

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 375 828

(51) Int. CI.: A61K 31/337 (2006.01) A61K 31/555 (2006.01) A61K 38/22 A61K 31/7068 (2006.01) A61P 35/00

\sim	`
(12)	TRADUCCIÓN DE PATENTE EUROPEA
\sim	

T3

- 96 Número de solicitud europea: 06735710 .3
- 96 Fecha de presentación: **21.02.2006**
- (97) Número de publicación de la solicitud: **1853250** (97) Fecha de publicación de la solicitud: 14.11.2007
- (54) Título: COMBINACIONES Y MODOS DE ADMINISTRACIÓN DE AGENTES TERAPÉUTICOS Y TERAPIA COMBINADA.
- (30) Prioridad: 18.02.2005 US 654245 P

(73) Titular/es:

Abraxis BioScience, LLC 11755 Wilshire Boulevard Suite 2100 Los Angeles, CA 90025, US

(45) Fecha de publicación de la mención BOPI: 06.03.2012

(72) Inventor/es:

DESAI, Neil, P. y SOON-SHIONG, Patrick

Fecha de la publicación del folleto de la patente: 06.03.2012

(74) Agente: de Elzaburu Márquez, Alberto

ES 2 375 828 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Combinaciones y modos de administración de agentes terapéuticos y terapia combinada

Campo técnico

5

40

45

50

55

La presente invención se refiere a métodos y composiciones para el tratamiento de enfermedades proliferativas, que comprenden la administración de una combinación de un taxano y al menos otro u otros agentes terapéuticos, así como otras modalidades de tratamiento útiles en la terapia de las enfermedades proliferativas. En particular, la invención se refiere al uso de nanopartículas que comprenden paclitaxel y albúmina (tal como Abraxane®) en combinación con otros agentes quimioterapéuticos o radiación, que se pueden utilizar en el tratamiento del cáncer.

Antecedentes

La incapacidad de un número importante de tumores para responder a un fármaco y/o radioterapia es un problema grave en el tratamiento del cáncer. De hecho, es una de las razones principales por la que las formas más prevalentes de cáncer humano continúan resistiéndose a la intervención quimioterapéutica, a pesar de determinados avances en el campo de la quimioterapia.

En la actualidad, el cáncer se trata fundamentalmente con uno, o con una combinación de tres tipos de terapia: cirugía, radiación y quimioterapia. La cirugía es el método tradicional, en la que se elimina del organismo la totalidad o parte del tumor. Por lo general, la cirugía solamente es efectiva para tratar los estadios precoces del cáncer. Mientras que la cirugía es efectiva en ocasiones para eliminar tumores localizados en sitios determinados, por ejemplo, la mama, el colon y la piel, no puede ser utilizada en el tratamiento de tumores localizados en otras zonas inaccesibles para el cirujano, ni en el tratamiento de neoplasias diseminadas tales como la leucemia. Para más de 50% de las personas con cáncer, en el momento en que se les diagnostica la enfermedad ya no son candidatos aptos para un tratamiento quirúrgico eficaz. Los procedimientos quirúrgicos pueden aumentar las metástasis tumorales a través de la circulación sanguínea durante la intervención. La mayor parte de las personas con cáncer no fallece por el cáncer en el momento del diagnóstico o de la cirugía, sino más bien por las metástasis y la recurrencia del cáncer.

25 También otras terapias resultan a menudo ineficaces. La radioterapia sólo es efectiva en personas que presentan una enfermedad clínicamente localizada en los estadios iniciales y medios del cáncer, y no lo es en fases avanzadas del cáncer con metástasis. Por lo general, la radiación se aplica sobre un área determinada del cuerpo del enfermo que contiene tejido proliferativo anormal, con el fin de maximizar la dosis absorbida por el tejido anómalo y minimizar la dosis absorbida por el tejido normal adyacente. Sin embargo, resulta difícil (si no imposible) administrar 30 selectivamente radiación terapéutica al tejido anormal. De este modo, el tejido normal próximo al anormal también se ve expuesto a dosis potencialmente perjudiciales de radiación en el curso de todo el tratamiento. Existen, igualmente, algunos tratamientos que requieren la exposición de todo el organismo del sujeto a la radiación, en un procedimiento denominado "irradiación corporal total" o "TBI" (por sus siglas en inglés). La eficacia de las técnicas radioterapéuticas para destruir células proliferativas anormales se equilibra, por lo tanto, con los efectos citotóxicos asociados sobre las células normales cercanas. Debido a ello, las técnicas de radioterapia poseen un índice 35 terapéutico inherentemente estrecho, de lo que resulta un tratamiento inadecuado de la mayoría de los tumores. Incluso las mejores técnicas de radioterapia pueden dar como resultado una reducción incompleta del tumor, la recurrencia de éste, un aumento de la carga tumoral y la inducción de tumores resistentes a la radiación.

La quimioterapia implica la interrupción de la replicación celular o del metabolismo celular. La quimioterapia puede ser efectiva, pero existen varios efectos secundarios, por ejemplo, vómitos, bajo recuente de leucocitos (WBC), caída del cabello, pérdida de peso y otros efectos tóxicos. A causa de los efectos secundarios extremadamente tóxicos, muchos pacientes con cáncer no pueden finalizar correctamente un régimen de quimioterapia completo. Los efectos secundarios inducidos por la quimioterapia muestran un impacto significativo sobre la calidad de vida del individuo y pueden influir de manera importante sobre la adherencia terapéutica del paciente. Adicionalmente, los efectos secundarios adversos asociados con los agentes quimioterapéuticos son, en general, los principales factores responsables de la toxicidad que limita la dosis (DLT) en la administración e estos medicamentos. Por ejemplo, la mucositis es uno de los principales factores tóxicos limitantes de la dosis para numerosos agentes anticancerosos, incluidos los agentes citotóxicos antimetabolitos 5-FU, metotrexato y antibióticos antitumorales tales como doxorrubicina. Muchos de estos efectos secundarios inducidos por la quimioterapia pueden conducir, en caso de ser graves, a la hospitalización del enfermo, o requieren tratamiento con analgésicos contra el dolor. Algunos pacientes con cáncer fallecen a causa de su mala tolerancia a la quimioterapia. Los efectos secundarios extremos de los medicamentos anticancerosos tienen su origen en la escasa especificidad del obietivo de los mismos. Los medicamentos circulan a través de órganos en su mayoría sanos del individuo, así como por los tumores diana previstos. La escasa especificidad de diana que provoca los efectos secundarios reduce igualmente la eficacia de la quimioterapia, porque sólo una fracción de los medicamentos tiene una diana correctamente establecida. La eficacia de la quimioterapia disminuye, además, por la mala retención de los medicamentos anticancerosos en el interior de los tumores diana.

Debido a la gravedad y amplitud de las neoplasias, tumores y cánceres, existe una gran necesidad de tratamientos eficaces de estas enfermedades o trastornos, capaces de superar los defectos de los tratamientos quirúrgicos, quimioterapéuticos y por radiación.

Problemas de los Agentes Quimioterapéuticos

10

15

30

35

40

45

50

5 El problema de la resistencia al medicamento es una razón de la importancia añadida de la quimioterapia de combinación, puesto que la terapia debe evitar, por una parte, la aparición de células resistentes y, por otra, destruir las células preexistentes que ya son resistentes al medicamento.

Resistencia farmacológica es el nombre que recibe el estado en que una enfermedad no responde a uno o múltiples medicamentos terapéuticos. La resistencia farmacológica puede ser intrínseca, es decir, cuando la enfermedad nunca ha respondido al medicamento o medicamentos, o puede ser adquirida, lo que significa que la enfermedad deja de responder a uno o múltiples medicamentos a los que había reaccionado anteriormente. La multirresistencia farmacológica (MDR) es una clase específica de resistencia farmacológica que se distingue por la existencia de resistencia cruzada de una enfermedad a más de un medicamento funcional y/o estructuralmente no relacionado. La multirresistencia farmacológica en el campo del cáncer se analiza de forma más detallada en la obra "Detoxification Mechanisms and Tumor Cell Resistance to Anticancer Drugs", de Kuzmich y Tew, en especial la Sección VII "The Multidrug-Resistant Phenotype (MDR)", *Medical Research Reviews*, Vol. 11, Nº 2, 185-217, (la Sección VII se encuentra en las págs. 208-213) (1991), y en "Multidrug Resistance and Chemosensitization: Therapeutic Implications for Cancer Chemotherapy", de Georges, Sharom y Ling, *Advances in Pharmacology*, Vol. 21, 185-220 (1990).

Una forma de multirresistencia farmacológica (MDR) está mediada por una bomba de flujo transmembrana de 170-180 kD, dependiente de la energía, designada como glicoproteína P (P-gp). Se ha demostrado que la glicoproteína P desempeña una función primordial en las resistencias intrínseca y adquirida de una serie de tumores frente a medicamentos hidrófobos de origen natural. Los medicamentos que actúan como sustrato de la P-gp y que, en consecuencia, son detoxificados por esta glicoproteína P incluyen los alcaloides de la vinca (vincristina y vinblastina), antraciclinas (adriamicina), y epipodofiloxitoxinas (etopósido). Aunque la MDR asociada a P-gp es un factor determinante importante en la resistencia de las células tumorales a los agentes quimioterapéuticos, es evidente que el fenómeno de MDR es multifactorial y comprende numerosos mecanismos diferentes.

Una complicación importante de la quimioterapia oncológica y de la quimioterapia antiviral es el daño a las células de la médula ósea o la supresión de su función. Específicamente, la quimioterapia daña o destruye las células hematopoyéticas precursoras, presentes principalmente en la médula ósea y el bazo, afectando a la producción de nuevas células sanguíneas (granulocitos, linfocitos, eritrocitos, monocitos, plaquetas, etc.). Por ejemplo, el tratamiento con 5-fluorouracilo de pacientes con cáncer reduce el número de leucocitos (linfocitos y/o granulocitos) y puede tener como consecuencia una mayor susceptibilidad de los individuos a las infecciones. Muchos pacientes oncológicos fallecen por infecciones u otras consecuencias del fracaso hematopoyético subsiguiente a la quimioterapia. Igualmente, los agentes quimioterapéuticos pueden dar lugar a una formación de plaquetas inferior a la normal, lo que determina una propensión a las hemorragias. La inhibición de la producción de eritrocitos puede traducirse en anemia. Para algunos pacientes con cáncer, el riesgo de dañar el sistema hematopoyético u otros tejidos importantes limita a menudo la oportunidad de incrementar la dosis de agentes quimioterapéuticos hasta niveles suficientes para ofrecer una correcta eficacia antitumoral o antiviral. Los ciclos repetidos de quimioterapia o a dosis elevadas pueden ser responsables de una importante depleción de células madre que produce graves secuelas hematopoyéticas a largo plazo y agotamiento de la médula.

La prevención de los efectos secundarios de la quimioterapia, o la protección contra los mismos sería altamente beneficiosa para el paciente con cáncer. En el caso de los efectos secundarios que representan una amenaza para la vida, los esfuerzos se han centrado en alterar la dosis y la programación del agente quimioterapéutico con el fin de reducir los efectos secundarios. Están surgiendo otras opciones tales como el uso del factor estimulante de colonias de granulocitos (G-CSF), el CSF de granulocitos-macrófagos (GM-CSF), el factor de crecimiento epidérmico (EGF), la interleuquina 11, eritropoyetina, trombopoyetina, factor de desarrollo y crecimiento de megacariocitos, pixiquinas, factor de células madre, ligando de FLT, así como las interleuquinas 1, 3, 6 y 7, dirigidas a aumentar el número de células normales en diversos tejidos antes de iniciar la quimioterapia (véase Jiménez y Yunis, *Cancer Research* 52:413-415, 1992). Los mecanismos de protección por medio de estos factores, aunque no totalmente dilucidados, se asocian muy probablemente con un incremento del número de células diana críticas normales antes del tratamiento con agente citotóxicos y no con un aumento de la supervivencia celular tras la quimioterapia.

Fijación de Dianas Quimioterapéuticas para el Tratamiento de Tumores

Tanto el crecimiento como las metástasis de los tumores sólidos son dependientes de la angiogénesis (Folkman, *J. Cancer Res.*, 46, 467-73 (1983); Folkman, *J. Nat. Cancer Inst.*, 82, 4-6 (1989); Folkman et al., "Tumor Angiogenesis", Capítulo 10, págs. 206-32, en *Molecular Basis of Cancer*, Mendelsohn et al., editores (W.B. Saunders, 1995)). Por ejemplo, se ha demostrado que los tumores que aumentan su tamaño a más de 2 mm de diámetro deben obtener su propio suministro de sangre y lo hacen por la inducción del crecimiento de nuevos vasos sanguíneos capilares. Una

vez que estos nuevos vasos sanguíneos se incluyen en el tumor, aportan nutrientes y factores de crecimiento esenciales para el crecimiento del tumor, así como una vía para que las células tumorales accedan a la circulación y metastaticen en puntos alejados tales como el hígado, pulmón o hueso (Weidner, *New Eng. J. Med.*, 324(1), 1-8 (1991)). Cuando se utilizan como medicamentos en animales portadores de tumores, los inhibidores naturales de la angiogénesis pueden prevenir el crecimiento de pequeños tumores (O'Reilly et al., O'Reilly et al., *Cell*, 79, 315-28 (1994)). De hecho, en algunos protocolos la aplicación de estos inhibidores conduce a la regresión y paso al estado de latencia del tumor, incluso después de haber interrumpido el tratamiento (O'Reilly et al., *Cell*, 88, 277-85 (1997)). Adicionalmente, el aporte de inhibidores de la angiogénesis a determinados tumores puede potenciar su respuesta a otros regímenes terapéuticos (por ejemplo, quimioterapia) (véase, por ejemplo, Teischer et al., *Int. J. Cancer*, 57, 920-25 (1994)).

Las protein-tirosina quinasas catalizan la fosforilación de residuos tirosilo específicos en diversas proteínas que intervienen en la regulación del crecimiento y diferenciación celulares (A.F. Wilks, *Progress in Growth Factor Research*, 1990, 2, 97-111; S.A. Courtneidge, *Dev.Suppl.* 1, 1993, 57-64; J.A. Cooper, *Semin. Cell Biol.*, 1994, 5(6), 377-387; R.F. Paulson, *Semin. Immunol.*, 1995, 7(4), 267-277; A.C. Chan, *Curr. Opin. Immunol.*, 1996, 8(3), 394-401). En términos generales, las protein-tirosina quinasas se pueden clasificar como quinasas receptoras (por ejemplo, EGF-r, c-erbB-2, c-met, tie-2, ODGFr, FGFr) o no receptoras (por ejemplo, c-src, Ick, Zap70). Se ha puesto de manifiesto que la activación inapropiada o incontrolada de muchas de estas quinasas, es decir, la actividad de protein-tirosina quinasas aberrantes, por ejemplo por sobre-expresión o mutación, da como resultado un crecimiento celular incontrolado. Por ejemplo, se ha implicado la actividad elevada del receptor del factor de crecimiento epidérmico (EGFR) en los cánceres de pulmón de células no pequeñas, de vejiga y de cabeza y cuello, y el aumento de actividad de c-erbB-2 lo ha estado en cánceres de mama, ovario, estómago y páncreas. De esta forma, la inhibición de las protein-tirosina quinasas debería ser de utilidad como tratamiento de tumores tales como los mencionados anteriormente.

Los factores de crecimiento son sustancias que inducen la proliferación celular, típicamente a través de la unión a receptores específicos en la superficie de la célula. El factor de crecimiento epidérmico (EGF) induce la proliferación de una diversidad de células *in vivo*, y es necesario para el crecimiento de la mayoría de las células cultivadas. El receptor de EGF es una glicoproteína transmembranosa de 170 a 180 kD, que se puede detectar en una amplia variedad de tipos celulares. El dominio N-terminal extracelular del receptor está fuertemente glicosilado y fija los anticuerpos EGF que se unen selectivamente a EGFR. Se han utilizado agentes que se unen de manera competitiva a EGFR para tratar ciertos tipos de cáncer, dado que muchos tumores de origen meso y ectodérmico sobre-expresan el receptor EGF. Por ejemplo, se ha demostrado una sobre-expresión del receptor EGF en numerosos gliomas, carcinomas de células escamosas, carcinomas de mama, melanomas, carcinomas invasivos de vejiga y cánceres de esófago. Los intentos de usar el sistema EGFR en la terapia antitumoral han implicado, por lo general, el empleo de anticuerpos monoclonales contra el EGFR. Adicionalmente, estudios con tumores mamarios primarios humanos han demostrado una correlación entre expresión elevada de EGFR y la presencia de metástasis, velocidades de proliferación más altas y supervivencia individual más corta.

Herlyn et al., en la Patente de EE.UU. 5.470.571, describen el uso de Mab 425 marcado radioactivamente para tratar gliomas que expresan EGFR. Herlyn et al. informan de que los anticuerpos anti-EGFR pueden estimular o inhibir el crecimiento y proliferación de las células cancerosas. Se ha comunicado que otros anticuerpos monoclonales con especificidad por EGFR, tanto solos como conjugados con un compuesto citotóxico, son eficaces para tratar ciertos tipos de cáncer. Bendig et al., en la Patente de EE.UU. 5.558.864, describen Mab's anti-EGFR terapéuticos para unirse competitivamente a EGFR. Heimbrook et al., en la Patente de EE.UU. 5.690.928, describen el uso de EGF fusionado con una endotoxina derivada de una especie de *Pseudomonas* para el tratamiento del cáncer de vejiga. Brown et al., en la Patente de EE.UU. 5.859.018, describen un método para tratar enfermedades que se distinguen por una hiperproliferación celular mediada, entre otros, por EGF.

Formas de Administración de los Agentes Quimioterapéuticos

Las personas diagnosticadas de cáncer reciben a menudo tratamiento con un único o múltiples agentes quimioterapéuticos para destruir las células cancerosas en el sitio primario del tumor o en lugares alejados, metastatizados por el cáncer. El tratamiento de quimioterapia se administra frecuentemente en forma de una sola o varias dosis elevadas, o durante periodos variables de tiempo de semanas a meses. Sin embargo, los ciclos repetidos o de dosis altas de quimioterapia pueden ser responsables del incremento de la toxicidad y de graves efectos secundarios.

Nuevos estudios indican que la quimioterapia metronómica, es decir, la administración frecuente de dosis bajas de agentes citotóxicos, sin periodos prolongados libres de medicamento, actúa directamente sobre las células endoteliales activadas en la vasculatura tumoral. Una serie de estudios preclínicos ha demostrado una mayor eficacia antitumoral, potentes efectos antiangiogénicos y una reducción de la toxicidad y de los efectos secundarios (por ejemplo, mielosupresión) de los regímenes metronómicos en comparación con sus equivalentes administrados a la máxima dosis tolerada (MTD) (Bocci et al., *Cancer Res.*, 62:6938-6943 (2002); Bocci et al., *PNAS*, vol. 100(22): 12917-12922 (2003); y Bertolini et al., *Cancer Res.*, 63(15): 4342-4346 (2003)). No está claro si todos los agentes quimioterapéuticos ejercen efectos similares o si algunos se adaptan mejor que otros a dichos regímenes. No

obstante, la quimioterapia metronómica parece ser efectiva para superar algunos de los principales inconvenientes asociados con la quimioterapia.

Agentes quimioterapéuticos

5

10

15

20

25

30

35

40

45

55

Paclitaxel ha demostrado poseer significativos efectos antineoplásicos y anticancerosos en el cáncer de ovario refractario a medicamentos, y ha evidenciado una excelente actividad antitumoral en una amplia variedad de modelos tumorales; asimismo, inhibe la angiogénesis cuando se administra a dosis muy bajas (Grant et al., Int. J. Cancer, 2003). Sin embargo, la escasa solubilidad en agua de paclitaxel representa un problema para la administración humana. En efecto, el suministro de medicamentos que son inherentemente insolubles o escasamente solubles en un medio acuoso puede verse seriamente afectado si la administración oral no es eficaz. Por lo tanto, las formulaciones de paclitaxel usadas actualmente (por ejemplo, Taxol®) requieren Cremophor® para solubilizar el medicamento. La presencia de Cremophor® en esta formulación se ha relacionado con graves reacciones de hipersensibilidad en animales (Lorenz et al., Agents Actions 7:63-67 (1987)) y seres humanos (Weiss et al., J. Clin. Oncol. 8:1263-68 (1990)) y, en consecuencia, exige administrar a los pacientes una premedicación de corticosteroides (dexametasona) y antihistamínicos. Igualmente, se ha comunicado que las concentraciones clínicamente importantes del vehículo de formulación Cremophor® EL en Taxol® anulan la actividad antiangiogénica de paclitaxel, señalando que puede ser necesario administrar este agente u otros medicamentos anticancerosos formulados en Cremophor® EL a dosis mucho más altas que las previstas para lograr una quimioterapia metronómica efectiva (Ng et al., Cancer Res., 64:821-824 (2004)). En este caso, la ventaja de la ausencia de efectos secundarios indeseables asociada con los regímenes de paclitaxel a dosis bajas, frente a la quimioterapia MTD convencional, puede verse comprometida. Véanse también la Publicación de Patente de EE.UU. No. 2004/0143004; WO 00/64437.

Abraxane® es un paclitaxel unido de albúmina en nanopartículas, exento de Cremophor® EL.

Modelos preclínicos han demostrado una mejoría significativa de la seguridad y eficacia de Abraxane® comparado con Taxol® (Desai et al., Conferencia EORTC-NCL-AACR, 2004) y en personas con cáncer metastásico de mama (O'Shaughnessy et al., San Antonio Breast Cancer Symposium, Abstract nº 1122, Dic. 2003). Esto se debe posiblemente a la ausencia de tensioactivos (por ejemplo, Cremophor® o Tween® 80 usados, respectivamente, en Taxol® y Taxotere®) en Abraxane®, y/o al empleo preferente de un mecanismo de transporte basado en la albúmina que utiliza gp60/caveolas sobre las células endoteliales microvasculares (Desai et al., Conferencia EORTC-NCL-AACR, 2004). Adicionalmente, se ha demostrado que tanto Cremophor® como Tween® 80 inhiben fuertemente la unión de paclitaxel a la albúmina, afectando posiblemente al transporte basado en albúmina (Desai et al., Conferencia EORTC-NCL-AACR, 2004). El documento WO 01/89522 describe también nanopartículas de paclitaxel y albúmina.

IDN5109 (Ortataxel) es un nuevo taxano, actualmente en Fase II, seleccionado por la ausencia de resistencia cruzada en líneas de células tumorales que expresan el fenotipo de resistencia a múltiples medicamentos (MDR/Pgp) e inhibición de la glicoproteína P (Pgp) (Minderman; *Cancer Chemother. Pharmacol.* 2004; 53:363-9). Debido a su hidrofobicidad, IDN5109 se formula en la actualidad en el tensioactivo Tween® 80 (el mismo vehículo que en Taxofere®). La retirada de tensioactivos de formulaciones de taxano, por ejemplo, en el caso de paclitaxel unido a albúmina en nanopartículas (Abraxane®), mostró mejoras de la seguridad y eficacia con respecto a sus equivalentes que contienen tensioactivo (O'Shaughnessy et al., San Antonio Breast Cancer Symposium, Abstract nº 1122, Dic. 2003). Tween® 80 inhibió también fuertemente la unión del taxano, paclitaxel, a la albúmina, comprometiendo posiblemente el transporte farmacológico basado en albúmina a través del receptor gp60 en las células endoteliales microvasculares (Desai et al., Conferencia EORTC-NCL-AACR, 2004).

La actividad antitumoral de colchicina, que es el alcaloide principal del cólquico, *Colchicum autumnale*, y de gloriosa, *Gloriosa superba*, se dio a conocer por primera vez a comienzos del siglo XX. Su estructura se determinó finalmente por estudios radiográficos y una serie de síntesis totales (véase Shiau et al., *J. Pharm. Sci.* 1978, 67(3), 394-397). Se considera que la colchicina es un veneno mitótico, especialmente en las células del timo, intestino y hematopoyéticas, que actúa como un veneno para el huso mitótico y bloquea el movimiento. Se estima que su efecto sobre el huso mitótico representa un caso especial de sus efectos sobre diversos sistemas fibrilares organizados y lábiles, relacionados con la estructura y el movimiento.

El dímero de tiocolchicina IDN5404 se seleccionó por su actividad en la sub-línea ovárica humana resistente a cisplatino y topotecan A2780-CIS y A2780-TOP. Este efecto se relacionó con mecanismos de acción dobles, es decir, actividad microtubular, como en los alcaloides de la vinca, y un efecto inhibidor de la topoisomerasa I diferente del de la camptotecina. (Raspaglio, *Biochemical Pharmacology* 69:113-121 (2005)).

Se ha encontrado que las composiciones en nanopartículas de un taxano (tal como paclitaxel unido a albúmina (Abraxane®)) exhiben toxicidades significativamente menores que otros taxanos tales como Taxol® y Taxotere®, con resultados significativamente optimizados tanto en seguridad como en eficacia.

La quimioterapia de combinación, por ejemplo, combinando uno o múltiples agentes quimioterapéuticos u otras formas de tratamiento, por ejemplo, la combinación de quimioterapia con radiación o cirugía y quimioterapia, ha

mostrado tener más éxito que los quimioterapéuticos de un único agente o las formas de tratamiento individuales, respectivamente.

Otras referencias bibliográficas incluyen la Publicación de EE.UU. No. 2006/0013819; la Publicación de EE.UU. No. 2006/0003931; y los documentos WO 05/117986; WO 05/117978; y WO 05/000900.

5 Se requieren tratamientos más efectivos contra las enfermedades proliferativas, especialmente del cáncer.

BREVE RESUMEN DE LA INVENCIÓN

10

20

25

35

40

45

50

55

De acuerdo con la presente invención, se propone una composición que comprende nanopartículas que contienen un taxano y una albúmina, para ser usada en combinación con al menos un agente quimioterapéutico adicional en el tratamiento del cáncer, en donde dicho agente quimioterapéutico se selecciona de antimetabolitos, agentes basados en platino, agentes alquilantes, inhibidores de la tirosina quinasa, antibióticos antraciclínicos, alcaloides de la vinca, inhibidores del proteasoma, macrólidos, anticuerpos terapéuticos, agentes antiangiogénicos e inhibidores de la topoisomerasa. En algunas formas de realización, la composición que comprende nanopartículas contiene nanopartículas que comprende paclitaxel y una albúmina (tal como Abraxane®). En algunas formas de realización, el agente quimioterapéutico es un agente basado en platino tal como carboplatino.

En algunas formas de realización, la composición que comprende nanopartículas contiene nanopartículas que comprenden paclitaxel y una albúmina (tal como Abraxane®). En algunas formas de realización, el agente quimioterapéutico es un agente basado en platino tal como carboplatino.

En algunas formas de realización, la composición que comprende nanopartículas (también denominada "composición en nanopartículas") y el agente quimioterapéutico se administran de forma simultánea, ya sea en la misma composición o en composiciones separadas. En algunas formas de realización, la composición en nanopartículas y el agente quimioterapéutico se administran de forma secuencial, es decir, la composición en nanopartículas se administra antes o después de la administración del agente quimioterapéutico. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico es concurrente, es decir, el periodo de administración de la composición en nanopartículas y el del agente quimioterapéutico se solapan mutuamente. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico no coincide en el tiempo ("no concurrente"). Por ejemplo, en algunas formas de realización, la administración de la composición en nanopartículas finaliza antes de iniciar la administración del agente quimioterapéutico. En algunas formas de realización, la administración del agente quimioterapéutico finaliza antes de iniciar la administración de la composición en nanopartículas.

En algunas formas de realización, el taxano de la terapia inicial es paclitaxel unido a nanopartículas de albúmina, descrito, por ejemplo, en la Patente de EE.UU. 6.566.405, y disponible en el comercio bajo la marca registrada Abraxane®. Adicionalmente, se considera que el taxano de la primera terapia es docetaxel unido a nanopartículas de albúmina, descrito, por ejemplo, en la Publicación de Solicitud de Patente de EE.UU. 2005/0004002A1.

Los presentes inventores describen asimismo una terapia de combinación para usar en el tratamiento del cáncer, y que comprende un taxano y una segunda terapia seleccionada del grupo consistente en agentes quimioterapéuticos y radiación, o combinaciones de los mismos. La terapia de combinación se puede administrar en cualquiera de modalidades tales como secuencial o simultáneamente y, en caso de ser secuencial, el taxano se puede administrar antes o después de la segunda terapia, aunque se prefiere administrar en primer lugar la primera terapia que comprende un taxano. Igualmente, se entenderá que la segunda terapia puede incluir más de un agente quimioterapéutico.

Los presentes inventores describen asimismo regímenes de terapia metronómica. De esta forma, los presentes inventores describen un método para administrar una composición que comprende nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina), en donde la composición en nanopartículas se administra durante un periodo de al menos un mes, en donde el intervalo entre cada administración no es mayor que aproximadamente una semana, y en donde la dosis de taxano en cada administración es aproximadamente 0,25% hasta aproximadamente 25% de su dosis máxima tolerada siguiendo un régimen de dosificación convencional. Por ejemplo, los presentes inventores describen un método para administrar una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), en donde la composición en nanopartículas se administra durante un periodo de al menos un mes, en donde el intervalo entre cada administración no es mayor que una semana, y en donde la dosis de paclitaxel en cada administración es aproximadamente 0,25% hasta aproximadamente 25% de la dosis máxima tolerada según un régimen de dosificación convencional. En algunas formas de realización, la dosis del taxano (tal como paclitaxel, por ejemplo, Abraxane®) por administración es menor que aproximadamente 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 18%, 20%, 22%, 24% o 25% de la dosis máxima tolerada. En algunas formas de realización, la composición en nanopartículas se administra al menos aproximadamente 1, 2, 3, 4, 5, 6, 7 veces (es decir, a diario) a la semana. El algunas formas de realización, los intervalos entre cada administración son menores que aproximadamente 7 días, 6 días, 5 días, 4 días, 3 días, 2 días y 1 día. En algunas formas de realización, la composición en nanopartículas se administra durante un periodo de al menos aproximadamente 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30 y 36 meses.

Los presentes inventores describen asimismo un método para administrar una composición que comprende nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina), en donde el taxano se administra durante un periodo de al menos un mes, en donde el intervalo entre cada administración no es mayor que aproximadamente una semana, y en donde la dosis de taxano en cada administración es aproximadamente 0,25 mg/m² hasta aproximadamente 25 mg/m². Por ejemplo, los presentes inventores describen un método para administrar una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), en el que el paclitaxel se administra durante un periodo de al menos un mes, en donde el intervalo entre cada administración no es mayor que aproximadamente una semana, y en donde la dosis de taxano en cada administración es aproximadamente 0.25 mg/m² hasta aproximadamente 25 mg/m². En algunas formas de realización, la dosis del taxano (tal como paclitaxel, por ejemplo, Abraxane®) por administración es menor que aproximadamente 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 22 y 25 mg/m². En algunas formas de realización, la composición en nanopartículas se administra al menos aproximadamente 1, 2, 3, 4, 5, 6, 7 veces (es decir, a diario) a la semana. En algunas formas de realización, los intervalos entre cada administración son menores que aproximadamente 7 días, 6 días, 5 días, 4 días, 3 días, 2 días y 1 día. En algunas formas de realización, la composición en nanopartículas se administra durante un periodo de al menos aproximadamente 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30 y 36 meses.

La invención se refiere, en general, a una composición que comprende nanopartículas que contienen un taxano y una proteína portadora. En algunas formas de realización, la composición en nanopartículas comprende nanopartículas que contienen paclitaxel y una albúmina. En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm. En algunas formas de realización, la composición en nanopartículas de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tal como Cremophor). En algunas formas de realización, la relación en peso de albúmina a paclitaxel en la composición es de aproximadamente 18:1 o menor tal como aproximadamente 9:1 o menor. En algunas formas de realización, el paclitaxel está recubierto con albúmina. En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm, y la composición de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tal como Cremophor). En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que 200 nm y paclitaxel está recubierto con albúmina. Asimismo, se contemplan otras combinaciones de las características anteriores. En algunas formas de realización, la composición en nanopartículas es Abraxane®. Composiciones de nanopartículas que comprenden otros taxanos (tal como docetaxel y ortataxel) pueden comprender también una o múltiples de las características anteriores.

Estos y otros aspectos y ventajas de la presente invención se harán evidentes a partir de la subsiguiente descripción detallada y las reivindicaciones anexas. Se debe entender que es posible combinar una, algunas o todas las propiedades de las diversas formas de realización descritas en este documento para generar otras formas de realización de la presente invención.

BREVE DESCRIPCIÓN DE LAS FIGURAS

5

10

15

20

25

30

45

Figura 1A muestra el efecto de ABI-007 sobre la angiogénesis de anillo aórtico en la rata. Figura 1B muestra el efecto de ABI-007 sobre la proliferación de células endoteliales humanas. Figura 1C muestra el efecto de ABI-007 sobre la formación de tubos de células endoteliales.

Figura 2 muestra la determinación de una dosis biológica óptima de ABI-007 para la dosificación metronómica. Se muestran los niveles de progenitores endoteliales viables circulantes (CEP) en la sangre periférica de ratones Balb/cJ en respuesta a dosis crecientes de ABI-007. Untr'd, control no tratado; S/A, control de vehículo de solución salina/albúmina. Barras, media ± EE (error estándar). *Significativamente (p<0,05) diferente del control no tratado.

Figuras 3A y 3B muestran los efectos de ABI-007 y Taxol usados en regímenes metronómico o MTD sobre el crecimiento de tumores MDA-MB-231 (A) y PC3 (B) en ratones SCID portadores de tumores. Figuras 3C y 3D muestran los efectos de ABI-007 y Taxol usados en regímenes metronómico o MTD sobre el peso corporal de ratones SCID portadores de tumores MDA-MB-231 (C) y PC3 (D).

Figuras 4A y 4B muestran las variaciones en los niveles de progenitores endoteliales viables circulantes (CEPs) en la sangre periférica de ratones SCID portadores de tumores MDA-MB-231 (Fig. 4A) y PC3 (Fig. 4B), después del tratamiento con A, solución salina/albúmina; B, control con Cremophor EL; C, Taxol metronómico, 1,3 mg/kg; D, E y F, ABI-007 metronómico, 3, 6 y 10 mg/kg, respectivamente; G, Taxol MTD; H, ABI-007 MTD. Barras, media ± EE.

aSignificativamente (p<0,05) diferente del control de vehículo de solución salina/albúmina; bSignificativamente diferente del control con vehículo de Cremophor EL.

Figura 5A muestra la densidad de microvasos intratumorales de xenoinjertos MDA-MB-231 (■) y PC3 (□) tratados con A, solución salina/albúmina; B, control de Cremophor EL; C, Taxol metronómico, 1,3 mg/kg; D, E y F, ABI-007 metronómico, 3, 6 y 10 mg/kg, respectivamente; G, Taxol MTD; H, ABI-007 MTD. Barras, media ± EE. Figuras 5B y

5C muestran la correlación entre la densidad de microvasos intratumorales y el número de CEPs viables en la sangre periférica en ratones SCID portadores de tumores MDA-MB-231 (Fig. 5B) y PC3 (Fig. 5C).

Figura 6 muestra los efectos de ABI-007 o Taxol, usados en regímenes metronómicos o MTD, sobre la angiogénesis inducida por el factor básico de crecimiento de fibroblastos (bFGF) en tapones de proteína "Matrigel" inyectados por vía subcutánea en los flancos de ratones Balb/cJ. Tratamientos: A, solución salina/albúmina; B, control de Cremophor EL; C, Taxol metronómico, 1,3 mg/kg; D, E y F, ABI-007 metronómico, 3, 6 y 10 mg/kg, respectivamente; G, Taxol MTD; H, ABI-007 MTD. Matrigel implantada sin bFGF sirvió como control negativo. Barras, media ± EE.

Figura 7A y Figura 7B muestran la actividad citotóxica de *nab*-rapamicina en combinación con Abraxane® sobre las células musculares lisas vasculares. La citotoxicidad se evaluó mediante tinción con homodímero-1 de etidio (Fig. 7A) o mediante tinción con calceína (Fig. 7B).

Figura 8 muestra la actividad citotóxica de *nab*-rapamicina en combinación con Abraxane® en un modelo de xenoinjerto del carcinoma de colon humano HT29.

Figura 9 muestra la actividad citotóxica de *nab*-17-AAG en combinación con Abraxane® en un modelo de xenoinjerto de carcinoma pulmonar humano H358.

15 DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

5

10

La presente invención ofrece métodos de terapia de combinación que comprenden una primera terapia, que implica la administración de nanopartículas que contienen un taxano y albúmina, junto con una segunda terapia que comprende la administración de al menos un agente quimioterapéutico adicional, o combinaciones de los mismos. Los presentes inventores describen asimismo métodos de terapia metronómica.

- La presente invención comprende el descubrimiento de que Abraxane®, debido a su superior actividad antitumoral y menor toxicidad y efectos secundarios, se puede administrar en combinación con otros medicamentos terapéuticos, y puede ser utilizado también en quimioterapia metronómica. Debido a la significativa mejora de los perfiles de seguridad con composiciones que comprenden nanopartículas de medicamento/proteína portadora (tal como Abraxane®), los presentes inventores consideran que la quimioterapia de combinación con otras composiciones en nanopartículas (tal como Abraxane®) es más eficaz que la quimioterapia de combinación con otros medicamentos. De esta forma, las composiciones en nanopartículas (en especial, una composición en nanopartículas de paclitaxel/albúmina, tal como Abraxane®), utilizadas en combinación con otros agentes quimioterapéuticos deberían ser muy eficaces y solventar las deficiencias de la cirugía, radioterapia y quimioterapia en el tratamiento de enfermedades proliferativas (tales como el cáncer).
- La presente invención, en una de sus formas de realización, se refiere al uso de una primera terapia que comprende un taxano, tal como Abraxane®, en combinación con una segunda terapia que es otro agente quimioterapéutico para tratar el cáncer. La primera terapia, que comprende un taxano, y la segunda terapia se pueden administrar a un mamífero afectado de cáncer, de forma secuencial, o se pueden co-administrar e, incluso, se pueden administrar simultáneamente en la misma composición farmacéutica.
- Adicionalmente, se ha encontrado que un régimen de dosificación metronómica, en el que se usa Abraxane®, es más efectivo que el programa de dosificación MTD tradicional de la misma composición farmacológica. Este régimen de dosificación metronómica de Abraxane® ha demostrado ser más efectivo que la dosificación metronómica de Taxol®.
- Las composiciones descritas en este documento son generalmente útiles para el tratamiento de enfermedades, especialmente enfermedades proliferativas y, en particular, para el tratamiento del cáncer. Como se usa en esta memoria, "tratamiento" es un método para obtener resultados clínicos beneficiosos o deseados. A los efectos de esta invención, los resultados clínicos beneficiosos o deseados incluyen, sin limitaciones, el alivio de uno o múltiples síntomas, disminución de la extensión de la enfermedad, estabilización (es decir, ausencia de agravamiento) del estado de la enfermedad, prevención o retraso de la dispersión (por ejemplo, metástasis) de la enfermedad, prevención o retraso de la enfermedad, retraso o enlentecimiento de la progresión de la enfermedad, mejoría del estado de la enfermedad, y remisión (parcial o total). El término "tratamiento" incluye también una reducción de las consecuencias patológicas de una enfermedad proliferativa. Los métodos de la invención contemplan uno o múltiples de estos aspectos de tratamiento.
- Como se usa en esta memoria, una "enfermedad proliferativa" se define como una enfermedad tumoral (incluida benigna o cancerosa) y/o cualquier metástasis, dondequiera que esté localizada la enfermedad o la metástasis y, más especialmente, un tumor seleccionado del grupo que comprende uno o más de los siguientes: (y, en algunas formas de realización, seleccionado del grupo consistente en): cáncer de mama, cáncer genitourinario, cáncer de pulmón, cáncer gastrointestinal, cáncer epidermoide, melanoma, cáncer de ovario, cáncer de páncreas, neuroblastoma, cáncer colorrectal, cáncer de cabeza y cuello. En algunas formas de realización, la enfermedad proliferativa es un tumor benigno o maligno. En las menciones tanto anteriores como posteriores en esta memoria de un tumor, enfermedad tumoral, carcinoma o cáncer, se incluyen también, de manera alternativa o adicional, las

metástasis en el órgano o tejido originales y/o en cualquier otra localización, cualquiera que sea la localización del tumor y/o de la metástasis.

La expresión "cantidad efectiva" usada en esta memoria hace referencia a la cantidad de un compuesto o composición suficiente para tratar un trastorno, afección o enfermedad especificada, tal como aliviar, paliar, disminuir y/o retrasar uno o más de sus síntomas. En relación con el cáncer u otra proliferación celular no deseada, una cantidad efectiva comprende una cantidad suficiente para determinar que un tumor se contraiga y/o disminuya su velocidad de crecimiento (tal como suprimir el crecimiento del tumor), o prevenir o retrasar otra proliferación celular no deseada. En algunas formas de realización, una cantidad efectiva es una cantidad suficiente para retrasar el desarrollo. En algunas formas de realización, una cantidad efectiva es una cantidad suficiente para prevenir o retrasar la aparición y/o recurrencia. Una cantidad efectiva se puede administrar en una o múltiples aplicaciones. En el caso del cáncer, la cantidad efectiva del medicamento o composición puede: (i) reducir el número de células cancerosas; (ii) reducir el tamaño del tumor; (iii) inhibir, retrasar, ralentizar en cierta medida y, preferentemente, detener la infiltración de células cancerosas en órganos periféricos; (iv) inhibir (es decir, ralentizar en cierta medida y, preferentemente, detener) las metástasis tumorales; (v) inhibir el crecimiento del tumor; (vi) prevenir o retrasar la aparición y/o recurrencia del tumor; y/o (vii) aliviar en determinada medida uno o más de los síntomas asociados con el cáncer.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un tumor primario. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de cánceres metastáticos (es decir, un cáncer que ha metastatizado a partir del tumor primario). En algunas formas de realización, se ofrecen composiciones para usar en métodos de tratamiento del cáncer en estadio(s) avanzado(s). En algunas formas de realización, se ofrecen composiciones para usar en el tratamiento del cáncer de mama (que puede ser HER2 positivo o HER2 negativo) incluido, por ejemplo, el cáncer de mama avanzado, cáncer de mama de estadio IV, cáncer de mama localmente avanzado, y cáncer de mama metastásico. En algunas formas de realización, se ofrecen composiciones para usar en el tratamiento del cáncer de pulmón, incluidos, por ejemplo, el cáncer de pulmón de células no pequeñas (NSCLC tal como NSCLC avanzado), cáncer de pulmón de células pequeñas (SCLC tal como SCLC avanzado), y enfermedades malignas por tumores sólidos avanzados del pulmón. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de cualquier tipo de cáncer de ovario, cáncer de cabeza y cuello, enfermedades malignas gástricas, melanoma (incluido el melanoma metastásico), cáncer colorrectal, cáncer de páncreas y tumores sólidos (tales como tumores sólidos avanzados). En algunas formas de realización, se ofrece un método para reducir la proliferación celular y/o la migración celular. En algunas formas de realización, se ofrecen métodos para retrasar el desarrollo de cualquiera de las enfermedades proliferativas descritas en este documento.

El término "individuo" es un mamífero, incluido el ser humano. Un individuo incluye, sin limitaciones, seres humanos, bovinos, equinos, felinos, caninos, roedores o primates. En algunas formas de realización, el individuo es un ser humano. El individuo (tal como un ser humano) puede sufrir una enfermedad avanzada o una extensión menor de la enfermedad, tal como una baja carga tumoral. En algunas formas de realización, el individuo se encuentra en una fase precoz de una enfermedad proliferativa (tal como un cáncer). En algunas formas de realización, el individuo se encuentra en una fase avanzada de una enfermedad proliferativa (tal como un cáncer avanzado). En algunas formas de realización, el individuo es HER2 positivo. En algunas formas de realización, el individuo es HER2 negativo.

40 Los métodos se pueden llevar a la práctica en un tratamiento complementario. "Tratamiento complementario" hace referencia a un tratamiento clínico en el que un individuo ha tenido un historial de una enfermedad proliferativa, en particular cáncer y, por lo general (pero no necesariamente) ha respondido a la terapia que incluye, sin limitaciones, cirugía (tal como resección quirúrgica), radioterapia y quimioterapia. Sin embargo, debido a sus antecedentes de enfermedad proliferativa (tal como un cáncer), estos individuos se consideran en riesgo de desarrollar la enfermedad. El tratamiento o administración en el "tratamiento complementario" hace referencia al modo de tratamiento 45 subsiguiente. El grado de riesgo (es decir, cuando un individuo en el "tratamiento complementario" se considera de "alto riesgo" o "bajo riesgo") depende de diversos factores y, con mucha frecuencia, de la extensión de la enfermedad la primera vez que fue tratada. Los métodos ofrecidos en esta memoria también se pueden llevar a la práctica en un nuevo tratamiento complementario, es decir, el método se puede llevar a cabo antes de la terapia 50 primera/definitiva. En algunas formas de realización, el individuo ha sido tratado con anterioridad. En algunas formas de realización, el individuo no ha sido tratado previamente. En algunas formas de realización, el tratamiento es una terapia de primera línea.

Se entiende que los aspectos y formas de realización de la invención descrita en este documento engloban las condiciones de "consistir" o "consistir esencialmente en" aspectos y formas de realización.

55 Terapia de combinación con agentes quimioterapéuticos

5

10

15

20

25

30

35

60

La presente invención ofrece composiciones para usar en métodos de tratamiento del cáncer en un individuo, que comprenden administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina; y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional. En algunas formas de realización, el taxano es uno cualquiera de (y en otras formas de realización, consiste esencialmente en) paclitaxel, docetaxel y ortataxel. En algunas formas de realización, la composición en

nanopartículas comprende Abraxane®. En algunas formas de realización, el agente quimioterapéutico es cualquiera de (y en otras formas de realización, se selecciona del grupo consistente en) agentes antimetabolitos (incluidos análogos de nucleósidos), agentes basados en platino, agentes alquilantes, inhibidores de la tirosina quinasa, antibióticos antraciclínicos, alcaloides de la vinca, inhibidores del proteasoma, macrólidos, e inhibidores de la topoisomerasa.

5

10

15

20

25

30

35

40

55

60

En algunas formas de realización, el tratamiento comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina; y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional. En algunas formas de realización, la composición en nanopartículas de paclitaxel/albúmina tiene un diámetro medio no mayor que aproximadamente 200 nm. En algunas formas de realización, la composición en nanopartículas de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tales como Cremophor). En algunas formas de realización, la relación en peso de albúmina a paclitaxel en la composición es de aproximadamente 18:1 o menor, tal como aproximadamente 9:1 o menor. En algunas formas de realización, el paclitaxel está recubierto con albúmina. En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm y la composición de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tales como Cremophor). En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm y el paclitaxel está recubierto con albúmina. En algunas formas de realización, la composición en nanopartículas es Abraxane®.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de Abraxane®, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional. Las combinaciones farmacológicas preferidas para la administración secuencial o coadministración o administración simultánea con Abraxane® son aquellas que exhiben una actividad antiproliferativa potenciada cuando se les compara con los componentes solos aislados, en especial combinaciones que conducen a la regresión de los tejidos proliferativos y/o curan enfermedades proliferativas.

Los agentes quimioterapéuticos descritos en esta memoria pueden ser los propios agentes, sus sales farmacéuticamente aceptables y sus ésteres farmacéuticamente aceptables, así como estereoisómeros, enantiómeros, mezclas racémicas, y similares. El o los agentes quimioterapéuticos descritos se pueden administrar igualmente como una composición farmacéutica que contiene el o los agentes, en donde la composición farmacéutica comprende un vehículo portador farmacéuticamente aceptable o similar.

El agente quimioterapéutico puede estar presente en una composición en nanopartículas. Por ejemplo, en algunas formas de realización, se proporciona un método de tratamiento del cáncer en un individuo que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina; y b) una cantidad efectiva de una composición que comprende nanopartículas que contienen al menos un agente quimioterapéutico adicional y una proteína portadora (tal como albúmina). En algunas formas de realización, el método comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®); y b) una cantidad efectiva de una composición que comprende nanopartículas que contienen al menos un agente quimioterapéutico adicional y una proteína portadora (tal como albúmina). En algunas formas de realización, el agente quimioterapéutico es cualquiera de (y en algunas formas de realización, se selecciona del grupo consistente en) tiocolchicina o sus derivados (tales como tiocolchicina dimérica, incluidos, por ejemplo, nab-5404, nab-5800 y nab-5801), rapamicina o sus derivados, y geldanamicina o sus derivados (tales como 17-alil amino geldanamicina (17-AAG)). En algunas formas de realización, el agente quimioterapéutico es rapamicina. En algunas formas de realización, el agente quimioterapéutico es 17-AAG.

En esta memoria se proporciona, a modo de ejemplo, una lista no exhaustiva de los agentes quimioterapéuticos contemplados. Agentes quimioterapéuticos apropiados incluyen, por ejemplo, alcaloides de la vinca, agentes que interrumpen la formación de microtúbulos (tales como las colchicinas y sus derivados), agentes antiangiogénicos, anticuerpos terapéuticos, agentes dirigidos contra EGFR, agentes dirigidos contra la tirosina quinasa (tales como inhibidores de tirosina quinasa), complejos de metales de transición, inhibidores del proteasoma, antimetabolitos (tales como análogos de nucleósidos), agentes alquilantes, agentes basados en platino, antibióticos antraciclínicos, inhibidores de la topoisomerasa, macrólidos, anticuerpos terapéuticos, retinoides (tales como todos los ácidos transretinoicos o derivados de los mismos); geldanamicina o un derivado de la misma (tal como 17-AAG), y otros agentes quimioterapéuticos convencionales bien reconocidos en la técnica.

En algunas formas de realización, el agente quimioterapéutico es uno cualquiera (y en algunas formas de realización, se selecciona del grupo consistente en) adriamicina, colchicina, ciclofosfamida, actinomicina, bleomicina, daunorrubicina, doxorrubicina, epirrubicina, mitomicina, metotrexato, mitoxantrona, fluorouracilo, carboplatino, carmustina (BCNU), metil-CCNU, cisplatino, etopósido, interferones, camptotecina y sus derivados, fenesterina, taxanos y sus derivados (por ejemplo, paclitaxel y sus derivados, taxotere y sus derivados, y similares), topotecan, vinblastina, vincristina, tamoxifeno, piposulfano, *nab*-5404, *nab*-5800, Irinotecan, HKP, ortataxel, gemcitabina, Herceptin®, vinorelbina, Doxil®, capecitabina, Alimta®, Avastin®, Velcade®, Tarceva®, Neulasta®, Lapatinib, Sorafenib, sus derivados, agentes quimioterapéuticos conocidos en la técnica y similares. En algunas formas de

realización, el agente quimioterapéutico es una composición que comprende nanopartículas que contienen un derivado de la tiocolchicina y una proteína portadora (tal como albúmina).

En algunas formas de realización, el agente quimioterapéutico es un agente antineoplásico que incluye, sin limitaciones, carboplatino, Navelbine® (vinorelbina), antraciclina (Doxil®), lapatinib (GW57016), Herceptin®, gemcitabina (Gemzar®), capecitabina (Xeloda®), Alimta®, cisplatino, 5-fluorouracilo, epirrubicina, ciclofosfamida, Avastin®, Velcade®, etc.

5

10

25

30

35

40

45

50

55

60

En algunas formas de realización, el agente quimioterapéutico es un antagonista de otros factores que intervienen en el crecimiento tumoral tales como EGFR, ErbB2 (también conocido como Herb), ErbB3, ErbB4 o TNF. En ocasiones, puede ser beneficioso administrar al individuo también una o múltiples citoquinas. En algunas formas de realización, el agente terapéutico es un agente que inhibe el crecimiento. Dosificaciones adecuadas del agente inhibidor del crecimiento son las que se usan en la actualidad, y se pueden reducir gracias a la acción combinada (sinergia) del agente inhibidor del crecimiento y el taxano.

En algunas formas de realización, el agente quimioterapéutico es un agente quimioterapéutico diferente de un anticuerpo anti-VEGF, un anticuerpo HER2, un interferón y un antagonista de HGFβ.

Las referencias a un agente quimioterapéutico en este documento son aplicables al agente quimioterapéutico o sus derivados y, en consecuencia, la invención contempla e incluye cualquiera de estas formas de realización (agente; agente o derivado(s)). "Derivados" o "análogos" de un agente quimioterapéutico u otro resto químico incluyen, sin limitaciones, compuestos que son estructuralmente similares al agente quimioterapéutico o resto, o se encuentran dentro de la misma clase química general que el agente quimioterapéutico o resto. En algunas formas de realización, el derivado o análogo del agente quimioterapéutico o resto conserva una propiedad química y/o física similar (incluida, por ejemplo, la funcionalidad) del agente quimioterapéutico o del resto.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina; y b) una cantidad efectiva de un inhibidor de la tirosina quinasa. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento de un cáncer en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), y b) una cantidad efectiva de un inhibidor de la tirosina guinasa. Inhibidores de la tirosina guinasa adecuados incluyen, por ejemplo, imatinib (Gleevec®), gefitinib (Iressa®), Tarceva, Sutent® (malato de sunitinib), y Lapatinib. En algunas formas de realización, el inhibidor de tirosina quinasa es lapatinib. En algunas formas de realización, el inhibidor de tirosina quinasa es Tarceva. Tarceva es una molécula de pequeño tamaño, inhibidora del factor de crecimiento epidérmico humano tipo 1/receptor del factor de crecimiento epidérmico (HER1/EGFR) que, en un ensayo clínico de Fase III, demostró una supervivencia incrementada en individuos con cáncer de pulmón de células no pequeñas (NSCLC) avanzado. En algunas formas de realización, las composiciones son para tratar un cáncer de mama. incluido el tratamiento del cáncer de mama metastásico, y el tratamiento del cáncer de mama en una terapia neoadyuvante. En algunas formas de realización, las composiciones son para tratar un tumor sólido avanzado. En algunas formas de realización, se ofrecen composiciones para usar en un método para inhibir la proliferación de tumores que expresan EGFR en un mamífero, que comprende administrar a un mamífero infectado con tales tumores Abraxane® y gefitinib, en donde este último se administra en dosificación por pulsos.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un agente antimetabolitos (tal como un análogo de nucleósido, incluidos por ejemplo análogos de purina y análogos de pirimidina). En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), y b) una cantidad efectiva de un agente antimetabolitos. Un "agente antimetabolitos" es un agente que, estructuralmente, es similar a un metabolito, pero no puede ser utilizado por el organismo de manera productiva. Muchos agentes antimetabolitos interfieren con la producción de los ácidos nucleicos ARN y ADN. Por ejemplo, el antimetabolito puede ser un análogo de nucleósido, que incluye, sin limitaciones, azacitidina, azatioprina, capecitabina (Xeloda®), citarabina, cladribina, citosina arabinósido (ara-C, citosar), doxifluridina, fluorouracilo (tal como 5-fluorouracilo), UFT, hidroxiurea, gemcitabina, mercaptopurina, metotrexato, tioguanina (tal como 6-tioguanina). Otros antimetabolitos incluyen, por ejemplo, L-asparaginasa (Elspa), decarbazina (DTIC), 2-desoxi-D-glucosa y procarbazina (matulane). En algunas formas de realización, el análogo de nucleósido es cualquiera de (y en algunas formas de realización, se selecciona del grupo consistente en) gemcitabina, fluorouracilo y capecitabina. En algunas formas de realización, las composiciones son para el tratamiento del cáncer de mama metastásico o del cáncer de mama localmente avanzado. En algunas formas de realización, las composiciones se utilizan en un método de tratamiento de primera línea del cáncer de mama metastásico. En algunas formas de realización, las composiciones se usan en el tratamiento del cáncer de mama en terapia neoadyuvante. En algunas formas de realización, las composiciones son para el tratamiento de NSCLC, cáncer colorrectal metastásico, cáncer de páncreas o de un tumor sólido avanzado.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un agente alquilante. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), y b) una cantidad efectiva de un agente alquilante. Agentes alquilantes apropiados incluyen, sin limitaciones, ciclofosfamida (Cytoxan), mecloretamina, clorambucilo, melfalan, carmustina (BCNU), tiotepa, busulfán, sulfonatos de alquilo, etilen-iminas, análogos de la mostaza nitrogenada, fosfato sódico de estramustina, ifosfamida, nitrosoureas, lomustina y estreptozocina. En algunas formas de realización, el agente alquilante es ciclofosfamida. En algunas formas de realización, la ciclofosfamida se administra antes de la administración de la composición en nanopartículas. En algunas formas de realización, las composiciones están destinadas al tratamiento de una fase precoz del cáncer de mama. En algunas formas de realización, las composiciones se dirigen al tratamiento de un cáncer de mama en una terapia adyuvante o neoadyuvante.

5

10

30

35

60

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un agente basado en platino. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), y b) una cantidad efectiva de un agente basado en platino. Agentes basados en platino apropiados incluyen, sin limitaciones, carboplatino, cisplatino y oxaliplatino. En algunas formas de realización, el agente basado en platino es carboplatino. En algunas formas de realización, las composiciones están destinadas al tratamiento de: cáncer de mama (HER2 positivo o HER2 negativo, incluyendo cáncer de mama metastásico y cáncer de mama avanzado); cáncer de pulmón (incluyendo NSCLC avanzado, NSCLC de primera línea, SCLC y tumores sólidos malignos del pulmón); cáncer de ovario; cáncer de cabeza y cuello; y melanoma (incluido el melanoma metastásico).

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un antibiótico antraciclínico. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), y b) una cantidad efectiva de un antibiótico antraciclínico. Antibióticos antraciclínicos apropiados incluyen, sin limitaciones, Doxil®, actinomicina, dactinomicina, daunorrubicina (daunomicina), doxorrubicina (adriamicina), epirrubicina, idarubicina, mitoxantrona, valrubicina. En algunas formas de realización, la antraciclina es cualquiera de (y en algunas formas de realización, las composiciones están dirigidas al tratamiento de un cáncer de mama en fase precoz. En algunas formas de realización, las composiciones se usan para tratar un cáncer de mama en una terapia adyuvante o neoadyuvante.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un alcaloide de la vinca. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), y b) una cantidad efectiva de un alcaloide de la vinca. Alcaloides de la vinca apropiados incluyen, por ejemplo, vinblastina, vincristina, vindesina, vinorelbina (Navelbine®) y VP-16. En algunas formas de realización, el alcaloide de la vinca es vinorelbina (Navelbine®). En algunas formas de realización, las composiciones se usan para tratar un cáncer de mama de estadio IV, y cáncer de pulmón.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un macrólido. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), y b) una cantidad efectiva de un macrólido. Macrólidos apropiados incluyen, por ejemplo, rapamicina, carbomicina y eritromicina. En algunas formas de realización, el macrólido es rapamicina o un derivado de la misma. En algunas formas de realización, las composiciones se usan para tratar un tumor sólido.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un inhibidor de la topoisomerasa. En algunas formas de realización, la invención ofrece composiciones para usar en un método de

tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), y b) una cantidad efectiva de un inhibidor de la topoisomerasa. En algunas formas de realización, el agente quimioterapéutico es un inhibidor de la topoisomerasa e incluye, por ejemplo, inhibidores de la topoisomerasa I y topoisomerasa II. Ejemplos de inhibidores de la topoisomerasa I incluyen, sin limitaciones, camptotecina tales como Irinotecan y topotecan. Ejemplos de inhibidores de la topoisomerasa II incluyen, sin limitaciones, amsacrina, etopósido, fosfato de etopósido y tenipósido.

5

10

15

20

25

30

35

40

45

50

55

60

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un agente antiangiogénico. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), y b) una cantidad efectiva de un agente anti-angiogénico. En algunas formas de realización, las composiciones están destinadas al tratamiento de cáncer de mama metastásico, cáncer de mama en una terapia adyuvante o neoadyuvante, cáncer de pulmón (tal como NSCLC avanzado de primera línea y NSCLC), cáncer de ovario y melanoma (incluido el melanoma metastásico).

Se han identificado muchos agentes antiangiogénicos que se conocen en la técnica, incluidos los enumerados por Carmeliet y Jain (2000). El agente antiangiogénico puede ser de origen natural o no natural. En algunas formas de realización, el agente quimioterapéutico es un péptido antiangiogénico sintético. Por ejemplo, se ha informado anteriormente de que la actividad antiangiogénica de pequeños péptidos pro-apoptóticos sintéticos comprende dos dominios funcionales, uno dirigido a los receptores CD13 (aminopeptidasa N) en los microvasos tumorales, y el otro que destruye la membrana mitocondrial tras la internalización, *Nat. Med.* 1999, 5(9):1032-8. Una segunda generación de péptidos diméricos, CNGRC-GG-d(KLAKLAK)2, denominados HKP (Hunter Killer Peptide / Péptido Cazador Asesino) ha demostrado tener una actividad antitumoral optimizada. En consecuencia, en algunas formas de realización, el péptido antiangiogénico es HKP. En algunas formas de realización, el agente antiangiogénico es diferente de un anticuerpo anti-VEGF (tal como Avastin®).

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un inhibidor del proteasoma tal como bortezomib (Velcade). En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), y b) una cantidad efectiva de un inhibidor del proteasoma tal como bortezomib (Velcade).

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, y b) una cantidad efectiva de un anticuerpo terapéutico. En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®) y una proteína portadora (tal como albúmina), y b) una cantidad efectiva de un anticuerpo terapéutico. Anticuerpos terapéuticos incluyen, sin limitaciones, anticuerpo anti-VEGF (tal como Avastin® (bevacizumab)), anticuerpo anti-HER2 (tal como Herceptin® (trastuzumab)), Erbitux® (cetuximab), Campath (alemtuzumab), Myelotarg (gemtuzumab), Zevalin (ibritumomab tiuxetan, Rituxan (rituximab), y Bexxar (tositumomab). En algunas formas de realización, el agente quimioterapéutico es Erbitux® (cetuximab). En algunas formas de realización, el agente quimioterapéutico es un anticuerpo terapéutico diferente del anticuerpo contra VEGF o HER2. En algunas formas de realización, las composiciones están dirigidas a tratar el cáncer de mama HER2 positivo, incluido el tratamiento del cáncer de mama avanzado, tratamiento del cáncer metastásico, tratamiento del cáncer de mama en una terapia adyuvante y tratamiento del cáncer de mama en una terapia neoadyuvante. En algunas formas de realización, las composiciones se usan para tratar cualquier tipo de cáncer de mama metastásico, cáncer de mama en una terapia adyuvante o una terapia neoadyuvante, cáncer de pulmón (tal como NSCLC avanzado de primera línea y NSCLC), cáncer de ovario, cáncer de cabeza y cuello, y melanoma (incluido el melanoma metastásico). Por ejemplo, en algunas formas de realización, se ofrecen composiciones para el tratamiento del cáncer de mama metastásico HER2 positivo en un individuo, que comprende administrar al individuo 125 mg/m² de una composición en nanopartículas de paclitaxel/albúmina (tal como Abraxane®) semanalmente durante tres semanas, con descanso en la cuarta semana, concurrentemente con la administración de Herceptin®.

En algunas formas de realización, se administran dos o más agentes quimioterapéuticos además del taxano en la composición en nanopartículas. Estos dos o más agentes quimioterapéuticos pueden (pero no necesariamente) pertenecer a clases diferentes de agentes quimioterapéuticos. En este documento se ofrecen ejemplos de estas combinaciones. Igualmente, se contemplan otras combinaciones.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, b) una cantidad efectiva de un antimetabolito (tal como un análogo de nucleósido, por ejemplo, gemcitabina), y c) un antibiótico antraciclínico (tal como epirrubicina). En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), b) una cantidad efectiva de un antimetabolito (tal como un análogo de nucleósido, por ejemplo, gemcitabina), y c) una cantidad efectiva de un antibiótico antraciclínico (tal como epirrubicina). En algunas formas de realización, las composiciones son para el tratamiento del cáncer de mama en una terapia neoadyuvante. Por ejemplo, en algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer localmente avanzado/inflamatorio en un individuo, que comprende administrar al individuo 220 mg/m² de la composición en nanopartículas de paclitaxel/albúmina (tal como Abraxane®) cada dos semanas; 2000 mg/m² de gemcitabina, cada dos semanas; y 50 individuo, que comprende administrar al individuo 220 mg/m² mg/m² de epirrubicina, cada dos semanas. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer de mama en un individuo en una terapia adyuvante, que comprende administrar al individuo 175 mg/m² de la composición en nanopartículas de paclitaxel/albúmina (tal como Abraxane®) cada dos semanas, 2000 mg/m² de gemcitabina, cada dos semanas, y 50 mg/m² de epirrubicina, cada dos semanas.

5

10

15

20

25

30

35

40

60

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, b) una cantidad efectiva de un agente basado en platino (tal como carboplatino), y c) un anticuerpo terapéutico (tal como un anticuerpo anti-HER2 (tal como Herceptin®) y un anticuerpo anti-VEGF (tal como Avastin®)). En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), b) una cantidad efectiva de un agente basado en platino (tal como carboplatino), y c) un anticuerpo terapéutico (tal como un anticuerpo anti-HER2 (tal como Herceptin®) y un anticuerpo anti-VEGF (tal como Avastin®)). En algunas formas de realización, las composiciones están dirigidas al tratamiento de cualquier tipo de cáncer de mama avanzado, cáncer de mama metastásico, cáncer de mama en una terapia adyuvante, y cáncer de pulmón (incluidos NSCLC y NSCLC avanzado). En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer metastásico en un individuo, que comprende administrar al individuo 75 mg/m² de la composición en nanopartículas de paclitaxel/albúmina (tal como Abraxane®) y carboplatino, AUC=2, en donde la administración se lleva a cabo semanalmente durante tres semanas, con descanso en la cuarta semana. En algunas formas de realización, el tratamiento comprende, adicionalmente, la administración semanal de aproximadamente 2-4 mg/kg de Herceptin®.

En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, b) una cantidad efectiva de un agente basado en platino (tal como carboplatino), y c) un alcaloide de la vinca (tal como Navelbine®). En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), b) una cantidad efectiva de un agente basado en platino (tal como carboplatino), y c) un alcaloide de la vinca (tal como Navelbine®). En algunas formas de realización, las composiciones están dirigidas al tratamiento del cáncer de pulmón.

45 En algunas formas de realización, la invención ofrece composiciones para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano y albúmina, b) una cantidad efectiva de un agente alquilante (tal como ciclofosfamida), y c) un anticuerpo terapéutico (tal como un anticuerpo anti-HER2 (tal como Herceptin®)) y un antibiótico antraciclínico (tal como adriamicina). En algunas formas de realización, la invención ofrece composiciones 50 para usar en un método de tratamiento del cáncer en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina, b) una cantidad efectiva de un agente alquilante (tal como ciclofosfamida), y c) un antibiótico antraciclínico (tal como adriamicina). En algunas formas de realización, las composiciones están dirigidas al tratamiento del cáncer de mama en una terapia adyuvante o neoadyuvante. Por ejemplo, en algunas formas de realización, se proporcionan composiciones para usar en un método de tratamiento de un cáncer de mama en estadio precoz en un individuo, 55 que comprende administrar 260 mg/m² de la composición en nanopartículas de paclitaxel/albúmina (tal como Abraxane®), 60 mg/m² de adriamicina, y 600 mg/m² de ciclofosfamida, en donde la administración se lleva a cabo una vez cada dos semanas.

En la Tabla I se ofrecen otras formas de realización. Por ejemplo, en algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer de mama avanzado en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un paclitaxel y una albúmina (tal como Abraxane®), b) una cantidad efectiva de carboplatino. En algunas formas de realización, el tratamiento comprende, adicionalmente, administrar al individuo una cantidad efectiva de

Herceptin®. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer de mama metastásico en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), b) una cantidad efectiva de gemcitabina. En algunas formas de realización, se ofrecen composiciones para usar en el método de tratamiento del cáncer de pulmón de células no pequeñas avanzado en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), b) una cantidad efectiva de carboplatino.

En algunas formas de realización, se ofrece una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel, docetaxel u ortataxel) y una proteína portadora (tal como albúmina), y al menos un agente quimioterapéutico adicional. Las composiciones descritas en esta memoria pueden comprender cantidades efectivas del taxano y del agente quimioterapéutico para el tratamiento dd una enfermedad proliferativa (tal como el cáncer). En algunas formas de realización, el agente quimioterapéutico y el taxano están presentes en la composición en una relación predeterminada, tales como las relaciones en peso descritas en este documento. En algunas formas de realización, la invención proporciona una composición sinérgica de una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel, docetaxel u ortataxel) y una cantidad efectiva de al menos un agente quimioterapéutico adicional.

En algunas formas de realización, la invención ofrece composiciones farmacéuticas que comprenden nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina) para usar en el tratamiento de una enfermedad proliferativa (tal como cáncer), en donde dicho uso comprende la administración simultánea y/o secuencial de al menos un agente quimioterapéutico adicional. En algunas formas de realización, la invención ofrece una composición farmacéutica que comprende un agente quimioterapéutico para usar en el tratamiento de una enfermedad proliferativa (tal como cáncer), en donde dicho uso comprende la administración simultánea y/o secuencial de una composición que comprende nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina). En algunas formas de realización, la invención ofrece composiciones en nanopartículas que contienen taxano y composiciones que comprenden un agente quimioterapéutico adicional, para ser usadas de forma simultánea y/o secuencial en el tratamiento de una enfermedad proliferativa (tal como cáncer).

Modos de administración

5

10

15

20

25

30

35

40

45

50

55

60

La composición que comprende nanopartículas que contienen taxano (también denominada "composición en nanopartículas") y el agente quimioterapéutico se pueden administrar simultáneamente (es decir, administración simultánea) y/o secuencialmente (es decir, administración secuencial).

En algunas formas de realización, la composición en nanopartículas y el agente quimioterapéutico (incluidos los agentes quimioterapéuticos específicos descritos en este documento) se administran de forma simultánea. La expresión "administración simultánea", como se usa en esta memoria, significa que la composición en nanopartículas y el agente quimioterapéutico se administran con una separación de tiempo no mayor de aproximadamente 15 minutos, por ejemplo no mayor de aproximadamente 10, 5 o 1 minutos. Cuando los medicamentos se administran simultáneamente, el medicamento en las nanopartículas y el agente quimioterapéutico pueden estar contenidos en la misma composición (por ejemplo, una composición que comprende tanto las nanopartículas como el agente quimioterapéutico), o en composiciones separadas (por ejemplo, las nanopartículas están contenidas en una composición y el agente quimioterapéutico está contenido en otra composición). Por ejemplo, el taxano y el agente quimioterapéutico pueden estar presentes en una única composición que contiene al menos dos nanopartículas diferentes, en donde algunas de las nanopartículas en la composición comprenden el taxano y una proteína portadora, y algunas de los restantes nanopartículas de la composición comprenden el agente quimioterapéutico y una proteína portadora. La invención contempla e incluye tales composiciones. En algunas formas de realización, solamente el taxano está contenido en nanopartículas. En algunas formas de realización, la administración simultánea del medicamento en la composición en nanopartículas y el agente quimioterapéutico se puede combinar con dosis suplementarias del taxano y/o del agente quimioterapéutico.

En algunas formas de realización, la composición en nanopartículas y el agente quimioterapéutico se administran de manera secuencial. La expresión "administración secuencial", como se usa en esta memoria, significa que el medicamento en la composición en nanopartículas y el agente quimioterapéutico se administran con una separación en el tiempo mayor de aproximadamente 15 minutos, por ejemplo mayor que aproximadamente 20, 30, 40, 50, 60 o más minutos. En primer lugar, se puede administrar la composición en nanopartículas o el agente quimioterapéutico. La composición en nanopartículas y el agente quimioterapéutico están contenidos en composiciones separadas, que pueden estar contenidas en el mismo o diferentes envases.

En algunas formas de realización, la administración de la composición en nanopartículas y el agente quimioterapéutico son concurrentes, es decir, el periodo de administración de la composición en nanopartículas y el del agente quimioterapéutico se solapan mutuamente. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico es no concurrente. Por ejemplo, en algunas formas de realización, la administración de la composición en nanopartículas finaliza antes de que se administre el agente quimioterapéutico. En algunas formas de realización, la administración del agente quimioterapéutico finaliza antes de administrar la composición en nanopartículas. El periodo de tiempo entre estas dos administraciones no

concurrentes puede estar en el intervalo desde aproximadamente dos a ocho semanas, por ejemplo aproximadamente cuatro semanas.

La frecuencia de dosificación de la composición en nanopartículas que contiene el medicamento y el agente quimioterapéutico se puede ajustar en el curso del tratamiento, en base al juicio del médico responsable del tratamiento. Cuando se administran por separado, la composición en nanopartículas que contiene el medicamento y el agente quimioterapéutico se pueden administrar con diferentes frecuencias o intervalos de dosificación. Por ejemplo, la composición en nanopartículas que contiene el medicamento se puede administrar semanalmente, en tanto que el agente quimioterapéutico se puede administrar con menor o mayor frecuencia. En algunas formas de realización, se puede utilizar una formulación de liberación continua sostenida de la composición en nanopartículas que contiene el medicamento y/o del agente quimioterapéutico. En la técnica son conocidas diversas formulaciones y dispositivos para producir una liberación sostenida.

5

10

15

20

35

40

La composición en nanopartículas y el agente quimioterapéutico se pueden administrar usando la misma vía de administración o vías de administración diferentes. En algunas formas de realización (tanto para administraciones simultáneas como secuenciales), el taxano en la composición en nanopartículas y el agente quimioterapéutico se administran en una relación predeterminada. Por ejemplo, en algunas formas de realización, la relación en peso del taxano en la composición en nanopartículas y el agente quimioterapéutico es de aproximadamente 1 a 1. En algunas formas de realización, la relación en peso puede estar comprendida entre aproximadamente 0,001 a aproximadamente 1, y aproximadamente 1000 a aproximadamente 1, o entre aproximadamente 0,01 a aproximadamente 1, y 100 a aproximadamente 1. En algunas formas de realización, la relación en peso del taxano en la composición en nanopartículas y el agente quimioterapéutico es menor que aproximadamente 100:1, 50:1, 30:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 y 1:1. En algunas formas de realización, la relación en peso del taxano en la composición en nanopartículas y el agente quimioterapéutico es mayor que aproximadamente 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 30:1, 50:1 o 100:1. Se contemplan otras relaciones.

Las dosis necesarias del taxano y/o el agente quimioterapéutico pueden (pero no necesariamente) ser menores que las requeridas normalmente cuando cada producto se administra por separado. De este modo, en algunas formas de realización, se administra una cantidad sub-terapéutica del medicamento en la composición en nanopartículas y/o del agente quimioterapéutico. "Cantidad sub-terapéutica" o "nivel sub-terapéutico" hacen referencia a una cantidad que es menor que la terapéutica, es decir, menor que la cantidad usada normalmente cuando el medicamento en la composición en nanopartículas y/o el agente quimioterapéutico se administran solos. La reducción puede reflejarse en términos de la cantidad administrada en una administración determinada, y/o la cantidad administrada durante un periodo de tiempo determinado (frecuencia reducida).

En algunas formas de realización, se administra agente quimioterapéutico suficiente para permitir la reducción de la dosis normal del medicamento en la composición en nanopartículas requerida para ejercer el mismo grado de tratamiento, en al menos aproximadamente 5%, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90% o más. En algunas formas de realización, se administra suficiente medicamento en la composición en nanopartículas para permitir reducir la dosis normal del agente quimioterapéutico, necesaria para ejercer el mismo grado de tratamiento, en al menos aproximadamente 5%, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90% o más.

En algunas formas de realización, las dosis tanto del taxano en la composición en nanopartículas como del agente quimioterapéutico se reducen en comparación con las correspondientes dosis normales de cada uno de ellos cuando se administran solos. En algunas formas de realización, tanto el taxano en la composición en nanopartículas como el agente quimioterapéutico se administran a un nivel sub-terapéutico, es decir, reducido. En algunas formas de realización, la dosis de la composición en nanopartículas y/o del agente quimioterapéutico es sustancialmente menor que la dosis máxima tóxica (MTD) establecida. Por ejemplo, la dosis de la composición en nanopartículas y/o del agente quimioterapéutico es menor que aproximadamente 50%, 40%, 30%, 20% o 10% de la MTD.

- Es posible utilizar una combinación de las configuraciones de administración descritas en este documento. Los métodos de terapia combinada descritos en esta memoria se pueden llevar a cabo solos o junto con otra terapia tales como cirugía, radiación, quimioterapia, inmunoterapia, terapia génica y similares. Adicionalmente, una persona con mayor riesgo de desarrollar la enfermedad proliferativa puede recibir tratamientos para inhibir y/o retrasar el desarrollo de la enfermedad.
- Tal como lo comprenderán los expertos en la técnica, las dosis apropiadas de los agentes quimioterapéuticos serán aproximadamente las que se emplean ya en terapias clínicas en las que el agente quimioterapéutico se administra solo o en combinación con otros agentes quimioterapéuticos. Las variaciones de dosificación se producirán probablemente en función de la enfermedad tratada. Como se ha descrito anteriormente, en algunas formas de realización, los agentes quimioterapéuticos pueden administrarse a un nivel reducido.
- Las composiciones en nanopartículas descritas en esta memoria pueden ser administradas al individuo (por ejemplo, un ser humano) a través de diversas vías tales como parenteral, incluidas la intravenosa, intraarterial, intraperitoneal, intrapulmonar, oral, por inhalación, intravesical, intramuscular, intratraqueal, subcutánea, intraocular, intratecal, o transdérmica. Por ejemplo, la composición en nanopartículas se puede administrar por inhalación para tratar afecciones de las vías respiratorias. La composición se puede usar para tratar enfermedades tales como fibrosis

pulmonar, bronquiolitis obliterante, cáncer de pulmón, carcinoma bronquio-alveolar, y similares. En algunas formas de realización, la composición en nanopartículas se administra por vía intravenosa. En algunas formas de realización, la composición en nanopartículas se administra por vía oral.

La frecuencia de dosificación de la administración de la composición en nanopartículas depende de la naturaleza de la terapia de combinación y de la enfermedad específica tratada. Como ejemplo de una frecuencia de dosificación se puede mencionar, sin limitaciones, semanal sin interrupciones; semanal, durante tres de cada cuatro semanas; una vez cada tres semanas; una vez cada dos semanas; semanalmente; dos de cada tres semanas. Véase también la Tabla 1.

5

20

35

40

45

50

55

La dosis del taxano en la composición en nanopartículas variará en función de la naturaleza de la terapia de combinación y de la enfermedad particular tratada. La dosis debe ser suficiente para provocar una respuesta deseada tal como una respuesta terapéutica o profiláctica contra una enfermedad particular. Un ejemplo de dosis del taxano (en algunas formas de realización, paclitaxel) en la composición en nanopartículas incluye, sin limitaciones, aproximadamente 50 mg/m², 60 mg/m², 75 mg/m², 80 mg/m², 90 mg/m², 100 mg/m², 120 mg/m², 160 mg/m², 175 mg/m², 200 mg/m², 210 mg/m², 220 mg/m², 260 mg/m², y 300 mg/m². Por ejemplo, la dosificación de paclitaxel en una composición en nanopartículas puede estar en el intervalo de 100-400 mg/m² cuando se administra en un ciclo de 3 semanas, o de 50-250 mg/m² cuando se administra en ciclos semanales. Véase también la Tabla 1.

Otros ejemplos de esquemas de dosificación para la administración de la composición en nanopartículas (tal como la composición en nanopartículas de paclitaxel/albúmina, por ejemplo Abraxane®) incluyen, sin limitaciones, 100 mg/m², semanalmente, sin interrupción; 75 mg/m², semanalmente, durante 3 de cada cuatro semanas; 100 mg/m², semanalmente, durante 3 de cada 4 semanas; 125 mg/m², semanalmente, durante 3 de cada 4 semanas; 125 mg/m², semanalmente, sin interrupción; 175 mg/m², una vez cada 2 semanas; 260 mg/m², una vez cada 3 semanas; 130 mg/m², una vez cada 3 semanas; 180-300 mg/m², cada tres semanas; 60-175 mg/m², semanalmente, sin interrupción. Adicionalmente, el taxano (solo o en terapia de combinación) se puede administrar siguiendo un régimen de dosificación metronómica descrito en este documento.

Ejemplos de regímenes de dosificación de la terapia combinada de la composición en nanopartículas (tal como la composición en nanopartículas de paclitaxel/albúmina, por ejemplo Abraxane®) y otros agentes incluyen, sin limitaciones, 125 mg/m², semanalmente, durante 2 de cada 3 semanas; más 825 mg/m² de Xeloda®, a diario; 260 mg/m², una vez cada 2 semanas, más 60 mg/m² de adriamicina y 600 mg/m² de ciclofosfamida, una vez cada dos semanas; 220-340 mg/m², una vez cada tres semanas, más carboplatino AUC=6, una vez cada tres semanas; 100-150 mg/m², semanalmente, más carboplatino, AUC=6, una vez cada tres semanas; 175 mg/m², una vez cada dos semanas, más 2000 mg/m² de gemcitabina y 50 mg/m² de epirrubicina, una vez cada dos semanas; y 75 mg/m², semanalmente, durante tres de cada cuatro semanas, más carboplatino, AUC=2, semanalmente, durante tres de cada cuatro semanas.

En algunas formas de realización, la composición en nanopartículas del taxano y el agente quimioterapéutico se administran de acuerdo con cualquiera de los regímenes de dosificación descritos en la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer de mama en un individuo, que comprende administrar al individuo a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos otro agente quimioterapéutico, según se indica en las Filas 1 a 35 en la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico puede seguir cualquiera de los regímenes de dosificación indicados en las Filas 1 a 35 de la Tabla 1. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento del cáncer de mama metastásico en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina; y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 2, 4-8 y 10-15 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico puede seguir cualquiera de los regímenes de dosificación indicados en las Filas 2, 4-8 y 10-15 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de mama avanzado en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 1 y 16 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede efectuar bajo cualquiera de los regímenes de dosificación indicados en las Filas 1 y 16 de la Tabla 1. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de mama de estadio IV en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en la Fila 3 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según el régimen de dosificación indicado en la Fila 3 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de mama en un individuo en una terapia adyuvante, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 18 a 24 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 18 a 24 de la Tabla 1.

5

10

25

30

35

50

55

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de mama en un individuo en una terapia neoadyuvante, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 25 a 35 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 25 a 35 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de pulmón en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 36 a 48 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 36 a 48 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de NSCLC (incluidos NSCLC avanzado y NSCLC de primera línea) en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 36 a 40 y 42 a 43 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 36 a 40 y 42 a 43 de la Tabla 1. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un tumor sólido maligno avanzado de pulmón en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en la Fila 41 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en la Fila 41 de la Tabla 1. En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de SCLC en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en la Fila 48 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según los regímenes de dosificación indicados en la Fila 48 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de ovario en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 49 a 52 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 49 a 52 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de cabeza y cuello en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 53 a 55 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 53 a 55 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un tumor sólido (incluidos tumores sólidos avanzados) en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 56 a 59 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 56 a 59 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un melanoma (incluido el melanoma metastásico) en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 60 a 63 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 60 a 63 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer colorrectal avanzado en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en la Fila 64 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según el régimen de dosificación indicado en la Fila 64 de la Tabla 1.

En algunas formas de realización, se ofrecen composiciones para usar en un método de tratamiento de un cáncer de páncreas en un individuo, que comprende administrar al individuo: a) una cantidad efectiva de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel) y una albúmina, y b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, según se indica en las Filas 65 a 66 de la Tabla 1. En algunas formas de realización, la administración de la composición en nanopartículas y del agente quimioterapéutico se puede realizar según cualquiera de los regímenes de dosificación indicados en las Filas 65 a 66 de la Tabla 1.

20 TABLA 1

5

10

15

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
1.	ABX + Carboplatino + Herceptin®	ABX: 100 mg/m² D1, 8, 15, cada 4 sem. x 6 Carbo: AUC = 2, D1, 8, 15, cada 4 sem. x 6 Herceptin®: 4 mg/kg en sem. 1, 2 mg/kg en todas las sem. siguientes.	Cáncer de Mama HER2+ Avanzado	Estudio de fase II de terapia de primera o segunda línea, de dosis densa, semanal, con paclitaxel en nanopartículas (ABI-007), carboplatino® y Herceptin®, en cáncer de mama HER2+ avanzado.
2.	ABX solo (+ Herceptin®)	ABX: 125 mg/m ² a la semana x 3/4	Cáncer de Mama Metastásico (MBC)	Ensayo en Fase II de monoterapia semanal con Abraxane® en MBC de 1ª línea (más Herceptin® en pacientes HER2+)
3.	ABX + Navelbine® (±G- CSF)	L1: ABX: 80 mg/m ² Nav: 15 mg/m ² L2: ABX: 90 mg/m ² Nav: 20 mg/m ² L3: ABX: 100 mg/m ² Nav: 22,5 mg/m ² L4: ABX: 110 mg/m ² Nav: 25 mg/m ² L5: ABX: 125 mg/m ² Nav: 25 mg/m ² cada semana, todos los niveles	Cáncer de Mama de Estadio IV	Estudio de fase I-II de terapia semanal de ABX + Navelbine®, con o sin G-SCF, en cáncer de mama de estadio IV
4.	ABX + Xeloda®	ABX: 125 mg/m ² cada semana 2/3 Xeloda®: 825 mg/m ² D1-14 cada 3 sem.	Cáncer de Mama Metastásico	Ensayo de Fase II de terapia de 1ª línea de ABX + Xeloda® en MBC.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
5.	ABX + Antraciclina		Cáncer de Mama Metastásico	Ensayo de Fase I/II de ABX más Doxil® en MBC más PK limitada.
6.	ABX + Gemcitabina	ABX: 125 mg/m ² Gem: 1000 mg/m ² semanal x 2/3	Cáncer de Mama Metastásico	Ensayo Aleatorizado de Fase II de terapia semanal con Paclitaxel nab (unido a nanopartículas) (nab-paclitaxel) en Combinación con Gemcitabina en Pacientes con Cáncer de Mama Metastásico HER2 Negativo.
7.	ABX + Lapatinib		Cáncer de Mama Metastásico	Fase I/II Abraxane® + GW572016.
8.	ABX + Lapatinib	ABX: 100 mg/m² a la semana x ¾ Lapatinib: inicio con 1000 mg/d x 2 días	Cáncer de Mama Metastásico	Estudio de Fase I de incremento de dosis de un pulso de sensibilización de 2 días con lapatinib oral, administrado antes de la administración intravenosa semanal de Abraxane® en pacientes con tumores sólidos avanzados.
9.	ABX + FEC (+ Herceptin®)	ABX: 220 mg/m² cada 2 sem x 6, seguido de FEC: 4 ciclos (+Herceptin® en pacientes HER2+)	Cáncer de Mama	Ensayo preoperatorio de Fase II de Abraxane® seguido de FEC (+ Herceptin® según sea apropiado) en el cáncer de mama.
10.	ABX + Carboplatino + Avastin®	ABX: 100 mg/m² cada sem. D1, 8, 15 Carbo: AUC = 2 cada sem. D1, 8, 15 Avastin®: 10 mg/m² cada 2 sem.	Cáncer de Mama Metastásico (HER2-, ER-, PR-)	Estudio de Dase II de seguridad y tolerabilidad de Abraxane®, Avastin® y carboplatino en pacientes con cáncer de mama metastásico triple negativo.
11.	ABX + Avastin®	ABX: 130 mg/m² cada sem. + Avastin® frente a ABX: 260 mg/m² cada 2 sem. + Avastin® frente a ABX: 260 mg/m² cada 3 sem + Avastin®	Cáncer de Mama Metastásico	Ensayo de Fase II de tres ramas, en pacientes con MBC HER2 negativo de 1ª línea.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
12.	ABX + Avastin®	ABX: 125 mg/m ² cada sem. x ¾ + Avastin®	Cáncer de Mama Metastásico	Estudio de rama única de Abraxane® y Avastin® en MBC de 1ª línea.
13.	ABX + Avastin®	ABX + Avastin® cada sem. frente a Taxol® + Avastin® cada sem.	Cáncer de Mama Metastásico	Ensayo Aleatorizado de Fase III en MBC de 1ª y 2ª líneas con análisis de correlatos biológicos.
14.	ABX + Xeloda® + Lapatinib		Cáncer de Mama Metastásico	Fase II; Abraxane® en combinación con Xeloda® y Lapatinib en cáncer de mama metastásico.
15.	ABX + Gemcitabina	ABX: 3000 mg/m ² D1 cada 3 sem. Gem: 1250 mg/m ² D1, 8 cada 3 sem.	Cáncer de Mama Metastásico	Estudio de Fase II de Rama Única de Abraxane® y gemcitabina en MBC de 1ª línea.
16.	ABX + RAD001		Cáncer de Mama Avanzado	Estudio de Fase I/II de Abraxane® en combinación con RAD001 en pacientes con cáncer de mama avanzado.
17.	ABX + Sutent®		Cáncer de Mama	Estudio de Fase I de Abraxane® en combinación con Sutent®.
18.	ABX + AC + G- CSF (+ Herceptin®)	AC + G-CSF cada 2 sem. x 4, seguido de ABX: 260 mg/m² cada 2 sem. x 4 (+ Herceptin® en pacientes HER2+)	Cáncer de Mama Terapia Adyuvante	Abraxane® en quimioterapia adyuvante de dosis densa para el cáncer de mama de estadio precoz.
19.	ABX + AC + G- CSF (+ Herceptin®)	AC + G-CSF en dosis densa seguidos de ABX (+ Herceptin® en pacientes HER2+) cada semana	Cáncer de Mama Terapia Adyuvante	Ensayo piloto adyuvante, de Fase II, de Abraxane® en el cáncer de mama.
20.	ABX + AC	AC seguido de ABX: 260 mg/m ² frente a AC seguido de Taxol® Duración de la prescripción: 16 sem.	Cáncer de Mama Terapia Adyuvante	Ensayo de Registro de Terapia Adyuvante de Dosis Densa.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
21.	ABX + AC (+G- CSF)	AC cada 2 sem. seguido de ABX: 260 mg/m² + G-CSF cada 2 sem. Duración de la prescripción 16 sem.	Cáncer de Mama Terapia Adyuvante	Estudio piloto de Fase Il de dosis densa de Abraxane® en cáncer de mama.
22.	ABX + AC (+ Avastin®)	AC de dosis densa seguido de ABX 8+ Avastin® en pacientes HER2+)	Cáncer de Mama Terapia Adyuvante	Estudio piloto de terapia adyuvante en cáncer de mama.
23.	ABX + AC	AC seguido de ABX cada 2 o 3 sem.	Cáncer de Mama Terapia Adyuvante	Estudio BIG: Quimioterapia adyuvante de dosis densa frente a convencional.
24.	ABX (ABI-007) + AC + Neulasta®	AC seguido de ABX cada 2 sem. x 4	Cáncer de Mama Terapia Adyuvante	Estudio Piloto de Fase II que Evalúa la Seguridad de un Régimen en Dosis Densa –AC x 4 => ABI-007 x 4 cada 2 semanas + Neulasta® - Administrado como Quimioterapia Adyuvante a Mujeres de Alto Riesgo con Cáncer de Mama Precoz.
25.	ABX + FEC (+ Herceptin®)	ABX: 100 mg/m² cada sem. x 12, seguido de 5-FU: 500 mg/m² cada 3 sem. Epirrubicina: 100 mg/m² (sin Herceptin®) o Epirrubicina: 75 mg/m² (con Herceptin® en pacientes HER2+) Ciclofosfamida: 500 mg/m² cada sem.	Cáncer de Mama Localmente Avanzado – Terapia Adyuvante	Estudio de Fase II de Quimioterapia Neoadyuvante con Administración Semanal Secuencial de Paclitaxel Unido a Nanopartículas (Abraxane®) Seguida de 5-Fluorouracilo, Epirrubicina, Ciclofosfamida (FEC) en Cáncer de Mama Localmente Avanzado.
26.	ABX + Gemcitabina + Epirrubicina	Rama 1: Neoadyuvante: Gem: 2000 mg/m², ABX: 175 mg/m², Epi 50 mg/m² cada 2 sem. x 6 Rama 2: Adyuvante: Gem: 2000 mg/m², ABX: 220 mg/m² cada 2 sem. x 4	Cáncer de Mama Terapia Neoadyuvante	Ensayo de Fase II de Terapia Neoadyuvante de Gemcitabina, Epirrubicina, ABI-007 (GEA) en Cáncer de Mama Localmente Avanzado o Inflamatorio.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
27.	ABX + Hercepin®	ABX: 260 mg/m² cada 2 sem. + Herceptin® seguidos de Navelbine® + Herceptin®	Cáncer de Mama Terapia Neoadyuvante	Estudio Multicéntrico de Fase II de Terapia Neoadyuvante.
28.	ABX + Carboplatino (+ Herceptin®) + AC	TAC frente a AC seguido de ABX + carbo frente a AC seguido de ABX + carbo + Herceptin®	Cáncer de Mama Terapia Neoadyuvante	Ensayo aleatorizado de Fase II, de 3 ramas de dosis densa de quimioterapia neoadyuvante, en pacientes con cáncer de mama.
29.	ABX + Capecitabina	ABX: 260 mg/m ² cada 3 sem. x 4 Xeloda® 850 mg/m ² D1-14 cada 3 sem. x 4	Cáncer de Mama Terapia Neoadyuvante	Ensayo de Fase II de terapia neoadyuvante con Abraxane® y capecitabina en cáncer de mama localmente avanzado.
30.	ABX + Carboplatino (+ Avastin®)	ABX cada sem. carbo cada sem. + Avastin® en pacientes HER2+	Cáncer de Mama Terapia Neoadyuvante	Ensayo de Fase I/II de quimioterapia neoadyuvante (NCT) con administración semanal de paclitaxel en nanopartículas (ABI-007, Abraxane®) en combinación con carboplatino y Avastin® en estadio clínico I-III.
31.	ABX + Carboplatino + Herceptin® + Avastin®	ABX: 100 mg/m² cada sem. x 3/4 Carbo: AUC = 5 + Herceptin® + Avastin® Ciclo de 4 semanas x 6	Cáncer de Mama Terapia Neoadyuvante	Estudio de Fase II de administración semanal de bevacizumab con administración semanal de Trastuzumab, ABI-007 y carboplatino como terapia preoperatoria en tumores de cáncer de mama con amplificación del gen HER2-neu.
32.	ABX + Lapatinib	ABX: 260 mg/m ² cada 3 sem. Lapatinib: 1000 mg/día	Cáncer de Mama Terapia Neoadyuvante	Ensayo piloto neoadyuvante con combinación de ABI- 007 (Abraxane®) y GW572016.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
33.	ABX + Capecitabina	ABX: 200 mg/m ² cada 3 sem. x 4 Xeloda®: 1000 mg/m ² D1-14 cada 3 sem. x 4	Cáncer de Mama Terapia Neoadyuvante	Ensayo neoadyuvante de Fase II de Abraxane® y capecitabina en cáncer de mama localmente avanzado.
34.	ABX ± Avastin® + AC (+ G-CSF)	ABX cada sem. ± Avastin®, seguido de A cada sem. + C diario frente a Taxol® cada sem. ± Avastin®, seguido de A cada sem. + C diario.	Cáncer de Mama Terapia Neoadyuvante	Ensayo de Fase II de paclitaxel frente a Abraxane®, con o sin Avastin® en combinación con doxorrubicina y ciclofosfamida más G-CSF.
35.	ABX + AC	ABX seguido de AC	Cáncer de Mama Terapia Neoadyuvante	Ensayo neoadyuvante de Fase II con análisis de expresión génica.
36.	ABX + Carboplatino + Avastin®	ABX: 300 mg/m² cada 3 sem. Carbo: AUC = 6 cada 3 sem. Avastin®: 15 mg/kg 4 ciclos	NSCLC Avanzado de 1ª línea	Ensayo abierto de Fase II de Abraxane®, carboplatino y Avastin® en pacientes con cáncer de pulmón de células no pequeñas y no escamosas avanzado.
37.	ABX + Carboplatino	L1: ABX: 225 mg/m ² L2: ABX: 260 mg/m ² L3: ABX: 300 mg/m ² Cohortes 1-4: ABX cada 3 sem. Cohortes 5-7: ABX semanal Cohorte 8: 75 pacientes adicionales Carbo fijado a AUC = 6 cada 3 sem.	NSCLC Avanzado	Estudio piloto de toxicidad de Fase II de Abraxane® y carboplatino en cáncer de pulmón de células no pequeñas.
38.	ABX + Carboplatino	Carbo: AUC = 6 + ABX frente a Carbo: AUC = 6 + Taxol®: 225 mg/m ²	NSCLC de 1ª línea	Registro de Fase III- Terapia de 1ª línea de NSCLC.
39.	ABX + Carboplatino	ABX: 100 mg/m ² D1, 8, 15 Carbo: AUC = 6 cada 4 sem. Corrección: ABX: 125 mg/m ² D1, 8, 15	NSCLC de 1ª línea	Ensayo de Fase II de Abraxane® semanal más carboplatino en NSCLC de 1ª línea.
40.	ABX + Carboplatino + Avastin®	Semanalmente.	NSCLC	

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
41.	ABX + Carboplatino	Rama 1: ABX: 100, 125, 150 mg/m² D1, 8, 15 cada 4 sem. Rama 2: ABX: 220, 260, 300, 340 mg/m² cada 3 sem. Rama 3: ABX: 100, 125, 150 mg/m² D1, 8 Carbo: AUC = 6 en todas las ramas	Cáncer de Pulmón – Tumor Maligno Sólido Avanzado	Ensayo de Fase I de carboplatino y Abraxane® en un esquema semanal y cada tres semanas en pacientes con Tumores Malignos Sólidos Avanzados
42.	ABX + Gemcitabina o ABX + Avastin®		NSCLC	Abraxane® en combinación con gemcitabina o Avastin®
43.	ABX + Gemcitabina		NSCLC	Ensayo de Fase I de Abraxane® en combinación con gemcitabina.
44.	ABX + Carboplatino + Avastin®	ABX: 225, 260, 300 mg/m ² Carbo: AUC = 6 cada 3 sem. + Avastin®	Cáncer de Pulmón	Estudio de Fase I/II de Abraxane® y carboplatino AUC=6, más Avastin® (Diseño convencional 3+3 de Fase I; Fase II: 40 pacientes).
45.	ABX + Alimta®	ABX: 220, 260, 300 mg/m² cada 3 sem. Pemetrexed: 500 mg cada 3 sem.	Cáncer de Pulmón	Estudio de Fase I/II de Abraxane® + Alimta® en NSCLC de 2ª línea.
46.	ABX + Cisplatino		Cáncer de Pulmón	Ensayo de Fase I/II de Abraxane® más cisplatino en NSCLC avanzado.
47.	ABX + Navelbine® + Cisplatino		Cáncer de Pulmón	Estudio de Fase I/II de Abraxane®, Navelbine® y Cisplatino para el tratamiento de NSCLC avanzado.
48.	ABX + Carboplatino	ABX: 300 mg/m² cada 3 sem. Carbo: AUC = 6 cada 3 sem.	SCLC	Ensayo de Fase II de Abraxane® y carboplatino en cáncer de pulmón de células pequeñas en estadio extendido.
49.	ABX + Carboplatino	ABX: 100 mg/m² cada sem. x ¾ Carbo: AUC = 6	Cáncer de Ovario	Ensayo de Fase II de Abraxane® + Carboplatino en cáncer de ovario recurrente.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
50.	ABX + Carboplatino	ABX: semanalmente ABX: cada 3 sem. Carbo: AUC = 6 en ambas ramas	Cáncer de Ovario	Estudio de Fase I de Abraxane® más carboplatino para el tratamiento del cáncer de ovario avanzado.
51.	ABX + Carboplatino	ABX: TBD* por ABI-CA034 frente a Taxol® 175 mg/m² Carbo: AUC = 6 en ambas ramas *TBD = por definir	Cáncer de Ovario	Ensayo de registro, 1ª línea, óptimamente vaciado por cirugía. Carbo AUC=6 + ABX frente a Carbo + Taxol® 175 mg/m². Variable: Supervivencia libre de recidivas, supervivencia.
52.	ABX + Avastin®	ABX: 100 mg/m² cada sem. x ¾ Avastin®: 10 mg/m² cada 2 sem.	Cáncer de Ovario	Estudio de Fase II de bevacizumab con Abraxane® en pacientes con carcinoma ovárico epitelial primario o peritoneal primario, recurrentes y resistentes al platino,
53.	ABX + 5-FU + Cisplatino	ABX: D1 5-FU: 750 mg/m² CIV x 5 Cisplatino: 75 mg/m² D1, seguido de radioterapia/cirugía	Cáncer de Cabeza y Cuello	Estudio de Fase II de Abraxane® en combinación con 5- FU y cisplatino en cáncer de cabeza y cuello localizado, irresecable.
54.	ABX + 5-FU + Cisplatino	5-FU: 750 mg/m ² CIV x 5 Cisplatino: 75 mg/m ² D1 ± ABX D1 seguido de radioterapia/cirugía	Cáncer de Cabeza y Cuello	Estudio de Fase III de 5-FU y cisplatino, con o son Abraxane® en cáncer de cabeza y cuello localizado irresecable.
55.	ABX + Cetuximab		Cáncer de Cabeza y Cuello	Ensayo multicéntrico de Fase II de Abraxane® en combinación con cetuximab en el tratamiento de 1ª línea de cáncer de cabeza y cuello localmente avanzado o metastásico.
56.	ABX + Rapamicina	ABX: 100 mg/m² cada sem. Rapamicina: 5-40 mg, aumento de dosis	Tumores Sólidos	Estudio de Fase I de Rapamicina en combinación con Abraxane® en tumores sólidos avanzados.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
57.	ABX + Satraplatino		Tumores Sólidos	Ensayo de Fase I de Abraxane® y Satraplatino.
58.	ABX + Gemcitabina	ABX: 180, 220, 260, 300, 340 mg/m ² cada 3 sem. Gemcitabina: 1000 mg/m ² D1 y D8	Tumores Sólidos Avanzados	Ensayo de Fase I de Abraxane® en combinación con Gemcitabina.
59.	ABX + Gefitinib	ABX: 100 mg/m² cada sem. x ¾ Gefitinib: Dosis inicial de 1000 mg/d x 2	Tumores Sólidos Avanzados	Estudio de Fase I de incremento de dosis del pulso de quimiosensibilización con gefitinib, administrado con anterioridad a Abraxane® semanal.
60.	ABX + Avastin®		Melanoma Metastásico	Estudio de Fase II de Abraxane® y Avastin® en melanoma metastásico.
61.	ABX + Avastin®		Melanoma	Abraxane® y Avastin® como terapia de pacientes con melanoma maligno.
62.	ABX + Carboplatino		Melanoma Metastásico	Estudio de Fase II de Abraxane® y carboplatino en melanoma metastásico.
63.	ABX + Sorafenib + Carboplatino	ABC: semanalmente Sorafenib: D2-19 Carbo: AUC = 6 D1	Melanoma Metastásico	Estudio de Fase II de Abraxane® en combinación con carboplatino y sorafenib en melanoma metastásico.
64.	ABX + Capecitabina		Cáncer Colorrectal Metastásico (tras fracaso de la terapia basada en oxaliplatino y la terapia basada en Irinotecan)	Ensayo de Fase II de Abraxane® en combinación con Xeloda® de pacientes con cáncer colorrectal avanzado o metastásico, tratados anteriormente.
65.	ABX + Gemcitabina	Semanalmente	Cáncer de Páncreas	Estudio de Fase I de Abraxane® en combinación con gemcitabina en cáncer de páncreas.
66.	ABX + Gemcitabina	ABX + Gem frente a Gem.	Cáncer de Páncreas	Ensayo de registro de Fase III en cáncer de páncreas.

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
67.	ABX + agentes anti- angiogénicos			Abraxane® combinado con agentes anti- angiogénicos, por ejemplo, Avastin®.
68.	ABX + inhibidores del proteasoma			Abraxane® combinado con inhibidores del proteasoma, por ejemplo, Velcade®
69.	ABX + inhibidores de EGFR			Abraxane® combinado con inhibidores de EGFR, por ejemplo, Tarceva®.

Como se usa en este documento (por ejemplo, en la Tabla 1), ABX se refiere a Abraxane®; GW572016 se refiere a lapatinib; Xel se refiere a capecitabina o Xeloda®; bevacizumab también se conoce como Avastin®; trastuzumab es conocido también como Herceptin®; pemetrexed se conoce también como Alimta®; cetuximab se conoce también como Erbitux®; gefinitinib se conoce también como Iressa®; FEC se refiere a una combinación de 5-fluorouracilo, Epirrubicina y Ciclofosfamida; AC se refiere a una combinación de Adriamicina más Ciclofosfamida; TAC se refiere al régimen adyuvante para el cáncer de mama aprobado por la FDA; RAD001 se refiere a un derivado de ofrapamicina; NSCLC se refiere a cáncer de pulmón de células pequeñas.

Como se usa en esta memoria (por ejemplo, en la Tabla 1), AUC se refiere al área bajo la curva; cada 4 sem. se refiere a una dosis cada 4 semanas; cada 3 sem. se refiere a una dosis cada 3 semanas; cada 2 sem. se refiere a una dosis semanal; cada sem. x 3/4 se refiere a una dosis semanal durante 3 semanas, con descanso en la 4ª semana; cada sem. x 2/3 se refiere a una dosis semanal durante 2 semanas, con descanso en la 3ª semana. [CIV significa asociación de carboplatino, ifosfamida y vincristina].

15 Terapia de combinación con radioterapia y cirugía

10

20

25

30

35

40

Los presentes inventores describen, igualmente, un método para tratar una enfermedad proliferativa (tal como cáncer), que comprende una primera terapia que consiste en administrar un taxano (en particular, nanopartículas que comprenden un taxano) y una proteína portadora, y una segunda terapia que comprende radiación y/o cirugía.

Los presentes inventores describen también un método que comprende: a) una primera terapia que consiste en administrar al individuo una composición que comprende nanopartículas que contienen una cantidad efectiva de un taxano y una proteína portadora (tal como albúmina), y b) una segunda terapia que comprende radioterapia, cirugía, o combinaciones de las mismas. En algunas formas de realización, el taxano está recubierto con la proteína portadora (por ejemplo, albúmina). En algunas formas de realización, la segunda terapia es radioterapia. En algunas formas de realización, la segunda terapia es cirugía.

El método puede comprender a) una primera terapia que incluye administrar al individuo una composición que comprende nanopartículas que contienen paclitaxel y una albúmina; y b) una segunda terapia, que incluye radioterapia, cirugía, o combinaciones de las mismas. En algunas formas de realización, la segunda terapia es radioterapia. En algunas formas de realización, la segunda terapia es cirugía. En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm. En algunas formas de realización, la composición en nanopartículas de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivo (tal como Cremophor). En algunas formas de realización, la relación en peso de albúmina a paclitaxel en la composición es de aproximadamente 18:1 o menor, por ejemplo, de 9:1 o menor. En algunas formas de realización, el paclitaxel está recubierto con albúmina. En algunas formas de realización, las nanopartículas de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivo (tal como Cremophor). En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm, y el paclitaxel está recubierto con albúmina. En algunas formas de realización, la composición en nanopartículas es Abraxane®.

La administración de la composición en nanopartículas puede ser previa a la radiación y/o cirugía, posterior a la radiación y/o cirugía, o concurrente con la radiación y/o cirugía. Por ejemplo, la administración de la composición en

nanopartículas puede preceder o ser posterior a la terapia de radiación y/o cirugía en intervalos que fluctúan desde minutos hasta semanas. En algunas formas de realización, el periodo de tiempo entre la primera y segunda terapia es tal que el taxano y la radiación/cirugía siguen siendo capaces de ejercer un efecto combinado ventajoso sobre la célula. Por ejemplo, el taxano (tal como paclitaxel) en la composición en nanopartículas se puede administrar menos de aproximadamente 1, 3, 6, 9, 12, 18, 24, 48, 60, 72, 84, 96, 108 o 120 horas antes de la radiación y/o cirugía. En algunas formas de realización, la composición en nanopartículas se administra menos de aproximadamente 9 horas antes de la radiación y/o cirugía. En algunas formas de realización, la composición en nanopartículas se administra menos de aproximadamente 1, 2, 3, 4, 5, 6, 7, 8, 9 o 10 días antes de la radiación/cirugía. En algunas formas de realización, el taxano (tal como paclitaxel) en la composición en nanopartículas se administra menos de aproximadamente 1, 3, 6, 9, 12, 18, 24, 48, 60, 72, 84, 96, 108 o 120 horas después de la radiación y/o cirugía. En algunas formas de realización, puede ser deseable ampliar significativamente el periodo de tiempo del tratamiento, transcurriendo un espacio de varios días hasta varias semanas entre las dos terapias.

5

10

15

20

25

30

35

40

45

50

55

La radiación contemplada en este documento incluye, por ejemplo, rayos γ, rayos X (radiación externa) y el aporte dirigido de radioisótopos a las células tumorales. Asimismo, se contemplan otras formas de factores que dañan el ADN tales como microondas y radiación UV. La radiación se puede administrar en una única dosis o en una serie de dosis bajas en un programa de dosis fraccionadas. La cantidad de radiación contemplada en esta memoria se encuentra en el intervalo de aproximadamente 1 hasta aproximadamente 100 Gy, incluidos, por ejemplo, aproximadamente 5 hasta aproximadamente 80, aproximadamente 10 hasta aproximadamente 50 Gy, o aproximadamente 10 Gy. La dosis total se puede aplicar en un régimen fraccional. Por ejemplo, el régimen puede comprender dosis individuales fraccionadas de 2 Gy. Los intervalos de dosificación para los radioisótopos varían ampliamente, y dependen de la semivida del isótopo y de la potencia y tipo de radiación emitidas.

Cuando la radiación comprende el uso de isótopos radioactivos, el isótopo se puede conjugar con un agente de direccionamiento tal como un anticuerpo terapéutico, que lleva el radionucleótido hasta el tejido diana. Isótopos radioactivos apropiados incluyen, sin limitaciones, astatina²¹¹, carbono¹⁴, cromo⁵¹, cloro³⁶, hierro⁵⁷, cobalto⁵⁸, cobre⁶⁷, Eu¹⁵², galio⁶⁷, hidrógeno³, yodo¹²³, indio¹¹¹, hierro⁵⁹, fósforo³², renio¹⁸⁶, selenio⁷⁵, azufre³⁵, tecnecio^{99m} y/o itrio⁹⁰.

En algunas formas de realización, se aplica al individuo radiación suficiente para permitir una reducción de la dosis normal de taxano (tal como paclitaxel) en la composición en nanopartículas necesario para ejercer el mismo grado de tratamiento en al menos aproximadamente 5%, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90% o más. En algunas formas de realización, se administra taxano suficiente en la composición en nanopartículas para permitir reducir la dosis normal de la radiación requerida para desarrollar el mismo grado de tratamiento en al menos aproximadamente 5%, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90% o más. En algunas formas de realización, las dosis tanto del taxano (tal como paclitaxel) en la composición en nanopartículas como de la radiación se reducen en comparación con la correspondiente dosis normal de cada uno cuando se usan por separado.

En algunas formas de realización, la combinación de administración de la composición en nanopartículas y radioterapia produce efectos supra-aditivos. En algunas formas de realización, el taxano (tal como paclitaxel) en la composición en nanopartículas se administra una vez a una dosis de 90 mg/kg, y la radiación se aplica cinco veces a 80 Gy diarios.

La cirugía descrita en esta memoria incluye resección, en la que se elimina, escinde y/o destruye físicamente la totalidad o parte del tejido canceroso. Resección del tumor hace referencia a la eliminación física de al menos parte de un tumor. Además de la resección del tumor, el tratamiento quirúrgico incluye cirugía láser, criocirugía, electrocirugía, y cirugía controlada por microscopia (cirugía de Mohs). Se contemplan igualmente la eliminación por cirugía superficial de tejidos pre-cancerosos o tejidos normales.

La radioterapia y/o la cirugía se pueden llevar a cabo de forma adicional a la administración de agentes quimioterapéuticos. Por ejemplo, el individuo puede recibir, en primer lugar, la administración de una composición en nanopartículas que contiene taxano y al menos otro agente quimioterapéutico, y someterse subsiguientemente a radioterapia y/o cirugía. De manera alternativa, el individuo puede ser tratado, inicialmente, con radioterapia y/o cirugía, seguidas a continuación por la administración de una composición en nanopartículas y al menos un agente quimioterapéutico adicional. Se contemplan, igualmente, otras combinaciones.

La administración de composiciones en nanopartículas, descrita anteriormente junto con la administración de agentes quimioterapéuticos, es aplicable también a la que se lleva a cabo junto con radioterapia y/o cirugía.

En algunas formas de realización, la composición en nanopartículas del taxano y/o el agente quimioterapéutico se administra conjuntamente con radiación, de acuerdo con cualquiera de los regímenes de dosificación descritos en la Tabla 2.

Los presentes inventores describen asimismo un método de tratamiento del NSCLC en un individuo, que comprende a) una primera terapia que incluye administrar al individuo una composición que comprende nanopartículas que contienen taxano (tal como paclitaxel) y una albúmina; y b) una segunda terapia que comprende radiación, según se indica en las Filas 1 a 5 de la Tabla 2. En algunas formas de realización, la administración de la composición en

nanopartículas y el agente quimioterapéutico puede realizarse según cualquiera de los regímenes de dosificación indicados en las Filas 1 a 5 de la Tabla 2.

Los presentes inventores describen también un método de tratamiento de un cáncer de cabeza y cuello en un individuo, que comprende a) una primera terapia que incluye administrar al individuo una composición que comprende nanopartículas que contienen taxano (tal como paclitaxel) y una albúmina; y b) una segunda terapia que comprende radiación, según se indica en las Filas 6 a 9 de la Tabla 2. En algunas formas de realización, la administración de la composición en nanopartículas y el agente quimioterapéutico puede realizarse según cualquiera de los regímenes de dosificación indicados en las Filas 6 a 9 de la Tabla 2.

5

Los presentes inventores describen también un método de tratamiento de un cáncer de páncreas en un individuo, que comprende a) una primera terapia que incluye administrar al individuo una composición que comprende nanopartículas que contienen taxano (tal como paclitaxel) y una albúmina; y b) una segunda terapia que comprende radiación, según se indica en la Fila 10 de la Tabla 2. En algunas formas de realización, la administración de la composición en nanopartículas y el agente quimioterapéutico puede realizarse según cualquiera de los regímenes de dosificación indicados en la Fila 10 de la Tabla 2.

Los presentes inventores describen también un método de tratamiento de un tumor gástrico maligno en un individuo, que comprende a) una primera terapia que incluye administrar al individuo una composición que comprende nanopartículas que contienen taxano (tal como paclitaxel) y una albúmina; y b) una segunda terapia que comprende radiación, según se indica en la Fila 11 de la Tabla 2. En algunas formas de realización, la administración de la composición en nanopartículas y el agente quimioterapéutico puede realizarse según cualquiera de los regímenes de dosificación indicados en la Fila 11 de la Tabla 2.

TABLA 2

Fila Nº	Combinación	Régimen/Dosificación	Tipo de terapia de estudio	Título del protocolo
1	ABX + Radiación		NSCLC	Ensayo de Fase I/II de Abraxane® combinado con radiación.
2	ABX + Carboplatino + Radiación		NSCLC	Ensayo de Fase I/II de Abraxane® y carboplatino combinado con radiación.
3	ABX + Carboplatino + Radiación	1 ciclo de inducción con ABX/Carbo seguido de 2 a 3 pulsos semanales de ABX + radiación	NSCLC	Quimio-radiación de Fase II en NSCLC.
4	ABX + Carboplatino + Radiación		NSCLC	Inducción con Abraxane®/Carboplatino, seguida de Abraxane® + radiación en pacientes con NSCLC A&B PS2 en Estadio III. [PS = Estado funcional]
5	ABX + Carboplatino + Radiación	ABX cada sem. + carbo + radiación, seguidos de ABX cada 3 sem. + carbo	NSCLC	Estudio de Fase II
6	ABX + Radiación		Cáncer de Cabeza y Cuello	Abraxane® como radiosensibilizador en cáncer de cabeza y cuello
7	ABX + Cetuximab + Radiación		Cáncer de Cabeza y Cuello	Estudio de Fase I/II de Abraxane® en combinación con Cetuximab y radiación.

8	ABX + Carboplatino + 5- FU + Hidroxiurea + Radiación	Inducción: ABX 135 mg/m² cada sem. + carbo: AUC = 2 seguida de quimioradiación concurrente: ABX: 100 mg/m² 5-FU: 600 mg/m² Hidroxiurea: 5000 mg dos veces al día	Cáncer de Cabeza y Cuello	Estudio de Fase I/II de quimioterapia de inducción con Abraxane® y carboplatino, seguida de administración concomitante de fluorouracilo, hidroxiurea, Abraxane® e IMRT [radioterapia de intensidad modulada] para cánceres de cabeza y cuello avanzados.
9	ABX + Carboplatino + Erbitux® + Radiación	ABX: 20-50 mg/m ² cada sem. x 7 incremento de dosis Erbitux®: 400 mg/m ² , dia 7, 250 mg/m ² cada sem. x 7 Carbo: AUC = 1,5 cada sem. x 7 IMRT	Cáncer de Cabeza y Cuello Localmente Avanzado	Ensayo de Fase I de Abraxane® en combinación con carboplatino, cetuximab e IMRT en el cáncer de células escamosas de cabeza y cuello localmente avanzado.
10	ABX + Gemcitabina + Radiación	Cada semana	Cáncer de Páncreas	Ensayo aleatorizado de Fase II de administración semanal de gemcitabina, Abraxane® y radiación externa en el cáncer de páncreas localmente avanzado.
11	ABX + Cisplatino + Radiación		Tumores Gástricos Malignos	Combinación de Fase I/II de Abraxane®/cisplatino y radiación en pacientes con cánceres gástricos/ cánceres gastro- esofágicos resecados.

En algunas formas de realización, la invención ofrece composiciones farmacéuticas que comprenden nanopartículas que contienen taxano (tal como paclitaxel) y una proteína portadora (tal como albúmina) para usar en el tratamiento de una enfermedad proliferativa (como el cáncer), en donde dicho uso comprende una segunda terapia que incluye radioterapia, cirugía o combinaciones de las mismas.

5 Terapia metronómica

10

15

20

Los presentes inventores describen también el régimen de terapia metronómica. Se ofrece un método de administración a un individuo de una composición que comprende nanopartículas que contienen un taxano (tal como paclitaxel, docetaxel u ortataxel) y una proteína portadora (tal como albúmina), basado en un régimen de dosificación metronómica. Los métodos son aplicables a métodos terapéuticos, retraso del desarrollo y otras técnicas y configuraciones clínicas descritas en este documento. Por ejemplo, en algunas formas de realización, los métodos son útiles para el tratamiento de enfermedades proliferativas (tal como el cáncer).

La expresión "régimen de dosificación metronómica" usada en esta memoria se refiere a la administración frecuente de un taxano, sin interrupciones prolongadas, a una dosis menor que la dosis máxima tolerada a través de un programa convencional con pausas (denominado en lo sucesivo también como "programa MTD estándar" o "régimen MTD estándar"). En último término, en la dosificación metronómica se puede administrar durante un periodo determinado de tiempo una dosis igual, menor o acumulativa mayor que la que se administraría por medio de un programa MTD estándar. En algunos casos, esto se logra ampliando el marco de tiempo y/o la frecuencia durante el que se lleva a cabo el régimen de dosificación, reduciendo al mismo tiempo la cantidad administrada con cada dosis. Por lo general, el individuo tolera mejor el taxano administrado mediante el régimen de dosificación metronómica de la presente invención. La dosificación metronómica se puede designar también como dosificación de mantenimiento o dosificación crónica.

Los presentes inventores describen un método de administración de una composición que comprende nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina), en el que la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que aproximadamente una semana, y en el que la dosis del taxano en cada administración es aproximadamente 0,25% hasta aproximadamente 25% de su dosis máxima tolerada en un régimen de dosificación convencional. En algunas formas de realización, se ofrece un método para administrar una composición que comprende nanopartículas que contienen paclitaxel y una albúmina, en el cual la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que una semana, y en el que la dosis del taxano en cada administración es aproximadamente 0,25% hasta aproximadamente 25% de su dosis máxima tolerada en un régimen de dosificación convencional.

5

10

15

30

35

40

45

50

En algunas formas de realización, la dosificación del taxano (tal como paclitaxel) en la composición en nanopartículas por administración es menor que aproximadamente 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 18%, 20%, 22%, 24% o 25% de la MTD para el mismo taxano (tal como paclitaxel) en la misma formulación siguiendo un programa de dosificación convencional. Programa de dosificación convencional hace referencia al programa de dosificación generalmente establecido en el entorno clínico. Por ejemplo, el programa de dosificación convencional para Abraxane® es un programa de tres semanas, es decir, la composición se administra cada tres semanas.

En algunas formas de realización, la dosificación del taxano (tal como paclitaxel) por administración se encuentra entre aproximadamente 0,25% y aproximadamente 25% del valor de MTD correspondiente, incluyendo, por ejemplo, cualquier intervalo de aproximadamente 0,25% hasta aproximadamente 20%, aproximadamente 0,25% hasta aproximadamente 10%, aproximadamente 0,25% hasta aproximadamente 10%, aproximadamente 0,25% hasta aproximadamente 25% del valor de MTD correspondiente. El valor de MTD para un taxano según el programa de dosificación convencional es conocido, o puede ser fácilmente determinado por un experto en la técnica. Por ejemplo, el valor de MTD cuando se administra Abraxane® siguiendo el programa convencional de tres semanas es de aproximadamente 300 mg/m².

Los presentes inventores describen igualmente un método para administrar una composición que comprende nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina), en el que la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que aproximadamente una semana, y en el que la dosis del taxano en cada administración es aproximadamente de 0,25 mg/m² hasta aproximadamente 25 mg/m². En algunas formas de realización, se ofrece un método para administrar una composición que comprende nanopartículas que contienen paclitaxel y una albúmina, en el que la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que aproximadamente una semana, y en el que la dosis del taxano en cada administración es aproximadamente de 0,25 mg/m² hasta aproximadamente 25 mg/m².

En algunas formas de realización, la dosis del taxano (tal como paclitaxel) en cada administración es menor que aproximadamente 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 22, 25 y 30 mg/m². Por ejemplo, la dosis del taxano (tal como paclitaxel) puede estar en el intervalo entre aproximadamente 0,25 mg/m² hasta aproximadamente 30 mg/m², aproximadamente 0,25 mg/m² hasta aproximadamente 25 mg/m², aproximadamente 0,25 mg/m² hasta aproximadamente 15 mg/m², y aproximadamente 0,25 mg/m² hasta aproximadamente 5 mg/m².

La frecuencia de dosificación para el taxano (tal como paclitaxel) en la composición en nanopartículas incluye, sin limitaciones, al menos una vez a la semana, dos veces a la semana, tres veces a la semana, cuatro veces a la semana, cinco veces a la semana, seis veces a la semana, o diariamente. Típicamente, el intervalo entre cada administración es menor que aproximadamente una semana, por ejemplo, menor que aproximadamente 6, 5, 4, 3, 2 o 1 día. En algunas formas de realización, el intervalo entre cada administración es constante. Por ejemplo, la administración se puede llevar a cabo a diario, cada dos días, cada tres días, cada cuatro días, cada cinco días, o semanalmente. En algunas formas de realización, la administración se puede efectuar dos veces al día, tres veces al día o con mayor frecuencia.

Los regímenes de dosificación metronómica descritos en este documento se puede prolongar durante un periodo extendido de tiempo tal como desde aproximadamente un mes hasta aproximadamente tres años. Por ejemplo, el régimen de dosificación se puede ampliar durante un periodo de aproximadamente 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30 y 36 meses. Por lo general, no hay interrupciones en el programa de dosificación.

La dosis acumulada del taxano (tal como paclitaxel) administrado por el régimen metronómico puede ser mayor que la del taxano administrado según un programa de dosificación de MTD convencional durante el mismo periodo de tiempo. En algunas formas de realización, la dosis acumulada del taxano administrado por el régimen metronómico es igual o menor que la del taxano administrado según el programa de dosificación de MTD convencional durante el mismo periodo de tiempo.

Es necesario entender que las enseñanzas ofrecidas en esta memoria sólo se refieren a ejemplos, y que el régimen de administración metronómica se puede diseñar de manera rutinaria según las recomendaciones ofrecidas en este documento y basadas en el programa MTD convencional, así como que el régimen de dosificación metronómica usado en estos ensayos representa solamente un ejemplo de las posibles variaciones en el intervalo de dosificación y duración que se llevan a cabo en el programa MTD convencional para alcanzar el régimen de dosificación metronómico óptimo.

El régimen de dosificación metronómica descrito en esta memoria se puede usar de manera aislada como tratamiento de una enfermedad proliferativa, o asociarlo en un contexto de terapia de combinación, tales como las terapias combinadas descritas en este documento. En algunas formas de realización, el régimen de dosificación terapéutica metronómica se puede usar en combinación o junto con otras terapias establecidas, administradas mediante regímenes MTD convencionales. Por la expresión "combinación o junto con" se indica que el régimen de dosificación metronómica de la presente invención se lleva a cabo al mismo tiempo que el régimen MTD convencional de las terapias establecidas, o entre ciclos de terapia de inducción para consolidar el beneficio generado en el individuo por la terapia de inducción; la intención es continuar inhibiendo el crecimiento del tumor sin comprometer indebidamente la salud del individuo o su capacidad para resistir el ciclo siguiente de terapia de inducción. Por ejemplo, se puede adoptar un régimen de dosificación metronómica después de un breve ciclo inicial de quimioterapia MTD.

Las composiciones en nanopartículas administradas en base al régimen de dosificación metronómica descrito en esta memoria se pueden administrar a un individuo (por ejemplo, un ser humano) a través de diversas vías tales como parenteral, incluidas las vías intravenosa, intraverial, intrapulmonar, oral, por inhalación, intravesical, intramuscular, intratraqueal, subcutánea, intraocular, intratecal o transdérmica. Por ejemplo, la composición en nanopartículas se puede administrar por inhalación para tratar enfermedades de las vías respiratorias. La composición se puede usar para tratar afecciones respiratorias tales como fibrosis pulmonar, bronquiolitis obliterante, cáncer de pulmón, carcinoma bronco-alveolar, y similares. En algunas formas de realización, la composición en nanopartículas se administra por vía oral.

Más adelante se ofrecen diversos ejemplos de formas de realización.

5

10

15

20

25

30

35

60

Los presentes inventores describen también un método para administrar una composición que comprende nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina), en el que la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que una semana, y en el que la dosis del taxano en cada administración es aproximadamente 0,25% hasta aproximadamente 25% de su dosis máxima tolerada siguiendo un régimen de dosificación convencional. En algunas formas de realización, el taxano está recubierto con la proteína portadora (tal como albúmina). En algunas formas de realización, la dosis de taxano por administración es menor que aproximadamente 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 18%, 20%, 22%, 24% o 25% de la dosis máxima tolerada. En algunas formas de realización, el taxano se administra al menos aproximadamente 1x, 2x, 3x, 4x, 5x, 6x, 7x (es decir, diariamente) a la semana. En algunas formas de realización, los intervalos entre cada administración son menores que aproximadamente 7 días, 6 días, 5 días, 4 días, 3 días, 2 días y 1 día. En algunas formas de realización, el taxano se administra durante un periodo de al menos aproximadamente 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30 y 36 meses.

40 Asimismo, los presentes inventores describen un método para administrar una composición que comprende nanopartículas que contienen paclitaxel y una albúmina, en el que la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que aproximadamente una semana, y en el que la dosis del taxano en cada administración es de aproximadamente 0,25% hasta aproximadamente 25% de su dosis máxima tolerada según un régimen de dosificación convencional. 45 En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm. En algunas formas de realización, la composición en nanopartículas de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tal como Cremophor). En algunas formas de realización, la relación en peso de la albúmina a paclitaxel en la composición es de aproximadamente 18:1 o menor, tal como aproximadamente 9:1 o menor. En algunas formas de realización, el paclitaxel está recubierto con albúmina. En algunas formas de realización, las nanopartículas de paclitaxel/albúmina 50 tienen un diámetro medio no mayor que aproximadamente 200 nm, y la composición de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tal como Cremophor). En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm y el paclitaxel está recubierto con albúmina. En algunas formas de realización, la composición en nanopartículas 55 es Abraxane®.

Los presentes inventores describen también un método para administrar una composición que comprende nanopartículas que contienen un taxano y una proteína portadora, en el que la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que aproximadamente una semana, y en el que la dosis del taxano en cada administración es de aproximadamente 0,25 mg/m² hasta aproximadamente 25 mg/m². En algunas formas de realización, el taxano está recubierto con la proteína portadora (tal como albúmina). En algunas formas de realización, la dosis de taxano por administración es

menor que aproximadamente 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 18, 20, 22 y 25 mg/m². En algunas formas de realización, el taxano se administra al menos aproximadamente 1x, 2x, 3x, 4x, 5x, 6x, 7x (es decir, diariamente) a la semana. En algunas formas de realización, los intervalos entre cada administración son menores que aproximadamente 7 días, 6 días, 5 días, 4 días, 3 días, 2 días y 1 día. En algunas formas de realización, el taxano se administra durante un periodo de al menos aproximadamente 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30 y 36 meses.

Los presentes inventores describen también un método para administrar una composición que comprende nanopartículas que contienen paclitaxel y una albúmina, en el que la composición en nanopartículas se administra durante un periodo de al menos un mes, en el que el intervalo entre cada administración no es mayor que aproximadamente una semana, y en el que la dosis del taxano en cada administración es de aproximadamente 0,25 mg/m² hasta aproximadamente 25 mg/m². En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm. En algunas formas de realización, la composición en nanopartículas de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tal como Cremophor). En algunas formas de realización, la relación ponderal de la albúmina a paclitaxel en la composición es de aproximadamente 18:1 o menor, tal como aproximadamente 9:1 o menor. En algunas formas de realización, el paclitaxel está recubierto con albúmina. En algunas formas de realización, las nanopartículas de paclitaxel/albúmina está sustancialmente exenta (por ejemplo, exenta) de tensioactivos (tal como Cremophor). En algunas formas de realización, las nanopartículas de paclitaxel/albúmina tienen un diámetro medio no mayor que aproximadamente 200 nm, y el paclitaxel está recubierto con albúmina. En algunas formas de realización, la composición en nanopartículas es Abraxane®.

En algunas formas de realización, Abraxane® (u otras composiciones en nanopartículas de paclitaxel/albúmina) se administra a una dosis de aproximadamente 3 mg/kg hasta aproximadamente 10 mg/kg al día. En algunas formas de realización, Abraxane® se administra a una dosis de aproximadamente 6 mg/kg hasta aproximadamente 10 mg/kg al día. En algunas formas de realización, Abraxane® se administra a una dosis de aproximadamente 6 mg/kg al día. En algunas formas de realización, Abraxane® se administra a una dosis de aproximadamente 3 mg/kg al día.

Los presentes inventores describen igualmente composiciones para usar en el o los regímenes metronómicos descritos en este documento. En algunas formas de realización, se ofrece una composición que comprende nanopartículas que contienen un taxano y una proteína portadora (tal como albúmina), en la que dicha composición se administra a un individuo por medio de un régimen de dosificación metronómica tal como el régimen de dosificación que se describe en esta memoria.

Composiciones en nanopartículas

5

10

15

20

25

30

35

50

Las composiciones en nanopartículas descritas en esta memoria comprenden nanopartículas que contienen (en varias formas de realización, consisten esencialmente en) un taxano (tal como paclitaxel) y una proteína portadora (tal como albúmina). Se han descrito nanopartículas de medicamentos escasamente solubles en agua (tales como taxano) en, por ejemplo, las Patentes de EE.UU. Nos. 5.916.596; 6.506.405; y 6.537.579, así como en la Publicación de Patente de EE.UU. No. 2005/0004002A1. Aunque la descripción que se ofrece más adelante es específica para taxano, se entiende que la misma es aplicable a otros medicamentos tales como rapamicina, 17-AAG y tiocolchicina dimérica.

40 En algunas formas de realización, la composición comprende nanopartículas con un diámetro promedio o medio no mayor que aproximadamente 1000 nanómetros (nm), por ejemplo no mayor que 900, 800, 700, 600, 500, 400, 300, 200 y 100 nm. En algunas formas de realización, los diámetros promedios o medios de las nanopartículas no son mayores que aproximadamente 200 nm. En algunas formas de realización, los diámetros promedios o medios de las nanopartículas no son mayores que aproximadamente 150 nm. En algunas formas de realización, los diámetros promedios o medios de las nanopartículas no son mayores que aproximadamente 100 nm. En algunas formas de realización, los diámetros promedios o medios de las nanopartículas son de aproximadamente 40 hasta aproximadamente 200 nm. En algunas formas de realización, las nanopartículas son susceptibles de esterilización por filtración.

Las nanopartículas descritas en esta memoria pueden estar presentes en una formulación en seco (tal como una composición liofilizada), o suspendidas en un medio biocompatible. Medios biocompatibles adecuados incluyen, sin limitaciones, agua, medios acuosos tamponados, solución salina, solución salina tamponada, soluciones de aminoácidos opcionalmente tamponadas, soluciones de proteínas opcionalmente tamponadas, soluciones de vitaminas opcionalmente tamponadas, soluciones de polímeros sintéticos opcionalmente tamponadas, emulsiones que contienen lípidos, y similares.

El término "proteínas" se refiere a polipéptidos o polímeros de aminoácidos de cualquier longitud (incluida longitud total o fragmentos), que pueden ser lineales o ramificados, comprender aminoácidos modificados, y/o estar interrumpidos por no-aminoácidos. El término incluye, igualmente, un polímero de aminoácidos que ha sido modificado naturalmente o por una intervención, por ejemplo, mediante formación de enlaces disulfuro, glicosilación, lipidación, acetilación, fosforilación o cualquier otra manipulación o modificación. En este término se incluyen

también, por ejemplo, polipéptidos que contienen uno o múltiples análogos de un aminoácido (incluidos, por ejemplo, aminoácidos no naturales, etc.), así como otras modificaciones conocidas en la técnica. Las proteínas descritas en este documento pueden ser de origen natural, es decir, obtenidas o derivadas de una fuente natural (tal como sangre), o sintéticas (tales como sintetizadas químicamente o por técnicas de ADN recombinante).

5 Ejemplos de proteínas portadoras apropiadas incluyen proteínas halladas normalmente en sangre o plasma, que incluyen, sin limitaciones, albúmina, inmunoglobulina, incluida la IgA, lipoproteínas, apolipoproteína B, glicoproteína alfa-ácida, beta-2-macroglobulina, tiroglobulina, transferrina, fibronectina, factor VII, factor VIII, factor IX, factor X, y similares. En algunas formas de realización, la proteína portadora es una proteína no hemática tal como caseína, αlactoalbúmina, y β-lactoglobulina. Las proteínas portadoras pueden ser de origen natural o se pueden preparar de forma sintética. En algunas formas de realización, el vehículo farmacéuticamente aceptable comprende albúmina tal 10 como albúmina de suero humano. La albúmina de suero humano (HSA) es una proteína globular, altamente soluble, de M_r 65K y consiste en 585 aminoácidos. HSA es la proteína más abundante en el plasma y representa entre 70 y 80% de la presión osmótica coloidal del plasma humano. La secuencia de aminoácidos de HSA contiene un total de 17 puentes disulfuro, un tiol libre (Cys 34) y un único triptófano (Trp 214). El uso intravenoso de solución de HSA está indicado en la prevención y el tratamiento del choque hipovolémico (véanse, por ejemplo, Tullis, JAMA, 237, 15 355-360, 460-463 (1977) y Hauser et al., Surgery, Gynecology and Obstetrics, 150, 811-816 (1980)), y junto con la transfusión de intercambio en el tratamiento de la hiperbillirrubinemia neonatal (véase, por ejemplo, Finlayson, Seminars in Thrombosis and Hemostasis 6, 85-120 (1980)). Se contempla el uso de otras albúminas tal como la albúmina de suero bovino. El empleo de estas albúminas no humanas podría ser apropiado, por ejemplo, en el 20 contexto del uso de estas composiciones en mamíferos no humanos, por ejemplo en veterinaria (incluidas las mascotas domésticas y en el contexto agrícola).

La albúmina del suero humano (HSA) posee numerosos sitios de unión hidrófoba (un total de ocho para ácidos grasos, un ligando endógeno de HSA) y fija un conjunto diverso de taxanos, especialmente compuestos hidrófobos neutros y con carga negativa (Goodman et al., *The Pharmacological Basis of Therapeutics*, 9ª ed., McGraw-Hill Nueva York (1996)). Se han propuesto dos sitios de unión de alta afinidad en los subdominios IIA y IIIA de HSA, que son "bolsillos" hidrófobos altamente alargados con residuos cargados de lisina y arginina próximos a la superficie, y que actúan como puntos de fijación para características de ligando polar (véanse, por ejemplo, Fehske et al., *Biochem. Pharmacol.*, 30, 687-92 (1981), Vorum, *Dan. Med. Bull.*, 46, 379-99 (1999), Kragh-Hansen, *Dan. Med. Bull.*, 1441, 131-40 (1990), Curry et al., *Nat. Struct. Biol.*, 5, 827-35 (1998), Sugio et al., *Protein Eng.*, 12, 439-46 (1999), He et al., *Nature*, 358, 209-15 (1992), y Carter et al., *Adv. Protein Chem.*, 45, 153-203 (1994)). Se ha demostrado que paclitaxel y propofol se unen a HSA (véanse, por ejemplo, Paal et al., *Eur. J. Biochem.*, 268(7), 2187-91 (2001), Purcell et al., *Biochim. Biophys. Acta*, 1478(a), 61-8 (2000), Altmayer et al., *Arzneimittelforschung*, 45, 1053-6 (1995), y Garrido et al., *Rev. Esp. Anestesiol. Reanim.*, 41, 308-12 (1994)). Adicionalmente, docetaxel ha demostrado fijar proteínas plasmáticas humanas (véase, por ejemplo, Urien et al., *Invest. New Drugs*, 14(b), 147-51 (1996)).

25

30

50

55

60

La proteína portadora (tal como albúmina) en la composición sirve generalmente como vehículo para el taxano, es decir, la proteína portadora en la composición determina que el taxano se pueda suspender más fácilmente en un medio acuoso, o ayuda a mantener la suspensión, en comparación con composiciones que no comprenden una proteína portadora. De esta forma, se puede evitar el uso de disolventes tóxicos (o tensioactivos) para solubilizar el taxano y reducir uno o múltiples efectos secundarios de la administración del taxano a un individuo (por ejemplo, un ser humano). Por lo tanto, en algunas formas de realización, la composición descrita en esta memoria está sustancialmente exenta (por ejemplo, exenta) de tensioactivos tales como Cremophor (incluido Cremophor EL® (BASF)). En algunas formas de realización, la composición en nanopartículas está sustancialmente exenta (por ejemplo, exenta) de tensioactivos. Una composición está "sustancialmente exenta de Cremophor" o "sustancialmente exenta de tensioactivos" si la cantidad de Cremophor o tensioactivos en la composición no es suficiente para provocar uno o múltiples efectos secundarios en un individuo cuando se le administra la composición en nanopartículas.

La cantidad de proteína portadora en la composición que se describe en este documento variará en función de otros componentes en la composición. En algunas formas de realización, la composición comprende una proteína portadora en una cantidad suficiente para estabilizar el taxano en una suspensión acuosa, por ejemplo, en forma de una suspensión coloidal estable (tal como una suspensión estable de nanopartículas). En algunas formas de realización, la proteína portadora se encuentra presente en una cantidad que reduce la velocidad de sedimentación del taxano en un medio acuoso. En el caso de composiciones que contienen partículas, la cantidad de proteína portadora depende también del tamaño y la densidad de nanopartículas de taxano.

Un taxano esta "estabilizado" en una suspensión acuosa si se mantiene suspendido en un medio acuoso (por ejemplo, sin precipitación o sedimentación visibles) durante un periodo de tiempo prolongado tal como al menos aproximadamente 0,1, 0,2, 0,25, 0,5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12,24, 36, 48, 60 o 72 horas. Por lo general, pero no necesariamente, la suspensión es apropiada para ser administrada a un individuo (por ejemplo, un ser humano). La estabilidad de la suspensión se evalúa generalmente (pero no necesariamente) a temperatura de conservación (tal como temperatura ambiente (por ejemplo, 20-25°C) o bajo condiciones de refrigeración (por ejemplo, 4°C)). Por ejemplo, una suspensión es estable a la temperatura de conservación si no exhibe floculación o aglomeración de partículas visible a simple vista o cuando se analiza al microscopio óptico a una magnificación de 1000 aumentos,

aproximadamente quince minutos después de haber preparado la suspensión. La estabilidad también se puede evaluar bajo condiciones de ensayo aceleradas, por ejemplo, a una temperatura mayor que aproximadamente 40°C.

En algunas formas de realización, la proteína portadora está presente en una cantidad que es suficiente para estabilizar el taxano en una suspensión acuosa a una concentración determinada. Por ejemplo, la concentración del taxano en la composición es de aproximadamente 0,1 hasta aproximadamente 100 mg/ml, incluidos, por ejemplo, valores entre aproximadamente 0,1 hasta aproximadamente 50 mg/ml, aproximadamente 0,1 hasta aproximadamente 10 mg/ml, aproximadamente 2 mg/ml hasta aproximadamente 8 mg/ml, aproximadamente 5 mg/ml. En algunas formas de realización, la concentración del taxano es de al menos aproximadamente 1,3 mg/ml, 1,5 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 15 mg/ml, 20 mg/ml, 25 mg/ml, 30 mg/ml, 40 mg/ml, y 50 mg/ml. En algunas formas de realización, la proteína portadora está presente en una cantidad que evita el empleo de tensioactivos (tales como Cremophor), de manera que la composición está exenta o sustancialmente exenta de tensioactivos (tales como Cremophor).

5

10

35

40

55

60

En algunas formas de realización, la composición, en forma líquida, comprende desde aproximadamente 0,1% hasta aproximadamente 50% (peso/volumen) (por ejemplo, aproximadamente 0,5% (p/v), aproximadamente 5% (p/v), aproximadamente 10% (p/v), aproximadamente 20% (p/v), aproximadamente 30% (p/v), aproximadamente 40% (p/v), o aproximadamente 50% (p/v)) de proteína portadora. En algunas formas de realización, la composición, en forma líquida, comprende aproximadamente 0,5% hasta aproximadamente 5% (p/v) de proteína portadora.

En algunas formas de realización, la relación en peso de proteína portadora, por ejemplo, albúmina, al taxano en la composición en nanopartículas es tal que una cantidad suficiente de taxano se une a, o es transportada por la célula. En tanto que la relación en peso de la proteína portadora a taxano tendrá que ser optimizada para diferentes combinaciones de proteína portadora y taxano, por lo general la relación en peso de proteína portadora, por ejemplo, albúmina, a taxano (en peso) es de aproximadamente 0,01:1 hasta aproximadamente 100:1, aproximadamente 0,02:1 hasta aproximadamente 20:1, aproximadamente 1:1 hasta aproximadamente 18:1, aproximadamente 2:1 hasta aproximadamente 15:1, aproximadamente 3:1 hasta aproximadamente 12:1, aproximadamente 4:1 hasta aproximadamente 10:1, aproximadamente 5:1 hasta aproximadamente 9:1, o aproximadamente 9:1. En algunas formas de realización, la relación en peso de proteína portadora a taxano es de aproximadamente 18:1 o menor, 15:1 o menor, 14:1 o menor, 13:1 o menor, 12:1 o menor, 11:1 o menor, 10:1 o menor, 9:1 o menor, 8:1 o menor, 7:1 o menor, 5:1 o menor, 4:1 o menor, 4:1 o menor, 9:3:1 o menor, 9:3

En algunas formas de realización, la proteína portadora permite administrar la composición a un individuo (por ejemplo, un ser humano) sin efectos secundarios importantes. En algunas formas de realización, la proteína portadora (tal como albúmina) se encuentra en una cantidad que es eficaz para reducir uno o múltiples efectos secundarios de la administración del taxano a un ser humano. La expresión "reducir uno o múltiples efectos secundarios de la administración de taxano" hace referencia a la reducción, alivio, eliminación o evitación de uno o múltiples efectos indeseables causados por el taxano, así como efectos secundarios causados por los vehículos de administración (tales como disolventes que convierten el taxano en apto para la inyección) usados para administrar el taxano. Estos efectos secundarios incluyen, por ejemplo, mielosupresión, neurotoxicidad, hipersensibilidad, inflamación, irritación venosa, flebitis, dolor, irritación cutánea, neuropatía periférica, fiebre neutropénica, reacción anafiláctica, trombosis venosa, extravasación o sus combinaciones. No obstante, estos efectos secundarios son solamente algunos ejemplos y es posible reducir otros efectos secundarios, o sus combinaciones, asociados a los taxanos

En algunas formas de realización, la composición comprende Abraxane®. Abraxane® es una formulación de paclitaxel estabilizado con albúmina humana USP, que se puede dispersar en una solución fisiológica directamente inyectable. Cuando se dispersa en un medio acuoso apropiado tal como inyección de cloruro sódico al 0,9% o inyección de dextrosa al 5%, Abraxane® forma una suspensión coloidal estable de paclitaxel. El tamaño medio de las nanopartículas en la suspensión coloidal es de aproximadamente 130 nanómetros. Dado que la HSA se disuelve libremente en agua, Abraxane® se puede reconstituir en una amplia gama de concentraciones, que están comprendidas dentro del intervalo desde diluido (0,1 mg/ml de paclitaxel) hasta concentrado (20 mg/ml de paclitaxel), incluyendo por ejemplo desde aproximadamente 2 mg/ml hasta aproximadamente 8 mg/ml, aproximadamente 5 mg/ml.

Los métodos de fabricación de composiciones en nanopartículas son conocidos en la técnica. Por ejemplo, se pueden preparar nanopartículas que contienen taxanos (tales como paclitaxel) y proteína portadora (tal como albúmina) bajo condiciones de altas fuerzas de cizallamiento (por ejemplo, sonicación, homogeneización de alta presión, o similares). Estos métodos se describen, por ejemplo, en las Patentes de EE.UU. Nos. 5.916.596; 6.506.405; y 6.537.579, así como en la Publicación de Patente de EE.UU. No. 2005/0004002A1.

En pocas palabras, el taxano (tal como docetaxel) se disuelve en un disolvente orgánico, y la solución se puede agregar a una solución de albúmina sérica humana. La mezcla se somete a homogeneización de alta presión. A continuación, se puede eliminar el disolvente orgánico por evaporación. Adicionalmente, la dispersión obtenida

se puede liofilizar. Disolventes orgánicos adecuados incluyen, por ejemplo, cetonas, ésteres, éteres, disolventes clorados y otros disolventes conocidos en la técnica. Por ejemplo, el disolvente orgánico puede ser cloruro de metileno y cloroformo/etanol (por ejemplo, con una relación de 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 o 9:1).

5 Componentes adicionales de las composiciones en nanopartículas

Las nanopartículas descritas en esta memoria pueden estar presentes en una composición que incluya otros agentes, excipientes o estabilizadores. Por ejemplo, para incrementar la estabilidad mediante el aumento del potencial zeta negativo de las nanopartículas, se pueden agregar determinados componentes de carga negativa. Estos componentes de carga negativa incluyen, sin limitaciones, sales biliares de ácidos biliares consistentes en ácido glicocólico, ácido cólico, ácido quenodesoxicólico, ácido taurocólico, ácido glicoquenodesoxicólico, ácido tauroquenodesoxicólico, ácido ursodesoxicólico, ácido deshidrocólico y otros; fosfolípidos, incluidos los fosfolípidos basados en lecitina (yema de huevo), que incluyen las siguientes fosfatidilcolinas: palmitoiloleo-fosfatidilcolina, palmitoil-fiosfatidilcolina, estearoil-linoleoil-fosfatidilcolina, estearoil-loleoil-fosfatidilcolina, estearoil-araquidoil-fosfatidilcolina, y dipalmitoil-fosfatidilcolina; otros fosfolípidos que incluyen L-α-dimiristoil-fosfatidilcolina (DMPC), dioleoil-fosfatidilcolina (DOPC), diestearoil-fosfatidilcolina (DSPC), fosfatidilcolina de soja hidrogenada (HSPC) y otros compuestos relacionados. Los tensioactivos o emulsionantes cargados negativamente son también apropiados como aditivos, por ejemplo, sulfato sódico de colesterilo y similares.

En algunas formas de realización, la composición es apropiada para ser administrada a un ser humano. En algunas formas de realización, la composición es apropiada para ser administrada a un mamífero tal como, en el contexto veterinario, mascotas domésticas y animales de granja. Existe una extensa variedad de formulaciones adecuadas de la composición en nanopartículas (véanse, por ejemplo, las Patentes de EE.UU. Nos. 5.916.596 y 6.096.331). Las siguientes formulaciones y métodos son solamente ejemplos y en ningún caso limitan la invención. Formulaciones adecuadas para la administración oral pueden consistir en (a) soluciones líquidas tales como una cantidad efectiva del compuesto disuelta en diluyentes tales como aqua, solución salina o zumo de naranja, (b) cápsulas, sobres o comprimidos, en donde cada uno contiene una cantidad predeterminada del ingrediente activo en forma de sólidos o gránulos, (c) suspensiones en un líquido apropiado, y (d) emulsiones apropiadas. Las formas en comprimido pueden incluir uno o múltiples de los siguientes componentes: lactosa, manitol, almidón de maíz, almidón de patata, celulosa microcristalina, acacia, gelatina, dióxido de silicio coloidal, croscarmelosa sódica, talco, estearato de magnesio, ácido esteárico, y otros excipientes, colorantes, diluyentes, agentes tamponantes, agentes humectantes, conservantes, agentes saborizantes y excipientes farmacológicamente aceptables. Las formas en pastilla comprenden el ingrediente activo en un saborizante, habitualmente sacarosa, acacia o tragacanto, así como pastillas que comprenden el ingrediente activo en una base inerte tal como gelatina y glicerina, o sacarosa y acacia, emulsiones, geles y similares que contienen, además del ingrediente activo, excipientes tales como los conocidos en la técnica.

Ejemplos de vehículos, excipientes y diluyentes apropiados incluyen, sin limitaciones, lactosa, dextrosa, sacarosa, sorbitol, manitol, almidones, goma acacia, fosfato de calcio, alginatos, tragacanto, gelatina, silicato de calcio, celulosa microcristalina, polivinilpirrolidona, celulosa, agua, solución salina, jarabe, metilcelulosa, metil- y propil-hidroxibenzoatos, talco, estearato de magnesio y aceite mineral. Adicionalmente, las formulaciones pueden incluir agentes lubricantes, agentes humectantes, agentes emulsionantes y de suspensión, conservantes, edulcorantes o agentes saborizantes.

Formulaciones apropiadas para la administración parenteral incluyen soluciones inyectables isotónicas estériles, acuosas y no acuosas, que pueden contener antioxidantes, soluciones tamponantes, bacteriostáticos, y solutos que hacen que la formulación sea compatible con la sangre del receptor previsto, y suspensiones estériles acuosas y no acuosas que pueden incluir agentes de suspensión, solubilizadores, espesantes, estabilizadores, y conservantes. Las formulaciones se pueden presentar en envases sellados de dosis unitaria o multidosis tales como ampollas y viales, y se pueden conservar en estado liofilizado que requiere sólo la adición del excipiente líquido estéril, por ejemplo agua para inyección, inmediatamente antes de de su uso. Se pueden preparar soluciones y suspensiones inyectables extemporáneas a partir de polvos, gránulos y comprimidos estériles, del tipo descrito anteriormente. Se prefieren las formulaciones inyectables.

En algunas formas de realización, la composición se formula para tener un pH en el intervalo de aproximadamente 4,5 hasta aproximadamente 9,0, incluyendo por ejemplo valores de pH en el intervalo de aproximadamente 5,0 hasta aproximadamente 8,0, aproximadamente 6,6 hasta aproximadamente 7,5, y aproximadamente 6,5 hasta aproximadamente 7,0. En algunas formas de realización, el pH de la composición se formula para que no sea menor que aproximadamente 6, incluido por ejemplo no menor que aproximadamente 6,5, 7 u 8 (por ejemplo, aproximadamente 8). Asimismo, la composición se puede hacer isotónica con la sangre por la adición de un modificador de la tonicidad apropiado tal como glicerol.

Kits

10

15

20

25

30

45

Los presentes inventores describen también kits para el uso en métodos instantáneos. Los kits incluyen uno o múltiples envases que comprenden composiciones en nanopartículas que contienen taxano (o formas de

dosificación unitaria y/o artículos de fabricación), y/o un agente quimioterapéutico y, en algunas formas de realización, comprenden adicionalmente instrucciones de uso de acuerdo con cualquiera de los métodos descritos en este documento. El kit puede comprender, adicionalmente, una descripción del proceso de selección de un individuo o tratamiento apropiados. Las instrucciones suministradas en los kits según la invención son, típicamente, instrucciones escritas en una etiqueta o prospecto de envase (por ejemplo, una hoja de papel incluida en el kit), aunque también son aceptables las instrucciones de lectura mecánica (por ejemplo, instrucciones incluidas en un disco de almacenamiento magnético u óptico).

En algunas formas de realización, el kit comprende a) una composición que incluye nanopartículas que comprenden un taxano y una proteína portadora (tal como albúmina), b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, y c) instrucciones para administrar las nanopartículas y el o los agentes quimioterapéuticos de forma simultánea o secuencial para el tratamiento de una enfermedad proliferativa (tal como cáncer). En algunas formas de realización, el kit comprende nanopartículas que incluyen a) una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), b) una cantidad efectiva de al menos un agente quimioterapéutico adicional, y c) instrucciones para administrar las nanopartículas y el o los agentes quimioterapéuticos de forma simultánea y/o secuencial para el tratamiento eficaz de una enfermedad proliferativa (tal como cáncer).

En algunas formas de realización, el kit comprende a) una composición que incluye nanopartículas que comprenden un taxano y una proteína portadora (tal como albúmina), b) una composición que comprende nanopartículas que contienen al menos un agente quimioterapéutico adicional y una proteína portadora (tal como albúmina), y c) instrucciones para administrar las composiciones en nanopartículas de forma simultánea y/o secuencial para tratar una enfermedad proliferativa (tal como cáncer). En algunas formas de realización, el kit comprende a) una composición que comprende nanopartículas que contienen paclitaxel y una albúmina (tal como Abraxane®), b) una composición que comprende nanopartículas que contienen al menos un agente quimioterapéutico adicional y una proteína portadora (tal como albúmina), y c) instrucciones para la administración de las composiciones en nanopartículas de forma simultánea y/o secuencial para el tratamiento eficaz de una enfermedad proliferativa (tal como cáncer).

Las nanopartículas y los agentes quimioterapéuticos pueden estar presentes en envases separados o en un mismo envase. Se entiende que el kit puede comprender una o dos o múltiples composiciones diferentes, en donde una composición comprende nanopartículas y una composición comprende un agente quimioterapéutico.

Los kits se presentan en envases apropiados. Envases apropiados incluyen, sin limitaciones, viales, frascos, botes, envases flexibles (por ejemplo, bolsas selladas de Mylar o plástico), y similares. Opcionalmente, los kits pueden proporcionar componentes adicionales tales como soluciones tamponantes e información interpretativa.

Las instrucciones relativas al uso de las composiciones en nanopartículas incluyen, por lo general, información referida a la dosificación, programa de dosificación, y vías de administración para el tratamiento previsto. Los envases pueden ser dosis unitarias, envases a granel (por ejemplo, envases multidosis), o dosis sub-unitarias. Por ejemplo, se pueden ofrecer kits que contengan dosificaciones suficientes de taxano (tal como taxano) según se describe en este documento para permitir el tratamiento efectivo de un individuo durante un periodo prolongado tal como una semana, 2 semanas, 3 semanas, 4 semanas, 6 semanas, 8 semanas, 3 meses, 4 meses, 5 meses, 7 meses, 8 meses, 9 meses, o más. Los kits pueden incluir, igualmente, múltiples dosis unitarias del taxano, y composiciones farmacéuticas e instrucciones de uso, envasados en cantidades suficientes para su almacenamiento y uso en farmacias, por ejemplo, farmacias de hospitales y farmacias que preparan fórmulas magistrales.

Los expertos en la técnica reconocerán que, dentro del alcance y espíritu de esta invención, caben numerosas variaciones. Seguidamente, la invención se describirá de manera más detallada haciendo referencia a los siguientes ejemplos no limitantes. Los ejemplos siguientes ilustran adicionalmente la invención, pero evidentemente no limitan en modo alguno su alcance.

EJEMPLOS

5

10

15

20

25

35

40

45

50

55

Ejemplo 1. Respuesta mejorada y toxicidad reducida para Abraxane® en comparación con Taxol® en un estudio de Fase III de Abraxane®, administrado cada tres semanas.

Reducción significativa de la incidencia de neutropenia e hipersensibilidad, ausencia de necesidad de premedicación con esteroides, neuropatía de menor duración, menor tiempo de infusión y dosis mayor.

ABI-007 (Abraxane®), el primer paclitaxel unido a albúmina con interacción biológica, en forma de nanopartículas, exento de cualquier disolvente, se comparó con paclitaxel asociado con Cremophor® (Taxol®) en individuos con cáncer de mama metastásico (MBC). Este estudio de Fase III se llevó a cabo para confirmar los estudios preclínicos que demostraron eficacia superior y menor toxicidad de ABI-007 en comparación con Taxol®. Los individuos se asignaron aleatoriamente a ciclos de 3 semanas de ABI-007, 260 mg/m² (i.v.) durante 30 minutos, sin premedicación (n=229), o Taxol®, 170 mg/m² IV durante 3 horas, con premedicación (n=225). ABI-007 exhibió índices de respuesta significativamente superiores con respecto a Taxol® (33% frente a 19%; p = 0,001), y un tiempo significativamente mayor para la progresión del tumor (23,0 frente a 16,9 semanas; HR [= razón de riesgo] = 0,75; p = 0,006). Se

observó una tendencia hacia tiempos de supervivencia globales más largos en los individuos que recibieron ABI-007 (65,0 frente a 55,7 semanas; p = 0,374). En un análisis no planificado, ABI-007 mejoró la supervivencia en individuos que recibieron el tratamiento como terapia de segunda línea o mayor (56,4 frente a 46,7 semanas; HR = 0,73; p = 0,024). La incidencia de neutropenia de grado 4 fue significativamente menor en el grupo de ABI-007 (9% frente a 22%; p < 0,001) a pesar de una dosis de paclitaxel 49% mayor. La neuropatía sensorial de grado 3 fue más frecuente en el grupo de ABI-007 que en el de Taxol® (10% frente a 2%; p < 0,001), pero se manejó fácilmente y mejoró más rápidamente (mediana, 22 días) que en el caso de Taxol® (mediana, 73 días). Ninguno de los individuos incluidos en el grupo de ABI-007 experimentó reacciones de hipersensibilidad relacionadas con el tratamiento de carácter grave (grado 3 o 4), a pesar de la ausencia de premedicación y al menor tiempo de administración. Por el contrario, en el grupo de Taxol® se registraron reacciones de hipersensibilidad de grado 3, a pesar de la premedicación estándar (dolor torácico: 2 individuos; reacción alérgica: 3 individuos). Por protocolo, los individuos incluidos en el grupo de ABI-007 no recibieron corticosteroides ni antihistamínicos de manera rutinaria; sin embargo, se administró premedicación contra los vómitos, mialgia/artralgia o anorexia en 18 individuos (8%) en el grupo de ABI-007 en 2% de los ciclos de tratamiento, en tanto que 224 individuos (>99%) del grupo de Taxol® recibieron premedicación en 95% de los ciclos. El único valor de química clínica que fue notablemente diferente entre las dos ramas de tratamiento fue la existencia de niveles de glucosa en suero más elevados en los individuos tratados con Taxol®, quienes mostraron iqualmente una incidencia mayor de hiperglucemia comunicada como efecto adverso (AE) (15 [7%] frente a 3 [1%]; p = 0,003). En términos globales, ABI-007 mostró mayor eficacia y un perfil favorable de seguridad en comparación con Taxol® en esta población de individuos. El índice terapéutico optimizado y la eliminación de la premedicación con esteroides necesaria para los taxanos basados en disolventes hacen de este paclitaxel unido a albúmina en nanopartículas un avance importante en el tratamiento del MBC.

5

10

15

20

25

30

35

40

45

50

Ejemplo 2. Administración Semanal de Abraxane® en Individuos con Cáncer de Mama Metastásico Refractario a Taxano

Un reciente estudio clínico de Fase II demostró que la administración semanal de Abraxane® (paclitaxel unido a albúmina en nanopartículas) a una dosis de 125 mg/m² dio como resultado el control a largo plazo de la enfermedad en individuos con cáncer de mama metastásico, cuya enfermedad había progresado durante el tratamiento con Taxol® o Taxotere® (es decir, individuos refractarios a taxano).

Se considera que Abraxane® representa la primera composición biológicamente interactiva que utiliza la vía mediada por el receptor (gp60) que ha demostrado ser esencial para la obtención de elevadas concentraciones intracelulares en el tumor del ingrediente activo paclitaxel. El estudio de Fase II incluyó 75 individuos con cáncer de mama metastásico refractario a taxano. Abraxane® se administró semanalmente a través de una infusión de 30 minutos, a una dosis de 125 mg/m², sin premedicación de esteroides/antihistamínicos ni profilaxis de G-CSF. Los individuos recibieron tres dosis semanales, seguidas de una semana de reposo, repetidas cada 28 días. A diferencia de Taxol® o Taxotere®, que contienen detergentes que pueden inhibir la captación por parte del tumor, el mecanismo de acción del paclitaxel unido a albúmina en nanopartículas puede dar lugar a resultados mejores, en especial en poblaciones de individuos de difícil tratamiento.

De manera específica, los datos demostraron que, a pesar de esta elevada dosis semanal de 125 mg/m² en esta población sometida a un intenso tratamiento previo y expuesta anteriormente al taxano, sólo 3 de los 75 individuos (4%) tuvieron que interrumpir el tratamiento con Abraxane® debido a neuropatía periférica. Además, de los pacientes que experimentaron neuropatía periférica de Grado 3, 80% pudo reanudar típicamente el tratamiento después de un retraso de sólo 1 o 2 semanas, y continuó recibiendo Abraxane® a una dosis reducida durante un periodo medio de 4 meses adicionales. Esta rápida mejoría fue consistente con la observación de los investigadores del ensayo de Fase III: que la neuropatía periférica inducida por paclitaxel solo (es decir, sin Cremophor®) mejora rápidamente en comparación con la provocada por Taxol®. Estas experiencias clínicas con Abraxane® ofrecen la primera ocasión clínica para evaluar los efectos del propio agente quimioterapéutico, paclitaxel, con respecto a los efectos de los disolventes. En base a los ensayos tanto de Fase II como de Fase III, los datos indican que la neuropatía periférica causada por Abraxane® no es comparable con la originada por Taxol® o Taxotere® en lo que respecta a duración e impacto sobre el individuo.

Con respecto a la manifestación clínica de neuropatía periférica tras la administración de Taxol® o Taxotere®, Abraxis Oncology finalizó recientemente un estudio entre 200 oncólogos a los que se preguntó su estimación del tiempo que tarda en mejorar y/o resolverse la neuropatía periférica inducida por Taxol®: 25% respondió "7 a 12 meses" y otro 23% contestó que "nunca se soluciona"; para Taxotere®, los correspondientes porcentajes fueron 29% y 7%. Estos datos concuerdan con las afirmaciones que figuran en los prospectos de envase de Taxotere® y Taxol®.

El análisis de los datos de Fase II demuestra que Abraxane® es activo en esta población de individuos con mal pronóstico (87% de enfermedad visceral (pulmonar y hepática), 69% > de tres sitios de metástasis, 88% con crecimiento tumoral durante la administración de taxanos) de pacientes refractarios a taxano con cáncer de mama metastásico. Las observaciones incluyeron un control de enfermedad de 44% en los pacientes refractarios a Taxotere® y un control de enfermedad de 39% en los individuos refractarios a Taxol®. De los individuos cuya enfermedad progresó durante la administración de Taxotere® solo en el ámbito metastásico (n=27), se registró una tasa de respuesta de 19% tras la administración semanal de Abraxane®. Entre los pacientes cuya enfermedad

progresó durante la administración de Taxol® solo en el ámbito metastásico (n=23), se registró una tasa de respuesta de 13% después de recibir Abraxane® semanalmente.

Abraxane® demostró ser bien tolerado en la administración semanal, durante 30 minutos sin esteroides ni profilaxis con G-CSF: neutropenia de Grado 4 = 3% (sin G-CSF); anemia de Grado 4 = 1%; no se observaron reacciones de hipersensibilidad grave (a pesar de la ausencia de premedicación). En esta población de individuos fuertemente pretratados, 75% de los pacientes recibieron la dosis completa elevada de 125 mg/m² de Abraxane® a la semana, sin reducciones de la dosis debidas a toxicidad/acontecimientos adversos. De los individuos que desarrollaron neuropatía sensorial de Grado 3, 77% pudo reanudar la administración de Abraxane® a una dosis reducida (75-100 mg/m²) y recibieron una media de 12,2 (intervalo 1-28) dosis adicionales de Abraxane®. Cabe destacar que de los individuos que reanudaron el tratamiento con Abraxane®, 80% (8 de cada 10) pudieron reanudar la toma del medicamento dentro de los 14 días siguientes a la mejoría de la neuropatía a Grado 1 o 2. Estos resultados avalan las observaciones del ensayo pivotal de Fase III de 260 mg/m² de Abraxane® administrado cada 3 semanas, en el que se registró también una rápida mejoría de la neuropatía (mediana de 22 días). Considerados conjuntamente, estos dos ensayos clínicos indican que cuando se administra paclitaxel solo, la neuropatía que se produce parece ser de corta duración y fácilmente manejable.

5

10

15

20

25

30

45

Abraxane® utiliza la vía basada en el receptor gp60 en las células endoteliales microvasculares para transportar el complejo albúmina-paclitaxel desde el vaso sanguíneo hacia el intersticio tumoral; se ha demostrado que el transporte de Taxol® no emplea este mecanismo. Además, en los tumores mamarios se sobre-expresa una proteína fijadora de albúmina, SPARC, que puede desempeñar alguna función en la acumulación intratumoral incrementada de Abraxane®. El mecanismo propuesto señala que una vez dentro del intersticio tumoral, el complejo albúmina-paclitaxel se uniría a la SPARC presente en la superficie de la célula tumoral para penetrar rápidamente en su interior por un mecanismo no lisosómico.

Adicionalmente, los tensioactivos/disolventes usados habitualmente en las formulaciones actuales de taxano, tales como Cremophor®, Tween® 80 y TPGS, inhiben fuertemente la unión de paclitaxel a la albúmina, limitando de esta forma el transporte trans-endotelial. Datos adicionales presentados han puesto de manifiesto una eficacia estadísticamente mejorada de Abraxane® sobre Taxotere® en el xenoinjerto de carcinoma mamario MX-1 a dosis iguales.

En conclusión, 75% de los individuos recibieron tratamiento con la dosis alta completa, sin reducciones de dosis. Los datos indican una rápida mejoría de la neuropatía periférica con la administración aislada de paclitaxel unido a albúmina en nanopartículas, en ausencia del disolvente Cremophor®. Datos adicionales ofrecen pruebas que avalan la teoría de que el mecanismo de acción puede jugar un papel importante en potenciar los resultados individuales.

Ejemplo 3. Abraxane® (ABI-007) actúa de forma sinérgica con los péptidos pro-apoptóticos antiangiogénicos de acción dirigida (HKP) en xenoinjertos del tumor humano MDA-MB-435.

Con anterioridad, se ha informado sobre la actividad antiangiogénica de pequeños péptidos pro-apoptóticos sintéticos, compuestos por dos dominios funcionales, uno dirigido contra los receptores CD13 (aminopeptidasa N) en los microvasos tumorales, y otro que destruye la membrana mitocondrial tras su internalización, véase *Nat. Med.* 1999 Sep; 5(9):1032-8. Un péptido dimérico de segunda generación, CNGRC-GG-d(KLAKLAK)₂, denominado HKP (Péptido Cazador Asesino) ha demostrado tener una actividad antitumoral mejorada. Dado que agentes antiangiogénicos tales como Avastin® exhiben sinergismo en combinación con agentes citotóxicos tales como 5-fluorouracilo, los presentes inventores evaluaron la combinación del HKP antiangiogénico con Abraxane® (ABI-007), un paclitaxel en albúmina en forma de nanopartículas, que es transportado por el receptor gp60 en el endotelio vascular (Desai, *SABCS* 2003), en xenoinjertos del tumor de mama humano MDA-MB-435.

Métodos: Se establecieron xenoinjertos del tumor humano MDA-MB-435 a un volumen tumoral medio de 100 mm³, se distribuyeron aleatoriamente ratones a grupos de 12-13 animales, que fueron tratados con HKP. Abraxane®, o HKP y Abraxane®. El HKP se administró por vía i.v. (250 μg), una vez a la semana, durante 16 semanas. Abraxane® se administró por vía i.v. diariamente durante 5 días a una dosis de 10 mg/kg/día sólo durante la primera semana de tratamiento. La dosis de Abraxane® usada fue sustancialmente más baja que su MTD (30 mg/kg/día, diariamente durante 5 días) para prevenir la regresión completa del tumor y, por lo tanto, poder analizar el efecto de HKP.

Resultados: A las 19 semanas de tratamiento, el volumen del tumor había disminuido significativamente entre el grupo de control (10,298 mm³ ± 2,570) y HKP (4,372 mm³ ± 2,470; p < 0,05 frente a control) o ABI-007 (3,909 mm³ ± 506; p < 0,01 frente a control). La combinación de ABI-007 y HKP redujo significativamente el volumen del tumor con respecto a cualquiera de las dos monoterapias (411 mm³ ± 386; p < 0,01 frente a la monoterapia de Abraxane® o la monoterapia de HKP). Los tratamientos fueron bien tolerados.

Conclusión: La combinación de Abraxane® (ABI-007), un paclitaxel unido a albúmina en nanopartículas, con el péptido dimérico antiangiogénico HKP, con diana vascular (CNGRC-GG-d8KLAKLAK)₂ contra el xenoinjerto de tumor mamario MDA-MB-435 mostró una reducción significativa del volumen del tumor, comparado con la monoterapia con cualquiera de los dos agentes por separado. Los resultados de los presentes inventores señalan

que la combinación de Abraxane® con agentes antiangiogénicos como HKP o, tal vez, Avastin® puede ser beneficiosa.

Ejemplo 4. Terapia Metronómica con ABI-007: Actividad Antiangiogénica y Antitumoral de un Paclitaxel Unido a Albúmina en Forma de Nanopartículas.

5 Ejemplo 4a:

10

15

20

45

55

Métodos: La actividad antiangiogénica de ABI-007 se evaluó en los ensayos del anillo aórtico de la rata, de la proliferación de células endoteliales de la vena umbilical humana (HUVEC), y de formación de tubos. La dosis óptima de ABI-007 para la terapia metronómica se determinó midiendo los niveles de progenitores endoteliales circulantes (CEPs) en la sangre periférica de ratones Balb/c no portadores de tumores (n=5/grupo; dosificación: 1-30 mg/kg, i.p., diariamente durante 7 días) por citometría de flujo (Shaked et al., *Cancer Cell*, 7:101-111 (2005)). Subsiguientemente, en ratones SCID portadores de xenoinjertos de cáncer de mama humano MDA-MB-231 y de próstata PC3, se evaluaron y compararon los efectos antitumorales de los regímenes metronómico (diariamente; i.p.) y MTD (diariamente durante 5 días, 1 ciclo; i.v.) de ABI-007 y Taxol®.

Resultados: ABI-007 a 5 nM inhibió significativamente (p < 0,05) el crecimiento hacia el exterior del microvaso aórtico de la rata, la proliferación de células endoteliales humanas y la formación de tubos en 53%, 24% y 75%, respectivamente. Se observó que la dosis óptima de ABI-007 para la terapia metronómica fue de 6-10 mg/kg en base a las mediciones de CEP. La administración metronómica de ABI-007 (6 mg/kg), pero no de Taxol® (1,3 mg/kg) suprimió significativamente el crecimiento tumoral en ambos modelos de xenoinjertos. Ni ABI-007 ni Taxol® administrados de forma metronómica indujeron pérdida de peso. Aunque ABI-007 en régimen MTD (30 mg/kg) inhibió el crecimiento tumoral de manera más eficaz que Taxol® en régimen MTD (13 mg/kg), con el primero de ellos se verificó una pérdida significativa de peso. Es interesante destacar que el efecto antitumoral de ABI-007 metronómico se aproximó al de Taxol® en régimen MTD.

Conclusión: Usado en régimen metronómico, ABI-007 exhibe una potente actividad antiangiogénica y antitumoral.

Ejemplo 4b

25 Ensayo del Anillo Aórtico de Rata. Placas de cultivo de tejido, de doce pocillos, se recubrieron con Matrigel (Collaborative Biomedical Products, Bedford, MA), y se dejó gelificar durante 30 min a 37°C y 5% de CO₂. Se escindieron las aortas torácicas de ratas machos Sprague-Dawley de 8 a 10 semanas de edad, se cortaron en secciones transversales de 1 mm de longitud, se depositaron en los pocillos recubiertos con Matrigel y se cubrieron con Matrigel adicional. Después de formarse la segunda capa de Matrigel, los anillos de recubrieron con EGM-II y se 30 incubaron durante una noche a 37°C y 5% de CO₂. EGM-II consiste en medio basal de células endoteliales (EBM-II; Cambrex, Walkersville, MD) más factores de crecimiento de células endoteliales suministrados como EGM-II Bulletkit (Cambrex). Subsiguientemente, se cambió el medio de cultivo a EBM-II suplementado con 2% de FBS (suero bovino fetal), 0,25 µg/ml de anfotericina B y 10 µg/ml de gentamicina. Los anillos aórticos se trataron con EBM-II que contuvo el vehículo (0,9% de solución salina/albúmina), carboxiamidotriazol (CAI; 12 µg/ml), o ABI-007 (paclitaxel 35 0,05-10 nM) durante 4 días, y al quinto día se realizaron fotografías. CAI, un agente antiangiogénico conocido, se utilizó a una concentración superior a la que se alcanza clínicamente, como control positivo. Los experimentos se repitieron cuatro veces, usando aortas de cuatro ratas diferentes. El área de brotes angiogénicos, expresada en píxeles cuadrados, se cuantificó usando Adobe Photoshop 6.0.

Como se muestra en la Figura 1A, ABI-007 inhibió significativamente el sobre-crecimiento microvascular aórtico de la rata de forma dependiente de la concentración, con respecto al control con vehículo, alcanzando significación estadística (p < 0,05) a 5 nM (53% de inhibición), y 10 nM (68% de inhibición). La cantidad de albúmina presente en cada concentración de ABI-007 no inhibió por sí misma la angiogénesis.

Ensayo de Proliferación de Células Endoteliales. Células endoteliales de la vena umbilical humanas (HUVEC; Cambrex) se mantuvieron en EGM-II a 37°C y 5% de CO₂. Las células HUVEC se sembraron en placas de doce pocillos a una densidad de 30.000 células/pocillo y se permitió su fijación durante la noche. A continuación, se aspiró el medio de cultivo y se agregó medio de cultivo fresco que contuvo el vehículo (0,9% de solución salina/albúmina) o ABI-007 (paclitaxel 0,05-10 nM) a cada pocillo. Después de 48 h, las células se trataron con tripsina y se procedió a su recuento con un contador Coulter Z1 (Coulter Corp., Hialeah, FL). Todos los experimentos se repitieron tres veces.

Como se muestra en la Figura 1B, ABI-007 a 5 nM y 10 nM inhibió significativamente la proliferación de células endoteliales humanas en 36% y 41%, respectivamente.

Ensayo de Formación de Tubos de Células Endoteliales. Cámaras de cultivo de portas de ocho pocillos se recubrieron con Matrigel y se dejó gelificar a 37°C y 5% de CO₂ durante 30 min. A continuación, se sembraron células HUVEC a una densidad de 30.000 células/pocillo en EGM-II que contuvo el vehículo (0,9% de solución salina/albúmina) o ABI-007 (paclitaxel 0,05-10 nM), y se incubó a 37°C y 5% de CO₂ durante 16 h. Después de la incubación, los portas se lavaron en PBS, se fijaron en metanol al 100% durante 10 s. y se tiñeron con solución DiffQuick II (Dade Behring Inc., Newark, DE) durante 2 min. Para analizar la formación de tubos, cada pocillo se

ES 2 375 828 T3

fotografió digitalmente usando un objetivo de 2,5x. Se estableció un nivel umbral para enmascarar los tubos teñidos. Se midió el área correspondiente como el número de pixeles, empleando el software MetaMorph (Universal Imaging, Downingtown, PA). Los experimentos se repitieron tres veces.

Como muestra la Figura 1C, ABI-007 bloqueó la formación de tubos en 75% tanto a 5 nM como a 10 nM.

Determinación In Vivo de la Dosis Biológica Óptima de ABI-007 por medio de la Medición de Células Endoteliales 5 Circulantes (CEC) y Progenitores Endoteliales Circulantes (CEP). Ratones hembras Balb/cJ de seis a ocho semanas de edad se distribuyeron aleatoriamente en los ocho grupos siguientes (n=5 cada uno): no tratado, tratado con inyecciones de bolo i.p. del vehículo farmacológico (0,9% de solución salina/albúmina), o ABI-007 a 1, 3, 6, 10, 15 o 30 mg/kg de paclitaxel al día, durante 7 días. Al final del periodo de tratamiento, se tomaron muestras de sangre por 10 punción cardiaca y se recolectaron en tubos de ensayo Vacutainer que contuvieron EDTA (Becton Dickinson, Franklin Lakes, NJ). CECs y CEPs se enumeraron usando citometría de flujo de cuatro colores. Se usaron anticuerpos monoclonales específicos para CD45 para excluir las células hematopoyéticas CD45+. Las CECs y su subconjunto de CEP se revelaron usando los marcadores endoteliales murinos 1/V-receptor de EGF 2 de quinasa hepática fetal (flk-1/VEGFR2), CD13 y CD117 (BD Pharmingen, San Diego, CA). Se llevó a cabo una tinción nuclear (Procount; BD Biosciences, San José, CA) para excluir la posibilidad de que las plaquetas o residuos celulares 15 interfirieran con la exactitud de la enumeración de CEC y CEP. Después de la lisis eritrocitaria, se evaluaron las suspensiones celulares por un sistema FACSCalibur (BD Biosciences), usando puertas de análisis diseñadas para excluir células muertas, plaquetas y residuos. Se obtuvieron al menos 100.000 acontecimientos/muestra para analizar el porcentaje de CECs y CEPs. A continuación, se calculó el número absoluto de CECs y CEPs como el porcentaje de acontecimientos recopilados en las puertas de enumeración de CEC y CEP, multiplicado por el 20 recuento leucocitario total. Se determinaron los porcentajes de células teñidas y se compararon con los controles negativos adecuados. La tinción positiva se definió como mayor que la tinción de fondo inespecífica. Se usó 7aminoactinomicina D (7AAD) para enumerar células viables frente a células apoptóticas y muertas.

La Figura 2 demuestra que ABI-007 administrado por vía i.p. diariamente durante 7 días a 3, 10-30 mg/kg, redujo significativamente los niveles de CEP en ratones Balb/cJ no portadores de tumor. Sin embargo, ABI-007 a 10-30 mg/kg se asoció con una reducción significativa del recuento leucocitario indicativo de toxicidad. Aunque la reducción de los niveles de CEP por medio de ABI-007 a 6 mg/kg no alcanzó significación estadística, el descenso del recuento leucocitario no fue evidente. Por lo tanto, se llegó a la conclusión de que la dosis biológica óptima in vivo para ABI-007 metronómico fue de entre 3 y 10 mg/kg. En un estudio, la administración de Taxol® en régimen metronómico a 1,3, 3, 6 o 13 mg/kg por vía i.p. diariamente durante 7 días no redujo significativamente los niveles de CEP viables, mientras que Taxol® metronómico a 30 mg/kg o dosis superiores dio como resultado una grave toxicidad y, eventualmente, mortalidad entre los ratones. Anteriormente, se ha comunicado que la administración i.p. de Taxol® a dosis usadas habitualmente en clínica determina el atrapamiento de paclitaxel en micelas de Cremophor® EL en la cavidad peritoneal y, en consecuencia, una concentración insignificante de paclitaxel en plasma (Gelderblom et al., Clin. Cancer Res. 8:1237-41 (2002)). Esto explicaría la razón por la que la dosis de Taxol® metronómico (1,3, 3, 6 y 13 mg/kg) que no provocaron la muerte no lograron modificar los niveles de CEP viables. En este caso, la administración i.p. de Taxol® metronómico a 1,3 mg/kg no sería diferente de la de 13 mg/kg. Por lo tanto, se seleccionó la dosis más baja, 1,3 mg/kg, para minimizar la cantidad de Cremophor® EL por administración de paclitaxel en los experimentos subsiguientes.

25

30

35

55

60

Efectos antitumorales de ABI-007 en regímenes metronómico y MTD, comparado con Taxol® metronómico y MTD. Se obtuvieron líneas celulares PC3 de cáncer de próstata humano y MDA-MD-231 de cáncer de mama humano de la American Type Culture Collection (Manassas, VA). Se inyectaron células PC3 (5 x 10⁶) por vía s.c. en ratones SCID machos de 6 a 8 semanas de edad, en tanto que se implantaron células MDA-MD-231 (2 x 10⁶) de forma ortotópica en la almohadilla grasa mamaria de ratones SCID hembras. Cuando el volumen del tumor primario alcanzó aproximadamente 150-200 mm³, los animales se distribuyeron aleatoriamente en ocho grupos (n= 5-10/grupo). Cada grupo se trató con vehículo de control 0,9% de solución salina/albúmina, vehículo de control Cremophor® EL, Taxol® metronómico (1,3 mg/kg, i.p., a diario), ABI-007 metronómico (3, 6 o 10 mg/kg de paclitaxel, i.p. a diario), Taxol® MTD (13 mg/kg, i.p., a diario x 5, 1 ciclo), o ABI-007 MTD (30 mg/kg de paclitaxel, i.v., a diario x 5, 1 ciclo). Con un calibre se midieron los diámetros perpendiculares del tumor una vez a la semana, calculando sus volúmenes. Al final del periodo de tratamiento, se tomaron muestras de sangre por punción cardiaca de los ratones de todos los grupos. La enumeración de CECs y CEPs se llevó a cabo del modo descrito en esta memoria.

La administración metronómica de ABI-007 (3, 6 y 10 mg/kg), pero no de Taxol® (1,3 mg/kg), por vía i.p. diariamente durante 4 semanas inhibió significativamente (p < 0,05) el crecimiento tanto del tumor MDA-MB-231 como del PC3 (Fig. 3A y Fig. 3B). La administración metronómica de ABI-007 y Taxol® no indujo pérdida de peso (Fig. 3C y Fig. 3D). Aun cuando ABI-007 en régimen MTD (30 mg/kg) inhibió el crecimiento tumoral más eficazmente que Taxol® MTD (13 mg/kg), con el primero de ellos se observó una pérdida significativa de peso, que indica toxicidad. Además, dos de cada cinco ratones tratados con ABI-007 MTD desarrollaron signos de parálisis en una extremidad, 6 días después de la última dosis del medicamento. La parálisis fue transitoria y se resolvió en el plazo de 24-48 horas. Es interesante destacar que el efecto antitumoral de ABI-007 metronómico a 6 mg/kg fue semejante al de Taxol® MTD en el modelo de xenoinjerto de MDA-MB-231 (Fig. 3A). El incremento de la dosis de ABI-007 metronómico a 10 mg/kg no pareció producir una inhibición más pronunciada del crecimiento del tumor. Por el contrario, ABI-007

metronómico desencadenó una respuesta antitumoral mayor con 10 mg/kg que con 3 y 6 mg/kg en los xenoinjertos de PC3 (Fig. 3B).

El régimen metronómico de ABI-007 redujo significativamente los niveles de CEP viables de forma dependiente de la dosis en ratones portadores del tumor MDA-MB-231 (Fig. 4A). Los niveles de CEP viables también mostraron una reducción dependiente de la dosis en respuesta a ABI-007 metronómico en ratones portadores del tumor PC3, pero sólo alcanzaron significación estadística a 10 mg/kg (Fig. 4B). Los niveles de CEP no resultaron alterados por la administración metronómica de Taxol® en ninguno de los dos modelos de xenoinjerto (Figs. 4A y 4B).

5

10

20

45

50

55

Se estudiaron los efectos de ABI-007 metronómico y Taxol® metronómico y MTD sobre la densidad de microvasos intratumorales. Se tiñeron con H&E cortes de 5 μm de grosor obtenidos de tumores MDA-MB-231 y PC3 congelados, para el examen histológico por métodos convencionales conocidos por los expertos en la técnica. Para la detección de microvasos, se tiñeron los cortes con anticuerpo de rata anti-ratón CD31/PECAM (1:1000, BD Pharmingen), seguido de un anticuerpo secundario conjugado Texas Red de cabra anti-rata (1:200, Jackson ImmunoResearch Laboratories, Inc., West Grove, PA). Un microvaso aislado se definió como un racimo discreto o una célula aislada, teñido en positivo para CD31/PECAM-1d, sin que fuera necesaria una luz para alcanzar la puntuación de microvaso. La MVD (densidad microvascular) para cada tumor se expresó como el recuento medio de los tres campos más densamente teñidos identificados con un objetivo de 20x en un sistema de obtención de imágenes de microscopia de fluorescencia Zeiss Axio/Vision 3.0. Se analizaron cuatro de cinco tumores diferentes por cada grupo de control de vehículo o de tratamiento.

En los tumores MDA-MB-231, ABI-007 metronómico a dosis de 6 y 10 mg/kg, así como ABI-007 MTD parecieron reducir la densidad microvascular (MVD) ligeramente, aunque no se alcanzó significación estadística (Fig. 5A). En los tumores PC3, la administración metronómica de ABI-007 a 3 y 10 mg/kg pareció reducir la MVD, pero sin alcanzar significación estadística (Fig. 5A). Es interesante señalar que se observó una correlación significativa entre MVD y el nivel de CEP viables en el modelo MDA-MB-231 (Fig. 5B; r=0,76, P-0,04), pero no en el modelo PC3 (Fig. 5C; r=-0,071, P-0,88).

25 Se llevaron a cabo evaluaciones in vivo de la angiogénesis. Se efectuó un ensayo de perfusión de un tapón de Matrigel con ligeras modificaciones con respecto a métodos conocidos por el experto en la técnica. En pocas palabras, el día 0 se inyectaron por vía s.c. 0,5 ml de Matrigel suplementado con 500 ng/ml de factor básico de crecimiento de fibroblastos (bFGF; R&D Systems Inc., Minneapolis, MN) en los costados de ratones Balb/cJ hembras de 10 semanas de edad. El día 3, los animales se asignaron aleatoriamente a ocho grupos (n=5 cada uno). 30 Cada grupo se trató con control de vehículo de 0,9% de solución salina/albúmina, control de vehículo de Cremophor® EL, Taxol® metronómico (1,3 mg/kg, i.p., a diario), ABI-007 metronómico (3, 6 o 10 mg/kg de paclitaxel, i.p., a diario), Taxol® MTD (13 mg/kg, i.v., a diario x 5), o ABI-007 MTD (30 mg/kg de paclitaxel, i.v., a diario x 5). Como control negativo, en cinco ratones Balb/cJ hembras adicionales, de edad similar, se inyectó solamente Matrigel. El día 10, se administró a todos los animales una invección i.v. de 0,2 ml de 25 mg/ml de FITC-dextrano 35 (Sigma, St. Louis, MO). Subsiguientemente, se tomaron muestras de plasma. Se retiraron los tapones de Matrigel, se incubaron con Dispase (Collaborative Biomedical Products, Bedford, MA) durante la noche a 37°C y, seguidamente, se homogeneizaron. Se obtuvieron lecturas de fluorescencia usando un lector de placas de fluorescencia FL600 (Biotech Instruments, Winooski, VT). La respuesta angiogénica se expresó como la relación de fluorescencia del tapón de Matrigel a la fluorescencia del plasma.

40 La administración metronómica de ABI-007 a 6 y 10 mg/kg pareció reducir la angiogénesis, aunque la inhibición no alcanzó significación estadística (Fig. 6). La angiogénesis pareció mantenerse inalterada con ABI-007 metronómico a 3 mg/kg, ABI-007 MTD, Taxol® metronómico y MTD con respecto a los correspondientes controles de vehículo (Fig. 6). Estas observaciones fueron similares a los resultados de MVD intratumoral descritos en este documento.

Ejemplo 5. *Nab*-5109, un IDN5109 unido a albúmina en Nanopartículas (*nab*-5109) Muestra Eficacia Mejorada y Menor Toxicidad con respecto a la formulación en Tween® (Tween®-5109, Ortataxel).

Métodos: Se preparó *nab*-5109 en nanopartículas usando tecnología *nab* y se caracterizó por barrido con luz láser. *Nab*-5109 y Tween®-5109 se ensayaron frente al xenoinjerto de carcinoma de colon humano DLD-1 Pgp+ (conocido por ser resistente a paclitaxel y docetaxel – Vredenburg et al., *JNC* 193: 1234-1245, 2001) en ratones desnudos (n=5/grupo) a dosis de 50 mg/kg (Tween®-5109, mostrado anteriormente como MTD) y 75 mg/kg de *nab*-5109, administrado cada 3 días x 4, i.v. También se usaron grupos de control de PBS y albúmina sérica humana (HSA).

Resultados: *Nab*-5109 proporcionó nanopartículas con un tamaño medio, Z_{Ave} = 119 nm y un potencial zeta = -32,7 mV. *Nab*-5109 se liofilizó hasta obtener un polvo fino que se dispersó fácilmente en solución salina. *In vivo*, se verificó una pérdida de peso significativamente mayor (ANOVA, p<0,001) en los animales portadores de tumor tratados con Tween®-5109 (50 mg/kg, 8,8% de pérdida de peso) que con *nab*-5109 (75 mg/kg, pérdida de peso de 3,4%), lo que indica una toxicidad sustancialmente menor de *nab*-5109 a pesar de la dosis 50% más alta. Con la administración de *nab*-5109 y Tween®-5109 se observó una supresión significativa del tumor (ANOVA, p<0,0001 frente a controles), con retrasos en el crecimiento tumoral de 36 y 28 días, respectivamente para *nab*-5109 (75 mg/kg) y Tween®-5109 (50 mg/kg). *Nab*-5109 fue más eficaz que Tween®-5109 (ANOVA, p=0,0001) en suprimir el

crecimiento del tumor. No hubo diferencias entre los grupos de control de PBS y HSA en términos de toxicidad y eficacia.

Conclusión: *Nab*-5109, unido a albúmina, en nanopartículas se preparó eficazmente y se pudo administrar a una dosis 50% mayor que Tween®-5109, con menor toxicidad a pesar de la dosis más alta. A esta dosis mayor, de 75 mg/kg (cada 3 días x 4), *nab*-5109 mostró una eficacia significativamente mejorada en el xenoinjerto de colon humano DLD-1 Pgp+ comparado con Tween®-5109.

5

15

20

25

30

35

40

45

50

Ejemplo 6. Tiocolchicinas Diméricas Unidas a Albúmina en Nanopartículas, *nab*-5404, *nab*-5800 y *nab*-5801: Evaluación Comparativa de la Actividad Antitumoral frente a Abraxane® e Irinotecan.

Métodos: Por medio de tecnología *nab* se prepararon colchicinas en nanopartículas. Se evaluó la citotoxicidad *in vitro* empleando cultivos de carcinoma de mama humano MX-1. La actividad antitumoral *in vivo* (xenoinjerto de tumor de colon humano HT29) en el ratón desnudo se comparó con respecto a Irinotecan y Abraxane®. Los niveles de dosis para las *nab*-colchicinas e Irinotecan fueron 20 mg/kg, 30 mg/kg y 40 mg/kg, administrados cada 3 días x 4, i.v. Abraxane® se administró a su MTD, 30 mg/kg, cada día x 5.

Resultados: Los dímeros hidrófobos de tiocolchicina dieron nanopartículas con un tamaño medio, Z_{Ave} (nm) de 119, 93 y 84 nm para *nab*-5404, *nab*-5800 y *nab*-5801, respectivamente. Las suspensiones de nanopartículas se esterilizaron a través de filtros de 0,22 μm y se liofilizaron. *In vitro*, *nab*-5404 fue el más potente de los tres análogos contra MX-1 (p≤0,0005, ANOVA) (Cl₅₀ (μg/ml): 18, 36 y 77 para *nab*-5404, *nab*-5800 y *nab*-5801, respectivamente) así como contra el xenoinjerto HT29 *in vivo* (p≤0,0001, ANOVA). El volumen del tumor experimentó una supresión de 93%, 79% y 48% con *nab*-5404 a dosis de 40 mg/kg, 30 mg/kg y 20 mg/kg, respectivamente. Por el contrario, el volumen del tumor sólo disminuyó en 31%, 16% y 21% con *nab*-5800; y en 17%, 30% y 23% con *nab*-5801 a 40 mg/kg, 30 mg/kg y 20 mg/kg, respectivamente. *Nab*-5404 fue más eficaz que Irinotecan a todos los niveles de dosis (p≤0,008, ANOVA); los volúmenes del tumor disminuyeron con Irinotecan en sólo 48%, 34% y 29% a niveles de dosis de 40 mg/kg, 30 mg/kg y 20 mg/kg, respectivamente. En comparación con Abraxane®, *nab*-5404 fue más activo a dosis equitóxicas (ETD) en base a igual pérdida de peso (p<0,0001, ANOVA). *Nab*-5404 (40 mg/kg, cada 4 días x 3) redujo el volumen del tumor en 93%, frente a una supresión de 80% con Abraxane® (30 mg/kg, a diario x 5) a sus ETD correspondientes.

Conclusiones: Se utilizó tecnología *nab* para convertir 3 tiocolchicinas diméricas hidrófobas (IDN5404, IDN5800 e IDN5801) en nanopartículas apropiadas para la administración I.V. *Nab*-5404 exhibió *in vitro* e *in vivo* una actividad antitumoral superior, comparada con *nab*-5800 y *nab*-5801. *Nab*-5404 fue más potente que Irinotecan a dosis iguales. A dosis equitóxicas, definidas por la pérdida de peso, *nab*-5404 fue más potente que Abraxane®. Estos datos justifican la investigación adicional de *nab*-5404.

Ejemplo 7. Abraxane® frente a Taxotere®: Comparación Preclínica de Toxicidad y Eficacia

Métodos: En un estudio de determinación de dosis, se comparó la toxicidad de Abraxane® y Taxotere® en ratones desnudos a los que se administraron los medicamentos en un programa de cada 4 días x 3. Los niveles de dosis de Taxotere® fueron 7, 15, 22, 33 y 50 mg/kg y, en el caso de ABX, de 15, 30, 60, 120 y 240 mg/kg. Se comparó la actividad antitumoral de Abraxane® y Taxotere® en ratones desnudos con xenoinjertos de carcinoma mamario humano MX-1, a una dosis de 15 mg/kg semanal, durante 3 semanas.

Resultados: En el estudio de dosis escalonada en el ratón, la dosis tolerada máxima (MTD) de Taxotere® fue de 15 mg/kg, y la dosis letal (DL₁₀₀) fue de 50 mg/kg. Por el contrario, la MTD de Abraxane® fue de entre 120 y 240 mg/kg, y la DL₁₀₀ fue de 240 mg/kg. En el estudio del tumor, Abraxane® fue más efectivo que dosis iguales de Taxotere® en la inhibición del crecimiento tumoral (79,8% frente a 29,1%, p < 0,0001, ANOVA).

Conclusión: Paclitaxel unido a albúmina en nanopartículas (Abraxane®) fue superior a Taxotere® en el modelo del tumor MX-1, ensayados a dosis iguales. Adicionalmente, la toxicidad de Abraxane® fue significativamente menor que la de Taxotere®, lo cual permitiría administrar Abraxane® a niveles de dosis sustancialmente más altas. Estos resultados son similares al índice terapéutico potenciado observado con Abraxane® en comparación con Taxol®, e indican que la presencia de tensioactivos puede alterar el transporte, la actividad antitumoral e incrementar la toxicidad de los taxanos. Estudios en modelos tumorales adicionales para comparar Abraxane® con Taxotere® están en desarrollo.

Ejemplo 8. Dímero de Tiocolchicina Unido a Albúmina en Nanopartículas (*nab*-5405) con Doble Mecanismo de Acción sobre Tubulina y Topoisomerasa-1: Evaluación de la Actividad *In vitro* e *In vivo*.

Métodos: La actividad citotóxica de IDN5404 se estudió usando el carcinoma de mama MCF7-S y su variante resistente a múltiples medicamentos, MCF7-R (pgp+). Asimismo, se evaluó su citotoxicidad contra el panel de línea celular del tumor humano NCI-60. *Nab*-5405 unido a albúmina en nanopartículas se administró a ratones SCID con implante s.c. de xenoinjerto del tumor de ovario humano A121, por vía IV usando diversos programas.

55 Resultados: Frente a las líneas celulares MCF7, el compuesto parental – colchicina – demostró una inhibición del crecimiento tumoral con un valor de Cl₅₀ (concentración inhibitoria del crecimiento al 50%) para las células MCF7-S

de 3.9 ± 0.2 nM. La variante resistente MCF7-R exhibió una Cl₅₀ de 6.6 ± 8.6 nM, aproximadamente un aumento de 17 veces debido a la resistencia al medicamento. IDN5404 evidenció una actividad aumentada contra las dos líneas celulares, mostrando valores de Cl₅₀ de 1.7 ± 0.1 y 4.0 ± 3.8 nM, respectivamente. Estos resultados se confirmaron en el panel de líneas celulares del tumor humano NCI 6.0 ± 0.0 en el que IDN5404 tuvo una Cl₅₀ media $< 10^{-8}$ y una resistencia > 10 veces entre las líneas celulares MCF7-S y MCF7-R. El algoritmo COMPARE identificó IDN5405 como un medicamento que se une a la tubulina similar a los alcaloides de la vinca, confirmando los resultados anteriores. En condiciones *in vivo*, frente al xenoinjerto de tumor de ovario A121, la eficacia y toxicidad de *nab*-5404 fueron dependientes de la dosis y del programa de administración. *Nab*-5404 unido en nanopartículas fue bien tolerado y capaz de inducir regresiones y curaciones completas: con la dosis de 24 mg/kg, administrada por vía IV a diario x 5, 5 de 5 ratones fueron supervivientes a largo plazo (LTS), sin evidencias de tumor. Sin embargo, el incremento de la dosificación a 30 mg/kg dio como resultado 5 de 5 muertes por toxicidad. En un programa de cada 3 días x 4, la dosis de 30 mg/kg produjo 4 ratones LTS de 5, y a 50 mg/kg, 5 de 5 muertes por toxicidad. Con el uso de un programa de cada 7 días x 3, la dosis de 40 mg/kg dio lugar a 3 ratones LTS de 5 y, a 50 mg/kg, se registraron 4 de 4 LTS.

15 Conclusiones: IDN5404, un nuevo dímero de tiocolchicina con doble mecanismo de acción, se mostró activo en líneas celulares resistentes a cisplatino y topotecan que expresan pgp. *In vivo*, *nab*-5404 unido a albúmina en nanopartículas, fue activo contra xenoinjertos de ovario A121.

Ejemplo 9. Estudios de Combinación de Abraxane® y Otros Agentes

Debido a las beneficiosas propiedades de Abraxane® (ABX, paclitaxel unido a albúmina en nanopartículas) observadas anteriormente, se le ha utilizado y se le usa en una serie de estudios con diferentes modos y programas de administración, y en combinación con otros medicamentos oncológicos y con tratamientos de radiación, que se recopilan a continuación:

En cáncer de mama metastásico, estos estudios incluyen:

5

10

20

Ensayo Aleatorizado de Fase II de Abraxane® Semanal en Combinación con Gemcitabina en Individuos con Cáncer de Mama Metastásico HER2 Negativo.	ABX 125, Gem 1000 mg/m ² , D1, 8; cada 3 sem.	Evaluar la combinación de ABX y Gemcitabina en MBC de 1ª línea.
Estudio de Fase II de la administración semanal de paclitaxel en nanopartículas a dosis densa (ABI-007), carboplatino, con Herceptin® como terapia de primera o segunda línea del cáncer de mama avanzado HER2 positivo.	ABX 100 mg/m ² , Carbo AUC 2, ambos D 1, 8, 15; Her 2 mg/kg (4 mg/kg en semana a) cada 4 sem. x 6	Los datos serán importantes para usar ABX en combinación con carbo y/o Herceptin®. Útil también para otras combinaciones.
Vinorelbina semanal y Abraxane®, con o sin G-CSF, en cáncer de mama en estadio IV; estudio de Fase I-II	L1: ABX 80, Nav 15; L2: ABX 90, Nav 20; L3: ABX 100, Nav 22,5; L4: ABX 110, Nav 25; L5: ABX 125, Nav 25 cada sem.	Estudio multicéntrico de ABX en combinación con Navelbine® en MBC de 1ª línea.
Ensayo de Fase II de monoterapia semanal con Abraxane® en MBC de 1ª línea (más Herceptin en pacientes Her2+).	ABX 125 mg/m ² cada 3/4 sem.	Estudio de Fase II relativamente amplio de monoterapia semanal de ABX a 125 mg/m² en MBC de 1ª línea.
Ensayo de Fase I/II de Abraxane® más Doxil® en MBC más PK limitada	ABX + Antraciclina	
Ensayo de Fase II de 3 ramas en MBC de 1ª línea	ABX semanalmente (130 mg/m²) frente a cada 2 sem. (260 mg/m²) frente a cada 3 sem. (260 mg/m²)	Optimizar el régimen de monoterapia con ABX en MBC
Ensayo de Fase II de 3 ramas, en MBC de 1ª y 2ª líneas, con análisis de correlatos biológicos.	ABX semanal frente a ABX cada 3 sem. frente a Taxol® semanal.	Ensayo aleatorizado de ABX en MBC para obtener datos importantes: ABX semanal frente a Taxol® semanal; ABX semanal frente a ABX cada 3 sem.; más estudio de biomarcadores (caveolina-1 y SPARC).

Fase I/II: Abraxane® + GW572016	TBD	Combinación de ABX y GW572016 (inhibidor doble de EGFR, y uno de los nuevos agentes biológicos más prometedores para BC).
Estudio de Fase I de incremento de dosis de un pulso de quimiosensibilización de 2 días con gefitinib oral, administrado antes de Abraxane® semanal en individuos con tumores sólidos avanzados.	Abraxane® 100 mg/m² a la semana, 3 de cada 4 sem; gefitinib se inicia a 1000 mg/d x 2 días	Este ensayo de Fase I es para determinar la seguridad y tolerabilidad de un pulso de gefitinib de 2 días administrado antes de dar Abraxane®.
Ensayo de Fase II de MBC de 1ª línea	ABX semanal (125 mg/m², 2 sem. sí y una sem. no) + Xeloda® 825 mg/m², d 1-14, cada 3 sem.	Evaluar la combinación de ABX y Xeloda® en MBC de 1ª línea, usando un régimen de ABX de dos semanas de tratamiento y una de descanso.
Ensayo piloto adyuvante de Fase II de Abraxane® en cáncer de mama.	AC + G-CSF en dosis densa → ABX semanal → Avastin®	Estudio piloto adyuvante de una "súper dosis densa".
Abraxane® en quimioterapia adyuvante en dosis densa para el cáncer de mama en estadio precoz.	AC cada 2 sem. x 4 + G-CSF → ABX cada 2 sem. x 4	Estudio piloto adyuvante de régimen de ABX en dosis densa – una alternativa al régimen adyuvante estándar.
Ensayo piloto adyuvante de Fase II de Abraxane® en cáncer de mama	AC cada sem. → ABX cada 2 sem. + G-CSF	Estudio piloto adyuvante para preparar un ensayo adyuvante de Fase III.

En quimioterapia neoadyuvante del cáncer de mama, los estudios incluyen:

Ensayo de Fase II de Régimen Neoadyuvante en Dosis Densa de Gentamicina, Epirrubicina, ABI-007 (GEA) en Cáncer de Mama Localmente Avanzado o Inflamatorio.	Neoadyuvante: Gem 2000, Epi 60, ABX 175 mg/m², Neul 6 mg s.c., todos el D 1 cada 2 sem. x 6; Adyuvante: Gem 2000, ABX 220, Neul 6 mg, D 1 cada 2 sem. x 4.	Este estudio neoadyuvante se basa en los datos europeos de GET, que exhibieron alta actividad. En el régimen actual, ABX sustituirá a T, o Taxol®.
Ensayo preoperatorio de Fase II de Abraxane®, seguido de FEC (+ Herceptin® si es apropiado) en cáncer de mama.	ABX 220 mg/m ² cada 2 sem. x 6 seguido de FEC x 4 (ç Herceptin® en pacientes Her2+).	
Estudio preclínico de interacción farmacológica	ABX + otros agentes	
Neoadyuvante de Fase II	(ABX + Herceptin®) seguido de (Navelbine® + Herceptin®)	
Ensayo aleatorizado de Fase II de quimioterapia neoadyuvante en individuos con cáncer de mama.	TAC frente a AC, seguido de ABX + carbo frente a AC seguido de ABX + carbo + Herceptin®	Evaluar AC seguido de combinaciones de ABX/carbo o ABX/carbo/Herceptin® frente a TAC (un régimen adyuvante aprobado por la FDA para el cáncer de mama) en ámbito neoadyuvante.
Ensayo neoadyuvante de Fase II de Abraxane® y capecitabina en cáncer de mama localmente avanzado.	ABX: 200 mg/m ² D1; Xel: 1000 mg/m ² D 1-14; cada 3 sem. x 4	

Ensayo de Fase II de quimioterapia neoadyuvante (NCT) con paclitaxel en nanopartículas (ABI-007, Abraxane®) en mujeres con cánceres de mama en estadios clínicos IIA, IIB, IIIA, IIIB y IV (con cáncer primario intacto).	ABX: 300 mg/m ² cada 3 sem.	
En cáncer de pulmón, los estudios incluye	en:	
Estudio de Fase I/II de monoterapia con Abraxane® en NSCLC avanzado de 1ª línea.	ABX semanal	El primer ensayo de Fase II de ABX combinado con carbo en NSCLC.
Ensayo de Fase II de Abraxane® semanal más carboplatino en NSCLC de 1ª línea.	ABX: 125 mg/m ² , D1, 8, 15; Carbo: AUC 6 D1; cada 4 sem.	
Ensayo de Fase I de Carboplatino y Abraxane® en un programa semanal y cada tres semanas en individuos con Tumores Malignos Sólidos Avanzados	Rama 1: ABX: 100, 125, 150 mg/m², D1, 8, 15 cada 4 sem.; Rama 2: ABX: 220, 260, 300 mg/m² D 1 cada 3 sem. Carbo AUC 6 en ambas ramas.	Este estudio de Fase I de dos ramas generará datos importantes sobre la combinación ABX/Carbo para estudios posteriores de esta combinación en múltiples enfermedades.
Estudio de Fase II de ABI 007 (Abraxane®) y carboplatino en cáncer de pulmón de células no pequeñas avanzado.	ABX Nivel (a): 225 mg/m ² ; Nivel (b): 260 mg/m ² ; Nivel (3)(c): 300 mg/m ² ; cada 3 sem. Carbo establecido en AUC 6 cada 3 sem.	Este estudio de Fase II en NSCLC generará datos para un futuro ensayo de registro de Fase III en cáncer de pulmón.
Estudio de Fase I de ABI-007 (Abraxane®) y carboplatino.	ABX cada 3 sem.	
Estudio de Fase I/II de Abraxane® + Alimta® en NSCLC de 2ª línea	TBD	ABX y Alimta® pueden ser una combinación prometedora debido a sus perfiles de toxicidad no solapados.
Ensayo de Fase I/II de Abraxane® más cisplatino en NSCLC avanzado.		
Estudio de Fase I/II de Abraxane®, Navelbine® y Cisplatino en el tratamiento de NSCLC avanzado.		
Estudio de Fase II de monoterapia de ABX en NSCLC de 1ª línea	ABX: 260 mg/m ² cada 3 sem.	El 1 ^{er} ensayo de ABX en NSCLC.
Estudio de Fase II de Abraxane® en monoterapia de 2ª línea de NSCLC.	Cohorte 1: ABX cada 3 sem; Cohorte 2: ABX semanal. Dosis TBD.	
Ensayo de Fase I/II de Abraxane® y carboplatino semanal en NSCLC avanzado.	1ª línea	
Los estudios en próstata incluyen:		
Estudio aleatorizado de Fase II de ABX semanal frente a cada 3 sem. en HRP (HRPC = cáncer de próstata refractario a hormonas) de primera línea.	100 mg/m ² semanales frente a 260 mg/m ² cada 3 sem.	
Estudio de Fase II de ABX en 1ª línea del cáncer de próstata.	ABX semanal	Estudio de Fase II de ABX semanal en 1ª línea de HRPC.

Estudio neoadyuvante de Fase II	TBD	Ensayo neoadyuvante multicéntrico de ABX en cáncer de próstata más estudio de biomarcadores.
Estudio de Fase II de ABX 100 mg semanales, sin interrupciones.		

Los estudios en cáncer de ovario incluyen:

Estudio en Fase II de Abraxane® en el tratamiento del cáncer de ovario avanzado (3ª línea)	TBD	
Estudio de Fase I de Abraxane® más carbo en el tratamiento del cáncer de ovario avanzado.	ABX semanal + Carbo AUC 6	
Ensayo de Fase II de Abraxane®/Carboplatino en cáncer de ovario recurrente.		

Los estudios en quimioradiación incluyen:

Ensayo de Fase I/II de Abraxane® combinado con radiación en NSCLC		
Abraxane® combinado con radiación	Modelo animal	
H&N (Cáncer de Cabeza y Cuello)	TBD	

Otros estudios incluyen:

5

10

Estudio de Fase II de ABX en el tratamiento del carcinoma cervical persistente o recurrente	125 mg/m ² D 1, 8, 15, cada 28 días	
Estudio de Fase II en melanoma metastásico tratado (100 ABX) y no tratado (150 ABX)	26 → 70	
Estudio de Fase II de uso terapéutico único de ABI-007 en el tratamiento de enfermedades malignas no hematológicas.		
Abraxane® combinado con agentes antiangiogénicos, por ejemplo, Avastin®.		
Abraxane® combinado con inhibidores del proteasoma, por ejemplo, Velcade®		
Abraxane® combinado con inhibidores del EGFR, por ejemplo, Tarceva®		
Ensayo aleatorizado de Fase II de tratamiento semanal con gemcitabina, Abraxane® e irradiación externa en el cáncer de páncreas localmente avanzado.		

Ejemplo 10. Combinación de medicamentos de la invención en nanopartículas con otros agentes y modos de terapia.

La menor toxicidad de los medicamentos en nanopartículas según la invención, descritos en esta memoria, permiten la combinación con otros medicamentos oncológicos y otros modos de tratamiento con resultados más favorables. Estas incluyen las formas en nanopartículas de paclitaxel, docetaxel, otros taxanos y análogos, geldanamicinas, colchicinas y análogos, combretastatinas y análogos, compuestos de pirimidina hidrófobos, lomaiviticinas y análogos, incluidos compuestos con estructuras centrales de lomaiviticina, epotilonas y análogos, discodermólidas y análogos, y similares. Los medicamentos según la invención se pueden combinar con paclitaxel, docetaxel, carboplatino, cisplatino, otros platinos, doxorrubicina, epirrubicina, ciclofosfamida, ifosfamida, gemcitabina, capecitabina, vinorelbina, topotecan, irinotecan, tamoxifeno, camptotecinas, 5-FU, EMP (fosfato de estramustina), etopósido, metotrexato y similares.

Ejemplo 11. Combinación de Abraxane® con Carboplatino y Herceptin®

La combinación de Taxol® y carboplatino ha demostrado eficacia significativa contra el cáncer de mama metastásico. En programa semanal, en esta combinación Taxol® solamente se puede administrar a dosis de hasta 80 mg/m². Las dosis superiores no se toleran debido a la toxicidad. Además, los individuos HER-2-positivos obtienen beneficios mayores cuando se incluye Herceptin® en su régimen terapéutico. Este estudio abierto de Fase II se llevó a cabo para determinar el efecto terapéutico sinérgico de ABI-007 (Abraxane®) con estos agentes. El presente estudio se inició para evaluar la seguridad y actividad antitumoral de ABI-007/carboplatino con Herceptin® en individuos con enfermedad HER-2-positiva. ABI-007 se administró en combinación con carboplatino y Herceptin®, administrados semanalmente por vía intravenosa, a individuos con cáncer de mama avanzado HER-2-positivo. Un grupo de 3 individuos recibió ABI-007 a una dosis de 75 mg/m², I.V., seguido de carboplatino a una AUC diana = 2 semanal, e infusión de Herceptin® (4 mg/kg en la semana 1, y 2 mg/kg en todas las semanas subsiguientes) durante 1 ciclo. Estos individuos toleraron muy bien el medicamento, por lo que en todos los ciclos e individuos subsiguientes se elevó la dosis de ABI-007 a 100 mg/m². Hasta la fecha, se han tratado seis individuos. De los cuatro individuos en los que se ha evaluado la respuesta, los 4 (100%) respondieron a la terapia. Se debe señalar que debido a la toxicidad más baja de Abraxane®, fue posible administrar una dosis total de paclitaxel más alta en comparación con Taxol®, con beneficios favorables para los pacientes.

Ejemplo 12. Combinación de Abraxane® con Carboplatino.

La combinación de Taxol® con carboplatino ha mostrado eficacia significativa en el cáncer de pulmón. Está en desarrollo otro estudio con Abraxane® en combinación con carboplatino, en un programa de 3 semanas, en individuos con cáncer de pulmón.

20 Ejemplo 13. Uso de Abraxane® en Combinación con Radiación

Ejemplo 13a

10

15

25

30

35

40

45

50

55

Abraxane®, combinado con radioterapia clínica, potencia la eficacia terapéutica y reduce la toxicidad en el tejido normal. Abraxane® se utiliza para aumentar la ganancia terapéutica de la radioterapia en tumores; potenciar la respuesta tumoral a la irradiación única y fraccionada; potenciar la respuesta del tejido normal a la radiación, e incrementar el índice terapéutico de la radioterapia.

Se utiliza un carcinoma de ovario murino, designado Oca-I, que ha sido extensamente investigado. En primer lugar, se establece la programación óptima para la administración de Abraxane® con respecto a la radiación local del tumor, para producir la máxima eficacia antitumoral. En la extremidad posterior derecha de los ratones se generan los tumores por inyección i.m. de células tumorales, y el tratamiento se inicia cuando los tumores alcanzan un tamaño de 8 mm. Los ratones se tratan con una irradiación de dosis única de 10 Gy, una dosis única de Abraxane®, o con terapia combinada de Abraxane® administrado a diferentes horas 5 días antes hasta 1 día después de la irradiación. Se usa una dosis de Abraxane® aproximadamente 1,5 veces mayor que la dosis máxima tolerada de paclitaxel, es decir, una dosis de 90 mg/kg. La variable de eficacia es el retraso del crecimiento del tumor. Los grupos están formados por 8 animales, cada uno. Los tumores se generan y tratan de la forma descrita en la sección Objetivo 1. La variable de eficacia es el retraso del crecimiento del tumor. Los tumores se irradian con 5, 7,5 o 10 Gy, suministrados en dosis única o en dosis fraccionadas de 1, 1,5 o 2 Gy de radiación al día, durante 5 días consecutivos. Dado que Abraxane® se retiene en el tumor durante varios días y desarrolla su efecto potenciador sobre cada una de las cinco fracciones diarias, Abraxane® se administra una vez al comienzo del régimen de radiación. Puesto que el objetivo final de la radioterapia clínica es lograr la curación del tumor, se determina el potencial de Abraxane® para reforzar la radiocurabilidad del tumor. Se utiliza el mismo esquema descrito para el estudio del retraso fraccionado del crecimiento tumoral, con la excepción de que se administra un intervalo de dosis de 2 a 16 Gy diariamente durante cinco días consecutivos (dosis total de radiación, 10 a 80 Gy). Se lleva a cabo el seguimiento de la regresión y nuevo crecimiento del tumor durante un periodo de hasta 120 días después de la irradiación, momento en el que se determina la TCD50 (la dosis de radiación necesaria para producir la cura local del tumor en 50 por ciento de los animales). Hay dos ensayos de TCD₅₀: radiación solamente, y Abraxane® más radiación, y cada ensayo consiste en 10 grupos de dosis de radiación que contienen 15 ratones cada uno. Para proporcionar ganancia terapéutica, cualquier agente potenciador de la radiación - incluido Abraxane® - debe elevar la radio-respuesta del tumor más que aumentar las lesiones del tejido normal causadas por la radiación. Se evalúa el daño de la mucosa del yeyuno, un tejido altamente proliferativo afectado por los taxanos. Se usa el ensayo de microcolonias del yeyuno para determinar la supervivencia de las células crípticas epiteliales en el yeyuno de ratones expuestos a radiación. Los animales se exponen a irradiación de cuerpo entero (WBI) con dosis diarias de rayos X en el intervalo de 3 a 7 Gy durante cinco días consecutivos. Los ratones son tratados con Abraxane® en una dosis equivalente de paclitaxel de 80 mg/kg, administrada por vía i.v. 24 h antes de la primera dosis de WBI; los animales son sacrificados 3,5 días después de la última dosis de WBI. El yeyuno se prepara para el examen histológico y se determina el número de criptas en regeneración en la sección transversal del yeyuno. Para construir las curvas de supervivencia a la radiación, se convierte el número de criptas en regeneración en el número de células supervivientes.

Ejemplo 13b

10

15

20

25

30

35

40

45

50

55

El objetivo de este estudio fue evaluar si ABI-007 (a) como agente aislado tiene actividad antitumoral contra el carcinoma de ovario murino singénico OCa-1, y (b) refuerza la respuesta a la radiación de los tumores OCa-1 en un régimen de tratamiento combinado, tal como se ha descrito en el ejemplo anterior, con las siguientes modificaciones.

Las células tumorales OCa-1 se inyectaron por vía i.m. en la pata posterior de ratones C3H. Cuando los tumores crecieron hasta un diámetro medio de 7 mm, se inició el tratamiento aislado con radiación local (10 Gy) sobre la pata portadora del tumor, ABI-007, 90 mg/kg i.v., o ambos.

Para determinar el programa óptimo de tratamiento, ABI-007 se administró desde 5 días hasta 9 horas antes de la radiación, así como 24 horas después de la misma. La variable del tratamiento fue el retraso absoluto de crecimiento del tumor (AGD), definido como la diferencia en días para crecer desde 7 a 12 mm de diámetro entre los tumores tratados y no tratados. Para los grupos tratados con la combinación de ABI-007 y radiación, se calculó un factor de potenciación (EF) como la proporción de la diferencia en días para crecer desde 7 hasta 12 mm entre los tumores tratados con la combinación, y los tratados con ABI-007 solo hasta el AGD de los tumores tratados con radiación solamente. Para evaluar el efecto radio-potenciador de ABI-007 para un régimen de radiación fraccionada sobre la variable curación del tumor, se llevó a cabo un ensayo de TCD₅₀, que se analizó 140 días después del tratamiento. Se administraron dosis totales de 5 a 80 Gy en 5 fracciones diarias, solas o combinadas con ABI-007 24 horas antes de la primera dosis de radiación.

Como agente aislado, ABI-007 prolongó significativamente el retraso de crecimiento del tumor OCa-1 (37 días), comparado con los 16 días de los tumores no tratados. ABI-007, como agente aislado, fue más eficaz que una dosis única de 10 Gy, que tuvo como resultado un retraso de 29 días. Para los regímenes de tratamiento combinado, ABI-007, administrado en cualquier momento hasta 5 días antes de la radiación, produjo un efecto antitumoral supra-aditivo. El EF fue de 1,3, 1,4, 2,4, 2,3, 1,9 y 1,6 a los intervalos entre tratamientos de 9 h, 24 h y 2, 3, 4 y 5 días, respectivamente. Cuando ABI-007 se administró después de la radiación, el efecto del tratamiento antitumoral combinado fue menos que aditivo. El tratamiento combinado con ABI-007 y radiación tuvo también un efecto significativo sobre la curación del tumor, desviando la TCD₅₀ de 55,3 Gy para los tumores tratados con radiación solamente a 43,9 Gy para los tratados con la combinación (EF 1,3).

Este experimento demostró que ABI-007 posee actividad antitumoral como agente único frente a OCa-1, y potencia el efecto de la radioterapia, cuando se administra varios días antes. Tal como se ha puesto de manifiesto anteriormente para paclitaxel y docetaxel, el refuerzo de la radioterapia es, probablemente, resultado de múltiples mecanismos, en donde predomina la interrupción del ciclo celular en G2/M en intervalos breves de tratamiento, y la reoxigenación del tumor a intervalos más largos.

Ejemplo 14. Combinación de Abraxane® e Inhibidores de la Tirosina Quinasa

La dosificación pulsada de gefitinib en combinación con el uso de Abraxane® es útil para inhibir la proliferación de tumores que expresan EGFr. 120 ratones desnudos reciben la inoculación de células tumorales BT474 para obtener al menos 90 ratones portadores de tumores de xenoinjertos BT474, y se distribuyen en 18 ramas experimentales (5 ratones en cada una). Los ratones de la Rama 1 reciben inyecciones i.v. de control. Todos los restantes animales reciben inyecciones i.v. semanales de Abraxane® a 50 mg/kg durante 3 semanas. La Rama 2 recibe solamente Abraxane®. Las Ramas 3, 4, 5, 6, 7 y 8 reciben Abraxane® semanal, precedido por 2 días de un pulso de gefitinib a dosis crecientes. Las Ramas 9, 10, 11, 12 y 13 reciben Abraxane® semanal, precedido por un día de un pulso de gefitinib a dosis crecientes. Las Ramas 14, 15, 16, 17 y 18 reciben Abraxane® semanal junto con la administración diaria de gefitinib a dosis crecientes. Se establece la dosis máxima tolerada de gefitinib que se puede administrar en un pulso de 1 o 2 días previo a la Administración semanal de Abraxane®, o en administración continua con Abraxane®. Adicionalmente, la medición de las respuestas antitumorales determinará si existe una relación entre dosis y respuesta, y la superioridad de una administración pulsada de 2 días o de 1 día. Estos datos se utilizan para seleccionar la dosis óptima de gefitinib pulsado y la de gefitinib diario continuo administrado con Abraxane®.

Se inocularon 120 ratones desnudos con células tumorales BT474 para obtener 90 ratones portadores de tumores. Estos animales se distribuyen en 6 grupos (15 ratones en cada uno). La Rama 1 recibe inyecciones i.v. de control. La Rama 2 recibe Abraxane® 50 mg/kg i.v. semanalmente durante 3 semanas. La Rama 3 recibe gefitinib oral a 150 mg/kg/día. La Rama 4 recibe Abraxane® 50 mg/kg junto con gefitinib diario a la dosis establecida previamente. La Rama 5 recibe Abraxane® 50 mg/kg, precedido por un pulso de gefitinib a la dosis y duración establecidas previamente. La Rama 6 recibe solamente un pulso semanal de gefitinib a la dosis anteriormente determinada. Después de tres semanas de terapia, los ratones se someten a seguimiento hasta que los controles alcanzan el tamaño máximo de tumor permitido.

Ejemplo 15. Estudio de Fase II de la Administración Semanal en Dosis Densa de *nab*®-Paclitaxel (Abraxane®), Carboplatino con Trastuzumab® como Terapia de Primera Línea del Cáncer de Mama HER-2-Positivo Avanzado.

Este estudio se dirigió a evaluar (1) la seguridad y tolerabilidad, y (2) la tasa de respuesta objetiva de la administración semanal en dosis densa de trastuzumab/Abraxane®/carboplatino como terapia citotóxica de primera

línea en pacientes con cáncer de mama avanzado/metastásico (adenocarcinoma de Estadio IV) que sobre-expresa HER-2. Trastuzumab es un anticuerpo monoclonal, conocido también como Herceptin®, que se une al segmento extracelular del receptor erbB2.

En pocas palabras, se incluyeron pacientes sin terapia citotóxica o radioterapia reciente. Las dosis de Abraxane® se escalonaron desde 75 mg/m² como infusiones i.v. de 30 minutos en los días 1, 8 y 15 hasta 100 mg/m² en los ciclos subsiguientes, según la regla estándar de 3+3. Carboplatino AUC = 2 se administró como infusiones i.v. de 30-60 min los días 1, 8 y 15 y durante un ciclo inicial de 29 días. Trastuzumab se administró como infusión i.v. de 30-90 min los días 1, 8, 15, 22, a una dosis de 4 mg/kg en la semana 1, y de 2 mg/kg en todas las semanas subsiguientes.

5

35

40

45

50

En 8 de los 9 pacientes en los que se pudo evaluar la respuesta, el índice de respuesta (confirmado más no confirmado) fue de 63% con 38% de enfermedad estable. Las toxicidades más frecuentes fueron neutropenia (grado 3: 44%; grado 4: 11%) y leucopenia (33%).

Estos resultados indican que trastuzumab más Abraxane® más carboplatino demostraron un elevado nivel de actividad antitumoral con tolerabilidad aceptable como terapia de primera línea del MBC.

Ejemplo 16. Ensayo de Fase II de Capecitabina Más *nab*®-Paclitaxel (Abraxane®) en el Tratamiento de Primera Línea del Cáncer de Mama Metastásico.

El objetivo de este estudio de Fase II fue evaluar la seguridad, eficacia (tiempo para la progresión y supervivencia global) y calidad de vida de pacientes con MBC que recibieron capecitabina en combinación con Abraxane®. Capecitabina es un carbamato de fluoro-pirimidina conocido también como Xeloda®, que ha demostrado tener una eficacia sustancial tanto solo como combinado con taxanos en el tratamiento del MBC.

- En este estudio abierto de rama única, se administró Abraxane® a 125 mg/m² por infusión i.v. los días 1 y 8 cada 3 semanas, más capecitabina 825 mg/m², administrada por vía oral, dos veces al día, los días 1 y 14 cada 3 semanas. Los pacientes fueron HER-2/neu negativos, con una esperanza de vida mayor de 3 meses. Los pacientes no habían recibido quimioterapia anterior para la enfermedad metastásica ni terapia previa con capecitabina, ni terapia anterior con fluoro-pirimidina y quimioterapia de paclitaxel en tratamiento adyuvante.
- Se incluyeron 12 pacientes, habiéndose finalizado el análisis de seguridad de los 6 primeros pacientes, y el índice de respuesta se pudo evaluar después de 2 ciclos en los 8 primeros pacientes. No hubo toxicidades únicas o inesperadas, con ausencia de toxicidades de grado 4 o neuropatías de grado mayor que 1. Los datos de respuesta se confirmaron en solamente los 2 primeros ciclos de terapia (primer punto de evaluación) en 6 pacientes. Dos pacientes han completado 6 ciclos con 1 respuesta parcial y 1 enfermedad estable. De los 8 primeros pacientes después de 2 ciclos, hubo 2 respuestas parciales y 4 casos con enfermedad estable.

Estos resultados demuestran que es factible la combinación de capecitabina y Abraxane® semanal a dosis efectivas, sin la aparición de toxicidades nuevas hasta la fecha. La toxicidad relacionada con Abraxane® fue principalmente neutropenia sin consecuencias clínicas; en el caso de capecitabina, la toxicidad principal fue el síndrome pie-mano.

Ejemplo 17. Estudio Piloto de Doxorrubicina en Dosis Densa Más Ciclofosfamida, Seguido de *nab*-paclitaxel (Abraxane®) en Pacientes con Cáncer de Mama en Estadio Precoz.

El objetivo de este estudio fue evaluar la toxicidad de doxorrubicina (adriamicina) más ciclofosfamida, seguidos de Abraxane® en el cáncer de mama en estadio precoz.

Los pacientes padecían carcinoma de mama operable, histológicamente confirmado, en un estadio precoz. Los pacientes recibieron doxorrubicina (adriamicina) 60 mg/m² más ciclofosfamida 600 mg/m² (AC) cada 2 semanas durante 4 ciclos, seguidos de Abraxane® 260 mg/m² cada dos semanas durante 4 ciclos.

30 pacientes recibieron 4 ciclos de AC, y 27 de 29 pacientes recibieron 4 ciclos de Abraxane®, 33% de los pacientes recibió pegfilgrastim (Neulasta®) por ausencia de recuperación del ANC (recuento absoluto de neutrófilos) durante la administración de Abraxane®. En nueve pacientes (31%) se redujo la dosis de Abraxane® a causa de toxicidad no hematológica. Un total de 9 pacientes tuvo neuropatía periférica (PN) de grado 2 y 4, de grado 3; la PN mejoró en ≥1 grado en un tiempo mediano de 28 días.

Estos resultados indican que la terapia en dosis densa con doxorrubicina (60 mg/m²) más ciclofosfamida (600 mg/m²) cada dos semanas durante 4 ciclos, seguidos de Abraxane® en dosis densa (260 mg/m²) cada 2 semanas durante 4 ciclos fue bien tolerada en pacientes con cáncer de mama en estadio precoz.

Ejemplo 18. Administración Semanal de *nab*-Paclitaxel (Abraxane®) como Tratamiento de Primera Línea del Cáncer de Mama Metastásico con Adición de Trastuzumab en Pacientes HER-2/*neu* Positivos.

El propósito del presente estudio fue situar la administración semanal de Abraxane® a una terapia de primera línea y agregar trastuzumab a pacientes HER-2/neu positivos.

Este estudio abierto de Fase II incluyó 20 pacientes HER-2 positivos y 50 pacientes HER-2 negativos con cáncer de mama metastásico localmente avanzado. Abraxane® se administró a 125 mg/m² por infusión i.v. de 30 minutos los días 1, 8 y 15, seguido de una semana de descanso. Trastuzumab se administró simultáneamente con el tratamiento en estudio a pacientes HER-2 positivos. La variable primaria fue el índice de respuesta, y las variables secundarias fueron tiempo hasta la progresión (TTP), supervivencia global (OS), y toxicidad.

En la población de seguridad, 23 pacientes recibieron una mediana de 3 ciclos de Abraxane® hasta la fecha. El acontecimiento adverso más frecuente relacionado con el tratamiento fue neutropenia de grado 3 (8,7%), sin acontecimientos adversos de grado 4. Uno de cada 4 pacientes evaluables respondió a la terapia.

Ejemplo 19. Ensayo de Fase I de nab-Paclitaxel (Abraxane®) y Carboplatino.

5

15

40

45

50

El objetivo del presente estudio fue determinar la dosis máxima tolerada de Abraxane® (tanto semanal como cada 3 semanas) con carboplatino AUC = 6, y comparar los efectos de la secuencia de administración sobre la farmacocinética (PK).

Se incluyeron pacientes con tumores malignos histológica o citológicamente documentados que progresaron tras "terapia estándar". La Rama 1 recibió Abraxane® cada 3 semanas, en un formato de dosis escalonada basado en las toxicidades del ciclo 1 (220, 260, 300, 340 mg/m²) cada 3 semanas, seguido de carboplatino AUC = 6. La Rama 2 recibió Abraxane® semanal (días 1, 8, 15, seguidos de una semana de descanso) (100, 125, 150 mg/m²), seguido de carboplatino AUC = 6. Para la sección PK del estudio, se administró carboplatino después de Abraxane® en el ciclo 1, y se invirtió el orden de administración en el ciclo 2, determinándose los niveles de PK en las 6, 24, 48 y 72 horas iniciales.

En el programa de terapia cada 3 semanas, neutropenia, trombocitopenia y neuropatía fueron las toxicidades de grado 3/4 más frecuentes (3/17 cada una). En el programa semanal, neutropenia 5/13 fue la toxicidad de grado 3/4 más frecuente. Las mejores respuestas a la administración semanal a la dosis máxima de 125 mg/m² (n = 6) fueron 2 respuestas parciales (cáncer de páncreas, melanoma), y 2 enfermedades estables (NSCLC). Las mejores respuestas a la administración cada tres semanas a la dosis máxima de 340 mg/m² (n = 5) fueron 1 enfermedad estable (NSCLC) y 2 respuestas parciales (SCLC, cáncer esofágico).

Estos datos indican actividad de la combinación de Abraxane® y carboplatino. La MTD para la administración semanal fue de 300 mg/m² y, para la administración una vez cada 3 semanas, fue de 100 mg/m².

Ejemplo 20. Ensayo de Fase II de la Administración en Dosis Densa de Gemcitabina, Epirrubicina y *nab*-Paclitaxel (Abraxane®) (GEA) en Cáncer de Mama Localmente Avanzado/Inflamatorio.

En un estudio abierto de Fase II se instituyó un régimen de terapia de inducción/neoadyuvante antes de la intervención local. El régimen terapéutico fue gemcitabina 2000 mg/m², i.v., cada 2 semanas durante 6 ciclos, epirrubicina 50 mg/m² cada 2 semanas durante 6 ciclos, Abraxane® 175 mg/m² cada 2 semanas durante 6 ciclos, con pegfilgrastim 6 mg, s.c., el día 2 cada 2 semanas. El régimen de terapia postoperatoria/adyuvante tras la intervención local fue gemcitabina 2000 mg/m² cada 2 semanas durante 4 ciclos, Abraxane® 220 mg/m² cada 2 semanas durante 4 ciclos, y pegfilgrastim 6 mg, s.c., al día cada 2 semanas. Los pacientes incluyeron mujeres con adenocarcinoma de mama localmente avanzado/inflamatorio y confirmado histológicamente.

Ejemplo 21. Actividad citotóxica de *nab*-rapamicina en combinación con Abraxane® sobre células musculares lisas vasculares.

Células musculares lisas vasculares (VSMC) se sembraron en placas de 96 pocillos, en presencia de concentraciones crecientes de nab-rapamicina y 0 μM, 1 μM, 10 μM o 100 μM de Abraxane® (ABI-007). Para evaluar el efecto citotóxico de nab-rapamicina y Abraxane®, las VSMC tratadas se tiñeron con homodímero-1 de etidio (Invitrogen, Carlsbad, CA) y se analizó la fluorescencia roja. El homodímero-1 de etidio es una tinción fluorescente de ácido nucleico, de alta afinidad, que sólo es capaz de atravesar membranas comprometidas de células muertas para teñir los ácidos nucleicos. Como se muestra en la Fig. 7A, nab-rapamicina, por sí misma, exhibió lisis celular dependiente de la dosis, como se demuestra por la fluorescencia creciente. Abraxane® a 1 μM o 10 μM no potenció la lisis celular de nab-rapamicina, si bien esta fue fuertemente potenciada por Abraxane® a 100 μΜ (ANOVA, p < 0,0001). Como se muestra también en la Fig. 7A, las células teñidas con homodímero-1 de etidio fueron expuestas igualmente a calceína. Calceína AM (Invitrogen) es una molécula no fluorescente que por hidrólisis con esterasas citosólicas inespecíficas produce calceína fluorescente. Las células vivas expuestas a calceína AM muestran una brillante fluorescencia verde, puesto que son capaces de generar el producto fluorescente y retenerlo. Como se ve en la Fig. 7B, nab-rapamicina exhibió una actividad citotóxica dependiente de la dosis como lo demuestra una cantidad reducida de tinción fluorescente con calceína. Esta reducción de la fluorescencia se vio potenciada por la co-incubación con Abraxane® de manera dependiente de la dosis. La estadística de ANOVA dio un valor de p < 0,0001 a todas las concentraciones farmacológicas de Abraxane®.

Ejemplo 22. Actividad citotóxica de *nab*-rapamicina en combinación con Abraxane® contra el xenoinjerto tumoral H29 (carcinoma de colon humano).

En los flancos derechos de ratones desnudos se implantaron 10⁶ células HT29. El tratamiento se inició en el momento en que el tumor fue palpable y tuvo un tamaño mayor que 100-200 mm³. Los ratones se distribuyeron aleatoriamente en 4 grupos (n = 8 por grupo). El Grupo 1 recibió solución salina, 3 veces a la semana durante 4 semanas, por vía i.v.; el Grupo 2 recibió Abraxane® a 10 mg/kg diariamente durante 5 días, por vía i.p.; El Grupo 3 recibió *nab*-rapamicina a 40 mg/kg, 3 veces a la semana durante 4 semanas, por vía i.v.; y el Grupo 4 recibió tanto *nab*-rapamicina (40 mg/kg, 3 veces a la semana, durante 4 semanas, por vía i.v.) como Abraxane® (10 mg/kg, diariamente durante 5 días, por vía i.p.). Como se muestra en la Fig. 8, la supresión del tumor fue mayor con la terapia de combinación de Abraxane® más *nab*-rapamicina que en cualquiera de los grupos con terapia única.

5

10

15

Ejemplo 23. Actividad citotóxica de *nab*-17-AAG en combinación con Abraxane® contra el xenoinjerto tumoral H358 (carcinoma de pulmón humano).

En los flancos derechos de ratones desnudos se implantaron 10⁷ células HT358. El tratamiento se inició en el momento en que el tumor fue palpable y tuvo un tamaño mayor que 100-200 mm³. Los ratones se distribuyeron aleatoriamente en 4 grupos (n = 8 por grupo). El Grupo 1 recibió solución salina, 3 veces a la semana durante 4 semanas, por vía i.v.; el Grupo 2 recibió Abraxane® a 10 mg/kg diariamente durante 5 días, por vía i.p.; El Grupo 3 recibió *nab*-17-AAG a 80 mg/kg, 3 veces a la semana durante 4 semanas, por vía i.v.; y el Grupo 4 recibió tanto *nab*-17-AAG (80 mg/kg, 3 veces a la semana, durante 4 semanas, por vía i.v.) como Abraxane® (10 mg/kg, diariamente durante 5 días, por vía i.p.). Como se muestra en la Fig. 9, la supresión del tumor fue mayor con la terapia de combinación de *nab*-17-AAG más Abraxane® que en cualquiera de los grupos con terapia única.

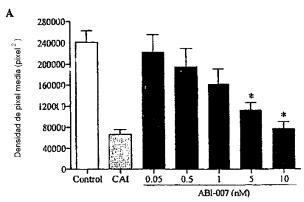
REIVINDICACIONES

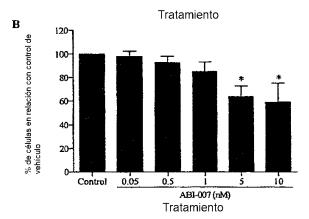
1. Una composición que comprende nanopartículas que contienen un taxano y una albúmina para usar en combinación con al menos un agente quimioterapéutico adicional, en el tratamiento del cáncer, en donde dicho agente quimioterapéutico se selecciona de antimetabolitos, agentes basados en platino, agentes alquilantes, inhibidores de la tirosina quinasa, antibióticos antraciclínicos, alcaloides de la vinca, inhibidores del proteasoma, macrólidos, anticuerpos terapéuticos, agentes antiangiogénicos, e inhibidores de la topoisomerasa.

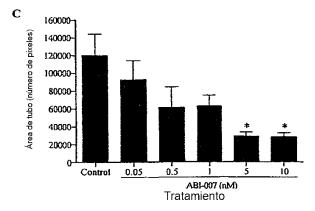
5

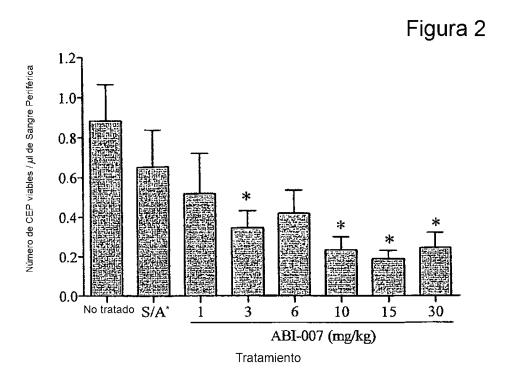
10

20


25


40


- 2. Uso de nanopartículas que comprenden un taxano y una albúmina en la fabricación de una composición para el tratamiento del cáncer, en combinación con al menos un agente quimioterapéutico adicional, en donde dicho agente quimioterapéutico se selecciona de antimetabolitos, agentes basados en platino, agentes alquilantes, inhibidores de la tirosina quinasa, antibióticos antraciclínicos, alcaloides de la vinca, inhibidores del proteasoma, macrólidos, anticuerpos terapéuticos, agentes antiangiogénicos, e inhibidores de la topoisomerasa.
- 3. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho agente quimioterapéutico adicional se encuentra en forma de una composición que comprende nanopartículas que contienen al menos otro agente quimioterapéutico y albúmina.
- 4. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde la dosis del taxano en la composición en nanopartículas es de aproximadamente 50 hasta aproximadamente 250 mg/m², cuando se administra con un programa semanal.
 - Una composición para usar o uso según las reivindicaciones 1 o 2, en donde la dosis del taxano en la composición en nanopartículas es de aproximadamente 100 a 400 mg/m² cuando se administra con un programa de tres semanas.
 - 6. Una composición para usar o uso según la reivindicación 5, en donde la dosis del taxano en la composición en nanopartículas es de aproximadamente 180 a 300 mg/m² cuando se administra con un programa de tres semanas.
 - 7. Una composición para usar o uso según la reivindicación 4, en donde la dosis del taxano en la composición en nanopartículas es de aproximadamente 60 hasta aproximadamente 175 mg/m², cuando se administra con un programa semanal sin interrupciones.
 - 8. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho agente quimioterapéutico es un antimetabolito.
 - 9. Una composición para usar o uso según la reivindicación 8, en donde dicho antimetabolito es gemcitabina, capecitabina o fluorouracilo.
- 30 10. Una composición para usar o uso según la reivindicación 9, en donde dicho antimetabolito es gemcitabina.
 - 11. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho agente quimioterapéutico es un agente basado en platino.
 - 12. Una composición para usar o uso según la reivindicación 11, en donde dicho agente basado en platino es cisplatino o carboplatino.
- 35 13. Una composición para usar o uso según la reivindicación 12, en donde dicho agente basado en platino es carboplatino.
 - 14. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde el agente es el agente basado en platino carboplatino, en donde la dosis del taxano en la composición en nanopartículas es de 100 a 150 mg/m^2 semanales, y en donde la cantidad del agente basado en platino carboplatino es AUC = 6, una vez cada tres semanas.
 - 15. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde el agente es el agente basado en platino carboplatino, en donde la dosis del taxano en la composición en nanopartículas es de 200 a 340 mg/m², una vez cada tres semanas, y en donde la cantidad del agente basado en platino carboplatino es AUC = 6, una vez cada tres semanas.
- 45 16. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho inhibidor de la tirosina quinasa es lapatinib.
 - 17. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho agente quimioterapéutico es un anticuerpo terapéutico.
- 18. Una composición para usar o uso según la reivindicación 17, en donde dicho anticuerpo terapéutico es un anticuerpo anti-VEGF.


- 19. Una composición para usar o uso según la reivindicación 18, en donde dicho anticuerpo anti-VEGF es bevacizumab.
- 20. Una composición para usar o uso según la reivindicación 9, en donde dicho antimetabolito es capecitabina.
- 21. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho agente quimioterapéutico es un inhibidor de la topoisomerasa.
 - 22. Una composición para usar o uso según la reivindicación 21, en donde dicho inhibidor de la topoisomerasa es 17-AAG.
 - 23. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho agente quimioterapéutico es un macrólido.
- 10 24. Una composición para usar o uso según la reivindicación 23, en donde dicho macrólido es rapamicina.
 - 25. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde dicho agente quimioterapéutico es un antibiótico antraciclínico.
 - 26. Una composición para usar o uso según la reivindicación 25, en donde dicho antibiótico antraciclínico es epirrubicina.
- 15 27. Una composición para usar o uso según una cualquiera de las reivindicaciones 11 a 13, en donde el cáncer es cáncer de pulmón.
 - 28. Una composición para usar o uso según las reivindicaciones 1 o 2, en donde el cáncer es cáncer de mama, cáncer de páncreas o cáncer de pulmón.
- 29. Una composición para usar o uso según una cualquiera de las reivindicaciones 8 a 10, en donde el cáncer es cáncer de páncreas.
 - 30. Una composición para usar o uso según una cualquiera de las reivindicaciones anteriores, en donde la composición que comprende nanopartículas que contienen taxano y albúmina, y el agente quimioterapéutico se administran simultáneamente.
- 31. Una composición para usar o uso según una cualquiera de las reivindicaciones 1 a 29, en donde la composición que comprende nanopartículas que contienen taxano y albúmina, y el agente quimioterapéutico se administran secuencialmente.
 - 32. Una composición para usar o uso según una cualquiera de las reivindicaciones 1 a 29, en donde la composición que comprende nanopartículas que contienen taxano y albúmina, y el agente quimioterapéutico se administran concurrentemente.
- 30 33. Una composición para usar o uso según una cualquiera de las reivindicaciones anteriores, en donde el taxano es paclitaxel.
 - 34. Una composición para usar o uso según la reivindicación 33, en donde la composición en nanopartículas está sustancialmente exenta de Cremophor.
- 35. Una composición para usar o uso según una cualquiera de las reivindicaciones 1 a 32, en donde el taxano es docetaxel.
 - 36. Una composición para usar o uso según una cualquiera de las reivindicaciones anteriores, en donde el diámetro medio de las nanopartículas en la composición no es mayor que aproximadamente 200 nm.
 - 37. Una composición para usar o uso según una cualquiera de las reivindicaciones anteriores, en donde la composición en nanopartículas de taxano es esterilizable por filtración.
- 40 38. Una composición para usar o uso según una cualquiera de las reivindicaciones anteriores, en donde la relación en peso de albúmina y taxano en la composición en nanopartículas es de aproximadamente 18:1 hasta aproximadamente 1:1.
 - 39. Una composición para usar o uso según la reivindicación 38, en donde la relación en peso de albúmina y taxano en la composición en nanopartículas es de aproximadamente 15:1 hasta aproximadamente 2:1.
- 45. Una composición para usar o uso según una cualquiera de las reivindicaciones anteriores, en donde las nanopartículas que comprenden taxano y una albúmina comprenden taxano recubierto con la albúmina.
 - 41. Una composición para usar o uso según una cualquiera de las reivindicaciones anteriores, en donde el individuo es un ser humano.

*S/A = Solución salina/Albúmina

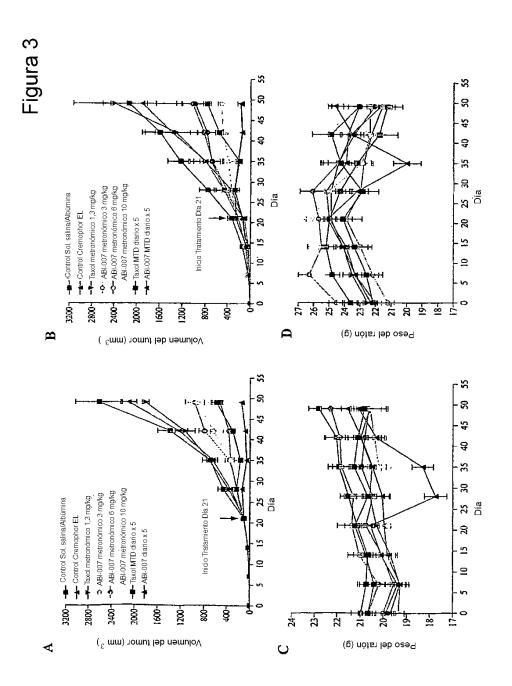
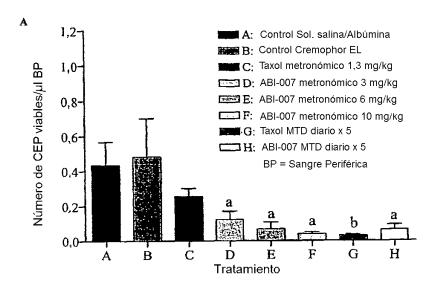
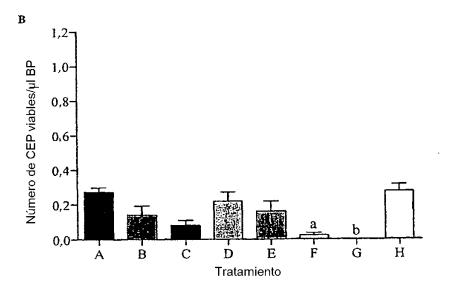
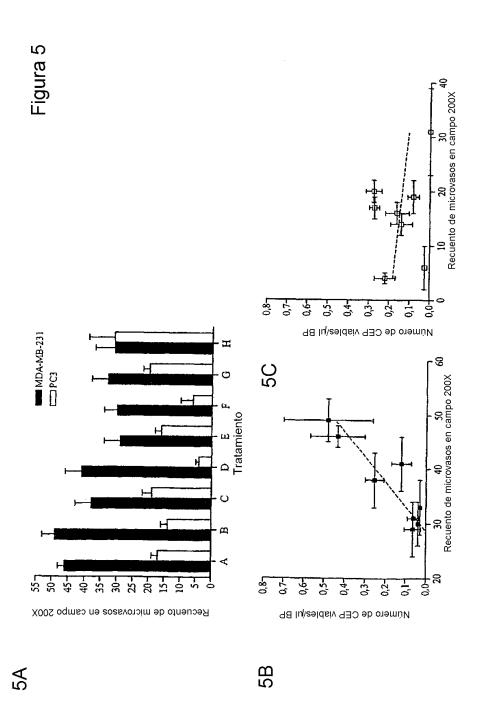
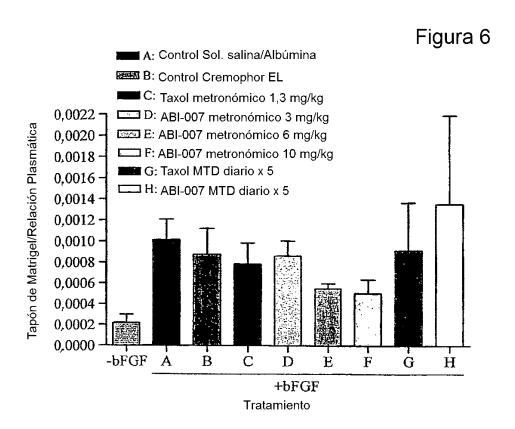
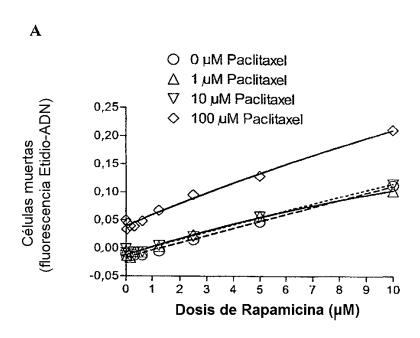






Figura 4



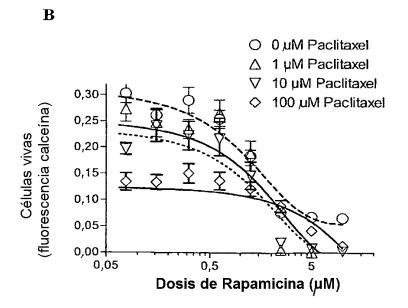


Figura 8

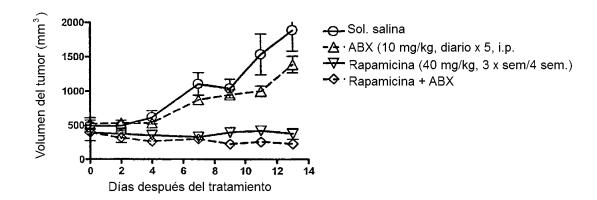
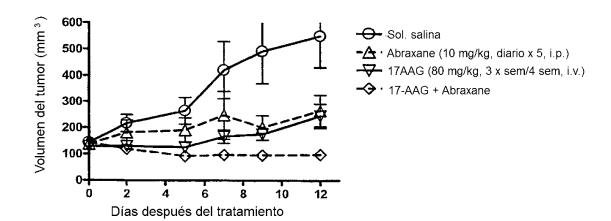



Figura 9

