona ((4-metoxi-3-metilfenil)(3-metilfenil)metanona), anhídrido naftálico (anhídrido 1,8-naftálico) y oxabetrinilo para aumentar la protección a ciertos cultivos. Se pueden aplicar cantidades de los protectores de herbicidas eficaces como antídotos al mismo tiempo que los compuestos de esta invención, o aplicarse como tratamientos de semillas. Por tanto, un aspecto de la presente invención se refiere a una mezcla herbicida que comprende un compuesto de esta invención y una cantidad de un protector de herbicidas efectiva como antídoto. El tratamiento de semillas es particularmente útil para el control selectivo de malas hierbas porque restringe físicamente la acción antídota contra las plantas de cultivo. Por tanto, una realización particularmente útil de la presente invención es un método para controlar selectivamente el crecimiento de vegetación no deseada en un cultivo, que comprende poner en contacto el lugar del cultivo con una cantidad eficazmente herbicida de un compuesto de esta invención donde la semilla, a partir de la cual crece el cultivo, se trata con una cantidad de protector eficaz como antídoto. Las cantidades de protectores eficaces como antídotos se pueden determinar fácilmente por un experto en la técnica mediante experimentación simple.

Los compuestos de esta invención se pueden usar también en combinación con reguladores del crecimiento vegetal tales como aviglicina, *N*-(fenilmetil)-1*H*-purin-6-amina, epocholeone, ácido giberélico, giberelina A₄ y A₇, proteína harpin, cloruro de mepiquat, prohexadiona cálcica, prohidrojasmon, nitrofenolato sódico y trinexapac-metilo, y organismos que modifican el crecimiento vegetal tales como *Bacillus cereus* cepa BP01.

Las siguientes Pruebas demuestran la eficacia de los compuestos de esta invención en el control frente a malas hierbas específicas. El control de malas hierbas proporcionado por los compuestos no está limitado, sin embargo, a estas especies. Véanse las Tablas de Índices A-D para las descripciones de los compuestos. En las Tablas de Índices que se muestran a continuación se usan las siguientes abreviaturas: t significa terciario, s significa secundario, t significa normal, t significa iso, t significa ciclo, Me significa metilo, Et significa etilo, Pr significa propilo, t-Pr significa isopropilo, Bu significa butilo, Ph significa fenilo, MeO significa metoxi, EtO significa etoxi, ay CN significa ciano. "O" significa carga formal negativa, t "O" significa carga formal positiva. La abreviatura "desc." indica que el compuesto parece descomponerse por fusión. La abreviatura "Ej." significa "Ejemplo" y va seguida de un número que indica en qué ejemplo se prepara el compuesto.

TABLA DE ÍNDICE A

Compuesto	R^1	R^2	R^3	R^4	p.f. (°C)
1 (Ej. 1)	<i>c</i> -Pr	CO ₂ CH ₂ CH ₃	Br	NH_2	107-108
2 (Ej. 1)	c-Pr	CO ₂ CH ₃	Br	NH_2	148-150
3	<i>i</i> -Pr	CO ₂ CH ₃	Br	NH_2	107-109
4	c-Pr	CO ₂ CH ₂ CH ₃	CI	NH_2	87-89

Compuesto	R ¹	R^2	R^3	R ⁴	p.f. (°C)
5	<i>c</i> -Pr	CO ₂ CH ₃	Br	NHCH ₃	*
7	<i>c</i> -Pr	CO ₂ CH ₃	1	NH_2	145-146
8	<i>c</i> -Pr	CO₂H	Br	NH_2	160-162
9 (Ej. 3)	c-Pr	CO ₂ CH ₃	CI	NH_2	143-145
10	c-Pr	CO ₂ CH ₃	Br	NHCH ₂ CO ₂ CH ₃	95-96
11	c-Pr	CH₂OCH₃	Br	NH_2	*
12	c-Pr	CH ₂ CO ₂ CH ₂ CH ₃	Br	NH_2	*
13	c-Pr	CH ₂ CO ₂ CH ₃	Br	NH_2	*
14	c-Pr	CO ₂ (<i>i</i> -Pr)	Br	NH_2	141-142
15	c-Pr	CO ₂ CH ₂ CH ₂ CH ₃	Br	NH_2	86-90
16	c-Pr	CO ₂ CH ₂ CH ₂ CH ₂ CH ₃	Br	NH_2	87-90
17	c-Pr	CO ₂ (<i>i</i> -Bu)	Br	NH_2	121-123
18	Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	110-111
19	<i>c</i> -Pr	CO ₂ CH ₃	Br	$N=CHN(CH_3)_2$	*
20	<i>c</i> -Pr	C(O)NH ₂	Br	NH_2	*
21	<i>c</i> -Pr	CH₂OH	Br	NH_2	182-185
22	c-Pr	CO ₂ CH ₂ Ph	Br	NH_2	129-131
23	Ph	CO ₂ CH ₃	Br	NH_2	*
24	<i>c</i> -Pr	СНО	F	NH_2	*
25	c-Pr	CO ₂ CH ₃	F	NH_2	*
26	<i>c</i> -Pr	СНО	Br	NH_2	*
27	<i>c</i> -Pr	CH=NOH	Br	NH_2	*
28	2-Me- <i>c</i> -Pr	CO ₂ CH ₃	Br	NH_2	132-133
30	<i>c</i> -Pr	CO ₂ CH ₂ CH ₃	F	NH_2	*
31	<i>c</i> -Pr	CH(CI)CO ₂ CH ₂ CH ₃	Br	NH_2	*
32	c-Pr	CH(CH ₃)CO ₂ CH ₂ CH ₃	Br	NH_2	*
33	c-Pr	CH ₂ CO ₂ CH ₂ CH ₃	Br	$N=CHN(CH_3)_2$	*
34	c-Pr	CCI ₂ CO ₂ CH ₂ CH ₃	Br	NH_2	*
35	<i>c</i> -Pr	CO₂CH₃	Br	NHOH	*
36	<i>t</i> -Bu	CO ₂ CH ₂ CH ₃	Br	NH_2	69-70
37	4-CI-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	120-121
38	c-Pr	CO ₂ CH ₂ CH ₃	Br	$NH(CH_2)_2N(CH_3)_2$	*
39	<i>c</i> -Pr	CO ₂ CH ₂ CH ₃	Br	NHCH ₂ CH ₂ OCH ₃	*
40	<i>c</i> -Pr	CO ₂ CH ₂ CH ₃	Br	$N=CHN(CH_3)_2$	*
41	4-Cl-Ph	CH ₂ CO ₂ CH ₂ CH ₃	Br	NH_2	*
42	c-Pr	CO ₂ CH ₂ CH ₃	Br	$NHNH_2$	*

ES 2 375 479 T3

Compuesto	R ¹	R ²	R^3	R^4	p.f. (°C)
43	4-F-Ph	CO₂CH₃	CI	NH ₂	*
44	4-CF ₃ -Ph	CO ₂ CH ₃	CI	NH_2	*
45	c-Pr	CH(OCH ₂ CH ₃) ₂	Br	NH_2	*
46	c-Pr	CH(OCH ₃) ₂	F	NH_2	*
47	<i>c</i> -Pr	CH(CO ₂ CH ₂ CH ₃)OC(O)CH ₃	Br	NH_2	*
48	<i>c</i> -Pr	CH=NOCH ₃	Br	NH_2	*
49	<i>c</i> -Pr	CH=NNHCH ₃	Br	NH_2	*
50	<i>c</i> -Pr	CH=NN(CH ₃) ₂	Br	NH_2	*
51	<i>c</i> -Pr	CH=NNHC(O)CH ₃	Br	NH_2	*
52	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHOCH₃	*
53	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHC(O)CH₃	*
54	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHOCH₂Ph	*
55	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHO(<i>t</i> -Bu)	*
56	c-Pr	CO ₂ CH ₂ CH ₃	Br	$N[-CH_2(CH_2)_2CH_2-]$	*
57	c-Pr	C(OH)CO ₂ CH ₂ CH ₃	Br	NH_2	*
58	4-CI-Ph	CO ₂ CH ₃	CI	NH_2	215-218
59	c-Pr	CO ₂ CH ₃	OMe	NH_2	*
60	4-CF ₃ -Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
61	4-CH ₃ -Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
62	4-CH ₃ -Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
63	4-F-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
64 (Ej. 5)	4-CI-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	132-133
65 (Ej. 4)	4-CI-Ph	CO₂H	CI	NH_2	158-160 desc.
66	3,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
67	2,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
68	1,3- benzodioxol- 5-il	CO₂CH₂CH₃	Br	NH ₂	*
69	2-F-4-Cl-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
70	3,4-di-Me- Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
71	3,4-di-Me- Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
72	2,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
73	3,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
74	1,3- benzodioxol- 5-il	CO₂CH₂CH₃	CI	NH ₂	*

-	Compuesto	R ¹	R ²	R ³	R ⁴	p.f. (°C)
_	75	c-Pr	CO ₂ CH ₂ CH ₂ CH ₃	CI	NH ₂	87-90
	76	<i>c</i> -Pr	CO ₂ CH ₂ CH ₂ CH ₂ CH ₃	CI	NH_2	97-99
	77	c-Pr	C(O)O [⊝] Na [⊕]	CI	NH_2	297 desc.
	78	c-Pr	CO ₂ CH ₂ Ph	CI	NH_2	126-128
	79	c-Pr	CO ₂ CH ₃	CI	NHCH ₃	*
	80	c-Pr	CO ₂ CH ₂ (4-Cl-Ph)	CI	NH_2	123-125
	81	c-Pr	C(O)NHCH ₃	CI	NH_2	*
	82	4-Me-Ph	CO ₂ CH ₃	Br	NH_2	*
	83	4-Cl-Ph	CO ₂ CH ₃	Br	NH_2	*
	84	4-Me-Ph	CO ₂ CH ₃	CI	NH_2	*
	85	c-Pr	C(O)NH ₂	CI	NH_2	232-236
	86	3-F-4-Me-Ph	CO ₂ CH ₃	CI	NH_2	185-186
	87	3-F-4-Me-Ph	CO₂H	CI	NH_2	150 desc.
	88	4-Cl-Ph	CO₂H	Br	NH_2	*
	89	4-Me-Ph	CO₂H	Br	NH_2	*
	90	4-F-Ph	CO₂H	CI	NH_2	*
	91	4-Me-Ph	CO₂H	CI	NH_2	*
	92	4-F-Ph	CO ₂ CH ₃	Br	NH_2	*
	93	4-F-Ph	CO₂H	Br	NH_2	*
	94	4-Br-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	136-137
	95	4-Br-Ph	CO₂H	CI	NH_2	157-158 desc.
	96	4-Br-Ph	CO ₂ CH ₃	CI	NH_2	223-224
	97	3-Me-Ph	CO ₂ CH ₃	CI	NH_2	*
	98	4-MeO-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
	99	4-Et-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
	100	3-CI-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
	101	3-Br-5-MeO- Ph	CO ₂ CH ₂ CH ₃	CI	NH ₂	110-112
	102	4-Cl-Ph	CO ₂ (<i>i</i> -Pr)	CI	NH_2	153-156
	103	4-CF ₃ O-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	*
	104	4-CF ₃ -Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	138-140
	105	4-Cl-Ph	CO ₂ CH ₂ CH ₂ CH ₃	CI	NH_2	80-81
	106	2-F-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	120-124
	107	3-CF₃-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	121-122
	108	<i>i</i> -Pr	CO ₂ CH ₂ CH ₃	CI	NH_2	102-103
	109	<i>i</i> -Pr	C(O)O ^Θ Na [⊕]	CI	NH_2	190-192 desc.

_	Compuesto	R ¹	R^2	R ³	R ⁴	p.f. (°C)
_	110	<i>i</i> -Pr	CO ₂ CH ₃	CI	NH ₂	100-104 desc.
	111	4-CI-Ph	CO ₂ CH ₃	CI	NHCH ₃	124-126
	112	c-Pr	OCH ₂ CO ₂ CH ₃	CI	NH_2	148-150
	113	c-Pr	C(O)O [⊝] Na [⊕]	Br	NH_2	>300
	114	4-CI-Ph	OCH ₂ CO ₂ CH ₂ CH ₃	CI	NH_2	*
	115	c-Pr	OCH ₂ CO ₂ CH ₂ CH ₃	CI	NH_2	164-168
	116	c-Pr	OCH₂C(O)O ^O Na [⊕]	CI	NH_2	264-267 desc.
	117	4-CI-Ph	C(O)O ^O Na [⊕]	CI	NH_2	>300
	118	4-Cl-Ph	CO ₂ CH ₂ Ph	CI	NH_2	150-153
	119	4-CI-Ph	OCH ₂ CO ₂ CH ₃	CI	NH_2	129-132
	120	4-CI-Ph	CH ₂ CO ₂ CH ₂ CH ₃	CI	NH_2	*
	121	4-MeS-Ph	CO ₂ CH ₃	CI	NH_2	169-173
	122	4-MeS(O) ₂ - Ph	CO₂CH₃	CI	NH_2	173-175
	123	4-MeS(O)- Ph	CO₂CH₃	CI	NH_2	173-175
	124	c-Pr	CO ₂ CH ₃	Br	NHN=CHCH ₃	*
	125	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHOCH ₂ CO ₂ H	*
	126	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHNHC(O)CH ₃	*
	127	2-naftalenilo	CO ₂ CH ₂ CH ₃	CI	NH_2	*
	128	4-I-Ph	CO ₂ CH ₃	Br	NH_2	192-195
	129	4-Br-Ph	CO ₂ CH ₃	Br	NH_2	204-206
	130	4-Br-Ph	C(O)NH ₂	Br	NH_2	234-236
	131	4-CI-Ph	$C(O)NHSO_2CH_3$	CI	NH_2	243-245
	132	c-Pr	$C(O)NHSO_2CH_3$	CI	NH_2	227-233
	133	4-I-Ph	CO ₂ CH ₂ CH ₃	CI	NH_2	140-142
	134	4-I-Ph	CH(OCH ₃) ₂	CI	NH_2	176-179
	135 (Ej. 2)	c-Pr	CO₂H	CI	NH_2	144-146
	136	4-Br-Ph	CO₂H	Br	NH_2	167-170
	137	4-CI-Ph	CO ₂ CH ₂ CH ₃	1	NH_2	116-119
	138	4-I-Ph	CH(OCH ₂ CH ₃) ₂	CI	NH_2	*
	139	c-Pr	$CO_2CH_2CH_2O(n-Bu)$	CI	NH_2	64-66
	141	c-Pr	CO ₂ CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	CI	NH_2	79-80
	143	c-Pr	CO ₂ CH ₂ CH ₂ CH ₂ OH	CI	NH_2	91-94
	144	c-Pr	$C(O)O^{\Theta}$ (<i>i</i> -Pr)NH ₃ $^{\oplus}$	CI	NH_2	170 desc.
	145	c-Pr	CO ₂ (4-CI-Ph)	CI	NH_2	145-147
	146	c-Pr	$CO_2N=C(CH_3)_2$	CI	NH_2	101-103

Compuesto	R ¹	R^2	R^3	R^4	p.f. (°C)
148	c-Pr	CO ₂ CH ₂ CO ₂ CH ₃	CI	NH ₂	107-108
151	c-Pr	$C(O)O^{\Theta}$ (<i>c</i> -hexil)NH ₃ $^{\oplus}$	CI	NH_2	170 desc.
152	c-Pr	$C(O)O^{\Theta}$ [(CH_2) $_2O(CH_2$) $_2$] NH_2^{\oplus}	CI	NH_2	189-190 desc.
153	c-Pr	$C(O)O^{\Theta}$ (HOCH ₂ CH ₂) ₂ NH ₂ ^{\oplus}	CI	NH_2	118-124
154	c-Pr	$C(O)O^{\Theta}$ (CH_3CH_2) NH^{\oplus}	CI	NH_2	138-141 desc.
155	c-Pr	C(O)O ^Θ piridina-H [⊕]	CI	NH_2	144-147 desc.
156	c-Pr	C(O)O ^Θ Li [⊕]	CI	NH_2	280 desc.
157	c-Pr	C(O)O ^Θ K [⊕]	CI	NH_2	273 desc.
158	c-Pr	C(O)O [©] Cs [⊕]	CI	NH_2	300 desc.
159	c-Pr	$C(O)O^{\Theta}$ (CH_3) ₄ $N\oplus$	CI	NH_2	263 desc.
160	c-Pr	$C(O)O^{\Theta}$ $(CH^3)_3S\oplus$	CI	NH_2	157 desc.
161	c-Pr	$C(O)O^{\Theta} HOCH_2CH_2NH_3^{\oplus}$	CI	NH_2	168 desc.
162	c-Pr	$C(O)O^\Theta$ ($HOCH_2CH_2$) $_3NH^\oplus$	CI	NH_2	125-128
163	c-Pr	$C(O)O^{\Theta}$ (CH ₃) ₂ NH ₂ $^{\oplus}$	CI	NH_2	170 desc.
164	c-Pr	CO ₂ (CH ₂) ₇ CH ₃	CI	NH_2	73-74
165	c-Pr	CO ₂ (<i>i</i> -Pr)	CI	NH_2	143-144
166	c-Pr	CO ₂ CH(CH ₃)(CH ₂) ₅ CH ₃	CI	NH_2	82-85
167	c-Pr	$CO_2CH_2CH(C_2H_5)(CH_2)_3CH_3$	CI	NH_2	60-62

^{*}Véase la Tabla de Índice D para los datos de ¹H RMN

TABLA DE ÍNDICE B

$$\mathbb{R}^2$$
 \mathbb{R}^3

Compuesto	<u>R</u> 1	$\underline{R^2}$	<u>R</u> ³	<u>R</u> ⁴	p.f. (°C)
140	c-Pr	CO ₂ CH ₂ (2-oxiranilo)	CI	NH ₂	*
147	<i>c</i> -Pr	CO ₂ CH ₂ (2,2-di-Me-1,3-dioxlan-4-ilo)	CI	NH_2	104-105
149	<i>c</i> -Pr	CO ₂ CH ₂ (2-oxo-1,3-dioxlan-4-ilo)	CI	NH_2	142-150
150	c-Pr	CO ₂ CH ₂ (tetrahidro-2-furanilo)	CI	NH_2	114-116

^{*}Véase la Tabla de Índice D para los datos de ¹H RMN

_	Compuesto	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁴	p.f. (°C)
	142	<i>c</i> -Pr	CI	NH_2	107-108

*Véase la Tabla de Índice D para los datos de ¹H RMN

TABLA DE ÍNDICE D

Compuesto	Datos de ¹ H RMN (disolución de CDCl ₃ a menos que se indique lo contrario) ^a
5	δ 5,60 (br s, 2H), 3,96 (s, 3H), 3,02 (d, 3H), 2,10 (m, 1H), 1,10 (m, 2H), 0,98 (m, 2H)
11	$\delta\ 5,\!20\ (br\ s,\ 2H),\ 4,\!97\ (s,\ 2H),\ 3,\!49\ (s,\ 3H),\ 2,\!07\ (m,\ 1H),\ 1,\!02\ (m,\ 2H),\ 0,\!95\ (m,\ 2H).$
12	$\delta\ 5,\!20\ (br\ s,\ 2H),\ 4,\!18\ (q,\ 2H),\ 3,\!80\ (s,\ 2H),\ 1,\!90\ (m,\ 1H),\ 1,\!25\ (t,\ 3H),\ 1,\!01\ -0,\!93\ (m,\ 4H).$
13	δ 5,26 (br s, 2H), 3,82 (s, 2H), 3,73 (s, 3H), 1,90 (m, 1H), 1,02 -0.92 (m, 4H).
19	$ 5\ 8,60\ (s\ 1H),\ 3,97\ (s,\ 3H),\ 3,20\ (s,\ 3H),\ 3,19\ (s,\ 3H),\ 2,10\ (m,\ 1H),\ 1,08\ (m,\ 2H),\ 0,99\ (m,\ 2H). $
20	δ 7,65 (br s, 1H), 5,94 (br s, 2H), 5,8 (br s, 1H). 2,01 (m, 1H), 1,03 (m, 4H).
23	δ 8,35 (m, 2H), 7,46 (m, 3H), 5,61 (br s, 2H), 4,02 (s, 3H).
24	δ 10,01 (s, 1H), 5,31 (br s, 2H), 2,10 (m, 1H), 1,10-0,95 (m, 4H).
25	δ 5,15 (br s, 2H), 3,98 (s, 3H), 2,03 (m, 1H), 1,04-0,92 (m, 4H).
26	δ 9,98 (s, 1H), 5,60 (br s, 2H), 2,10 (m, 1H), 1,10-1,02 (m, 4H).
27	δ 8,19 (s, 1H), 1,89 (m, 1H), 0,92-0,87 (m, 4H).
30	δ 5,12 (br s, 2H), 4,45 (q, 3H), 2,13 (m, 1H), 1.41 (t, 3H), 1,04-0,92 (m, 4H).
31	$\delta\ 5,66\ (s,\ 1H),\ 5.34\ (br\ s,\ 2H),\ 4,30\ (q,\ 2H),\ 1,98\ (m,\ 1H),\ 1,30\ (t,\ 3H),\ 1,13\text{-}0,92\ (m,\ 4H).$
32	$\delta\ 5,\!26\ (br\ s,\ 2H),\ 4,\!21-4,\!07\ (m,\ 3H),\ 1,\!94\ (m,\ 1H),\ 1,\!45\ (d,\ 2H),\ 1,\!22\ (t,\ 3H),\ 1,\!08-0,\!90\ (m,\ 4H).$
33	$\begin{array}{l} \delta \ 8,57 \ (s,\ 1H),\ 4,18 \ (q,\ 2H),\ 3,88 \ (s,\ 2H),\ 3,18 \ (s,\ 3H),\ 3,16 \ (s,\ 3H),\ 2,00 \ (m,\ 1H),\ 1,24 \ (t,\ 3H),\ 1,05-0,96 \ (m,\ 4H). \end{array}$
34	$\delta\ 5,48\ (br\ s,\ 2H),\ 4,38\ (q,\ 2H),\ 2,02\ (m,\ 1H),\ 1.36\ (t,\ 3H),\ 1,11\text{-}0,97\ (m,\ 4H).$
35	δ 3,97 (s, 3H), 2,07 (m, 1H), 1,20-1,13 (m, 2H). 1,12-1,04 (m, 2H).
38	$\begin{array}{l} \delta \ 6,\!20 \ (br \ s, \ 1H), \ 4,\!43 \ (q, \ 2H), \ 3,\!48 \ (m, \ 2H), \ 2,\!50 \ (m, \ 2H), \ 2,\!27 \ (s, \ 6H), \ 2,\!07 \ (m, \ 1H), \ 1,\!41 \ (t, \ 3H), \ 1,\!07 \ (m, \ 2H), \ 0,\!96 \ (m, \ 2H). \end{array}$
39	δ 5,90 (br s, 1H), 4,43 (q, 2H), 3,65 (m, 2H), 3,54 (m, 2H), 3,39 (s, 3H), 2,08 (m, 1H), 1,41 (t, 3H), 1,04 (m, 2H), 0,98 (m, 2H).
40	$ \delta \ 8,59 \ (s,\ 1H),\ 4,44 \ (q,\ 2H),\ 3,20 \ (s,\ 3H),\ 3,18 \ (s,\ 3H),\ 2,10 \ (m,\ 1H),\ 1,41 \ (t,\ 3H),\ 1,11-1,05 \ (m,\ 2H),\ 1,01-0,94 \ (m,\ 2H). $
41	$\delta~8,27~(m,~2H),~7.39~(m,~2H),~5.39~(br~s,~2H),~4,23~(q,~2H),~3,93~(m,~2H),~1,29~(t,~3H).$
42	$\delta~6,70~(br~s,~1H),~4,43~(q,~2H),~4,0~(br~s,~2H),~2,10~(m,~1H),~1,41~(t,~3H),~1,11~(m,~2H),~1,01~(m,~2H).$
43	δ 8,35 (m, 2H), 7,10 (dd, 2H), 5,54 (br s, 2H), 4,02 (s, 3H).
44	δ 8,47 (d, 2H), 7,69 (d, 2H), 5,61 (br s, 2H), 4,04 (s, 3H).

ES 2 375 479 T3

- 45 δ 5,56 (s, 1H), 5,29 (br s, 2H), 3,86-3,74 (m, 2H), 3,71-3,58 (m, 2H), 2,14-2,03 (m, 1H), 1,30-1,23 (m, 6H), 1,07-0,89 (m, 4H).
- 46 δ 5,39 (s, 1H), 4,96 (br s, 2H), 3,49 (s, 6H), 2,15-2.04 (m, 1H), 1,02-0.87 (m, 4H).
- δ 6,32 (s, 1H), 5.34 (br s, 2H), 4,28 (q, 2H), 2,21 (s, 3H), 2,03-1.93 (m, 1H), 1,28 (t, 3H), 1,11-0,91 (m, 4H).
- δ 8,41 (s, 1H), 5.34 (br s, 2H), 4,12 (s, 3H), 2,19-2,10 (m, 1H). 0,90-0,80 (m, 4H).
- 49 (DMSO- d_6) δ 8,45 (q, 1H), 7,34 (s, 1H), 6,82 (br s), 2.86 (d, 3H), 1,91-1.81 (m, 1H), 1,07-0.92 (m, 4H).
- 50 δ 7,23 (s, 1H), 5,18 (br s, 2H), 3,21 (s, 6H), 2,19-2.08 (m, 1H), 1,05-0.88 (m, 4H).
- 51 (DMSO- d_6) δ 11.68 + 11,55 (2 x s, 1H), 8,39 + 8.09 (2 x s, 1H), 2,20 + 1,97 (2 x s, 3H), 1,97-1,86 (m, 1H), 0,90 (d, 4H).
- 52 δ 8,76 + 8.07 (2 x s, 1H), 4,50-4,32 (br s, 2H), 3,94 + 3,89 (2 x s, 3H), 2,26-2,11 (br m, 1H), 1,40 (br s, 3H), 1,20-1,12 (m, 2H), 1,09-1,00 (m, 2H).
- 53 δ 4,49 (q, 2H), 2,30 (s, 3H), 2,3-2.2 (m, 1H), 1,43 (t, 3H), 1,27-1,09 (m, 4H).
- 54 δ 7,47-7.34 (m, 5H), 5,06 (s, 2H), 4.43 (q, 2H), 1,90-1,84 (m, 1H), 1,41 (t, 3H), 1,23-1,03 (m, 4H).
- 55 δ 8,64 + 7,64 (2 x s, 1H), 4,45 + 4,36 (2 x q, 2H), 2,20-2,10 (m, 1H), 1,42 + 1,37 (2 x t, 3H), 1,34 + 1,32 (2 x s, 9H), 1,18-0,98 (m, 4H).
- 56 δ 4,42 (q, 2H), 3,77 (m, 4H), 2,07-1,97 (m, 1H), 1,91 (m, 4H), 1,40 (t, 3H), 1,07-0,89 (m, 4H).
- 57 δ 5,37-5.30 (m, 3H), 4,51 (d, 1H), 4,28-4,16 (m, 2H), 2,06-1.96 (m, 1H), 1,27 (t, 3H), 1,09-0,94 (m, 4H).
- 59 δ 5,14 (br s, 2H), 3,97 (s, 3H), 3,84 (s, 3H), 2,09 (m, 1H), 1,00 (m, 2H), 0,94 (m, 2H).
- δ 8,46 (d, 2H), 7,69 (d, 2H), 5,65 (br s, 2H), 4,50 (m, 2H), 1,46 (t, 3H).
- 61 δ 8,23 (d, 2H), 7,24 (d, 2H), 5,57 + 5,53 (2 x br s, 2H), 4,49 (m, 2H), 2,40 (s, 3H), 1,45 (t, 3H).
- 62 δ 8,23 (d, 2H), 7.24 (d, 2H), 5.53 (br s, 2H), 4,49 (m, 2H), 2,40 (s, 3H), 1,45 (t, 3H).
- 63 δ 8,35 (m, 2H), 7,11 (t, 2H), 5,57 (br s, 2H), 4,49 (m, 2H), 1,45 (t, 3H).
- 66 δ 8,46 (d, 1H), 8,20 (dd, 1H), 7,50 (d, 1H), 5.62 (br s, 2H), 4,50 (m, 2H), 1,46 (t, 3H).
- 67 δ 7,67 (d, 1H), 7,48 (d, 1H), 7,32 (dd, 1H), 5,69 (br s, 2H), 4,47 (m, 2H), 1,43 (t, 3H).
- δ 7,96 (dd, 1H), 7,83 (d, 1H), 6,85 (d, 1H), 6,02 (s, 2H), 5,53 (br s, 2H), 4,48 (m, 2H), 1,45 (t, 3H).
- δ 8,97 (t, 1H), 7,23-7,15 (m, 2H), 5,67 (br s, 2H), 4,48 (m, 2H), 1.44 (t, 3H).
- 70 δ 8,11 (m, 1H), 8,06 (m, 1H), 7,19 (d, 1H), 5,57 (br s, 2H), 4,49 (m, 2H), 2,32 (t, 3H), 2,30 (t, 3H), 1,45 (t, 3H).
- 71 δ 8,11 (m, 1H), 8,06 (m, 1H), 7,20 (d, 1H), 5,50 (br s, 2H), 4,49 (m, 2H), 2,33 (t, 3H), 2,31 (t, 3H), 1,45 (t, 3H).
- 72 δ 7,67 (d, 1H), 7,48 (d, 1H), 7,32 (dd, 1H), 5,63 (br s, 2H), 4,48 (m, 2H), 1,43 (t, 3H).
- 73 δ 8,46 (d, 1H), 8,20 (dd, 1H), 7,50 (d, 1H), 5,56 (br s, 2H), 4,50 (m, 2H), 1,46 (t, 3H).
- 74 δ 7,95 (dd, 1H), 7,83 (d, 1H), 6,86 (d, 1H), 6,02 (s, 2H), 5,48 (br s, 2H), 4,48 (m, 2H), 1,45 (t, 3H).
- 79 δ 5,56 (br s, 2H), 3,97 (s, 3H), 3,04 (d, 3H), 2,11 (m, 1H), 1,10 (m, 2H), 0,98 (m, 2H).
- 81 δ 7,82 (br s, 1H), 5,48 (br s, 2H), 2,97 (d, 3H), 2,01 (m, 1H), 1,04 (m, 2H), 0,99 (m, 2H).
- 82 δ 8,22 (d, 2H), 7.24 (d, 2H), 5,57 + 5,52 (2 x br s, 2H), 4,02 (s, 3H), 2,40 (s, 3H).
- 83 δ 8,29 (d, 2H), 7,40 (d, 2H), 5,60 (br s, 2H), 4,02 (s, 3H).
- δ 8,22 (d, 2H), 7,24 (d, 2H), 5,53 (br s; 4,02 (s, 3H), 2,40 (s, 3H).

```
88
           (DMSO-d_6) \delta 14,1-13,9 (br s), 8,25 (d, 2H), 7,56 (d, 2H).
89
           (DMSO-d<sub>6</sub>) δ 8,15 (d, 2H), 7,29 (d, 2H), 2,36 (s, 3H).
90
           (DMSO-d_6) \delta 14,2-13,9 (br s), 8,29 (m, 2H), 7,31 (t, 2H).
91
           δ 8,18 (d, 2H), 7,30 (d, 2H), 5,84 (br s, 2H), 2,43 (s, 3H).
92
           δ 8,35 (m, 2H), 7,11 (t, 2H), 5,59 (br s, 2H), 4,02 (s, 3H).
93
           δ 8,32 (m, 2H), 7,17 (t, 2H), 5,96 (br s, 2H).
97
           δ 8,11 (m, 2H), 7,31 (m, 2H), 5,57 (br s, 2H), 4,02 (s, 3H), 2,42 (s, 3H).
98
           δ 8,30 (d, 2H), 6.94 (d, 2H), 5.48 (br s, 2H), 4,49 (q, 2H), 3,86 (s, 3H), 1,45 (t, 3H).
           δ 8,24 (d, 2H), 7,26 (d, 2H), 5,51 (br s, 2H), 4,49 (q, 2H), 2,70 (q, 2H),1,45 (t, 3H), 1,26 (t, 3H).
99
100
           δ 8,35 (s, 1H), 8,24 (d, 1H), 7,46-7,34 (m, 2H), 5,56 (br s, 2H), 4,50 (q, 2H), 1,46 (t, 3H).
103
           δ 8,39 (d, 2H), 7,27 (d, 2H), 5,47 (br s, 2H), 4,50 (g, 2H), 1,45 (t, 3H).
114
           δ 8,19 (d, 2H), 7.38 (d, 2H), 5.26 (br s, 2H), 4,98 (s, 2H), 4,24 (q, 2H), 1,26 (t, 3H).
120
           δ 8,27 (d, 2H), 7,39 (d, 2H), 5,34 (br s, 2H), 4,23 (q, 2H), 3,91 (s, 2H), 1,29 (t, 3H).
124
           \delta 8.61 + 8.48 (2 x s, 1H), 7.48 + 7.12 (2 x q, 1H), 3.98 + 3.96 (2 x s, 3H), 2.30-2.15 (m, 1H), 2.14 +
           2,00 (2 x d, 3H), 1,19-1,12 (2 x m, 2H), 1,06-0.97 (2 x m, 2H).
125
           \delta 4,61 + 4,54 (2 x br s, 2H), 4,47-4,36 (m, 2H), 2,18-1,98 (br m, 1H), 1,44-1,34 (m, 3H), 1,32-1,00 (br
           m, 4H).
126
           δ 7,83 (d, 1H), 7,69 (d, 1H), 4,45 (q, 2H), 2,14 (s, 3H), 1,41 (t, 3H), 1,08-1,00 (m, 4H).
127
           δ 8,89 (s, 1H), 8,43 (d, 1H), 7,97 (d, 1H), 7,92-7,83 (m, 2H), 7,57-7,46 (m, 2H), 5,57 (br s, 2H), 4,53
           (q, 2H), 1,48 (t, 3H).
138
           ō 8,11 (d, 2H), 7,76 (d, 2H), 5,65 (s, 1H), 5,39 (br s, 2H), 3,88 (m, 2H), 3,70 (m, 2H). 1,30 (t, 6H).
140
           5,38 (br s, 2H), 4,44 (dd, 1H), 4,28 (dd, 1H), 3,35 (m, 1H), 2,88 (dd, 1H), 2,76 (dd, 1H), 2,07 (m, 1H),
           1,05 (m, 2H), 1,00 (m, 2H).
```

Los espectros de ¹H RMN se informan en ppm campo abajo de tetrametilsilano; Los acoplamientos están indicados por (s)-singlete, (d)-doblete, (t)-triplete, (q)-quartete, (m)-multiplete, (dd)-doblete de dobletes, (dt)-doblete de tripletes, (dq)-doblete de quartetes, (br s)-singlete ancho, (br d)-d ancho, (br m)-multiplete ancho.

EJEMPLOS BIOLÓGICOS DE LA INVENCIÓN

PRUEBA A

5

10

Se sembraron semillas de mijo de los arrozales (*Echinochloa crus-galli*), garranchuelo (*Digitaria sanguinalis*), cola de zorro gigante (*Setaria faberi*), dondiego de día (*Ipomoea* spp.), bledo (*Amaranthus retroflexus*) y malva asiática (*Abutilon theophrasti*) en una mezcla de suelo franco y arena y se trataron en pre-emergencia con un atomizador dirigido al suelo usando sustancias químicas de prueba formuladas en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo. Al mismo tiempo estas especies se trataron también en post-emergencia con aplicaciones de sustancias químicas formuladas de la misma manera.

Las plantas variaban en altura desde 2 a 10 cm y estaban en la etapa de 1- a 2-hojas durante el tratamiento de postemergencia. Las plantas tratadas y los controles no tratados se mantuvieron en un invernadero durante diez días aproximadamente, tiempo tras el cual todas las plantas tratadas se compararon con los controles no tratados y se evaluaron visualmente en cuanto a daño. Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla A, están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de quión (-) significa que no hay resultados de la prueba

Tabla A	Compuestos		Tabla A	⋖		Con	Compuesto								
2000 g ia/ha	_	22	1000 g ia/ha	ı ia/ha			43								
Post-emergencia			Post-e	Post-emergencia	ncia										
Mijo de los arrozales	75	75	Mijo de	Mijo de los arrozales	rozale	(0	20								
Garranchuelo	80	30	Garrar	Garranchuelo			30								
Cola de zorro gigante	75	80	Cola d	Cola de zorro gigante	gigan	ø.	10								
Dondiego de día	100	80	Dondie	Dondiego de día	día		45								
Bledo	100	92	Bledo				85								
Malva asiática	85	80	Malva	Malva asiática	æ		20								
Tabla A				ပိ	Compuestos	stos									
500 g ia/ha		_	20	22	28	29	09	61	62	63	64	92	99	29	89
Post-emergencia															
Mijo de los arrozales	1-	75	0	25	10	30	0	09	80	0	20	85	0	0	0
Garranchuelo	9	65	0	10	10	10	0	2	35	0	20	80	0	2	0
Cola de zorro gigante		20	0	09	20	35	0	25	80	0	80	92	0	0	0
Dondiego de día	0,	92	40	20	80	100	20	30	35	25	92	92	30	09	35
Bledo	10	100	09	75	80	80	40	20	09	92	100	100	92	06	22
Malva asiática	0,	92	22	20	85	85	40	100	92	20	100	100	75	75	09
Tabla A							Comp	Compuestos							
500 g ia/ha		69	20	71	72	73	74	75	92	11	78	79	80	81	82

Mijo de los arrozales	2	0	0	0	2	70	06	06	06	06	06	06	30	20
Garranchuelo	40	20	2	30	35	09	06	20	06	80	75	20	10	0
Cola de zorro gigante	22	0	0	0	45	20	06	06	06	80	06	06	30	0
Dondiego de día	06	10	0	20	65	30	06	92	100	06	92	92	80	40
Bledo	06	20	30	92	80	20	100	92	92	92	100	92	75	75
Malva asiática	06	09	22	85	75	80	100	100	100	06	92	06	75	06
Tabla A						Comp	Compuestos							
500 g ia/ha	83	84	82	86	87	88	88	06	91	95	93	94	92	96
Post-emergencia														
Mijo de los arrozales	10	80	0	30	06	85	85	10	06	0	0	09	06	25
Garranchuelo	10	10	0	0	10	85	10	20	15	2	0	20	80	20
Cola de zorro gigante	10	20	0	0	30	06	45	30	75	0	0	65	85	35
Dondiego de día	75	20	75	20	15	85	30	92	30	75	22	75	80	92
Bledo	82	65	06	20	06	92	100	06	100	20	20	82	92	85
Malva asiática	06	06	09	85	92	92	92	82	92	20	80	06	92	85
Tabla A						Comp	Compuestos							
500 g ia/ha	26	86	66	100	101	102	103	104	105	106	107	108	109	110
Post-emergencia														
Mijo de los arrozales	10	20	0	10	0	0	0	10	25	2	0	2	10	10

Post-emergencia

Garranchuelo	0	10	0	0	0	10	0	30	45	0	2	0	10	10
Cola de zorro gigante	0	15	0	0	0	0	0	2	10	0	35	10	10	2
Dondiego de día	20	0	0	22	0	15	0	40	20	35	0	06	80	85
Bledo	30	15	10	25	2	65	20	45	06	70	10	85	82	85
Malva asiática	20	45	35	20	15	70	70	80	92	22	92	65	80	65
Tabla A						Comp	Compuestos							
500 g ia/ha	111	112	113	114	115	116	117	118	119	120	121	122	123	127
Post-emergencia														
Mijo de los arrozales	10	0	06	0	0	0	06	0	2	40	2	0	10	0
Garranchuelo	30	0	22	0	0	0	06	20	0	2	0	0	0	0
Cola de zorro gigante	0	0	82	0	0	0	06	15	0	0	0	0	10	0
Dondiego de día	20	20	06	22	09	09	06	20	35	22	10	0	20	0
Bledo	82	40	06	22	45	35	100	75	45	35	0	0	0	10
Malva asiática	85	35	92	2	40	40	100	92	10	92	0	0	0	80
Tabla A						Comp	Compuestos							
500 g ia/ha	128	129	130	131	132	133	134	135	136	137	138	139	140	141
Post-emergencia														
Mijo de los arrozales	0	0	0	20	10	40	0	06	80	0	0	06	06	06
Garranchuelo	0	0	0	30	10	55	0	92	20	0	0	20	80	80
Cola de zorro gigante	0	0	0	30	2	09	0	80	80	0	0	80	06	85

Dondiego de día	80	20	0	20	20	85	0	100	80	30	20	06	06	90
Bledo	75	85	15	20	65	06	30	92	100	45	32	100	100	100
Malva asiática	80	06	30	09	09	85	22	100	92	09	20	06	90 1	100
Tabla A			Compuestos	restos										
500 g ia/ha	142	143	144	145	146	147	148	149	150					
Post-emergencia														
Mijo de los arrozales	75	75	06	09	06	06	06	06	92					
Garranchuelo	25	09	80	30	80	75	82	75	80					
Cola de zorro gigante	45	80	80	70	85	06	80	80	82					
Dondiego de día	06	06	92	92	100	100	100	92	100					
Bledo	06	06	100	06	92	92	92	06	06					
Malva asiática	06	92	100	92	100	100	92	100	100					
Tabla A Co	Compuesto													
250 g ia/ha	43													
Post-emergencia														
Mijo de los arrozales	10													
Garranchuelo	10													
Cola de zorro gigante	10													
Dondiego de día	20													
Bledo	09													

Malva asiática	20													
Tabla A						Comp	Compuestos							
125 g ia/ha	20	28	29	09	61	62	63	64	92	99	29	89	69	70
Post-emergencia														
Mijo de los arrozales	0	2	0	0	35	15	0	25	82	0	0	0	0	0
Garranchuelo	0	2	0	0	0	0	0	20	22	0	2	0	20	0
Cola de zorro gigante	0	0	0	0	0	0	0	20	85	0	0	0	0	0
Dondiego de día	20	22	06	0	10	10	20	80	75	20	20	15	75	0
Bledo	40	20	09	10	25	30	40	06	100	20	06	20	06	15
Malva asiática	10	20	09	30	20	06	22	92	92	20	92	09	82	35
Tabla A						Comp	Compuestos							
125 g ia/ha	7	72	73	74	75	92	77	78	79	80	8	82	83	84
Post-emergencia														
Mijo de los arrozales	0	0	0	30	85	06	06	80	82	22	0	40	0	22
Garranchuelo	0	10	15	30	80	45	20	20	40	30	0	0	0	0
Cola de zorro gigante	0	0	15	09	06	06	85	20	80	20	0	0	0	0
Dondiego de día	0	22	20	40	06	06	92	80	06	06	20	20	22	2
Bledo	2	92	75	09	06	82	92	82	06	92	22	45	20	09
Malva asiática	40	82	70	20	85	80	92	75	06	92	20	06	06	75
Tabla A						Comp	Compuestos							

125 g ia/ha	82	98	87	88	89	06	91	95	93	94	36	96	26	86
Post-emergencia														
Mijo de los arrozales	0	10	20	20	09	0	75	0	0	30	75	20	30	0
Garranchuelo	0	0	0	09	0	0	2	0	0	35	20	2	0	0
Cola de zorro gigante	0	0	0	80	10	0	2	0	0	45	85	25	0	0
Dondiego de día	20	0	0	09	0	20	2	45	40	20) 5/	09	45	0
Bledo	75	20	22	06	20	35	55	35	45	80	. 92	20	10	2
Malva asiática	25	20	06	06	20	65	75	45	92	06	06	80	09	35
Tabla A						Comp	Compuestos							
125 g ia/ha	66	100	101	102	103	104	105	106	107	108	109 1	, 110		112
Post-emergencia														
Mijo de los arrozales	0	0	0	0	0	0	10	0	0	0	0	0	0	0
Garranchuelo	0	0	0	10	0	15	20	0	0	0	0	0	2	0
Cola de zorro gigante	0	0	0	0	0	0	10	0	0	0	0	0	0	0
Dondiego de día	0	40	0	0	0	25	20	20	0	20	02	20	20	55
Bledo	2	10	0	20	0	30	65	15	10	20	09	25	25	20
Malva asiática	0	20	0	45	45	20	85	25	35	35	752	40	75	20
Tabla A						Comp	Compuestos							
125 g ia/ha	113	114	115	116	117	118	119	120	121	122	123 1	. 127	128	129
Post-emergencia														

Mijo de los arrozales	22	0	0	0	85	0	0	10	0	0	0	0	0	0
Garranchuelo	25	0	0	0	75	10	0	0	0	0	0	0	0	0
Cola de zorro gigante	65	0	0	0	80	0	0	0	0	0	0	0	0	0
Dondiego de día	06	40	35	40	06	65	40	25	0	0	0	0	22	09
Bledo	80	45	10	20	100	09	25	20	0	0	0	0	22	80
Malva asiática	80	0	30	15	100	06	0	20	0	0	0	09	99	80
Tabla A						Comp	Compuestos							
125 g ia/ha	130	131	132	133	134	135	136	137	138	139	. 140	141	142	143
Post-emergencia														
Mijo de los arrozales	0	10	0	10	0	75	20	0	0	80	20	80	45	22
Garranchuelo	0	10	2	30	0	65	35	0	0	09	92	25	15	2
Cola de zorro gigante	0	15	0	15	0	75	75	0	0	80	82	40	30	25
Dondiego de día	0	0	45	20	0	06	70	2	0	80	82	06	06	06
Bledo	0	20	20	80	15	06	85	25	20	06	06	06	82	20
Malva asiática	0	35	20	80	20	85	85	45	09	82	06	85	80	75
Tabla A		Compuestos	setos											
125 g ia/ha	144	145	146	147	148	149	150							
Post-emergencia														
Mijo de los arrozales	09	30	20	80	89	65	80							
Garranchuelo	40	2	20	25	10	25	65							

Cola de zorro gigante	70		20	80	09	45	09	80							
Dondiego de día	85		80	85	85	06	80	80							
Bledo	85		80	06	85	75	75	06							
Malva asiática	96		75	82	80	75	82	06							
Tabla A (Compuestos					Tabla A			Compuesto	esto					
2000 g ia/ha		-	25			1000 g ia/ha	a/ha			43					
Pre-emergencia						Pre-em	Pre-emergencia								
Mijo de los arrozales	80	0	80			Mijo de	Mijo de los arrozales	zales		10					
Garranchuelo	75	10	20			Garranchuelo	huelo			10					
Cola de zorro gigante	85	ıo	20			Cola de	Cola de zorro gigante	gante		10					
Dondiego de día	100	0	100			Dondie	Dondiego de día			45					
Bledo	100	0	100			Bledo				75					
Malva asiática	80	0	92			Malva asiática	siática			20					
Tabla A				ŏ	Compuestos	stos									
500 g ia/ha	~		20	22	28	29	09	61	62	63	64	92	99	29	89
Pre-emergencia															
Mijo de los arrozales	09	0	0	25	0	15	0	10	45	40	09	06	0	0	0
Garranchuelo	25	10	0	10	0	0	0	30	09	75	06	06	15	30	0
Cola de zorro gigante	40	0	0	10	10	0	0	10	0	35	20	80	0	30	0
Dondiego de día	85		09	100	25	100	0	15	35	0	20	06	0	0	0

Bledo	82	20	06	09	20	0	30	75	80	100	100	10	75	15
Malva asiática	09	20	80	40	45	0	20	75	15	92	92	35	40	10
Tabla A						Comp	Compuestos							
500 g ia/ha	69	20	71	72	73	74	75	9/	14	78	6/	80	81	82
Pre-emergencia														
Mijo de los arrozales	15	0	0	0	30	20	92	06	100	75	80	80	20	15
Garranchuelo	75	20	0	0	35	20	06	75	80	20	80	85	10	0
Cola de zorro gigante	20	2	0	0	15	40	06	85	92	99	92	20	10	0
Dondiego de día	0	0	0	0	0	30	100	100	100	100	100	100	20	0
Bledo	82	10	15	100	09	40	92	06	92	06	100	06	70	70
Malva asiática	92	35	20	22	40	20	92	100	100	85	06	06	40	35
Tabla A						Comp	Compuestos							
500 g ia/ha	83	84	82	98	87	88	89	06	91	95	93	94	92	96
Pre-emergencia														
Mijo de los arrozales	2	25	0	0	20	22	20	35	80	0	30	40	80	10
Garranchuelo	2	15	2	0	75	85	09	20	75	0	45	22	85	65
Cola de zorro gigante	0	20	0	0	0	20	10	15	25	0	35	40	06	10
Dondiego de día	10	0	20	0	20	06	0	25	20	0	2	35	85	80
Bledo	20	80	09	2	100	100	100	80	100	45	06	92	100	80
Malva asiática	30	20	10	10	92	20	75	42	100	45	82	90	92	80

Tabla A						Comp	Compuestos							
500 g ia/ha	26	86	66	100	101	102	103	104	105	106	107	108	109	110
Pre-emergencia														
Mijo de los arrozales	0	0	0	0	0	0	0	2	0	2	0	15	25	15
Garranchuelo	25	15	0	0	0	0	0	10	0	0	2	20	25	15
Cola de zorro gigante	2	0	0	0	0	0	0	2	0	0	0	0	2	0
Dondiego de día	0	0	0	0	0	0	0	0	0	0	0	06	92	06
Bledo	70	0	0	0	0	15	10	10	0	30	0	75	80	65
Malva asiática	20	2	0	0	0	20	10	10	0	30	10	20	20	35
Tabla A						Comp	Compuestos							
500 g ia/ha	111	112	113	114	115	116	117	118	119	120	121	122	123	127
Pre-emergencia														
Mijo de los arrozales	0	10	80	0	20	20	85	10	10	15	0	0	0	0
Garranchuelo	0	10	70	0	10	10	75	25	0	0	0	0	0	0
Cola de zorro gigante	0	0	80	0	0	0	85	15	0	0	0	0	0	0
Dondiego de día	0	10	100	0	35	20	85	0	0	0	0	0	0	0
Bledo	0	30	06	0	40	20	100	22	0	0	0	0	0	0
Malva asiática	0	10	92	0	10	15	100	15	0	0	0	0	0	0
Tabla A						Comp	Compuestos							
500 g ia/ha	128	129	130	131	132	133	134	135	136	137	138	139	140	141

Mijo de los arrozales	0	0	0	0	0	15	0	06	40	0	0	06	06	75
Garranchuelo	0	0	0	0	0	45	0	92	09	0	0	06	06	85
Cola de zorro gigante	0	0	0	0	0	30	0	85	09	0	0	06	85	85
Dondiego de día	0	0	0	0	0	35	0	100	20	0	0	100	92	92
Bledo	0	15	0	0	92	65	0	100	100	0	0	100	92	85
Malva asiática	0	2	0	0	2	30	0	100	75	0	0	06	92	85
Tabla A						Con	Compuestos							
500 g ia/ha	142	143	144	145	146	147	148	149	150					
Pre-emergencia														
Mijo de los arrozales	75	85	80	75	06	85	82	82	80					
Garranchuelo	85	92	92	80	75	80	06	75	80					
Cola de zorro gigante	65	75	80	09	06	85	80	06	80					
Dondiego de día	96	100	96	100	100	100	100	100	100					
Bledo	06	92	85	85	92	06	06	06	92					
Malva asiática	85	92	85	85	100	92	100	82	92					
Tabla A	Compuesto													
250 g ia/ha	43													
Pre-emergencia														
Mijo de los arrozales	0													

Pre-emergencia

Garranchuelo	0													
Cola de zorro gigante	0													
Dondiego de día	0													
Bledo	0													
Malva asiática	0													
Tabla A						Compuestos	restos							
125 g ia/ha	20	28	29	09	61	62	63	64	92	99	29	89	69	70
Pre-emergencia														
Mijo de los arrozales	0	0	0	0	0	0	0	0	20	0	0	0	0	0
Garranchuelo	0	0	0	0	0	0	0	25	09	0	0	0	20	2
Cola de zorro gigante	0	0	0	0	0	0	0	15	40	0	0	0	10	2
Dondiego de día	10	10	80	0	0	0	0	40	25	0	0	0	0	0
Bledo	40	0	20	0	0	0	0	20	100	0	10	0	92	0
Malva asiática	0	0	10	0	0	0	0	25	22	0	10	2	35	20
Tabla A						Compuestos	restos							
125 g ia/ha	77	72	73	74	75	92	11	78	62	80	81	82	83	84
Pre-emergencia														
Mijo de los arrozales	0	0	2	0	20	75	06	45	30	10	10	0	0	0
Garranchuelo	0	0	2	20	85	30	20	22	30	45	0	0	0	0
Cola de zorro gigante	0	0	0	0	75	20	75	10	40	15	0	0	0	0

Dondiego de día	0	0	0	0	92	100	100	06	22	06	0	0	0	0
Bledo	0	75	15	0	06	80	85	75	06	80	09	0	20	0
Malva asiática	30	40	35	30	80	06	100	80	09	75	20	2	15	15
Tabla A						Comp	Compuestos							
125 g ia/ha	82	98	87	88	88	06	91	95	93	94	92	96	26	86
Pre-emergencia														
Mijo de los arrozales	0	0	0	10	0	0	2	0	2	2	20	2	0	0
Garranchuelo	0	0	10	35	0	10	25	0	25	45	92	20	15	0
Cola de zorro gigante	0	0	0	10	0	0	0	0	2	20	92	2	2	0
Dondiego de día	0	0	0	10	0	0	2	0	0	3 0	80	15	0	0
Bledo	20	0	82	80	80	20	100	15	80	06	92	80	25	0
Malva asiática	0	0	25	10	20	10	80	10	22	75	22	65	45	0
Tabla A						Comp	Compuestos							
125 g ia/ha	66	100	101	102	103	104	105	106	107	108	109	110 1	11	112
Pre-emergencia														
Mijo de los arrozales	0	2	0	0	0	0	0	0	0	10	0	0	0	0
Garranchuelo	0	10	0	0	0	0	0	0	0	0	0	0	0	0
Cola de zorro gigante	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dondiego de día	0	0	0	0	0	0	0	0	0	0	30	0	0	0
Bledo	0	20	0	10	0	0	0	0	0	22	20	40	0	10

Malva asiática	0	0	0	10	0	0	0	2	0	10	15	25	0	0
Tabla A						Comp	Compuestos							
125 g ia/ha	113	114	115	116	117	118	119	120	121	122	123	127	128	129
Pre-emergencia														
Mijo de los arrozales	25	0	0	10	25	0	0	2	0	0	0	0	0	0
Garranchuelo	15	0	0	0	45	10	0	0	0	0	0	0	0	0
Cola de zorro gigante	15	0	0	0	20	0	0	0	0	0	0	0	0	0
Dondiego de día	06	0	25	30	10	0	0	0	0	0	0	0	0	0
Bledo	80	0	30	30	92	10	0	0	0	0	0	0	0	0
Malva asiática	65	0	2	o.	22	0	0	0	0	0	0	0	0	0
Tabla A						Comp	Compuestos							
125 g ia/ha	130	131	132	133	134	135	136	137	138	139	140	141	142	143
Pre-emergencia														
Mijo de los arrozales	0	0	0	0	0	65	2	0	0	75	20	35	20	92
Garranchuelo	0	0	0	0	0	75	20	0	0	75	20	09	45	20
Cola de zorro gigante	0	0	0	0	0	30	10	0	0	80	40	2	25	35
Dondiego de día	0	0	0	0	0	92	10	0	0	06	06	85	85	06
Bledo	0	0	15	10	0	82	45	0	0	06	06	80	70	65
Malva asiática	0	0	0	10	0	80	30	0	0	06	06	80	85	06
Tabla A				ပိ	Compuestos	SC								

150	65	20	20	06	70	75
149	20	20	35	85	70	20
148	65	45	40	06	80	80
147	20	70	40	92	80	75
146	65	35	09	92	75	85
145	30	92	0	75	92	20
144	65	75	35	85	75	75

Cola de zorro gigante

Dondiego de día

Malva asiática

Bledo

Mijo de los arrozales

Garranchuelo

Pre-emergencia

125 g ia/ha

PRUEBA B

5

10

15

Se sembraron semillas seleccionadas de mijo de los arrozales (*Echinochloa crus-galli*), césped Surinam (*Brachiaria decumbens*), cadillo (*Xanthium strumarium*), maíz (*Zea mays*), garranchuelo (*Digitaria sanguinalis*), cola de zorro gigante (*Setaria faberii*), cenizo (*Chenopodium album*), dondiego de día (*Ipomoea coccinea*), bledo (*Amaranthus retroflexus*), malva asiática (*Abutilon theophrasti*), y trigo (*Triticum aestivum*) y se trataron en pre-emergencia con sustancias químicas de prueba formuladas en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo.

Al mismo tiempo, plantas seleccionadas de estas especies de cultivo y malas hierbas y también césped negro (Alopecurus myosuroides) y avena silvestre (Avena fatua) se trataron con aplicaciones en post-emergencia de sustancias químicas de prueba formuladas de la misma manera. Las plantas variaron en altura desde 2 a 18 cm (etapa de 1- a 4-hojas) durante los tratamientos en post-emergencia. Las especies vegetales en la prueba de arrozal inundado consistieron en arroz (Oryza sativa), juncia paraguas (Cyperus difformis), ensalada de pato (Heteranthera limosa) y mijo de los arrozales (Echinochloa crus-galli) desarrolladas hasta la etapa de 2-hojas para la prueba. Las plantas y controles tratados se mantuvieron en un invernadero durante 13 a 15 días, tiempo tras el cual se compararon todas las especies con los controles y se evaluaron visualmente. Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla B, están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba.

Tabla B	Compuestos	so												
1000 g ia/ha	~	7	က	4	2	7	8	0	10	1	12	13	4	15
Inundación														
Mijo de los arrozales	80	06	0	06	20	20	20	06	0	0	0	0	80	06
Ensalada de pato	80	06	0	100	06	0	06	100	0	20	20	0	80	80
Arroz	20	09	0	80	0	0	09	80	0	0	20	0	20	20
Juncia paraguas	20	06	0	80	06	0	40	06	0	20	0	0	20	20
Tabla B						O	Compuestos	SC						
1000 g ia/ha	16	17	18	19	21	22	23	24	25	26	27	28	30	31
Inundación														
Mijo de los arrozales	06	80	0	80	09	80	0	0	30	09	0	0	0	30
Ensalada de pato	06	06	80	80	80	06	30	0	40	06	09	30	0	09
Arroz	20	20	0	09	40	09	0	10	30	20	20	0	0	20
Juncia paraguas	09	20	0	20	0	20	0	20	40	80	09	0	0	0
Tabla B						O	Compuestos	SC						
1000 g ia/ha	32	33	34	35	36	37	38	39	40	4	42	44	45	46
Inundación														
1000 g ia/ha	32	33	34	35	36	37	38	39	40	4	42	4	45	46
Mijo de los arrozales	0	0	0	0	0	20	0	0	20	0	0	0	0	0
Ensalada de pato	0	0	0	0	0	100	0	0	80	06	0	06	0	09
Arroz	0	0	0	0	0	0	0	0	09	0	0	0	0	0
Juncia paraguas	0	0	0	0	0	06	0	0	20	80	0	80	0	30

Tabla B			Compuestos	stos										
1000 g ia/ha	47	48	49	20	21	124								
Inundación														
Mijo de los arrozales	0	20	20	30	0	0								
Ensalada de pato	80	20	09	40	0	0								
Arroz	0	0	30	30	0	0								
Juncia paraguas	20	0	20	0	0	0								
Tabla B						0	Compuestos	SO						
500 g ia/ha	28	29	09	64	75	92	77	78	79	80	83	88	91	95
Inundación														
Mijo de los arrozales	0	0	20	0	20	20	09	40	0	20	0	0	20	0
Ensalada de pato	100	0	06	100	20	20	80	70	20	20	100	06	100	06
Arroz	0	0	0	0	20	20	20	40	20	20	0	0	0	0
Juncia paraguas	100	0	30	06	10	20	40	20	0	20	100	06	06	06
Tabla B			Com	Compuestos										
500 g ia/ha	94	92	96	113	117	128	129	133	135	136				
Inundación														
Mijo de los arrozales	0	30	10	0	70	30	20	0	80	20				
Ensalada de pato	100	100	100	0	100	100	100	06	06	06				
Arroz	0	40	0	0	20	0	0	0	09	40				
Juncia paraguas	06	06	06	0	06	100	100	06	80	06				
Tabla B	Compuesto	Ω												

92 0 0

250 g ia/ha	64													
Inundación														
Mijo de los arrozales	0													
Ensalada de pato	100													
	0													
Juncia paraguas	70													
Tabla B							Compuesto	0						
125 g ia/ha	58	29	09	64	75	9/	12	78	79	80	83	88	91	0,
Inundación														
Mijo de los arrozales	0	0	0	0	0	0	0	0	0	0	0	0	0	
Ensalada de pato	100	0	80	06	0	0	40	20	10	20	100	06	100	
	0	0	0	0	0	0	0	20	0	0	0	0	0	
Juncia paraguas	0 06	0	0	0		30 0	10	0	20		9 06	3 09	8 08	80
Tabla B						J	Compuesto	0						
125 g ia/ha	94	92	96	113	117	128	129	133	135	136				
Inundación														
Mijo de los arrozales	0	0	0	0	20	0	0	0	30	0				
Ensalada de pato	100	06	100	0	100	06	100	06	09	06				
	0	0	0	0	20	0	0	0	20	0				
Juncia paraguas	06	06	06	0	80	06	06	06	20	06				
Tabla B	Compuestos	tos												
62 g ia/ha	64													

Inundación														
Mijo de los arrozales	0													
Ensalada de pato	80													
Arroz	0													
Juncia paraguas	0													
Tabla B						Ö	Compuestos	so						
500 g ia/ha	7	က	2	7	ω	6	10	7	12	13	4	15	16	17
Post-emergencia														
Mijo de los arrozales	06	10	06	30	06	06	10	06	40	10	06	06	06	06
Césped negro	80	20	80	80	0	80	0	09	0	20	09	80	20	20
Cadillo	100	100	100	100	100	100	20	06	20	40	20	100	100	100
Maíz	80	0	06	30	06	06	0	0	0	0	20	80	80	80
Garranchuelo	06	40	06	30	06	06	40	20	30	30	30	09	80	20
Cola de zorro gigante	80	40	20	40	06	06	10	20	30	20	20	20	80	20
Cenizo	100	100	100	100	100	100	06	100	80	20	100	100	100	100
Dondiego de día	100	100	100	06	100	100	80	100	80	20	100	100	100	100
Avena silvestre	70	30	09	70	0	20	10	10	0	0	20	20	09	20
Bledo	100	06	100	06	100	100	06	06	80	20	06	100	100	06
Césped Surinam	06	30	80	20	06	06	10	20	0	0	20	06	06	80
Malva asiática	100	80	06	06	100	100	80	80	09	20	20	06	06	100
Trigo	70	20	09	80	0	20	0	40	0	0	20	70	09	09
Tabla B						O	Compuestos	so						

500 g ia/ha	18	19	21	22	23	24	25	26	27	28	30	31	32	33
Post-emergencia														
Mijo de los arrozales	0	06	0	06	0	10	80	09	0	20	80	0	20	20
Césped negro	0	80	20	80	10	10	09	20	30	30	20	0	40	40
Cadillo	20	100	10	100	06	20	06	06	100	100	100	80	06	80
Maíz	0	20	0	80	0	10	30	20	20	0	30	0	10	0
Garranchuelo	0	80	0	06	0	40	80	20	10	20	06	30	20	20
Cola de zorro gigante	0	80	0	80	10	30	80	40	30	40	06	0	20	40
Cenizo	06	100	20	100	80	80	06	80	06	06	100	20	80	20
Dondiego de día	20	100	30	100	20	06	06	80	06	06	100	20	06	20
Avena silvestre	0	20	0	09	10	0	20	40	30	10	20	0	30	20
Bledo	20	100	30	100	02	80	100	80	20	06	100	20	80	80
Césped Surinam	0	06	0	06	10	10	20	09	0	20	80	0	10	0
Malva asiática	20	100	30	100	70	20	20	20	20	06	06	09	20	20
Trigo	0	09	20	20	20	0	30	30	30	10	09	0	30	20
Tabla B						ŏ	Compuestos	(0						
500 g ia/ha	34	32	36	37	38	39	40	4	42	44	46	47	48	49
Post-emergencia														
Mijo de los arrozales	09	06	0	06	0	20	06	20	30	20	30	09	20	20
Césped negro	20	20	40	09	0	0	09	09	09	40	10	0	20	20
Cadillo	80	100	20	100	0	20	06	ı	06	100	0	100	80	100
Maíz	0	09	0	20	0	90	09	80	0	20	0	0	0	30

Garranchuelo	30	20	0	80	20	40	80	20	30	80	30	09	20	80
Cola de zorro gigante	20	09	10	09	0	30	09	30	0		10	20	10	70
Cenizo	06	100	20	100	09	06	100	06	06	06	30	06	80	90
Dondiego de día	20	100	70	100	40	100	100	06	06	100	06	06	80	100
Avena silvestre	40	09	40	0	0	0	09	0	0	0	0	0	20	09
Bledo	80	100	30	100	30	02	100	06	06	06	80	80	80	90
Césped Surinam	20	80	0	20	20	30	20	10	10	20	10	20	10	09
Malva asiática	09	06	40	100	20	02	06	70	80	06	0	40	09	80
Trigo	40	09	40	09	0	0	09	40	20	30	0	0	20	40
Tabla B C	Compuestos	SC												
500 g ia/ha	20	51	52	54	22	26	124	125	126					
Post-emergencia														
Mijo de los arrozales	20	09	80	70	20	30	40	70	0					
Césped negro	20	30	20	40	40	20	40	20	0					
Cadillo	06	06	09	80	80	20	80	09	0					
Maíz	40	0	09	20	20	0	0	0	10					
Garranchuelo	80	09	09	30	30	0	40	30	20					
Cola de zorro gigante	20	30	09	30	20	0	20	40	0					
Cenizo	06	06	06	06	06	30	06	70	40					
Dondiego de día	06	06	06	06	06	20	100	06	09					
Avena silvestre	09	30	20	40	20	20	30	20	20					
Bledo	06	06	06	06	80	02	06	09	30					

Césped Surinam	09	40	30	0	0	0	0	10	20					
Malva asiática	06	80	20	09	30	0	20	20	20					
Trigo	09	40	20	20	0	0	30	0	0					
Tabla B		Compuestos	estos		F	Tabla B								
250 g ia/ha	_	4	45	53	Ö	250 g ia/ha	ğ				_	4	45	53
Post-emergencia					<u>α</u>	ost-eme	Post-emergencia							
Mijo de los arrozales	06	06	0	06	Δ	Dondiego de día	de día				100	100	09	06
Césped negro	20	06	0	09	⋖	Avena silvestre	vestre				09	80	0	09
Cadillo	06	100	10	06	Δ	Bledo					100	100	20	100
Maíz	20	06	0	20	O	Césped Surinam	urinam				06	06	0	20
Garranchuelo	06	06	20	30	2	Malva asiática	ática				06	100	20	80
Cola de zorro gigante	80	06	0	20	_	Trigo					20	80	0	09
Cenizo	100	100	30	100										
Tabla B						Comp	Compuestos							
125 g ia/ha	7	က	2	7	∞	6	10	7	12	13	4	15	16	17
Post-emergencia														
Mijo de los arrozales	06	0	20	0	06	06	0	20	0	0	30	06	20	20
Césped negro	20	20	20	09	0	09	0	20	0	10	30	20	10	0
Cadillo	100	20	80	06	100	100	09	80	40	10	20	100	06	100
Maíz	20	0	30	0	20	20	0	0	0	0	30	20	30	0
Garranchuelo	06	30	20	10	80	06	30	30	10	20	10	30	30	20
Cola de zorro gigante	70	20	40	20	80	06	0	10	0	10	20	40	30	10

Cenizo	100	100	100	80	100	06	80	06	09	09	100	100	100	100
Dondiego de día	100	80	100	80	100	100	80	80	09	20	100	100	100	100
Avena silvestre	40	10	40	40	0	20	0	0	0	0	20	10	10	0
Bledo	100	80	06	0	100	100	80	80	90	20	80	80	06	20
Césped Surinam	06	10	20	0	80	06	10	20	0	0	10	09	09	30
Malva asiática	09	20	70	20	80	100	20	09	20	40	20	80	80	09
Trigo	40	10	20	20	0	40	0	0	0	0	20	40	30	0
Tabla B						ŏ	Compuestos	"						
125 g ia/ha	18	19	21	22	23	24	25	26	27	28	30	32	33	34
Post-emergencia														
Mijo de los arrozales	0	80	0	70	0	0	40	20	0	20	0	20	0	0
Césped negro	0	09	10	09	0	0	10	40	30	10	09	30	40	09
Cadillo	20	06	0	100	30	20	06	80	100	06	100	40	09	80
Maíz	0	30	0	20	0	0	0	0	0	0	0	0	0	0
Garranchuelo	0	40	0	20	0	20	09	40	10	30	30	10	10	0
Cola de zorro gigante	0	20	0	70	0	20	20	30	20	20	0	10	10	20
Cenizo	20	100	10	100	20	20	06	20	80	06	06	20	09	70
Dondiego de día	20	100	10	06	40	09	06	20	20	06	06	40	40	09
Avena silvestre	0	40	0	10	10	0	10	30	20	0	09	20	20	30
Bledo	20	06	0	100	30	20	06	20	09	80	06	80	09	20
Césped Surinam	0	40	0	80	0	0	20	30	0	10	10	0	0	10
Malva asiática	20	20	10	100	40	40	09	40	09	20	20	10	40	30

Trigo	0	20	10	0	0	0	20	30	20	0	20	20	20	30
Tabla B						ပိ	Compuestos							
125 g ia/ha	35	36	37	38	39	40	14	42	44	46	47	48	49	20
Post-emergencia														
Mijo de los arrozales	40	0	0	0	0	0	20	10	40	0	20	10	30	10
Césped negro	09	0	40	0	0	20	20	30	30	0	0	0	20	30
Cadillo	30	20	100	0	30	0	20	80	06	0	06	20	06	06
Maíz	0	0	0	0	0	0	20	0	30	0	0	0	0	0
Garranchuelo	20	0	09	0	0	0	10	0	20	10	10	10	30	40
Cola de zorro gigante	10	0	10	0	0	0	20	0	ı	0	10.	10	10	20
Cenizo	06	40	100	20	20	0	80	80	06	10	80	09	80	80
Dondiego de día	20	10	06	10	80	0	20	80	80	80	80	30	06	06
Avena silvestre	09	0	0	0	0	40	0	0	0	0	0	0	30	30
Bledo	02	20	100	30	20	0	20	80	80	70	20	09	06	80
Césped Surinam	20	0	20	0	0	0	0	0	ı	0	0	0	10	20
Malva asiática	20	20	80	0	40	0	20	20	80	0	20	10	20	20
Trigo	20	0	0	0	0	20	30	20	0	0	0	0	30	30
Tabla B						ပိ	Compuestos							
125 g ia/ha	21	52	54	22	99	75	9/	77	78	79	83	88	95	94
Post-emergencia														
Mijo de los arrozales	20	30	0	0	0	06	06	06	06	80	80	06	10	06
Césped negro	20	0	40	30	0	09	09	09	40	20	09	09	20	09

Cadillo	80	40	20	20	0	100	06	100	100	09	100	100	80	100
Maíz	0	0	0	0	0	20	20	80	80	09	10	80	0	8
Garranchuelo	30	0	20	0	0	80	06	80	20	09	09	80	20	80
Cola de zorro gigante	0	40	20	20	0	80	80	80	20	20	20	20	30	09
Cenizo	80	80	80	20	20	100	100	100	100	100	100	100	06	90
Dondiego de día	80	06	80	80	0	100	100	100	100	100	100	06	09	90
Avena silvestre	20	0	0	0	0	09	09	09	20	40	40	20	0	30
Bledo	80	09	80	20	20	06	100	100	100	100	100	100	80	90
Césped Surinam	0	0	0	0	0	80	80	80	80	09	09	80	10	80
Malva asiática	20	40	20	10	0	100	06	06	80	80	06	100	09	100
Trigo	30	0	0	0	0	20	02	09	20	40	30	09	0	09
Tabla B						ပိ	Compuestos	S						
125 g ia/ha	98	113	117	124	125	126	128	129	133	135	136			
Post-emergencia														
Mijo de los arrozales	06	80	06	0	0	0	09	20	20	06	06			
Césped negro	ı	40	20	0	0	0	20	20	20	20	20			
Cadillo	06	06	100	30	40	0	06	100	100	100	100			
Maíz	06	40	06	0	0	0	20	80	80	80	70			
Garranchuelo	80	40	80	10	20	0	40	20	20	20	80			
Cola de zorro gigante	80	20	80	10	0	0	20	20	20	80	70			
Cenizo	100	06	100	40	09	30	06	100	100	100	100			
Dondiego de día	100	06	100	20	20	30	06	100	100	100	100			

Avena silvestre	09	20	20	0	0	0	40	40	09	09	20			
Bledo	100	06	100	20	09	0	06	100	100	100	100			
Césped Surinam	06	80	20	0	0	0	40	70	20	80	80			
Malva asiática	100	80	100	20	0	10	80	06	100	100	06			
Trigo	20	20	20	0	0	0	20	20	20	09	09			
Tabla B						ŏ	Compuestos	တ္						
62 g ia/ha	~	4	31	45	23	92	75	9/	77	78	62	83	88	92
Post-emergencia														
Mijo de los arrozales	20	20	0	0	80	20	80	06	09	80	20	20	06	10
Césped negro	40	20	0	0	20	20	20	20	20	20	20	20	40	20
Cadillo	06	06	02	0	20	100	20	09	20	100	ı	06	100	09
Maíz	30	20	0	0	0	80	09	20	30	40	20	10	20	0
Garranchuelo	20	80	0	0	0	80	20	70	20	09	30	20	20	0
Cola de zorro gigante	20	80	0	0	30	20	09	09	70	09	40	40	09	20
Cenizo	100	100	40	10	06	100	06	100	100	100	06	100	100	06
Dondiego de día	06	06	20	40	06	80	100	100	100	100	06	09	09	20
Avena silvestre	20	20	0	0	30	40	20	20	20	20	30	0	40	0
Bledo	06	100	20	30	80	100	80	06	06	80	80	100	100	70
Césped Surinam	09	06	0	0	10	80	20	70	70	09	20	20	80	0
Malva asiática	06	20	10	0	40	06	20	06	80	20	20	80	06	20
Trigo	30	40	0	0	30	20	20	09	20	20	0	0	20	0
Tabla B			Com	Compuestos										

62 g ia/ha	94	92	113	117	128	129	133	135	136	
Post-emergencia										
Mijo de los arrozales	80	06	20	06	40	09	20	20	70	
Césped negro	40	09	30	09	40	20	09	09	70	
Cadillo	100	06	06	100	20	20	100	100	06	
Maíz	70	80	10	06	10	20	20	20	40	
Garranchuelo	20	80	20	09	20	20	09	09	70	
Cola de zorro gigante	20	80	20	80	30	40	09	80	09	
Cenizo	06	100	80	06	06	100	100	100	100	
Dondiego de día	80	06	06	80	40	20	20	100	40	
Avena silvestre	30	30	40	30	0	0	40	09	20	
Bledo	06	100	20	100	06	100	06	100	06	
Césped Surinam	80	80	30	20	30	20	09	80	70	
Malva asiática	06	100	09	06	20	80	06	100	80	
Trigo	40	40	30	20	0	0	0	40	20	
Tabla B	Compuesto		Tabla B			Compuesto	nesto	_	Tabla B	
4 g ia/ha	65	•	4 g ia/ha				65	4	4 g ia/ha	92
Post-emergencia		_	Post-emergencia	gencia				ш	Post-emergencia	
Mijo de los arrozales	20		Cola de zorro gigante	rro gigar	ite		40	O	Césped Surinam	20
Césped negro	20		Cenizo				80	2	Malva asiática	20
Cadillo	80	_	Dondiego de día	de día			20	F	Trigo	0
Maíz	10		Avena silvestre	estre			0			

Garranchuelo	20	՝	Bledo				20							
Tabla B						Comp	Compuestos							
500 g ia/ha	7	ဗ	2	7	ω	0	10	7	12	13	14	15	16	17
Pre-emergencia														
Mijo de los arrozales	06	0	30	30	06	06	20	10	80	80	80	06	06	80
Cadillo	100	80	80	80	100	100	06	06	06	100	80	100	100	06
Maíz	80	0	20	0	06	80	0	0	30	30	20	80	20	09
Garranchuelo	06	20	20	30	06	100	09	80	20	20	80	06	100	100
Cola de zorro gigante	06	0	10	0	06	80	20	20	20	40	80	80	80	20
Cenizo	100	06	100	06	100	100	06	100	100	100	100	100	100	100
Dondiego de día	100	09	80	80	100	100	06	06	06	100	100	100	100	100
Bledo	100	06	06	06	100	100	06	06	06	06	06	100	06	100
Césped Surinam	06	20	10	0	06	06	0	20	ı	ı	80	06	80	06
Malva asiática	100	20	06	80	100	100	06	06	06	06	80	100	100	06
Trigo	20	0	20	30	80	80	0	20	09	09	20	09	09	09
Tabla B						ŏ	Compuestos	Ø						
500 g ia/ha	18	19	21	22	23	24	25	26	27	28	30	31	32	33
Pre-emergencia														
Mijo de los arrozales	0	06	10	20	0	20	09	06	09	30	40	20	10	20
Cadillo	40	100	80	80	10	06	06	06	06	06	100	100	06	06
Maíz	0	06	ı		0	0	0	80	20	0	80	40	0	30
Garranchuelo	0	06	09	100	0	80	20	06	70	80	06	80	40	20

Cola de zorro gigante	0	80	10	20	0	09	80	80	40	20	80	80	0	40
Cenizo	09	100	80	100	30	06	06	100	100	100	06	100	06	100
Dondiego de día	0	100	06	100	10	06	06	100	06	06	100	100	80	06
Bledo	20	100	02	80	20	06	06	100	100	06	06	100	06	06
Césped Surinam	0	06	20	20	0	20	20	80	20	09	80	09	0	40:
Malva asiática	40	100	80	100	20	80	80	100	06	06	80	06	80	80
Trigo	0	09	30	20	0	20	09	09	20	40	09	20	10	20
Tabla B						ŏ	Compuestos	SC						
500 g ia/ha	34	35	36	37	38	39	40	4	42	44	46	47	48	49
Pre-emergencia														
Mijo de los arrozales	0	80	0	40	0	20	06	10	0	10	0	40	10	09
Cadillo	09	06	09	80	0	30	100	10	20	80	40	06	20	06
Maíz	0	20	0	10	10	20	20	0	0	0	0	30	0	40
Garranchuelo	20	80	0	06	0	20	80	20	20	80	40	06		06
Cola de zorro gigante	20	20	0	09	0	20	80	0	0	40	20	40	20	70
Cenizo	80	100	40	100	06	100	100	09	06	09	09	100	100	100
Dondiego de día	20	100	0	20	20	20	100	20	80	40	06	100	30	100
Bledo	80	100	20	100	20	100	100	09	06	80	06	06	80	100
Césped Surinam	20	09	0	40	0	0	20	0	20	09	40	20	09	09
Malva asiática	09	06	40	80	0	30	06	30	20	80	20	06	0	06
Trigo	10	20	0	09	0	10	20	20	10	09	20	20	30	20
Tabla B		O	Compuestos	so										

500 g ia/ha	20	51	52	54	22	26	124	125	126				
Pre-emergencia													
Mijo de los arrozales	20	0	30	40	09	0	0	1	0				
Cadillo	06	20	09	06	06	30	09	06	06				
Maíz	20	0	0	0	0	0	0	0	0				
Garranchuelo 8	80	0	0	0	09	0	0	100	100				
Cola de zorro gigante	40	0	0	0	0	0	0	0	0				
Cenizo	100	80			ı	ı	02		ı				
Dondiego de día	06	40	100		100	20	09	100	70				
Bledo	06	20	20	100	100	80	20	06	80				
Césped Surinam	20	0	0	0	20	0	0	0	20				
Malva asiática	06	0	30	80	06	30	20	06	20				
7rigo	40	0	0	0	70	0	0	0	0				
Tabla B		Comp	Compuestos			Tabla	В				Compuestos	stos	
250 g ia/ha	_	4	45		53	250 g	250 g ia/ha			_	4	45	53
Pre-emergencia						Pre-e	Pre-emergencia	oja					
Mijo de los arrozales	06	06	0		20	Dond	Dondiego de día	día		100	100	20	100
Cadillo	100	100	0		100	Bledo				100	100	20	100
Maíz	80	80	•		0	Césp	Césped Surinam	am		80	06	0	30
Garranchuelo	06	06	0		20	Malva	Malva asiática	æ		100	06	0	06
Cola de zorro gigante	06	80	0		20	Trigo				09	20	0	40
Cenizo	100	100	30	_	ı								

Tabla B						ŏ	Compuestos	ω						
125 g ia/ha	7	3	2	7	80	တ	10	7	12	13	4	15	16	17
Pre-emergencia														
Mijo de los arrozales	20	0	10	0	20	20	20	0	20	40	10	40	30	20
Cadillo	06	80	20	20	06	06	80	80	80	06	09	20	20	80
Maíz	0	0	0	0	06	20	0	0	0	1	0	20	30	0
Garranchuelo	06	10	20	0	80	06	20	30	20	20	10	20	20	20
Cola de zorro gigante	30	0	0	0	20	20	0	10	20	20	30	40	30	20
Cenizo	100	20	06	80	06	06	ı	100	06	06	06	06	100	06
Dondiego de día	100	20	20	20	100	100	80	80	20	06	20	20	06	100
Bledo	06	80	06	06	100	06	80	80	80	80	80	06	06	80
Césped Surinam	40	0	0	0	09	20	0	10	0	0	40	30	40	30
Malva asiática	06	40	20	20	80	06	80	80	80	80	09	20	80	20
Trigo	09	0	ı	0	09	40	0	0	30	40	40	40	20	40
Tabla B						ŏ	Compuestos	Ø						
125 g ia/ha	18	19	21	22	23	24	25	26	27	28	30	32	33	34
Pre-emergencia														
Mijo de los arrozales	0	40	0	0	0	0	20	20	30	10	10	0	20	0
Cadillo	10	06	30	20	0	80	80	80	80	80	09	80	80	30
Maíz	0	20	0	10	0	ı	0	30	10	0	10	0	10	0
Garranchuelo	0	80	0	20	0	09	09	30	30	20	20	0	0	0
Cola de zorro gigante	0	20	0	0	0	10	40	10	0	30	10	0	0	0

Cenizo	10	100	02	20	0	02	06	100	06	80	80	40	06	20
Dondiego de día	0	06	20	100	0	20	80	06	80	80	06	40	0	20
Bledo	0	06	20	09	0	80	80	06	06	80	20	40	80	40
Césped Surinam	0	09	0	0	0	10	20	10	0		0	0	0	10
Malva asiática	0	06	10	30	0	20	20	06	80	80	10	20	20	30
Trigo	0	20	0	10	0	30	20	30	10	10	30	0	0	0
Tabla B						ŏ	Compuestos	ý						
125 g ia/ha	35	36	37	38	33	40	41	42	44	46	47	48	49	20
Pre-emergencia														
Mijo de los arrozales	10	0	10	0	0	20	0	0	0	0	0	0	30	30
Cadillo	09	10	20	0	10	06	0	40	10	0	80	0	80	80
Maíz	0	0	0	0	30	0	0	0	0	0	0	0	10	20
Garranchuelo	30	0	20	0	0	09	0	0	40	0	20	10	80	20
Cola de zorro gigante	0	0	10	0	0	20	0	0	20	0	20	30	40	10
Cenizo	06	0	100	20	20	100	30	40	ı	10	06	20	06	06
Dondiego de día	20	0	10	0	30	06	0	20	10	20	80	0	80	80
Bledo	80	0	100	10	20	06	0	20	20	80	80	09	06	20
Césped Surinam	10	0		0	0	20	ı	0	40	0	0	30	40	20
Malva asiática	20	10	40	0	0	06	10	10	30	0	09	0	80	80
Trigo	20	0	30	0	0	40	0	10	30	0	20	0	30	20
Tabla B						ŏ	Compuestos	တ						
125 g ia/ha	51	52	54	22	26	75	92	77	78	62	83	88	92	.94

Mijo de los arrozales	0	0	0	0	0	80	06	06	20	20	30	1	30	i
Cadillo	0	10	20	20	0	06	100	100	100	80	20	06	20	20
Maíz	0		0	0	0	80	80	80	70	09	0	10	0	0
Garranchuelo	0	0	0	20	0	06	06	06	06	20	09	20	10	20
Cola de zorro gigante	0	0	0	0	0	06	80	06	20	20	10	30	10	20
Cenizo			ı	ı	•	100	100	100	100	06	06		80	
Dondiego de día	0	10	0	80	•	100	100	100	100	06	10	10	0	0
Bledo	10		100	80	•	100	100	100	100	100	100		80	
Césped Surinam	0	0	0	0	0	80	06	06	06	0	10	20	0	30
Malva asiática	0	0	10	20	0	100	06	100	06	80	09	06	20	20
Trigo	0	0	0	0	0	20	70	20	70	09	20	20	30	09
Tabla B						ŭ	Compuestos	SC						
125 g ia/ha	92	113	117	124	125	126	128	129	133	135	136			
Pre-emergencia														
Mijo de los arrozales		20	30	0	0	0	10	30	30	06	80			
Cadillo	100	80	06	10	30	0	10	30	20	100	20			
Maíz	80	20	10	0	0	0	0	0	0	80	0			
Garranchuelo	100	20	06	0	0	80	0	30	70	06	80			
Cola de zorro gigante	06	10	06	0	0	0	0	0	20	06	20			
Cenizo	ı	80	100	0	•	ı	20	80	20	100	100			
Dondiego de día	09	09	20	10	30	0	0	0	0	100	40			

Pre-emergencia

Bledo	ı	06	100	20	30	20	20	06	80	100	100			
Césped Surinam	100	09	100	0	0	0	0	10	10	06	20			
Malva asiática	100	06	06	20	10	10	40	09	09	100	80			
Trigo	80	09	80	0	0	0	0	20	09	06	20			
Tabla B						Ö	Compuestos	S						
62 g ia/ha	_	4	31	45	53	92	75	92	77	78	79	83	88	95
Pre-emergencia														
Mijo de los arrozales	09	30	20	0	0	40	09	40	20	09	0	20	ı	10
Cadillo	06	80	06	•	09	80	06	80	80	80	20	10	09	40
Maíz	20	0	0	0	0	0	20	20	20	30	30	0	0	0
Garranchuelo	06	20	10	0	0	20	80	80	80	80	0	30	20	0
Cola de zorro gigante	30	10	10	0	0	30	30	40	20	20	0	0	10	0
Cenizo	100	06	06	0		06	100	06	100	06	06	20		20
Dondiego de día	06	09	06	30	06	30	80	100	100	80	20	0	0	0
Bledo	06	06	06	0	09	100	100	100	100	100	80	80	ı	40
Césped Surinam	20	40	20	0	0	40	20	20	09	09	0	0	20	0
Malva asiática	06	80	80	0	20	20	80	80	80	70	20	20	20	20
Trigo	30	20	40	0	0	80	30	30	20	30	0	20	20	0
Tabla B						ŏ	Compuestos	S						
62 g ia/ha	94	92	113	117	128	129	133	135	136					
Pre-emergencia														
Mijo de los arrozales	ı	ı	0	10	0	10	30	70	30					

Cadillo	30	06	20	20	0	10	20	100	40	
Maíz	0	40	0	0	0	ı	0	20	0	
Garranchuelo	40	80	40	06	0	10	40	80	20	
Cola de zorro gigante	0	20	0	20	0	0	0	09	10	
Cenizo	ı	•	20	06	10	ı	ı	100	06	
Dondiego de día	0	30	20	10	0	0	0	100	10	
Bledo	ı	•	20	100	10	80	20	100	80	
Césped Surinam	10	20	20	80	0	0	0	80	10	
Malva asiática	40	80	80	70	0	20	20	06	09	
Trigo	30	20	10	20	0	0	20	70	20	
Tabla B	Compuesto		Tabla B			Compuesto	lesto	—	Tabla B	Compuesto
4 g ia/ha	65	•	4 g ia/ha				65	4	4 g ia/ha	65
Pre-emergencia			Pre-emergencia	encia				<u> </u>	Pre-emergencia	
Mijo de los arrozales	0		Cola de zorro gigante	ro gigant	Φ		0	O	Césped Surinam	0
Cadillo	10	Ū	Cenizo				30	2	Malva asiática	0
Maíz	0	_	Dondiego de día	e día			0	-	Trigo	20
Garranchuelo	20	_	Bledo				20			
Garranchuelo	20	_	Bledo				20			

PRUEBA C

5

Se sembraron semillas o núculas de especies vegetales de césped bermuda (*Cynodon dactylon*), césped Surinam (*Brachiaria decumbens*), cadillo (*Xanthium strumarium*), maíz (*Zea mays*), garranchuelo (*Digitaria sanguinalis*), césped de cálices coposo (*Eriochloa villosa*), cola de zorro gigante (*Setaria faberii*), hierba de ganso (*Eleusine indica*), hierba Johnson (*Sorghum halepense*), falso ciprés (*Kochia scoparia*), cenizo (*Chenopodium album*), dondiego de día (*Ipomoea coccinea*), hierba mora negra del este (*Solanum ptycanthum*), chufa amarilla (*Cyperus esculentus*), bledo (*Amaranthus retroflexus*), ambrosía común (*Ambrosia elatior*), soja (*Glycine max*), girasol (oleaginoso) común (*Helianthus annuus*), y malva asiática (*Abutilon theophrasti*) y se trataron en pre-emergencia con sustancias químicas de prueba formuladas en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo.

10 Al mismo tiempo, plantas seleccionadas de estas especies de cultivo y malas hierbas y también cebada de invierno (Hordeum vulgare), césped negro (Alopecurus myosuroides), alpiste (Phalaris minor), pamplina (Stellaria media), bromo velloso (Bromus tectorum), almorejo (Setaria viridis), ballico italiano (Lolium multiflorum), trigo (Triticum aestivum), avena silvestre (Avena fatua) y heno ahumado (Apera spica-venti) se trataron en post-emergencia con aplicaciones de algunas de las sustancias químicas de prueba formuladas de la misma manera. Las plantas variaron en altura desde 2 a 18 cm (etapa de 1- a 4-hojas) durante los tratamientos en post-emergencia. Las especies 15 vegetales en la prueba de arrozal inundado consistieron en arroz (Oryza sativa), juncia paraguas (Cyperus difformis), ensalada de pato (Heteranthera limosa) y mijo de los arrozales (Echinochloa crus-galli) desarrolladas hasta la etapa de 2-hojas para la prueba. Las plantas y controles tratados se mantuvieron en un invernadero durante 12 a 14 días, tiempo tras el cual se compararon todas las especies con los controles y se evaluaron visualmente. Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla C, están basadas en una escala de 0 a 20 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba.

Tabla C						Com	Compuestos						
500 g ia/ha	-	7	4	2	6	4	15	16	17	19	22	26	37
Inundación													
Mijo de los arrozales	25	75	85	20	85	45	75	20	20	09	20	0	0
Ensalada de pato	0	92	100	0	06	22	85	82	80	09	92	40	100
Arroz	0	92	80	0	75	0	20	92	75	20	09	25	0
Juncia paraguas	0	25	75	0	85	30	25	22	25	20	98	20	92
Tabla C						Com	Compuestos						
250 g ia/ha	-	7	4	2	6	4	15	16	17	19	22	26	37
Inundación													
Mijo de los arrozales	15	45	65	0	22	0	25	15	0	0	40	0	0
Ensalada de pato	0	06	06	0	80	45	20	75	80	09	06	40	100
Arroz	0	45	75	0	22	0	20	0	45	10	40	20	0
Juncia paraguas	0	0	92	0	15	0	10	20	20	20	75	20	06
Tabla C						Com	Compuestos						
125 g ia/ha	~	7	4	2	0	4	15	16	17	19	22	26	37
Inundación													
Mijo de los arrozales	0	20	09	0	15	0	0	0	0	0	0	0	0
Ensalada de pato	,	20	80	0	20	40	45	92	0	40	09	40	92
Arroz	0	25	40	0	30	0	0	0	0	0	20	0	0

Juncia paraguas	1	0	30		0	15	0	0	0	0	20	30	0	82	
Tabla C							Compuestos	estos							
62 g ia/ha	~	7		4	2	6	1 4 1	15	16	17	19	22	26	37	
Inundación															
Mijo de los arrozales	0	0		0	0	0	0	0	0	0	0	0	0	0	
Ensalada de pato	0	20	70		9	45	0	45	65	0	20	30	40	92	
Arroz	0	0		0	0	0	0	0	0	0	0	20	0	0	
Juncia paraguas	0	0		0	0	0	0	0		0	20	0	0	82	
Tabla C							Compuestos	estos							
500 g ia/ha	~	4		2	_	8	10 1	15	22	27	28	35	37	49	20
Post-emergencia															
Cebada	•	65									•	45	•	40	ı
Césped bermuda	06	80	80		0	75	0 7	75	09	30	0	1	20	65	92
Césped negro	•	70								1	65		•	09	ı
Césped bromo velloso	•	70						ı			•	40	•	30	ı
Alpiste	1	09						1		1	•	22	1	40	ı
Pamplina -		100		0	100	20	82	06	0	20	'	0	4	45 20	
Cadillo 1	100	100	100	30	100	75	100	100	25	100	· 0	95		95 90	
Maíz 4	ζ	92	45	0	06	0	75	92	0	0	•	25		25 65	
Garranchuelo 9	0	80	80	25	75	0	80	82	30	20	'	09		95 80	

Césped de cálices, coposo	06	92	20	20	82	0	22	65	0	0		45	92	30
Cola de zorro gigante	06	92	09	10	75	0	20	09	0	15	1	45	0	20
Cola de zorro, almorejo	ı	75			,						99		09	
Hierba de ganso	20	75	20	0	09	0	22	25	0	15	i	0	25	0
Hierba Johnson	20	92	45	0	82	0	80	100	0	0		22	20	09
Falso ciprés	100	100	100	80	100	100	100	100	09	92	i	92	100	92
Cenizo	100	100	100	80	100	100	100	92	20	92	i	92	92	85
Dondiego de día	100	100	100	92	100	92	100	100	85	92	ı	92	100	92
Chufa, amarilla	2	0	0	0	0	0	0	0	0	0		20	0	0
Avena silvestre	ı	20									22		09	
Bledo	100	100	100	22	100	92	100	100	80	75		100	92	92
Ambrosía	100	100	100	75	100	06	92	06	20	92		92	06	80
Ballico, italiano	ı	92						1			40		20	
Soja	100	100	100	09	100	100	100	100	92	92		100	100	100
Césped Surinam	92	92	20	0	80	0	92	82	0	0		0	45	09
Malva asiática	100	100	92	40	92	06	06	92	30	75	ı	92	80	80
Trigo	ı	92		1	ı	ı	1		1		45	ı	09	
Heno ahumado	ı	75		1	ı	ı	1		1		99	ı	09	
Tabla C	Compuesto	esto	Tabla	O		Co	Compuesto	0	Ta	Tabla C		Ö	Compuesto	ę
500 g ia/ha	51	_	500 g ia/ha	ia/ha				51	200	500 g ia/ha	æ			51

Post-emergencia		□	ost-eme	Post-emergencia					Post-er	Post-emergencia	ä			
Césped bermuda	0	O	ola de z	Cola de zorro gigante	ante		0		Chufa,	Chufa, amarilla	~		0	
Pamplina	45	I	Hierba de ganso	ganso			0		Bledo				82	
Cadillo	85	I	Hierba Johnson	hnson			0		Ambrosía	sía			85	
Maíz	0	ιĽ	Falso ciprés	és			92		Soja				98	
Garranchuelo	45	O	Cenizo				06		Céspec	Césped Surinam	٤		0	
Césped de cálices, coposo	0		Dondiego de día	de día			100		Malva	Malva asiática			65	
Tabla C							Compuestos	tos						
250 g ia/ha	~	7	က	4	2	7	∞	6	10	15	16	17	22	27
Post-emergencia														
Cebada		09	30	65			ı		•			•	ı	
Césped bermuda	06	80	45	20	20	0	92	80	0	92	75	0	09	0
Césped negro		75	0	70			ı	1	•			•		
Césped bromo velloso	1	09	20	92				ı	•			•		
Alpiste		40	10	09			ı	1	•			•		
Pamplina	06	92	40	100	20	0	95	100	20	92	35	85	85	0
Cadillo	100	82	06	100	100	30	100	100	09	100	100	100	100	25
Maíz	40	30	0	06	40	0	70	92	0	22	22	20	09	0
Garranchuelo	85	70	0	75	20	2	70	80	0	92	75	65	82	2
Césped de cálices, coposo	06	75	0	85	20	0	75	85	0	65	92	20	09	0

Cola de zorro gigante	80	20	0	82	20	0	70	80	0	92	92	35	20	0
almorejo	•	20	35	20	•	•	1	•	•	•	•	•	•	•
Hierba de ganso	40	45	0	65	40	0	45	45	0	40	70	0	20	0
Hierba Johnson	20	09	0	92	45	0	45	85	0	20	20	09	80	0
Falso ciprés	100	100	100	100	100	70	100	100	92	100	100	100	100	20
Cenizo	100	100	100	100	100	20	100	100	06	100	100	0	92	25
Dondiego de día	100	100	75	100	100	22	100	100	92	100	100	100	92	85
Chufa, amarilla	2	20	0	0	0	0	0	0	0	0	0	0	0	0
Avena silvestre	•	09	40	20			ı	1	ı	ı	ı	•	1	•
Bledo	100	100	80	100	06	40	100	100	92	82	92	92	100	30
Ambrosía	100	92	92	100	92	92	92	100	80	06	92	92	06	40
Ballico, italiano	•	09	35	92			ı	1	ı	ı	ı	•	1	•
Soja	100	100	92	100	100	35	100	100	06	92	100	100	100	85
Césped Surinam	06	20	0	75	30	0	70	80	0	22	22	0	82	0
Malva asiática	100	100	20	100	06	35	85	92	80	82	06	92	06	0
Trigo	•	92	10	65			1		i	ı	ı	,	1	•
Heno ahumado	ı	20	30	70	ı		ı	1	ı	ı	•	•	1	•
Tabla C							Compuestos	stos						
250 g ia/ha	28	30	34	35	37	42	49	20	21	64	78	88		
Post-emergencia														

Cebada	ı	1	40	40	1	ı	30	1	1	100	06	•
Césped bermuda	0	2	Î	1	0	2	55	06	0	20	99	80
Césped negro	1	•	45	09	•	•	20	•	ı	20	20	i
Césped bromo velloso	•		35	40		ı	0		i	20	22	ı
Alpiste	ı	•	45	45	•	•	30	•	ı	10	0	ı
Pamplina	15	82	ı	•	0	10	40	•	0	22	20	100
Cadillo	92	100	ı	•	92	20	92	92	20	•	100	06
Maíz	0	20	Î	1	15	0	20	09	0	•	40	30
Garranchuelo	0	20	i	•	40	0	75	75	0	06	06	82
Césped de cálices, coposo	0	40	i	•	0	2	09	15	0	•	06	82
Cola de zorro gigante	0	40	ı	•	40	0	0	0	0	20	20	82
Almorejo		•	45	09	•	•	20	•	1	45	75	•
Hierba de ganso	0	0	1	•	0	0	20	0	0	20	20	80
Hierba Johnson	0	40	i	•	•	10	35	•	0	82	40	82
Falso ciprés	92	100	ı	•	92	82	92	65	82	06	92	92
Cenizo	82	06		•	92	25	92	80	82	06	100	100
Dondiego de día	92	92	1	•	80	82	80	82	82	06	100	82
Chufa, amarilla	0	2	1	•	0	0	0	0	0	20	0	75
Avena silvestre			20	45			40			10	09	1
Bledo	09	06	•		100	30	92	82	80	100	100	100

	06	06	ı	1	06	40	75	45	80	06	100	100		
		•	09	40	•	•	20	1	•	45	25			
	95	92	1	1	95	70	95	100	95		100	100		
	0	35	1		0	0	40	0	0		06	82		
	20	09			06	20	75	20	09	92	100	92		
		•	35	45	•	•	20	ı	ı	10	22	ı		
	١.		09	92		•	09	1	•	09	40			
							Compuestos	estos						
	_	7	က	4	2	7	œ	o	10	7	15	16	17	19
		09	0	65		•	•	,	•	•	•		ı	45
	06	02	0	92	20	0	09	20	0	0	45	09	0	45
		02	0	92	•	•	ı	ı	ı	•	ı	ı	ı	65
Césped bromo velloso		45	20	09		•	ı		•	•	•		·	09
		40	10	45		•	ı	1	•	•	1		·	65
		75	0	85	10	0		75 100	0	0	20	20	55	2
_	100	82	75	100	92	30	100	100	15	40	100	100	100	06
	15	20	0	80	40	0	20	92	0	0	15	20	0	35
	85	09	0	75	20	0	92	75	0	70	45	45	20	20

Césped de cálices, coposo	80	70	0	20	20	0	09	70	0	0	20	0	0	65
Cola de zorro gigante	65	92	0	75	30	0	09	75	0	0	09	22	0	22
Almorejo		92	35	20	•		ı	ı	•	1	•	•	ı	09
Hierba de ganso	0	0	0	20	2	0	0	40	0	0	0	0	0	0
Hierba Johnson	30	25	0	80	40	0	35	80	0	0	22	09	40	
Falso ciprés	100	92	06	100	100	92	100	100	06	06	92	100	100	06
Cenizo	100	100	06	100	100	09	100	100	80	80	100	100	100	92
Dondiego de día	100	100	92	100	92	20	92	100	82	0	92	100	100	85
Chufa, amarilla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Avena silvestre		22	40	92		•	,	ı	•		•	•	,	65
Bledo	100	92	75	100	06	40	75	100	80	06	20	92	75	65
Ambrosía	100	06	80	100	92	35	80	92	65	75	82	92	92	80
Ballico, italiano		09	35	09		•	,	ı	•		•	•	,	70
Soja	100	100	06	100	100	25	92	100	80	92	92	100	100	75
Césped Surinam	06	92	0	75	20	0	65	75	0	0	20	25	0	•
Malva asiática	06	80	22	100	06	10	70	80	20	75	70	65	80	09
Trigo		92	0	09	•		ı	ı	•	1	•	•	ı	45
Heno ahumado		20	30	92	•			ı	•	1	•	1		09
Tabla C							Compuestos	stos						
125 g ia/ha	22	25	27	28	30	34	35	37	42	47	49	20	51	64

Cebada		ı	•	1	•	30	35	1			20			•
Césped bermuda	09	0	0	0	2			0	0	15	22	75	0	65
Césped negro		ı	•			35	20	ı			40	•		20
Césped bromo velloso	•		•			30	30	ı	•		0	•		20
Alpiste	•		1			35	45	1			20	•		10
Pamplina	09	85	0	0	99		ı	0	0	0	0	0	0	0
Cadillo	06	06	25	92	100		1	92	2	92	92	40	92	100
Maíz	40	0	0	0	0		ı	10	0	0	0	0	0	20
Garranchuelo	55	20	0	0	2		ı	15	0	20	92	09	0	85
Césped de cálices, coposo	09	30	0	0	0		1	0	0	0	15	0	0	65
Cola de zorro gigante	45	30	0	0	0		ı	0	0	0	0	0	0	20
Almorejo		ı	ı	1	•	45	20	ı	1		20		ı	40
Hierba de ganso	10	0	0	0	0		ı	0	0	0	0	0	0	09
Hierba Johnson	80	20	0	0	10		ı	20	0	0	20			85
Falso ciprés	100	85	20	85	100		ı	06	20	100	45	22	09	06
Cenizo	92	06	20	75	80		ı	92	20	80	06	75	75	06
Dondiego de día	06	06	85	92	92	ı	ı	65	80	92	20	80	80	06
Chufa, amarilla	0	0	0	0	0		ı	0	0	0	0	0	0	20
Avena silvestre	ı	ı	ı		ı	45	45	ı	ı	ı	40	ı	ı	10

Bledo	100	100	20	35	80	•	ı	92	20	20	80	80	20	100
Ambrosía	85	20	20	80	85	•	ı	80	40	80	92	45	80	85
Ballico, italiano			ı	ı	•	45	40	ı		٠	30			35
Soja	100	06	45	85	06	•	ı	82	40	75	92	92	92	100
Césped Surinam	09	2	0	0	0	•	ı	0	0	20	0	0	0	09
Malva asiática	09	45	0	20	09	•	ı	82	0	0	70	22	20	06
Trigo	•		1	ı	•	30	40	ı		•	40			10
Heno ahumado	•				•	20	55	ı			40			22
Tabla C							Compuestos	stos						
125 g ia/ha	65	9/	78	79	83	88	94	117	129	133	135	136		
Post-emergencia														
Cebada	20		30	35	•	•	ı	ı	45	٠	•	22		
Césped bermuda	70	75	09	ı	22	20	80	06		82	75	82		
Césped negro	65		2	09	•	•	ı	ı	20			92		
Césped bromo velloso	55		15	35	•	•	ı	ı	0	•	•	22		
Alpiste	45		0	35 -	•	•	ı	ı	30	٠	•	65		
Pamplina	70	92	ı		30	100	92	ı		45	85	20		
Cadillo	100	100	100	ı	100	06	100	06		92	100	100		
Maíz	06	20	40	1	09	09	ı	ı	ı	80	35	75		
Garranchuelo	06	06	06	1	75	80	82	06	1	80	75	75		

Césped de cálices, coposo	85	92	ı	•	09	85	06	85		20	80	20		
Cola de zorro gigante	70	82	65	•	40	80	80	80	ı	75	75	85		
almorejo	70	ı	70	09	•	•	ı	ı	09	•	1	70		
Hierba de ganso	70	20	40	•	45	75	80	80	ı	20	22	80		
Hierba Johnson	85	92	20	•	70	75	06	20	ı	92	70	92		
Falso ciprés	06	100	92	•	06	92	10	06	ı	82	92	06		
Cenizo	92	100	92	•	100	92	100	92	ı	100	92	92		
Dondiego de día	92	100	100	•	06	85	100	20	ı	100	92	100		
Chufa, amarilla	20	09	0	•	75	22	75	09		80	40	75		
Avena silvestre	40	•	09	45	•		1	,	40		•	09		
Bledo	100	100	92	•	100	100	100	92		100	100	100		
Ambrosía	92	100	92	•	92	100	100	100		92	92	92		
Ballico, italiano	09	•	20	45	•	•		ı	09	•	•	65		
Soja	100	100	100	•	100	100	100	100	•	100	100	100		
Césped Surinam	80	ı	55	•	92	80	100	80	ı	20	09	70		
Malva asiática	06	92	92	1	100	92	96	92		92	92	92		
Trigo	45	1	30	40	•	•	1	•	35	•	•	22		
Heno ahumado	20	1	30	20	•	•	1	•	09	•		- 65		
Tabla C							Compuestos	stos						
62 g ia/ha	_	7	က	4	2	7	80	6	10	7	15	16	17	19

Cebada	ı	35	0	30	į	ı	ı	ı	1	ı	1	1	ı	35
Césped bermuda	20	09	0	40	2	0	20	65	0	0	0	0	0	30
Césped negro	ı	65	0	65	į	ı	ı	ı	1	ı	1	1	ı	65
Césped bromo velloso	•	35	20	45	ı	1	ı	ı		•	•	1	ı	20
Alpiste	•	40	10	35	•	1	ı	ı		ı		1	ı	09
Pamplina	80	65	0	30	0	0	20	82	0	0	20	0	0	2
Cadillo	06	75	65	85	80	30	80	85	0	25	82	92	100	20
Maíz	10	15	0	0	10	0	0	22	0	0	15	0	0	0
Garranchuelo	30	22	0	20	40	0	09	20	0	0	15	15	0	70
Césped de cálices, coposo	65	09	0	09	2	0	30	09	0	0	0	0	0	92
Cola de zorro gigante	40	35	0	09	20	0	40	65	0	0	45	20	0	40
almorejo	,	22	30	65	•	ı	ı	ı	•	•	•	1	ı	45
Hierba de ganso	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hierba Johnson	30	0	0	20	0	0	30	65	0	0	20	0	0	0
Falso ciprés	100	92	65	100	100	40	92	100	80	75	92	100	100	06
Cenizo	100	100	06	100	92	20	75	92	09	20	100	100	100	06
Dondiego de día	100	75	09	15	92	1	92	92	70	0	06	92	92	80
Chufa, amarilla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Avena silvestre	•	22	30	09	ı	•		•		•	•	•	ı	09

Bledo	06	80	92	100	85	20	20	20	92	80	99	06	65	65
Ambrosía	100	82	75	100	06	25	09	80	45	92	75	85	85	70
Ballico, italiano	•	45	35	45	•	•	ı	ı	ı	•	•	ı	ı	92
Soja	100	100	75	100	92	25	92	100	20	80	92.	92	92	75
Césped Surinam	06	22	0	09	0	0	40	92	0	0	0	0	0	45
Malva asiática	85	20	22	80	22	0	09	75	92	09	65	09	20	20
Trigo		09	0	20			ı	,					ı	40
Heno ahumado	•	92	30	09	•	•	ı	ı	ı	1	•	ı		09
Tabla C							Compuestos	tos						
62 g ia/ha	22	25	27	28	30	34	35	37	45	47	49	20	51	64
Post-emergencia														
Cebada	•		1		•	20	20	ı	ı	1	0	ı		20
Césped bermuda	20	0	0	0	0		ı	0	0	0	0	20	0	09
Césped negro			•			35	20	,			40		ı	45
Césped bromo velloso	•	1	1		•	0	30		ı		0	ı	ı	15
Alpiste	•		ı	ı	•	30	35	ı	ı	ı	0	ı		2
Pamplina	30	40	0	0	20	•	ı	0	0	0	0	0	0	0
Cadillo	06	06	20	85	92	•	ı	0	0	09	75	40	65	06
Maíz	30	0	0	0	0	•	ı	0	0	0	0	0	0	20
Garranchuelo	20	30	0	0	0	•	1	0	0	0	0	09	0	80

Césped de cálices, coposo	09	0	0	0	0	•		0	0	0	0	0	0	40
Cola de zorro gigante	40	2	0	0	0	•		0	0	0	0	0	0	20
Almorejo	i	ı	Ī	ı	1	40	40	1	ı	1	0	ı	1	30
Hierba de ganso	10	0	0	0	0	1		0	0	0	0	0	0	35
Hierba Johnson	40	10	0	0	2	1	ı	0	0	0		0	0	80
Falso ciprés	92	82	0	75	06	•		0	30	20	20	20	15	85
Cenizo	06	82	20	09	09	1		0	20	20	20	70	09	06
Dondiego de día	06	06	20	80	06	1	ı	0	20	40	20	65	80	06
Chufa, amarilla	0	0	0	0	0	1		0	0	0	0	0	0	20
Avena silvestre	i	ı	Ī	ı	1	40	30	1	ı	1	30	ı	1	2
Bledo	85	80	2	30	20	1		0	10	45	92	75	92	92
Ambrosía	80	92	2	65	80	1		0	10	40	45	20	92	80
Ballico, italiano	ı	ı	i	•	•	40	40	1	•	•	30	1		30
Soja	92	06	30	75	06	1		20	30	92	92	92	75	06
Césped Surinam	22	0	0	0	0	•		0	0	0	0	0	0	09
Malva asiática	22	45	0	45'	10	•		0	0	0	45	20	0	82
Trigo	1	1	ı	•	•	20	35	•	•	•	20	•		0
Heno ahumado	ı	ı	İ	•	•	40	40	•	•	•	40	•	1	55
Tabla C							Compuestos	stos						
62 g i <i>a</i> /ha	65	92	78	62	83	88	94	92	117	129	133	135	136	

Cebada	20	ı	2	35	1	ı	1	1	ı	45	,	ı	20
Césped bermuda	20	75	09	•	20	20	75	85	82	•	85	09	80
Césped negro	65		2	09			ı	ı	•	20	•	•	92
Césped bromo velloso	20		10	30		1	1	ı	•	0	•	ı	45
Alpiste	35		0	25		ı	1	ı	•	30	•		22
Pamplina	09	20	0	•	10	100	20	92	40	•	20	25	20
Cadillo	100	100	100	ı	20	06	06	100	06	Ī	92	ı	100
Maíz	06	25	40	ı	20	0	35	35	•	ı	09	20	92
Garranchuelo	06	82	06	ı	92	80	85	80	06		75	75	75
Césped de cálices, coposo	85	80	22	•	45	75	06	80	80	•	09	09	20
Cola de zorro gigante	20	25	30	ı	20	75	80	80	20	ı	20	99	75
almorejo	09		40	30		Ī	1	ı	•	40	ı	ı	20
Hierba de ganso	20	45	0		30	75	80	80	75	i	99	45	75
Hierba Johnson	85		10	ı	22	45	75	06	20	Ī	06	99	82
Falso ciprés	85	92	06	ı	75	92	92	92	06	ı	85	06	06
Cenizo	06	100	92	ı	92	92	92	100	92	Ī	92	06	92
Dondiego de día	06	92	06	•	06	i	06	92	20	i	100	92	06
Chufa, amarilla	20	40	0		09	45	20	75	20	i	75	15	75
Avena silvestre	20	•	10	25	•	•		ı	ı	40			22

Bledo	100	100	80	ı	100	100	100	100	92		92	100	100	
Ambrosía	92	92	85		75	100	92	92	100		82	85	06	
Ballico, italiano	22		10	40	•	٠	1	1		22			09	
Soja	100	92	100		100	100	100	100	100		100	100	100	
Césped Surinam	80	92	55		45	09	06	75	80		55	09	65	
Malva asiática	80	92	80	•	85	06	92	100	92		82	•	06	
Trigo	45		20	30	•	•	1	1		35		•	45	
Heno ahumado	20		30	45	•	•	1	1		09		•	65	
Tabla C							Compuestos	stos						
31 g ia/ha	7	က	o	7	16	17	19	25	30	34	42	47	64	65
Post-emergencia														
Cebada	0	0	ı		•	٠	25	1		20			20	40
Césped bermuda	15	0	09	0	0	0	2	0	0		0	0	20	09
Césped negro	09	0	ı	•	1	•	09	1	1	0		•	40	09
Césped bromo velloso	20	20	ı	•	•	•	0	1		0		•	10	20
Alpiste	30	10	ı		•	٠	09	1		20			2	30
Pamplina	09	0	15	0	0	0	0	1	40		0	0	0	09
Cadillo	92	09	40	0	75	92	25	82	06		0	45	06	100
Maíz	15	0	45	0	0	0	0	0	0		0	0	20	06
Garranchuelo	40	0	09	0	0	0	40	0	0	1	0	0	20	80

Césped de cálices, coposo	40	0	40	0	0	0	25	0	0	ı	0	0	30	80
Cola de zorro gigante	0	0	09	0	0	0	2	0	0	•	0	0	0	09
almorejo	22	20	ı	1			35	•		40	•	ı	0	22
Hierba de ganso	0	0	0	0	0	0	0	0	0	•	0	0	35	20
Hierba Johnson	0	0	55	0	0	0	0	10	0	•	0	•	09	09
Falso ciprés	85	20	92	92	92	100	06	80	22	•	2	0	80	82
Cenizo	100	75	06	09	92	92	06	09	20	•	10	45	80	06
Dondiego de día	20	45	06	0	85	92	22	06	06	•	0	35	06	06
Chufa, amarilla	0	0	0	0	0	0	0	0	0	•	0	0	40	0
Avena silvestre	20	30			•	•	40		•	20		•	2	15
Bledo	65	09	55	20	85	45	20	20	09	•	10	15	82	06
Ambrosía	65	22	70	45	09	92	40	20	09	•	0	0	75	06
Ballico, italiano	35	35	ı	1	1		65	ı	•	40	•	1	2	20
Soja	100	09	92	09	85	85	55	06	80	•	10	40	06	100
Césped Surinam	0	0	45	0	0	0	25	0	0	•	0	0	20	80
Malva asiática	65	25	0	20	22	25	40	20	10	•	0	0	80	80
Trigo	20	0	ı			•	30	ı	•	0	•	1	0	40
Heno ahumado	65	10			•	•	40		•	40		•	40	09
Tabla C							Compuestos	stos						
31 g ia/ha	92	78	62	83	88	94	92	117	129	133	135	136		

Cebada	•	2	30	•	•	ı	ı	ı	40	ı	ı	20
Césped bermuda	70	09		2	20	20	82	92		85	ı	80
Césped negro	٠	0	40	•	•	ı		ı	45	1	1	55
Césped bromo velloso	•	2	20	•	•	•	ı	ı	0		•	•
Alpiste	•	0	20	•	•	ı	ı	ı	30	ı	ı	45
Pamplina	45	0	•	0	80	45		ı	•	10	15	20
Cadillo	100	06	•	20	06	80	100	ı	1	82	100	100
Maíz	35	40	•	15	0	35	ı	30		40	10	35
Garranchuelo	75	22	•	45	75	80	80	06		75	75	75
Césped de cálices, coposo	09	20	•	15	20	80	75	80		20	09	65
Cola de zorro gigante	25	0	•	0	22	65	75	22	1	09	09	75
almorejo	ı	25	20	•	•	ı	ı	ı	40	ı	ı	65
Hierba de ganso	45	0	•	10	20	09	75	40		22	35	65
Hierba Johnson	65	10	•	22	30	09	75	20		82	35	85
Falso ciprés	92	06		75	85	06	92	06		80	06	80
Cenizo	92	06		92	06	92	100	92	•	92	06	92
Dondiego de día	92	06	•	85	09	80	80	20		06	06	85
Chufa, amarilla	30	0		09	40	09	09	20		75	0	65
Avena silvestre	•	2	25		•	ı	ı	ı	35	į	•	45

Bledo	92	20		92	92	100	100	92		82	92	100		
Ambrosía	06	20		20	06	06	92	92		80	80	85		
Ballico, italiano		0	35		ı		ı	ı	22			20		
Soja	92	06		06	100	100	100	100		92		100		
Césped Surinam	20	20		30	45	09	20	20		45	20	92		
Malva asiática	80	20		85	85	06	100	02		85	06	82		
Trigo		20	20			•	,	ı	35			40		
Heno ahumado		2	40		ı		ı	ı	45			09		
Tabla C							Compuestos	tos						
16 g ia/ha	7	19	25	47	65	92	62	83	94	92	117	129	133	135
Post-emergencia														
Cebada	ı	25			40	•	0	ı				35	1	•
Césped bermuda	0	0	0	0	09	15	ı	0	09	20	09		20	40
Césped negro	•	22			20		20	ı				35		•
Césped bromo velloso	Ī	0	1	1	40	1	0	ı	ı	1		0	1	•
Alpiste	Ī	45	1	1	30	1	0	ı	ı	1		0	1	•
Pamplina	0	0	0	0	09	35	ı	0			30	ı	0	0
Cadillo	0	25	70	35	06	100	ı	09	75	100	06	•	75	06
Maíz	0	0	0	0	2	10	,	2	10	20	30	i	35	2
Garranchuelo	0	20	0	0	80	22	ı	25	20	75	85		20	9

Césped de cálices, coposo	0	0	0	0	09	22	ı	15	09	75	09		35	30
Cola de zorro gigante	0	0	0	0	20	15	ı	0	30	•	20	•	15	10
almorejo	İ	30	•		20	•	20	•	ı	•	•	40	•	•
Hierba de ganso	0	0	0	0	20	30	ı	10	35	92	40	•	15	2
Hierba Johnson	0	0	0	•	45	25	·	10	22	20	10	•	20	15
Falso ciprés	40	80	10	0	85	06	ı	92	75	92	06	ı	75	75
Cenizo	20	20	30	0	82	06	ı	06	92	100	92	•	92	09
Dondiego de día	0		06	20	06	92	·	20	09	٠	20	•	80	80
Chufa, amarilla	0	0	0	0	0	10	·	09	22	09	2	•	09	0
Avena silvestre	1	40	ı	1	2		0	•	1	•	1	30	•	٠
Bledo	09	20	20	0	06	85	·	92	92	92	06	•	82	85
Ambrosía	15	35	40	0	80	80	·	92	06	92	92	•	80	75
Ballico, italiano	ı	92	•	•	10		35	•		٠		45	•	٠
Soja	45	45	40	20	100	92	·	82	100	100	100	•	92	100
Césped Surinam	0	0	0	0	09	09	ı	20	20	92	45	ı	35	45
Malva asiática	20	30	2	0	65	45	ı	20	75	92	09	ı	80	25
Trigo	ı	10	•	•	40		0	•		٠		0	•	٠
Heno ahumado	İ	40	ı		20	ı	40	•	i	ı		40	•	ı
Tabla C	Com	Compuesto			Ë	Tabla C			O	Compuesto	sto			
16 g ia/ha			136		∞	8 g ia/ha						92		

Post-emergencia		Post-emergencia		
Cebada	40	Césped bermuda		20
Césped bermuda	75	Pamplina		92
Césped negro	40	Cadillo		100
Césped bromo velloso	30	Maíz		20
Alpiste	40	Garranchuelo		75
Pamplina	45	Césped de cálices, coposo		75
Cadillo	95	Cola de zorro gigante		20
Maíz	35	Hierba de ganso		20
Garranchuelo	09	Hierba Johnson		25
Césped de cálices, coposo	55	Falso ciprés		06
Cola de zorro gigante	65	Cenizo		75
almorejo	45	Dondiego de día		09
Hierba de ganso	20	Chufa, amarilla		25
Hierba Johnson	09	Bledo	06	
Falso ciprés	75	Ambrosía	06	
Cenizo	95	Soja	100	
Dondiego de día	65	Céspec Surinam	55	
Chufa, amarilla	09	Malva asiática	95	
Avena silvestre	40			

Bledo	06													
Ambrosía	75													
Ballico, italiano	45													
Soja	92													
Césped Surinam	22													
Malva asiática	85													
Trigo	20													
Heno ahumado	45													
Tabla C							Compuestos	stos						
500 g ia/ha	_	4	2	∞	10	15	22	26	27	28	33	40	49	20
Pre-emergencia														
Césped bermuda	06	92	70	100	0	70	06	0	0	35	0	70	92	92
Cadillo	100	100	100	100	100	100	100	92	92	100	92	100	100	92
Maíz	70	06	20	75	0	09	65	20	25	0	40	40	65	45
Garranchuelo	92	92	09	0	0	100	100	ı	82	•	100	100	100	92
Césped de cálices, coposo	92	92	0	100	0	92	92	0	15	0	0	92	25	40
Cola de zorro gigante	06	82	09	0	0	80	09	10	20	0	20	35	65	20
Hierba de ganso	70	92	40	45	0	0	100	0	20	20	0	40	15	0
Hierba Johnson	06	92	70	20	0	92	100	100	92	•	40	92	85	85
Falso ciprés	100	100	100	100	65	100		20	45	100	20	•	100	06

Cenizo	100	100	100	100	92	100	100	06	100	100	•	100	100	100
Dondiego de día	100	100	100	100	100	100	100	06	100	100	92	100	100	100
Hierba mora	100	100	100		92	100	100	100	100	100	100	100	100	100
Chufa, amarilla	20	80	0	100	1	20	92	0	20	0	0	0	0	0
Bledo	100	100	100	92	82	100	100	100	100	100	06	100	100	100
Ambrosía	100	100	100	100	82	100	100	06	92	100	06	100	100	100
Soja	100	100	100	100	1	100	100	20	75	06	06	92	06	06
Girasol	100	100	100	100	0	100	100	06	92	100	06	92	100	100
Césped Surinam	06	100	0	100	0	92	100	10	30	0	10	06	92	85
Malva asiática	100	100	06	100	09	100	100	06	20	100	82	100	100	100
Tabla C							Compuestos	tos						
250 g ia/ha	_	7	က	4	2	∞	6	10	12	13	15	16	17	22
Pre-emergencia														
Césped bermuda	20	0	0	45	30	100	100	0	20	0	0	0	0	20
Cadillo	100	100	20	100	100	100	100	0	06	92	100	100	100	100
Maíz	20	0	0	75	20	10	75	0		30	45	75	75	99
Garranchuelo	06	20	0	85	20	0	100	0	0	0	92	92	80	92
Césped de cálices, coposo	06	45	0	92	0	100	100	0	100	0	82	65	85	92
Cola de zorro gigante	06	30	0	75	10	0	80	0	0	2	92	75	75	20
Hierba de ganso	10	09	0	22	0	35	20	0	0	0	0	0	0	80

Hierba Johnson	80	40	0	06	09	0	06	0	2	45	75	80	75	100
Falso ciprés	100	100	30	100	100	100	100	45	82	82	100	100	82	1
Cenizo	100	100	80	100	100	06	100	92	20	06	100	100	100	100
Dondiego de día	100	100	35	100	06	100	100	0	06	06	100	100	100	100
Hierba mora	100	100	20	100	100	Ī	ı	20	80	06	100	100	100	100
Chufa, amarilla	20	0	0	15	0	100	100	1	0	0	0	0	0	92
Bledo	100	100	80	100	100	06	100	20	82	06	100	100	100	100
Ambrosía	100	0	45	100	100	100	100	55	82	82	100	100	100	100
Soja	100	100	20	100	86	100	100	1	20	06	92	100	100	100
Girasol	100	100	0	100	100	100	100	0	85.	06	100	100	100	100
Césped Surinam	06	0	0	85	0	100	100	0	0	10	75	80	0	100
Malva asiática	92	06	35	92	06	100	100	0	20	06	100	100	100	100
Tabla C							Compuestos	estos						
250 g ia/ha	26	27	28	30	31	33	40	49	20	64				
Pre-emergencia														
Césped bermuda	0	0	30	0	0	0	0	82	0	20				
Cadillo	06	20	92	06	85	06	06	92	92	30				
Maíz	0	15	0	0	0	30	20	15	20	30				
Garranchuelo	ı	0	•	82	0	100	ı	92	92	06				
Césped de cálices, coposo	0	10	0	20	0	0	20	20	0	40				

Cola de zorro gigante	0	0	0	09	0	20	30	0	0	0				
Hierba de ganso	0	0	0	20	20	0	2	0	0	75				
Hierba Johnson	0	45	0	2	2	10	80	80	92	09				
Falso ciprés		30	06	06	20	20		100	20	20				
Cenizo		06	100	06	80	85	100	100	100	100				
Dondiego de día	85	92	100	100	20	06	06	100	92	10				
Hierba mora	100	100	100	100		92	100	100	100	92				
Chufa, amarilla	0	0	0	0	0	0	0	0	0	10				
Bledo	100	06	100	06	40	06	100	100	92	100				
Ambrosía	82	82	100	100	09	20	100	100	92	100				
Soja	10	20	65	20	80	80	06	06	75	82				
Girasol	20	06	100	06	70	80	06	100	92	82				
Césped Surinam	10	20	0	20	0	0	10	40	92	06				
Malva asiática	06	20	92	20	09	09	06	06	85	0				
Tabla C							Compuestos	SO						
125 g ia/ha	_	7	က	4	2	80	თ	10	7	12	13	15	16	17
Pre-emergencia														
Césped bermuda	20	0	0	20	0	100	100	0	0	0	0	0	0	0
Cadillo	100	80	22	92	06	85	100	0	0	82	06	06	92	92
Maíz	0	•	0	0	2	0	09	0	0	09	10	15	20	35

Garranchuelo	09	0	0	65	0	0	92	0	09	0	0	92	92	20
Césped de cálices, coposo	09	0	0	80	0	92	92	0	0	10	0	20	15	20
Cola de zorro gigante	30	0	0	40	0	0	75	0	20	0	0	0	0	20
Hierba de ganso	0	0	0	25	0	0	20	0	0	0	0	0	0	0
Hierba Johnson	30	0	0	20	20	0	92	0	75	2	2	92	92	55
Falso ciprés	100	92	20	100	92	85	100	0	09	20	80	100	100	25
Cenizo	100	100	0	100	92	20	100	20	82	40	06	100	100	100
Dondiego de día	100	100	20	100	80	100	100	0	0	09	82	100	100	100
Hierba mora	100	100	0	100	100		ı	•	•	09	06	100	92.	92
Chufa, amarilla	0	0	0	0	0	0	100	0	•	0	0	0	0	0
Bledo	100	92	92	100	06	85	100	22	06	20	82	100	100	100
Ambrosía	100	0	0	100	06	100	100	0	45	20	20	92	92	92
Soja	100	06	15	100	06	100	100	•	22		06	06	100	92
Girasol	100	100	0	100	06	40	100	0	0	0	09	100	100	100
Césped Surinam	35	0	0	92	0	100	100	0	100	0	0	92	15	0
Malva asiática	06	75	20	92	85	75	100	0	0	20	80	92	92	100
Tabla C							Compuestos	tos						
125 g ia/ha	19	22	25	26	27	28	30	31	33	40	47	49	20	64
Pre-emergencia														
Césped bermuda	0	20	10	0	0	20	0	0	0	0	92	0	0	20

Cadillo	80	92	82	20	20	92	82	75	0	20	75	92	85	2
Maíz	0	20	0	0	10	0	0	0	0	20	0	15	10	20
Garranchuelo	0	92	0		0		02	0	20	•	100	92	06	70
Césped de cálices, coposo	0	92	20	0	0	0	45	0	0	2	0	0	0	0
Cola de zorro gigante	0	15	0	0	0	0	20	0	10	0	20	0	0	0
Hierba de ganso	0	0	0	0	0	0	35	0	0	0	06	0	0	0
Hierba Johnson	22	100	0		20		2	0	2	80	0	65	22	20
Falso ciprés	06		70		0	80	02	20	•	•	100	100	0	25
Cenizo	100	100	20		40	100	82	40	•	100	92	100	100	92
Dondiego de día	06	100	06	2	70	100	06	10	82	06	100	92	92	0
Hierba mora	100	100	75	100	70	100	100	0	20	100	100	100	100	85
Chufa, amarilla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bledo	92	100	85	100	80	92	80	35	06	100	82	06	06	100
Ambrosía	80	100	85	10	65	92	06	09	20	06	65	100	82	92
Soja	06	92	92	10	0	45	2	15	30	40	0	20	09	85
Girasol	06	92	06	20	20	20	06	2	70	06	100	75	25	30
Césped Surinam	10	06	40	0	0	0	0	0	0	0	0	15	15	20
Malva asiática	65	92	40	10	0	22	15	0	20	20	20	20	75	0
Tabla C			Ü	Compuestos	stos									
125 g ia/ha	65	75	92	77	78	117	135							

Pre-emergencia							
Césped bermuda	80	20	0	0	20	65	0
Cadillo	06	100	06	92	06	06	100
Maíz	30	92	45	35	40	25	20
Garranchuelo	80	09	09	0	45	09	2
Césped de cálices, coposo	70	09	20	0	10	20	0
Cola de zorro gigante	09	10	10	0	0	20	0
Hierba de ganso	20	30	0	0	0	30	40
Hierba Johnson	70	22	20	0	20	70	40
Falso ciprés	70	100	100	80	100	09	100
Cenizo	100	100	80	40	80	100	06
Dondiego de día	100	100	100	75	100	20	100
Hierba mora	80	100	100	0	70	45	20
Chufa, amarilla	70	0	0	0	ı	20	0
Bledo	100	06	06	65	92	100	100
Ambrosía	100	06	100	25	80	86	20
Soja	100	100	92	100	92	100	100
Girasol	100	100	100	100	100	100	06
Césped Surinam	80	22	45	0	75	92	0
Malva asiática	100	100	06	06	80	06	100

Tabla C							Compuestos	stos						
62 g ia/ha	~	7	က	4	2	∞	o	10	7	12	13	15	16	17
Pre-emergencia														
Césped bermuda	0	0	0	0	0	100	100	0	0	0	0	0	0	0
Cadillo	06		30	80	10	1	80	ı	0	20	09	92	92	06
Maíz	0	0	0		2	0	2	0	0	30	2	0	15	20
Garranchuelo	10	0	0	40	0	0	92	0	0	0	0	0	0	0
Césped de cálices, coposo	0	0	0	0	0	0	06	0	0	0	0	0	0	0
Cola de zorro gigante	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hierba de ganso	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hierba Johnson	0	0	0	20	2	0	45	0	0	0	0	20	40	0
Falso ciprés	92	06	0	92	80	20	92	0	0	20	09	92	92	0
Cenizo	92	100	0	92	92	0	100	0	40	10	85	92	92	92
Dondiego de día	06	100	0	100	20	20	100	0	0	09	92	92	92	92
Hierba mora	100	20	0	100	100	ı	ı		ı	20	0	92	06	80
Chufa, amarilla	0	0	0	0	0	0	100	0	0	0	0	0	0	0
Bledo	06	92	20	92	09	65	92	20	92	20	09	06	92	100
Ambrosía	92	0	0	100	85	100	100	0	20	10	09	06	06	80
Soja	82	75	0	92	85	100	100	0	•	20	09	75	82	06
Girasol	80	100	0	100	09	20	100	0	0	0	20	92	82	92

Césped Surinam	0	0	0	0	0	0	100	ı	100	1	0	15	0	0
Malva asiática	80	20	0	75	82	92	92	0	0	2	09	80	06	80
Tabla C							Compuestos	tos						
62 g ia/ha	65	75	92	77	78	92	117	135						
Pre-emergencia														
Césped bermuda	70	0	0	0	0	22	30	0						
Cadillo	20	92	06	80	06	09	2	92						
Maíz	0	30	35	0	20	2	20	30						
Garranchuelo	20	20	2	0	40	35	0	0						
Césped de cálices, coposo	2	09	20	0	0	2	15	0						
Cola de zorro gigante	20	0	0	0	0	35	2	0						
Hierba de ganso	0	0	0	0	0	40	0	0						
Hierba Johnson	09	20	20	0	20	80	09	2						
Falso ciprés	20	100	92	20	100	45	20	75						
Cenizo	80	80	80	1	80	100	100	20						
Dondiego de día	20	92	100	20	85	09	2	06						
Hierba mora	•	20	09	0	09	75	40	35						
Chufa, amarilla	30	0	0	0	0	09	20	0						
Bledo	80	80	80	92	20	100	06	80						
Ambrosía	06	80	80	20	80	100	06	35						

Soja	92	100	92	100	80	100	100	92						
Girasol	92	100	100	100	100	100	06	06						
Césped Surinam	80	22	0	0	0	10	20	0						
Malva asiática	80	82	70	82	70	06	65	06						
Tabla C							Compuestos	tos						
31 g ia/ha	7	က	0	7	12	13	16	17	19	25	30	31	47	64
Pre-emergencia														
Césped bermuda	0	0	100	0	0	0	0	0	0	0	0	0	0	0
Cadillo	09	0	75	0	20	40	45	75	30	20	0	0	0	0
Maíz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Garranchuelo	0	0	20	0	0	0	0	0	0	0	0	0	100	0
Césped de cálices, coposo	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cola de zorro gigante	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hierba de ganso	0	0	0	0	0	0	0	0	0	0	0	0	45	0
Hierba Johnson	0	0	15	0	0	0	0	0	0	0	0	0	0	2
Falso ciprés	75	0	92	0	0	45	06	0	1	0	20	0	1	20
Cenizo	06	0	92	0	0	20	92	92	100	0	0	0	ı	20
Dondiego de día	100	0	100	0	30	09	65	70	10	0	0	0	0	0
Hierba mora	0	0	ı	Ī	1	0	55	1	40	0	20	0	85	2
Chufa, amarilla	0	0	20	0	0	0	0	0	0	0	0	0	0	0

Bledo	06	20	92	0	10	20	85	92	45	30	0	10	80	10
Ambrosía	0	0	100	0	ı	45	45	20	22	20	30	2	ı	85
Soja	15	0	100		ı	0	75	20	25		0	0	0	0
Girasol	20	0	100	0	0	2	20	09	25	09	20	0	0	0
Césped Surinam	0	0	92	0	0	0	0	0	٠	0	0	0	0	1
Malva asiática	20	0	20	0	0	09	25	20	35	0	0	0	20	0
Tabla C			Com	Compuestos	Ø									
31 g ia/ha	65	75	92	77	78	92	117	135						
Pre-emergencia														
Césped bermuda	20	0	0	0	0	0	0	0						
Cadillo	30	06	06	20	20	0	0	92						
Maíz	0	0	0	0	0	0	2	30						
Garranchuelo	20	10	0	0	2	30	0	0						
Césped de cálices, coposo	0	0	0	0	0	0	0	0						
Cola de zorro gigante	10	0	0	0	0	30	0	0						
Hierba de ganso	0	0	0	0	0	10	0	0						
Hierba Johnson	20	0	0	0	10	09	35	0						
Falso ciprés	0	80	06	1	80	40	2	75						
Cenizo	20	75	20	0	20	100	100	20						
Dondiego de día	0	06	09	20	70	10	0	06						

30	0	02	,	95	02	0	85	Compuestos	77 78 95 117 135		0 0 0 0 0	55 55 0 0 85	0 0 0 0 2	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	
2	0	80	09	100	20	40	20	Comp	92		0	65	0	0	0	0	0	
09	09	100	100	100	92	22	09		75		0	22	•	0	0	0	0	
30	0	09	65	70	20	0	22		92		0	0	0	0	0	0	0	
0	0	09	0	100	20	0	30		47		0	0	0	20	0	0	0	
40	0	80	09	70	82	0	40		25		0	0	0	0	0	0	0	
20	0	75	20	09	20	0	09		19		0	15	0	0	0	0	0	
0	0	80	85	98	20	40	40		11		0	0	0	0	0	0	0	
Hierba mora	Chufa, amarilla	Bledo	Ambrosía	Soja	Girasol	Césped Surinam	Malva asiática	Tabla C	16 g ia/ha	Pre-emergencia	Césped bermuda	Cadillo	Maíz	Garranchuelo	Césped de cálices, coposo	Cola de zorro gigante	Hierba de ganso	

Cenizo	0	75	0	0	0	70	70	0	0	100	20	0
Dondiego de día	0	10	0	0	0	20	40	2	0	0	0	85
Hierba mora	ı	0	0	80	0	0	30	0	0	0	0	0
Chufa, amarilla	0	0	0	0	0	0	0	0	0	40	0	0
Bledo	0	35	0	0	40	70	09	09	22	06	20	70
Ambrosía	0	22	0	0	85	20	20	0	10	06	09	Ŋ
Soja	ı	0	30	0	85	55	20	40	30	06	82	85
Girasol	0	10	2	0	40	20	20	20	20	40	0	65
Césped Surinam	0	0	0	0	0	0	0	0	0	0	40	0
Malva asiática	0	25	0	0	0	2	30	10	10	0	0	09
Tabla C	Compuesto		Tabla C			Compuesto	lesto		Tabla C	O		Compuesto
8 g ia/ha	92	ω	8 g ia/ha				92		8 g ia/ha	ha		95
Pre-emergencia		ш.	Pre-emergencia	jencia					Pre-en	Pre-emergencia	<u>.a</u>	
Césped bermuda	0	_	Hierba Johnson	nosu			0		Ambrosía	sía		92
Cadillo	0	ш.	Falso ciprés	ş			0		Soja			06
Maíz	0	O	Cenizo				0		Girasol	_		5
Garranchuelo	0		Dondiego de día	de día			0		Céspe	Césped Surinam	m E	0
Césped de cálices, coposo	0	_	Hierba mora	ā			0		Malva	Malva asiática		0
Cola de zorro gigante	0	J	Chufa, amarilla	arilla			0					
Hierba de ganso	0	ш	Bledo				20					

PRUEBA D

5

10

Se sembraron semillas de especies vegetales de amor de hortelano (galio; *Galium aparine*), pamplina común (*Stellaria media*), falso ciprés (*Kochia scoparia*), cenizo (*Chenopodium album*), bledo (*Amaranthus retroflexus*), cardo ruso (*Salsola kali*), alforfón silvestre (*Polygonum convolvulus*), mostaza silvestre (*Sinapis arvensis*), cebada de invierno (*Hordeum vulgare*), y trigo (*Triticum aestivum*) y se trataron en pre-emergencia con sustancias químicas de prueba formuladas en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo.

Al mismo tiempo, las plantas seleccionadas de estas especies de cultivo y de malas hierbas se trataron con aplicaciones en post-emergencia de algunas de las sustancias químicas de prueba formuladas de la misma manera. Las plantas variaron en altura desde 2 a 18 cm (etapa de 1- a 4-hojas) durante los tratamientos en post-emergencia. Las plantas y controles tratados se mantuvieron en un medio ambiente de cultivo controlado durante 15 a 25 días, tiempo tras el cual se compararon todas las especies con los controles y se evaluaron visualmente. Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla D, están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba.

Tabla D C	Compuesto		<u> </u>	Tabla D						Comp	Compuestos			
500 g ia/ha	28		5 6	250 g ia/ha	Ø				26	28	33	35	47	28
Post-emergencia			Ā	Post-emergencia	gencia									
Alforfón, Silvestre	100		ŏ	Cebada					20	40	45	20	•	ı
Galio	100		₹	Alforfón, Silvestre	ilvestre				22	09	55	80	20	100
Falso ciprés	100		ď	Pamplina					22	92	09	82	20	ı
Cenizo	100		Ö	Galio					85	100	65	100	86	100
Mostaza, Silvestre	100		Щ	Falso ciprés	és				22	75	20	82	75	100
Bledo	100		ŏ	Cenizo					20	75	45	100	45	100
Cardo ruso	80		Š	Mostaza, Silvestre	Silvestre	ø)			75	09	20	75	20	100
Trigo	85		՝	Bledo					70	20	22	100	92	100
			Ö	Cardo ruso	0				40	20	40	100	20	70
			Ļ	Trigo					20	35	45	20	45	20
Tabla D					Com	Compuestos								
125 g ia/ha	~	7	4	6	26	28	33	35	47	28				
Post-emergencia														
Cebada	1	1	1		45	40	45	92	,	•				
Alforfón, Silvestre	80	92	100	100	35	25	20	20	65	06				
Pamplina	82	82	100	100	45	92	20	80	92	•				
Galio	100	100	100	100	20	ı	09	100	80	100				

Falso ciprés	100	100	100	100	35	75	20	82	92	100		
Cenizo	100	100	100	100	40	20	30	100	40	82		
Mostaza, Silvestre	75	80	06	92	09	09	20	75	92	100		
Bledo	100	100	100	100	09	09	55	100	25	100		
Cardo ruso	100	100	100	100	40	70	40	100	99	70		
Trigo	100	100	100	100	45	35	40	92	35	09		
Tabla D							Compuestos	tos				
62 g ia/ha				_	7	4	6	28	33	35	47	28
Post-emergencia												
Cebada				•				20	45	92	•	•
Alforfón, Silvestre				80	06	100	100	35	40	09	92	92
Pamplina				92	82	100	100	92	40	80	09	•
Galio				100	100	100	100	100	22	100	75	100
Falso ciprés				100	100	100	100	20	20	80	20	20
Cenizo				100	100	100	100	92	30	100	35	80
Mostaza, Silvestre				70	20	75	80	45	20	75	09	100
Bledo				100	100	100	100	09	45	100	20	80
Cardo ruso				82	92	100	100	92	30	100	22	20
Trigo				06	100	100	06	20	35	0	35	22
Tabla D							Compuestos	tos				

31 g ia/ha	_	2	4	თ	47	
Post-emergencia						
Alforfón, Silvestre	80	92	85	80	09	
Pamplina	65	09	100	100	35	
Galio	100	100	100	100	65	
Falso ciprés	100	100	100	100	45	
Cenizo	92	100	100	100	35	
Mostaza, Silvestre	20	92	65	80	55	
Bledo	100	82	100	100	35	
Cardo ruso	65	82	06	06	45	
Trigo	80	20	85	80	30	
Tabla D (Compuestos	stos			Tabla D Compu	Compuesto
16 g ia/ha		~	7	4	9 500 g ia/ha	28
Post-emergencia					Pre-emergencia	
Alforfón, Silvestre		20	45	80	65 Alforfón, Silvestre	100
Pamplina		92	09	65	60 Pamplina	100
Galio		92	75	100	100 Galio	100
Falso ciprés		85	75	85	85 Falso ciprés	100
Cenizo		92	09	92	95 Cenizo	100
Mostaza, Silvestre		09	65	99	65 Mostaza, Silvestre	100

Bledo	09	92	85	65 Bledo	opo			100	
Cardo ruso	45	92	80	65 C	Cardo ruso			85	
Trigo	40	20	80	50 Trigo	igo			20	
Tabla D Compuestos									
250 g ia/ha	26	28	33	35	58				
Pre-emergencia									
Cebada	35	45	45	45	ı				
Alforfón, Silvestre	92	09	65	92	100				
Pamplina	92	09	65	100	75				
Galio	100	100	100	100	100				
Falso ciprés	75	100	65	100	100				
Cenizo	92	09	65	80	100				
Mostaza, Silvestre	92	09	65	75	100				
Bledo	100	80	06	82	100				
Cardo ruso	100	100	85	100	70				
Trigo	35	35	55	20	09				
Tabla D		J	Compuestos	tos					
125 g ia/ha	_	7	4	6	26 28	33	35	28	
Pre-emergencia									
Cebada				Ì	25 25	35	45	1	

Alforfón, Silvestre	75	82	100	100	92	45	92	09	80
Pamplina	75	06	100	100	09	09	1	100	1
Galio	100	100	100	100	85	100	80	100	100
Falso ciprés	100	100	100	100	22	80	92	100	92
Cenizo	100	100	100	100	09	09	92	75	100
Mostaza, Silvestre	06	85	85	82	92	09	65	20	100
Bledo	100	100	100	100	92		70	80	100
Cardo ruso	100	100	100	100		80	09	100	92
Trigo	20	70	80	1	25	35	35	40	20
Tabla D			Compuestos	stos					
62 g ia/ha	_	7	4	6	28	33	35	28	
Pre-emergencia									
Cebada	•	•		ı	10	10	40		
Alforfón, Silvestre	20	80	100	100	45	22	22	40	
Pamplina	20	75	85	100	09	1	09	09	
Galio	100	86	100	100	100	20	85	100	
Falso ciprés	100	100	100	100	45	09	75	35	
Cenizo	82	92	100	100	09	09	65	09	
Mostaza, Silvestre	20	70	85	85	09	92	92	92	
Bledo	92	85	100	100	45	09	92	20	

Cardo ruso	100	100	100	100	45	55	82	40				
Trigo	20	20	80	75	20	15	35	25				
Tabla D		Con	Compuestos		⊢	Tabla D				Com	Compuestos	
31 g ia/ha		~	7	4	9	9 16 g ia/ha			~	7	4	0
Pre-emergencia					△	Pre-emergencia	ncia					
Alforfón, Silvestre		09	92	80	85 A	85 Alforfón, Silvestre	estre		45	45	09	09
Pamplina		92	09	70	95 P	Pamplina			09	09	92	92
Galio		80	06	100	100 Galio	alio			80	80	06	85
Falso ciprés		75	20	100	98 F	98 Falso ciprés			92	22	82	20
Cenizo		75	82	80	100 Cenizo	enizo			92		20	92
Mostaza, Silvestre		92	20	82	70 N	70 Mostaza, Silvestre	vestre		20	20	92	09
Bledo		20	20	06	80 Bledo	opal			09	92	20	92
Cardo ruso		100	100	100	100 C	100 Cardo ruso			100	85	06	100
Trigo		20	09	20	75 Trigo	rigo			35	45	ı	09

PRUEBA E

5

10

15

20

Se rellenaron parcialmente tres macetas de plástico (ca. 16-cm de diámetro) por valoración, con suelo franco limoso esterilizado Tama que comprendía una proporción de 35:50:15 de arena, limo y arcilla y 2,6% de materia orgánica. Las planataciones separadas para cada una de las tres macetas fueron como sigue. Se sembraron semillas de ensalada de pato de U. S. (*Heteranthera limosa*), juncia paraguas de pequeña flor (*Cyperus difformis*), tallo rojo púrpura (*Ammannia coccinea*), en una maceta de 16 cm para cada evaluación. Se sembraron semillas de juncia plana de arroz (*Cyperus iria*), hierba gitana (*Leptochloa fusca* ssp. *fascicularis*), un estand de 9 o 10 plántulas de arroz sembrado en agua (Oryza sativa cv. 'Japonica - M202'), y una base de 6 plántulas de arroz trasplantado (*Oryza sativa* cv. 'Japonica - M202') en una maceta de 16-cm para cada evaluación. Se sembraron semillas de mijo de los arrozales de U.S. (*Echinochloa crus-galli*), pasto de agua tardío (*Echinochloa oryzicola*), pasto de agua temprano (*Echinochloa oryzoides*) y arroz de la selva (*Echinochloa colona*) en una maceta de 16-cm para cada evaluación. Las plantaciones fueron secuenciales de manera que las especies de cultivo y malas hierbas estaban en la etapa de 2,0 a 2,5-hojas en el momento del tratamiento.

Las plantas sembradas se cultivaron en un invernadero con ajustes de temperatura diurna/nocturna de 29,5/26,7°C, y se proporcionó iluminación equilibrada suplementaria para mantener un fotoperíodo de 16 horas. Las macetas de prueba se mantuvieron en el invernadero hasta la terminación de la prueba.

En el momento del tratamiento, las macetas de prueba se inundaron a 3 cm por envima de la superficie del suelo, se trataron por aplicación de compuestos de prueba directamente al agua de inundación, y después se mantuvieron a esa profundidad de agua durante el tiempo de la prueba. Los efectos de los tratamientos sobre el arroz y malas hierbas se evaluaron visualmente por comparación con controles no tratados después de 21 días. Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla E, están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba.

Tabla E	ပိ	Compuesto			Tabla E	a E					O	Compuesto	to	
500 g ia/ha	44	61	62		200	500 g ia/ha					44	61	62	
Inundación					Innu	Inundación								
Mijo de los arrozales	10	65	100		Arro	Arroz, Sembrado en Agua	ado en A	gna			20	35	09	
Ensalada de pato	100	100	100		Junc	Juncia paraguas	nas				100	100	100	
Juncia plana, Arroz	·	92	100		Hier	Hierba gitana					92	65	75	
Arroz de la selva	20	25	65		Pasi	Pasto de agua, Temprano	a, Tempr	ano			0	25	0	
Tallo rojo	75	100	100		Pasi	Pasto de agua, Tardío	a, Tardío				20	25	20	
Arroz,, Trasplantado	0	25	30											
Tabla E						ŏ	Compuestos	S						
250 g ia/ha	37	44	28	61	62	63	64	92	99	29	69	20	71	72
Inundación														
Mijo de los arrozales	0	0	ı	0	20	ı	1	ı	35	40	1	0	09	0
Ensalada de pato	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Juncia plana, Arroz	06	ı	100	40	65	85	100	100	0	09	100	99	0	100
Arroz de la selva	0	20	0	25	20	30	0	40	0	65	0	0	45	0
Tallo rojo	80	20	98	100	92	75	80	09	100	85	30	0	30	100
Arroz,, Trasplantado	0	0	0	0	0	0	10	0	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	20	10	10	30	0	10	0	0	0	0	0	0
Juncia paraguas	92	100	100	92	100	80	100	100	0	20	100	09	20	100

Hierba gitana	0	20	09	92	45	92	0	40	0	30	0	0	09	0
Pasto de agua, Temprano	•	0	•	20	0	0	0	10	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	20	20	0	20	25	0	0	0	0	0	0
Tabla E						J	Compuestos	stos						
250 g ia/ha	73	74	84	88	91	94	92	96	86	66	111	117	118	128
Inundación														
Mijo de los arrozales	100	0	85	0	10	0	0	0	0	0	0	0	0	0
Ensalada de pato	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Juncia plana, Arroz	45	92	80	100	1	100	0	100	100	100	0	100	100	80
Arroz de la selva	0	92	.50	06	20	0	0	0	0	0	0	0	92	10
Tallo rojo	100	25	100	92	20	100	80	100	40	45	75	30	85	06
Arroz,, Trasplantado	0	0	20	0	10	20	15	20	0	20	0	20	0	0
Arroz, Sembrado en Agua	0	0	30	0	20	10	15	10	0	20	0	0	0	0
Juncia paraguas	85	100	100	92	100	100	92	100	09	•	75	100	100	100
Hierba gitana	20	0	40	95	30	40	0	0	0	0	0	0	85	80
Pasto de agua, Temprano	0	0	30	20	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	20	0	20	0	0	0	0	0	0	0	0	0	0	0
Tabla E	Compuestos	estos			Ľ	Tabla E				Ō	Compuestos	SC		
250 g ia/ha	129	133			25	250 g ia/ha					129	133		
Inundación					<u>=</u>	Inundación								

Mijo de los arrozales	0	0			Arr	oz, Semt	Arroz, Sembrado en Agua	Agua			0	35		
Ensalada de pato	100	100			Jur	Juncia paraguas	guas				100	100		
Juncia plana, Arroz	100	100			Η̈́	Hierba gitana	Ø				20	0		
Arroz de la selva	0	0			Pa	sto de ag	Pasto de agua, Temprano	orano			0	0		
Tallo rojo	92	82			Pa	sto de ag	Pasto de agua, Tardío	0			0	0		
Arroz,, Trasplantado	0	0												
Tabla E						O	Compuestos	tos						
125 g ia/ha	37	44	28	61	62	63	64	65	99	29	69	02	71	72
Inundación														
Mijo de los arrozales	0	0	ı	0	0	1	ı	1	0	40	0	0	0	0
Ensalada de pato	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Juncia plana, Arroz	75	1	100	40	45	85	100	100	0	09	100	30	0	100
Arroz de la selva	0	0	0	20	40	0	0	40	0	30	0	0	0	0
Tallo rojo	40	20	92	80	82	75	09	20	40	0	0	0	0	35
Arroz., Trasplantado	0	0	0	0	0	0	10	0	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	0	0	0	20	0	0	0	0	0	0	0	0
Juncia paraguas	65	06	92	85	92	75	100	100	0	40	06	0	30	06
Hierba gitana	0	30	09	09	30	40	0	40	0	30	0	0	0	0
Pasto de agua, Temprano		0	1	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	20	20	0	20	0	0	0	0	0	0	0

Tabla E						O	Compuestos	tos						
125 g ia/ha	73	74	84	88	91	94	92	96	86	66	111	117	118	128
Inundación														
Mijo de los arrozales	06		20	0	10	0	0	0	0	0	0	0	0	0
Ensalada de pato	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Juncia plana, Arroz	ı	06	09	100		100	0	100	100	100	0	100	92	09
Arroz de la selva	0	0	20	0	0	0	0	0	0	0	0	0	65	0
Tallo rojo	100	20	20	0	30	100	20	100	40	0	30	0	20	06
Arroz., Trasplantado	0	0	0	0	0	10	0	10	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	0	0	10	10	0	10	0	20	0	0	0	0
Juncia paraguas	35	92	06	82	100	100	92	100	09	1	0	100	100	100
Hierba gitana	20	0	0	82	30	20	0	0	0	0	0	0	20	0
Pasto de agua, Temprano	0	0	20	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tabla E	Compuestos	estos		E	Tabla E					Compuestos	estos			
125 g ia/ha	129	133		12	125 g ia/ha						129	133		
Inundación				<u>ĭ</u>	Inundación									
Mijo de los arrozales	0	0		Ā	Arroz, Sembrado en Agua	orado en	Agua				0	0		
Ensalada de pato	100	100		ηſ	Juncia paraguas	guas					100	100		
Juncia plana, Arroz	100	92		Î	Hierba gitana	g					0	0		

Arroz de la selva	0	0		P	Pasto de agua, Temprano	ua, Tem	prano				0	0		
Tallo rojo	80	75		P	Pasto de agua, Tardío	ua, Tard	, O				0	0		
Arroz,, Trasplantado	0	0												
Tabla E						Ü	Compuestos	tos						
64 g ia/ha	37	44	28	61	62	63	64	92	99	29	69	20	71	72
Inundación														
Mijo de los arrozales	0	0	ı	0	0	Ī	ı		ı	0	0	0	0	1
Ensalada de pato	100	100	100	100	100	65	100	100	100	100	100	100	100	100
Juncia plana, Arroz	0	1	100	0	0	75	06	100	0	30	100	0	0	100
Arroz de la selva	0	0	0	20	30	0	0	0	0	0	0	0	0	0
Tallo rojo	30	10	85	80	85	65	09	30	0	0	0	0	0	25
Arroz,, Trasplantado	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Juncia paraguas	20	06	92	75	80	75	82	82	0	0	30	0	0	75
Hierba gitana	0	30	09	35	0	40	0	0	0	0	0	0	ı	0
Pasto de agua, Temprano	ı	0	ı	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	20	20	0	0	0	0	0	0	0	0	0
Tabla E						Ü	Compuestos	tos						
64 g ia/ha	73	74	84	88	91	94	92	96	86	66	111	117	118	128
Inundación														

Mijo de los arrozales	0	0	0	0	10	0	0	0	0	0	0	0	0	0
Ensalada de pato	100	100	100	100	100	100	100	100	100	100	82	100	100	100
Juncia plana, Arroz	0	0	09	100	ı	100	0	100	100	100	0	100	92	0
Arroz de la selva	0	0	0	0	0	0	0	0	0	0	0	0	45	0
Tallo rojo	06	0	20	0	0	75	30	06	0	ı	30	0	30	80
Arroz,, Trasplantado	0	0	0	0	0	10	0	0	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	0	0	10	ı	0	0	0	0	0	0	0	0
Juncia paraguas	0	80	80	1	30	100	92	100	09	ı	0	100	100	20
Hierba gitana	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Temprano	0	0	10	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tabla E	Compuestos	tos		Tak	Tabla E					Com	Compuestos			
64 g ia/ha	129	133		64	64 g ia/ha						129	133		
Inundación				lun	Inundación									
Mijo de los arrozales	0	0		Arr	oz, Semk	Arroz, Sembrado en Agua	Agua				0	0		
Ensalada de pato	100	100		Jur	Juncia paraguas	guas					80	92		
Juncia plana, Arroz	100	92		Hie	Hierba gitana	Ja					0	0		
Arroz de la selva	0	0		Pag	sto de ag	Pasto de agua, Temprano	orano				0	0		
Tallo rojo	75	65		Pa	sto de ag	Pasto de agua, Tardío	, O				0	0		
Arroz,, Trasplantado	0	0												

Tabla E						J	Compuestos	tos						
32 g ia/ha	37	44	28	61	62	63	64	92	99	29	69	20	71	72
Inundación														
Mijo de los arrozales	0	0		0	0	ı			0	0	0	0	0	0
Ensalada de pato	100	100	100	100	100	30	100	100	100	100	100	40	100	80
Juncia plana, Arroz	0	ı	100	0	0	75	82	80	0	0	20	0	0	100
Arroz de la selva	0	0	0	0	20	0	0	0	0	0	0	0	0	0
Tallo rojo	0	0	80	92	75	65	09	30	0	0	0	0	0	25
Arroz,, Trasplantado	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Juncia paraguas	20	20	92	20	20	75	80	80	0	0	0	0	0	30
Hierba gitana	0	20	40	35	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Temprano	1	0	ı	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tabla E						Ŭ	Compuestos	tos						
32 g ia/ha	73	74	84	88	91	94	92	96	86	66	111	117	118	128
Inundación														
Mijo de los arrozales		0	0	0	0	0	0	0	0	0	0	0	0	0
Ensalada de pato	100	100	100	100	100	100	100	100	100	100	0	100	100	100
Juncia plana, Arroz	0	0	35	82	ı	100	0	100	80	ı	0	100	95	0

Arroz de la selva	0	0	0	0	0	0	0	0	0	0	0	0	40	0
Tallo rojo	0	0	20	0	0	92	ı	85	0	0	20	0	20	75
Arroz,, Trasplantado	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Juncia paraguas	0	0	80	40	0	100	92	100	09	1	0	85	92	09
Hierba gitana	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Temprano	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tabla E	Compuestos	SC		E L	Tabla E					ŏ	Compuestos	δ		
32 g ia/ha	129	133		32	32 g ia/ha						129	133		
Inundación				<u> </u>	Inundación									
Mijo de los arrozales	0	0		A	Arroz, Sembrado en Agua	orado en	Agua				0	0		
Ensalada de pato	100	100		ηſ	Juncia paraguas	guas					09	0		
Juncia plana, Arroz	100	65		Ī	Hierba gitana	ğ					0	0		
Arroz de la selva	0	0		Pa	Pasto de agua, Temprano	lua, Tem	prano				0	0		
Tallo rojo	09	20		Pa	Pasto de agua, Tardío	lua, Tard	, O				0	0		
Arroz,, Trasplantado	0	0												
Tabla E							Compuestos	stos						
16 g ia/ha	37	28	63	64	65	99	29	69	20	71	72	73	74	84
Inundación														

Mijo de los arrozales	0	ī	ı	ı	1	0	0	0	0	0	1	0	0	0
Ensalada de pato	80	100	30	100	100	92	82	92	0	100	80	75	100	100
Juncia plana, Arroz	0	40	09	75	0	0	0	65	0	0	06	0	0	25
Arroz de la selva	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tallo rojo	0	09	65	20	0	0	0	0	0	0	0	0	0	0
Arroz., Trasplantado	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Arroz, Sembrado en Agua	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Juncia paraguas	30	65	20	92	20	0	0	0	0	0	0	0	0	70
Hierba gitana	0	20	0	0	0	0	0	0	0	ı	0	0	0	0
Pasto de agua, Temprano	1	ı	0	0	0	0	0	0	0	0	0	0	0	0
Pasto de agua, Tardío	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tabla E						O	Compuestos	tos						
16 g ia/ha	88	91	94	92	96	86	66	111	117	118	128	129	133	
Inundación														
Mijo de los arrozales	0	0	0	0	0	0	0	0	0	0	0	0	0	
Ensalada de pato	92	100	100	100	100	0	92	0	100	100	92	100	100	
Juncia plana, Arroz	20	ı	100	0	100	80	100	0	100	85	0	100	30	
Arroz de la selva	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tallo rojo	0	0	0	30	0	0	0	0	0	0	0	30	0	
Arroz,, Trasplantado	0	0	0	0	0	0	0	0	0	0	0	0	0	

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	82	0	0	0
0	09	0	0	С
0	0	0	0	С
0	ı	0	0	O
0	09	0	0	0
0	100	0	0	C
0	0	0	0	O
	100			
0	0	ı	0	0
0	요	0	0	0

Arroz, Sembrado en Agua Juncia paraguas Hierba gitana Pasto de agua, Temprano

PRUEBA F

5

10

Se sembraron semillas o núculas de especies vegetales seleccionadas de (césped) hierba bermuda (*Cynodon dactylon*), pasto azul de Kentucky (*Poa pratensis*), grama (*Agrostis palustris*), cañuela dura (*Festuca ovina*), garranchuelo grande (*Digitaria sanguinalis*), hierba de ganso (*Eleusine indica*), pasto dallis (*Paspalum dilatatum*), espiguilla (*Poa annua*), pamplina común (*Stellaria media*), diente de león (*Taraxacum officinale*), trébol blanco (*Trifolium repens*), y chufa amarilla (*Cyperus esculentus*), y se trataron en pre-emergencia con las sustancias químicas de prueba formuladas en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo.

Al mismo tiempo, las plantas seleccionadas de estas especies de cultivo y de malas hierbas se trataron con aplicaciones en post-emergencia de las sustancias químicas de prueba formuladas de la misma manera. Las plantas variaron en altura desde 2 a 18 cm (etapa de 1- a 4-hojas) durante los tratamientos en post-emergencia. Las plantas y controles tratados se mantuvieron en un invernadero durante 12 a 14 días, tiempo tras el cual se compararon todas las especies con los controles y se evaluaron visualmente. Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla F, están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba.

Tabla F	Compuesto	Tabla F	Compuesto	Tabla F	Compuesto
500 g ia/ha	1	250 g ia/ha	1	125 g ia/ha	1
Post-emergencia		Post-emergencia		Post-emergencia	
Grama	70	Grama	50	Grama	50
Hierba bermuda, Césped	70	Hierba bermuda, Césped	50	Hierba bermuda, Césped	40
Pasto azul	95	Pasto azul	70	Pasto azul	45
Pasto azul, KY	30	Pasto azul, KY	0	Pasto azul, KY	0
Pamplina	100	Pamplina	85	Pamplina	85
Trébol, Blanco	100	Trébol, Blanco	100	Trébol, Blanco	100
Garranchuelo, Grande	90	Garranchuelo, Grande	75	Garranchuelo, Grande	70
Pasto dallis	60	Pasto dallis	75	Pasto dallis	15
Diente de león	95	Diente de león	85	Diente de león	75
Cañuela, Dura	0	Cañuela, Dura	0	Cañuela, Dura	0
Hierba de ganso	50	Hierba de ganso	40	Hierba de ganso	35
Chufa, amarilla	15	Chufa, amarilla	15	Chufa, amarilla	10
Tabla F	Compuesto	Tabla F	Compuesto	Tabla F	Compuesto
62 g ia/ha	1	31 g ia/ha	1	500 g ia/ha	1
Post-emergencia		Post-emergencia		Pre-emergencia	
Grama	30	Grama	0	Grama	100
Hierba bermuda, Césped	20	Hierba bermuda, Césped	0	Hierba bermuda, Césped	90
Pasto azul, KY	0	Pasto azul	35	Pasto azul	70
Pamplina	80	Pasto azul, KY	20	Pasto azul, KY	80
Trébol, Blanco	90	Pamplina	0	Pamplina	100
Garranchuelo, Grande	45	Trébol, Blanco	70	Trébol, Blanco	100
Pasto dallis	0	Garranchuelo, Grande	0	Garranchuelo, Grande	100
Diente de león	75	Pasto dallis	0	Pasto dallis	95

Cañuela, Dura	0	Diente de león	50	Diente de león	100
Hierba de ganso	10	Cañuela, Dura	0	Cañuela, Dura	90
Chufa, amarilla	10	Hierba de ganso	5	Hierba de ganso	85
		Chufa, amarilla	0	Chufa, amarilla	70
Tabla F	Compuesto	Tabla F	Compuesto	Tabla F	Compuesto
250 g ia/ha	1	125 g ia/ha	1	62 g ia/ha	1
Pre-emergencia		Pre-emergencia		Pre-emergencia	
Grama	90	Grama	60	Grama	60
Hierba bermuda, Césped	80	Hierba bermuda, Césped	50	Hierba bermuda, Césped	40
Pasto azul	70	Pasto azul	45	Pasto azul	65
Pasto azul, KY	40	Pasto azul, KY	30	Pasto azul, KY	30
Pamplina	100	Pamplina	100	Pamplina	100
Trébol, Blanco	100	Trébol, Blanco	100	Trébol, Blanco	100
Garranchuelo, Grande	95	Garranchuelo, Grande	85	Garranchuelo, Grande	40
Pasto dallis	70	Pasto dallis	45	Pasto dallis	35
Diente de león	100	Diente de león	100	Diente de león	95
Cañuela, Dura	60	Cañuela, Dura	60	Cañuela, Dura	60
Hierba de ganso	65	Hierba de ganso	30	Hierba de ganso	40
Chufa, amarilla	25	Chufa, amarilla	30	Chufa, amarilla	15
Tabla F	Compuesto	Tabla F	Compuesto	Tabla F	Compuesto
31 g ia/ha	1	31 g ia/ha	1	31 g ia/ha	1
Pre-emergencia		Pre-emergencia		Pre-emergencia	
Grama	50	Pamplina	80	Diente de león	35
Hierba bermuda, Césped	10	Trébol, Blanco	80	Cañuela, Dura	50
Pasto azul	20	Garranchuelo, Grande	15	Hierba de ganso	30
Pasto azul, KY	0	Pasto dallis	10	Chufa, amarilla	0

PRUEBA G

5

10

Se sembraron semillas o núculas de especies vegetales seleccionadas de hierba bermuda (*Cynodon dactylon*), césped Surinam (*Brachiaria decumbens*), garranchuelo grande (*Digitaria sanguinalis*), almorejo (*Setaria viridis*), hierba de ganso (*Eleusine indica*), hierba johnson (*Sorghum halepense*), falso ciprés (*Kochia scoparia*), gloria de la mañana marcada (*Ipomoea lacunosa*), chufa púrpura (*Cyperus rotundus*), ambrosía común (*Ambrosia elatior*), mostaza negra (*Brassica nigra*), pasto guinea (*Panicum maximum*), pasto dallis (*Paspalum dilatatum*), mijo de los arrozales (*Echinochloa crus-galli*), cadillo bravo (*Cenchrus echinatus*), cerraja común (*Sonchus oleraceous*), sida espinosa (*Sida spinosa*), ballico italiano (*Lolium multiflorum*), verdolaga común (*Portulaca oleracea*), pasto señal de hoja ancha (*Brachiaria platyphylla*), hierba cana (*Senecio vulgaris*), pamplina común (*Stellaria media*), hierba de araña tropical (*Commelina benghalensis*), espiguilla (*Poa annua*), hierba de bromo velloso (*Bromus tectorum*), gramínea caminadora (*Rottboellia cochinchinensis*), hierba rastrera (*Elytrigia repens*), hierba de caballo de Canada (*Conyza canadensis*), correhuela de campo (*Convolvulus arvensis*), agujas españolas (*Bidens bipinnata*), malva

común (*Malva sylvestris*), y cardo ruso (*Salsola kali*) y se trataron en pre-emergencia con sustancias químicas de prueba formuladas en una mezcla de disolventes no tóxicos que incluía un tensioactivo.

Al mismo tiempo, las plantas seleccionadas de estas especies de malas hierbas se trataron con aplicaciones en post-emergencia de algunas de las sustancias químicas de prueba formuladas de la misma manera. Las plantas variaron en altura desde 2 a 18 cm (etapa de 1- a 4-hojas) durante los tratamientos en post-emergencia. Las plantas y controles tratados se mantuvieron en un invernadero durante 12 a 21 días, tiempo tras el cual se compararon todas las especies con los controles y se evaluaron visualmente.

5

10

20

En otro momento diferente, vides de uva (*Vitus vinifera*), y olivos (*Olea europaea*) y naranjos (*Citrus sinensis*) se trataron con algunas de las sustancias químicas de prueba formuladas de la misma manera y se aplicaron a la superficie del suelo y los 5 cm inferiores de las vides o troncos vegetales (aplicación post-dirigida). Las plantas variaron en altura desde 30 a 100 cm. Las aplicaciones se realizaron usando un atomizador de mano que liberaba un volumen de 990 L/ha. Las plantas y controles tratados se mantuvieron en un invernadero durante 28 días, tiempo tras el cual se compararon las plantas tratadas con los controles y se evaluaron visualmente.

También en otro momento diferente, se sembraron especies de semillas (nódulos) de caña de azúcar (*Saccharum officinarum*) y se trataron en pre-emergencia y/o post-emergencia con algunas de las sustancias químicas de prueba formuladas de la misma manera. Las plantas y controles tratados se mantuvieron en un invernadero durante 14 días, tiempo tras el cual se compararon las plantas tratadas con los controles y se evaluaron visualmente.

Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla G, están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba.

Compuesto	~		70	40	92	75	20	20	100	20	30	20	09	100	100	09	92	92	92	100	30
Tabla G Co	375 g ia/ha	Post-emergencia	Mijo de los arrozales	Césped bermuda	Correhuela de Campo	Mostaza Negra	Pasto azul	Césped bromo velloso	Pamplina	Garranchuelo, Grande	Pasto dallis	Almorejo	Hierba de ganso	Hierba cana	Hierba de caballo	Gramínea caminadora	Hierba Johnson	Falso ciprés	Malva	Dondiego de día	Chufa púrpura
Compuesto	~		75	20	92	75	20	80	20	30	09	09	100	98	100	20	95	95	100	30	92
Tabla G	500 g ia/ha	Post-emergencia	Mijo de los arrozales	Césped bermuda	Correhuela de Campo	Mostaza Negra	Pasto azul	Césped bromo velloso	Garranchuelo, Grande	Pasto dallis	Almorejo	Hierba de ganso	Hierba cana	Pasto guinea	Hierba de caballo	Gramínea caminadora	Hierba Johnson	Malva	Dondiego de día	Chufa púrpura	Sida espinosa

Sida espinosa 95	Verdolaga 100	Hierba rastrera 70	Ambrosía 100	Cardo ruso 100	Ballico, italiano 40	Cadillo bravo 95	Pasto señal 75	Cerraja 95	Agujas 95 españolas	Hierba de araña 95	Césped Surinam 90	Tabla G Compuesto	125 g ia/ha	Post-emergencia	Mijo de los 60 arrozales	Césped bermuda 25	Correhuela de 95 Campo	Mostaza Negra 75	Pasto azul 30	Césped bromo 30 velloso	Pamplina 95
													77		75	50	100	09	40	75	100
													22		85	65	100 10	95 (75	26	95 10
100	70	100	40	95	85	100	95	95	06			t)	-		3 02	40 6	95 10	3 22	40 7	3 09	95 6
7		1(7	5,	w	10	5,	5,	<i>3</i> ,			Compuesto			1-	7	<i>3,</i>	1-	7	•	5,
Verdolaga	Hierba rastrera	Ambrosía	Ballico, italiano	Cadillo bravo	Pasto señal	Cerraja	Agujas españolas	Hierba de araña	Césped Surinam			Tabla G	250 g ia/ha	Post-emergencia	Mijo de los arrozales	Césped bermuda	Correhuela de Campo	Mostaza Negra	Pasto azul	Césped bromo velloso	Pamplina

Garranchuelo, Grande	20	85	75	Grand	Garranchuelo, Grande	09
Pasto dallis	30	75	20	Pasto	Pasto dallis	20
Almorejo	30	75	40	Almor	Almorejo	20
Hierba de ganso	09	20	92	Hierb	Hierba de ganso	09
Hierba cana	92		100	Hierba	Hierba cana	92
Pasto guinea	92	100	75	Pasto	Pasto guinea	20
Hierba de caballo	100	,	80	Hierbi	Hierba de caballo	20
Gramínea caminadora	09	82	80	Gram	Gramínea caminadora	40
Hierba Johnson	92		82	Hierba	Hierba Johnson	02
Falso ciprés		100	86	Malva	alva	09
Malva	20	92	92	Dondi	Dondiego de día	100
Dondiego de día	100	100	100	Chufa	Chufa púrpura	2
Chufa púrpura	20	15	40	Sida 6	Sida espinosa	02
Sida espinosa	06	92	80	Verdo	Verdolaga	100
Verdolaga	100	86	82	Hierb	Hierba rastrera	30
Hierba rastrera	09	82	09	Ambr	Ambrosía	92
Ambrosía	92	100	100	Cardo	Cardo ruso	100
Cardo ruso	100	100	•	Ballio	Ballico, italiano	10
Ballico, italiano	40	82	40	Cadill	Cadillo bravo	09
Cadillo bravo	92	92	40	Pasto	Pasto señal	09
Pasto señal	75	82	20	Cerra	Cerraja	92
Cerraja	92	100	92	Aguja españ	Agujas españolas	92
Agujas españolas	92	1	86	Hierb	Hierba de araña	92

Hierba de araña	95	86	100			Césped	Césped Surinam	09
Césped Surinam	85	92	70					
Tabla G	Compuesto			Tabla G	Compuesto			
125 g ia/ha	22	77		62 g ia/ha	7	22	64	7.7
Post-emergencia				Post-emergencia				
Mijo de los arrozales	25	65		Mijo de los arrozales	09	15	20	40
Césped bermuda	40	35		Césped bermuda	25	35	35	35
Correhuela de Campo	100	100		Correhuela de Campo	06	100	06	86
Mostaza Negra	92	09		Mostaza Negra	09	75	10	20
Pasto azul	40	40		Pasto azul	20	15	0	ES
Césped bromo velloso	95	65		Césped bromo velloso	30	85	75	6237 8
Pamplina	85	06		Pamplina		20	ı	5 4 6
Garranchuelo, Grande	85	75		Garranchuelo, Grande	50	20	80	79 T.: \$2
Pasto dallis	25	35		Pasto dallis	10	15	20	15
Almorejo	20	40		Almorejo	10	25	0	35
Hierba de ganso	35	20		Hierba de ganso	20	25	20	20
Hierba cana	85	92		Hierba cana	09	92	0	80
Pasto guinea	92	65		Pasto guinea	09	92	0	65
Hierba de caballo	•	80		Hierba de caballo			09	75
Gramínea caminadora	75	20		Gramínea caminadora	20	20	09	65
Hierba Johnson	•	85		Hierba Johnson	70	•	0	70
Falso ciprés	100	86		Falso ciprés		86	06	86

Malva	85	85		Malva	50	•	06	80
Dondiego de día	92	100		Dondiego de día	100	85	65	06
Chufa púrpura	0	0		Chufa púrpura		0	35	0
Sida espinosa	98	80		Sida espinosa	70	06	75	80
Verdolaga	92	20		Verdolaga	80	85	09	09
Hierba rastrera	75	09		Hierba rastrera	10	65	35	40
Ambrosía	86	98		Ambrosía	75	86	100	92
Cardo ruso	100	•		Cardo ruso	100	100	1	
Ballico, italiano	40	30		Ballico, italiano	0	15	35	30
Cadillo bravo	85	35		Cadillo bravo	30	40	20	10
Pasto señal	20	09		Pasto señal	20	25	30	20 2
Cerraja	100	92		Cerraja	95	95	80	06
Agujas españolas	ı	86		Agujas españolas	80		06	86
Hierba de araña	92	06		Hierba de araña	95	85	06	75
Césped Surinam	92	65		Césped Surinam	30	35	10	25
Tabla G	Compuesto			Tabla G Compuesto				
31 g ia/ha	22	64	77	16 g ia/ha	22	64	11	
Post-emergencia				Post-emergencia				
Mijo de los arrozales	0	20	10	Mijo de los arrozales	0	20	0	
Césped bermuda	35	35	20	Césped bermuda	15	20	10	
Correhuela de Campo	100	80	86	Correhuela de Campo	85	20	70	
Mostaza Negra	75	0	40	Mostaza Negra	50	0	25	
Pasto azul	0	0	0	Pasto azul	0	0	0	
Césped bromo velloso	92	40	20	Césped bromo	15	20	0	

Pamplina	20	•	80	Pamplina	,			10	
Garranchuelo, Grande	35	20	20	Garranchuelo, Grande	15		50	09	
Pasto dallis	0	0	0	Pasto dallis	0		0	0	
Almorejo	15	0	0	Almorejo	0		0	0	
Hierba de ganso	15	0	15	Hierba de ganso	5		0	0	
Hierba cana	65	0	75	Hierba cana	99		0	40	
Pasto guinea	55	0	0		Pasto guinea	2		0	0
Hierba de caballo	•	09	20		Hierba de caballo	1		60 4	40
Gramínea caminadora	25	0	35		Gramínea caminadora	15		0	0
Hierba Johnson	,	0	92		Hierba Johnson			0	20
Falso ciprés	86	85	92		Falso ciprés	86		75 9	90
Malva	09	06	75		Malva	40		9 08	65
Dondiego de día	85	20	09		Dondiego de día	20		0 5	20
Chufa púrpura	0	35	0		Chufa púrpura	0		35	0
Sida espinosa	85	75	75		Sida espinosa	75		65 7	20
Verdolaga	22	0	20		Verdolaga	20		0 2	20
Hierba rastrera	40	20	10		Hierba rastrera	15		20	0
Ambrosía	85	100	75		Ambrosía	65		75 7	75
Cardo ruso	100		ı		Cardo ruso	92			
Ballico, italiano	2	20	20		Ballico, italiano	0		10	0
Cadillo bravo	15	20	0		Cadillo bravo	0		0	0.
Pasto señal	15	0	30		Pasto señal	2		0	0

velloso

Cerraja	85	80	06	Cerraja	75		80	75
Agujas españolas	•	06	92	Agujas españolas	•		75	75
Hierba de araña	40	80	20	Hierba de araña	15		80	10
Césped Surinam	15	0	10	Césped Surinam	0		0	0
Tabla G	Compuesto			Tabla G	Compuestos			
8 g ia/ha	64			1500 g ia/ha	~		4	
Post-emergencia				Post-Dirigida				
Mijo de los arrozales	0			Uva	100		100	
Césped bermuda	0			Aceituna	50		ı	
Correhuela de Campo	09			Naranja	50		75	
Mostaza Negra	0			Tabla G	Compuesto			
Pasto azul	0			900 g ia/ha	4			
Césped bromo velloso	0			Post-Dirigida				
Garranchuelo, Grande	30			Aceituna	50			
Pasto dallis	0							
Almorejo	0			Tabla G	Compuestos			
Hierba de ganso	0			500 g ia/ha	_		o	
Hierba cana	0			Post-emergencia				
Pasto guinea	0			Caña de azúcar	38		17	
Hierba de caballo	09							
Gramínea caminadora	0							
Hierba Johnson	0				Tabla G	Compuestos		
Falso ciprés	99				250 g ia/ha		_	6
Malva	65				Post- emergencia			

7			6		0		6		0		<i>ე</i>	// 1.	0							
13			~		8		-		0		8		0	Compuesto	~		70	70	100	100
		Compuestos				Compuestos				Compuestos										
Caña de azúcar		Tabla G	125 g ia/ha	Post- emergencia	Caña de azúcar	Tabla G	62 g ia/ha	Post- emergencia	Caña de azúcar	Tabla G	31 g ia/ha	Post- emergencia	Caña de azúcar	Tabla G	375 g ia/ha	Pre-emergencia	Mijo de los arrozales	Césped bermuda	Correhuela de Campo	Mostaza Negra
															6		92	100	100	100
															4		100	100	100	100
0	0	40	0	0	75	0	0	0	65	65	65	0		Compuestos	_		70	70	100	100
Dondiego de día	Chufa púrpura	Sida espinosa	Verdolaga	Hierba rastrera	Ambrosía	Ballico, italiano	Cadillo bravo	Pasto señal	Cerraja	Agujas españolas	Hierba de araña	Césped Surinam		Tabla G	500 g ia/ha	Pre-emergencia	Mijo de los arrozales	Césped bermuda	Correhuela de Campo	Mostaza Negra

Pasto azul	82	100	100		Césped bromo velloso		92
Césped bromo velloso	92	100	100		Pamplina		100
Pamplina	100	100	100		Garranchuelo, Grande		06
Garranchuelo, Grande	06	100	100		Pasto dallis		92
Pasto dallis	92	100	100		Almorejo		06
Almorejo	06	100	100		Hierba de ganso		20
Hierba de ganso	20	06	95		Hierba cana		100
Hierba cana	100	100			Pasto guinea		100
Pasto guinea	100	100	100		Hierba de caballo		100
Hierba de caballo	100	100	100		Gramínea caminadora		82
Gramínea caminadora	06	92	85		Hierba Johnson		75
Hierba Johnson	75	92	98		Falso ciprés		100
Falso ciprés	100		•		Malva		92
Malva	92	100	100	Dondiego de día		100	
Dondiego de día	100	100	100	Chufa púrpura		100	
Chufa púrpura	100	100	•	Sida espinosa		100	
Sida espinosa	100	100	100	Verdolaga		100	
Verdolaga	100	100	•	Hierba rastrera		95	
Hierba rastrera	92	100	100	Ambrosía		100	
Ambrosía	100	100	100	Cardo ruso		100	
Cardo ruso	100	100	•	Ballico, italiano		95	
Ballico, italiano	92	100	80	Cadillo bravo		85	

Cadillo bravo	85	100	92		Pasto señal	75
Pasto señal	92	92	100		Cerraja 1	100
Cerraja	100	100			Agujas españolas	100
Agujas españolas	100	100	100		Hierba de araña	100
Hierba de araña	100	100	100		Césped Surinam	95
Césped Surinam	100	92	06			
Tabla G	Compuestos	stos				
250 g ia/ha	~	4	o	22	77	
Pre-emergencia						
Mijo de los arrozales	20	80	82	80	06	
Césped bermuda	30	92	92	30	09	
Correhuela de Campo	100	100	100	100	100	
Mostaza Negra	85	100	100	75	95	
Pasto azul	85	80	92	09	40	
Césped bromo velloso	92	100	20	75	75	
Pamplina	92	100	100	100	100	
Garranchuelo, Grande	06	100	06	80	06	
Pasto dallis	20	92	80	50	85	
Almorejo	20	100	100	20	06	
Hierba de ganso	20	20	92	0	55	
Hierba cana	100	100		50	100	
Pasto guinea	85	100	100	95	96	
Hierba de caballo	100	100	100		100	
Gramínea caminadora	80	80	80	65	06	

Hierba Johnson	09	85	92	80	92			
Falso ciprés	100			100	100			
Malva	92	100	100	80	80			
Dondiego de día	100	100	100	06	100			
Chufa púrpura				100	100	ı	20	100
Sida espinosa				100	100	100	92	95
Verdolaga				98	100	ı	75	100
Hierba rastrera				06	100	0.2	30	80
Ambrosía				100	100	100	100	100
Cardo ruso				100	100	ı	100	100
Ballico, italiano				30	100	75	50	75
Cadillo bravo				70	06	06	85	100
Pasto señal				75	96	80	80	95
Cerraja				100	100	ı	100	100
Agujas españolas				100	100	100	1	ı
Hierba de araña				100	100	100	100	100
Césped Surinam				92	80	80	06	100
Tabla G						Compuestos		
125 g ia/ha				_	4	о	22	77
Pre-emergencia								
Mijo de los arrozales				20	20	02	70	85
Césped bermuda				20	06	96		0 10
Correhuela de Campo				100	100	100	06	100
Mostaza Negra				80	92	75	92	06

Pasto azul		30	09	30	30	20
Césped bromo velloso		20	70	20	20	10
Pamplina		95	100	100	06	100
Garranchuelo, Grande		30	75	06	80	82
Pasto dallis		10	50	20	40	30
Almorejo		10	70	85	10	82
Hierba de ganso			09	09	0	25
Hierba cana		100	92	ı		80
Pasto guinea		70	92	100	06	82
Hierba de caballo		95	100	100		100
Gramínea caminadora		30	70	09		82
Hierba Johnson		40	75	80		82
Falso ciprés		100	ı			100
Malva		80	100	100		80
Dondiego de día		100	100	100		100
Chufa púrpura		100	100			100
Sida espinosa		100	100	100	80	90
Verdolaga		09	100		20	100
Hierba rastrera	09	06		20	50	
Ambrosía	92	100	100	95	100	
Cardo ruso	100	100	ı	100	ı	
Ballico, italiano	10	09	50	0	40	
Cadillo bravo	30	80	80	70	100	
Pasto señal	70	20	80	10	06	

Cerraja	100	100	1	100	100	
Agujas españolas	100	100	100	ı	ı	
Hierba de araña	100	100	100	100	96	
Césped Surinam	92	09	70	35	06	
Tabla G			Compuestos	tos		
62 g ia/ha	_	4	6	22	64	11
Pre-emergencia						
Mijo de los arrozales	0	50	30	30	10	75
Césped bermuda	10	20	10	0	0	0
Correhuela de Campo	92	100	95	06	99	92
Mostaza Negra	30	95	70	09	35	82
Pasto azul	10	10	10	0	0	2
Césped bromo velloso	0	30	10	0	0	0
Pamplina	20	100		ı	0	06
Garranchuelo, Grande	20	09	70	40	35	80
Pasto dallis	0	0	10	0	0	15
Almorejo	10	20	20	0	0	65
Hierba de ganso	0	10	10	0	0	2
Hierba cana	09	95		ı	40	ı
Pasto guinea	20	95	06	75	0	82
Hierba de caballo	92	100	100	ı	92	100
Gramínea caminadora	10	70	30	20	20	45
Hierba Johnson	20	09	40	20	0	75
Falso ciprés	100	•	•	86	15	92

Malva			20	100	06	75	0	50		
Dondiego de día			92	100	70	09	0	100		
Chufa púrpura			10	40		30	0	100		
Sida espinosa			20	85	95	65	20	85		
Verdolaga			10	09	1	20	35	75		
Hierba rastrera			10	09	70	20	0	10		
Ambrosía			20	80	95	06	92	100		
Cardo ruso			100			96	0	100		
Ballico, italiano	0	30	20	0	0	0				
Cadillo bravo	0	30	•	0	0	100				
Pasto señal	10	20	20	0	0	75				
Cerraja	92	100	•	06	06	100				
Agujas españolas	100	100	100		35	ı				
Hierba de araña	20	100	100	92	06	92				
Césped Surinam	92	30	40	0	0	20				
Tabla G	Compu	Compuestos			Tabla G			Compuestos	stos	
31 g ia/ha	22	64	7.7		16 g ia/ha			22	64	7.7
Pre-emergencia					Pre-emergencia	yencia				
Mijo de los arrozales	20	0	22		Mijo de los arrozales	Ø		10	0	20
Césped bermuda	0	0	0		Césped bermuda	ermuda		0	0	0
Correhuela de Campo	75	0	06		Correhuela de Campo	a de		65	0	80
Mostaza Negra	35	20	09		Mostaza Negra	Vegra		30	0	09
Pasto azul	0	0	0		Pasto azul	_		0	0	0

	•	0 45	0	0	0	0 20	0 30	75 70	0 0	0 10	0 85	- 30	0 20	0 100	0 20	0 45	0 0	65 80	- 85	0 0	0 0	0 5
	0	0	0	0	0		0		0	0	35	20	20	0	20	0	0	92	92	0	0	0
velloso	Pamplina	Garranchuelo, Grande	Pasto dallis	Almorejo	Hierba de ganso	Hierba cana	Pasto guinea	Hierba de caballo	Gramínea caminadora	Hierba Johnson	Falso ciprés	Malva	Dondiego de día	Chufa púrpura	Sida espinosa	Verdolaga	Hierba rastrera	Ambrosía	Cardo ruso	Ballico, italiano	Cadillo bravo	Pasto señal
	20	45	2	2	2	09	70	06	10	92	95	40	06	100	75	09	0	95		0	2	~
	0	0	0	0	0	10	0	92	0	0	10	0	0	0	30	0	0	65	0	0	0	0
	20	40	0	0	0	0	35	ı	0	0	20	20	20	0	20	0	0	75	75	0	0	0
	Pamplina	Garranchuelo, Grande	Pasto dallis	Almorejo	Hierba de ganso	Hierba cana	Pasto guinea	Hierba de caballo	Gramínea caminadora	Hierba Johnson	Falso ciprés	Malva	Dondiego de día	Chufa púrpura	Sida espinosa	Verdolaga	Hierba rastrera	Ambrosía	Cardo ruso	Ballico, italiano	Cadillo bravo	Pasto señal

Cerraja	75	35	100	Cerraja	35	0	80
Agujas españolas		0	•	Agujas españolas	•	0	•
Hierba de araña	20	75	82	Hierba de araña	0	20	09
Césped Surinam	0	0	2	Césped Surinam	0	0	0
Tabla G	compuesto			Tabla G Con	Compuesto		
8 g ia/ha	64			8 g ia/ha	64		
Pre-emergencia				Pre-emergencia			
Mijo de los arrozales	0			Falso ciprés	0		
Césped bermuda	0			Malva	0		
Correhuela de Campo	0			Dondiego de día	0		1
Mostaza Negra	0			Chufa púrpura	0		<i></i>
Pasto azul	0			Sida espinosa	0		2 0 1
Césped bromo velloso	0			Verdolaga	0		
Pamplina	0			Hierba rastrera	0		
Garranchuelo, Grande	0			Ambrosía	65		13
Pasto dallis	0			Cardo ruso	0		
Almorejo	0			Ballico, italiano	0		
Hierba de ganso	0			Cadillo bravo	0		
Hierba cana	0			Pasto señal	0		
Pasto guinea	0			Cerraja	0		
Hierba de caballo	0			Agujas españolas	0		
Gramínea caminadora	0			Hierba de araña	0		
Hierba Johnson	0			Césped Surinam	0		
Tabla G	compuesto			Tabla G		Compuesto	

Compuesto Pre-emergencia Pre-emergencia Caña de azúcar Caña de azúcar 125 g ia/ha 62 g ia/ha Tabla G Compuesto 0 Pre-emergencia Pre-emergencia Caña de azúcar Caña de azúcar 375 g ia/ha 250 g ia/ha Tabla G

PRUEBA H

5

10

15

20

25

30

Esta prueba evaluó el efecto de mezclas de compuesto 1 con diflufenzopir sobre varias especies vegetales. Se sembraron semillas de plantas de prueba consistentes en garranchuelo grande (DIGSA, Digitaria sanguinalis (L.) Scop.), cenizo (CHEAL, Chenopodium album L.), bledo (AMARE, Amaranthus retroflexus L.), cadillo (XANST, Xanthium strumarium L.), mijo de los arrozales (ECHCG; Echinochloa crus-galli (L.) Beauv.), maíz (ZEAMD, Zea mays L. cv. 'Pioneer 33G26'), gloria de la mañana (roja) escarlata (IPOCO, Ipomoea coccinea L.), cola de zorro gigante (SETFA, Setaria faberi Herrm.) y malva asiática (ABUTH, Abutilon theophrasti Medik.) en macetas que contenían medio de plantación Redi-Earth® (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) que comprende musgo de turba Spaghnum, vermiculita, agente humectante y nutrientes de arranque. Se sembraron especies de semilla pequeña a 1 cm de profundidad aproximadamente; se sembraron semillas más grandes a 2,5 cm de profundidad aproximadamente. Las plantas se cultivaron en un invernadero usando iluminación suplementaria para mantener un fotoperíodo de aproximadamente 14 horas; las temperaturas de día y de noche fueron aproximadamente 25-30°C y 22-25°C, respectivamente. Se aplicó fertilizante equilibrado mediante el sistema de riego. Las plantas se cultivaron durante 7 a 11 días de modo que en el momento del tratamiento las plantas variaban en altura desde 2 a 18 cm (etapa de 1- a 4-hojas). Los tratamientos consistieron en Compuesto 1 y diflufenzopir solo y en combinación, en suspensión o disueltos en un disolvente acuoso que comprendía glicerina y tensioactivo no iónico Tween y se aplicaron como una rociada foliar usando un volumen de 541 L/ha. Cada tratamiento se repitió cuatro veces. Se observó que el disolvente de aplicación no tenía efecto alguno en comparación con plantas de control no tratadas. Las plantas y controles tratados se mantuvieron en el invernadero y se regaron como fue necesario y con cuidado de no humedecer el follaje durante las primeras 24 horas después del tratamiento. Los efectos sobre las plantas aproximadamente 3 semanas después del tratamiento se compararon visualmente con los controles no tratados. Las evaluaciones de las respuestas de las plantas se calcularon como las medias de las cuatro réplicas, basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Se usó la ecuación de Colby para determinar los esperados efectos herbicidas de las mezclas. La Ecuación de Colby (Colby, S. R. "Cálculo de Respuestas Sinérgicas y Antagonistas de Combinaciones Herbicidas" Weeds, 15(1), pp 20-22 (1967)) calcula el efecto aditivo esperado de mezclas herbicidas, y para dos ingredientes activos es de la forma:

$$P_{a+b} = P_a + P_b - (P_a P_b / 100)$$

donde P_{a+b} es el efecto porcentual de la mezcla esperado a partir la contribución aditiva de los componentes individuales,

P_a es el efecto porcentual observado del primer ingrediente activo en la misma proporción de uso que en la mezcla, y

P_b es el efecto porcentual observado del segundo ingrediente activo en la misma proporción de uso que en la mezcla

35 Los resultados y efectos aditivos esperados a partir de la Ecuación de Colby se incluyen en la Tabla H.

Tabla H - Resultados Observados y Esperados a Partir del Compuesto 1 Solo y en Combinación con Diflufenzopir*

Proporción de Ap	licación (g i.a./ha)	DIGS	A	CHEA	.L	AMAF	RE	XANS	ST.	ECHC	G
Compuesto 1	Diflufenzopir	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.
125	-	81	-	100	-	100	-	97	-	90	-
62	-	37	-	100	-	97	-	98	-	42	-
31	-	7	-	98	-	91	-	87	-	25	-
-	50	8	-	80	-	95	-	68	-	23	-
-	25	1	-	76	-	91	-	60	-	10	-
-	12	0	-	61	-	73	-	43	-	5	-
125	50	88	83	100	100	100	100	100	99	93	92
62	25	77	38	100	100	100	100	92	99	85	48
31	12	62	7	100	99	100	98	100	93	85	29

Proporción de Apli	cación (g i.a./ha)	ZEAM	D	IPOCO)	SETFA	SETFA		ABUTH	
Compuesto 1	Diflufenzopir	Obs	Esp.	Obs	Esp.	Obs	Esp.	Obs	Esp.	
125	-	22	-	100	-	65	-	93	-	
62	-	5	-	97	-	4	-	26	-	
31	-	2	-	92	-	2	-	14	-	
-	50	0	-	82	-	59	-	68	-	
-	25	0	-	83	-	58	-	70	-	
-	12	0	-	77	-	41	-	50	-	
125	50	56	22	100	100	89	86	100	98	
62	25	32	5	100	99	72	60	92	84	
31	12	8	2	99	98	73	42	62	57	

^{*}Las proporciones de aplicación son gramos de ingrediente activo por hectárea (g i.a./ha). "Obs." es efecto observado. "Esp." es efecto esperado calculado a partir de la Ecuación de Colby.

10 PRUEBA I

Como se puede ver de los resultados incluidos en la Tabla H, la mayor parte de los resultados observados eran mayores que lo esperado a partir de la Ecuación de Colby, y en algunos casos mucho mayores. Lo más notable fue el efecto, mayor que el aditivo, observado en garranchuelo, mijo de los arrozales, maíz y cola de zorro gigante. El aumento fue menos perceptible para otras especies de prueba, pero fundamentalmente porque el efecto esperado era ya casi 100% en las proporciones probadas.

5

10

15

20

Esta prueba evaluó el efecto de mezclas de compuesto 9 con metsulfuron-metilo y con una combinación 5:1 en peso de clorsulfuron y metsulfuron-metilo sobre varias especies vegetales. Se sembraron semillas de las plantas de prueba consistentes en trigo (TRZAW; Triticum aestivum), alforfón silvestre, (POLCO; Polygonum convolvulus), bledo (AMARE; Amaranthus retroflexus), mostaza silvestre (SINAR; Sinapis arvensis), amor de hortelano (GALAP; Galium aparine), cardo ruso (SASKR; Salsola kali), pamplina común (STEME; Stellaria media), falso ciprés (KCHSC; Kochia scoparia), y cenizo (CHEAL; Chenopodium album) en una mezcla de suelo franco y arena. Las plantas se cultivaron en un invernadero usando iluminación suplementaria para mantener un fotoperíodo de aproximadamente 14 horas; las temperaturas de día y de noche fueron aproximadamente 23°C y 16°C, respectivamente. Se aplicó fertilizante equilibrado mediante el sistema de riego. Las plantas se cultivaron durante 10 a 23 días de modo que en el momento del tratamiento las plantas variaban en etapa de 2- a 8-hojas. Los tratamientos consistían en Compuesto 9, metsulfuron-metilo, y clorsulfuron-metsulfuron-metilo (5:1) solo y en combinación. Los tratamientos se formularon en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo y se aplicaron como una rociada foliar usando un volumen de 280-458 L/ha. Cada tratamiento se repitió tres veces. Se observó que el disolvente de aplicación no tenía efecto alguno en comparación con plantas de control no tratadas. Las plantas y controles tratados se mantuvieron en el invernadero y se regaron como fue necesario y con cuidado de no humedecer el follaje durante las primeras 24 horas después del tratamiento. Los efectos sobre las plantas aproximadamente 17 días después del tratamiento se compararon visualmente con los controles no tratados. Las evaluaciones de las respuestas de las plantas se calcularon como las medias de las tres réplicas, basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Se usó la ecuación de Colby para determinar los esperados efectos herbicidas de las mezclas. Los resultados y efectos aditivos esperados a partir de la Ecuación de Colby se incluyen en la Tabla I.

Tabla I - Resultados Observados y Esperados a partir de Compuesto 9 Solo y en Combinación con Metsulfuron-Metilo y con Clorsulfuron-Metilo (5:1)*

Proporción de A	plicación (g i.a./ha)	POLC	0	AMAR	RE	SINAF	₹	GALA	Р	KCHS	SC .
Compuesto 9	Metsulfuron-Metilo	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.
8	-	27	-	70	-	47	-	87	-	87	-
4	-	17	-	62	-	45	-	83	-	70	-
-	8	0	-	0	-	0	-	0	-	0	-
-	4	0	-	0	-	0	-	0	-	0	-
8	8	32	27	58	70	45	47	85	87	70	87
8	4	38	27	77	70	48	47	82	87	80	87
4	8	38	17	65	62	48	45	85	83	85	70
4	4	30	17	52	62	33	45	80	83	80	70

Proporción de Ap	licación (g i.a./ha)	SASKI	₹	STEM	E	CHEAL		TRZAV	٧
Compuesto 9	Metsulfuron-Metilo	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.
8	-	73	-	55	-	83	-	12	-
4	-	50	-	47	-	45	-	8	-
-	8	0	-	0	-	0	-	0	-
-	4	0	-	0	-	0	-	0	-

Proporción de A	plicación (g i.a./ha)	SASK	SASKR		E	CHEA	CHEAL		TRZAW	
Compuesto 9	Metsulfuron-Metilo	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	
8	8	68	73	43	55	73	83	8	12	
8	4	67	73	55	55	88	83	7	12	
4	8	55	50	50	47	60	45	8	8	
4	4	55	50	52	47	48	45	3	8	

Proporción de A	plicación (g i.a./ha)	TRZAW	
Compuesto 9	Clorsulfuron- Metsulfuron- Metilo	Obs.	Esp.
16	-	43	-
8	-	30	-
-	20	35	-
-	10	3	-
16	20	42	63
16	10	33	45
8	20	33	55
8	10	22	32

Las proporciones de aplicación son gramos de ingrediente activo por hectárea (g i.a./ha). "Obs." es efecto observado. "Esp." es efecto esperado calculado a partir de la Ecuación de Colby.

Como se puede ver de los resultados incluidos en la Tabla I, algunos de los resultados observados para las malas hierbas eran mayores que lo esperado a partir de la Ecuación de Colby. Lo más notable fue el efecto, mayor que el aditivo, observado sobre alforfón silvestre, falso ciprés, y cenizo.

Además, los resultados observados para casi todos los tratamientos sobre trigo eran menores que los esperados a partir de la Ecuación de Colby, lo que sugiere protección de cultivo.

PRUEBA J

10

15

Esta prueba evaluó el efecto de mezclas de compuesto 58 con azimsulfuron sobre varias especies vegetales. Se rellenaron parcialmente tres macetas de plástico (ca. 16-cm de diámetro) por evaluación, con suelo franco limoso esterilizado Tama que comprendía una proporción 35:50:15 de arena, limo y arcilla y 2,6% de materia orgánica. Las plantaciones separadas para cada una de las tres macetas fueron como sigue. Se sembraron semillas de U.S. de ensalada de pato (HETLI; Heteranthera limosa), juncia paraguas de pequeña flor (CYPDI; Cyperus difformis) y tallo rojo púrpura (AMMCO; Ammannia coccinea) en una maceta de 16-cm para cada evaluación. Se sembraron semillas de U.S. de hierba gitana (LEFUF; Leptochloa fusca ssp. fascicularis), un estand de 9 o 10 plántulas de arroz sembrado en agua (ORYSW; Oryza sativa cv. 'Japonica - M202'), y un estand de 6 plántulas de arroz trasplantado (ORYSP; Oryza sativa cv. 'Japonica - M202') en una maceta de 16-cm para cada evaluación. Se sembraron semillas de U.S. de mijo de los arrozales (ECHCG; Echinochloa crus-galli), pasto de agua tardío (ECOR2, Echinochloa oryzicola), pasto de agua temprano (ECHOR; Echinochloa oryzoides) y arroz de la selva (ECHCO; Echinochloa

colona) en una maceta de 16-cm para cada evaluación. Las plantaciones fueron secuenciales de manera que las especies de cultivo y malas hierbas estaban en la etapa de 2,0 a 2,5-hojas en el momento del tratamiento.

Las plantas sembradas se cultivaron en un invernadero con ajustes de temperatura diurna/nocturna de 29,5/26,7°C, y se proporcionó iluminación equilibrada suplementaria para mantener un fotoperíodo de 16 horas. Las macetas de prueba se mantuvieron en el invernadero hasta la terminación de la prueba.

5

10

15

En el momento del tratamiento, las macetas de prueba se inundaron a 3 cm por envima de la superficie del suelo y después se trataron por aplicación de compuestos de prueba directamente al agua de inundación formulados en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo. Las macetas se mantuvieron a la profundidad de 3 cm de agua durante el tiempo de duración de la prueba. Los tratamientos consistieron en compuesto 58 y azimsulfuron solo y en combinación. Los efectos de los tratamientos sobre el arroz y malas hierbas se evaluaron visualmente por comparación con controles no tratados después de 21 días. Las evaluaciones de las respuestas de las plantas se calcularon como las medias de las tres réplicas y están compendiadas en la Tabla J. Las evaluaciones están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba. Se usó la ecuación de Colby para determinar los esperados efectos herbicidas de las mezclas. Los resultados y efectos aditivos esperados a partir de la Ecuación de Colby se incluyen en la Tabla J.

Tabla J - Resultados Observados y Esperados a partir de Compuesto 58 Solo y en Combinación con Azimsulfuron*

Proporción de Aplicación (g i.a./ha)	ha)	ORYSW		ORYSP		АММСО		HETLI		CYPDI	=
Comp. 58	Azimsulfuron	Obs.	Esp.	Obs	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.
64		20	ı	0	ı	06	ı	100	1	100	ı
32	·	10	ı	0		30	ı	100	ı	100	ı
16		10	ı	0		0	ı	100	ı	100	ı
ı	8	10	ı	0	ı	95	ı	100	1	100	ı
•	4	0		0		0		30	1	100	ı
·	2	0	ı	0	ı	0	ı	30	ı	95	ı
64	8	10	28	15	0	95	100	100	100	100	100
32	8	0	19	10	0	95	26	100	100	100	100
16	8	10	19	10	0	80	92	100	100	100	100
64	4	0	20	0	0	20	06	100	100	100	100
32	4	0	10	0	0	20	30	100	100	100	100
16	4	15	10	0	0	20	0	100	100	100	100
64	2	0	20	0	0	20	06	100	100	100	100
32	2	0	10	0	0	30	30	100	100	100	100
16	2	0	10	0	0	0	0	100	100	100	100
Proporción de Aplicación (g i.a./ha)	ha)	LEFUF		ECHCG		ECOR2		ECHOR		ЕСНСО	
Compuesto 58	Azimsulfuron	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.

Proporción de Aplicación (g i.a./ha)	ha)	ORYSW		ORYSP		AMMCO		HETU		CYPDI	
Comp. 58	Azimsulfuron	Obs.	Esp.	Obs	Esp.	Obs.	Esp.	Obs.	Esp.	Obs.	Esp.
64	-	20	ı	0	ı	0	ı	0	ı	0	ı
32	-	0	ı	0	1	0	1	0	-	0	
16	•	0	ı	0	ı	0	ı	0	ı	0	ı
•	8	0	ı	30	ı	50	1	40	ı	40	ı
•	4	0		0	,	0	1	0		0	
	2	0	ı	0	ı	0	ı	0	ı	0	ı
64	8	0	20	55	30	09	50	55	40	09	40
32	8	0	0	45	30	45	50	65	40	65	40
16	8	0	0	30	30	45	50	30	40	40	40
64	4	0	20	35	0	50	0	20	0	30	0
32	4	0	0	10	0	30	0	20	0	20	0
16	4	0	0	20	0	0	0	20	0	20	0
64	2	0	20	20	0	0	0	0	0	0	0
32	2	0	0	0	0	0	0	0	0	0	0
16	2	0	0	0	0	0	0	0	0	0	0
Las proporciones de aplicación son gramos de ingrediente activo por hectárea (g i.a./ha). "Obs." es efecto observado. "Esp." es efecto esperado calculado a partir de la Ecuación de Colby.	son gramos de ingrediente acti	vo por hect	área (g i.a.	/ha). "Obs." (es efecto c	bservado.	Esp." es e	fecto esper	ado calcula	ado a partir	de la

PRUEBA K

10

Se trataron semillas de especies vegetales seleccionadas de amor de hortelano (GALA; *Galium aparine*), susceptible al herbicida sulfonilurea (susceptible-SU) y resistente al herbicida sulfonilurea (resistente-SU), y trigo (TRZAW; *Triticum aestivum*), con aplicaciones en post-emergencia de sustancias químicas de prueba formuladas en una mezcla de disolventes no fitotóxicos que incluía un tensioactivo. Las plantas se trataron en la etapa de 2-3 hojas y etapa de 2 verticilos para el trigo y amor de hortelano, respectivamente. Las plantas y controles tratados se mantuvieron en un medio ambiente de cultivo controlado durante 15 días, tiempo tras el cual se compararon todas las especies con los controles y se evaluaron visualmente. Las evaluaciones de las respuestas de las plantas, compendiadas en la Tabla K, están basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Una respuesta de guión (-) significa que no hay resultado de la prueba.

Tabla K - Resultados del Tratamiento de Trigo y Amor de Hortelano Susceptible y Resistente a Sulfonilurea con Compuestos 1 y 9 y Clorsulfuron

Proporc	ción de Aplicación (g	i.a./ha)	TRZAW	GALAP	GALAP
Compuesto 1	Compuesto 9	Clorsulfuron		Susceptible-SU	Resistente-SU
125	-	-	38	100	100
62	-	-	30	100	100
31	-	-	25	98	100
16	-	-	0	98	100
8	-	-	0	80	100
4	-	-	0	63	100
-	125	-	40	100	100
-	62	-	38	100	100
-	31	-	38	100	100
-	16	-	25	100	100
-	8	-	20	100	100
-	4	-	0	75	100
-	-	16	20	100	5

Como se observa en la Tabla K, aunque el clorsulfuron tuvo poco efecto sobre el biotipo de *Galium aparine* resistente a la sulfonilurea en la prueba, los Compuestos 1 y 9 dieron buen control de ambos biotipos resistente y susceptible.

PRUEBA L

Este estudio de campo incluyó tratamientos que consistían en Compuesto 1 y nicosulfuron, solo y en combinación, sobre cardo de Canadá (*Cirsium arvense*) y margarita fleabane (*Erigeron spp.*). Las plantas variaron en altura desde 20 a 30 cm en el momento de la aplicación en el mes de Mayo cerca de Newark, Delaware. El compuesto 1 se formuló como un polvo humectable que contenía 25% en peso de ingrediente activo. Nicosulfuron estaba en la forma de Accent® Herbicide, una formulación granular dispersable en agua que contenía 75% en peso de ingrediente activo. Las formulaciones se dispersaron en agua en el depósito rociador antes del tratamiento. Los tratamientos se realizaron usando un rociador de mochila para liberar 24 galones por acre (224 L por hectárea) en un terreno de 10 pies x 30 pies (3 m x 9 m). Cada tratamiento se repitió dos veces. Los efectos sobre las plantas aproximadamente 56 días después del tratamiento se compararon visualmente con los controles no tratados. Las evaluaciones de las respuestas de las plantas se calcularon como las medias de las dos réplicas, basadas en una escala de 0 a 100 donde 0 indica que no hay efecto alguno y 100 indica control completo. Se usó la ecuación de Colby para determinar los esperados efectos herbicidas de la mezcla. Los resultados y efectos aditivos esperados a partir de la Ecuación de Colby se incluyen en la Tabla L.

30

15

20

25

Tabla L - Resultados Observados (Obs.) y Esperados (Esp.) a partir de Compuesto 1 Solo y en Combinación con Nicosulfuron*

Proporción d	e Aplicación (g i.a./ha)	Cirsium ar	vense	Erigeron	ѕрр.
Compuesto 1	Nicosulfuron	Obs.	Esp.	Obs.	Esp.
125	-	73	-	53	-
-	18	15	-	28	-
125	18	98	77	85	66

^{*} Las proporciones de aplicación son gramos de ingrediente activo por hectárea (g i.a./ha). "Obs." es efecto observado. "Esp." es efecto esperado calculado a partir de la Ecuación de Colby.

La Tabla L muestra que un efecto sinérgico era evidente en esta prueba a partir de la combinación de compuesto 1 y nicosulfuron.

5

REIVINDICACIONES

1. Un compuesto seleccionado de la Fórmula I, un N-óxido o una sal agrícolamente adecuada del mismo,

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^4

en la que

15

20

30

35

R¹ is ciclopropilo opcionalmente sustituido con 1-5 R⁵, isopropilo opcionalmente sustituido con 1-5 R⁶, o fenilo opcionalmente sustituido con 1-3 R⁷;

 R^2 es $((O)_iC(R^{15})(R^{16}))_kR$;

R es CO₂H o una sal, éster, carboxamida, carboxaldehido, oxima o derivado hidrazónico del mismo;

R³ es halógeno, OR²⁰, SR²¹ o N(R²²)R²³;

10 $R^4 \text{ es -N}(R^{24})R^{25} \text{ o -NO}_2;$

cada R^5 es R^6 is independientemente halógeno, alquilo(C_1 - C_6), halo-alquilo(C_1 - C_6), alquenilo(C_2 - C_6), halo-alquilo(C_2 - C_6), halo-alquilo(C_1 - C_2), halo-alquilo(C_1 - C_2), alquilo(C_1 - C_2), alquilo(C_1 - C_2), alquilo(C_1 - C_2).

cada R7 es independientemente halógeno, ciano, nitro, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_4), cicloalquilo(C_3 - C_6), halo-cicloalquilo(C_3 - C_6), hidroxi-alquilo(C_1 - C_4), alcoxialquilo(C_2 - C_4), halo-alcoxialquilo(C_2 - C_4), alquenilo(C_2 - C_4), halo-alquenilo(C_2 - C_4)-oxi, halo-alquenilo(C_3 - C_4)-oxi, halo-alquenilo(C_3 - C_4)-oxi, halo-alquenilo(C_3 - C_4)-oxi, halo-alquenilo(C_3 - C_4)-oxi, halo-alquenilo(C_3 - C_4)-sulfinilo, alquenilo(C_3 - C_4)-sulfinilo, halo-alquenilo(C_3 - C_4)-sulfinilo, halo-alquinilo(C_3 - C_4)-su

dos R^7 adyacentes se consideran conjuntamente como -OCH₂O-, -CH₂CH₂O-, -OCH(CH₃)O-, -OC(CH₃)₂O-, -OCF₂O-, -CF₂CF₂O-, -OCF₂CF₂O- o -CH=CH-CH=CH-;

 R^{15} es H, halógeno, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_4), hidroxi, alcoxi(C_1 - C_4) o alquilcarboniloxi(C_2 - C_4);

 R^{16} es H, halógeno, alquilo(C_1 - C_4) o halo-alquilo(C_1 - C_4): o

R¹⁵ y R¹⁶ se consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que están unidos, un resto carbonilo;

 R^{20} es H, alquilo(C_1 - C_4) o halo-alquilo(C_1 - C_3);

 R^{21} es H, alquilo(C_1 - C_4) o halo-alquilo(C_1 - C_3);

R²² v R²³ son independientemente H o alquilo(C₁-C₄);

 R^{24} es H, alquilo(C_1 - C_4) opcionalmente sustituido con 1-2 R^{30} , alquenilo(C_2 - C_4) opcionalmente sustituido con 1-2 R^{31} , o alquinilo(C_2 - C_4) opcionalmente sustituido con 1-2 R^{32} ; o R^{24} es $C(=0)R^{33}$, nitro, OR^{34} , $S(O)_2R^{35}$, $N(R^{36})R^{37}$ o $N=C(R^{62})R^{63}$;

R²⁵ es H, alquilo(C₁-C₄) opcionalmente sustituido con 1-2 R³⁰ o C(=O)R³³; o

 R^{24} y R^{25} se consideran conjutamente como un radical seleccionado de -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- y - (CH₂)₂O(CH₂)₂-, cada radical opcionalmente sustituido con 1-2 R^{38} ; o

40 $R^{24} \text{ y } R^{25} \text{ se consideran conjuntamente como } = C(R^{39})N(R^{40})R^{41} \text{ o } = C(R^{42})OR^{43}$;

cada R³⁰, R³¹ y R³² es independientemente halógeno, alcoxi(C₁-C₃), halo-alcoxi(C₁-C₃),

```
alquil(C_1-C_3)-tio, halo-alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-tio, amino, alquil(C_2-C_4)-tio, halo-alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-tio, halo-alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-tio, alquil(C_1-C_3)-
                                C_4);
                                 cada R^{33} es independientemente H, alquilo(C_1-C_{14}), halo-alquilo(C_1-C_3), alcoxi(C_1-C_4), fenilo, fenoxi o benciloxi;
                                R<sup>34</sup> es H, alquilo(C<sub>1</sub>-C<sub>4</sub>), halo-alquilo(C<sub>1</sub>-C<sub>3</sub>) o CHR<sup>66</sup>C(O)OR<sup>67</sup>;
                                R^{35} es alquilo(C<sub>1</sub>-C<sub>4</sub>) o halo-alquilo(C<sub>1</sub>-C<sub>3</sub>);
   5
                                R^{36} es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o C(=O)R^{64};
                                R<sup>37</sup> es H o alquilo(C<sub>1</sub>-C<sub>4</sub>);
                                 cada R_{38} es independientemente halógeno, alquilo(C^1-C_3), alcoxi(C_1-C_3), halo-alcoxi(C_1-C_3), alquil(C_1-C_3)-tio,
                                halo-alquil(C_1-C_3)-tio, amino, alquil(C_1-C_3)-amino, dialquil(C_2-C_4); amino, o alcoxicarbonilo(C_2-C_4);
                                R^{39} es H o alquilo(C<sub>1</sub>-C<sub>4</sub>);
10
                                R<sup>40</sup> v R<sup>41</sup> son independientemente H o alquilo(C<sub>1</sub>-C<sub>4</sub>); o
                                R<sup>40</sup> y R<sup>41</sup> se consideran conjuntamente como -(CH<sub>2</sub>)<sub>4</sub>-, -(CH<sub>2</sub>)<sub>5</sub>-, -CH<sub>2</sub>CH=CHCH<sub>2</sub>- o -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-;
                                R^{42} es H o alquilo(C<sub>1</sub>-C<sub>4</sub>);
                                R^{43} es alquilo(C<sub>1</sub>-C<sub>4</sub>);
                                 cada R<sup>45</sup> es independientemente halógeno, ciano, nitro, alquilo(C<sub>1</sub>-C<sub>4</sub>), halo-alquilo(C<sub>1</sub>-C<sub>4</sub>), cicloalquilo(C<sub>3</sub>-C<sub>6</sub>),
15
                                 halo-cicloalquilo(C<sub>3</sub>-C<sub>6</sub>), alquenilo(C<sub>2</sub>-C<sub>4</sub>), halo-alquenilo(C<sub>2</sub>-C<sub>4</sub>), alquinilo(C<sub>3</sub>-C<sub>4</sub>), halo-alquinilo(C<sub>3</sub>-C<sub>4</sub>), alcoxi(C<sub>1</sub>-
                                 C_4), halo-alcoxi(C_1-C_4), alquil(C_1-C_4)-tio, halo-alquil(C_1-C_4)-tio, alquil(C_1-C_4)-sulfinilo, alquil(C_1-C_4-C_4-sulfinilo, alquil(C_1-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4
                                 alquil(C_1-C_4)-amino, dialquil(C_2-C_8)-amino, cicloalquil(C_3-C_6)-amino, (alquil)cicloalquil(C_4-C_6)-amino,
                                alguilcarbonilo(C_2-C_4), alcoxicarbonilo(C_2-C_6), alguilaminocarbonilo(C_2-C_6), dialguilaminocarbonilo(C_3-C_8) o
                                trialquil(C3-C6)-sililo:
20
                                R<sup>62</sup> es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o fenilo opcionalmente sustituido con 1-3 R<sup>65</sup>;
                                R^{63} es H o alquilo(C<sub>1</sub>-C<sub>4</sub>); o
                                 R<sup>62</sup> v R<sup>63</sup> se consideran conjuntamente como -(CH<sub>2</sub>)<sub>4</sub>- o -(CH<sub>2</sub>)<sub>5</sub>-;
                                R^{64} es H, alguilo(C_1-C_{14}), halo-alguilo(C_1-C_3), alcoxi(C_1-C_4), fenilo, fenoxi o benciloxi;
                                 cada R<sup>65</sup> es independientemente CH<sub>3</sub>, CI o OCH<sub>3</sub>;
25
                                 R^{66} es H. alquilo(C<sub>1</sub>-C<sub>4</sub>) o alcoxi(C<sub>1</sub>-C<sub>4</sub>):
                                R<sup>67</sup> es H, alquilo(C<sub>1</sub>-C<sub>4</sub>) o bencilo;
                                j es 0 ó 1; y
                                k es 0 ó 1;
30
                                a condición de que:
                                         (a) cuando k es 0, entonces i es 0;
                                         (b) cuando R<sup>1</sup> es fenilo sustituido con CI en cada una de las posiciones meta, el fenilo está sustituido también
                                         con R<sup>7</sup> en la posición para;
                                          (c) cuando R<sup>1</sup> es fenilo sustituido con R<sup>7</sup> en la posición para, dicho R<sup>7</sup> es distinto de terc-butilo, ciano o fenilo
35
                                         opcionalmente sustituido: v
                                        (d) cuando R^1 es ciclopropilo o isopropilo opcionalmente sustituido con 1-5 R^6, entonces R es distinto de C(=W)N(R^b)S(O)_2R^c-R^d donde W es O o NOR^e; R^b es hidrógeno, alquilo(C_1-C_4), alquenilo(C_2-C_6) o alquinilo(C_2-C_6); R^c es un enlace directo o CHR^f, O, NR^e o NOR^e; R^d es un heterociclo opcionalmente
                                         sustituido o radical aromático carbocíclico que tiene 5 a 6 átomos de anillo, estando el radical opcionalmente
                                         condensado con un anillo de 5 ó 6 miembros aromático o no aromático; cada Re es independientemente H,
40
```

167

 R^2 es CO_2R^{12} , CHO, C(=NOR¹⁴)_H, C(=NNR⁴⁸R⁴⁹)H, (O)_iC(R¹⁵)(R¹⁶)CO₂R¹⁷ o C(=O)N(R¹⁸)R¹⁹;

alquilo(C_1 - C_3), halo-alquilo(C_1 - C_3) o fenilo; y R^f es H, alquilo(C_1 - C_3) o fenilo.

2. El compuesto de la reivindicación 1 en el que

 $R^{12} \ es \ H, \ -CH[C(O)O(CH_2)_m-], \ -N=C(R_{55})R^{56}; \ o \ un \ radical \ seleccionado \ de \ alquilo(C_1-C_{14}), \ cicloalquilo(C_3-C_{12}), \ alquinilo(C_4-C_{12}), \ cicloalquilalquilo(C_4-C_{12}), \ alquinilo(C_2-C_{14}), \ alquinilo(C_2-C_{14}) \ y \ fenilo, \ cada \ radical \ opcionalmente \ sustituido \ con \ 1-3 \ R^{27}; \ o$

 R^{12} es un radical divalente que une la función éster carboxílico CO_2R^{12} de cada uno de los dos sistemas de anillos pirimidínicos, seleccionado el radical divalente de - CH_2 -, - $(CH_2)_2$ -, - $(CH_2)_3$ - y - $(CH_2)_3$ - y - $(CH_2)_3$ -;

 R^{14} es H, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_4) o bencilo;

R¹⁷ es alquilo(C₁-C₁₀) opcionalmente sustituido con 1-3 R²⁹, o bencilo;

 R^{18} es H, alquilo(C_1 - C_4), hidroxi, alcoxi(C_1 - C_4) o S(O)₂ R^{57} ;

R¹⁹ es H o alquilo(C₁-C₄);

5

15

20

10 cada R^{27} es independientemente halógeno, ciano, hidroxicarbonilo, alcoxicarbonilo(C_2 - C_4), hidroxi, alcoxi(C_1 - C_4), halo-alcoxi(C_1 - C_4), alquil(C_1 - C_4) -tio, halo-alquil(C_1 - C_4)-tio, amino, alquil(C_1 - C_4)-amino, dialquil(C_2 - C_4)-amino, - $CH[O(CH2)_n]$ o fenilo opcionalmente sustituido con 1-3 R^{44} ; o

dos R²⁷ se consideran conjuntamente como -OC(O)O- o -O(C(R⁵⁸)(R⁵⁸))₁₋₂O-; o

dos R²⁷ se consideran conjuntamente como un átomo de oxígeno para formar, con el átomo de carbono al que están unidos, un resto carbonilo;

cada R^{29} es independientemente halógeno, alcoxi(C_1 - C_4), halo-alcoxi(C_1 - C_4), alquil(C_1 - C_4)-tio, halo-alquil(C_1 - C_4)-amino, alquil(C_1 - C_4)-amino o dialquil(C_2 - C_4)-amino;

cada R^{44} es independientemente halógeno, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_3), hidroxi, alcoxi(C_1 - C_4), halo-alquilo(C_1 - C_3)-tio, halo-alquilo(C_1 - C_3)-tio, amino, alquilo(C_1 - C_3)-amino, dialquilo(C_2 - C_4)-amino, o nitro;

 R^{48} es H, alquilo(C_1 - C_4), halo-alquilo(C_1 - C_4), alquilcarbonilo(C_2 - C_4), alcoxicarbonilo(C_2 - C_4) o bencilo;

 R^{49} es H, alquilo(C₁-C₄) o halo-alquilo(C₁-C₄);

R⁵⁵ y R⁵⁶ son independientemente alquilo(C₁-C₄);

 R^{57} es alguilo(C₁-C₄), halo-alguilo(C₁-C₃) o $NR^{59}R^{60}$:

cada R⁵⁸ se selecciona independientemente de H y alquilo(C₁-C₄);

25 R⁵⁹ y R⁶⁰ son independientemente H o alquilo(C₁-C₄);

m es un número entero de 2 a 3; y

n es un número entero de 1 a 4.

- 3. El compuesto de la reivindicación 2, en el que R³ es halógeno.
- **4.** El compuesto de la reivindicación 2, donde R¹ es ciclopropilo o fenilo sustituido con un radical halógeno, metilo o metoxi en la posición para y opcionalmente con 1-2 radicales seleccionados de halógeno y metilo en otras posiciones; y R⁴ es -N(R²⁴)R²⁵.
 - 5. El compuesto de la reivindicación 4, donde R² es CO₂R¹², CHO o CH₂CO₂R¹⁷.
 - **6.** El compuesto de la reivindicación 5, donde R^{24} es H, $C(O)R^{33}$ o alquilo(C_1 - C_4) opcionalmente sustituido con R^{30} ; R^{25} es H o alquilo(C_1 - C_2); o R^{24} y R^{25} se consideran conjuntamente como = $C(R^{39})N(R^{40})R^{41}$.
- 35 **7.** El compuesto de la reivindicación 6, donde R² es CO₂R¹²; y R²⁴ y R²⁵ son H.
 - 8. El compuesto de la reivindicación 7, donde R¹² es H, alquilo(C₁-C₄) o bencilo.
 - 9. El compuesto de la reivindicación 1 seleccionado entre el grupo que consiste en:

6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de metilo,

6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de etilo.

40 6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de fenilmetilo,

sal monosódica de ácido 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxílico.

6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de metilo, 6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de fenilmetilo, sal monosódica de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico, 6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de etilo. 5 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de metilo, 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de etilo, ácido 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxílico, 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de etilo, 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de metilo, y ácido 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxílico, 10 10. Un compuesto que es ácido 2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico. 11. Un compuesto que es ácido 5-cloro-2-ciclopropil-1,6-dihidro-6-oxo-4-pirimidincarboxílico. 12. Un compuesto que es ácido 5,6-dicloro-2-ciclopropil-4-pirimidincarboxílico. 13. El compuesto de la reivindicación 1 seleccionado entre el grupo que consiste en: 15 6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de metilo, 6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de etilo, 6-amino-5-bromo-2-ciclopropl-4-primidincarboxilato de fenilmetilo. sal monosódica de ácido 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxílico, ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico, 20 6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de metilo, 6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de fenilmetilo, sal monosódica de ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico, ácido 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxílico, 6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de etilo, 25 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de metilo, 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de etilo, ácido 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxílico, 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de etilo, 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de metilo, y

14. El compuesto de la reivindicación 13 seleccionado entre el grupo que consiste en:

6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de etilo,

ácido 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxílico,

30

35

6-amino-5-cloro-2-ciclopropl-4-primidincarboxilato de metilo,

6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de metilo,

6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxilato de etilo,

ácido 6-amino-5-cloro-2-(4-clorofenil)-4-primidincarboxílico,

6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de etilo,

ácido 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxílico, 6-amino-2-(4-bromofenil)-5-cloro-4-primidincarboxilato de metilo, y ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico.

10

15

30

35

40

- 15. Un compuesto de la reivindicación 1 que es ácido 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxílico.
- 5 **16.** Un compuesto de la reivindicación 1 que es 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxilato de metilo.
 - 17. Un compuesto de la reivindicación 1 que es 6-amino-5-cloro-2-(4-clorofenil)-4-pirimidincarboxilato de metilo.
 - 18. Un compuesto de la reivindicación 1 que es 6-amino-5-cloro-2-(4-clorofenil)-4-pirimidincarboxilato de etilo.
 - 19. Un compuesto de la reivindicación 1 que es ácido 6-amino-5-cloro-2-(4-clorofenil)-4-pirimidincarboxílico.
 - 20. Un compuesto de la reivindicación 1 que es ácido 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxílico.
 - 21. Un compuesto de la reivindicación 1 que es 6-amino-5-bromo-2-ciclopropil-4-pirimidincarboxilato de etilo.
 - 22. Un compuesto de la reivindicación 1 que es 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxilato de metilo.
 - 23. Un compuesto de la reivindicación 1 que es 6-amino-5-cloro-2-ciclopropil-4-pirimidincarboxilato de etilo.
 - **24.** Una composición herbicida que comprende una cantidad eficazmente herbicida de un compuesto de una cualquiera de las reivindicaciones 1 a 23 y al menos uno de un tensioactivo, un diluyente sólido o un diluytente líquido.
 - **25.** Una composición herbicida que comprende una cantidad eficazmente herbicida de un compuesto de una cualquiera de las reivindicaciones 1 a 23, una cantidad eficaz de al menos un ingrediente activo adicional seleccionado del grupo consistente en otro herbicida y un antídoto de herbicidas, y al menos uno de un tensioactivo, un diluyente sólido o un diluyente líquido.
- 26. Una mezcla herbicida que comprende una cantidad eficazmente herbicida de un compuesto de una cualquiera de las reivindicaciones 1 a 23 y una cantidad eficaz de al menos un ingrediente activo adicional seleccionado del grupo consistente en otro herbicida y un antídoto de herbicidas.
 - **27.** Una mezcla herbicida que comprende cantidades sinérgicamente eficaces de un compuesto de una cualquiera de las reivindicaciones 1 a 23 y un inhibidor de transporte de auxinas.
- 28. La mezcla herbicida de la reivindicación 26 donde el ingrediente activo adicional se selecciona del grupo consistente en:

amidosulfuron, azimsulfuron, bensulfuron-metilo, bispiribac, bispyribac-sodio, clorimuron-etilo, clorsulfuron, cinosulfuron, cloransulam-metilo, ciclosulfamuron, diclosulam, etametsulfuron-metilo, etoxisulfuron, flazasulfuron, florasulam, flucarbazona, flucarbazona-sodio, flucetosulfuron, flumetsulam, flupirsulfuron-metilo, flupirsulfuron-metilo, flupirsulfuron-metilo, imazamox, imazapic, imazapir, imazaquin, imazaquin-amonio, imazetapir, imazosulfuron, yodosulfuron-metilo, mesosulfuron-metilo, metosulam, metsulfuron-metilo, nicosulfuron, oxasulfuron, penoxsulam, primisulfuron-metilo, propoxicarbazona, propoxicarbazona-sodio, prosulfuron, pirazosulfuron-etilo, piribenzoxim, piriftalid, piriminobac-metilo, piritiobac, pritiobac-sodio, rimsulfuron, sulfometuron-metilo, sulfosulfuron, tifensulfuron-metilo, triasulfuron, tribenuron-metilo, trifloxisulfuron, triflusulfuron-metilo y tritosulfuron.

- 29. La mezcla herbicida de la reivindicación 27, donde el inhibidor del transporte de auxinas es diflufenzopir.
- **30.** La mezcla herbicida de una cualquiera de las reivindicaciones 26 a 29 que además comprende al menos uno de un tensioactivo, un diluyente sólido o un diluyente líquido.
- **31.** La mezcla herbicida de una cualquiera de las reivindicaciones 26 a 30, donde la mezcla tiene un efecto mayor que el aditivo sobre malas hierbas o un efecto menor que el aditivo sobre cultivos u otras plantas convenientes.
 - **32.** Un método para controlar el cultivo de vegetación no deseada que comprende poner en contacto la vegetación o su medio ambiente con un compuesto de una cualquiera de las reivindicaciones 1 a 23, una composición herbicida de la reivindicación 24 o reivindicación 25, o una mezcla herbicida de una cualquiera de las reivindicaciones 26 a 30.

170