

11 Número de publicación: 2 375 639

(2006.01)

(51) Int. CI.: C07D 401/04 (2006.01) A01N 43/40 (2006.01) A01N 43/58 (2006.01) A01P 7/02 (2006.01) A01P 7/04 C07D 211/54 (2006.01) C07D 211/58 C07D 401/12 (2006.01) C07D 417/04

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Número de solicitud europea: **06811453 .7**
- (96) Fecha de presentación: **06.10.2006**
- (97) Número de publicación de la solicitud: 1947098 (97) Fecha de publicación de la solicitud: 23.07.2008
- (54) Título: COMPUESTOS DE AMINAS CÍCLICAS Y AGENTE PARA EL CONTROL DE PLAGAS.
- (30) Prioridad:

06.10.2005 JP 2005294126 06.10.2005 JP 2005294127 12.10.2005 JP 2005297803 12.10.2005 JP 2005297804 25.01.2006 JP 2006016877 30.06.2006 JP 2006182314

- (45) Fecha de publicación de la mención BOPI: 02.03.2012
- Fecha de la publicación del folleto de la patente: 02.03.2012

(73) Titular/es:

NIPPON SODA CO., LTD. 2-1, Ohtemachi 2-chome Chiyoda-ku, Tokyo 100-8165, JP

(72) Inventor/es:

HAMAMOTO, Isami; TAKAHASHI, Jun; YANO, Makio; KAWAGUCHI, Masahiro; HANAI, Daisuke y **IWASA**, Takao

(74) Agente: Curell Aguilá, Mireia

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Compuestos de aminas cíclicas y agente para el control de plagas.

5 Campo de la invención

La presente invención se refiere a nuevos compuestos de aminas cíclicas y a agentes para el control de plagas que contienen estos compuestos de aminas cíclicas o similares como principios activos.

10 Descripción de la técnica relacionada

Aunque muchos compuestos que tienen actividades insecticidas/acaricidas son conocidos convencionalmente, existen problemas tales como un efecto insuficiente de los mismos, limitación del uso de los mismos debido a problemas de resistencia a las medicinas, aparición de fitotoxicidad o contaminación en el cuerpo de las plantas, o gran toxicidad con respecto a mamíferos, peces o similares.

Es conocido que los compuestos representados por la fórmula a continuación presentan actividades insecticidas/acaricidas:

$$R_2$$
 R_1
 R_3
 R_4

20

25

15

En la fórmula, X representa O, S, NH, NR o NOR; Y representa un enlace (entrecruzado) o similar; Z representa cicloalquilo C3 a C8 o similar; y CH_2 en estos anillos de hidrocarburos en este caso puede ser sustituido con NR_5 (R_5 es fenilo o fenilo sustituido). Los ejemplos específicos conocidos de tales compuestos incluyen el compuesto representado por la fórmula a continuación (referirse al documento de patente 1):

Sin embargo, las estructuras de tales compuestos están limitadas a derivados de 4-aminopiridina y derivados de 4-hidroxipiridina y no se dan a conocer específicamente compuestos con otras estructuras.

30

Documento de patente 1: Traducción japonesa publicada Nº Hei 09-502446 de publicación internacional PCT.

El documento US-A-5.571.815 da a conocer determinadas piperidinas que pueden ser utilizadas como agentes pesticidas.

35

El documento US-A-5.723.450 da a conocer compuestos pesticidas a base de piridin-4-ilamino-ciclohexanos.

El documento WO-A-2004/099160 describe compuestos pesticidas a base de 1-(pirimidin-4-il)-piperidinas.

40 E

El documento WO-A-2005/036961 da a conocer compuestos pesticidas a base de 1-fenilmetil-4-difenilmetil-piperidinas.

El documento US-A-5.001.125 describe piridazin aminas para el tratamiento de las enfermedades virales.

45 Exposición de la invención

Problemas que debe solucionar la invención

Un objetivo de la presente invención consiste en proporcionar agentes para el control de plagas, que pueden ser sintetizados industrialmente de manera favorable, que presenten excelentes bioactividades, que no presenten problemas con respecto a la seguridad y que presenten los compuestos con nuevas estructuras como principios activos.

Medios para solucionar el problema

5

10

15

20

25

35

Como resultado de una investigación intensiva para solucionar los problemas anteriormente mencionados, se descubrió que nuevos compuestos de aminas cíclicas con una estructura específica presentan unas actividades insecticidas/acaricidas excelentes para completar la presente invención. En otras palabras, la presente invención proporciona en primer lugar agentes para el control de plagas caracterizados porque contienen compuestos de aminas cíclicas representados por la fórmula (1), sales de los mismos o N-óxidos de los mismos, como principios activos:

$$Cy^{1}_{\cdot} - X - (1)$$

En la fórmula, Cy¹ representa un heterociclo de 5 miembros sustituido o no sustituido o un grupo sustituido o no sustituido representado por la fórmula (a) a continuación:

[En la fórmula, Y¹ e Y² cada uno independientemente representa nitrógeno o carbono y el símbolo (*) representa las posiciones de unión].

X representa oxígeno, azufre, sulfinilo, sulfonilo, nitrógeno sustituido o no sustituido.

Cada R puede unirse para formar un anillo y R que no se une para formar un anillo, representa un hidroxilo, halógeno, amino sustituido o no sustituido, nitro o un grupo orgánico.

n es un entero de 0 a 9 y cada R puede ser igual o diferente cuando n es 2 o más.

Cy² representa un hidrocarburo cíclico sustituido o no sustituido o un heterociclo sustituido o no sustituido con la condición de que Cy² sea piridin-2-ilo, que es sustituido con por lo menos uno o más ciano, cuando Cy¹ es un fenilo sustituido o no sustituido y Cy² es un piridin-2-ilo.

La presente invención proporciona en segundo lugar compuestos de aminas cíclicas representados por la fórmula (2), sales de los mismos, o N-óxidos de los mismos.

En la fórmula, Cy³ representa cualquiera de las fórmulas (b) a (h) a continuación.

En la fórmula, R⁶ representa haloalquilo o haloalcoxi.

5 R⁷ representa alcoxi sustituido o no sustituido, alcoxicarbonilo sustituido o no sustituido, alcoxialquilo sustituido o no sustituido, o el grupo funcional representado por la fórmula (i) a continuación.

(i)

[En la fórmula, R¹⁵ y R¹⁶ cada uno independientemente representa hidrógeno, hidrocarburo sustituido o no sustituido, un grupo heterocíclico sustituido o no sustituido, amino sustituido o no sustituido, hidrocarbonoxi o hidrocarbontio. R¹⁵ y R¹⁶ pueden unirse para formar un anillo, en ese caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo y Z¹ representa oxígeno o nitrógeno sustituido o no sustituido].

 R^8 a R^{14} cada uno independientemente representa hidroxilo, tiol, halógeno, nitro, formilo, ciano, haloalquilo, haloalcoxi, haloalquenilo, alquilo (opcionalmente sustituido con G^1), alcoxi (opcionalmente sustituido con G^1), alquilcarbonilo, alcoxicarbonilo, alquinilo, alquiniloxi, alquiniloxi, arilo (opcionalmente sustituido con G^1) o el grupo funcional representado por la fórmula (i).

G¹ representa hidroxilo, halógeno, amino sustituido o no sustituido nitro, o un grupo orgánico.

20 k, I, n y o, cada uno independientemente representa uno cualquiera de un entero de 0 a 4 y cada R⁸, R⁹, R¹⁰, R¹¹ y R¹², pueden ser iguales o diferentes, cuando k, I, n y o son 2 o más.

m es uno cualquiera de un entero de 0 a 5 y cada R¹⁰ puede ser igual o diferente cuando m es 2 o más.

p y q, cada uno independientemente, representan cualquiera de un entero de 0 a 3 y cada R¹³ y cada R¹⁴ puede ser igual o diferente cuando p y q son 2 o más.

X representa oxígeno, azufre, sulfinilo, sulfonilo o nitrógeno sustituido o no sustituido.

R¹_a y R²_a, R¹_a y R⁴_a, R²_a y R³_a o R³_a y R⁴_a, pueden formar juntos anillos saturados y R¹_a, R¹_b, R²_a, R²_b, R³_a, R³_b, R⁴_a, R⁴_b y R⁵, que no forman juntos anillos saturados, representan cada uno independientemente hidrógeno, hidroxilo, halógeno, amino sustituido o no sustituido, nitro o un grupo orgánico.

Cv4 representa:

10

15

35

50

- piridin-2-ilo sustituido con uno o más de ciano, piridin-3-ilo, piridazin-3-ilo, pirazinilo, tiazol-2-ilo, pirimidin-2-ilo, 1,3,4-tiadiazol-2-ilo o fenilo, que son opcionalmente sustituidos con G^2 cuando Cy^3 es un grupo funcional representado por las fórmulas (c), (g) o (h),

- piridin-2-ilo sustituido con uno o más de ciano, piridin-3-ilo, piridazin-3-ilo, pirazinilo, tiazol-2-ilo, pirimidin-2-ilo o 1,3,4-tiadiazol-2-ilo, que son opcionalmente sustituidos con G² cuando Cy³ es un grupo funcional representado por las fórmulas (b), (e) o (f), y
- piridin-2-ilo sustituido con uno o más de ciano, pirazinilo o 1,3,4-tiadiazol-2-ilo, que son opcionalmente sustituidos
 con G² cuando Cy³ es un grupo funcional representado por la fórmula (d).

G² representa hidroxilo, halógeno, ciano, nitro, formilo, alquilo (opcionalmente sustituido con G³), alcoxi (opcionalmente sustituido con G³), haloalquilo, haloalcoxi, alquiltiocarbonilo, alquilsulfonilamino, haloalquilsulfonilamino, bis(alquilsulfonil)amino, bis-(haloalquilsulfonil)amino, alcoxicarbonilo, arilo (opcionalmente sustituido con G¹), un grupo heterocíclico de 5 a 6 miembros (que contiene por lo menos un heteroátomo entre oxígeno, nitrógeno y azufre), el grupo representado por las fórmulas (j) a (l).

$$Z^{N}$$
 R^{17}
 R^{19}
 R^{20}
 R^{20}
 R^{19}
 R^{21}
 R^{21}
 R^{21}

En las fórmulas (j), (k) y (l), R¹⁷ y R¹⁸ cada uno independientemente representa hidrógeno, un hidrocarburo sustituido o no sustituido, un grupo heterocíclico sustituido o no sustituido, amino sustituido o no sustituido, hidrocarbonoxi o hidrocarbontio. R¹⁹ y R²², cada uno independientemente representa hidrógeno, un hidrocarburo sustituido o no sustituido, un grupo heterocíclico sustituido o no sustituido, o amino sustituido o no sustituido. R²⁰ representa hidrógeno o un hidrocarburo sustituido o no sustituido. R²¹ representa hidrógeno, un hidrocarburo sustituido o no sustituido. Y y Z cada uno independientemente representa oxígeno o nitrógeno sustituido o no sustituido. R¹⁷ y R¹⁸, R¹⁹ y R²⁰ y R²¹ y R²² pueden unirse para formar anillos y en ese caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo.

G³ representa hidroxilo, ciano, alcoxi, alcoxialcoxi o trialquilsililoxi.

Efectos de la invención

5

10

15

20

30

35

40

45

50

55

60

De acuerdo con la presente invención, es posible proporcionar agentes para el control de plagas con excelentes bioactividades, especialmente en términos de actividades insecticidas/acaricidas y gran seguridad, y además, es posible proporcionar compuestos de aminas cíclicas con una nueva estructura, sales de los mismos, o N-óxidos de los mismos.

Formas de realización preferidas de la invención

La presente invención se describirá en detalle a continuación:

25 I. Agentes para el control de plagas que contienen compuestos de aminas cíclicas representados por la fórmula (1), sales de los mismos, o N-óxidos de los mismos, como principios activos.

Los agentes para el control de plagas de la presente invención están caracterizados porque contienen compuestos de aminas cíclicas representados por la fórmula (1), sales de los mismos, o N-óxidos de los mismos, como principios activos. En la fórmula (1), Cy¹ es un grupo heterocíclico de 5 miembros sustituido o no sustituido o un grupo funcional sustituido o no sustituido representado por la fórmula (a).

El grupo heterocíclico de 5 miembros no está limitado particularmente en tanto es un heterociclo de 5 miembros que tiene uno o más heteroátomos en el anillo y puede ser saturado o insaturado. Los ejemplos específicos del mismo incluyen pirrolidin-2-ilo, pirrolidin-3-ilo, furan-2-ilo, tiofen-2-ilo, tiofen-3-ilo, pirrol-2-ilo, pirrol-3-ilo, oxazol-2-ilo, oxazol-4-ilo, oxazol-4-ilo, pirrol-3-ilo, pirrol-3-ilo, pirrol-3-ilo, pirrol-3-ilo, pirrol-3-ilo, pirrol-3-ilo, pirrol-3-ilo, isoxazol-4-ilo, isoxazol-4-ilo, isoxazol-4-ilo, isoxazol-4-ilo, isoxazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, 1,3,4-tiadiazol-2-ilo, 1,2,3-triazol-4-ilo, 1,2,4-triazol-3-ilo y 1,2,4-triazol-5-ilo, y resulta preferido el tiofen-3-ilo.

La fórmula (a) representa fenilo, piridin-2-ilo, piridin-3-ilo o piridazin-3-ilo, que son sustituidos o no sustituidos y resulta preferido el fenilo sustituido o no sustituido.

Los ejemplos específicos de los sustituyentes de Cy¹ incluyen hidroxilo; tiol; halógeno, tal como flúor, cloro, bromo y yodo; ciano; nitro; formilo; amino sustituido o no sustituido tal como amino, metilamino, bencilamino, anilino, dimetilamino, dietilamino y feniletilamino; alquilo (preferentemente alquilo C_{1-6}) tal como metilo, etilo, n-propilo, isopropilo, n-butilo, s-butilo, isobutilo, t-butilo, n-pentilo y n-hexilo; alquenilo tal como vinilo, alilo y 2-metoxietenilo; alquinilo tal como etinilo, 1-propinilo, 2-feniletinilo y propargilo; alcoxi (preferentemente alcoxi C₁₋₆) tal como metoxi, etoxi, propoxi, isopropoxi, n-butoxi, sec-butoxi, isobutoxi y t-butoxi; alqueniloxi tal como viniloxi y aliloxi; alquiniloxi tal como etiniloxi y propargiloxi; ariloxi tal como fenoxi y benciloxi; heteroariloxi tal como 2-piridiloxi; haloalquilo (preferentemente haloalquilo C₁₋₆) tal como clorometilo, fluorometilo, bromometilo, diclorometilo, difluorometilo, dibromometilo, triclorometilo, trifluorometilo, bromodifluorometilo, 1,1,1-trifluoroetilo, 1-cloroetilo, 2-cloroetilo, 1bromoetilo y 2-bromoetilo, pentafluoroetilo; haloalcoxi (preferentemente haloalcoxi C₁₋₆) tal como fluorometoxi, clorometoxi, bromometoxi, difluorometoxi, diclorometoxi, dibromometoxi, trifluorometoxi, triclorometoxi, tribromometoxi, 1,1,1-trifluoroetoxi, pentafluoroetoxi y heptafluoroisopropoxi; alquiltiocarbonilo (preferentemente alquiltiocarbonilo C₁₋₆) tal como metiltiocarbonilo, etiltiocarbonilo, propiltiocarbonilo, isopropilcarbonilo, nbutiltiocarbonilo, isobutiltiocarbonilo, s-butiltio-carbonilo y t-butiltiocarbonilo; alquilsulfonilamino (preferentemente alquilsulfonilamino C₁₋₆) tal como metilsulfonilamino, etilsulfonilamino, n-propil-sulfonilamino, isopropilsulfonilamino, n-butilsulfonilamino y t-butilsulfonilamino; arilsulfonilamino (preferentemente arilsulfonilamino C₆₋₁₂) tal como fenilsulfonilamino; heteroarilsulfonilamino (preferentemente heteroaril-sulfonilamino C_{3-12})

5

10

15

20

25

30

35

40

45

50

55

60

piperazinilsulfonilamino; alquilcarbonilamino (preferentemente alquilcarbonilamino C₁₋₆) tal como metilcarbonilamino, etilcarbonilamino. n-propilcarbonilamino, e isopropilcarbonilamino; alcoxicarbonilamino alcoxilcarbonilamino C_{1-6}) tal como metoxicarbonilamino, etoxicarbonilamino, n-propoxicarbonilamino e isopropoxicarbonilamino; haloalquil-sulfonilamino (preferentemente haloalquilsulfonilamino C₁₋₆) tal como fluorometilsulfonilamino, clorometilsulfonilamino, bromometilsulfonilamino, difluorometilsulfonilamino, diclorometilsulfonilamino, difluoroetilsulfonilamino, trifluorometilsulfonilamino, 1,1,1-trifluoroetil-sulfonilamino pentafluoroetilsulfonilamino; bis-(alquilsulfonil)amino (preferentemente bis(alquilsulfonil C₁₋₆)amino) tal como bis(metilsulfonil)amino, bis(etilsulfonil)amino, (etilsulfonil)(metilsulfonil)amino, bis(propilsulfonil)amino, bis(isopropilsulfonil)amino, bis(n-butilsulfonil)amino bis(t-butilsulfonil)amino; bis(haloalquilsulfonil)amino (preferentemente bis-(haloalquilsulfonil bis(fluoro-metilsulfonil)amino, C₁₋₆)amino) tal como bis(clorometilsulfonil)amino, bis(bromometilsulfonil)amino. bis(difluorometil-sulfonil)amino. bis(diclorometilsulfonil)amino, bis(di-fluoroetilsulfonil)amino, bis(trifluorometilsulfonil)-amino, trifluoroetilsulfonil)amino, y bis(pentafluoroetilsulfonil)amino; hidrazinometoxicarbonilo sustituido o no sustituido tal como hidrazino, N'-fenilhidrazino y N'-metoxicarbonilhidrazino; alcoxi-carbonilo (preferentemente alcoxicarbonilo C₁-6) tal como etoxicarbonilo, propoxicarbonilo, isopropoxicarbonilo, n-butoxicarbonilo y t-butoxicarbonilo; arilo (preferentemente arilo C₆₋₁₂) tal como fenilo, 1-naftilo y 2-naftilo; aralquilo (preferentemente aralquilo C₇₋₂₀) tal como bencilo y fenetilo; heterociclo de 5 miembros insaturado tal como furan-2-ilo, furan-3-ilo, tiofen-2-ilo, tiofen-3-ilo, pirrol-2-ilo, pirrol-3-ilo, oxazol-2-ilo, oxazol-4-ilo, oxazol-5-ilo, tiazol-4-ilo, tiazol-4-ilo, tiazol-5-ilo, isoxazol-3-ilo, isoxazol-4-ilo, isoxazol-5-ilo, isotiazol-3-ilo, isotiazol-4-ilo, isotiazol-5-ilo, imidazol-2-ilo, imidazol-4-ilo, imidazol-4-ilo, imidazol-5-ilo, pirazol-3-ilo, pirazol-4-ilo, pirazol-5-ilo, 1,3,4-oxadiazol-2-ilo, 1,3,4-tiadiazol-2-ilo, 1,2,3-triazol-4-ilo, 1,2,4-triazol-3-ilo y 1,2,4-triazol-5-ilo; heterociclo alquilo de 5 miembros insaturado tal como 5-fenil-5-trifluorometil-isoxazolin-3-ilo, 2furfurilmetilo, 3-tienilmetilo y 1-metil-3-pirazolometilo; heterociclo de 6 miembros insaturado tal como piridin-2-ilo, piridin-3-ilo, piridin-4-ilo, piridazin-3-ilo, piridazin-4-ilo, pirazin-2-ilo, pirimidin-2-ilo, pirimidin-4-ilo, pirimidin-5-ilo, 1,3,5triazin-2-ilo y 1,2,4-triazin-3-ilo; heterociclo alquilo de 6 miembros insaturado tal como 2-piridilmetilo, 3-piridilmetilo, 6cloro-3-piridilmetilo y 2-pirimidilmetilo; un grupo heterocíclico saturado tal como tetrahidrofuran-2-ilo, tetrahidropiran-4-ilo, piperidin-3-ilo, pirrolidin-2-ilo, morfolino, piperidino, y N-metilpiperazinilo; un grupo alquilo heterocíclico saturado tal como 2-tetrahidrafuranilmetilo, 3-piperazilmetilo, N-metil-3-pirrolidilmetilo y morfolinometilo; iminoalquilo Nsustituido o N-no sustituido tal como N-dimetilaminoiminometilo, 1-N-feniliminoetilo, N-hidroxiiminometilo, y Nmetoxiiminometilo; hidrazinocarbonilo N-no sustituido o N-sustituido tal como N'-metilhidrazinocarbonilo, N'fenilhidrazinocarbonilo e hidrazinocarbonilo; aminocarbonilo N-no sustituido o N-sustituido tal como aminocarbonilo, dimetilaminocarbonilo y N-fenil-N-metilaminocarbonilo; hidrazino N-no sustituido o N-sustituido tal como hidrazino, N'-acetilhidrazino, N'-metilhidrazino, N'-fenilhidrazino, N'-metoxi-carbonilhidrazino y N'-2-propilidenhidrazino; alquiltio tal como metiltio, etiltio y t-butiltio; alqueniltio tal como viniltio y aliltio; alquiniltio tal como etiniltio y propargiltio; ariltio tal como feniltio y 4-clorofeniltio; heteroariltio tal como 2-piridiltio; aralquiltio tal como benciltio y fenetiltio; alquilsulfonilo tal como metilsulfonilo, etilsulfonilo y t-butilsulfonilo; alquenilsulfonilo tal como alilsulfonilo; alquinilsulfonilo tal como propargilsulfonilo; arilsulfonilo tal como fenilsulfonilo; heteroarilsulfonilo tal como 2piridilsulfonilo y 3-piridilsulfonilo; aralquilsulfonilo tal como bencilsulfonilo; y grupos funcionales representados por la fórmula (i). Asociando dos o más sustituyentes mencionados anteriormente, sustituyendo un sustituyente por otro, se puede utilizar el sustituyente resultante de una manera similar como un nuevo sustituyente.

Los ejemplos específicos de hidrocarburos en la fórmula (i) incluyen alquilo tal como metilo, etilo, isopropilo, npropilo, n-hexilo y n-octilo; alquenilo tal como vinilo, alilo, 1-propenilo y 2-feniletenilo; alquinilo tal como etinilo y propargilo; e hidrocarburos aromáticos tales como fenilo, 1-naftilo y 9-antracel. Los ejemplos específicos de grupos heterocíclicos incluyen heterociclos de 5 miembros insaturados tales como furan-2-ilo, furan-3-ilo, tiofen-2-ilo, 3-ilo, pirrol-2-ilo, pirrol-3-ilo, oxazol-2-ilo, oxazol-4-ilo, oxazol-5-ilo, tiazol-2-ilo, tiazol-4-ilo, tiazol-5-ilo, isoxazol-3-ilo, isoxazol-4-ilo, isoxazol-5-ilo, isotiazol-3-ilo, isotiazol-4-ilo, isotiazol-5-ilo, imidazol-2-ilo, imidazol-4-ilo, imidazol-4-ilo, imidazol-5-ilo, imidazol-5pirazol-3-ilo, pirazol-4-ilo, pirazol-5-ilo, 1,3,4-oxadiazol-2-ilo, 1,3,4-tiadiazol-2-ilo, 1,2,3-triazol-4-ilo, 1,2,4-triazol-3-ilo y 1,2,4-triazol-5-ilo; heterociclo alquilo de 5 miembros insaturado tal como 5-fenil-5-trifluorometil-isoxazolin-3-ilo, 2furfurilmetilo, 3-tienilmetilo y 1-metil-3-pirazolometilo; heterociclo de 6 miembros insaturado tal como piridin-2-ilo. piridin-3-ilo, piridin-4-ilo, piridazin-3-ilo, piridazin-4-ilo, pirazin-2-ilo, pirimidin-2-ilo, pirimidin-4-ilo, pirimidin-5-ilo, 1,3,5triazin-2-ilo y 1,2,4-triazin-3-ilo; heterociclo alquilo de 6 miembros insaturado tal como 2-piridilmetilo, 3-piridilmetilo y 6-cloro-3-piridilmetilo; y heterociclos saturados tales como tetrahidrofuran-2-ilo, tetrahidrapiran-4-ilo, piperidin-3-ilo, pirrolidin-2-ilo, morfolino, piperidino y N-metilpiperazinilo; un heterociclo alquilo saturado tal como 2-tetrahidrofuranilmetilo, 3-piperazilmetilo, N-metil-3-pirrolidilmetilo y morfolinometilo. Los ejemplos específicos de hidrocarbonoxi e hidrocarbontio incluyen metoxi, etoxi, isopropoxi, fenoxi, benciloxi, 2-piridiloxi, metiltio, etiltio, feniltio, benciltio y 2-piridiltio. Los ejemplos específicos de sustituyentes de grupos funcionales presentes en R⁶ y R⁷ incluyen los mismos que los mostrados como ejemplos específicos de los sustituyentes de Cy1. Los ejemplos específicos de grupos funcionales representados por la fórmula (i) incluyen los grupos funcionales representados por las fórmulas a continuación:

Y¹ e Y², cada uno independientemente, representa nitrógeno o carbono.

X representa oxígeno; azufre, nitrógeno no sustituido o nitrógeno sustituido con los mismos sustituyentes que los mencionados como ejemplos específicos de los sustituyentes de Cy¹; sulfinilo; o sulfonilo, y resulta particularmente preferido el oxígeno.

Cada R puede formar anillos saturados juntos y resulta preferida la unión de los de las segunda y sexta posiciones y en las tercera y quinta posiciones del anillo de piperidina para formar anillos saturados, y el número de átomos en el sitio de entrecruzamiento, que forma el anillo saturado, es preferentemente 2 o 3. Además, los elementos que constituyen el sitio de entrecruzamiento del anillo saturado no están particularmente limitados en tanto estén comprendidos en un rango químicamente aceptable y los ejemplos específicos de los mismos incluyen carbono, oxígeno, azufre, nitrógeno o silicio y los anillos saturados pueden ser constituidos combinando 2 o más de estos elementos dentro de un rango químicamente aceptable. Además, cada átomo puede tener hidrógeno o sustituyentes dentro del rango químicamente aceptable en el mismo y R¹a, y R²a, R¹a y R³a, o R³a o R³a, y R⁴a, pueden ligar oxígeno, azufre, o nitrógeno a través de un doble enlace dentro de un rango químicamente aceptable para formar carbonilo, tiocarbonilo, imino, o similares.

R que no forma los anillos saturados anteriormente mencionados juntos, cada uno independientemente, representa hidrógeno, halógeno, amino sustituido o no sustituido, nitro, hidroxilo o un grupo orgánico. Los ejemplos específicos del grupo orgánico incluyen ciano; formilo; alquilo; alcoxicarbonilo; alcoxi; haloalquilo; haloalcoxi; alquiltiocarbonilo; alquilsulfonilamino; haloalquil-sulfonilamino; bis(alquilsulfonil)amino; bis(haloalquil-sulfonil)amino; alcoxicarbonilo y arilo. Como grupos orgánicos, resultan preferidos alquilo; alcoxicarbonilo y alcoxi, y resultan más preferidos alquilo C_{1-6} ; alcoxicarbonilo C_{1-6} y alcoxi C_{1-6} . Los ejemplos específicos de los mismos incluyen los mismos que los mostrados como una parte de los ejemplos específicos de los sustituyentes de Cy^1 .

n es un entero de 0 a 9 y cada R puede ser igual o diferente cuando n es 2 o más.

Además, cada R puede unirse para formar un anillo y el número de átomos en el sitio de entrecruzamiento, que forma el anillo saturado, es preferentemente 2 o 3.

Cy² representa un hidrocarburo cíclico sustituido o no sustituido, o un heterociclo sustituido o no sustituido. Los ejemplos específicos de los mismos incluyen hidrocarburos aromáticos tales como fenilo, naftil-1-ilo y naftil-2-ilo; y 35 anillos heteroaromáticos tales como furan-2-ilo, furan-3-ilo, tiofen-2-ilo, tiofen-3-ilo, pirrol-2-ilo, pirrol-3-ilo, oxazol-2ilo, oxazol-4-ilo, oxazol-5-ilo, tiazol-2-ilo, tiazol-4-ilo, tiazol-5-ilo, isoxazol-3-ilo, isoxazol-4-ilo, isoxazol-5-ilo, iso 3-ilo, isotiazol-4-ilo, isotiazol-5-ilo, imidazol-2-ilo, imidazol-4-ilo, imidazol-5-ilo, pirazol-3-ilo, pirazol-4-ilo, pirazol-5-ilo, 1,3,4-oxadiazol-2-ilo, 1,3,4-tiadiazol-2-ilo, 1,2,3-triazol-4-ilo, 1,2,4-triazol-3-ilo y 1,2,4-triazol-5-ilo; piridin-2-ilo, piridin-2-ilo, piridin-2-ilo, 1,3,4-triazol-5-ilo; piridin-2-ilo, piridin-2-ilo, 1,2,4-triazol-5-ilo; piridin-2-ilo, piri 3-ilo, piridin-4-ilo, piridazin-3-ilo, piridazin-4-ilo, pirazin-2-ilo, pirimidin-2-ilo, pirimidin-4-ilo, pirimidin-5-ilo, 1,3,5-triazin-40 2-ilo y 1,2,4-triazin-3-ilo; y resulta preferido el piridazin-3-ilo. Los ejemplos específicos de los anillos no aromáticos incluyen cicloalquilo tales como ciclopropilo, ciclobutilo y ciclopentilo; y heterociclos saturados tales como piperidino, 4-piperidilo, 2-tetrahidrofuranilo, 3-tetrahidrofuranilo, 3-piperidilo, 2-tetrahidro-piranilo, tetrahidropiranilo, 4-tetrahidropiranilo, 2-pirrolidinilo, 3-pirrolinilo, 2-piperidinilo, 3-piperidinilo, 4-piperidinilo, 2-piperidinilo, 4-piperidinilo, 2-piperidinilo, 4-piperidinilo, 4-pi 45 piperazinilo, 3-piperazinilo y 4-piperazinilo, y resulta particularmente preferido el piridazin-3-ilo.

Los ejemplos específicos de los sustituyentes de Cy² incluyen sustituyentes iguales a los ejemplos específicos de Cy¹. Es con la condición de que Cy² sea un piridin-2-ilo sustituido con uno o más ciano cuando Cy¹ es un fenilo sustituido o no sustituido y Cy² es un piridin-2-ilo sustituido. Cy² no incluye piridin-2-ilo no sustituido, cuando Cy¹ es un fenilo sustituido o no sustituido. El piridin-2-ilo que es sustituido con un ciano puede tener un sustituyente distinto de ciano.

II. Nuevos compuestos de aminas cíclicas representados por la fórmula (2)

En los nuevos compuestos de aminas cíclicas representados por la fórmula (2) (que se puede denominar a continuación "compuesto (2)"), Cy³ es un grupo funcional representado por una cualquiera de las fórmulas (b) a (h).

En la fórmula (b), los ejemplos específicos de R^6 incluyen sustituyentes iguales a una parte de los ejemplos específicos de los sustituyentes de Cy^1 .

60

50

55

5

20

25

Los ejemplos específicos de R^7 en la fórmula (c) incluyen alcoxi (en particular preferentemente alcoxi C_{1-6}) y alcoxicarbonilo (en particular preferentemente alcoxicarbonilo C_{1-6}) que son iguales a una parte de los ejemplos específicos de los sustituyentes de Cy^1 , un grupo funcional representado por la fórmula (i), que es la misma que anteriormente; y alcoxialquilo (en particular preferentemente alcoxi C_{1-6} alquilo C_{1-6}) tal como metoximetilo, etoximetilo, propoximetilo, 1-metoxietilo, 2-metoxietilo, 1-etoxietilo, 2-etoxietilo, 1-propoxietilo, 2-propoxietilo, 1-metoxipropilo, 2-metoxipropilo y 3-metoxipropilo.

5

10

15

20

25

30

35

40

45

50

55

60

65

Los ejemplos específicos de R⁸ a R¹⁴ incluyen aquellos iguales a una parte de los ejemplos específicos de los sustituyentes de Cy¹.

Los ejemplos específicos de G¹, que pueden ser un sustituyente de una parte de R⁸ a R¹⁴ incluyen aquellos iguales a una parte de los ejemplos específicos de los sustituyentes de Cy¹.

Los ejemplos específicos de los sustituyentes de nitrógeno incluyen aquellos iguales a los ejemplos específicos de los sustituyentes de Cy¹ cuando X es nitrógeno opcionalmente sustituido.

Además, R_a^1 y R_a^2 y R_a^1 y R_a^4 y R_a^2 y R_a^3 o R_a^3 y R_a^4 pueden formar anillos saturados juntos y resulta preferido que R_a^1 y R_a^2 o R_a^3 y R_a^4 se unan para formar un anillo cuando forman anillos saturados y el número de átomos en el sitio de entrecruzamiento, que forma el anillo saturado, es preferentemente 2 o 3. Además, los elementos que constituyen el sitio de entrecruzamiento del anillo saturado no están particularmente limitados en tanto estén comprendidos en un rango químicamente aceptable y ejemplos específicos de los mismos incluyen carbono, oxígeno, azufre, nitrógeno o silicio y los anillos saturados pueden ser constituidos combinando 2 o más de estos elementos dentro de un rango químicamente aceptable. Además, cada átomo puede tener hidrógeno o sustituyentes dentro del rango químicamente aceptable en el mismo y R_a^1 y R_a^2 , R_a^1 y R_a^2 y R_a^3 o R_a^3 y R_a^4 , pueden ligar oxígeno, azufre, o nitrógeno a través de un doble enlace dentro de un rango químicamente aceptable para formar carbonilo, tiocarbonilo, imino, o similares.

 R^1_a , R^1_b , R^2_a , R^2_b , R^3_a , R^3_b , R^4_a , R^4_b , y R^5 , que no forman juntos anillos saturados, representan cada uno independientemente hidrógeno, halógeno, amino sustituido o no sustituido, nitro, hidroxilo o un grupo orgánico. El grupo orgánico representa grupos funcionales que contienen carbono y los ejemplos específicos de los mismos incluyen ciano; formilo; alquilo; alcoxicarbonilo; alcoxi; haloalquilo; haloalcoxi; alquiltiocarbonilo; alquil-sulfonilamino; haloalquilsulfonilamino; bis(alquil-sulfonil)amino; bis(haloalquilsulfonil)amino; alcoxi-carbonilo; y arilo. Como el grupo orgánico, resultan preferidos alquilo; alcoxicarbonilo y alcoxi, y más preferidos alquilo C_{1-6} ; alcoxicarbonilo C_{1-6} y alcoxi C_{1-6} . Además los ejemplos específicos de los mismos incluyen los mismos que los mostrados como una parte de los ejemplos específicos de los sustituyentes de Cy^1 .

Una parte de los ejemplos específicos de G^2 en Cy^4 incluye aquellos iguales que una parte de los ejemplos específicos de los sustituyentes de Cy^1 . Los ejemplos específicos de hidrocarburos comúnmente presentes en R^{17} a R^{22} , en las fórmulas (j) a (l) en G^2 incluyen alquilo tal como metilo, etilo, isopropilo, n-propilo, n-hexilo y n-octilo; alquenilo tal como vinilo, alilo, 1-propenilo y 2-feniletenilo; alquinilo tal como etinilo y propargilo; e hidrocarburos aromáticos tales como fenilo, 1-naftilo y 9-antracel.

Los ejemplos específicos de grupos heterocíclicos comúnmente presentes en R¹⁷, R¹⁸, R¹⁹, R²¹ y R²² incluyen heterociclos de 5 miembros insaturados tales como furan-2-ilo, furan-3-ilo, tiofen-2-ilo, tiofen-3-ilo, pirrol-2-ilo, oxazol-4-ilo, oxazol-4-ilo, oxazol-5-ilo, tiazol-2-ilo, tiazol-4-ilo, tiazol-5-ilo, isoxazol-3-ilo, isoxazol-4-ilo, isoxazol-3-ilo, isotiazol-3-ilo, isotiazol-4-ilo, isotiazol-3-ilo, isotiazol-3-ilo, isotiazol-3-ilo, isotiazol-3-ilo, isotiazol-3-ilo, isotiazol-3-ilo, isotiazol-3-ilo, isotiazol-3-ilo, imidazol-2-ilo, imidazol-4-ilo, imidazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-3-ilo, 1,3,4-triazol-3-ilo, 1,3,4-triazol-3-ilo, 1,2,4-triazol-3-ilo, 5-fenil-5-trifluorometil-isoxazolin-3-ilo; heterociclo alquilo de 5 miembros insaturado tal como 2-furfurilmetilo, 3-tienilmetilo y 1-metil-3-pirazolometilo; heterociclos de 6 miembros insaturados tal como piridin-2-ilo, piridin-3-ilo, piridin-3-ilo, piridin-3-ilo, piridizin-3-ilo, piridizin-3-ilo, piridizin-3-ilo, piridilmetilo, 3-piridilmetilo, 3-piridilmetilo, 3-piridilmetilo, 9 2-pirimidilmetilo; y heterociclos saturados tales como tetrahidrofuran-2-ilo, tetrahidrapiran-4-ilo, piperidin-3-ilo, pirrolidin-2-ilo, morfolino, piperidino y N-metilpiperazinilo; heterociclo alquilo saturado tal como 2-tetrahidrofuranilmetilo, 3-piperazilmetilo, N-metil-3-pirrolidilmetilo y morfolinometilo. Los ejemplos específicos de hidrocarbonoxi e hidrocarbontio comúnmente presentes en R¹⁷ y R¹⁸ incluyen metoxi, etoxi, isopropoxi, fenoxi, benciloxi, 2-piridiloxi, metiltio, etiltio, feniltio, benciltio y 2-piridilo. Los ejemplos específicos de sustituyentes de Cy¹. Y y Z, cada uno independientemente, representa oxígeno o nitrógeno sustituido o no sustituido y los ejemplos específicos de un sustituyente en nitrógeno incluyen los mismos que los mostrados como ejemplos específicos de los sustituyentes de Cy¹.

Los ejemplos específicos de G^3 como un sustituyente de alquilo y alcoxi en G^2 incluyen hidroxilo; ciano; alcoxi (preferentemente alcoxi C_{1-6}), lo mismo que los ejemplos específicos de los sustituyentes de Cy^1 ; alcoxialcoxi (preferentemente alcoxi C_{1-6} alcoxi C_{1-6}) tal como metoximetoxi, etoximetoxi y propoxietoxi; y trialquilsililoxi (preferentemente trialquilsililoxi C_{1-6}), tal como trimetilsililoxi, triisopropilsililoxi, y diisopropilmetilsililoxi.

Los ejemplos específicos de las fórmulas (j) a (l) incluyen las fórmulas presentadas a continuación.

- Como N-óxidos de los compuestos representados por las fórmulas (1) y (2), se pueden mostrar como ejemplos los compuestos en donde nitrógeno en las partes de aminas cíclicas o nitrógeno en el heterociclo que contiene nitrógeno de los compuestos representados por las fórmulas (1) y (2) es oxidado, o similares.
- Además, los ejemplos de sales de los compuestos representados por las fórmulas (1) y (2) incluyen sales de ácidos inorgánicos tales como sales clorhidrato, sales nitrato, sales sulfato y sales fosfato; y sales de ácidos orgánicos tales como sales acetato, sales lactato, sales propionato y sales benzoato.
 - III. (Método de producción).

20

30

- El método de producción de los compuestos (1) y (2) se describirá a continuación. Debería apreciarse que aunque la descripción está prevista a continuación proporcionando el compuesto (2) a título de ejemplo, el compuesto (1) también puede ser producido de una manera similar al del compuesto (2).
 - 1) Cuando X es oxígeno o azufre opcionalmente oxidado

El compuesto (2) puede ser obtenido, por ejemplo, sometiendo el compuesto representado por la fórmula (3) (denominado a continuación el "compuesto (3)") a desprotección general y acoplamiento como se muestra a continuación:

$$Cy^{3} = X \\ R_{a}^{4} = R_{a}^{2} R_{b}^{2}$$

$$(3)$$

$$R_{b}^{3} = R_{a}^{1} \\ R_{a}^{4} = R_{a}^{2} R_{b}^{2}$$

$$(4)$$

$$X' = Cy^{4} \\ X' = Cy^{4} \\ X' = Cy^{4} \\ R_{a}^{3} = R_{a}^{1} \\ X' = Cy^{4} \\ R_{b}^{3} = R_{a}^{3} = R_{b}^{1} \\ (5)$$

$$R_{b}^{5} = R_{a}^{5} = R_{b}^{1} \\ R_{a}^{4} = R_{a}^{2} R_{b}^{2}$$

$$(4)$$

(En la fórmula Cy^3 , Cy^4 , X, R^1_a , R^1_b , R^2_a , R^2_b , R^3_a , R^3_b , R^4_a , R^4_b , y $R^{\bar{5}}$, son los mismos que los indicados anteriormente. X' representa un grupo saliente tal como halógeno y R' representa un grupo protector).

El compuesto (3), que es un producto intermedio durante la producción puede ser producido por condiciones de reacción generales como se describe a continuación:

 $cy^{3}-\chi^{1} + \chi^{2} \xrightarrow{R^{3}} \xrightarrow{R^{3}} \xrightarrow{R^{1}} \xrightarrow{R^{3}} \xrightarrow{R^{1}} \xrightarrow{R^{5}} \xrightarrow{R^{3}} \xrightarrow{R^{1}} \xrightarrow{R^{3}} \xrightarrow{R^{1}} \xrightarrow{R^{5}} \xrightarrow{R^{3}} \xrightarrow{R^{1}} \xrightarrow{R^{5}} \xrightarrow{R^{5}} \xrightarrow{R^{3}} \xrightarrow{R^{1}} \xrightarrow{R^{5}} \xrightarrow{R^{5}$

$$Cy^{3} - X^{3} + X^{2} - R^{3} - R^{3} - R^{1} - R^{3} - R^{3} - R^{1} - R^{3} - R^{$$

$$Cy^{3} = X^{1} + X^{3} = \begin{pmatrix} R^{3}_{b} & R^{1}_{a} & R^{1}_{b} \\ R^{4}_{a} & R^{2}_{a} & R^{2}_{b} \\ R^{5}_{a} & R^{4}_{a} & R^{2}_{a} & R^{2}_{b} \\ R^{4}_{a} & R^{2}_{a} & R$$

(En la fórmula, Cy³, X, R¹a, R¹b, R²a, R²b, R³a, R³b, R⁴a, R⁴b, R⁵, y R' son los mismos que los indicados anteriormente. X¹ y X² cada uno independientemente representa hidroxilo o mercapto y X³ representa un grupo saliente tal como halógeno).

Además, el compuesto (2) también puede ser producido por el método general presentado a continuación.

(En la fórmula Cy^3 , Cy^4 , X, R^1_a , R^1_b , R^2_a , R^2_b , R^3_a , R^3_b , R^4_a , R^4_b , Y R^5 , son los mismos que los indicados anteriormente. X^4 representa un grupo saliente tal como halógeno y X^5 representa hidroxilo o mercapto).

El compuesto (10), que será una materia prima, también puede ser producido por el método general mostrado en la fórmula de reacción (IV) a continuación:

$$X^{4} \xrightarrow{R^{3}_{b}} \begin{array}{c} R^{3}_{a} & R^{1}_{a} \\ R^{5}_{b} & R^{3}_{a} & R^{1}_{b} \\ R^{4}_{b} & R^{2}_{a} & R^{2}_{b} \\ (12) & (13) \end{array} \qquad \qquad X^{4} \xrightarrow{R^{3}_{b}} \begin{array}{c} R^{3}_{a} & R^{1}_{a} \\ R^{5}_{b} & R^{3}_{a} & R^{1}_{a} \\ R^{5}_{b} & R^{3}_{a} & R^{1}_{b} \\ R^{5}_{b} & R^{3}_{b} & R^{3}_{b} \\ R^{5}_{b} & R^{3}_{b}$$

(En la fórmula Cy^4 , X^4 , R^1_a , R^1_b , R^2_a , R^2_b , R^3_a , R^3_b , R^4_a , R^4_b , y R^5 , son los mismos que los indicados anteriormente. X^6 representa un grupo saliente tal como halógeno).

(2) Cuando X es nitrógeno opcionalmente sustituido

Los compuestos representados por la fórmula (16) (denominados a continuación "compuesto (16)") pueden ser producidos por el método general como se muestra en la fórmula de reacción (V) a continuación:

25

20

5

$$Cy^{3} \text{ NHR'} \cdot + 0 \xrightarrow{R_{a}^{4} R_{a}^{1} R_{b}^{1}} Cy^{4} \xrightarrow{\qquad \qquad } Cy^{3} \text{ NR'} \cdot \xrightarrow{R_{a}^{5} R_{a}^{3} R_{a}^{1} R_{b}^{1}} (V)$$

$$(14) \qquad \qquad (15) \qquad \qquad (16)$$

(En la fórmula Cy^3 , Cy^4 , R^1_a , R^1_b , R^2_a , R^2_b , R^3_a , R^3_b , R^4_a , R^4_b , y R^5 son los mismos que los indicados anteriormente. R^7 representa un sustituyente en nitrógeno tal como hidrógeno, trifluoroacetilo o trifluorometilsulfonilo.

El compuesto (16), que es un compuesto de la presente invención, también puede ser producido por la reacción general como se muestra en la fórmula de reacción (VI) a continuación:

$$Cy^{3}-NHR'' + X^{7} + X^{7} + X^{1} + X^{2} + X^{2}$$

5

15

25

35

10 (En la fórmula Cy³, Cy⁴, R¹a, R¹b, R²a, R²b, R³a, R³b, R⁴a, R⁴b, R⁵, y R" son los mismos que los indicados anteriormente. X⁷ representa un grupo saliente tal como halógeno y sulfoniloxi).

El compuesto (16), que es un compuesto de la presente invención, también puede ser producido por la reacción de acoplamiento general como se muestra en la fórmula de reacción (VII) a continuación:

$$Cy^{3} = X^{7} + R' \cdot NH \xrightarrow{R^{3}} R^{3} = R^{1} = R^{1} = R^{3} = R^$$

(En la fórmula Cy^3 , Cy^4 , X^7 , R^1_a , R^1_b , R^2_a , R^2_b , R^3_a , R^3_b , R^4_a , R^4_b , R^5 , R^* y X^7 son los mismos que los indicados anteriormente).

20 IV. Agentes para el control de plagas caracterizados porque contienen compuestos de aminas cíclicas representados por la fórmula (1) o (2), sales de los mismos o N-óxidos de los mismos, como principios activos

Los compuestos de la presente invención (los compuestos representados por las fórmulas (1) y (2), sales de los mismos, o N-óxidos de los mismos) tienen excelentes actividades adulticidas, ninficidas, larvicidas u ovicidas, y pueden ser usados para controlar plagas en agricultura, insectos sanitarios, insectos de plagas de granos almacenados, plagas de prendas de vestir, plagas domésticas, o similares. Los ejemplos significativos de los mismos incluyen los siguientes.

Las plagas que pertenecen al orden Lepidoptera tal como Spodoptera litura, Mamestra brassicae, Agrotis ipsilon, gusanos verdes, Autographa nigrisigna, Plutella xylostella, Adoxophyes honmai, Homona magnanima, Carposina sasakii, Grapholita molesta, Phyllocnistis citrella, Caloptilia theivora, Phyllonorycter ringoniella, Lymantria dispar, Euproctis pseudoconspersa, Chilo suppressalis, Cnaphalocrocis medinalis, Ostrinia nubilasis, Hyphantria cunea, Cadra cautella, género Heliothis, género Helicoverpa, género Agrothis, Tinea translucens, Cydia pomonella, y Pectinophora gossypiella;

plagas que pertenecen al orden Hemiptera tales como Myzus persicae, Aphis gossypii, Lipaphis erysimi, Rhopalosiphum padi, Riptortus clavatus, Nezara antennata, Unaspis yanonensis, Pseudococcus comstocki, Trialeurodes vaporariorum, Bemisia tabaci, Bemisia argentifolii, Psylla pyrisuga, Stepahnitis nashi, Nilaparuata lugens, Ladelphax stratella, Sogatella furcifera y Nephotettix cincticepts;

plagas que pertenecen al orden Coleoptera tales como Phyllotreta striolata, Aulacophora femoralis, Leptinotarsa decemlineata, Lissorhoptrus oryzophilus, Sitophilis zeamais, Callosobruchus chinensis, Popillia japonica, Anomala rufocuprea, género Diabrotica, Lasioderma serricorne Lyctus brunneus, Monochamus alternatus, Anoplophora malasiaca, género Agriotis, Epilachna vigintioctopunctata, Tenebroides mauritanicus y Anthonomus grandis;

plagas que pertenecen al orden Diptera tales como Musca domestica, Calliphora lata, Boettcherisca peregrine, Zeugodacus cucurbitae, Bactrocera dorsalis, Delia platura, Agromyza oryzae, Drosophila melanogaster, Stomoxys calcitrans, Culex tritaeniorhynchus, Aedes aegypti y Anopheles sinensis;

plagas que pertenecen al orden Thysanoptera tales como Thrips palmi y Scirtothrips dorsalis:

plagas que pertenecen al orden *Hymenoptera* tales como *Monomorium pharaonis, Vespa simillima xanthoptera* y *Athalia rosae ruficornis*;

plagas que pertenecen al orden Orthoptera tales como Locusta migratoria, Blatella germanica, Periplaneta americana y Periplaneta fuliginosa;

plagas que pertenecen al orden Isoptera tales como Coptotermes formosanus y Reticulitermes speratus;

plagas que pertenecen al orden Siphonaptera tales como Pulex irritans y Ctenocephalides felis felis;

plagas que pertenecen al orden *Phthiraptera* tales como *Pediculus humanus; Acarina* tales como *Tetranychus urticae, Tetranychus cinnabarinus, Tetranychus kanzawai, Panonychus citri, Panonychus ulmi, Aculops pelekassi, Aculus schlechtendali, Polyphagotarsonemus latus, género Brevipalpus, género Eotetranichus, Rhizoglyphus robini, Tyrophagus putrescentiae, Dermatophagoides farinae, Boophilus microplus y Haemaphysalis longicornis; y*

nematodos parásitos de las plantas tales como *Meloidogyne incognita, Pratylenchus* spp., *Heterodera glycines, Aphelenchoides besseyi y Bursaphelenchus xylophilus*.

Las plagas a las que se aplica preferentemente la presente invención son las plagas que pertenecen al orden *Lepidoptera*, plagas que pertenecen al orden *Hemiptera*, *Acarina*, plagas que pertenecen al orden *Thysanoptera* y plagas que pertenecen al orden *Coleoptera*, y en particular preferentemente *Acarina*.

Además, se desean las medicinas que también son efectivas para plagas o *Acarina* que son de linaje resistente debido a que en los últimos años la resistencia que se desarrolló a los plaguicidas organofosforados, los plaguicidas de carbamato o los acaricidas entre muchas plagas tales como *Plutella xylostella, Delphacidae, Deltocephalidae* y *Aphididae*, ha causado problemas debido a efectos insuficientes de estas medicinas. Los compuestos de la presente invención son medicinas que tienen excelentes efectos insecticidas y acaricidas no sólo sobre las plagas de linajes sensibles sino también en plagas de linajes resistentes a los plaguicidas organofosforados, plaguicidas de carbamato y plaguicidas piretroides, y en *Acarina* de linajes resistentes a los acaricidas.

Los compuestos de la presente invención son medicinas que muestran menos daños por herbicidas, tienen menor toxicidad para los peces y los animales de sangre caliente, y mayor seguridad.

Los compuestos de la presente invención también se pueden usar como antiincrustantes para evitar que organismos acuáticos se adhieran a objetos que están en contacto con el agua, tales como las partes inferiores de los barcos y las redes de pesca.

Además, algunos de los compuestos de la presente invención presentan actividades microbicidas, actividades herbicidas, o actividades reguladoras del crecimiento de las plantas. Además, algunos productos intermedios de los compuestos de la presente invención presentan actividades insecticidas/acaricidas.

Aunque los compuestos de la presente invención son, huelga decirlo, suficientemente efectivos aún cuando se usan solos, también pueden ser usados mezclando o combinando con uno o más de otros agentes para el control de plagas, germicidas, insecticidas/acaricidas, herbicidas, reguladores del crecimiento de plantas, sinergéticos, fertilizantes, acondicionadores del suelo, alimento para animales, o similares.

Los ejemplos representativos de principio activos de germicidas, acaricidas, reguladores del crecimiento de plantas, o similares, que se pueden usar mezclando o combinando con compuestos de la presente invención, se muestran a continuación.

Germicidas:

5

10

15

20

25

30

45

65 captano, folpet, tiuram, ziram, zineb, maneb, mancozeb, propineb, policarbamato, clorotalonin, quintozeno, captafol, prodiona, procimidona, fluoroimida, mepronil, flutolanil, pencicurón, oxicarboxin, fosetil-aluminio, propanocarb,

triadimefon, triadimenol, propiconazol, diclobutrazol, bitertanol, hexaconazol, miclobutanil, flusilazol, etaconazol, fluotrimazol, flutriafen, penconazol, diniconazol, ciproconazol, fenarimol, triflumizol, procloraz, imazalil, pefurazoato, tridemof, fenpropimorf, triforina, butiobato, pirifenox, anirazina, polioxinas, metalaxil, oxadixil, furalaxil, isoprotiolano, probenazol, pirrolnitrina, blasticidina S, kasugamicina, validamicina, sulfato de dihidroestreptomicina, benomil, carbendazim, tiofanato-metilo, himexazol, cloruro de cobre básico, sulfato de cobre básico, fentinacetato, hidróxido de trifenilestaño, dietofencarb, quinometionato, binapacril, lecitina, bicarbonato, ditianon, dinocap, fenaminosulf, diclomezina, guazatina, dodina, IBP, edifenfos, mepanipirim, fermzona, triclamida, metasulfocarb, fluazinam, etoquinolac, dimetomorf, piroquilon, tecloftalam, ftálida, óxido de fenazina, tiabendazol, triciclazol, vinclozolin, cimoxanil, ciclobutanil, guazatina, clorhidrato de propamocarb, ácido oxolínico, ciflufenamid, iminoctadina, kresoximmetilo, triazina, fenhexamida, ciazofamida, ciprodinil, protioconazol, fenbuconazol, trifloxiestrobina, azoxiestrobina, hexaconazol, imibenconazol, tebuconazol, difenoconazol, y carpropamida;

Insecticidas/acaricidas:

10

20

25

35

45

50

55

60

15 plaguicidas organofosforados y de carbamato:

fentión, fenitrotión, diazinona, clorpirifos, ESP, vamidotión, fentoato, dimetoato, formotión, malatión, triclorfón, tiometón, fosmet, diclorvos, acefato, EPBP, metil paratión, oxidemetón metilo, etión, salitión, cianofos, isoxantión, piridafentión, fosalona, metidatión, sulprofos, clorfenvinfos, tetraclorvinfos, dimetilvinfos, propafos, isofenfos, etiltiometón, profenofos, piraclofos, monocrotofos, azinfos-metilo, aldicarb, metomilo, tiodicarb, carbofurano, carbosulfano, benfuracarb, furatiocarb, propoxur, BMPC, MTMC, MIPC, carbarilo, pirimicarb, etiofencarb, fenoxicarb, cartap, tiociclam, bensultap, y similares;

plaguicidas piretroides:

permetrina, cipermetrina, deltametrina, fenvalerato, fenpropatrina, piretrina, aletrina, tetrametrina, resmetrina, dimetrina, propatrina, fenotrina, protrina, fluvalinato, ciflutrina, cihalotrina, flucitrinato, etofenprox. cicloprotrina, tralometrina, silafluofen, y acrinatrina;

30 benzoilurea y otros plaguicidas:

diflubenzurón, clorfluazurón, hexaflumurón, triflumurón, flufenoxurón, flucicloxurón, buprofezina, piriproxifeno, metopreno, benzoepina, diafentiurón, imidacloprid, fipronil, sulfato de nicotina, rotenona, metaldehído, acetamiprid, clorfenapir, nitenpiram, tiacloprid, clotianidina, tiametoxam, dinotefuran, indoxacarb, pimetrozina, espinosad, emamectina, piridalilo, tebufenozida, cromafenozida, metoxifenozida, tolfenpirad, aceite de máquinas, plaguicidas microbianos tales como BT y virus entomopatógenos;

nematicidas:

40 fenamifos, fostiazato, cadusafos, y similares;

acaricidas:

clorobencilato, fenisobromolato, dicofol, amitraz, BPPS, benzomato, hexitiazox, óxido de fenbutatina, polinactina, quinometionato, CPCBS, tetradifón, avermectina, milbemectina, clofentezina, cihexatina, piridaben, fenpiroximato, tebufenpirad, pirimidifen, fenotiocarb, dienoclor, fluacripirim, acequinocil, bifenazato, etoxazol, espirodiclofén, fenazaquina, y similares;

reguladores del crecimiento de las plantas:

giberelinas (por ejemplo, giberelina A3, giberelina A4, o giberelina A7), IAA, NAA, o similares.

Los agentes para el control de plagas de la presente invención contienen uno o más compuestos de la presente invención como un principio activo.

Aunque los compuestos de la presente invención se pueden usar como tales, sin agregar ningún otro componente como agente para el control de plagas, pueden ser formulados para su uso. En otras palabras, mezclando por lo menos uno de los compuestos de la presente invención con vehículos sólidos, líquidos o gaseosos, o impregnando por lo menos uno de los compuestos de la presente invención en sustratos tales como placas cerámicas porosas y telas no tejidas, y agregando tensioactivos u otros adyuvantes en donde sea necesario, los compuestos son formulados, con el objetivo de usarlos como agroquímicos, en la forma que los agroquímicos generales pueden adoptar y pueden ser usados.

Los ejemplos de formulaciones agroquímicas incluyen polvo humectable, gránulos, polvo para espolvorear, emulsión, polvo soluble en agua, agente de suspensión, polvo humectable granulado, fluido, aerosol, agente de transpiración por calentamiento, fumigante, cebo envenenado, microcápsula, o similares.

Como aditivos y vehículos, se usan polvos vegetales tales como harina de soja y harina de trigo; polvo mineral fino tal como tierra de diatomeas, apatita, yeso, talco, bentonita, pirofilita y arcilla; y compuestos orgánicos e inorgánicos tales como benzoato de sodio, urea y sulfato de sodio, cuando se requiere una formulación sólida. Cuando se requiere una formulación en forma líquida, se usan como solventes fracciones de petróleo tales como queroseno, xileno y nafta solvente, y ciclohexano, ciclohexanona, dimetilformamida, dimetilsulfóxido, alcohol, acetona, metil isobutil cetona, aceite mineral, aceite vegetal, agua, o similares. Como vehículos gaseosos usados en propulsores, se pueden usar butano (gas), LPG, dimetil éter y gas dióxido de carbono.

- 10 Como sustrato de cebo envenenado, se pueden usar componentes de cebo tales como polvo de granos, aceite vegetal, azúcar y celulosa cristalina; antioxidantes tales como dibutilhidroxitolueno y ácido nordihidroguaiarético; conservantes tales como ácido dehidroacético; agentes para evitar la ingestión accidental por niños o mascotas tales como pimentón; y olores que atraen a los insectos de plagas tales como olores de queso y olores de cebolla.
- Adicionalmente, para lograr formas homogéneas y estables en estas formulaciones, también es posible agregar tensioactivos si es necesario. Aunque los tensioactivos no están limitados particularmente, los ejemplos de los mismos incluyen, por ejemplo, tensioactivos no iónicos tales como alquil éter en donde se agrega polioxietileno, éster de ácidos grasos superiores en donde se agrega polioxietileno, éster de ácidos grasos superiores de sorbitán en donde se agrega polioxietileno, y triestiril fenil éter en donde se agrega polioxietileno; sal éster sulfato de alquil fenil éter en donde se agrega polioxietileno, sal sulfonato de alquil naftaleno, sal policarboxilato, sal sulfonato de lignina, condensado formaldehído de alquil naftaleno sulfonato y copolímero de isobutileno-anhídrido maleico.
 - Cuando los compuestos de la presente invención se usan como agentes para el control de plagas en agricultura, la cantidad de principio activo en las formulaciones es de 0,01 a 90% en peso y en particular preferentemente 0,05 a 85% en peso y polvo humectable, emulsión, agentes de suspensión, agentes fluidos, polvo soluble en agua, polvo humectable granulado, que son diluidos a concentraciones predeterminadas con agua, y polvo para espolvorear y gránulos como tales, pueden ser aplicados sobre plantas y suelos.
- Además, cuando los compuestos de la presente invención se usan como agentes para el control de plagas con propósitos de cuarentena, se aplican emulsión, polvo humectable, agentes fluidos y similares, diluyendo a concentraciones predeterminadas con agua, y solución oleosa, aerosol, cebo envenenado, lámina antiácaros y similares, se pueden aplicar como tales.
- Cuando los compuestos de la presente invención se usan como agentes para el control de plagas para controlar ectoparásitos del ganado, tal como ganado vacuno y porcino, o de mascotas tales como perros y gatos, se usan formulaciones que utilizan los compuestos de la presente invención en métodos conocidos en el campo de la medicina veterinaria. Como tales métodos, los ejemplos de los mismos incluyen un método para administrar en formas tales como comprimidos, cápsulas, líquido para inmersión, mezcla de forraje, supositorios e inyecciones (intramuscular, subcutánea, endovenosa, intraperitoneal, o similares) cuando se requiere control sistémico y un método para administrar por pulverización, para verter, o aplicar puntualmente formulaciones líquidas acuosas u oleosas, o un método para colocar objetos, que son formulaciones de resina conformadas como collares, etiquetas para las orejas, o similares, cuando se requiere un control no sistémico. En este caso, se puede usar la proporción usada normalmente, en donde se aplican 0,01 a 1.000 mg de los compuestos de la presente invención por 1 kg de animal huésped.

Ejemplo

45

50

55

5

25

A continuación se describirá la presente invención con mayor detalle a partir de los ejemplos. Sin embargo, la presente invención no está limitada a los ejemplos indicados a continuación en cualquiera de los aspectos.

Ejemplo de producción 1

Producción de 8β -[2-isopropilidenaminooxi-4-(tri-fluorometil)-fenoxi]-3-(5-ciano-piridin-2-il]-3-azabiciclo-[3.2.1]-octano (E)

Etapa 1

Producción de 8β-hidroxi-3-(5-ciano-piridin-2-il)-3-azabiciclo[3.2.1]octano (A)

HO
$$\longrightarrow$$
 NH \longrightarrow NO \longrightarrow NO \longrightarrow CN (A)

Se sometieron a reflujo con calentamiento durante la noche 5 ml de una suspensión de acetonitrilo que contenía 0,15 g de 3-azabiciclo[3.2.1]octa-8-ol, 0,65 g de carbonato de potasio y 0,33 g de 2-cloro-5-cianopiridina. Después de enfriar a temperatura ambiente, la mezcla se vertió en agua y se extrajo con acetato de etilo. La capa orgánica se lavó con solución salina y se secó con sulfato de magnesio anhidro. Se obtuvieron 0,16 g de un compuesto crudo (A) evaporando los solventes bajo presión reducida y este compuesto se usó directamente en la etapa siguiente.

Etapa 2

5

10

15

20

25

30

Producción de 8β-[2-metoximetoxi-4-(trifluorometil)fenoxi]-3-(5-ciano-piridin-2-il]-3-azabiciclo[3.2.1]-octano (B)

Se agregaron 0,14 g de hidruro de sodio al 60% a 10 ml de una solución de DMF que contenía 0,58 g de 4-fluoro-3-hidroxibenzotrifluoruro con enfriamiento con hielo. Después de agitar la mezcla durante 30 minutos a temperatura ambiente, se agregaron 0,28 g de clorometil éter de a gotas a la misma enfriando con hielo. Después de completar la adición, la solución de reacción se calentó a temperatura ambiente y se agitó durante 30 minutos y luego se calentó adicionalmente a 80°C y se agitó durante 30 minutos. Se agregaron 0,49 g del compuesto (A) y 0,13 g de hidruro de sodio al 60% a la mezcla de reacción a 80°C y la mezcla resultante se agitó durante 30 minutos y luego se calentó a 80°C y se agitó adicionalmente durante 2 horas. La mezcla de reacción se enfrió a temperatura ambiente, se vertió en agua y se extrajo con acetato de etilo. Después de lavar con agua y secar con sulfato de magnesio anhidro, la capa orgánica se filtró y se evaporó bajo presión reducida. El concentrado se purificó por cromatografía en columna de gel de sílice (eluyente: solvente mixto de n-hexano y acetato de etilo) para obtener 0,82 g del compuesto objetivo (B).

 1 H-NMR (CDCl₃, δ ppm): 1,55-1,63 (m, 2H), 2,02-2,05 (m, 2H), 2,60 (brs, 2H), 3,13 (d, 2H), 3,52 (s, 3H), 4,22 (d, 2H), 4,63 (s, 1H), 5,20 (s, 2H), 6,58 (d, 1H), 7,03 (d, 1H), 7,26 (d, 1H), 7,37 (s, 1H), 7,62 (d, 1H), 8,41 (s, 1H).

Etapa 3

Producción de 8β-[2-hidroxi-4-(trifluorometil)fenoxi]-3-(5-ciano-piridin-2-il]-3-azabiciclo[3.2.1]-octano (C)

$$F_{3}C$$

$$(B)$$

$$(C)$$

Se agregaron 10 ml de ácido clorhídrico al 10% a 10 ml de una solución de THF que contenía 0,82 g del compuesto (B) a temperatura ambiente. La mezcla se sometió a reflujo con calentamiento durante 30 minutos, se vertió en agua, y se extrajo con acetato de etilo. La capa orgánica se lavó con solución salina y se secó con sulfato de magnesio anhidro. Se obtuvieron 0,74 g del compuesto objetivo (C) evaporando los solventes bajo presión reducida. Este compuesto se usó directamente en la etapa siguiente sin purificación.

 1 H-NMR (CDCl₃, δ ppm): 1,62-1,75 (m, 2H), 1,91-1,98 (m, 2H), 2,65 (brs, 2H), 3,17 (d, 2H), 4,26 (d, 2H), 4,66 (s, 1H), 5,63 (s, 1H), 6,60 (d, 1H), 6,98 (d, 1H), 7,13 (d, 1H), 7,16 (s, 1H), 7,63 (d, 1H), 8,42 (s, 1H).

Etapa 4

Producción de 8β-[2-isopropilidenaminooxi-4-(trifluoro-metil)fenoxi]-3-(5-ciano-piridin-2-il]-3-azabiciclo[3.2.1]-octano (E)

50

40

Se sintetizaron 0,76 g de un compuesto (D) por el método descrito en la solicitud de patente japonesa publicada n^{ϱ} . 2001-81071 usando 0,74 g del compuesto (C).

¹H-NMR (CDCl₃, δ ppm): 1,55-1,68 (m, 2H), 1,99-2,04 (m, 2H), 2,59 (brs, 2H), 3,13 (d, 2H), 4,22 (d, 2H), 4,60 (s, 1H), 6,00 (brs, 2H), 6,59 (d, 1H), 7,20 (d, 1H), 7,60 (d, 2H), 8,01 (s, 1H), 8,41 (s, 1H).

Se agregaron 3 ml de acetona y 1 gota de ácido clorhídrico concentrado a 3 ml de una solución de etanol que contenía 0,76 g del compuesto (D) y toda la mezcla se agitó durante 1 hora a temperatura ambiente. La mezcla se vertió en agua y se extrajo con acetato de etilo. Después de lavar con agua y secar con sulfato de magnesio anhidro, la capa orgánica se filtró y se concentró al vacío. El concentrado se purificó por cromatografía en columna de gel de sílice (eluyente: solvente mixto de n-hexano y acetato de etilo) para obtener 0,45 g del compuesto objetivo (E). Temperatura de fusión: 120-122ºC.

15 Ejemplo de producción 2

Producción de cis-3-metil-4-[2-propoxi-4-(trifluoro-metil)fenoxi]-1-[6-(trifluorometil)-piridazin-3-il]-piperidina y trans-3-metil-4-[2-propoxi-4-(trifluorometil)fenoxi]-1-[6-(trifluorometil)-piridazin-3-il]piperidina

20 Etapa 1

35

Producción de trans-1-bencil-3-metil-4-[2-propoxi-(4-trifluorometil)fenoxi]piperidina (H_{trans}) y cis-1-bencil-3-metil-4-[2-propoxi-(4-trifluorometil)fenoxi]piperidina (H_{cis})

NaBH4

NaBH4

NaBH4

$$F_3C$$
 F_3C
 F_3C

Se agregaron 0,47 g de borohidruro de sodio a 40 ml de solución de etanol que contenía 2,53 g de N-bencil-3-metil-4-piperidinona (F) enfriando con hielo. La mezcla se agitó durante 2 horas a temperatura ambiente y luego se neutralizó con ácido clorhídrico al 10% enfriando con hielo. La mezcla resultante se extrajo con cloruro de metileno y la capa orgánica se secó con sulfato de magnesio anhidro. Se obtuvieron 2,27 g de un compuesto (G) evaporando los solventes bajo presión reducida. Este compuesto se usó directamente en la siguiente reacción

Se agregaron 0,66 g de 4-fluoro-3-propoxibenzotrifluoruro a 15 ml de DMF que contenía 1 g del compuesto crudo (G). La mezcla se calentó a 80°C y se agregaron 0,29 g de hidruro de sodio al 60% a la misma y la mezcla resultante se mantuvo calentada durante 5 horas a 100°C. La mezcla se enfrió a temperatura ambiente, se vertió en agua y luego se extrajo con acetato de etilo. Después de lavar con agua y secar con sulfato de magnesio anhidro, la capa orgánica se filtró y se concentró al vacío. El concentrado se purificó por cromatografía en columna de gel de sílice (eluyente: solvente mixto de n-hexano y acetato de etilo) para obtener 0,35 g de un isómero trans (H_{trans}) y 0,21 g de un isómero (H_{cis}) como primera y segunda fracciones, respectivamente.

Etapa 2

5

10

25

30

35

40

Producción de cis-3-metil-4-[2-propoxi-4-(trifluorometil)-fenoxi]-1-[6-(trifluorometil)-piridazin-3-il]piperidina (J_{cis}) y trans-3-metil-4-[2-propoxi-4-(trifluorometil)fenoxi]-1-[6-(trifluorometil)-piridazin-3-il]piperidina (J_{trans})

$$F_3C$$
 H_{trans}
 H_{trans}
 H_{trans}
 H_{trans}
 H_{trans}
 H_{trans}

 $CI \longrightarrow CF_3$ $O \longrightarrow N \longrightarrow N \longrightarrow CI$

(J_{trans})

Se agregó 0,1 g de hidróxido de paladio-carbono al 20% a 4 ml de solución de etanol que contenía 0,35 g del isómero trans (H_{trans}). Esta suspensión se calentó a 60°C y se agitó durante 1 día y 1 noche bajo atmósfera de hidrógeno (presión de hidrógeno: 1,01 x 10⁵ Pa). Después de enfriar la mezcla a temperatura ambiente, se agregaron a la misma 8 ml de etanol y 0,1 g de hidróxido de paladio-carbono al 20%. Esta suspensión se calentó a 60°C y se agitó durante 9 horas bajo atmósfera de hidrógeno (presión de hidrógeno: 1,01 x 10⁵ Pa). La mezcla se enfrió a temperatura ambiente y luego se sometió a filtración en celite. Se obtuvieron 0,22 g de un compuesto crudo (I) evaporando el filtrado bajo presión reducida. Este compuesto se usó directamente en la reacción siguiente.

Se agregaron 0,14 g de 3-cloro-6-(trifluorometil)-piridazina, 0,28 g de carbonato de potasio, y 10 mg de yoduro de tetra-n-butilamonio a 2 ml de solución de acetonitrilo que contenía 0,22 g del compuesto crudo (I) y la mezcla se sometió a reflujo con calentamiento durante 1 hora a 120°C. La mezcla se enfrió a temperatura ambiente, se vertió en agua, y luego se extrajo con acetato de etilo. Después de lavar con agua y secar con sulfato de magnesio anhidro se filtró la capa orgánica y se concentró al vacío. El concentrado se purificó por cromatografía en columna de gel de sílice (eluyente: solvente mixto de n-hexano y acetato de etilo) para obtener 0,2 g del compuesto objetivo (J_{trans}).

Aceite viscoso.

Los datos de ¹H-NMR de este compuesto son como sigue:

¹H-NMR (CDCl₃, d ppm): 1,04 (t, 3H), 1,14 (d, 3H), 1.77-1,88 (m, 3H), 2,11-2,19 (m, 2H), 3,20 (dd, 1H), 3,45-3,54 (m, 1H), 3,98 (t, 2H), 4,16-4,31 (m, 3H), 6,97 (2 d, 2G x 2), 7,10 (s, 1H), 7,13 (d, 1H), 7,46 (d, 1H).

Se obtuvieron 0,16 g del compuesto objetivo (J_{cis}) de 0,21 g del isómero cis (H_{cis}) por un procedimiento similar. Aceite viscoso.

Los datos de ¹H-NMR de este compuesto son como sigue.

¹H-NMR (CDCl₃, d ppm): 1,06 (t, 3H), 1,11 (d, 3H), 1,74-1,91 (m, 3H), 2,05-2,13 (m, 2H), 3,48 (dd, 1H), 3,57-3,66 (m, 1H), 3,98 (t, 2H), 4,09-4,19 (m, 2H), 4,56-4,58 (m, 1H), 6,97 (2 d, 1Hx2), 7,10 (s, 1H), 7,16 (d, 1H), 7,46 (d, 1H).

Ejemplo de producción 3

Producción de 3α -(5-trifluorometil-2-piridiloxi)-8-(5-trifluorometil-piridin-2-il)-8-azabiciclo[3.2.1]octano (N).

HO
$$CI$$
 $N = CF_3$ CF_3 $N = CF_3$ $N = CF_3$

Se agregaron 23,3 g de 2,2,2-tricloroetil cloroformato éster a 150 ml de la suspensión de benceno que contenía 14,1 g de tropina y 1,4 g de carbonato de potasio a temperatura ambiente y toda la mezcla se sometió a reflujo durante 3,5 horas. Después de enfriar a temperatura ambiente, la mezcla de reacción se vertió en agua y se extrajo con acetato de etilo. La capa orgánica se lavó con solución salina y se secó con sulfato de magnesio anhidro. Se obtuvieron 30,1 g de un carbonato oleoso (K) evaporando los solventes bajo presión reducida y este carbonato se usó directamente en la siguiente reacción.

5

10

15

20

35

40

45

A continuación, se agregaron 65 g de polvo de cinc a 250 ml de la solución de acetato de este carbonato (K). Después de agitar durante 5 minutos, la mezcla se calentó a 80°C durante 1 hora. Después de enfriar a temperatura ambiente, la mezcla se sometió a filtración en celite. Se obtuvieron 15,5 g de un producto crudo del compuesto (L) concentrando al vacío el filtrado.

Se sometieron a reflujo durante 3,5 horas 150 ml de una suspensión de acetonitrilo que contenía 5,64 g del producto crudo del compuesto (L) obtenido como se indicó anteriormente, 41,5 g de carbonato de potasio y 8,2 g de 2-cloro-5-trifluorometilpiridina. Después de enfriar a temperatura ambiente, la mezcla de reacción se vertió en agua y se extrajo con acetato de etilo. La capa orgánica se lavó con solución salina y se secó con sulfato de magnesio anhidro. Se obtuvieron 3,5 g del compuesto (M) como cristales evaporando los solventes bajo presión reducida.

¹H-NMR (CDCl₃, d ppm): 1,42 (d, 1H), 1,77 (d, 2H), 2,05-2,20 (m, 4H), 2,32-2,39 (m, 2H), 4,09 (brs, 1H), 4,53 (brs, 2H), 6,52 (d, 1H), 7,58 (dd, 1H), 8,38 (d, 1H).

Se agregaron 32 mg de hidruro de sodio al 60% a 3 ml de una solución de DMF que contenía 0,21 g del compuesto (M) enfriando con hielo y toda la mezcla se agitó durante 40 minutos. A continuación, se agregaron 0,17 g de 2-cloro-5-trifluorometilpiridina a esta mezcla y la mezcla resultante se calentó a 100°C y se agitó durante la noche con calentamiento. Después de enfriar a temperatura ambiente, la mezcla de reacción se vertió en agua helada y se extrajo con acetato de etilo. Después de lavar con agua y secar con sulfato de magnesio anhidro, la capa orgánica se filtró y luego se concentró al vacío. El residuo se purificó por cromatografía en columna (eluyente: solvente mixto de n-hexano y acetato de etilo) para obtener el compuesto objetivo (N). Temperatura de fusión: 104-105°C.

 1 H-NMR (CDCl₃, δ ppm): 1,25 (s, 1H), 1,55 (s, 1H), 1,95-2,33 (m, 6H), 4,58 (brs, 2H), 5,37 (t, 1H), 6,55 (d, 1H), 6,80 (d, 1H), 7,61 (dd, 1H), 7,78(dd, 1H), 8,41 (s, 2H).

Los ejemplos de los compuestos de la presente invención producidos por el método de acuerdo con los ejemplos anteriormente mencionados se muestran en la tabla a continuación incluyendo los compuestos producidos en los ejemplos indicados anteriormente. Debe apreciarse que en la tabla a continuación, R¹ y R² muestran sustituyentes, incluyendo sustituyentes asociados por dos o más sustituyentes de modo que se simplifica la tabla. Además, la descripción "vis" muestra que el compuesto es un aceite viscoso y la descripción "amor" muestra que el compuesto es amorfo. Además, nD21,8-1,5008 significa que el índice de refracción a 21,8ºC es 1,5008 (lo mismo también se aplica a otros). Además, la descripción "cPr" significa ciclopropilo, la descripción "cHex" significa ciclohexilo (lo mismo se aplica a otros), la descripción "Ac" significa acetilo, la descripción "nPr" significa propilo normal, la descripción "iPr" significa isopropilo, la descripción "nBu" significa butilo normal, la descripción "tBu" significa butilo terciario, y la descripción "TMS" significa trimetilsililo y la descripción "THF" significa tetrahidrofuranilo.

[Tablas 1-3]

	6	1	2 3	
	<i>-</i> //	_N		
	5 //		$X \longrightarrow X \longrightarrow X$	
	R^2	3	$\frac{1}{6}$ $\frac{1}{5}$ R^1	
Compuesto nº	R ₂	Х	R ₁	Constante física []: Punto de fusión ºC
1-1	5-CF ₃	0	2-OnPr-4-CF3	[90-92]
1-2	5-CF3	0	2-CHO-4-CF3	[122-123]
1-3	5-CF ₃	0	2-CH ₂ OH-4-CF ₃	vis
1-4	5-CF ₃	0	2-CH2OCH(OMe)Me-4-CF3	[82-85]
1-5	5-CF ₃	0	2-CH2OEt-4-CF3	vis
1-6	5-CF ₃	0	2-Cl-4-CF3	[92-93]
1-7	5-CF ₃	0	2-C(O)OiPr-4-CF3	vis
1-8	5-CF ₃	0	2,6-(NO2)2-4-CF3	vis
1-9	5-CF ₃	0	2-C(O)NHCH(Me) CH2OH-4-CF3	amor
1-10	5-CF ₃	0	2-CH=NOEt-4-CF3	vis
1-11	5-CF ₃	0	(E)-2-CH=NOiPr-4-CF3	[79-80]
1-12	5-CF ₃	0	2-CH=NO-propargil-4-CF3	[84-86]
1-13	5-CF ₃	0	2-(5-Me-oxazolin-2-yl)-4-CF3	vis
1-14	3-CI-5-CF3	0	2-CH2OEt-4-CF3	vis
1-15	5-CF ₃	0	2-OMe-4-CF3	[127-130]
1-16	5-CF ₃	0	(Z)-2-CH=NOiPr-4-CF3	vis
1-17	5-CF ₃	0	2-C(O)OEt-4-CF3	vis
1-18	5-CF ₃	0	2-C(O)OtBu-4-CF3	[95-98]
1-19	3-CI-5-CF3	0	2-C(O)OiPr-4-CF3	vis
1-20	5-CF ₃	0	6-CI-2-C(O)OiPr-4-CF3	vis
1-21	5-CF ₃	0	2-CH=NOMe-4-CF3	vis
1-22	5-CF ₃	0	2-CH=NOMe-4-CF3	vis
1-23	5-CF3	0	2-C(O)OCH2cPr-4-CF3	vis
1-24	5-CF3	0	2-C(O)OCH2CF3-4-CF3	vis
1-25	5-CF ₃	0	2-C(O)OiBu-4-CF3	vis
1-26	5-CF ₃	0	2-C(O)OnPr-4-CF3	vis

ES 2 375 639 T3

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC
1-27	5-CF3	0	2-CH(OH)CH2CH(Me)2-4-CF3	amor
1-28	5-CF3	0	2-C(O)OCH(Me) CH=CH2-4-CF3	vis
1-29	5-CF3	0	2-C(O)OcPen-4-CF3	vis
1-30	5-CF3	0	2-C(O)ON=C(Me)24-CF3	vis
1-31	5-CF3	0	2-OCH2cPr-4-CF3	[88-90]
1-32	5-CF3	0	2-OEt-4-CF3	[102-105]
1-33	5-CF3	0	2-C(O)OCH2CHF2-4-CF3	vis
1-34	5-CF3	0	2-OnBu-4-CF3	[90-92]
1-35	5-CF3	0	2-OnPr-4-CN	[107-110]
1-36	5-CF3	0	2-C(O)OCH2OMe-4-CF3	vis
1-37	5-CF3	0	2-C(O)OCH2tBu-4-CF3	[100-102]
1-38	5-CF3	0	2-C(O)N(Me)2-4-CF3	vis
1-39	5-CF3	0	2-C(O)OCH(Me)CH (Me)2-4-CF3	vis
1-40	5-CF3	0	2-C(O)OCH(Et)2-4-CF3	vis
1-41	5-CF3	0	2-C(O)O(THF-3-yl)-4-CF3	vis
1-42	5-CF3	NH	2-C(O)OiPr-4-CF3	vis
1-43	5-CF3	0	2-C(O)O(CH2)2OMe-4-CF3	vis
1-44	5-C-F3	0	2-C(O)OCH(Me) CH2OMe-4-CF3	vis
1-45	5-CF3	0	2-C(O)OCH(CN)Me-4-CF3	vis
1-46	5-CF ₃	0	2-C(O)OCH(CI)Et-4-CF3	vis
1-47	5-CF3	0	2-C(O)SiPr-4-CF ₃	vis
1-48	5-CF ₃	0	2-OBn-4-CF3	[98-102]
1-49	5-CF3	0	2-OH-4-CF3	[130-131]
1-50	5-CF3	0	2-OCH ₂ CH(Me)OMe-4-CF ₃	[116-120]
1-51	5-CN	0	2-C(O)OiPr-4-CF3	[124-126]
1-52	5-CF3	0	2-CH(OTMS)CH2CN-4-CF3	[131-133]
1-53	5-CF3	0	2-CH(OH)CH2CN-4-CF3	[24-25]
1-54	5-CN	0	2-OnPr-4-CF3	[141-142]
1-55	5-CF ₃	0	2-OCH2cPr-4-C3F7	nD22.2-1.4942
1-56	3-Me	0	4-Ph	

ES 2 375 639 T3

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC
1-57	3-F	0	3,4,5,6-F4	
1-58	5-CN	S	2-CN	
1-59	5-NO ₂	S	3-CF3	
1-60	5-CHO	S	4-iPr	
1-61	4-OMe	S	3,5-Me2	
1-62	4-cPr	S	3-NO ₂	
1-63	5-OcHex	SO ₂	3-Br	
1-64	3-CH2CH2cPr	SO ₂	3-cPr	
1-65	4-OCH2cPr	SO ₂	4-OcPr	
1-66	4-OCH=CH2	SO ₂	2-CH2cPr	
1-67	5-OCF3	SO ₂	2-OCH2cPr	
1-68	4-OCH=CHCH2CF3	NH	4-OCH=CH2	
1-69	4-CO ₂ Et	NH	2-OCH2Cl	
1-70	6-F	NH	2-OCH=CBr2	
1-71	6-CN	NMe	3-NO ₂	
1-72	6-NO ₂	NAc	4-OCF3	
1-73	6-OcPr	NMe	4-CN	

[Tabla 4]

	5(R ²	6 1 N 4 3	x—($ \begin{array}{c} 1 \\ N = 6 \\ \hline 3 4 \\ R^1 \end{array} $
Compuesto nº	R2	Х	R ₁	Constante física []: Punto de fusión ºC
2-1	5-CF3	0	4-CF3-6-CI	nD22.1-1.5134
2-2	4-CF3-6-CI	0	5-CF3	vis
2-3	5-CF3	0	5-CF3	[104-105]
2-4	5-CF ₃ -6-OnPr	0	5-CF3	[90-93]
2-5	5-CF3	S	4-cPr	
2-6	3-Me	S	3-OcPr	
2-7	3-F	S	3,5-Me2	
2-8	5-CN	S	4-CF3	
2-9	5-NO ₂	SO ₂	5-CO ₂ Et	
2-10	5-CHO	SO ₂	4-CH=CF2	
2-11	4-OMe	SO ₂	5-CH=Cme2	
2-12	4-cPr	SO ₂	3-OCH2CH2cPr	
2-13	5-OcHex	NH	4-CH2cPr	
2-14	3-CH2CH2cPr	NH	3-Oet-4-cPr	
2-15	4-OCH2cPr	Nme	4-CHO	
2-16	6-Me	Nme	5-NO ₂	

[Tabla 5]

	nera Observación						R ₃ b=R ₄ b=Me								
	tue se indique de otra ma Constante física []: Punto de fusión ºC	[197-199]	[175-176]	[128-132]	[83-89]	[152-155]	amor	[181-185]	[213-215]	[204-206]	[219-221]	[197-199]	[223-224]	[192-194]	[201-203]
	a menos c	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0 ₂	ivamente, Qs	끙	z	C-Me	z	z	CH	Ю	ᆼ	СН	СН	HO	HO	СН	СН
70 50	no, respect Q4	CH	СН	СН	СН	СН	СН	CH	СН	СН	СН	СН	СН	СН	СН
R R R R R R R R R R R R R R R R R R R	tomo de hidróger Q3	C-CF3	C-Me	z	C-Me	C-CF ₃	C-CF3	C-CF3	C-CN	C-CF3	NO-O	C-CF ₃	C-CF ₃	C-CF3	C-CF3
2 2 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	epresntan un á Q2	z	CH	O-O	O-CI	끙	Z	z	z	Z	Z	Z	Z	Ν	Z
R 4 3	a, R4b, y R5 r Q1	z	z	z	z	z	z	z	z	Z	Z	Z	Z	Z	Z
	Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 represntan un átomo de hidrógeno, respectivamente, a menos que se indique de otra manera Constante física []:	2-OnPr-4-CF3	2-OnPr-4-CF ₃	2-OnPr-4-CF ₃	2-OnPr-4-CF3	2-OnPr-4-CF ₃	2-OnPr-4-CF3	2-OCH2CH(Me)OMe-4 -CF3	2-OCH2cPr-4-CF3	2-OCH2cPr-4-CF3	2-CO2iPr-4-CF3	2-OnBu-4-CF ₃	2-OiBu-4-CF3	2-Oet-4-CF3	2-CO2iPr-4-CF3
	Not Compuesto nº	4-1	4-2	4-3	4-4	4-5	4-6	4-7	4-8	4-9	4-10	4-11	4-12	4-13	4-14

(continuación)

Compuesto nº	.B.	ā	Q2	ë	Q	Q5	×	Constante física []: Punto de fusión ºC	Observación
4-15	2-OCH2CH(F)Me-4-CF3	z	z	C-CN	공	CH	0	[215-218]	
4-16	2-OCH ₂ CH(F)Me-4-CF ₃	z	z	C-CF3	СН	СН	0	[197-200]	
4-17	2-OCH2cPr-4-CF3	ЮН	z	IO-O	СН	СН	0	[148-150]	
4-18	2-OCH2cPr-4-CF3	НЭ	Z	C-CN	СН	СН	0	[126-128]	
4-19	2-OnPr-4-CF ₃	Z	z	C-CF ₃	СН	СН	0	[214-216]	sulfato
4-20	2-OnPr-4-CF ₃	Z	z	C-CF ₃	СН	СН	0	[220up]	borato
4-21	4-CF ₃	Z	Z	C-CF ₃	СН	СН	0	[187-188]	
4-22	2-OnPr4-CF3	НО	z	IO-O	СН	СН	0	[149-150]	
4-23	4-CF ₃	C-OnPr	Z	C-CF ₃	СН	СН	0	nD21,9 -1,5132	
4-24	2-CH2Oet-4-CF3	Z	Z	C-CF ₃	СН	СН	0	vis	
4-25	4-CF ₃	НО	СН	Z	СН	СН	0		
4-26	2,6-Me2	СН	Cme	Z	CBr	СН	0		
4-27	4-Ome	Z	Z	Cme	СН	СН	S		
4-28	3-NO ₂	Z	N	C-CF ₃	СН	СН	S		
4-29	2-F	Z	Ν	C-CF ₃	СН	СН	S		
4-30	3-СНО	Z	Ν	C-CN	СН	СН	S		
4-31	3-OiPr	Z	Ν	C-CF ₃	СН	СН	S		
4-32	4-Me	СН	Ν	C-CI	СН	СН	S		
4-33	4-cPr	СН	Ν	C-CN	СН	СН	S		
4-34	3-OcPr	Z	N	C-CF ₃	СН	СН	S		
4-35	4-CH ₂ cPr	Z	N	C-CF ₃	СН	СН	SO ₂		
4-36	2-OCH2CH2cPr	Z	Z	C-CF ₃	СН	СН	SO ₂		

(continuación)

	1	1					1								1		1	1	1	_
Observación																				
Constante física []: Punto de fusión ºC															[124-125]	[129-131]	[105-109]	nD24.7 -1.5697	[133-135]	[139-141]
×	SO ₂	SO2	SO ₂	SO ₂	Ŧ	Ŧ	ĭ	ĭ	ĭ	ĭ	Nme	Net	Nac	Nac	0	0	0	0	0	0
S S	공	ЮН	끙	H)	HO.	H)	HO.	ᆼ	H)	ᆼ	H)	H)	ᆼ	H)	Ю	H)	ЮН	Ю	ЮН	공 당
Q	공	H)	끙	끙	당	ᆼ	ᆼ	끙	끙	끙	끙	ᆼ	끙	ᆼ	H)	끙	H)	H)	H)	끙
ő	C-CF ₃	C-CF ₃	C-CN	C-CF ₃	0-0	C-CN	C-CF ₃	C-CF ₃	C-CF ₃	C-CN	C-CF ₃	0-0	C-CN	C-CF ₃	C-CN	C-CN	C-CN	C-CN	C-CN	O-ON
O ₂	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Ю	H)	Ю	Ю	Ю	끙
Ω	z	z	z	z	ОН	ОН	z	z	z	z	z	СН	ЮН	z	z	z	z	z	z	z
R1	3-OCH=Cme2	4-0CF ₃	4-0CF3	3-CO2Me	3-Me	4-tBu	2-CH=CHMe	2-OCH2cPr-4-CF3	2-OCH2cPr-4-CF3	2-CO2iPr-4-CF3	2-OnBu-4-CF ₃	2-OiHu-4-CF3	2-Oet-4-CF ₃	2-CO2iPr-4-CF3	2-OnPr-4-CF ₃	2-OCH2cPr4-CF3	2-OCH2CHFMe-4-CF3	2-OCH2CH2Ome-4-CF3	2-CO2iPr-4-CF3	2-OCH2iPr-4-CF3
Compuesto nº	4-37	4-38	4-39	4-40	4-41	4-42	4-43	4-44	4-45	4-46	4-47	4-48	4-49	4-50	4-51	4-52	4-53	4-54	4-55	4-56

(continuación)

Compuesto nº	R1	Q	Q2	Q3	Q4	Q5	×	Constante física []: Punto de fusión ºC	Observación
4-57	2-OCH2C(Me)=CH2-4 -CF3	Z	СН	C-CN	СН	СН	0	[90-93]	
4-58	2-OCH2CH(Me)Ome-4-CF3	Z	СН	C-CN	СН	СН	0	[114-118]	
4-59	2-ON=C(Me)2-4-CF3	z	Ю	C-CN	공	ᆼ	0	[125-128]	
4-60	2-OnPr-4-OCF ₃	z	Н	C-CF ₃	ᆼ	S	ĭ	[06-68]	
4-61	2-Ome-4-OCF ₃	z	Н	C-CF ₃	ᆼ	HO	ĭ	[114-116]	
4-62	2-OnPr-4-CF ₃	z	ЮН	C-CF ₃	ᆼ	HO	ĭ	[26-96]	
4-63	2-Me-3-CF ₃	z	ЮН	C-CF ₃	ᆼ	HO	ĭ	[124-125]	
4-64	2-OnPr-4-CF ₃	ᆼ	Н	C-CF ₃	ᆼ	HO	0	vis	
4-65	2-OnPr-4-CF ₃	C-CI	СН	C-CF ₃	Ю	СН	0	[104-105]	
4-66	2-OnPr-4-CF ₃	C-NO ₂	СН	C-CF ₃	Ю	СН	0	vis	
4-67	2-OnPr-4-CF ₃	C-F	СН	C-CF ₃	СН	СН	0	vis	
4-68	2-OnPr-4-CF ₃	C-N(SO2Me)2	СН	C-CF ₃	СН	СН	0	amor	
4-69	2-OnPr-4-CF ₃	НЭ	СН	C-Ome	Н	СН	0	[119-120]	
4-70	2-OnPr-4-CF ₃	НО	C-F	C-CF ₃	Ю	СН	0	vis	
4-71	2-OnPr-4-CF ₃	СН	СН	C-OCF3	СН	СН	0	vis	
4-72	2-OnPr-4-CF ₃	СН	СН	C-NO2	СН	СН	0	[114-117]	
4-73	2-OnPr-4-CF ₃	СН	СН	CH2	СН	СН	0	vis	
4-74	2-OnPr-4-CF ₃	СН	СН	C-NHS O ₂ CF ₃	СН	СН	0	[90-95]	
4-75	2-OnPr-4-CF ₃	СН	СН	C-Br	СН	СН	0	vis	
4-76	2-OnPr-4-CF ₃	НО	O-CI	C-CI	СН	СН	0	vis	
				Ī					

(continuación)

Compuesto nº	R	ρ	Q2	හි	Q 4	Ö	×	Constante física []: Punto de fusión ºC	Observación
4-77	2-OnPr-4-CF ₃	СН	ᆼ	C-tBu	공	ᆼ	0	[139-141]	
4-78	2-OnPr-4-CF ₃	СН	H)	C-Ph	CH	CH	0	[40-50]	
4-79	2-OnPr-4-CF ₃	СН	C-Oet	C-CF3	CH	끙	0	vis	
4-80	2-OnPr-4-CF ₃	СН	C-nPr	C-CF3	СН	끙	0	nD20.4 -1.4827	
4-81	2-OnPr-4-CF ₃	СН	C-C=NOEt	C-CF3	СН	ᆼ	0	[103-105]	
4-82	2-OnPr-4-CF ₃	СН	C-CO2iPr	C-CF3	CH	ъ	0	vis	

[Tablas 10-11]

Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 representan un átomo de hidrógeno, respectivamente, a menos que se indique lo contrario.

Compuesto nº	R1	Q1	Q2	Q3	Q4	Х	Constante física []: Punto de fusión ^o C
5-1	2-OnPr-4-CF3	N	N	C-CF3	S	0	[93-95]
5-2	2-OCH2cPr-4- CF3	N	N	C-CF ₃	S	0	[110-112]
5-3	2-CO2iPr-4-CF3	N	N	C-CF3	S	0	[112-114]
5-4	2-ON=C (Me)2- 4-CF3	N	N	C-CF ₃	S	0	[121-124]
5-5	2-OiBu-4-CF3	N	N	C-CF3	S	0	[147-150]
5-6	2-OCH2C (Me)=CH2-4- CF3	N	N	C-CF3	S	0	[121-124]
5-7	2-OCH ₂ CH (Me)OMe-4-CF ₃	N	N	C-CF3	S	0	[98-102]
5-8	2-OCH ₂ CH (F)Me-4-CF ₃	N	N	C-CF3	S	0	[105-108]
5-9	2-OnPr-4-CF3	C-CN	C-CF3	N	N-Me	0	[91-92]
5-10	2-OnPr-4-CF3	C- C(O)NH2	C-CF3	N	N-Me	0	[180-181]
5-11	4-CF3	СН	СН	СН	0	S	
5-12	2-CF ₃ -3-Cl	N	СН	Cme	0	S	
5-13	4-CF3	CH	N	СН	0	S	
5-14	4-CF ₃ -2-OnPr	N	N	СН	0	S	
5-15	3-CF3	N	N	СН	0	S	
5-16	3-Me	0	СН	СН	NH	SO ₂	
5-17	3-F	CH	CH	CH	NH	SO ₂	

Compuesto nº	R1	Q1	Q2	Q3	Q4	х	Constante física []: Punto de fusión ºC
5-18	2-CN	СН	0	CH	NH	SO ₂	
5-19	3-NO ₂	N	СН	C-CF3	NH	SO ₂	
5-20	4-CHO	N	СН	СН	NH	SO ₂	
5-21	4-Ome	СН	СН	СН	S	SO ₂	
5-22	4-cPr	N	СН	СН	S	SO ₂	
5-23	2-OcHex	N	СН	СН	S	NH	
5-24	3-CH2CH2cPr	N	СН	СН	S	NH	
5-25	4-OCH2cPr	N	СН	СН	S	NH	
5-26	2-CHO	N	СН	СН	0	NH	
5-27	3-OCH=CHMe	N	Cme	СН	0	Nme	
5-28	2-CO ₂ Et	CH	СН	СН	0	Nme	

5 [Tabla 12]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
" b
R_b^4 R_a^2

Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 representan un átomo de hidrógeno, respectivamente, a menos que se indique lo contrario.

Compuesto nº	R1	Q1	Q2	Q3	Q4	Х	Constante física []: Punto de fusión ºC
6-1	2-OnPr-4-CF ₃	N	NH	C-CF3	С	0	vis
6-2	2-OnPr-4-CF3	N	NMe	C-CF3	S	0	
6-3	2-OCH2cPr- 4-CF3	N	NH	C-CF3	S	0	
6-4	2-CO2iPr-4- CF3	N	NH	C-CF3	S	S	
6-5	2-ON=C (Me)2-4-CF3	N	NH	C-CF3	S	S	

Compuesto nº	R1	Q1	Q2	Q3	Q4	Х	Constante física []: Punto de fusión ºC
6-6	2-OiBu-4-CF ₃	N	Net	C-CF3	S	SO ₂	
6-7	2-OCH ₂ C (Me)=CH ₂ -4- CF ₃	N	ac	C-CF3	S	Nac	
6-8	2-OCH2CH (Me)Ome-4- CF3	N	NH	C-CF3	S	NH	
6-9	2-OCH ₂ CH (F)Me-4-CF ₃	N	NH	C-CF3	S	NH	
6-10	2-OnPr-4-CF ₃	C-CN	CH-CF3	N	N-Me	0	
6-11	2-OnPr-4-CF ₃	C-C(O)NH2	Cme2	N	N-Me	0	

[Tablas 13-14]

$R^{2} \xrightarrow{4}^{6} \xrightarrow{1}^{N} X \xrightarrow{2} X \xrightarrow{3}^{4} R^{1}$							
Compuesto nº	R2	Х	R ₁	Constante física []: Punto de fusión ºC			
7-1	5-CF3	0	2-OnPr-4-CF3	amor			
7-2	5-CF3	0	2-CHO-4-CF ₃	nD22.2-1.5330			
7-3	5-CF3	0	2-CH ₂ OH-4-CF ₃	nD22.3-1.5194			
7-4	5-CF ₃	0	2-CH ₂ OEt-4- CF ₃	nD22.3-1.5003			
7-5	3-Me	0	2-OnPr-4-CF3				
7-6	4-Ph	0	4-CF3				
7-7	3-OnPr	0	2-CF ₃ -3-Cl				
7-8	3-OCH2cPr	0	4-CF3				
7-9	4-tBu	0	4-CF ₃ -2-OnPr				
7-10	4-OCH2CHFMe	0	3-CF ₃				
7-11	-	S	3-Me				
7-12	3-Br	S	3-F				
7-13	4-CO2tBu	S	2-CN				
7-14	3-CO ₂ Et	S	3-NO ₂				
7-15	2-OCF=CH2	S	4-CHO				

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC
7-16	5-OCH=CHMe	S	4-Ome	
7-17	3-OCH2cPr	SO ₂	4-cPr	
7-18	4-CH2CH2cPr	SO ₂	2-OcHex	
7-19	3-OcPr	SO ₂	3-CH2CH2cPr	
7-20	4-cPr	NH	4-OCH2cPr	
7-21	5-OCF3	NH	2-OnPr-4-CF3	
7-22	3,5-Me2	NH	4-CF3	
7-23	6-CI	NH	2-CF3-3-CI	
7-24	5-NO ₂	Nme	4-CF3	
7-25	4-CHO	Nac	4-CF ₃ -2-OnPr	

[Tablas 15-16]

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC
8-18	6-CN	Nme	4-CO ₂ Et	
8-19	6-NO ₂	Nac	3-Me	
8-20	6-OcPr	Nme	5-OCF3	
8-21	3-Me	0	4-Ome	
8-22	3-F	0	5-Cl	
8-23	4-OCH=CF2	S	3-nBu	

[Tablas 17-18]

		1 2 N-N 5 4	-x	
Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC
9-1	6-CF3	0	2-OnPr-4-CF3	vis
9-2	6-CF3	0	4-CF3	nD22.3-1.5245
9-3	5-Me	0	2-CH2OEt-4-CF3	
9-4	6-CF3	0	2-Cl-4-CF3	
9-5	6-CF3	0	2-C(O)OiPr-4-CF3	
9-6	4-cPr	0	2,6-(NO ₂)2-4-CF ₃	
9-7	6-CF3	S	2-C(O)NHCH(Me)CH2OH4- CF3	
9-8	6-OCH2CH2cPr	S	2-CH=NOEt-4-CF3	
9-9	5-OCH=Cme2	S	(E)-2-CH=NoiPr-4-CF3	
9-10	6-CF3	S	2-CH=NO-propargyl-4-CF3	
9-11	4-NO ₂	S	2-(5-Me-oxazolin-2-yl)-4-CF3	
9-12	5-CHO	S	2-CH2Oet-4-CF3	
9-13	5-Me	SO ₂	2-Ome-4-CF3	
9-14	6-CF3	SO ₂	(Z)-2-CH=NoiPr-4-CF3	
9-15	6-CF3	SO ₂	2-C(O)Oet-4-CF3	
9-16	4-CN	SO ₂	2-C(O)OtBu-4-CF3	
9-17	5-Br	NH	2-C(O)OiPr-4-CF3	
9-18	4-OcPr	NH	6-Cl-2-C(O)OiPr-4-CF3	
9-19	5-OtBu	NH	3-Br	
9-20	5-OCH=CHMe	NH	4-Me	
9-21	4-OCH=CHF	Nme	-	
9-22	6-CO ₂ Me	Nac	2-Cl	

[Tablas 19-20]

	R ¹	X		< <u> </u>	N·	$Q^{1} = Q^{2}$ Q^{3}		
		\ <u></u> /				Q ² —Q ⁴		
Compuesto nº	R ₁	Q1	Q2	Q3	Q4	Q5	X	Constante física []: Punto de fusión ºC
10-1	2-OnPr-4-CF3	N	N	C-CF3	СН	СН	0	[116-117]
10-2	2-OCH2cPr-4- CF3	N	N	C-CF3	СН	СН	0	[112-113]
10-3	2-OiBu-4-CF3	N	N	C-CF3	СН	СН	0	[148-149]
10-4	2-CH2OEt-4- CF3	N	N	C-CF3	СН	СН	0	nD22.1-1.5088
10-5	4-CF3	N	N	C-CF3	СН	СН	0	[130-131]
10-6	2-OCH ₂ CH(F) Me-4-CF ₃	N	СН	СН	N	C-Me	0	
10-7	2-OnPr-4-CF3	N	СН	СН	N	СН	0	
10-8	2-OnPr-4-CF3	N	СН	C-CF3	N	СН	S	
10-9	4-CF3	Ν	C-Br	СН	N	СН	S	
10-10	2-CF3-3-CI	Ν	СН	СН	СН	N	S	
10-11	4-CF ₃	Ν	СН	C-CN	СН	СН	S	
10-12	4-CF ₃ -2-OnPr	Ν	C-CN	СН	СН	СН	S	
10-13	3-CF3	Ν	СН	N	C-CF3	C-CF3	S	
10-14	3-Me	СН	N	C-CN	СН	СН	S	
10-15	3-F	Ν	СН	СН	CH	N	SO ₂	
10-16	2-CN	C-Me	N	СН	СН	СН	SO ₂	
10-17	3-NO ₂	Ν	C-F	СН	СН	N	NH	
10-18	4-CHO	Ν	C-CI	СН	СН	N	NH	
10-19	4-Ome	Ν	СН	N	СН	СН	NH	
10-20	4-cPr	СН	C-Me	N	C-Me	СН	NiPr	
10-21	2-OcHex	СН	CH	N	СН	СН	Nme	
10-22	3-CH2CH2cPr	СН	СН	N	СН	СН	Nme	

[Tabla 21]

$R^{1} \times X \times $								
Compuesto nº	Rı	Q1	Q2	Q3	Q4	х	Constante física []: Punto de fusión ^º C	Observación
11-1	2-OnPr-4-CF3	N	N	C-CF3	S	0	vis	
11-2	3-F	СН	СН	СН	S	0		
11-3	2-CN	СН	СН	СН	0	0		
11-4	3-NO ₂	N	СН	C-Me -	S	S		
11-5	4-CHO	N	C-F	СН	0	S		
11-6	4-OMe	N	N	СН	NH	S		
11-7	4-cPr	N	СН	СН	S	SO ₂		
11-8	2-OcHex	N	СН	СН	Nme	SO ₂		
11-9	3-CH2CH2cPr	N	N	СН	S	NH		
11-10	4-OCH2cPr	N	СН	СН	NH	NH		
11-11	2-CHO	СН	N	СН	NH	Nme		

[Tabla 22]

Constante física []: Punto de fusión ${}^{\circ}\text{C}$ Compuesto nº Q Χ R_1 2-NO2-4-CF3 12-1 5-CF₃ 0 [92-94] 12-2 5-CF₃ 0 2-NH2-4-CF3 [120-122] 12-3 5-CF₃ 0 2-NHAc-4-CF3 [145-147] 5-CF₃ 12-4 0 2-OnPr-4-CF3 [104-106] 12-5 5-CF₃ 0 2-C(O)OiPr-4-CF3 nD21.8-1.5008 12-6 3-CI 0 2-CH=NOEt-4-CF3 (E)-2-CH=NOiPr-4-CF3 12-7 4-CHO 0 12-8 6-NO₂ S 2-CH=NO-propargil-4-CF3 2-(5-Me-oxazolin-2-yl)-4-12-9 4-OCH=CH2 S СFз 5-OCF3 S 2-CH₂Oet-4-CF₃ 12-10

		(00)		
Compuesto nº	Q	X	R1	Constante física []: Punto de fusión ºC
12-11	4-OCH=CHCH2CF3	S	2-Ome-4-CF ₃	
12-12	4-CO ₂ Et	S	(Z)-2-CH=NoiPr-4-CF3	
12-13	6-OCF3	SO ₂	2-C(O)Oet-4-CF3	
12-14	6-CN	SO ₂	2-C(O)OtBu-4-CF3	
12-15	6-NO2	SO ₂	2-C(O)OiPr-4-CF3	
12-16	6-OcPr	NH	6-Cl-2-C(O)OiPr-4-CF3	
12-17	3-Me	NH	3-Br	
12-18	3-F	Net	4-cPr	

[Tabla 23]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Compuesto nº	R2	Х	R ₁	Constante física []: Punto de fusión ºC			
13-1	5-CF ₃	0	5-CF3	[79-81]			
13-2	6-OnPr-5-CF3	0	5-CF3	[70-72]			
13-3	6-CI-5-CF3	0	5-CF3	[100-102]			
13-4	4-NO ₂	0	4-cPr				
13-5	3-CO2iPr	0	3-OcPr				
13-6	4-OCH=CHF	S	3,5-Me2				
13-7	3-CH=CH2	S	4-CF3				
13-8	4-OCH2cPr	S	5-CO ₂ Et				
13-9	5-CH2cPr	S	4-CH=CF2				
13-10	3-OcPr	S	S-CH=CMe2				
13-11	4-cPr	SO ₂	3-OCH2CH2cPr				
13-12	4-OCHF2	NH	4-CH2cPr				
13-13	3-Ome	NH	3-Oet-4-cPr				
13-14	4-CN	NH	4-CHO				
13-15	3-CHO	NH	5-NO ₂				
13-16	5-NO ₂	Nme	5-CF3				
13-17	4-F	Nac	4-cPr				
13-18	3,5-Me2	Nac	4-CO ₂ Et				

[Tabla 24]

		1 2	1	6
	6 (R ² /	N	\sim	5 R ¹
Compuesto nº	R ₂	5 4 X	R ₁	Constante física []: Punto de fusión ºC
14-1	2-OiBu-6-CF3	0	5-CF3	nD22.5 -1.5074
14-2	5-CF3-6-OnPr	0	5-CF3	[70-72]
14-3	5-CHO	0	5-CF3	
14-4	4-OMe	0	4-cPr	
14-5	4-cPr	S	3-OcPr	
14-6	5-OcHex	S	3,5-Me2	
14-7	4-CH2CH2cPr	S	4-CF3	
14-8	4-OCH2cPr	S	5-CO ₂ Et	
14-9	4-OCH=CH2	S	4-CH=CF2	
14-10	5-OCF3	SO ₂	5-CH=Cme2	
14-11	4-OCH=CHCH2CF3	SO	3-OCH2CH2cPr	
14-12	4-CO ₂ Et	so	4-CH2cPr	
14-13	6-F	NH	3-Oet-4-cPr	
14-14	6-CN	NH	4-CHO	
14-15	6-NO ₂	NH	4-Ome	
14-16	6-OcPr	Nme	3-F	
14-17	2-Me	Nac	4-CO ₂ Me	
14-18	2-F	Nac	5-CH2CH2cPr	

[Tabla 25]

Γ				
	R ²	x		R ¹
Compuesto nº	R ₂	Х	R ₁	Constante física []: Punto de fusión ºC
15-1	2-OCH2cPr-4-CF3	0	4-CF3	vis
15-2	2-OCH ₂ CH(F)Me-4- CF ₃	0	2-F	
15-3	2-OnPr-4-CF3	0	3,4-Me2	
15-4	2-OnPr-4-CF3	S	3-OMe	
15-5	4-CF3	S	3-CHO	
15-6	2-CF3-3-CI	S	4-NO ₂	
15-7	4-CF3	SO	2-CO ₂ Et	
15-8	4-CF3-2-OnPr	SO	3-CH=CHEt	
15-9	3-CF3	SO	4-OCH=CHMe	
15-10	3-Me	SO ₂	3-OCF3	
15-11	3-F	SO ₂	4-OCH=CF2	
15-12	2-CN	NH	2-CF ₃ -3-Cl	
15-13	3-NO ₂	NH	4-CF3	
15-14	2-CH=Cme2	NH	4-CF ₃ -2-OnPr	
15-15	3-OCH=CF2	Nac	3-CF ₃	
15-16	4-CH2CH2CH2cPr	Nme	3-Me	
15-17	2-OcPr-4-CF3	0	4-CF3	vis

[Tablas 26-29]

			1													_
		Observación	cis	cis	cis	cis	cis	cis	cis	cis	ois	cis	cis	cis	cis	cis
, o o o o o o o o o o o o o o o o o o o		Constante física []: Punto de fusión ºC	[79-80]	vis	[100-103]	vis	[99-102]	[103-105]	[103-105]	[106-108]	[130-131]	[132-135]	[107-110]	[121-124]	[108-111]	[153-155]
N N N N N N N N N N N N N N N N N N N		×	0	0	0	0	0	0	0	0	0	0	0	0	0	0
×	trans	Qs	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	Н	СН	Ю
		Q	H)	Z	СН	H)	CH	СН	HO.	SH	СН	СН	HO.	CH	СН	끙
0-02 0-04 0-04		ő	C-CF3	C-CF3	C-CF3	C-CF ₃	C-CF3	C-CF3	O-O	O-CN	C-CN	C-CF3	C-CF ₃	C-CF3	C-CF3	C-CN
Ż		Q2	z	ЮН	Z	z	Z	Z	z	z	Z	z	z	z	Z	z
X	cis	Q	Ю	z	z	z	z	z	z	z	Z	z	z	z	Z	z
		Æ	2-OnPr-4-CF3	2-OnPr-4-CF3	2-OnPr-4-CF3	2-CO2iPr4-CF3	2-CH2OEt4-CF3	2-OCH ₂ CH(Me)Ome-4- CF ₃	2-OnPr-4-CF3	2-OCH2cPr-4-CF3	2-OCH ₂ CH(Me)Ome-4- CF ₃	2-CH ₂ OCH(Me)Ome-4- CF ₃	2-OCH2cPr-4-CF3	2-ON=C(Me)2-4-CF3	2-ON=C(Me)Ome-4- CF ₃	2-CO2iPr4-CF3
		Compuesto nº	16-1	16-2	16-3	16-4	16-5	16-6	16-7	16-8	16-9	16-10	16-11	16-12	16-13	16-14

	Observación	cis	cis	cis	cis	cis	cis	cis	Sulfato cis	Borato cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis
	Constante física []: Punto de fusión ºC	[132-134]	[121-124]	[107-110]	[72-75]	[98-102]	[101-104]	[107-111]	[206-209]	[220up]	nD23.3 -1.5840	[128-132]	nD23.4 -1.5447	[155-156]		[101-105]	[136-138]	[129-130]	[131-132]	[126-127]				
	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	S	S	S	SO
	Q5	НЭ	СН	СН	НЭ	СН	НЭ	СН	НЭ	НЭ	НЭ	НЭ	НЭ	СН	НЭ	НЭ	НЭ	НЭ	СН	СН	СН	СН	Z	Z
(continuación)	Q4	НЭ	СН	СН	НЭ	СН	НЭ	СН	НЭ	НЭ	НЭ	НЭ	НЭ	СН	НЭ	НЭ	НЭ	НЭ	СН	СН	Z	Z	СН	СН
(contin	Q3	NO-O	C-CF3	C-CF ₃	C-CF3	C-CF3	$C-CF_3$	C-CF3	$C-CF_3$	C-CF3	NO-O	C-CF3	C-CF3	C-CF ₃	C-CF3	C-CF3	c -CF $_3$	C-CF3	C-CF3	C-CF3	СН	СН	C-CF3	СН
	Q2	Ν	Z	Z	Z	Z	Ν	Z	Ν	Z	Z	N	Z	N	Z	Z	Ν	N	Z	Z	СН	СН	СН	C-Br
	Q1	Z	Z	Z	Z	Z	Z	Z	Z	Z	СН	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
	R1	2-ON=C(Me)2-4-CF ₃	2-OCH2C(Me)=CH24- CF3	2-OiBu-4-CF3	2-CH(OH)CH2iPr-4-CF3	2-OCH ₂ CH(F)Me4-CF ₃	2-O(allyl)-4-CF3	2-O(propargil)-4-CF3	2-OnPr-4-CF3	2-OnPr-4-CF3	2-OCH ₂ cPr-4-CF ₃	2-OnPr-4-NO ₂	2-OnPr-4-Cl	4-CF ₃	4-0CF ₃	2-OCH ₂ CH(CI)Me-4- CF ₃	2-OCH2cPr4-CN	2-NHnPr-4-CF3	2-NHCH2cPr-4-CF3	2-Br-4-CF ₃	2-CF ₃ -3-Cl	4-CF ₃	4-CF3-2-OnPr	3-CF ₃
	Compuesto nº	16-15	16-16	16-17	16-18	16-19	16-20	16-21	16-22	16-23	16-24	16-25	16-26	16-27	16-28	16-29	16-30	16-31	16-32	16-33	16-34	16-35	16-36	16-37

	Observación	cis	cis	cis	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans
	Constante física []: Punto de fusión ºC				[159-160]	[131-133]	[112-114]																	
	×	SO2	HN	Nme	0	0	0	S	S	S	os	OS	os	SO ₂	SO ₂	SO ₂	SO ₂	H	HN	H	Nme	Nme	Nac	Nac
	Q5	Z	Z	Z	СН	СН	СН	СН	СН	СН	Z	Z	Z	Z	Z	СН	СН	СН	СН	СН	СН	СН	SH	СН
ación)	Ω4	СН	СН	СН	СН	СН	СН	СН	N	N	СН	СН	СН	СН	СН	СН	СН	СН	СН	Ν	Ν	Ν	Z	Z
(continuación)	Q3	Z	C-CN	СН	C-CF3	C-CF3	C-CF3	C-CF3	СН	СН	C-CF3	СН	Z	C-CN	СН	C-CF3	C-CF ₃	C-CF ₃	C-CF ₃	СН	СН	СН	CH	СН
•	Q2	NCH	СН	C-CN	Z	Z	Z	Z	СН	СН	СН	C-Br	СН	СН	C-CN	Z	Z	Z	Z	СН	СН	СН	СН	СН
	ğ		Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	ż	Z
	R1	9-Ме	3-F	S-CN	4-CF ₃	2-OnPr-4-CF ₃	2-OCH _{2C} Pr-4-CF ₃	2-CF3-3-CI	4-CF ₃	4-CF3-2-OnPr	3-CF ₃	3-Ме	3-E	2-CN	3-NO ₂	4-CHO	4-Ome	4-cPr	2-OcHex	3-CH2CH2cPr	4-OCH ₂ cPr	2-CHO	3-OCH=CHMe	2-CO ₂ Et
	Compuesto nº	16-38	16-39	16-40	16-41	16-42	16-43	16-44	16-45	16-46	16-47	16-48	16-49	16-50	16-51	16-52	16-53	16-54	16-55	16-56	16-57	16-58	16-59	16-60

Observación	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis	cis
Constante física []: Punto de fusión ºC	[99-100]	[116-119]	[142-143]	[140-143]	[124-127]	amor	amor	[112-114]	[06-68]	nD24.6-1.5115	vis	vis	[82-87]	[101-103]	[70-73]	nD22.0 -1.5080	vis	[20-23]	[103-104]	[107-109]	[152-154]	[66-56]	[87-89]
×	HN	Nac	Nme	HN	Nme	NnPr	NnPr	Net	HN	Nme	HN	JWN	HN	Nme	HN	HN	HN	HN	HN	HN	HN	0	0
Q5	СН	СН	СН	Ю	ЮН	ЮН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	ЮН
04	СН	СН	СН	H	H)	H)	СН	СН	СН	СН	СН	СН	СН	СН	CH		СН	СН	СН	СН	СН	СН	H)
03	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CF ₃	C-CF3CH	C-CF3	C-CF3	C-CF3	C-CF3	C-CF3	C-CN	C-CN
02	СН	СН	СН	ᆼ	H	H	СН	СН	СН	СН	СН	СН	СН	СН	H	NCH	СН	СН	СН	СН	СН	СН	ᆼ
۵	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	z		z	z	z	Z	z	z	z
R1	4-CF ₃	4-CF ₃	4-CF ₃	2-NO24-CF3	2-NO2-4-CF ₃	2-NO24-CF3	2-NO ₂ -4-CF ₃	2-NO ₂₋ 4-CF ₃	2-Me-4-OCF ₃	2-Me-4-OCF ₃	2-Oet-4-tBu	2-Oet-4-tBu	2-OnPr-4-CF ₃	2-OnPr-4-CF ₃	2-nBu-4-CF ₃	2,6-nBu2-4-CF3	5-CI-2-OnPr-4-CF3	2,6-Me2-4-OCF3	2-OnPr-4-CF ₃	2-OnPr-4-CF ₃	2-OnPr-4-C(O)OtBu	2-OnPr-4-CF ₃	2-OCH2cPr-4-CF3
Compuesto nº	16-61	16-62	16-63	16-64	16-65	16-66	16-67	16-68	16-69	16-70	16-71	16-72	16-73	16-74	16-75	16-76	16-77	16-78	16-79	16-80	16-81	16-82	16-83

(continuación)

Compuesto nº	R1	10	70	Q3	Q4	Q5	×	Constante física []: Punto de fusión ºC	Observación
16-84	2-OCH2Ome-4-CF3	z	НЭ	C-CN	НЭ	СН	0	[117-119]	cis
16-85	2-OCH2CH2Ome-4-CF3	z	НО	C-CN	НО	Ю	0	[90-92]	cis
16-86	2-OCH ₂ CH(Ome)Me-4- CF ₃	Z	НО	NO-O	СН	НО	0	[78-81]	cis
16-87	2-CO2CHMe2-4-CF3	Z	НО	C-CN	НО	Ю	0	[142-145]	cis
16-88	2-CH ₂ OCH(Me)Ome-4- CF ₃	Z	НО	C-CN	НЭ	Ю	0	[119-122]	cis
16-89	2-ON=Cme24-CF3	Z	НО	C-CN	НО	Н	0	[120-122]	cis
16-90	2-ON=C(Ome)Me-4- CF ₃	Z	НО	C-CN	НЭ	Ю	0	[124-127]	cis
16-91	2-ON=C(NH2)Me-4-CF3	Z	НЭ	C-CN	НЭ	СН	0	[142-145]	cis

[Tabla 30-31]

[Tabla 32]

$\begin{array}{c c} & & & & & & & & & \\ & & & & & & & & &$													
Compuesto nº	R1	Q1	Q2	Q3	Q4	Х	Constante física []: Punto de fusión ºC						
18-1	2-OnPr-4-CF3	N	NH	C-CF3	СН	0	[140-142]						
18-2	2-OnPr-4-CF3	N	CH2	C-Br	СН	0							
18-3	2-OnPr-4-CF3	N	CMe ₂	CH	СН	0							
18-4	2-OnPr-4-CF3	N	0	C-CO ₂ Me	СН	S							
18-5	2-OnPr-4-CF3	N	0	C-CH ₂ O H	СН	S							
18-6	2-OnPr-4-CF3	N	S	C-CHO	СН	SO ₂							
18-7	2-OnPr-4-CF3	N	S	C-CF ₂ H	C-CI	NH							
18-8	2-OCH2cPr-4-CF3	N	NH	C-CF3	Cme	NH							
18-9	2-CO2iPr-4-CF3	N	Nme	C-CF3	C-CF3	NH							
18-10	2-OnPr-4-CF3	N	Nme	C-CF3	C-CF3	Nme							
18-11	2-ON=C(Me)2-4- CF3.	N	Nme	C-CF3	C-CF3	0							
18-12	2-OnPr-4-CF3	СН	Nme	СН	CH	0							

[Tablas 33-34]

Constante física []: Χ Compuesto nº Q1 Q4 Q5 R₁ Q2 Qз Punto de fusión ºC 19-1 2-OnPr-4-CF3 Ν Ν C-CF3 CH CH 0 [125-127] 2-OCH2cPr-4-CF3 C-CF3 CH 19-2 Ν CH 0 [115-118] 2-OEt-4-CF3 C-CF3 СН 19-3 Ν Ν СН 0 [141-143] 2-OCH₂OMe-4-C-CF3 19-4 Ν Ν CH CH 0 [118-121] CF3 19-5 2-OiBu-4-CF3 Ν Ν C-CF3 CH CH 0 [130-133] 2-CO2iPr-4-CF3 C-CF3 СН CH 0 19-6 Ν Ν amor 19-7 2-CH₂OEt-4-CF₃ Ν Ν C-CF3 СН CH 0 [144-146] 2-OCH2CH(Me) C-CF₃ 19-8 Ν Ν СН CH 0 [114-115] OMe-4 -CF3

Compuesto nº	R1	Q1	Q2	Q3	Q4	Q5	Х	Constante física []: Punto de fusión ºC
19-9	2-OCH2cPr-4-CF3	СН	СН	СН	СН	СН	0	vis
19-10	2-OnPr-4-CF3	N	N	C-CF3	СН	СН	0	
19-11	2-OnPr-4-CF3	N	N	C-CF3	СН	СН	0	
19-12	4-CF ₃	N	CH	СН	N	C-Me	S	
19-13	2-CF ₃ -3-Cl	N	CH	СН	N	СН	S	
19-14	4-CF ₃	N	CH	C-CF3	N	CH	S	
19-15	4-CF ₃ -2-OnPr	N	C-Br	СН	N	СН	S	
19-16	3-CF ₃	N	CH	СН	СН	N	S	
19-17	3-Me	N	CH	C-CN	СН	CH	SO	
19-18	3-F	N	N	СН	СН	СН	SO	
19-19	2-CN	N	СН	N	СН	СН	SO	
19-20	3-NO2	CH	N	C-CN	СН	CH	SO 2	
19-21	2-CH=CMe2	N	СН	СН	СН	N	SO 2	
19-22	3-OCH=CF2	C-Me	N	СН	СН	СН	SO 2	
19-23	4-CH2CH2CH2cPr	N	C-F	СН	СН	N	NH	
19-24	2-OnPr-4-CF3	N	C-CI	СН	СН	N	NH	
19-25	2-OnPr-4-CF3	N	СН	N	СН	СН	NH	
19-26	4-CHO	СН	C-Me	N	C-Me	СН	N Me	
19-27	3-OCF3	N	N	C-CF3	СН	СН	N Me	
19-28	2-CO ₂ Et	N	N	СН	СН	СН	NA c	

[Tabla 35]

[Tablas 36-39]

21-11	CF3	0	0	S CF3	127-128	Trans
21-12	CF3	0	o	* CF,	146-147	Cis
21-13	CF3	0	О	+──N=N CF,	102-103	trans
21-14	CF ₃ —	0	S	*—N=N CF3	125-128	Cis
21-15	CF₃———•	0	s	*—SICF,	52-55	Cis
21-16	CF ₃ —	0	s	4——CN	136-138	Cis
21-17	CF ₃	0	SO ₂	*—————————————————————————————————————	200up	Cis
21^18	CF ₃	0	0	*—N=N-CF,	93-95	Cis
21-19	F300-	0	SO ₂	*—————————————————————————————————————		Cis
21-20	*	0	SO₂	*		Trans
21-21	Me ₂ N S	s	NH	* CN		Cis
21-22	₩ N H	s	s	* CO ₂ Et		Cis

21-23	F ₃ CO*	S	S	# N Ph	Trans
21-24	Et0 ₂ C N	S	o	* ~ 0 ~ =	Trans
21-25	MeCONH N	so	Nme	+—N—N F₃CO	Cis
21-26	NC S	SO ₂	NH	N=N N= Me	Trans
21-27	OHO OHO	NH	SO₂	*—————————————————————————————————————	Cis
21-28	*	NH	S	* N-N	Trans
21-29	Ph——*	Nme	0	*—CN	Cis

[Tablas 40-42]

Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 representan un átomo de hidrógeno, respectivamente, a menos que se indique lo contrario. Cis y trans representan una relación posicional entre X y (R1 a, R2 a, R3 a, R4 a, o R5).

que se indique lo	<u>contrario. Cis y tran</u> :	s representan u	<u>ina relación posiciona</u>	ıl entre X y (R1 a, R2 a	a, R3 a, R4 a, o R5).
Compuesto nº	R2	X	R ₁	Constante física []: Punto de fusión ^º C	Observación
22-1	5-CF ₃	0	2-OnPr-4-CF3	nD21.8-1.5022	
22-2	5-CF ₃	0	2-CHO-4-CF3	vis	
22-3	5-CF ₃	0	2-CH ₂ OH-4-CF ₃	vis	
22-4	5-CF ₃	0	2-CH2OCH(OMe) 4-CF3	90-92	
22-5	5-CF3	0	2-CH2Oet-4-CF3	nD22.4-1.4919	
22-6	5-CF ₃	0	2-C(O)OiPr-4-CF3	vis	R3 a= Et , trans
22-7	5-CF ₃	0	2-C(O)OiPr-4-CF3	vis	R3 a= Et , cis
22-8	5-CF ₃	0	2-C(O)OiPr-4-CF3	84-86	
22-9	5-CF ₃	0	2-OnPr-4-CF3	vis	R1 a= Et , trans
22-10	5-CF ₃	0	2-OnPr-4-CF3	vis	R ₁ a= Et , cis
22-11	5-CF ₃	0	4-CF3	nD22.3-1.5079	R1 a= Et , cis
22-12	5-CF ₃	0	4-CF3	nD22.2-1.5089	R1 a= Et , trans
22-13	5-CN	0	2-OnPr-4-CF3		
22-14	5-CF ₃	0	2-CHO-4-CF3		
22-15	3-Me	0	2-CH ₂ OH-4-CF ₃		
22-16	3-F	0	2-CH2OCH(Ome) Me-4-CF3		R1 a = OH trans
22-17	5-CN	0	2-CH2Oet-4-CF3		R1 a= F , cis
22-18	5-NO ₂	0	2-Cl-4-CF3		
22-19	5-CHO	S	2-C(O)OiPr-4-CF3		
22-20	4-Ome	S	2,6-(NO2)2-4-CF3		
22-21	4-cPr	S	2-C(O)NHCH(Me) CH2OhiPr-4-CF3		R3 a = Nme2, trans
22-22	5-OcHex	S	2-CH=NOEt-4- CF3		R1 a = NO2, cis

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC	Observación
22-23	3-CH2CH2cPr	S	2-CH=NoiPr-4- CF3		
22-24	4-OCH2cPr	S	2-CH=NO- propargyl-4-CF3		
22-25	4-OCH=H2	S	2-(5-Me-oxazolin- 2-yl)-4-CF ₃		R ₃ a= CN, trans
22-26	5-OCF3	S	2-CH ₂ Oet-4-CF ₃		
22-27	4- OCH=CHCH2CF 3	S	2-Ome-4-CF3		
22-28	4-CO ₂ Et	SO	2-CH=NoiPr-4- CF3		
22-29	6-F	SO	2-C(O)Oet-4-CF3		R ₃ a= CHO, trans
22-30	6-CN	SO	2-C(O)OtBu-4- CF3		R ₁ a= Ome, cis
22-31	6-NO ₂	SO ₂	2-C(O)OiPr-4- CF3		
22-32	6-OcPr	SO ₂	6-Cl-2-C (O) OiPr-4- CF3		R3 a = OCF3, trans
22-33	5-CN	SO ₂	2-CH=NOMe-4- CF3		R1 a= CF3, cis
22-34	5-CF ₃	SO ₂	2-CH=NOMe-4- CF3		
22-35	3-Me	SO ₂	2-C(O)OCH ₂ cPr- 4-CF ₃		
22-36	3-F	SO ₂	2-C(O)OCH2CF3 -4-CF3		
22-37	5-CN	SO ₂	2-C(O)OiBu-4- CF3		
22-38	5-NO ₂	SO ₂	2-C(O)OnPr-4- CF3		
22-39	5-CHO	NH	2-CH(O)CH2CH (Me)2-4-CF3		R ₁ a= Sme, cis
22-40	4-Ome	NH	2-C(O)OCH(Me) CH=CH2-4-CF3		
22-41	5-CF₃	NH	2-C(O)OcPen-4- CF ₃		R3 a = CO2Et, trans
22-42	4-CF3-6-CI	NH	2-C(O)ON=C (Me)2-4-CF3		

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC	Observación
22-43	5-CF3	NH	2-OCH2cPr-4- CF3		
22-44	5-CF ₃ -6-OnPr	NH	2-Oet-4-CF3		
22-45	5-CF3	NH	2-C(O) OCH2CHF2-4- CF3		
22-46	3-Me	NH	2-OnBu-4-CF3		
22-47	3-F	NH	2-OnPr-4-CN		
22-48	5-CN	NH	2-C(O) OCH2Ome-4-CF3		Ra 1 = C(S)Ome, cis
22-49	5-NO ₂	NH	2-C(O)OCH2tBu- 4-CF3		
22-50	5-CHO	NH	2-C(O)N(Me)2-4- CF3		
22-51	4-Ome	NH	2-C(O)OCH(Me) CH(Me)2-4-CF3		
22-52	4-cPr	NH	2-C(O)OCH(Et)2 - 4-CF3		
22-53	5-OcHex	Nme	2-C(O)OtBu-4- CF ₃		R3 a = NHSO2Me, trans
22-54	3-CH2CH2cPr	Nme	2-C(O)OiPr-4- CF ₃		R1 a= Ph , cis
22-55	4-OCH2cPr	Nme	2-C(O)O (CH2)2Ome-4- CF3		
22-56	6-Me	Nac	2-C(O)OCH(Me) CH2Ome-4-CF3		
22-57	5-OcHex	Nac	2-C(O)OCH(CN) Me-4-CF ₃		
22-58	3-CH2CH2cPr	NAC	2-C(O)OCH(CI) Et-4-CF3		
22-59	4-OCH=CH2	NCO ₂ Me	2-C(O)SiPr-4-CF ₃		
22-60	5-OCF3	NCO ₂ Me	2-Obn-4-CF3		R3 a = N(SO ₂ Me) ₂ , trans
22-61	4- OCH=CHCH2CF 3	NCO2Me	2-OH-4-CF3		R1 a= Et , cis
22-62	4-CO ₂ Et	NCO ₂ Me	2-OCH2CH(Me) Ome-4-CF3		

(continuación)

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC	Observación
22-63	4-CF ₃ -5-Cl	NCO ₂ Me	2-CH(OH) CH2CN-4-CF3		
22-64	4- OCH=CHCH2CF 3	NCO ₂ Me	2-OnPr-4-CF3		
22-65	-	NCO ₂ Me	2-OCH2cPr-4- C3F7		
22-66	6-Me	NCO ₂ Me	4-Ph		
22-67	5-OcHex	NCO ₂ Me	2,3,4,5,6-F ₅		

[Tablas 43-45]

5

Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 representan un átomo de hidrógeno, respectivamente, a menos que se indique lo contrario. Cis y trans representan una relación posicional entre X y (R1 a, R2 8, R3 a, R4 a, o R5).

90.0 00				/,	·, · · · · · · · · · · · · · · · · · ·
Compuesto nº	R2	X	R ₁	Constante física []: Punto de fusión ºC	Observación
23-1	5-CF3	0	5-CF3	84-86	
23-2	5-CF3-6-CI	0	5-CF3	nD22.0-1.5150	
23-3	5-CF3	0	5-CF3	nD22.0-1.5150	R3 a= Et, cis
23-4	3-CI-5-CF3	0	5-CF3	nD22.3-1.5149	R ₃ a= Et, trans
23-5	5-CF3	0	5-CF3	nD22.4-1.5055	R3 a= Et, trans
23-6	5-CF3	0	3-C(O)OiPr-4-CF3		R ₃ a= Et, trans
23-7	5-CF3	0	3-C(O)OiPr-4-CF3		R3 a= Et, cis
23-8	5-CF3	0	3-C(O)OiPr-4-CF3		
23-9	5-CF3	0	6-OnPr-4-CF3		R1 a= Et , trans
23-10	5-CF3	0	6-OnPr-4-CF3		R ₁ a= Et , cis
23-11	5-CF3	0	4-CF3		R ₁ a= Et , cis
23-12	5-CF3	0	4-CF3		R1 a= Et , trans
23-13	5-CN	0	5-OnPr-4-CF3		

		(C	ontinuación)		
Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC	Observación
23-14	5-CF3	0	3-CHO-4-CF3		
23-15	3-Me	0	3-CH ₂ OH-4-CF ₃		
23-16	3-F	0	3-CH ₂ OCH(OMe) Me-4-CF ₃		R1 a= OH , trans
23-17	5-CN	0	3-CH ₂ Oet-4-CF ₃		R ₁ a= F , cis
23-18	5-NO ₂	0	6-CI-4-CF3		
23-19	5-CHO	S	5-C(O)OiPr-4-CF3		
23-20	4-Ome	S	5,6-(NO ₂)2-4-CF ₃		
23-21	4-cPr	S	3-C(O)NHCH (Me)CH2OH-4-CF3		R _{3 a} = Nme ₂ , trans
23-22	5-OcHex	S	3-CH=NOEt-4-CF3		R1 a = NO2 , cis
23-23	3-CH2CH2cPr	S	3-CH=NoiPr-4-CF3		
23-24	4-OCH2cPr	S	3-CH=NO-propargyl- 4-CF3		
23.25	4-OCH=CH2	S	3-(5-Me-oxazoline-2- yl)-4		R ₃ a= CN , trans
23-26	5-OCF3	S	5-CH ₂ Oet-4-CF ₃		
23-27	4-OCH=CHCH2 CH3	S	5-Ome-4-CF ₃		
23-28	4-CO ₂ Et	SO	5-CH=NoiPr-4-CF3		
23-29	6-F	SO	5-C(O)Oet-4-CF3		R ₃ a = CHO , trans
23-30	6-CN	SO	3-C(O)OtBu-4-CF ₃		R ₁ a= Ome , cis
23-31	6-NO ₂	SO ₂	3-C(O)OiPr-4-CF3		
23-32	6-OcPr	SO ₂	6-Cl-2-C(O)OiPr-4- CF3		R3 a= OCF3, trans
23-34	5-CN	SO ₂	3-CH=NOMe-4-CF3		R ₁ a= CF ₃ , cis
23-35	5-CF3	SO ₂	3-CH=NOMe-4-CF3		
23-36	3-Me	SO ₂	3-C(O)OCH2cPr-4- CF3		
23-37	3-F	SO ₂	5-C(O) OCH2CF3-4- CF3		

			ontinuación)		_
Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC	Observación
23-37	5-CN	SO ₂	5-C(O)OiBu-4-CF3		
23-38	5-NO ₂	SO ₂	5-C(O)OnPr-4-CF3		
23-39	5-CHO	NH	5-CH(OH)CH2CH (Me)2-4-CF3		R ₁ a= Sme , cis
23-40	4-Ome	NH	5-C(O)OCH(Me) CH=CH2-4-CF3		
23-41	5-CF3	NH	5-C(O)OcPen-4-CF3		R3 a = CO ₂ Et , trans
23-42	4-CF3-6-Cl	NH	5-C(O)ON=C (Me)2- 4-CF3		
23-43	5-CF3	NH	5-OCH2cPr-4-CF3		
23-44	5-CF3-6-OnPr	NH	5-Oet-4-CF3		
23-45	5-CF3	NH	6-C(O) OCH2CHF2- 4-CF3		
23-46	3-Me	NH	6-OnBu-4-CF3		
23-47	3-F	NH	6-OnPr-4-CN		
23-48	5-CN	NH	6-C(O) OCH2Ome-4- CF3		R1 $a = C(S)Ome$, cis
23-49	5-NO ₂	NH	6-C(O)OCH2tBu-4- CF3		
23-50	5-CHO	NH	6-C(O)N(Me)2-4-CF3		
23-51	4-Ome	NH	6-C(O)OCH(Me) CH(Me)2-4-CF3		
23-52	4-cPr	NH	3-C(O)OCH(Et)2-4- CF3		
23-53	5-OcHex	Nme	3-C(O)Ome-4-CF ₃		R3 a = NHSO2Me, trans
23-54	3-CH2CH2cPr	Nme	3-C(O)OiPr-4-CF3		R ₁ a= Ph , cis
23-55	4-OCH2cPr	Nme	3-C(O)O (CH ₂) ₂ Ome- 4-CF ₃		
23-56	6-Me	Nac	3-C(O)OCH(Me) CH2Ome-4-CF3		
23-57	5-OcHex	Nac	3-C(O)OCH(CN) Me- 4-CF ₃		

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC	Observación
23-58	3-CH2CH2cPr	NAC	3-C(O)OCH(CI) Et-4- CF3	TUSIOTI -C	
23-59	4-OCH=CH2	NCO ₂ Me	3-C(O)S(iPr)-4-CF ₃		
23-60	5-OCF3	NCO ₂ Me	3-Obn-4-CF3		R3 a= N (SO2Me)2 , trans
23-61	4-OCH=CHCH2 CF3	NCO ₂ Me	3-OH-4-CF3		R1 a= Et , cis
23-62	4-CO ₂ Et	NCO ₂ Me	5-OCH2CH(Me) Ome-4-CF3		
23-63	6-F	NCO ₂ Me	5-C(O)OiPr-4-CF3		
23-64	6-CN	NCO ₂ Me	5-CH(OTMS) CH ₂ CN-4-CF ₃		
23-65	4-CF ₃ -5-Cl	NCO ₂ Me	5-CH(OH) CH2CN-4- CF3		
23-66	4-OCH=CHCH2 CF3	NCO ₂ Me	5-OnPr-4-CF ₃		
23-67	-	NCO ₂ Me	5-OCH2cPr-4-C3F7		
23-68	6-Me	NCO ₂ Me	4-Ph		
23-69	5-OcHex	NCO ₂ Me	3,4,5,6-F4		

[Tablas 46-50]

$$R^{5}$$
 R^{3}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{1}

Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 representan un átomo de hidrógeno, respectivamente, a menos que se indique lo contrario. Cis y trans representan una relación posicional entre X y (R1 a, R2 a, R3 a, R4 a, o R5).

<u> </u>			T	<u> </u>	1
Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ^o C	Observación
24-1	4-CF3	0	2-NO2-4-CF3	vis	
24-2	4-CF3	0	2-NH2-4-CF3	80-82	
24-3	4-OCF3	0	2-NO2-4-CF3	nD23.0-1.5210	
24-4	4-CF3	0	2-Br-4-CF3	nD23.0-1.5225	
24-5	4-CF3	0	2-CI-4-CF3	61-64	
24-6	4-CF3	0	2-F-4-CF3	56-58	
24-7	4-CF3	0	4-CF ₃	102-105	
24-8	2-CI-4-CF3	0	4-CF3	vis	
24-9	2-CI-4-CF3	0	2-F-4-CF3	nD22.5-1.5076	
24-10	4-CF3	0	4-CF ₃	nD22.4-1.5111	R3 a= Et , cis
24-11	4-CF3	0	4-CF3	nD22.5-1.5055	R3 a= Et , trans
24-12	5-CF3	0	4-CF3		
24-13	4-CN	0	2-OnPr-4-CF3		
24-14	5-CF3	0	3-CHO-4-CF3		
24-15	4-Me	0	3-CH ₂ OH-4-CF ₃		
24-16	3-F	0	3-CH2OCH(OMe) Me-4-CF3		R ₁ a= OH , trans
24-17	5-CN	0	2-CH ₂ Oet-4-CF ₃		R1 a= F, cis
24-18	5-NO ₂	0	6-CI-4-CF3		
24-19	5-CHO	S	5-C(O)OiPr-4-CF ₃		
24-20	4-Ome	S	5,6-(NO2)2-4-CF3		
24-21	4-cPr	S	3-C(O)NHCH (Me)CH2OH-4-CF3		R _{3 a} = Nme ₂ , trans
24-22	5-OcHex	S	3-CH=NOEt-4-CF3		R _{1a} = NO ₂ , cis
24-23	3-CH2CH2cPr	S	3-CH=NoiPr-4-CF3		

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión ºC	Observación
24-24	4-OCH2cPr	S	3-CH=NO- propargnil-4-CF3		
24-25	4-OCH=CH2	S	3-(5-Me-oxazolin- 2-yl) -4-CF ₃		
24-26	5-OCF3	S	5-CH2Oet-4-CF3		
24-27	4-OCH=CHCH2 CF3	S	2-Ome-4-CF3		R ₃ a= CN , trans
24-28	4-CO ₂ Et	SO	5-CH=NoiPr-4-CF3		
24-29	6-F	SO	5-C(O)Oet-4-CF3		R3 a = CHO , trans
24-30	6-CN	SO	3-C(O)OtBu-4-CF3		R ₁ a= Ome , cis
24-31	6-NO ₂	SO ₂	3-C(O)OiPr-4-CF ₃		
24-32	6-OcPr	SO ₂	6-Cl-2-C(O)OiPr-4- CF3		trans
24-33	5-CN	SO ₂	3-CH=NOMe-4- CF3		Ri a= CF3 , cis
24-34	5-CF3	SO ₂	3-CH=NOMe-4- CF3		
24-35	3-Me	SO ₂	3-C(O)OCH2cPr-4- CF3		
24-36	3-F	SO ₂	5-C(O) OCH ₂ CF3- 4-CF ₃		
24-37	5-CN	SO ₂	5-C(O)OiBu-4-CF3		
24-38	5-NO ₂	SO ₂	5-C(O)OnPr-4-CF ₃		
24-39	5-CHO	NH	5-CH(OH)CH2CH (Me)2-4-CF3		R ₁ a= Sme , cis
24-40	4-Ome	NH	5-C(O)OCH(Me) CH=CH2-4-CF3		
24-41	5-CF3	NH	5-C(O)OcPen-4- CF3		R3a= CO2Et, trans
24-42	4-CF3-6-CI	NH	5-C(O)ON=C(Me) 2-4-CF3		
24-43	5-CF3	NH	5-OCH2cPr-4-CF3		

			(continuación)		
Compuesto nº	R2	x	R1	Constante física []: Punto de fusión ºC	Observación
24-44	5-CF3-6-OnPr	NH	5-Oet-4-CF3		
24-45	5-CF3	NH	6-C(O) OCH2CHF2-4-CF3		
24-46	3-Me	NH	6-OnBu-4-CF3		
24-47	3-F	NH	6-OnPr-4-CN		
24-48	5-CN	NH	6-C(O) OCH2Ome- 4-CF3		R ₁ a= C(S)Ome, cis
24-49	5-NO ₂	NH	6-C(O)OCH2tBu-4- CF3		
24-50	5-CHO	NH	6-C(O)N(Me)2-4- CF3		
24-51	4-Ome	NH	6-C(O)OCH(Me) CH(Me)2-4-CF3		
24-52	4-cPr	NH	3-C(O)OCH(Et)2 - 4-CF3		
24-53	5-OcHex	Nme	3-C(O)Ome-4-CF3		R3 a = NHSO2Me, trans
24-54	3-CH2CH2cPr	Nme	3-C(O)OiPr-4-CF ₃		R1 a= Ph , cis
24-55	4-OCH2cPr	Nme	3-C(O)O (CH2)2Ome-4-CF3		
24-56	6-Me	Nac	3-C(O)OCH(Me) CH2Ome-4-CF3		
24-57	5-OcHex	Nac	3-C(O)OCH(CN) Me-4-CF3		
24-58	3-CH2CH2cPr	NAC	3-C(O)OCH(CI) Et- 4-CF ₃		
24-59	4-OCH=CH2	NCO ₂ Me	3-C(O)SiPr-4-CF ₃		
24-60	5-OCF3	NCO ₂ Me	3-Obn-4-CF ₃		R3 a = N(SO2Me)2, trans
24-61	4-OCH=CHCH2	NCO ₂ Me	3-OH-4-CF3	_	R1 a= Et , cis
24-62	4-CO ₂ Et	NCO ₂ Me	5-OCH ₂ CH(Me) Ome4-CF ₃		
24-63	6-F	NCO ₂ Me	5-C(O)OiPr-4-CF3		
24-64	6-CN	NCO ₂ Mc	S-CH(OTMS) CH ₂ CN-4-CF ₃		
24-65	4-CF3-5-CI	NCO ₂ Me	5-CH(OH) CH ₂ CN- 4-CF ₃		

Compuesto nº	R2	Х	R1	Constante física []: Punto de fusión °C	Observación
24-66	CH ₃ CF3	NCO ₂ Me	5-OnPr-4-CF3		
24-67	-	NCO ₂ Me	5-OCH ₂ CPr-4- C ₃ F ₇		
24-68	6-Me	NCO ₂ Me	4-Ph		
24-69	5-OcHex	NCO ₂ Me	3,4,5,6-F4		

[Tablas 50-53]

			α.		X X X X X X X X X X X X X X X X X X X	- × × × × ×	0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	
Notar que R1b, F representan una	Notar que R1b, R2b, R3a, R3b, R4a, R4b, representan una relación posicional entre)), y R5 re ; X y (R1 a	presentaı a, R2 a, R	n un átom 3 a, R4 a, 0	no de hidrógeı v R5).	no, resp	Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 representan un átomo de hidrógeno, respectivamente, a menos que se indique lo contrario. Cis y trans representan una relación posicional entre X y (R1 a, R2 a, R3 a, R4 a, o R5).	ntrario. Cis y trans
Compuesto n ^⁰	R.	×	ą	Q2	ő	Q 4	Constante física []: Punto de fusión ºC	Observación
25-1	2-OnPr-4-CF ₃	0	z	z	C-CF3	S	nD22.2-1.4992	R _{3 a} =Et, cis
25-2	2-OnPr-4-CF ₃	0	z	z	C-CF3	S	nD22.2-1.4998	R3a=Et, trans
25-3	4-CF ₃	0	z	z	C-CF3	S	nD22.5-1.5041	R ₃ _{a=} Et, trans
25-4	4-CF ₃	0	z	z	C-CF3	S	nD22.5-1.5034	R3a=Et, cis
25-5	4-CF ₃	0	z	z	C-CF3	S	[82-86]	
25-6	4-CI	0	z	z	C-CF3	S	nD22.8-1.5354	R _{3 a=} Et, trans
25-7	4-CF ₃	0	Z	C-Cl	Z	S	[61-62]	
25-8	13-CI	0	z	z	C-CF3	S	nD25.9-1.5374	R _{3 a} =Et, cis
25-9	3-CI	0	Z	Z	C-CF3	S	nD26.3-1.5368	R3 a= Et , trans
25-10	4-CI	0	z	z	C-CF3	S	nD26.3-1.5368	R ₃ a=Et, cis
25-11	2-CI	0	z	z	C-CF3	S	nD25.1-1.5414	R3a=Et, cis
25-12	2-CI	0	Z	Z	C-CF3	S	nD25.5-1.5266	R3 8Et, trans
25-13	2-CN	0	Z	СН	C-Br	CH ₂		
25-14	5-NO ₂	0	Z	CMe	СН	CH ₂		
25-15	5-CHO	0	Z	Z	C-CO2Me	CH2		
25-16	4-Ome	0	z	z	С-СН2ОН	CH2		

	Observación		R ₁ a=CHO, trans	R ₁ a=CN , trans			R ₃ a=CO ₂ Me, trans	R ₃ _{a=} Br, trans																
	Constante física []: Punto de fusión ºC																							
	Q4	CH ₂	CH2	Cme2	Cme2	Cme2	CH2	CH ₂	CH ₂	CH ₂	CH ₂	NH	CH ₂	CH ₂	CH ₂	CH ₂	CH ₂	CH ₂	Cme2	Cme2	Cme2	CH ₂	CH2	CH2
(continuación)	Q3	с-сно	C-CF2H	C-CF3	C-CF3	C-CF3	C-CF3	СН	C-Br	СН	C-CO2Me	Z	C-Br	СН	C-CO2Me	С-СН2ОН	С-СНО	C-CF2H	C-CF3	C-CF ₃	C-CF3	C-CF ₃	СН	C-Br
	Ω2	СН	СН	Z	Z	z	Z	Z	СН	Cme	Cme	СН	СН	Cme	Z	Z	СН	СН	Z	Z	Z	Z	Z	СН
	Q	Z	Z	Z	Z	Z	Z	СН	Z	Z	Z	СН	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	СН	z
•	×	0	0	0	0	S	S	S	S	S	S	S	S	S	S	S	S	SO	SO	SO	SO	SO	SO_2	SO ₂
	R1	4-cPr	5-OcHex	3-CH2CH2cPr	4-OCH2cPr	4-OCH=CH2	5-OCF3	4-OCH=CHCH2CF3	4-CO ₂ Et	6-F	NO-9	6-NO ₂	6-OcPr	5-CN	5-CF ₃	3-Me	3-F	5-CN	5-NO ₂	5-CHO	4-Ome	5-CF ₃	4-CF ₃ -6-Cl	5-CF3
	Compuesto nº	25-17	25-18	25-19	25-20	25-21	25-22	25-23	25-24	25-25	25-26	25-27	25-28	25-29	25-30	25-31	25-32	25-33	25-34	25-35	25-36	25-37	25-38	25-39

					(continuación)			_
Compuesto nº	R1	×	Q1	Q2	Q3	Ω4	Constante física []: Punto de fusión ºC	Observación
25-40	5-CF ₃ -6-OnPr	SO ₂	Z	Cme	СН	CH ₂		R _{1 a=CF3} , cis
25-41	5-CF ₃	SO ₂	Z	Cme	C-CO2Me	CH ₂		R1 a=Ome, cis
25-42	3-Ме	SO ₂	СН	СН	Z	NH		R3 a=Nme2, trans
25-43	3-F	SO ₂	z	HS	C-Br	CH2		
25-44	2-CN	SO ₂	z	Cme	СН	CH2		
25-45	5-NO ₂	SO ₂	z	z	C-CO2Me	CH ₂		
25-46	9-CHO	SO ₂	z	z	С-СН2ОН	CH ₂		
25-47	4-Ome	SO ₂	z	СН	с-сно	CH ₂		
25-48	4-cPr	SO ₂	z	HO	C-CF2H	CH2		
25-49	5-OcHex	IN	z	z	C-CF3	Cme2		
25-50	3-CH2CH2cPr	ΗZ	z	z	C-CF3	Cme2		R ₃ _a =NO ₂ , trans
25-51	4-OCH ₂ cPr	ΗZ	z	z	C-CF3	Cme2		R3 a=Me, cis
25-52	9М-9	IN	z	Z	C-CF3	CH ₂		
25-53	5-OcHex	IN	СН	z	СН	CH ₂		
25-54	3-CH2CH2cPr	HN	Z	СН	C-Br	CH ₂		
25-55	4-OCH=CH2	HN	Z	Сте	СН	CH ₂		
25-56	5-OCF ₃	HN	Z	Cme	C-CO2Me	CH ₂		
25-57	4-OCH=CHCH2CF3	IN	СН	СН	z	HN		
25-58	4-CO ₂ Et	HN	z	СН	C-Br	CH ₂		
25-59	6-F	NH	N	Cme	СН	CH ₂		
25-60	ND-9	Nme	Z	Z	C-CO2Me	CH ₂		R _{3 a=} F, cis
25-61	4-CF3-5-CI	Nme	Ν	Z	С-СН2ОН	CH ₂		R3 a=Et, trans
25-62	4-OCH=CHCH2CF3	Nme	z	СН	оно-о	CH2		

	Observación					R _{1 a} =SO ₂ Me, trans	R ₁ _{a=Et} , cis		
	Constante física []: Punto de fusión ºC								
(1	Ω4	CH2	Cme ₂	Cme ₂	Cme2	CH2	CH ₂	CH2	CH2
(continuación)	C3	C-CF ₂ H	C-CF3	C-CF3	C-CF3	C-CF ₃	СН	C-Br	СН
	Q2	СН	Z	Z	Z	Z	Z	СН	Cme
	Q1	N	Ν	Z	Z	N	СН	Z	Z
	×	Nme	Nme	Nme	Nme	Nac	Nac	Nac	Nac
	R1	1	6-Me	5-OcHex	5-CN	5-NO ₂	5-CHO	4-Ome	4-cPr
	Compuesto nº	25-63	25-64	25-65	25-66	25-67	25-68	25-69	25-70

[Tablas 54-57]

					2 X X	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	-0° -0° -0° -0° -0° -0° -0° -0° -0° -0°		
Notar que R1b, F una relación posi	Notar que R1b, R2b, R3a, R3b, R4a, R4b, y R5 repres una relación posicional entre X y (R1 a, R2 a, R3 a, R4 a,	/ R5 repre , R3 a, R4	esentan u a, o R5).	ın átomo de	hidrógeno,	respectiva	amente, a	entan un átomo de hidrógeno, respectivamente, a menos que se indique lo contrario. Cis y trans representan o R5).	y trans representan
Compuesto nº	R ₁	×	ō	Q ₂	Q3	Q.	Q ₅	Constante física []: Punto de fusión ºC	Observación
26-1	2-0Et-4-CF3	0	Z	C-OiPr	Z	C-CF3	СН	vis	
26-2	2-OnPr-4-CF ₃	0	Z	Z	C-CF ₃	СН	СН	[106-109]	
26-3	2-OnPr-4-CF ₃	0	Z	Z	C-CF ₃	СН	СН	vis	R ₃ _{a=} Me, cis
26-4	2-OnPr-4-CF ₃	0	Z	z	C-CF3	СН	СН	vis	R3 a=Me, trans
26-5	2-OnPr-4-CF ₃	0	Ν	Z	C-CF ₃	СН	СН	nD22.3-1.4992	R ₃ _{a=} Et, cis
26-6	2-OnPr-4-CF ₃	0	Z	z	C-CF3	СН	СН	Amorfo	R ₃ _{a=Et} , trans
26-7	-	0	Ζ	Z	C-CI	СН	СН	vis	R _{3 a} =Et, cis
26-8	4-CF ₃	0	Z	Z	C-CI	СН	СН	nD26.3-1.5522	R ₃ _{a=Et} , trans
26-9	4-CF ₃	0	Z	Z	C-CN	СН	СН	Amorfo	R ₃ _{a=} Et, cis
26-10	4-CF ₃	0	Z	Z	C-CN	СН	СН	vis	R ₃ _{a=Et} , trans
26-11	4-CF ₃	0	Z	Z	C-CF ₃	СН	СН	[108-109]	
26-12	4-CF ₃	0	Z	СН	Ν	C-CF3	СН	nD26.1-1.5093	R _{3 a=} Et, cis
26-13	4-CF ₃	0	Z	СН	Ν	C-CF3	СН	nD26.2-1.5088	R ₃ _{a=Et} , trans
26-14	4-CF3	0	Z	C-CF3	Ν	СН	СН	nD22.4-1.5071	R3 a=Et, trans
26-15	4-CF3	0	Z	Z	C-CI	СН	СН	[120-121]	
26-16	4-CF ₃	0	z	z	C-CF ₃	СН	СН	nD25.5-1.5148	R _{3 a} =Et, cis

	Observación	R ₃ _{a=} Et, trans	R ₃ _{a=Et, cis}	R3 8=Et, trans		R3a=F, trans	R _{1 a=Nme2} , cis							R ₃ a=CN, cis	R ₃ a=NO ₂ , trans				R ₁ _{a=} CHO, cis	R ₁ a=OCF ₃ , trans				R ₁ a=OMe, cis
	Constante física []: Punto de fusión ºC	[06-68]	nD25.2-1.5471	[06-68]																<u>«</u>				
-	Q5	НЭ	НЭ	НЭ	НЭ	нэ	НЭ	C-Me	НЭ	нэ	НЭ	Ν	нэ	нэ	СН	СН	Z	нэ	Z	z	нэ	нэ	нэ	СН
(continuación)	Q4	СН	СН	СН	СН	СН	СН	Ν	Ν	Ν	Ν	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	C-Me	СН	СН
(contir	Q3	C-CF3	C-CI	C-CF3	СН	C-CF3	C-CF3	СН	СН	C-CF3	СН	СН	C-CN	СН	z	C-CN	СН	СН	СН	CH	z	Z	C-CF3	끙
-	Q2	Z	Z	Z	СН	z	Z	СН	СН	СН	C-Br	СН	СН	C-CN	СН	z	СН	z	C-F	O-O	СН	C-Me	z	z
-	Q	Z	Н	Z	СН	z	Z	Z	Z	Z	Z	z	z	z	z	ᆼ	z	C-Me	z	z	z	НО	z	z
	×	0	0	0	0	0	0	0	0	S	S	S	S	S	S	S	S	S	SO	SO	SO	SO	os	SO ₂
	R1	4-CF ₃	4-CF ₃	4-CF ₃	2-OnPr-4-CF3	4-CF ₃	2-OnPr-4-CF3	4-CF ₃	2-CH2OEt4-cF3	4-CF ₃	2,6-Me2	4-OMe	3-NO ₂	2-F	3-СНО	3-OiPr	4-Me	4-cPr	3-OcPr	4-CH2cPr	2-OCH2CH2cPr	3-OCH=CMe2	4-OCF3	4-OCF3
	Compuesto nº	26-17	26-18	26-19	26-20	26-21	26-22	26-23	26-24	26-25	26-26	26-27	26-28	26-29	26-30	26-31	26-32	26-33	26-34	26-35	26-36	26-38	26-39	26-40

	Observación	R ₁ a=CO ₂ Et, trans												R ₃ _{a=Et} , trans	R ₁ a=C(S)OMe, cis					R ₁ a=tBu, trans	R3 a=CH2cPr, cis			
	Constante física []: Punto de fusión ºC																							
	Q5	НЭ	НЭ	НЭ	C-Me	НЭ	НЭ	НЭ	Z	НЭ	НЭ	НЭ	НЭ	z	СН	Z	Z	НЭ	НЭ	СН	НЭ	НЭ	C-Me	ᆼ
(continuación)	Q4	СН	СН	СН	Z	Z	z	Z	СН	ᆼ	СН	ᆼ	СН	ᆼ	СН	СН	СН	СН	C-Me	СН	СН	СН	Z	z
(contir	Q3	СН	C-CF3	C-CF3	СН	СН	C-CF3	СН	СН	C-CN	СН	Z	C-CN	H _O	СН	СН	СН	Z		СН	C-CF ₃ 3	C-CF3	СН	C-CF3
	Q2	СН	Z	Z	СН	СН	СН	C-Br	СН	СН	C-CN	СН	Z	CH	Z	C-F	C-CI	СН	C-Me N	СН	Z	Z	СН	СН
•	Q1	СН	Z	N	Z	N	Z	N	Z	Z	Z	Z	СН	z	C-Me	N	N	Z	СН	СН	Z	N	Z	z
	×	SO ₂	SO ₂	SO ₂	SOs	SO ₂	SO ₂	SO ₂	SOs	ΗN	HN	HN	HN	풀	HN	HN	HN	HN	HN	NMe	NMe	NMe	NMe	Nme
	R1	3-CO2Me	3-Me	4-tBu	2-CH=CHMe	2-OCH ₂ cPr-4-CF ₃	2-OCH ₂ cPr-4-CF ₃	2-CO2iPr-4-CF3	2-OnBu-4-CF3	2-OiBu-4-CF ₃	2-0Et-4-CF ₃	2-CO2iPr-4-CF3	2-OnPr-4-CF ₃	4-CF ₃	2-OnPr-4-CF ₃	4-CF ₃	2-CH2OEt-4-+CF3	4-CF ₃	2,6-Me2	3-OCH=CMe2	4-OCF3	4-OCF3	3-CO2Me	4-tBu
	Compuesto nº	26-41	26-42	26-43	26-44	26-45	26-46	26-47	26-48	26-49	26-50	26-51	26-52	26-53	26-54	26-55	26-56	26-57	26-58	26-59	26-60	26-61	26-62	26-63

	Observación		R ₁ a=Et, trans	R _{3 a} =OMe, cis		
	Constante física []: Punto de fusión ${}^{\underline{o}}C$					[09-25]
	Q5	СН	Z	СН	СН	НЭ
(continuación)	Q4	Z	СН	СН	СН	НО
(conti	Q3	СН	СН	C-CN	СН	C-CN
	Q2	C-Br	СН	СН	C-CN	СН
	Ω1	Ν	Ν	Ν	Ν	Ν
	×	NAc	NAc	NAc	NAc	0
	R1	2-CH=CHMe	2-OCH ₂ cPr-4-CF ₃	3-OCH=CMe2	4-0CF3	2-OCH2CH2OMe-4-CF3
	Compuesto nº	26-64	59-92	56-66	26-67	26-68

Ejemplos de formulación

[Insecticidas/acaricidas]

5

15

25

Aunque a continuación se muestran algunos ejemplos con respecto a las composiciones de la presente invención, los aditivos y las proporciones agregadas se pueden cambiar en un amplio intervalo sin limitarse a estos ejemplos. Las partes en los ejemplos de formulación muestran partes en peso.

10 **Ejemplo de formulación 1** – Polvo humectable

Compuesto de la presente invención	40 partes
Tierra de diatomeas	53 partes
Éster sulfato de alcohol superior	4 partes
Sal de alquilnaftalenosulfonato	3 partes

Los componentes anteriormente mencionados se mezclaron en forma homogénea y se molieron finamente para obtener un polvo humectable con 40% de principio activo.

20 **Ejemplo de formulación 2** – Emulsión

Compuesto de la presente invencion	30 partes
Xileno	33 partes
Dimetilformamida	30 partes
Polioxietileno alquil alil éter	7 partes

Los componentes anteriormente mencionados se mezclaron y disolvieron para obtener una emulsión con 30% de principio activo.

30 **Ejemplo de formulación 3** – Polvo para espolvorear

Compuesto de la presente invención	10 partes
Talco	89 partes
Polioxietileno alquil alil éter	1 parte

35

Los componentes anteriormente mencionados se mezclaron en forma homogénea y se molieron finamente para obtener polvo para espolvorear con 10% de principio activo.

Ejemplo de formulación 4 – Gránulos

40

45

Compuesto de la presente invención	5 partes
Arcilla	73 partes
Bentonita	20 partes
Sal dioctilsulfosuccinato de sodio	1 parte
Fosfato de sodio	1 parte

Los componentes anteriormente mencionados se mezclaron y se molieron bien y, después de agregar agua y amasar todos juntos, se granularon y secaron para obtener gránulos con 5% de principio activo.

50 **Ejemplo de formulación 5** – Agente de suspensión

	Compuesto de la presente invención	10 partes
	Lignina sulfonato de sodio	4 partes
	Dodecilbencenosulfonato de sodio	1 parte
55	Goma xantano	0,2 partes
	Agua	84,8 partes

Los componentes anteriormente mencionados se mezclaron y se sometieron a molido en húmedo hasta que se alcanzó el tamaño del grano de 1 µm o menos para obtener un agente de suspensión con 10% de principio activo.

A continuación, la utilidad de los compuestos de la presente invención como ingredientes de acaricidas e insecticidas se muestra mediante los ejemplos de prueba.

Ejemplo de prueba 1 – Efectividad contra *Tetranychus urticae*

65

60

Se inocularon 17 hembras adultas de Tetranychus urticae, que eran resistentes a los plaguicidas, en la primera hoja

verdadera de una judía común, que se sembró en un recipiente con un diámetro de 9 cm, en donde pasaron 7 a 10 días después de la germinación. Después de la inoculación, se aplicó la solución de la medicina, que se preparó siguiendo el método del polvo humectable mostrado en el Ejemplo 1 de las medicinas y diluyendo con agua para lograr la concentración del compuesto de 125 ppm. EL recipiente se colocó en un ambiente de temperatura controlada en el que la temperatura y la humedad se fijaron a 25°C y 65%, respectivamente, y la tasa adulticida se examinó 3 días después de la aplicación. La prueba se repitió dos veces.

Como resultado, los compuestos indicados a continuación mostraron la tasa insecticida de 100%:

10 1-1, 1-4 a 1-7, 1-10, 1-13, 1-17, 1-18, 1-21 a 1-29, 1-31 a 1-36, 1-39 a 1-47, 1-50, 1-51, 1-54, 2-3, 3-1, 4-5, 4-7, 4-9, 4-13, 4-16, 4-18 a 4-20, 4-53 a 4-55, 4-58 a 4-61, 4-64, 4-70, 4-71, 5-1 a 5-8, 10-1, 11-1, 13-2, 15-1, 15-17, 16-1 a 16-26, 16-61, 16-65, 16-69, 16-73 a 16-75, 16-78, 16-82 a 16-91, 17-2, 17-3, 17-7 a 17-10, 19-1 a 19-3, 21-1, 21-3, 21-5, 21-6, 21-14 a 21-16, 22-1, 22-4, 22-5, 23-2, 25-1, 25-2, 26-3 a 26-6.

15 **Ejemplo de prueba 2** – Efectividad contra *Panonychus citri*

Se inocularon 10 hembras adultas de *Panonychus citri* en la hoja de un árbol de mandarina, que se colocó en un disco de Petri. Después de la inoculación, se aplicó la solución de la medicina, que se preparó siguiendo el método de la emulsión mostrado en el Ejemplo 2 de las medicinas y diluyendo con agua para lograr la concentración del compuesto de 125 ppm, usando una torre de pulverización rotativa. El disco se colocó en un ambiente de temperatura controlada en el que la temperatura y la humedad se fijaron en 25°C y 65%, respectivamente, se retiraron los adultos 3 días después de la aplicación y se examinó si los huevos puestos durante esos 3 días podían crecer a adultos al 11º día.

25 Como resultado, los compuestos indicados a continuación mostraron la tasa insecticida de 100%:

1-1, 1-5, 1-7, 1-13, 1-17, 1-24, 1-31, 1-32, 1-47, 1-50, 3-1, 4-5, 4-53, 4-54, 4-58 a 4-61, 4-64, 4-70, 4-71, 5-1, 5-2, 5-4, 5-8, 10-1, 12-4, 16-1 a 16-3, 16-15 a 16-20, 16-22, 16-23, 16-26, 16-61, 16-73, 16-83, 16-84, 16-89 a 16-91, 17-9, 17-10, 19-1 a 19-3, 21-5, 21-6, 21-13, 22-1, 22-4, 23-2, 26-3, 26-5, 26-6.

Ejemplo de prueba 3 – Prueba de efectividad contra *Pseudaletia separata*

Se colocaron 0,2 ml de una dieta artificial comercialmente disponible (Insecta LFS fabricado por Nihon Nosan-Kogyo Co. Ltd.) en un tubo de ensayo de plástico con un volumen de 1,4 ml y se usó como una dieta de prueba. El compuesto se ajustó para preparar una solución al 1% usando dimetilsulfóxido que contenía 0,5% de Tween 20 y esta solución se aplicó agregando de a gotas sobre la superficie de la dieta en una cantidad equivalente a 10 µg del compuesto. Se inocularon 2 larvas de segundo instar de *Pseudoletia separate* en cada tubo de ensayo y los tubos fueron sellados con tapas de plástico. Los tubos se dejaron a 25°C y se examinó la tasa insecticida y la cantidad de alimento ingerido después de 5 días. La prueba se repitió dos veces.

En la presente prueba, los compuestos indicados a continuación fueron efectivos mostrando una tasa insecticida de 100% o la cantidad de alimento ingerido era de 10% o menos comparado con el grupo control con solvente. 4-3, 4-4, 16-1, 16-2, 17-3, 17-7 a 17-9, 25-4.

45 **Ejemplo de prueba 4** – Prueba de efectividad contra *Culex pipiens molestus*

Se colocaron 10 larvas de *Culex pipiens molestus*, que habían salido 1 día antes, y 0,225 ml de agua destilada que contenía 0,5 mg de alimento para peces de acuario (TetraMin® fabricado por Tetra Japan Co. Ltd.) en un recipiente de prueba de poliestireno con un volumen de 0,3 ml. El compuesto se ajustó para preparar una solución al 1% usando dimetilsulfóxido que contenía 0,5% de Tween 20 y diluido adicionalmente a 0,01% con agua destilada. Se agregaron 0,025 ml de esta solución de medicina diluida al recipiente de prueba con *Culex pipiens molestus* y se agitó (concentración final del compuesto 0,001%). Los recipientes se dejaron a 25°C y se examinó la tasa insecticida después de 2 días. La prueba se repitió dos veces.

55 En la presente prueba, el compuesto indicado a continuación fue efectivo mostrando la tasa insecticida de 90% o más.

4-3.

5

20

30

35

40

50

60 Si bien se han descrito e ilustrado anteriormente las formas de realización preferidas de la invención, debería apreciarse que son únicamente ejemplificativas y no limitativas de la invención. Pueden introducirse adiciones, omisiones, sustituciones y otras modificaciones sin apartarse del alcance de la presente invención. Por lo tanto, la invención no debe considerarse como limitada por la descripción anterior, y está únicamente limitada por el alcance de las reivindicaciones adjuntas.

Aplicabilidad industrial

5

De acuerdo con la presente invención, es posible proporcionar agentes para el control de plagas con excelentes bioactividades, especialmente en términos de actividades insecticidas/acaricidas y de alta seguridad, y además, es posible proporcionar compuestos de aminas cíclicas con una nueva estructura, sales de los mismos o N-óxidos de los mismos.

REIVINDICACIONES

Agentes para el control de plagas que comprenden compuestos de aminas cíclicas representados por la fórmula
 (1):

 $cy^{1} - X - (R)_{n}$ $N - cy^{2}$ (1)

o sus sales o sus N-óxidos como un principio activo,

10 en la que

5

Cy¹ representa uno seleccionado de entre el grupo constituido por un heterociclo de 5 miembros y un grupo representado por la fórmula (a) a continuación:

15 en la que

35

40

45

Y¹ e Y², cada uno independientemente, representa nitrógeno o carbono y el símbolo * representa las posiciones de unión:

X representa uno seleccionado de entre el grupo constituido por oxígeno, azufre, sulfinilo, sulfonilo, y nitrógeno; cada R puede formar un anillo cuando n es un entero de 2 o más y R, que no forma un anillo, representa un hidroxilo, halógeno, amino, metilamino, bencilamino, anilino, dimetilamino, dietilamino, feniletilamino, alquilsulfonilamino, arilsulfonilamino, heteroarilsulfonilamino, alquilcarbonilamino, alcoxicarbonilamino, haloalquilsulfonilamino, bis(alquilsulfonil)amino, bis(haloalquilsulfonilo), alquilsulfonilo, alquilsulfonilo, haloalquilsulfonilo, alquilsulfonilo, haloalquilsulfonilo)
 alcoxicarbonilo, alcoxi, haloalquilo, haloalcoxi, alquiltriocarbonilo, alquilsulfonilamino, haloalquilsulfonilo)

n es un entero de 0 a 9 y cada R puede ser igual o diferente cuando n es 2 o más;

30 Cy² representa uno seleccionado de entre el grupo constituido por un hidrocarburo cíclico y un heterociclo

Cy¹ y Cy², y el nitrógeno de X pueden ser sustituidos opcionalmente por un sustituyente seleccionado de entre el grupo constituido por hidroxilo, tiol, halógeno, ciano, nitro, formilo, amino, metilamino, bencilamino, anilino, dimetilamino, dietilamino, feniletilamino, alquilo, alquenilo, alquinilo, alcoxi, alqueniloxi, alquiniloxi, ariloxi, heteroariloxi, haloalquilo, haloalcoxi, alquiltiocarbonilo, alquilsulfonilamino, arilsulfonilamino, heteroarilsulfonilamino, alcoxicarbonilamino, alquilcarbonilamino, haloalquilsulfonilamino, bis(alquilsulfonil)amino. bis(haloalquilsulfonilo)amino, hidrazino, N'-fenilhidrazino, N'-metoxicarbonilhidrazino, alcoxicarbonilo, arilo, aralquilo, heterociclo de 5 miembros insaturado, heterociclo alquilo de 5 miembros insaturado, heterociclo de 6 miembros insaturado, heterocíclico alquilo de 6 miembros insaturado, grupo heterocíclico saturado, grupo alquilo heterocíclico N-dimetilaminoiminometilo, 1-N-feniliminoetilo, N-hidroxiiminometilo, N-metoxiiminometilo, metilhidrazinocarbonilo, N'-fenilhidrazinocarbonilo, hidrazinocarbonilo, aminocarbonilo, dimetilaminocarbonilo, Nfenil-N-metilaminocarbonilo, N'-acetilhidrazino, N'-metilhidrazino, N'-fenilhidrazino, N'-fenilhidrazino, N'-metilhidrazino, N' propilidenhidrazino, alquilitio, alqueniltio, alquiniltio, ariltio, heteroariltio, aralquiltio, alquilsulfonilo, alquenilsulfonilo, alquinilsulfonilo, arilsulfonilo, heteroarilsulfonilo, aralquilsulfonilo, y los grupos funcionales representados por la fórmula (i);

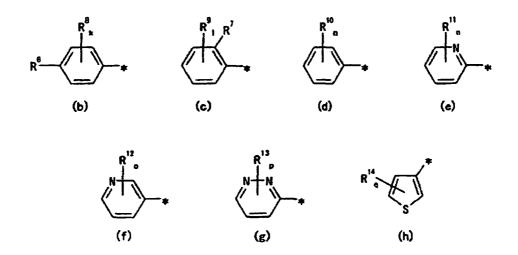
50 [en la fórmula, R¹⁵ y R¹⁶ representan cada uno independientemente hidrógeno, hidrocarburo, grupo heterocíclico, amino, hidrocarbonoxi, o hidrocarbontio.

R¹⁵ y R¹⁶ pueden unirse para formar un anillo, en este caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo, y

Z¹ representa oxígeno o nitrógeno];

con la condición de que Cy^2 es piridin-2-ilo, que es sustituido con por lo menos uno o más cianos, cuando Cy^1 es un fenilo sustituido o no sustituido y Cy^2 es piridin-2-ilo.

- 10 2. Agentes para el control de plagas según la reivindicación 1, en los que los agentes para el control de plagas son insecticidas o acaricidas.
 - 3. Compuestos de aminas cíclicas representados por la fórmula (2):


o sus sales, o sus N-óxidos,

en la que

5

15

20 Cy³ representa cualquiera de las fórmulas (b) a (h) a continuación:

en las que

30

25 R⁶ representa haloalquilo o haloalcoxi,

 R^7 representa alcoxi, alcoxicarbonilo, alcoxialquilo, o un grupo funcional representado por la fórmula (i) a continuación:

en la que R¹⁵ y R¹⁶, cada uno independientemente, representa hidrógeno, hidrocarburo, un grupo heterocíclico, amino, hidrocarbonoxi o hidrocarbontio,

R¹⁵ y R¹⁶ pueden unirse para formar un anillo, en ese caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo, y

Z¹ representa oxígeno o nitrógeno sustituido o no sustituido,

 R^8 a R^{14} , cada uno independientemente, representa hidroxilo, tiol, halógeno, nitro, formilo, ciano, haloalquilo, haloalcoxi, haloalquenilo, alquilo (opcionalmente sustituido con G^1), alcoxi (opcionalmente sustituido con G^1), alquilcarbonilo, alcoxicarbonilo, alquinilo, alquiniloxi, alquiniloxi, arilo (opcionalmente sustituido con G^1), o el grupo funcional representado por la fórmula (i),

G¹ representa hidroxilo, halógeno, amino, nitro, ciano, formilo, metilamino, bencilamino, anilino, dimetilamino, dietilamino, feniletilamino, alquilo, alquenilo, alquinilo, alcoxi, alqueniloxi, alquiniloxi, ariloxi, heteroariloxi, haloalquilo, haloalcoxi, alquiltiocarbonilo, alquilsulfonilamino, arilsulfonilamino, heteroarilsulfornilamino, alquilcarbonilamino, alcoxicarbonilamino, haloalquilsulfonilamino, bis(alquilsulfonil)amino, bis(haloalquilsulfonil)amino, N'-fenilhidrazino, N'-metoxicarbonilhidrazino, alcoxicarbonilo, arilo, aralquilo, heterociclo de 5 miembros insaturado, heterociclo alquilo de 5 miembros insaturado, heterociclo de 6 miembros insaturado, heterociclo alquilo de 6 miembros insaturados, grupo heterocíclico saturado, grupo alquilo heterocíclico saturado, N-dimetilaminoiminometilo, 1-N-feniliminometilo, N-hidroxiiminometilo, N-metoxiiminometilo, N'-metilhidrazinocarbonilo, N'-fenilhidrazinocarbonilo, hidrazinocarbonilo, aminocarbonilo, dimetilaminocarbonilo, N-fenil-N-metilaminocarbonilo, N'-acetilhidrazino, N'metilhidrazino, N'-fenilhidrazino, N'-metoxicarbonilhidrazino, N'-2-propilidenhidrazino, alquiltio, alquiniltio, alquiniltio, ariltio, heteroariltio, alquilsulfonilo, alquenilsulfonilo, alquinilsulfonilo, aralquiltio, olos grupos funcionales representados por la fórmula (i);

(i)

[en la fórmula, R¹⁵ y R¹⁶ representan cada uno independientemente hidrógeno, hidrocarburo, grupo heterocíclico, amino, hidrocarbonoxi, o hidrocarbontio,

R¹⁵ y R¹⁶ pueden unirse para formar un anillo, en este caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo, y

Z¹ representa oxígeno o nitrógeno];

k, l, n y o, cada uno independientemente representa cualquiera de un entero de 0 a 4 y cada R^8 , cada R^9 , cada R^{11} y cada R^{12} , pueden ser iguales o diferentes, cuando k, l, n y o son 2 o más,

m es cualquiera de un entero de 0 a 5 y cada R¹⁰ puede ser igual o diferente cuando m es 2 o más,

p y q, cada uno independientemente, representa cualquiera de un entero de 0 a 3 y cada R¹³ y cada R¹⁴ puede ser igual o diferente cuando p y q son 2 o más;

X representa uno seleccionado de entre el grupo constituido por oxígeno, azufre, sulfinilo, sulfonilo, y nitrógeno y

el nitrógeno de X puede ser sustituido opcionalmente por un sustituyente seleccionado de entre el grupo constituido por hidroxilo, tiol, halógeno, ciano, nitro, formilo, amino, metilamino, bencilamino, anilino, dimetilamino, dietilamino, feniletilamino, alquilo, alquenilo, alquenilo, alqueniloxi, alqueniloxi, ariloxi, heteroariloxi, haloalquilo, haloalcoxi, alquilitiocarbonilo, alquilsulfonilamino, arilsulfonilamino, heteroarilsulfonilamino, alquilcarbonilamino, alcoxicarbonilamino, haloalquilsulfonilamino, bis(alquilsulfonil)amino, bis(halalquilsulfonil)amino, hidrazino, N'-fenilhidrazino, N'-metoxicarbonilhidrazino, alcoxicarbonilo, arilo, aralquilo, heterociclo de 5 miembros insaturado, heterociclo alquilo de 5 miembros insaturado, alquinilsulfonilo, arilsulfonilo, heteroarilsulfonilo, aralquilsulfonilo, y los grupos funcionales representados por la fórmula (i);

(i)

[en la fórmula, R¹⁵ y R¹⁶ representan cada uno independientemente hidrógeno, hidrocarburo, grupo heterocíclico, amino, hidrocarbonoxi, o hidrocarbonotio,

55

5

10

15

20

30

35

40

45

50

R¹⁵ y R¹⁶ pueden unirse para formar un anillo, en este caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo, y

Z¹ representa oxígeno o nitrógeno];

10

15

20

5

 R_a^1 y R_a^2 , R_a^1 y R_a^4 , R_a^2 y R_a^3 o R_a^3 y R_a^4 , pueden formar juntos anillos saturados y R_a^1 , R_b^1 , R_a^2 , R_a^2 , R_a^3 , R_a^3 , R_a^4 , R_a^4 , R_a^4 , y R_a^5 , que no forman juntos anillos saturados, representan cada uno independientemente hidrógeno, hidroxilo, halógeno, amino, nitro ciano, formilo, alquilo, alcoxicarbonilo, alcoxi, haloalquilo, haloalcoxi, alquiltiocarbonilo, alquilsulfonilamino, haloalquilsulfonilamino, bis(alquilsulfonilo)amino, bis(haloalquilsulfonil)amino, arilo, metilamino, bencilamino, anilino, dimetilamino, dietilamino, feniletilamino, alquenilo, alquenilo, alqueniloxi, alquiniloxi, ariloxi, heteroariloxi, arilsulfonilamino, heteroarilsulfonilamino, alguilcarbonilamino, alcoxicarbonilamino, N'-fenilhidrazino, N'metoxicarbonilhidrazino, alcoxicarbonilo, aralquilo, heterociclo de 5 miembros insaturado, heterociclo alquilo de 5 miembros insaturado, heterociclo de 6 miembros insaturados, heterociclo alquilo de 6 miembros insaturado, grupo heterocíclico saturado, grupo alguilo heterocíclico saturado, N-dimetilaminoiminometilo, 1-N-feniliminoetilo, Nhidroxiiminometilo, N-metoxiiminometilo, N'-metilhidrazinocarbonilo, N'-fenilhidrazinocarbonilo, hidrazinocarbonilo, aminocarbonilo, dimetilaminocarbonilo, N-fenil-N-metilaminocarbonilo, N'-acetilhidrazino, N'-metilhidrazino, N'-metilhidrazi fenilhidrazino, N'-metoxicarbonilhidrazino, N'-2-propilidenhidrazino, alquilitio, alquiniltio, ariltio, aralquiltio, alquilsulfonilo, alquenilsulfonilo, alquinilsulfonilo, arilsulfonilo, heteroarilsulfonilo, aralquilsulfonilo, o los grupos funcionale representados por la fórmula la fórmula (i);heterociclo de 6 miembros insaturado, heterocíclico alquilo de 6 miembros insaturado, grupo heterocíclico saturado, grupo alquilo heterocíclico N-dimetilaminoiminometilo, 1-N-feniliminoetilo, N-hidroxiiminometilo, N-metoxiiminometilo, metilhidrazinocarbonilo, N'-fenilhidrazinocarbonilo, e hidrazinocarbonilo, aminocarbonilo, dimetilaminocarbonilo, Nfenil-N-metilaminocarbonilo, N'-acetilhidrazino, N'-metilhidrazino, N'-fenilhidrazino, N'-fenilhidrazino, N'-metilhidrazino, N' propilidenhidrazino, alquiltio, alqueniltio, alquiniltio, ariltio, heteroariltio, aralquiltio, alquilsulfonilo, alquenisulfonilo,

(i)

25

[en la fórmula, R¹⁵ y R¹⁶ representan cada uno independientemente hidrógeno, hidrocarburo, grupo heterocíclico, amino, hidrocarbonoxi, o hidrocarbonotio,

30 R¹⁵ y R¹⁶ pueden unirse para formar un anillo, en este caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo, y

Z¹ representa oxígeno o nitrógeno];

35

Cy⁴ representa piridin-2-ilo sustituido con uno o más de ciano, piridin-3-ilo, piridazin-3-ilo, pirazinilo, tiazol-2-ilo, pirimidin-2-ilo, 1,3,4-tiadiazol-2-ilo, o fenilo, que son opcionalmente sustituidos con G² cuando Cy³ es un grupo funcional representado por las fórmulas (c), (g) o (h),

40

piridin-2-ilo sustituido con uno o más de ciano, piridin-3-ilo, piridazin-3-ilo, pirazinilo, tiazol-2-ilo, pirimidin-2-ilo, o 1,3,4-tiadiazol-2-ilo, que son opcionalmente sustituidos con G² cuando Cy³ es un grupo funcional representado por las fórmulas (b), (e) o (f), y

45

piridin-2-ilo sustituido con uno o más de ciano, pirazinilo, o 1,3,4-tiadiazol-2-ilo, que son opcionalmente sustituidos con G^2 cuando Cy^3 es un grupo funcional representado por la fórmula (d);

50

 G^2 representa hidroxilo, halógeno, ciano, nitro, formilo, alquilo (opcionalmente sustituido con G^3), alcoxi (opcionalmente sustituido con G^3), haloalquilo, haloalcoxi, alquiltiocarbonilo, alquilsulfonilamino, haloalquilsulfonilamino, bis-(haloalquilsulfonil)amino, alcoxicarbonilo, arilo (opcionalmente sustituido con G^1), un grupo heterocíclico de 5 a 6 miembros (que contiene por lo menos un heteroátomo entre oxígeno, nitrógeno y azufre), el grupo funcional representado por las fórmulas (j) a (l):

(1)

(j)

en las que R^{17} y R^{18} , cada uno independientemente, representa hidrógeno, un hidrocarburo, un grupo heterocíclico, amino, hidrocarbonoxi, o hidrocarbonotio,

- R¹⁹ y R²², cada uno independientemente, representa hidrógeno, un hidrocarburo, un grupo heterocíclico, o amino,
- R²⁰ representa hidrógeno o un hidrocarburo,
 - R²¹ representa hidrógeno, un hidrocarburo, o un grupo heterocíclico,
- 10 Y y Z cada uno independientemente representa oxígeno o nitrógeno,
 - R^{17} y R^{18} , R^{19} y R^{20} , y R^{21} y R^{22} pueden unirse para formar anillos y en ese caso, los dos grupos en el par representan grupos funcionales, que pueden integrarse para formar un anillo,
- 15 y

5

G³ representa hidroxilo, ciano, alcoxi, alcoxialcoxi, o trialquilsililoxi.

20