

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 376 279

⁵¹ Int. Cl.: **B23B 45/00 B23Q 11/00**

(2006.01) (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 08021202 .0
- 96 Fecha de presentación: 05.12.2008
- 97 Número de publicación de la solicitud: 2067554
 97 Fecha de publicación de la solicitud: 10.06.2009
- 54 Título: TALADRADORA CON RECOGEDOR DE POLVO.
- 30 Prioridad: 07.12.2007 JP 200

07.12.2007 JP 2007316696 28.03.2008 JP 2008087292 73 Titular/es:

HITACHI KOKI CO., LTD. 15-1, KONAN 2-CHOME MINATO-KU TOKYO 108-6020, JP

- 45 Fecha de publicación de la mención BOPI: 12.03.2012
- (72) Inventor/es:

Nishikawa, Tomomasa; Kobori, Kenji y Suzuura, Tsukasa

- 45 Fecha de la publicación del folleto de la patente: 12.03.2012
- (74) Agente/Representante:

Arias Sanz, Juan

ES 2 376 279 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Taladradora con recogedor de polvo

Campo técnico

10

25

30

35

40

La presente invención se refiere a una taladradora para perforar un orificio que está accionada mediante un motor eléctrico, un motor, o similares, y se refiere particularmente a una taladradora con un recogedor de polvo que permite una recogida efectiva del polvo producido durante la perforación.

Antecedentes de la invención

Para perforar un orificio en materiales de piedra, tales como hormigón o ladrillo, se utiliza una taladradora. La taladradora perfora un orificio en una pieza de trabajo accionando una broca, e incluye una taladradora rotatoria general, una taladradora de percusión que provoca que la broca gire y golpee, una taladradora vibratoria, o similares. Debido a que cuando se lleva a cabo una operación de perforado utilizando una taladradora se produce polvo, un operario debe realizar la operación con una máscara antipolvo, gafas de protección, o similares. En años recientes, se ha utilizado ampliamente una taladradora dotada de un recogedor de polvo que succiona el polvo, con el fin de retirar el polvo producido durante la operación.

Por ejemplo, el documento JP-A-2004-276194 divulga que se recubra toda la broca con un miembro de fuelle y una caja de recogida de polvo en un cuerpo principal de una taladradora vibratoria, y el cuerpo principal de la taladradora vibratoria se conecta a un recogedor de polvo de succión como un dispositivo separado por medio de un tubo de conexión de la caja de recogida de polvo. Con este procedimiento, toda la broca está recubierta con el miembro de fuelle y la caja de recogida de polvo, de modo que se puede esperar un efecto de recogida de polvo elevado. Sin embargo, se requieren miembros de fuelle y cajas de recogida de polvo de gran tamaño, y se requiere igualmente el recogedor de polvo de succión como el dispositivo separado, de modo que el procedimiento carece de portabilidad.

Por otro lado, como taladradora que tiene un recogedor de polvo de tamaño reducido existe una técnica divulgada en el documento JP-A-2006-88285. En la técnica, se forma un pasaje de paso de fluido a lo largo de un centro de un árbol desde un extremo trasero de una broca, un puerto de descarga de fluido comunicado con el exterior de la taladradora se forma en una porción de surco en el extremo del pasaje de paso de fluido, y se suministra aire comprimido en la vecindad de la porción terminal de punta de la broca mediante un compresor dispuesto en el exterior a través del pasaje de paso de fluido y el puerto de descarga de fluido. Una copa de recogida de polvo se dispone en la vecindad de la porción terminal de punta de la broca, y el polvo se succiona a través de un tubo mediante un ventilador de succión que se hace girar mediante un motor de la taladradora. Incluso en este dispositivo se requiere el compresor como dispositivo externo, de modo que el dispositivo carece de portabilidad. Además, debido a que el dispositivo tiene una estructura especial en la que el pasaje de paso de fluido se forma en la porción central del árbol de la broca, el coste se ve aumentado.

Con el fin de resolver los problemas descritos anteriormente relacionados con la portabilidad, se puede considerar que, de la técnica divulgada en el documento JP-A-2006-88285, el pasaje de paso de líquido se retira y la conexión al compresor externo se omite, o el dispositivo se utiliza sin accionar el compresor, de modo que la portabilidad se mejora. En este caso, el polvo producido durante una operación de perforado se traslada a un adaptador de recogida de polvo debido a una estructura espiral de la broca, se guía a un pasaje de recogida de polvo mediante la fuerza de succión del ventilador de recogida de polvo, se separa en aire y polvo mediante un filtro en una caja de recogida de polvo, y el polvo se almacena en la caja de recogida de polvo. Durante la operación de perforado, el cuerpo principal de la herramienta se desplaza hacia una pieza de trabajo, y una porción deslizante de recogida de polvo, construida por un tubo deslizante una unidad de recogida de polvo se desplaza asimismo con el movimiento del cuerpo principal de la herramienta, de modo que se hace posible que el adaptador de recogida de polvo esté constantemente en contacto con la pieza de trabajo.

Sin embargo, se plantea el caso en el que el polvo no se succiona suficientemente y el polvo fuga de la vecindad de un área de contacto del adaptador de recogida de polvo y la broca, de modo que un operario tenga que utilizar un tiempo y un esfuerzo extraordinarios.

El polvo producido durante la operación de perforado se traslada al interior del adaptador de recogida de polvo debido a la estructura espiral de la broca y se recoge mediante la fuerza de succión del ventilador de recogida de polvo. Sin embargo, se plantea el caso en el que una parte del polvo permanece dentro del orificio perforado tras la operación de perforado, el polvo restante necesita ser retirado cuando un anclaje o similares se introduce en el orificio perforado, y el polvo se retira soplando desventajosamente durante la operación para retirar el polvo. En particular, en la operación de perforado con la broca encarada hacia abajo así como en la operación de perforado con la broca sostenida lateralmente, se plantea el caso en el que el polvo tiende a permanecer dentro del orificio perforado o en el área circundante al mismo debido a la influencia de la gravedad, y la operación de retirada del polvo remanente requiere un tiempo y esfuerzo extraordinarios.

Otras herramientas con medios para soplar aire a la broca y succionar aire y residuos del orificio perforado y de una broca se divulga mediante los documentos DE 19713149 A1 y DE 4342022 A1.

El documento DE 102004035875 B3 divulga una herramienta que tiene un soplador tanto para soplar aire hacia la punta de una broca como para succionar aire y polvo de la broca hacia un recogedor de polvo. La primera parte precaracterizadora de la reivindicación 1 emana de este estado de la técnica anterior.

Sumario de la invención

15

30

45

Es un objeto de la invención proporcionar una taladradora que tiene un recogedor de polvo de eficiencia de recogida de polvo mejorada. La herramienta debe ser fácil de utilizar y compacta.

El objeto anteriormente mencionado se resuelve mediante una taladradora como se establece en la reivindicación 1. Las reivindicaciones dependientes se refieren a modos de realización preferidos de la invención.

El anterior objeto puede ser conseguido adoptando la estructura descrita de aquí en adelante en un modo de realización de una taladradora que tiene un motor, una unidad de transmisión para transmitir una fuerza de giro del motor para hacer girar una broca (una herramienta terminal), y un recogedor de polvo para recoger polvo producido de una pieza de trabajo perforada por la broca.

El recogedor de polvo está dotado de una porción perforada, perforada por la broca, un puerto de recogida de polvo para succionar polvo producido en la vecindad del extremo de punta de la broca y aire en el área circundante, y un puerto de soplado para soplar aire contra la vecindad de la broca perforante. Además, la cantidad de aire succionado del puerto de recogida de polvo se ajusta para que sea mayor que el aire soplado por el puerto de soplado. El valor óptimo de la proporción puede ser determinado de acuerdo con diversos factores tales como la calidad de una pieza de trabajo que va a ser perforada, el diámetro de la broca, la velocidad de giro de la misma, y similares.

En el motor de la taladradora se dispone nuevamente un ventilador para la recogida de polvo, o el ventilador de refrigeración existente se dispone para realizar la función. Tanto la succión del puerto de recogida de polvo como el flujo de aire para una operación de soplado al puerto de soplado pueden ser generados por la fuerza de giro del ventilador. El recogedor de polvo está dotado de un conducto retráctil que tiene un pasaje que se extiende del puerto de recogida de polvo al ventilador a través de un filtro de recogida de polvo y un pasaje que se extiende del ventilador al puerto de soplado. Los dos pasajes dispuestos en el conducto retráctil se disponen coaxialmente o lado con lado. Una parte del aire del puerto de recogida de polvo succionado por el ventilador es devuelto al puerto de soplado, y el resto del aire es descargado al exterior de la taladradora. El conducto retráctil está formado por una porción fija y una porción retráctil, se une generalmente en paralelo con una dirección longitudinal de la broca, y es retráctil en la dirección longitudinal.

En cuanto a la dirección del flujo de aire soplado desde el puerto de soplado, se puede utilizar cualquiera de entre la dirección circunferencial de la porción perforada del recogedor de polvo, que es la dirección hacia la porción central, y la dirección generalmente en paralelo con la dirección axial de la broca, o una combinación de ambas direcciones.

Un alojamiento se conecta al conducto retráctil, una caja de recogida de polvo se ajusta de modo separable en el alojamiento, y un filtro se incorpora de modo separable en la caja de recogida de polvo. Debe notarse que la totalidad del recogedor de polvo puede ser separable de la taladradora.

La forma de la porción perforada es cilíndrica y un miembro de obturador se dispone en un lado terminal de aberturas en la porción perforada para limitar el paso de aire entre la broca y la porción perforada. Al igual que los pasajes en la vecindad de la porción perforada, el pasaje que se extiende hasta el puerto de soplado y el pasaje que se extiende desde el puerto de recogida de polvo se disponen lado con lado en una dirección de izquierda a derecha, visto desde la dirección longitudinal de la broca.

De acuerdo con la presente invención, debido a que se proporcionan unos medios para soplar el aire además de un puerto de succión para succionar el aire junto con el polvo en el recogedor de polvo, el polvo puede ser recogido de modo efectivo con una fuerza de succión limitada y la fuga de polvo al exterior del recogedor de polvo puede ser impedida de modo efectivo.

De acuerdo con un modo de realización de la presente invención, se proporciona una taladradora que incluye: un motor; una unidad de transmisión para transmitir una fuerza de giro del motor para hacer girar una broca; y un recogedor de polvo para recoger el polvo producido de una pieza de trabajo perforada por la broca, caracterizada porque el recogedor de polvo está dotado de una porción perforada, perforada por la broca, un puerto de recogida de polvo para succionar el polvo producido y su aire circundante, y un puerto de soplado para soplar aire contra una vecindad de la broca perforante.

De acuerdo con otro modo de realización de la presente invención, se proporciona una taladradora que perfora una pieza de trabajo al provocar que una broca gire o golpee, que incluye: un recogedor de polvo que tiene un puerto de recogida de polvo para succionar aire junto con polvo y un puerto de soplado para soplar el aire contra la vecindad de un extremo de punta de la broca, y que cubre una periferia externa de una porción terminal de punta de la broca; una caja de recogida de polvo para almacenar el polvo succionado del puerto de recogida de polvo; y unos medios de ventilador para generar un flujo de aire para que sea succionado y descargado.

De acuerdo con otro modo de realización de la presente invención, se proporciona una taladradora que incluye: un motor; una unidad de transmisión para transmitir una fuerza de giro del motor para hacer girar una broca; y un recogedor de polvo para recoger polvo producido de una pieza de trabajo perforada por la broca, caracterizada porque el recogedor de polvo está dotado de un puerto de soplado para soplar aire en una dirección axial de la broca.

5 Breve descripción de los dibujos

- La fig. 1 es una vista en sección transversal de una taladradora de acuerdo con un primer modo de realización de la presente invención;
- la fig. 2 es una vista general de la taladradora de la fig. 1;
- la fig. 3 es una vista para ilustrar una operación de perforado mediante la taladradora de la fig. 1;
- 10 la fig. 4 es una vista parcial que muestra una variación del primer modo de realización de la presente invención;
 - la fig. 5 es una vista en sección transversal de una taladradora de acuerdo con un segundo modo de realización de la presente invención;
 - la fig. 6 es una vista que ilustra un puerto de soplado 10a y un puerto de recogida de polvo 10b de la taladradora de la fig. 5, y la dirección del aire que fluye hacia la misma;
- la fig. 7 es una vista esquemática para ilustrar un flujo de aire en la vecindad de un ventilador de recogida de polvo 14 de la fig. 5 (vista en sección longitudinal);
 - la fig. 8 es una vista esquemática para ilustrar el flujo de aire en la vecindad del ventilador de recogida de polvo 14 de la fig. 5 (vista en sección lateral);
 - la fig. 9 es una vista en perspectiva que muestra el detalle de un adaptador de recogida de polvo 10 de la fig. 5;
- 20 la fig. 10 es una vista en sección transversal de una porción A-A' de la fig. 9;
 - la fig. 11 es una vista en sección trasversal de una porción B-B' de la fig. 9;
 - la fig. 12 es una vista en sección transversal de una porción C-C' de la fig. 9;
 - la fig. 13 es una vista lateral de una taladradora que muestra un tercer modo de realización de la presente invención y que ilustra secciones transversales tan sólo de una porción de recogida de polvo y una porción de motor;
- la fig. 14 es una vista lateral que muestra el estado de la taladradora mostrando el modo de realización de la presente invención en uso, e ilustrando secciones transversales tan sólo de la porción de recogida de polvo y de la porción de motor;
 - la fig. 15 es una vista para ilustrar el flujo de aire en un adaptador de recogida de polvo 110 de la taladradora de la fig. 13;
 - la fig. 16 es una vista en sección transversal de una porción A-A de la fig. 14;
- 30 la fig. 17 es una vista conceptual para ilustrar una relación posicional de un puerto de envío de flujo de aire 136 y unos puertos de descarga 135a y 135b primero y segundo;
 - la fig. 18 es una vista en sección transversal de una porción de ventilador de recogida de polvo que muestra un cuarto modo de realización de la presente invención;
- la fig. 19 es una vista conceptual para ilustrar una relación posicional del ventilador de recogida de polvo 14 y una pared interna 137 de un alojamiento; y
 - la fig. 20 es una vista parcialmente aumentada para ilustrar una relación posicional de una porción de guiado 138 de la fig. 18.

Descripción detallada

10

25

30

35

55

Una taladradora de acuerdo con un modo de realización de la presente invención se describirá a continuación con referencia a las figs. 1 y 2. La fig. 1 es una vista en sección transversal parcial de la taladradora, mientras que la fig. 2 es una vista externa de la misma.

Un cuerpo principal 1 de una taladradora de percusión tiene cuatro modos como modos funcionales, que son un modo de giro/percusión, un modo de giro, un modo de percusión, y un modo neutro, y tiene una unidad de mecanismo de percusión, una unidad de mecanismo de transmisión del giro, y una unidad de mecanismo de conmutación que no se muestran en un alojamiento 2. Un mango 3 se dispone en una porción terminal trasera (la parte terminal derecha de la fig. 1) del alojamiento 2. El mango 3 está dotado de un interruptor 4, y un cable eléctrico 5 para suministrar electricidad está conectado al mango 3. Sobre una porción lateral del alojamiento 2 se dispone un conmutador de posición 6 en forma de escala circular para cambiar los modos de funcionamiento. Los cuatro modos de funcionamiento descritos anteriormente pueden ser variados por de conmutador de posición 6. En la porción terminal frontal del alojamiento, se dispone una porción de soporte 2a de la herramienta. Una broca 26 se incorpora a la porción de soporte 2a de la herramienta y se alimenta con una fuerza de percusión con una fuerza de giro, o ambas fuerzas, para realizar una operación requerida con relación a la pieza de trabajo 8.

En una operación de perforado con relación a la pieza de trabajo 8, un operario sostiene el mango 3 de la taladradora de percusión 1 y acciona el interruptor 4 para encender un motor 18. Como resultado, la fuerza de giro del motor 18 se transmite para provocar que la broca 26 unida a la porción terminal de punta del cuerpo principal 1 de la taladradora de percusión gire y golpee. El operario sostiene el mango 3 del cuerpo principal 1 de la taladradora de percusión y empuja la taladradora de percusión 1 contra la pieza de trabajo 8 de modo que la broca 26 triture la pieza de trabajo 8 para producir un orificio perforado en la pieza de trabajo 8.

La broca 26 tiene una porción terminal de punta 26a para triturar la pieza de trabajo 8, y una porción espiral 26b que tiene la función de mover el polvo producido al triturar la pieza de trabajo 8 en el orificio perforado. Como se muestra en los dibujos, la vecindad de la porción terminal de punta de la broca 26 perfora una porción perforada de un adaptador de recogida de polvo 10 y alcanza la pieza de trabajo 8. La longitud de la porción perforada como área perforada corresponde a una porción parcial de la longitud total de la broca 26.

Durante el funcionamiento en modo de giro/percusión, el polvo producido desde la porción terminal de punta 26a de la broca 26 es guiado al interior del adaptador de recogida de polvo 10 debido al giro de la broca 26 y a la configuración de la porción espiral 26b, guiado de un puerto de recogida de polvo 10b a un pasaje de recogida de polvo 11 mediante un flujo de aire como se indica mediante una flecha provocado por la fuerza de succión de un ventilador de recogida de polvo 14 dispuesto sobre un árbol giratorio 19 del motor 18, separado en aire y polvo mediante un filtro 13 en una caja de recogida de polvo 12 dispuesta en un alojamiento 22 del recogedor de polvo, y el polvo separado es almacenado en la caja de recogida de polvo 12. La caja de recogida de polvo 12 puede ser desechado cuando la caja de recogida de polvo 12 se separa.

Por otro lado, el aire separado pasa a través de un pasaje de aire 15 y alcanza un ventilador de recogida de polvo 14. Una parte del aire que fluye al interior del ventilador de recogida de polvo 14 es descargado de un primer puerto de descarga 60 (mostrado en la fig. 2) al exterior del cuerpo principal 1 de la taladradora de percusión, y el resto del aire es conducido de nuevo al interior del adaptador de recogida de polvo 10. El detalle de la estructura será descrito más tarde. El flujo de aire del aire conducido de nuevo al interior del adaptador de recogida de polvo 10 se utiliza cuando el aire es soplado contra la porción perforada del adaptador de recogida de polvo.

El motor 18 se dispone como una fuente de potencia para accionar la broca 26 en el interior del cuerpo principal 1 de la taladradora de percusión. Cuando la broca 26 es accionada, el motor 18 gira y, a la vez, genera calor. Con el fin de limitar la generación de calor del motor 18, se proporciona un ventilador de refrigeración 17 sobre el árbol giratorio 19 del motor 18. El aire de refrigeración se succiona de un puerto de toma de aire de refrigeración (no mostrado), dispuesto en una tapa trasera 16, por la fuerza de succión del ventilador de refrigeración 17, y el aire de refrigeración refrigera el motor 18 de un modo indicado por la flecha. El aire de refrigeración alcanza el ventilador de refrigeración 17 tras haber refrigerado motor, y es descargado al exterior del cuerpo principal 1 de la taladradora de percusión desde un puerto de descarga, que no se muestra.

El adaptador de recogida de polvo 10 es sostenido por una porción de corredera 31, unida al cuerpo principal 1 de la taladradora de percusión de modo que esté en contacto con la pieza de trabajo 8 en la vecindad de la broca 26. La porción de corredera 31 tiene un conducto fijo 31a, un conducto deslizante 31b, y un resorte 32, y el pasaje de recogida de polvo 11, que funciona como un conducto retráctil, está formado por estos componentes. El resorte 32 se dispone entre el conducto fijo 31a y el conducto deslizante 31b, y empuja el conducto fijo 31a y el conjunto deslizante 31b en tal dirección que se separan entre sí. Como resultado, el adaptador de recogida de polvo 10 conectado al conducto deslizante 31b es empujado en una dirección hacia la pieza de trabajo 8. La porción de corredera 31 es capaz asimismo de controlar el movimiento del conducto deslizante 31b para fijarlo en una posición funcional retraída por medio de un cerrojo 41.

Durante el funcionamiento en el modo de giro/percusión, cuando se produce el orificio perforado, el cuerpo principal 1 de la taladradora de percusión se mueve hacia la pieza de trabajo 8 a medida que orificio perforado se hace más profundo. Se adopta una estructura en la cual, con el movimiento del cuerpo principal 1 de la taladradora de percusión hacia la pieza de trabajo 8, el resorte 32 es comprimido y una parte del conducto deslizante 31b se desplaza hacia el interior del conducto fijo 31a de modo que la porción de corredera 31 se retrae y el adaptador de recogida de polvo 10 está constantemente en contacto con la pieza de trabajo 8. En este momento, la porción de corredera 31 es mantenida para que esté generalmente en paralelo con la dirección longitudinal de la broca 26, y el adaptador de recogida de polvo 10 se desplaza en la dirección axial de la broca 26 con relación al cuerpo principal 1 de la taladradora de percusión. Así pues, como el conducto retráctil como la porción de corredera 31 está estructurado para disponerse de modo retráctil, la longitud de la porción de corredera 31 puede ser ajustada para que sea la longitud en la dirección longitudinal de acuerdo con la profundidad del orificio perforado.

10

15

20

45

50

El polvo producido durante la operación de perforado se traslada al interior del adaptador de recogida de polvo 10 debido a la estructura espiral 26b de la broca 26. A continuación, por medio del ventilador de recogida de polvo 14, el polvo y el aire son trasladados del adaptador de recogida de polvo 10 hacia el pasaje de recogida de polvo 11. A continuación, por medio del filtro 13 dispuesto en la caja de recogida de polvo 12, el polvo es almacenado en la caja de recogida de polvo 12, mientras que sólo el aire filtrado por el filtro 13 es trasladado hacia el pasaje de aire 15. Debe notarse que el filtro 13 es separable de la caja de recogida de polvo 12 aunque no se muestran los detalles los dibujos. Por consiguiente, la porción inferior o porción lateral del alojamiento 22 del recogedor de polvo puede ser construida en un estado abierto, o puede ser construida con capacidad de apertura. Así pues, se adopta una estructura en la cual la caja de recogida de polvo 12 es separable del recogedor de polvo, de modo que el polvo almacenado en la caja de recogida de polvo 12 puede ser desechado fácilmente. Además, se adopta una estructura en la cual el filtro 13 es separable de la caja de recogida de polvo 12, de modo que el filtro 13 pueden ser cambiado fácilmente, por ejemplo en el caso en el que el filtro 13 se obstruya o similar.

En cuanto al aire trasladado al interior del pasaje de aire, una parte del aire se descarga al exterior del cuerpo principal a través del puerto de descarga 60 (mostrado en la fig. 2), y el resto del aire es devuelto al adaptador de recogida de polvo 10 por medio del ventilador de recogida de polvo 14. El aire que va a ser devuelto se traslada al interior de un pasaje de guía 20. El pasaje de guía 20 se dispone por encima del pasaje de recogida de polvo 11 dentro de la porción de corredera 31.

30 El aire que ha pasado a través del pasaje de guía 20 pasa a través de un extremo (en el lado con el cuerpo principal 1) del adaptador de recogida de polvo, y es guiado hacia un puerto de soplado 10a en la porción superior del adaptador de recogida de polvo 10. El puerto de soplado 10a se forma en el adaptador de recogida de polvo 10. Por medio del puerto de soplado 10a se sopla aire limpio contra el extremo de punta de la broca 26 y/o la vecindad de la pieza de trabajo 8. Así pues, el aire puede ser soplado contra la vecindad del extremo de punta de la broca 26 de modo que sea posible hacer flotar de modo efectivo el polvo remanente y recoger el polvo con una fuerza de succión relativamente baja, y además limitar la fuga de polvo al exterior del adaptador de recogida de polvo 10.

Además, como el puerto de soplado 10a se forma en el adaptador de recogida de polvo 10, no es necesario añadir otro miembro como medios de soplado, además del adaptador de recogida de polvo 10. Además, como el aire utilizado durante la operación de soplado es generado por el ventilador de recogida de polvo 14 utilizado para recoger polvo, no es necesario añadir de nuevo un soplador de aire, tal como un ventilador para soplar aire. Además, como el aire utilizado en la operación de soplado pasa a través del pasaje de guía 20 dispuesto dentro de la porción de corredera 31, no es necesario proporcionar un miembro adicional, además de la porción de corredera 31, para provocar que el aire utilizado en la operación de soplado se desplace.

Así pues, de acuerdo con el presente modo de realización, es posible limitar un aumento en el número de componentes e implementar una taladradora que tiene un recogedor de polvo económico.

Aunque hasta ahora se ha descrito el primer modo de realización de la presente invención, se pueden realizar diversas aplicaciones y modificaciones en el modo de realización. La fig. 3 muestra un ejemplo de la modificación. El operario extrae la broca 26 de un orificio perforado 8a tras la producción del orificio perforado 8a. A continuación, el puerto de soplado 10a del adaptador de recogida de polvo 10 es acercado al orificio perforado 8a, de modo que su eje central se posiciona en el orificio perforado 8a. A continuación, cuando el motor 18 es encendido accionando el interruptor 4, el aire soplado desde el puerto de soplado 10a fluye al interior del orificio perforado 8a, que se abre en la dirección axial de la broca 26, saca soplando el polvo remanente fuera del orificio perforado 8a, y guía el resto del puerto de recogida de polvo 10b hacia el pasaje de recogida de polvo 11. Con esta operación, es posible retirar favorablemente el polvo que permanece en el orificio perforado.

En cuanto a la cantidad de aire trasladado a la caja de recogida de polvo 12 y la cantidad de aire soplado del puerto de soplado 10a, se puede tener un efecto favorable de recogida de polvo cuando este último se ajusta para que sea más pequeño. Con este ajuste, es posible succionar casi la totalidad del aire soplado del puerto de soplado 10a, y evitar de

modo efectivo que el resto del polvo sea sacado soplando al exterior, ya que incluso el aire en el área circundante es iqualmente succionado.

La fig. 4 muestra otra variación. En la fig. 4, se adopta una estructura en la cual el puerto de soplado 10a sopla el aire contra la vecindad de una porción perforada 10d de adaptador de recogida de polvo 10. Cuando se adopta la estructura en la cual el aire es soplado contra la vecindad de la porción perforada 10d del adaptador de recogida de polvo 10, se puede limitar la fuga de polvo de la vecindad de la porción perforada 10d.

A continuación, se describirá una taladradora que muestra un segundo modo de realización de la presente invención utilizando las figs. 5 a 12. La fig. 5 muestra una vista general de una taladradora que tiene un recogedor de polvo. Las porciones similares a las mostradas en la fig. 1 se designan con los mismos números de referencia, y se omitirá su descripción repetida.

10

15

20

25

30

35

40

45

El alojamiento 2 aloja una porción de motor, una porción de cilindro, una porción de mango, y una unidad de transmisión. En el alojamiento 2, el motor 18 como fuente de accionamiento se aloja verticalmente. En un extremo superior de un árbol de salida (árbol del motor) 19 que se extiende hacia arriba por encima del motor 18, se forma integralmente un piñón 38. A ambos lados del árbol de salida 19 del motor 18, están soportados de modo vertical y giratorio un cigüeñal 39 y un árbol intermedio 40, y se incorporan engranajes en las posiciones de altura intermedia del cigüeñal 39 y del árbol intermedio 40. Estos engranajes están acoplados con el piñón 38 descrito anteriormente, que se forma en la porción terminal del árbol 19

En la porción superior del alojamiento 2, un cilindro 36 se encuentra soportado de modo giratorio en ambas porciones terminales en sus direcciones axiales mediante un cojinete de bolas 41 y un cojinete metálico 42, y se dispone horizontalmente. Un pistón 43 y un percutor 44 se ajustan de modo deslizante en el cilindro 36. El pistón 43 está acoplado con un manetón del cigüeñal 39 mediante una varilla de conexión 45 y un extremo de la varilla de conexión 45 está acoplado con el pistón 43 mediante una clavija del pistón.

El giro del cigüeñal 39 se convierte en un movimiento oscilante del pistón 43 en una dirección de delante a atrás en el cilindro 36 mediante el manetón y la varilla de conexión 45, y la presión interna de una cámara de aire fluctúa por la oscilación del pistón 43. Como resultado, la fluctuación en la presión interna provoca que el percutor 44 oscile en la dirección de delante a atrás en el cilindro 36 y golpee intermitentemente contra un miembro intermedio 46, de modo que se transmita una fuerza de percusión del miembro intermedio 46 a la broca 26.

Los engranajes, el cigüeñal 39, la varilla de conexión 45, el cilindro 36, el pistón 43, el percutor 44, el miembro intermedio 46, y similares, que han sido descritos anteriormente, constituyen una unidad de un mecanismo de percusión, y el giro del árbol de salida 19 del motor 18 se convierte en la oscilación del pistón 43 mediante la unidad de mecanismo de percusión para proporcionar una fuerza de percusión a la broca 26. La fuerza de giro transmitida desde el árbol intermedio 40 se transmite al cilindro 36 para provocar una rotación simple de la broca 26, y porciones de giro que incluyen el árbol intermedio 40 constituyen una unidad de mecanismo de transmisión de giro. La unidad de mecanismo de percusión y la unidad de mecanismo de transmisión de giro pueden ser accionadas simultánea o selectivamente, y todas o una parte de las unidades constituyen una unidad de transmisión para hacer girar la broca.

La fig. 5 se diferencia enormemente de la fig. 1 en la disposición de los pasajes en la porción de corredera 31, construida por el conducto fijo 31a y el conducto deslizante 31b. Aunque el pasaje de recogida de polvo 11 y el pasaje de guía 20 están formados igualmente en la porción de corredera 31 en la fig. 5, las ubicaciones de los mismos son diferentes. En la fig. 1, estos dos pasajes están dispuestos verticalmente, como se muestra en el dibujo, mientras que en la fig. 5, estos pasajes se disponen concéntricamente (el pasaje de recogida de polvo en un círculo interior y el pasaje de guía 20 en un círculo exterior). Además, en la fig. 5 se omite el ventilador de refrigeración para el motor 18, y tan sólo se conecta al motor el ventilador de recogida de polvo 14. Además, la disposición del pasaje desde el pasaje de aire 15 al ventilador de recogida de polvo 14 y al pasaje de guía 20 es igualmente diferente. Sin embargo, los efectos prácticos obtenidos de la disposición de la fig. 1 y de la disposición de la fig. 5 no son diferentes.

La fig. 6 es una vista que ilustra el puerto de soplado 10a y el puerto de recogida de polvo 10b de la taladradora de la fig. 5 y las direcciones del flujo de aire a través de los mismos. El aire descargado del puerto de soplado 10a es curvado por la pieza de trabajo 8 que cubre el puerto de soplado 10a en la dirección axial y es conducido hacia la broca 26 (esto es, en dirección hacia abajo en la fig. 6). Como el gran puerto de recogida de polvo 10b se dispone por debajo, el polvo producido o que flota en el adaptador de recogida de polvo 10 es succionado del puerto de recogida de polvo 10b. En cuanto al caudal de aire en cada uno de los puertos, por ejemplo, el caudal de succión es de 0,3 m³/minuto, mientras que el caudal de soplado es de 0,04 m³/minuto, y la proporción entre ambos es de 15:2. El valor óptimo de la proporción difiere dependiendo de diversos factores tales como la calidad de la pieza de trabajo 8 que se va perforar, el diámetro de la broca, la velocidad de giro, y similares. Sin embargo, lo que es común a todos los casos es que, cuando el caudal del aire succionado del puerto de recogida de polvo 10b se ajusta para que sea más grande que el del aire soplado desde el 55 puerto de soplado 10a, se puede impedir de modo efectivo la fuga de polvo. La proporción, que es el caudal de succión dividido entre el caudal de soplado, puede ser ajustado en el intervalo de, por ejemplo, 30:1 a 1:1.

La broca 26 se dispone entre el puerto de soplado y el puerto de recogida de polvo. Con esta disposición, el aire soplado desde el puerto de soplado 10a es recogido por el puerto de recogida de polvo 10b tras golpear contra la broca 26, y el aire soplado del puerto de soplado 10a es capaz de desprender el polvo adherido a la broca 26, por lo que el polvo puede ser recogido de manera efectiva. Además, una porción de sellado 29 que sobresale ligeramente del adaptador de recogida de polvo 10 y se abre en la forma de una copa se forma sobre la periferia de la porción perforada sobre el lado terminal de punta (el lado con la pieza de trabajo 8 en la dirección axial de la broca) del adaptador de recogida de polvo 10. Con esta formación, se puede evitar de modo efectivo la fuga de polvo del hueco entre el adaptador de recogida de polvo 10 y la pieza de trabajo 8.

Las figs. 7 y 8 son vistas para ilustrar el flujo de aire en la vecindad del ventilador de recogida de polvo 14. La fig. 7 es una vista en sección longitudinal, mientras que la fig. 8 es una vista en sección lateral, y son vistas parcialmente esquemáticas 10 a los efectos de ilustración. En la fig. 7, el ventilador de recogida de polvo 14 es un ventilador centrífugo que succiona aire limpio guiado desde el pasaje de aire 15 procedente de la superficie superior del ventilador de recogida de polvo 14, y descarga el aire en una dirección externa circunferencial. Una parte del aire descargado es guiado hacia el pasaje de guía 20. La fig. 8 es una vista en sección lateral que ilustra la parte del aire descargado guiado hacia el pasaje de guía 20. El 15 aire que fluye en el pasaje de recogida de polvo 11 fluye hacia la dirección del filtro 13 (la dirección hacia la cara posterior de la página con la fig. 8). El aire que ha pasado a través del filtro 13 fluye al interior del ventilador de recogida de polvo 14 a través de la porción superior del mismo (la cara frontal de la página con la fig. 8) a través del pasaje de aire 15, y una parte del aire es guiado hacia el pasaje de guía 20 a lo largo del flujo indicado por una flecha 81, y el resto del aire es descargado del puerto de descarga 60 al exterior del alojamiento 2, como se muestra mediante una flecha 82. Así pues, al 20 asignar distintos destinos al aire que va a ser descargado del ventilador de recogida de polvo 14, se puede determinar la proporción entre la cantidad de aire succionado del puerto de recogida de polvo 10b y la cantidad de aire soplado del puerto de soplado 10a a. Debe notarse que, cuando un miembro de obturador (no mostrado) se dispone en una salida del puerto de descarga 60 y un área de abertura del puerto de descarga 60 se adapta para que sea variable, la proporción de cantidades de aire descrita anteriormente puede ser cambiada opcionalmente.

25 A continuación, utilizando las figs. 9 a 12, se describirá la estructura específica del adaptador de recogida de polvo 10 de la fig. 5. La fig. 9 es una vista en perspectiva del adaptador de recogida de polvo 10, visto desde el lado en el que se inserta la broca 26. En un lado terminal (el lado con el cuerpo principal 1 de la taladradora de percusión) de la porción perforada del adaptador de recogida de polvo 10, se dispone de un obturador 51 para limitar el paso de aire entre la broca y la porción perforada. Como material para el obturador 51 se utiliza, por ejemplo, goma. Sin embargo, el material no se 30 limita a esto. Cualquier material se puede utilizar en tanto en cuanto el material sea resiliente, no obstruya el giro de la broca 26 incluso cuando entre en contacto con la broca 26 que gira a alta velocidad, y sea resistente a la abrasión por contacto. El obturador 51 está construido de diez piezas delgadas que se extienden en una dirección circunferencial, y tiene la forma de un miembro de diafragma. En la porción central del obturador 51, se forma una abertura 50 coaxialmente con la broca 26. El tamaño de la abertura 50 es preferiblemente ligeramente más grande que el de la broca 26. Así pues, 35 se adopta una estructura en la cual la porción perforada es cilíndrica y el miembro de obturador para limitar el paso de aire entre la broca y la porción perforada se dispone en el lado terminal de la porción perforada, de modo que la fuga de polvo de una porción terminal de la porción perforada pueda ser limitada.

La fig. 10 es una vista que muestra una sección transversal de una porción A-A' de la fig. 9. El adaptador de recogida de polvo 10 se forma con el puerto de soplado 10a cilíndrico para descargar el aire que va ser soplado, y guía el aire en direcciones indicadas por las flechas 53 en el dibujo. Fuera de los flujos de aire indicados por las flechas 53, con el fin de generar el flujo de aire en una dirección descendente (la dirección hacia la porción central de la porción perforada en la dirección circunferencial), se dispone una muesca en el lado inferior de la porción terminal de punta (la porción lateral inferior en el extremo izquierdo en la fig. 10) del puerto de soplado 10a. En la porción periférica externa del extremo de punta de la porción perforada 57, se dispone la porción de estanqueidad 29. El adaptador de recogida de polvo 10 puede estar formado por una pluralidad de miembros de plástico. Sin embargo, el miembro no se limita a esto. La mayoría de los miembros pueden formarse o fabricarse integralmente utilizando otros materiales. Así pues, como se adopta una estructura en la cual se proporciona el puerto de soplado 10a y se forma la muesca en la cara inferior de la porción terminal de punta de la misma, el aire del puerto de soplado es soplado hacia la broca 26 y el aire desprende el polvo adherido en la vecindad de la broca 26, de modo que la recogida de polvo se puede realizar de modo efectivo.

40

45

La fig. 11 es una vista que muestra una sección transversal de una porción B-B' de la fig. 9. El obturador 51 en la fig. 11 tiene una estructura que tiene un gran diafragma y un pequeño diafragma. Sin embargo, es opcional adoptar o no este tipo de estructura. El aire limpio guiado desde el pasaje de guía 20 fluye en la dirección indicada por una flecha 55 para ser guiado hacia el puerto de soplado 10a. El aire que contiene polvo succionado del puerto de recogida de polvo 10b fluye en la dirección indicada por una flecha 54 para ser guiado al pasaje de recogida de polvo 11. Cuando el pasaje de recogida de polvo 11 y el pasaje de guía 20 se dispone en una dirección de izquierda a derecha visto desde la dirección axial de la broca 26, en lugar de disponerse en una dirección de delante a atrás (la disposición en la fig. 1), se puede reducir el grosor del adaptador de recogida de polvo 10 (la porción indicada mediante 37a en la fig. 5). Con la disposición en la dirección de delante a atrás mostrada en la fig. 1, puede darse el caso de que sea difícil disponer los pasajes para soplar y succionar que sean lo suficientemente anchos. Sin embargo, con la disposición de la fig. 11, es fácil asegurar la capacidad de cada

pasaje.

10

30

35

50

55

En lo que se refiere al grosor del adaptador de recogida de polvo 10 indicado por 37a en la fig. 5, cuando el grosor se reduce para que sea menor que el grosor de la porción de la broca que no es espiral (la porción indicada por 37b en la fig. 5), se pueden producir orificios más profundos sin la obstrucción del adaptador de recogida de polvo 10, de modo que se mejora la capacidad de trabajo.

La fig. 12 es una vista que muestra una sección transversal de una porción C-C' de la fig. 9. Como se observa del dibujo, el pasaje de guía 20 se forma sobre el lado periférico externo de la porción perforada 57 cilíndrica.

Hasta ahora, la presente invención ha sido descrita en base a los modos de realización primero y segundo. Sin embargo, la presente invención no se limita a estos. Diversas modificaciones pueden ser realizadas sin alejarse del espíritu y el ámbito de la invención. Por ejemplo, la disposición del pasaje de recogida de polvo 11 y del pasaje de guía 20 en la porción de corredera 31, y configuraciones de sus áreas en sección transversal, pueden ser ajustadas opcionalmente. Además, se puede adoptar una estructura en la cual el pasaje de guía 20 pueda ser dispuesto independientemente de la porción de corredera 31, en lugar de ser dispuesto en la porción de corredera 31.

Además, en el presente modo de realización se adopta una estructura en la cual se suministra electricidad a la taladradora de percusión por medio del cable eléctrico 5. Sin embargo, el suministro de electricidad puede ser realizado por medio de una batería recargable, una batería solar, una batería de combustible, y similares. Además, en el presente modo de realización la taladradora ha sido descrita utilizando una taladradora de percusión como ejemplo. Sin embargo, el mismo efecto se puede alcanzar igualmente en el caso con la estructura de otras herramientas de perforación tales como un martillo, una taladradora, una taladradora vibratoria, una taladradora accionada, y similares.

Además, en la presente invención se adopta una estructura en la cual se utiliza un motor eléctrico para accionar el ventilador de recogida de polvo. Sin embargo, en el caso de una taladradora que utilice un motor de combustión interna, el ventilador puede ser girado utilizando la potencia del mismo o un ventilador eléctrico puede ser girado asimismo utilizando la potencia eléctrica generada por el motor de combustión interna.

Una taladradora de acuerdo con un tercer modo de realización de la presente invención se describirá a continuación con referencia a las figs. 13 a 15. La fig. 13 es una vista lateral de la taladradora que muestra el tercer modo de realización de la presente invención, la fig. 14 es una vista lateral que muestra el estado de la taladradora en uso, y la fig. 15 es una vista para ilustrar el flujo de aire en un adaptador de recogida de polvo 110.

Un cuerpo principal 101 de una taladradora de percusión tiene cuatro modos de funcionamiento del modo de giro/percusión, el modo de giro, el modo de percusión, y el modo neutro, o tiene cualquiera de los cuatro modos de funcionamiento. Un alojamiento 102 incluye una unidad de accionamiento que comprende un motor 118, una unidad de mecanismo de percusión, una unidad de mecanismo de transmisión de la rotación, y un mecanismo de conmutación. Un mango 103 se dispone en una porción terminal trasera del alojamiento 102 (la dirección de delante a atrás y la dirección de arriba a abajo se definen como se muestra en la fig. 13 en la presente descripción, lo mismo aplicará a los otros dibujos mostrados a continuación). El mango 103 está dotado de un interruptor 104, y un cable eléctrico 105 para suministrar electricidad se conecta al mango 103. Sobre una porción lateral del alojamiento 102 se dispone de modo giratorio un conmutador de posición 106 en forma de escala circular para cambiar los modos de funcionamiento. Una herramienta terminal 126 se incorpora a una porción terminal de punta de la taladradora de percusión 101, y la herramienta terminal 126 se alimenta con una fuerza de percusión o una fuerza de giro, o ambas, para realizar una operación requerida con respecto a una pieza de trabajo 108.

La etapa de recoger el polvo producido durante el funcionamiento en los modos de funcionamiento de giro/percusión y el modo de giro en el cuerpo principal 101 de la taladradora de percusión se describirá con referencia a la fig. 13. En la operación de perforado con relación a la pieza de trabajo 108, el operario sostiene el mango 103 de la taladradora de percusión 101 y acciona el interruptor 104, accionando así un motor 118 y provocando que la herramienta terminal 126 unida a la porción terminal de punta del cuerpo principal 101 de la taladradora de percusión gire y golpee con la fuerza de accionamiento del motor 118. El operario sostiene el mango 103 del cuerpo principal 101 de la taladradora de percusión y empuja la taladradora de percusión 101 contra la pieza de trabajo 108 de modo que la herramienta terminal 126 triture la pieza de trabajo 8 para producir un orificio perforado en la pieza de trabajo 108.

La herramienta terminal 126 tiene una porción terminal de punta 126a para triturar la pieza de trabajo 108, y una porción espiral 126b que tiene la función de trasladar el polvo producido al triturar la pieza de trabajo 108 en el orificio perforado. El polvo producido por la porción terminal de punta 126a de la herramienta terminal 126 durante el funcionamiento es trasladado al interior del adaptador de recogida de polvo 110 debido al giro de la herramienta terminal 126 y a la configuración de la porción espiral 126b. El polvo trasladado al interior del adaptador de recogida de polvo 110 es guiado de un puerto de succión 110b a un pasaje de recogida de polvo 111 a lo largo de una flecha por la fuerza de succión de un ventilador de recogida de polvo 114 dispuesto sobre un árbol giratorio 119 del motor 118, y filtrado y separado en el aire y el polvo mediante un filtro 113 en una caja de recogida de polvo 112 dispuesta en un alojamiento 133 del recogedor de

polvo, y el polvo separado es almacenado en la caja de recogida de polvo 112. Debe notarse que la caja de recogida de polvo 112 es preferiblemente separable. Al separar la caja de recogida de polvo 112, se hace posible desechar el polvo almacenado, y limpiar o cambiar el filtro 113.

Por otro lado, el aire limpio separado pasa a través de un pasaje de aire 115 y alcanza un puerto de toma (no mostrado) en la dirección axial del ventilador de recogida de polvo 114. A continuación, una parte del aire limpio separado es devuelto al adaptador de recogida de polvo 110 y el resto del aire es descargado de un puerto de descarga al exterior del cuerpo principal 101 de la taladradora de percusión por medio del ventilador de recogida de polvo 114. La estructura en la vecindad del ventilador de recogida de polvo 114 se describirá más tarde.

En el cuerpo principal 101 de la taladradora de percusión, el motor 118 se dispone como una fuente de potencia para accionar la herramienta terminal 126 en el alojamiento integral 102. Cuando la herramienta terminal 126 es accionada, el motor 118 gira y, a la vez, genera calor. Con el fin de limitar la generación de calor del motor 118, se proporciona un ventilador de refrigeración 117 sobre el árbol giratorio 119 del motor 118. El aire de refrigeración se succiona de un puerto de toma de aire de refrigeración (no mostrado), dispuesto en una tapa trasera 116 por la fuerza de succión del ventilador de refrigeración 117, y el aire de refrigeración refrigera el motor 118 de acuerdo con la dirección indicada por la flecha. El aire de refrigeración alcanza el ventilador de refrigeración 117 tras haber refrigerado motor, y es descargado al exterior del cuerpo principal 101 de la taladradora de percusión desde un puerto de descarga, que no se muestra.

El adaptador de recogida de polvo 110 es sostenido por una corredera 131, unida al cuerpo principal 101 de la taladradora de percusión. En la corredera 131 se disponen un resorte 132 y el canal retráctil de polvo 111. El adaptador de recogida de polvo 110 es empujado hacia la pieza de trabajo 108 por el resorte 132 y la corredera 131. Durante el funcionamiento para producir un orificio perforado, el cuerpo principal 101 de la taladradora de percusión se desplaza hacia la pieza de trabajo 108 a medida que orificio perforado se hace más profundo. El adaptador de recogida de polvo 110 es empujado hacia la pieza de trabajo 108 por el resorte 132. Durante la operación de perforado, a medida que el cuerpo principal 101 de la taladradora de percusión se desplaza hacia la pieza de trabajo 108, el resorte 132 es comprimido y la corredera 131 es retraída de modo que el adaptador de recogida de polvo 110 esté constantemente en contacto con la pieza de trabajo 108, y mantenga una relación de posición constante. La corredera 131 está construida por dos miembros, y la longitud de la corredera 131 se reduce cuando un miembro desliza dentro del otro miembro. Así pues, la corredera 131 está estructurada para ser retráctil de modo que se pueda realizar la recogida de polvo de acuerdo con la profundidad de orificio perforado. Además, es posible bloquear la retracción de la corredera 131 en una posición opcional por medio de un mecanismo de bloqueo 141.

20

25

40

45

30 El polvo producido durante la operación de perforado se traslada al interior del adaptador de recogida de polvo 110 mediante la estructura espiral de la herramienta terminal 126, y es succionado del puerto de succión 110b junto con el aire por la fuerza de succión del ventilador de recogida de polvo 114. Como se muestra en la fig. 15, durante la operación de perforación, el aire soplado desde un puerto de soplado 110a para soplar el aire es enviado al interior adaptador de recogida de polvo 110, y se genera un flujo de aire en la vecindad del orificio perforado, de modo que se puede mejorar la capacidad de recogida de polvo. La cantidad de aire que se va a soplar se ajusta preferiblemente para que sea menor que la del aire que se succiona. Este ajuste se realiza para succionar el aire circundante en la vecindad de un orificio perforado (un orificio perforado por la herramienta terminal 126) del adaptador de recogida de polvo 110. La succión del aire circundante puede evitar favorablemente que el polvo se disperse en el área circundante.

Tras la operación de perforado, una parte del polvo permanece a menudo en el orificio perforado. Por consiguiente, el operario acerca el puerto de soplado 110a del adaptador de recogida de polvo 110 al orificio perforado tras la producción del orificio perforado, como se muestra en la fig. 14, y acciona el interruptor de potencia 104 para encender el motor 118 y hacer girar el ventilador de recogida de polvo 114. En ese momento, la herramienta terminal 126 gira igualmente. Sin embargo, como la porción terminal de punta 126a no está en contacto con la pieza de trabajo 108, la pieza de trabajo 108 no se daña. Es preferible ajustar la longitud de la corredera 31 en el momento de máxima extensión de tal modo que la porción terminal de punta 126a no esté en contacto con la pieza de trabajo 108, como se muestra en la fig. 14.

En cuanto al flujo de aire en el cuerpo principal 101 de la taladradora de percusión, el aire alcanza el ventilador de recogida de polvo 114 procedente del pasaje de aire 115, y es descargado del puerto de descarga, que no se muestra, al exterior del cuerpo principal 101 de la taladradora de percusión, mientras que una parte del aire es devuelto al adaptador de recogida de polvo 110.

A continuación, se describirá en detalle la estructura de la vecindad del ventilador de recogida de polvo 114 utilizando las figs. 16 y 17. La fig. 16 es una vista en sección transversal de una porción A-A de la fig. 14. El ventilador de recogida de polvo 114 es un ventilador centrífugo que succiona el aire que fluye desde el pasaje de aire 115 a través de un puerto de toma (no mostrado) formado en la dirección axial, y envía el aire en la dirección circunferencial por la fuerza de giro de las palas. El flujo de aire que va a ser enviado es generado en una dirección indicada mediante una flecha 151 en la fig. 16.

La mayor parte del flujo de aire fluye desde un puerto de envío de flujo de aire 136 en una dirección indicada mediante una flecha 152, y es enviado al adaptador de recogida de polvo 110 mediante un canal de guía 120. El resto del flujo de aire es descargado de un primer puerto de descarga 135a y un segundo puerto de descarga 135b formado en un alojamiento

102a, como se muestra mediante las flechas 153 y 154. En el presente modo de realización, el alojamiento 102a es parte del alojamiento 102 del cuerpo principal 101 de la taladradora de percusión, y es un alojamiento de plástico formado integralmente.

El aire que ha fluido al interior del puerto de envío de flujo de aire 136 fluye a continuación al interior del adaptador de recogida de polvo 110 a través del canal de guía 120. El canal de guía 120 está dispuesto a lo largo del canal de polvo 111 en la vecindad del puerto de envío de flujo de aire 136 de la fig. 16, mientras que, en la corredera 131, el canal de guía 120 se dispone por encima del canal de polvo 111. Sin embargo, la disposición no se limita a esto. Se puede adoptar una disposición coaxial, en la cual el canal de polvo 111 se disponga en un área interna, mientras que el canal de guía 120 se disponga en un área externa.

En la fig. 16, en una dirección de giro del ventilador de recogida de polvo 114 (dirección horaria en el dibujo), los puertos de descarga se disponen en dos ubicaciones. Tanto el primer puerto de descarga 135a como el segundo puerto de descarga 135b se disponen en posiciones "hacia atrás" desde el puerto de envío de flujo de aire 136. Como se muestra en una vista conceptual de la fig. 17, cuando se traza una línea de referencia 157 desde el puerto de envío de flujo de aire 136 hasta un punto central 160 del ventilador, los términos posiciones "hacia delante" utilizados aquí denotan posiciones en una dirección indicada mediante una flecha 155, visto desde la posición del puerto de envío de flujo de aire 136. De modo similar, posiciones "hacia atrás" denotan posiciones en una dirección indicada por una flecha 156, visto desde la posición del puerto de envío de flujo de aire 136. Debe apreciarse que las posiciones hacia delante y las posiciones hacia atrás se invierten cuando la dirección de giro del ventilador de recogida de polvo 114 se invierte.

De acuerdo con la definición de la fig. 17, tanto el primer puerto de descarga 135a como el segundo puerto de descarga 135b se disponen en las posiciones hacia atrás, visto desde el puerto de envío de flujo de aire 136. En un ventilador que genere el flujo de aire por su fuerza de giro, tal como el ventilador de recogida de polvo 114 de acuerdo con el presente modo de realización, un puerto de abertura dispuesto en la posición más alejada recibe una alta presión. La trayectoria para enviar el flujo de aire al interior del adaptador de recogida de polvo 110 tiene una elevada resistencia al flujo de entrada debido a su configuración complicada, de modo que la alta presión es necesaria con el fin de enviar el flujo de aire de modo efectivo. Por lo tanto, al ajustar el puerto de envío de flujo de aire 136 en la posición hacia delante en la dirección de giro del ventilador de recogida de polvo 114 visto desde el puerto de descarga 135, se hace posible enviar del modo más efectivo el flujo de aire al interior de adaptador de recogida de polvo 110.

A continuación, se describirá un cuarto modo de realización de la presente invención utilizando las figs. 18 a 20. La fig. 18 es una vista en sección trasversal de una porción del ventilador de recogida de polvo que muestra el cuarto modo de realización de la presente invención, la fig. 19 es una vista conceptual para ilustrar una relación de posición entre el ventilador de recogida de polvo 114 y una pared interna 137 del alojamiento, y la fig. 20 es una vista ampliada para ilustrar una relación de posición de una porción de guía 138.

30

35

40

45

55

Como se puede observar de la fig. 18, la distancia entre la pared interna 137a y el extremo periférico externo del ventilador de recogida de polvo 114 se acorta gradualmente con la distancia desde el puerto de envío de flujo de aire 136 tanto en las direcciones hacia delante como hacia atrás. Este estado se describirá adicionalmente utilizando la vista conceptual de la fig. 19. En la fig. 19, con el fin de entender la relación de posición, se traza una línea de referencia 157, que se extiende desde el puerto de envío de flujo de aire 136 hasta el otro lado a través de un punto central 161 de la pared interna del alojamiento y una línea auxiliar 158, perpendicular a la línea de referencia 157 y que se extiende a través del punto central 161. El punto central 160 del ventilador de recogida de polvo 114 está desplazado con relación al punto central 161 de la pared interna del alojamiento.

Cuando las regiones definidas por la línea de referencia 157 y la línea auxiliar 158 se definen como regiones (I), (II), (III) y (IV), como se muestra en la fig. 19, el puerto de envío de flujo de aire 136 se forma en las regiones (II) y (III). El primer puerto de descarga 135a se forma en la región (III). El segundo puerto de descarga 135b se forma en la región (IV). Esta disposición permite un aumento en la presión de flujo de entrada al interior del puerto de envío de flujo de aire 136, la velocidad de flujo, y la cantidad de flujo de aire. Como resultado, es posible enviar de modo efectivo el flujo de aire al interior del adaptador de recogida de polvo 110. Sin embargo, como la relación descrita anteriormente está influida por otros factores tales como las alturas del puerto de envío de flujo de aire y el puerto de descarga en una dirección vertical o similar, la disposición puede ser ajustada teniendo en consideración estos factores.

En el cuarto modo de realización, como dispositivo para aumentar la presión de flujo de entrada, se forma adicionalmente una porción de guía 138, que sobresale hacia la dirección del centro del ventilador centrífugo, adyacente al lado corriente abajo del puerto de envío de flujo de aire 136. Los detalles de la misma se describirán utilizando la fig. 20. La fig. 20 es una vista parcialmente agrandada para ilustrar una relación de posición de la porción de guía 138 de la fig. 6.

En la fig. 20, con el fin de indicar la posición de la pared interna cilíndrica del alojamiento, se traza una línea de referencia 139 en línea discontinua. Como se puede observar de la comparación entre la línea de referencia 139 y el estado de la protuberancia de la porción de guía 138, se forma la porción de guía 138 obtenida haciendo sobresalir la porción de pared interna del lado corriente abajo del puerto de envío de flujo de aire 136 en la distancia B en la dirección del centro del

ventilador centrífugo. Así pues, al formar la porción de guía 138, el flujo de aire que fluye hacia la dirección indicada mediante una flecha 155 golpea contra la porción de guía 138, y la mayor parte del flujo de aire es guiado hacia la dirección del puerto de envío de flujo de aire 136. Como resultado, la cantidad de flujo de aire hacia el puerto de envío de flujo de aire 136 aumenta y, además, se obtiene el efecto de un aumento en la velocidad de flujo que resulta de un aumento en la presión para enviar el aire.

Como es aparente del anterior descripción, de acuerdo con la presente invención, es posible asegurar que se envía la suficiente cantidad de flujo de aire a la vecindad del orificio perforado y mejorar la eficiencia de recogida de polvo en la recogida de polvo producido durante la operación de perforado y el rendimiento de la retirada del polvo que permanece en el orificio perforado tras la operación de perforado. Como resultado, el lugar de trabajo y el entorno del operario pueden ser mejorados.

10

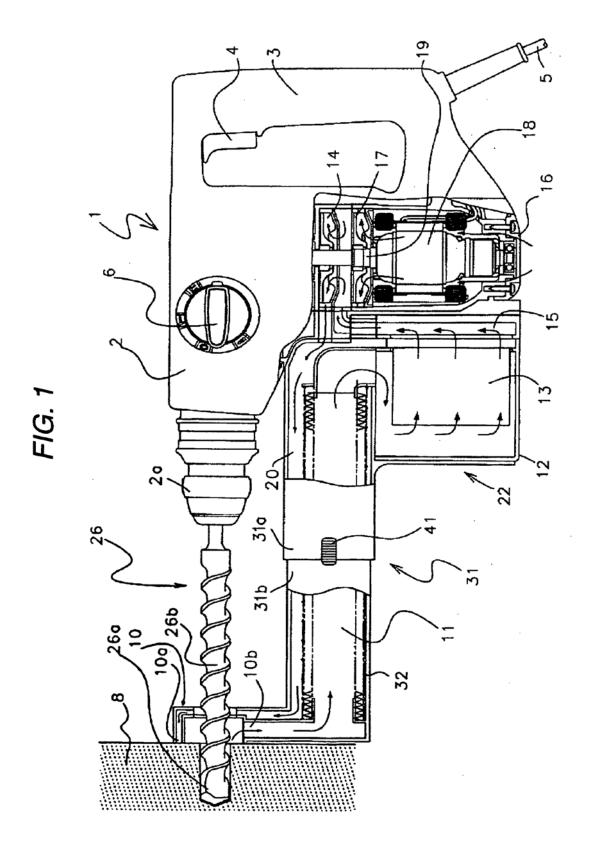
20

Además, de acuerdo con la presente invención, en la taladradora que tiene el recogedor de polvo dotado del puerto de succión para succionar el aire junto con el polvo y el puerto de soplado para soplar el aire, se consigue el efecto de poder recoger eficientemente el polvo y enviar el aire utilizando un ventilador centrífugo único.

Aunque la descripción ha sido ofrecida en base a los modos de realización que muestra la presente invención, la presente invención no se limita a los modos de realización descritos anteriormente. Se entenderá que se pueden realizar diversos cambios y modificaciones a la invención sin alejarse del ámbito de la misma.

Por ejemplo, aunque en la invención de la presente solicitud se ha descrito la taladradora que utiliza el motor eléctrico, la fuente de accionamiento no se limita al motor eléctrico. La presente invención puede ser aplicada a una taladradora que utiliza un motor de combustión interna o de aire comprimido. Además, se pueden utilizar ventiladores del tipo integral para el ventilador de recogida de polvo 114 y el ventilador de refrigeración 117 en lugar de ventiladores del tipo individual. En ese caso, se puede adoptar una estructura en la cual el aire se envíe al motor 118 desde el puerto de descarga del ventilador de recogida de polvo.

REIVINDICACIONES


1. Una taladradora que comprende:

un motor (18);

40

una unidad de transmisión (38, 40, 2a) para transmitir una fuerza de giro del motor a una broca;

- 5 un recogedor de polvo (10) para recoger el polvo producido de una pieza de trabajo perforada por la broca, recogedor de polvo que está dotado con una porción perforada para ser perforada por la broca, un puerto de recogida de polvo (10b) para succionar el polvo producido y su aire circundante, y un puerto de soplado (10a) para soplar aire en la vecindad de la broca; y
 - un ventilador (14) para succionar aire del puerto de recogida de polvo (10b),
- 10 caracterizado porque el ventilador (14) está adaptado para producir un flujo de aire del puerto de recogida de polvo (10b) al exterior, en el que parte del aire succionado por el ventilador del puerto de recogida de polvo (10b) es devuelto al puerto de soplado (10a).
- La taladradora de acuerdo con la reivindicación 1, caracterizada porque una cantidad del aire succionado del puerto de recogida de polvo (10b) del recogedor de polvo no es inferior a la cantidad del aire soplado del puerto de soplado (10a).
 - 3. La taladradora de acuerdo con la reivindicación 1, caracterizada porque el recogedor de polvo tiene un conducto retráctil (31) que tiene un pasaje que se extiende del puerto de recogida de polvo (10b) al ventilador (14) a través de un filtro de recogida de polvo (13) y un pasaje que se extiende desde el ventilador al puerto de soplado (10a).
- 4. La taladradora de acuerdo con la reivindicación 3, caracterizada porque el conducto retráctil (31) está formado por una porción fija (31a) y una porción retráctil (31b), unidas generalmente en paralelo con una dirección longitudinal de la broca, y retráctil en la dirección longitudinal.
 - 5. La taladradora de acuerdo con la reivindicación 1, caracterizada porque la dirección del flujo de aire soplado desde el puerto de soplado (10a) es una dirección circunferencial de la porción perforada.
- 6. La taladradora de acuerdo con la reivindicación 1, caracterizada porque la dirección del flujo de aire soplado desde el puerto de soplado (10a) es una dirección generalmente en paralelo con la dirección axial de la broca en la porción perforada.
 - 7. La taladradora de acuerdo con la reivindicación 3, caracterizada porque el recogedor de polvo tiene un alojamiento (22) conectado al conducto retráctil (31), y el filtro (13) está incorporado de modo separable en el alojamiento.
- 30 8. La taladradora de la reivindicación 1, caracterizada porque el recogedor de polvo (10) es separable con respecto a la taladradora.
 - 9. La taladradora de la reivindicación 1, caracterizada porque la porción perforada es cilíndrica, y un miembro de obturador (51) para limitar el paso del aire entre la broca y la porción perforada se dispone en un lado terminal de la porción perforada.
- 35 10. La taladradora de la reivindicación 1, caracterizada porque la broca está dispuesta en una posición entre el puerto de recogida de polvo (10b) y el puerto de soplado (10a) en el recogedor de polvo.
 - 11. La taladradora de la reivindicación 3, caracterizada porque el recogedor de polvo (10) tiene un adaptador de recogida de polvo que forma la porción perforada en una porción terminal de la punta del conducto retráctil (31), y, en el adaptador de recogida de polvo, el pasaje que se extiende hasta el puerto de soplado (10a) y el pasaje que se extiende desde el puerto de recogida de polvo (10b) están dispuestos lado con lado en una dirección de izquierda a derecha, visto desde un eje longitudinal de la broca.
 - 12. Una taladradora de acuerdo con la reivindicación 1, que comprende una caja de recogida de polvo para almacenar el polvo succionado desde el puerto de recogida de polvo (10b).
- 13. La taladradora de la reivindicación 1, caracterizada porque la broca está accionada por el motor (18) y el ventilador (14) es girado por el motor.
 - 14. Una taladradora de acuerdo con la reivindicación 1, en la que el puerto de soplado (10b) está adaptado para soplar aire en la dirección axial de la broca.

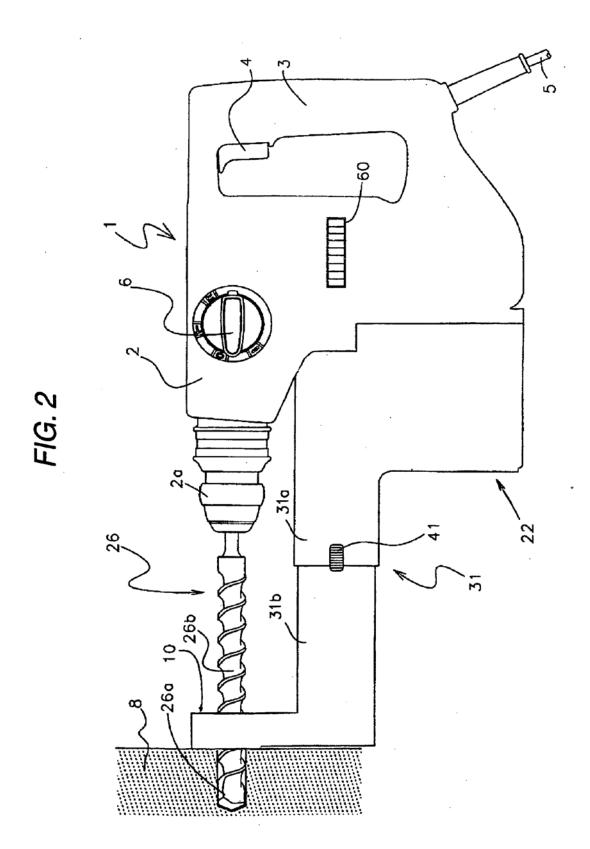


FIG. 3

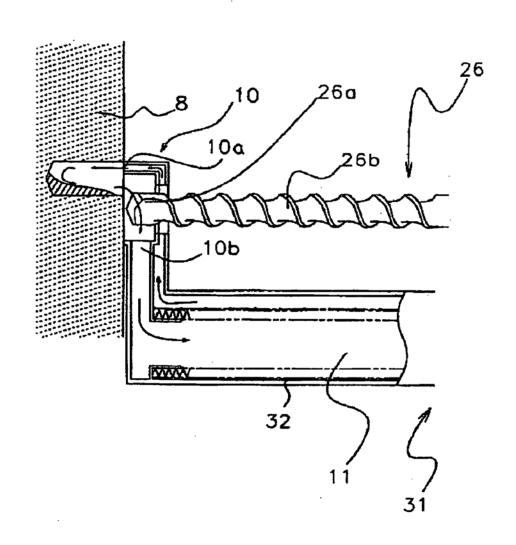
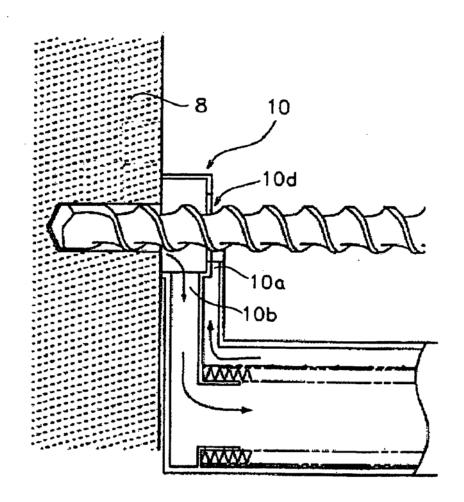



FIG. 4

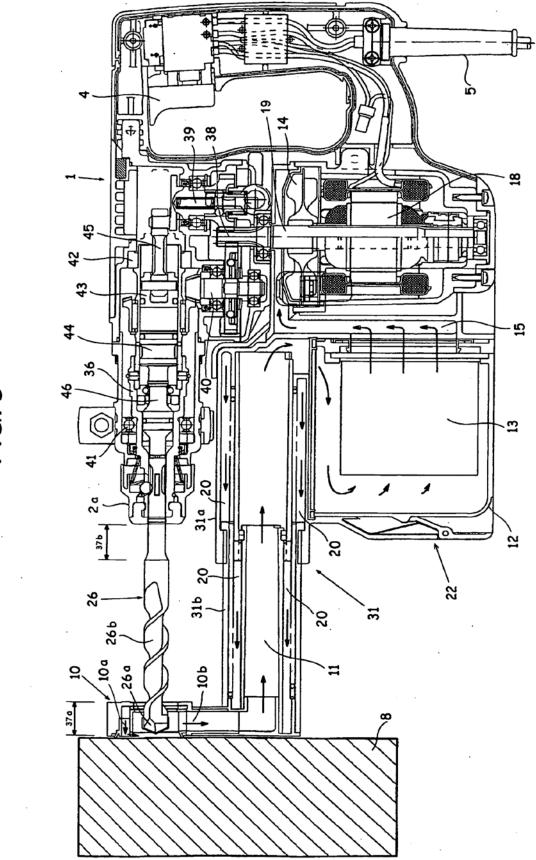


FIG. 5

FIG. 6

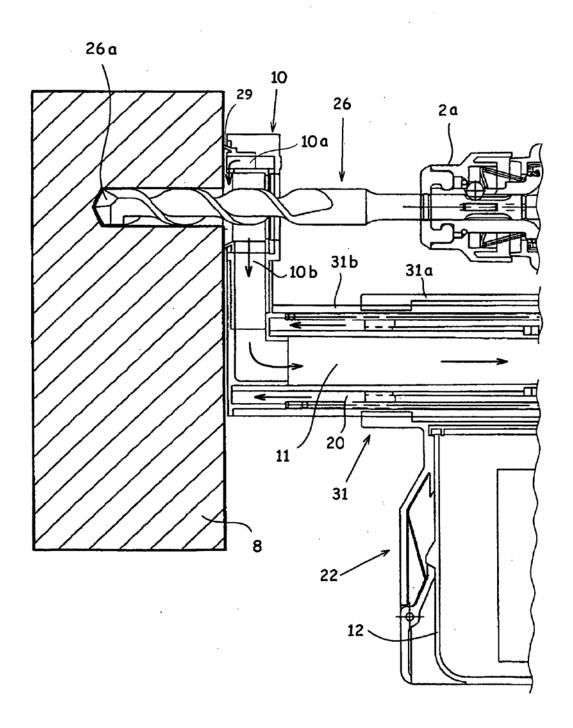


FIG. 7

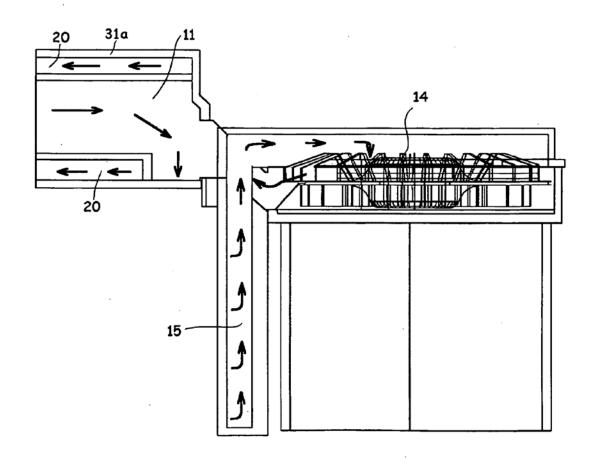


FIG. 8

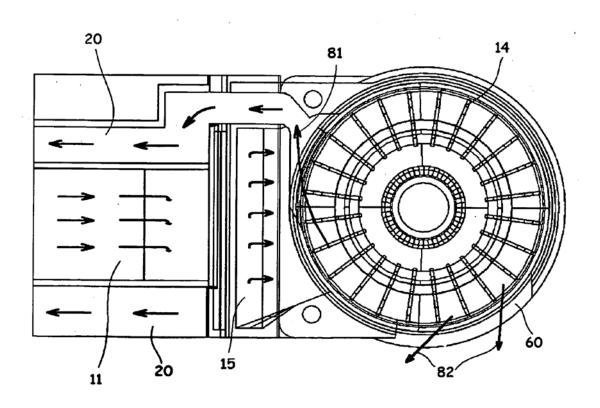


FIG. 9

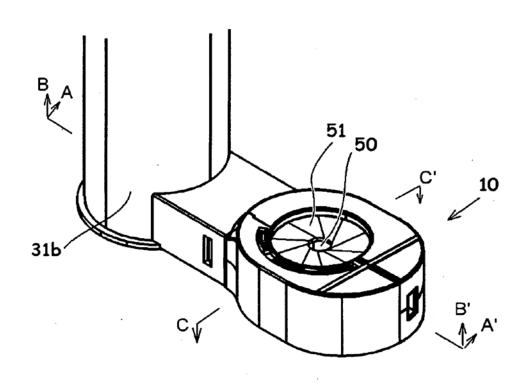


FIG. 10

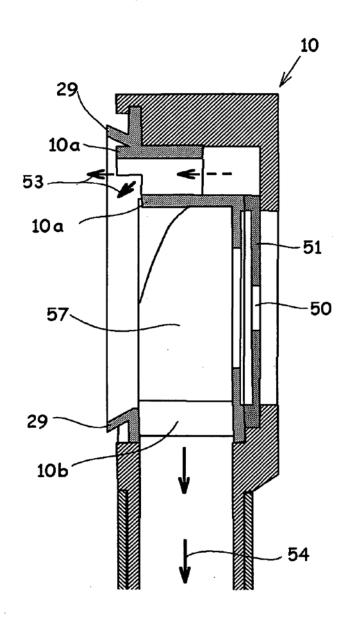


FIG. 11

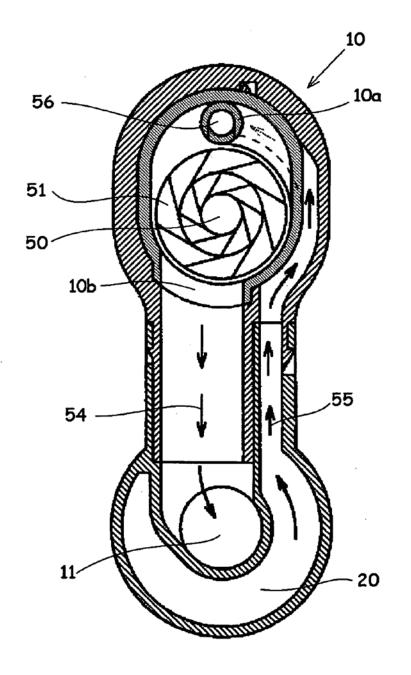
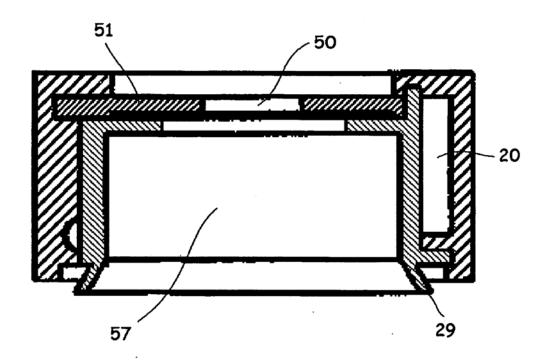



FIG. 12

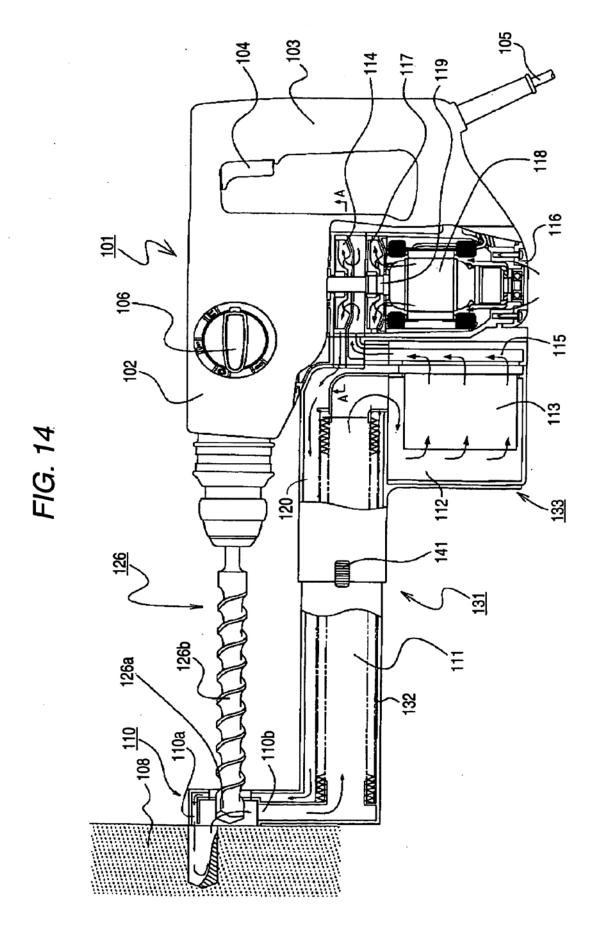


FIG. 15

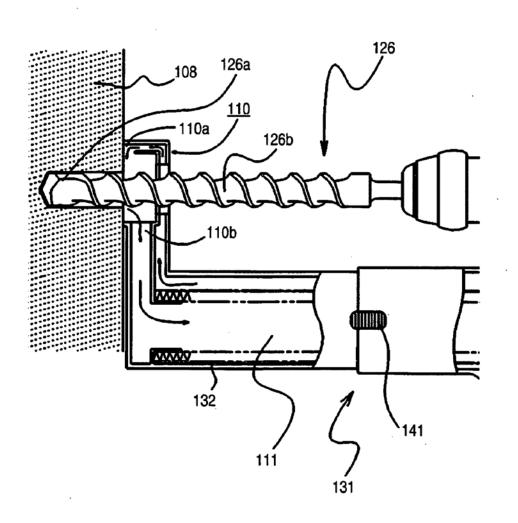


FIG. 16

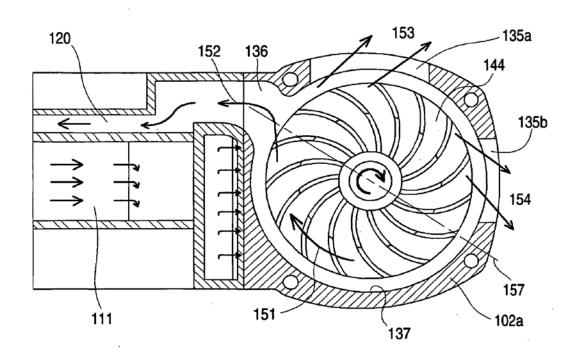


FIG. 17

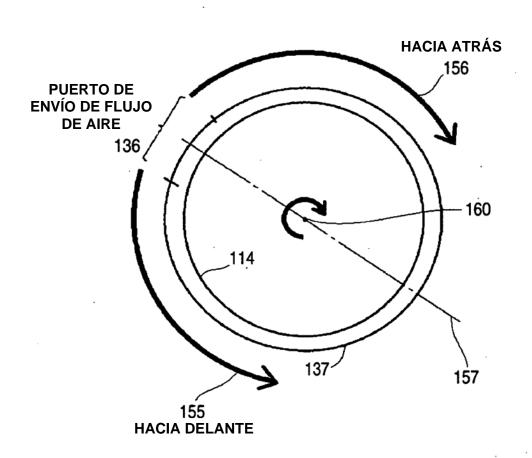
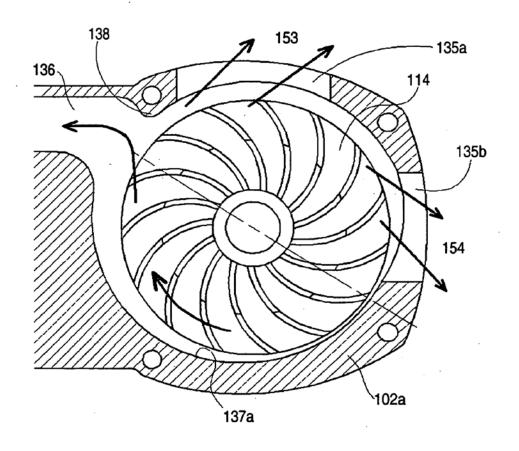



FIG. 18

FIG. 19

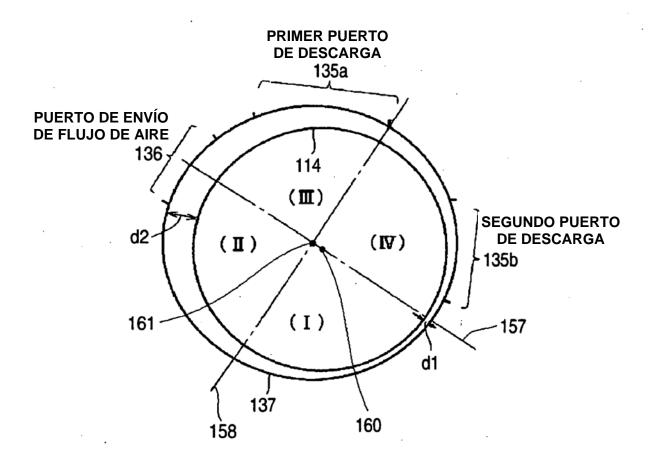
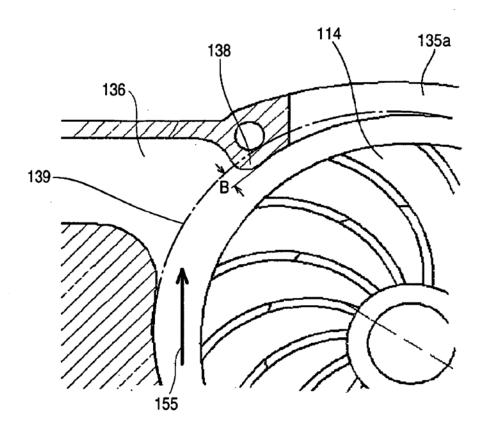



FIG. 20

