

11 Número de publicación: 2 376 456

51 Int. Cl.: **C08L 23/06**

3/06 (2006.01)

99 99 97	Número de solicitud eur Fecha de presentación: Número de publicación	10.04.2003	Т3
54 Título: ARTÍCULOS DE POL FABRICACIÓN.	IETILENO DE PESO MO	DLECULAR ULTRA-ELEVADO Y MÉTODO DE	
③ Prioridad: 12.04.2002 US 121278		73 Titular/es: DARAMIC, INC. 4838 JENKINS AVENUE NORTH CHARLESTON, SC 29405, US	
45) Fecha de publicación de la m 14.03.2012	ención BOPI:	72 Inventor/es: YARITZ, Joseph, G. y WHEAR, Kevin, J.	
45 Fecha de la publicación del fo 14.03.2012	olleto de la patente:	(74) Agente/Representante: de Elzaburu Márquez, Alberto	

ES 2 376 456 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Artículos de polietileno de peso molecular ultra-elevado y método de fabricación

Campo de la invención

La invención va destinada a artículos de polietileno de peso molecular ultra-elevado (UHMWPE) y a su fabricación.

5 Antecedentes de la invención

10

15

30

35

UHMWPE es difícil de procesar ya que la resina no fluye cuando se encuentra en masa fundida. Berins, M.L., ed., *Plastics Engineering Handbook of the Society of the Plastic Industry*, Chapman & Hall, New York City, NY (1991), p. 52. Por consiguiente, UHMWPE se procesa mediante sinterización, moldeo por compresión, extrusión mediante pistón o procesado de gel. La sinterización es un proceso en el que las resinas se someten a aglomeración por medio de difusión en estado sólido. Normalmente, el calor y la presión resultan esenciales. El moldeo por compresión es un proceso en el que las resinas se conforman entre las caras de un molde por medio de calor y presión. La extrusión mediante pistón es un proceso en el que las resinas se conforman forzándolas a través de un troquel. La fuerza es proporcionada por un pistón. Las patentes de EE.UU. Nos. 5.234.652 y 5.399.308 describen un proceso de extrusión en seco para una mezcla que consta de resinas y un lubricante. El procesado de gel es un proceso en el que las resinas se forman para dar lugar a geles para el procesado posterior. El gel es una disolución diluida o suspensión de resina en un disolvente, por ejemplo, un disolvente apto para extracción (o un aceite o un plastificante).

UHMWPE es un gel hilado en fibras. En el hilado de gel, el mecanismo principal de solidificación es la formación de gel de la disolución de polímero mediante enfriamiento para formar un filamento de gel que consiste en polímero precipitado y disolvente. La retirada de disolvente se consigue tras la solidificación mediante lavado en un baño líquido. Este proceso también se usa para formar película microporosas. Véase patentes de EE.UU. Nos. 4.588.633 y 5.248.461. En la patente de EE.UU. No. 4.588.633, la disolución de gel consiste en 2-4 % en peso de UHMWPE. Véase Ejemplos 1-12. En la patente de EE.UU. No. 5.248.461, la disolución de gel consiste en hasta 20 % en peso de UHMWPE. Véase Ejemplos 1-20. Estas membranas son útiles, entre otros, como separadores para células electroquímicas. Véase las patentes de EE.UU. Nos. 4.588.633, columna 4, renglones 30-36 y 5.248.461, columna 4. renglones 57-60.

Otra variante del procesado de gel es el procesado de gel con una sustancia de relleno. Por ejemplo, véase las patentes de EE.UU. Nos. 3.351.495, 4.833.172 y 5.948.557. De manera general, UHMWPE, un aceite de procesado (o plastificante) y una sustancia de relleno se mezclan en un dispositivo de extrusión y posteriormente se fabrican láminas microporosas. En la patente de EE.UU. Nº. 3.351.495, la disolución consisten en hasta 20 % en volumen de UHMWPE. Véase los Ejemplos 6, 8, 18, 19, 20 y 21. Se usaron las membranas microporosas formadas como separadores para las baterías. Véase columna 1, renglones 24-33. En las patentes de EE.UU. Nos. 4.833.172 y 5.948.557, se añade un lubricante de estearato de calcio/cinc, PETRAC® CZ-81, a la disolución. Véase Tablas 1 y 2, respectivamente. Se usaron las membranas microporosas formadas como marcadores, membranas de difusión y separadores. Véase la patente de EE.UU. Nº. 5.948.557, columna 1, renglones 27-41.

La patente de EE.UU. No. 5.326.391 describe un material microporoso que comprende UHMWPE y un lubricante.

Existe una necesidad para mejorar la aptitud de procesado de UHMWPE.

Sumario de la invención

Un artículo de fabricación comprende un polietileno de peso molecular ultra-elevado (UHMWPE) mezclado con un aceite de procesado y un lubricante que se escoge entre el grupo formado por ésteres de ácido graso, ésteres de ácido graso etoxilados, ésteres de glicol, ésteres PEG, ésteres de glicerol, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, etoxilatos de mercaptano, etoxilatos modificados, tensioactivos de amida, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito, sulfatos de alquilo, éteres de ácido graso, sulfatos éter de alquilo, sulfatos éter de alquilarilo, sulfonatos de naftaleno, sulfosuccinatos, ésteres sulfonados, amidas sulfonadas, carboxilatos de éter de alquilo, carboxilatos de éter de alquilarilo, aminas cuaternarias, aminas etoxiladas, derivados de imidazolina, betaínas, sultaínas, aminopropionatos, derivados de catecol, ácidos grasos saturados, ácidos grasos insaturados y sus combinaciones. También se describe el método para preparar estos artículos.

Descripción de la invención

El artículo de fabricación es cualquier artículo conformado. Por ejemplo, los artículos de fabricación pueden incluir, pero no se limitan a, películas, fibras, láminas, placas, losas, barras, vástagos, pletinas y bloques. Preferentemente, estos artículos se preparan mediante un proceso de extrusión. Estos artículos también pueden ser microporosos, por ejemplo, láminas microporosas y películas.

El polietileno de peso molecular ultraelevado (UHMWPE) es un polímero de polietileno que tiene un peso molecular

medio expresado en peso mayor que 5x10⁵. El polímero es bien un homopolímero de etileno o un copolímero de etileno, con como máximo 10 % en moles de una o más alfa-olefinas. El polímero puede ser una mezcla con UHMWPE que comprende al menos 50 % en peso de la mezcla y el equilibrio siendo otros polímeros, tales como, por ejemplo, poliolefinas y sintéticos y cauchos naturales. El peso molecular medio expresado en peso preferido es mayor que 2 x 10⁶. El UHMWPE más preferido tiene un peso molecular expresado en peso mayor que 5 x 10⁶. Las resinas de UHMWPE se encuentran disponibles comercialmente como GUR a partir de Ticona LLC de Summit, NJ, STAMYLAN de DSM de Geleen, Holanda, UTEC de Polyailden de Camacari, Brasil y HI-ZEX Million, LUBMER y MIPELON, cada una de Mitsui Chemical of Tokyo, Japón. Se prefieren GUR 4130 (peso molecular de aproximadamente 8-9 millones).

El aceite de procesado (o plastificante de procesado) presenta un efecto de solvatación sobre UHMWPE a temperaturas bajas (por ejemplo, 60 °C), pero presenta un efecto de solvatación importante a temperaturas elevadas (por ejemplo, 200 °C). Dichos aceites incluyen aceites parafínicos, aceites naftalénicos y aceites aromáticos, así como también otros materiales que incluyen los plastificantes de éster de ftalato tal como ftalato de dibutilo, ftalato de bis(2-etileno), ftalato de diisodecilo, ftalato de diciclohexilo, ftalato de bencilo y butilo y ftalato de ditridecilo.

Aceites adicionales, plastificantes y/o disolventes se mencionan en las patentes de EE.UU. Nos. 3.351.495; 4.588.633; 4.833.172; 5.248.461; y 5.948.557.

La sustancia de relleno incluye cualquier sustancia de relleno en forma de partículas como se conoce bien en la técnica. Por ejemplo, véase las patentes de EE.UU. Nos. 3.351.495; 4.833.172 y 5.948.557. Preferentemente, la sustancia de relleno es sílice. Dichas sustancias de relleno se encuentran comercialmente disponibles con el nombre comercial de HiSil® de PPG Industries, Inc. de Pittsburgh, PA, SIPERANT de Degussa AG de Wesseling, Alemania, ZEOSIL de Rhodia, Inc. de Cranberry, NJ o KETJENSIL de Azko Chemie of Compiegne, Francia.

20

35

40

Se pueden añadir cantidades menores de componentes auxiliares. Dichos componentes auxiliares incluyen: negro de carbono, estabilizadores y anti-oxidantes. Los compuestos son convencionales y se conocen en la técnica.

Los lubricantes son compuestos que, cuando se añaden a una mezcla de UHMWPE, mejoran la aptitud de procesado de la mezcla de UHMWPE. Una aptitud de procesado mejorada se refiere a una reducción del tiempo de fusión (el tiempo que tarda el sistema polimérico en fundir (o disolverse) para dar lugar a una disolución apta para fluir). La aptitud de procesado mejorada también se observa como una reducción del consumo de energía por parte del motor y como una reducción de la temperatura de mezcla cuando se comparan sistemas con y sin los lubricantes. Los resultados que surgen de este fenómeno incluyen, pero no se limitan a, disminuir el consumo de energía, una menor degradación térmica y mecánica del polímero, mayor resistencia del polímero, menor desgaste de máquina y mayores rendimientos de polímero.

Dichos lubricantes se escogen entre las clases de material que consisten en: ésteres de ácido graso, ésteres de ácido graso etoxilados, ésteres de glicol, ésteres de PEG, ésteres de glicerol, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, etoxilatos de mercaptano, etoxilatos modificados, tensioactivos de amida, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito, sulfatos de alquilo, éteres de ácido graso, sulfato de éter de alquilo, sulfatos de éter de alquilarilo, sulfonatos de naftaleno, sulfosuccinatos, ésteres sulfonados, amidas sulfonadas, carboxilatos de éter de alquilo, carboxilatos de éter de alquilarilo, aminas cuaternarias, aminas etoxiladas, derivados de imidazolina, betaínas, sultaínas, aminopropionato, derivados de catecol, ácidos grasos saturados, ácidos grasos insaturados y sus combinaciones. Preferentemente, los lubricantes se escogen entre las clases de materiales que consisten en: ésteres de ácido graso, ésteres de ácido graso etoxilados, ésteres de PEG, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito y sus combinaciones. Los más preferidos son ésteres de sorbitol, ésteres de sorbitol etoxilados y etoxilatos aromáticos.

Dichos lubricantes se encuentran disponibles comercialmente. A continuación la tabla establece una lista ejemplar.

De manera específica, dichos lubricantes excluyen las sales metálicas de ácido esteárico (por ejemplo, estearato de Zn y estearato de Ca) y lubricantes que contienen los mismos.

TABLA

Nombre comercial o Abreviatura	Clase general de los tensioactivos	Sustancia química específica	Compañía
Rhodasurf® LA-12	Etoxilatos de alcohol	Etoxilato de alcohol lineal mixto	Rhodia HPCII
Rhodasurf® LA-3	Etoxilatos de alcohol	Etoxilato de alcohol lineal mixto	Rhodia HPCII
Rhodapex® CD-128	Sulfato de éter de alquilo (y alquilarilo)	Sulfato de éter de alcohol lineal de amonio	Rhodia HPCII

Rhodapon® BOS Sulfatos de alquilo		2-Etilhexil sulfato de sodio	Rhodia HPCII		
Rhodapon® UB	Sulfatos de alquilo	Lauril sulfato de sodio	Rhodia HPCII		
Alkamide® STEDA/B	Tensioactivo de amida	Etilen bisesteramida	Rhodia HPCII		
Igepal® CO-120	Etoxilatos aromáticos	Etoxilatos de nonilfenol	Rhodia HPCII		
Igepal® CO-630	Etoxilatos aromáticos	Etoxilatos de nonilfenol	Rhodia HPCII		
Igepal® RC-630	Etoxilatos aromáticos	Etoxilatos de dodecil fenol	Rhodia HPCII		
Mirataine® CBS	Betaínas, sultaínas y aminopropionatos	Coco/Oleamidopropil betaína	Rhodia HPCII		
Mirataine® COB	Betaínas, sultaínas y aminopropionatos	Cocoamidopropil hidroxi sultaína	Rhodia HPCII		
Miranate® LEC-80	Carboxilato de éter	Lauret 13 carboxilato de sodio	Rhodia HPCII		
Rhodameen® PN-430	Aminas grasas etoxiladas	Amina de sebo etoxilada (5 moles)	Rhodia HPCII		
Rhodameen® T-50	Aminas grasas etoxiladas	Amina de sebo etoxilada (50 moles)	Rhodia HPCII		
Estearato de calcio	Ácidos grasos, saturados	Estearato de calcio			
Aceite de linaza	Ácidos grasos, insaturados	Ácidos linoléico y linolénico	Hardware Store		
Aceite de madera	Ácidos grasos, insaturados	Ácido eleostérico	Hardware Store		
Alkamuls® GMS	Éster de glicerol	Estearato de glicerol	Rhodia HPCII		
Kemester® 1000	Trioleato de glicerol	Trioleato de glicerol	Crompton Corp.		
Alkamus® EGDS	Éster de glicol	Diestearato de glicol	Rhodia HPCII		
Alkamuls® JK	Éster de Guerbet	Diéster de Guerbet	Rhodia HPCII		
Neustrene® 059	Glicerol de sebo hidrogenado	(30% palmítico, 60 % esteárico)	Crompton Corp.		
Neustrene® 064	Glicerol de sebo hidrogenado	(88 % esteárico, 10 % palmítico)	Crompton Corp.		
Miranol® C2M-SF	Derivado de imidazolina	Cococamido dipropionato de disodio	Rhodia HPCII		
Miranol® JEM	Derivado de imidazolina	Anfocarboxilato mixto C8 de sodio	Rhodia HPCII		
Antarox® 724/P	Etoxilato		Rhodia HPCII		
Rhodacal® N	Sulfonatos de formaldehído de naftaleno	Naftalen sulfonato de formaldehído de sodio	Rhodia HPCII		
Supragil [™] WP	Sulfonatos de sodio	Diisopropil naftalen sulfonato de sodio	Rhodia HPCII		
Alkamuls® EL-620	Éster de PEG	Aceite de ricino de PEG- 30 (ricinoleico + oleico + palmítico)	Rhodia HPCII		

Duraphos® 2EHA PO4	Éster de fosfato	Ácido fosfórico, Mono & Di(2-etilhexil) éster	Rhodia HPCII
DEHPA® extractant	Éster de fosfato	Ácido fosfórico, bis(2- etilhexil)éster	Rhodia HPCII
Rhodafec® LO-11A LA	Éster de fosfato	Ácido fosfórico, mezcla de ésteres de alcohol decílico/octílico lineales	Rhodia HPCII
Amgard® TOF	Éster de fosfato	Ácido fosfórico, tris(2- etilhexil) éster	Rhodia HPCII
Albrite® (2EH) 2EHP	Éster de fosfato	Ácido fosfórico, (2- etilhexil)-bis(2-etilhexil) éster	Rhodia HPCII
Ácido octilfosfónico	Éster de fosfato	Éster de ácido octil fosfónico	Rhodia HPCII
Alkamuls® SML	Éster de sorbitán	Monolaurato de sorbitán	Rhodia HPCII
Alkamuls® SMO	Éster de sorbitán	Monolaurato de sorbitán	Rhodia HPCII
Alkamuls® STO	Alkamuls® STO Éster de sorbitán etoxilado		Rhodia HPCII
OT-75, OT-100	Sulfosuccinatos	Dioctil sulfosuccinato de sodio	Cytec

Se mezclan los componentes, UHMWPE, sustancia de relleno (opcional), aceite de procesado y lubricante. En las formulaciones con sustancia de relleno, la proporción de peso del polímero con respecto a la sustancia de relleno puede variar de 1:1 a 1:5, siendo 1:3 la preferida. La relación de UHMWPE y sustancia de relleno con respecto a aceite puede variar de 1:1 a 1:2, prefiriéndose 1:1,5. El lubricante puede comprender hasta 15 % en peso de la formulación, prefiriéndose de 0,2 a 8 %. En la formulación que no contiene sustancia de relleno, el polímero puede comprender hasta 80 % en peso de la mezcla, preferentemente dentro del intervalo de 20-65 % en peso. La proporción de aceite con respecto a lubricante puede variar de 3:1 a 1:3, prefiriéndose el intervalo de 2:1 a 1:2. Preferentemente, los componentes se mezclan de manera continua, por ejemplo, en un dispositivo de extrusión de doble husillo o en un dispositivo de extrusión de Brabender o en un dispositivo de extrusión de husillo con troquel de película soplada.

Después de mezclar, la mezcla se conforma. El conformado depende del artículo particular deseado, como se sabe e la técnica. Por ejemplo, si se desea una película o lámina, entonces se puede añadir el troquel apropiado al dispositivo de extrusión. Tras el conformado, la mayoría de las veces los artículos se someten a una etapa para retirar el aceite de procesado o el disolvente del artículo (gel), (por ejemplo, una etapa de extracción (o lavado o lixiviado) para retirar el aceite de procesado y el lubricante). Esta etapa es convencional. Por ejemplo, véase las patentes de EE.UU. Nos. 3.351.495; 4.588.633; 4.833.172; 5.348.461 y 5.948.557. En las formulaciones con sustancia de relleno, las láminas sometidas a extrusión se someten preferentemente a una etapa de extracción para retirar el aceite de procesado. Tras la extracción, estas láminas pueden presentar aproximadamente de 0,5 % (nominalmente 0 %) a 30 % en peso de aceite restante, preferentemente 5-25 % y del modo más preferido 10-20 %. Se entiende que es imposible retirar todo el aceite de procesado y el lubricante de cualquiera de las muestras, de forma que al menos que al menos una cantidad traza permanezca en los artículos finales. En las formulaciones sin sustancias de relleno, las láminas sometidas a extrusión se someten preferentemente a una etapa de extracción. Tras la extracción, estas láminas pueden presentar únicamente cantidades residuales de aceite y lubricante. Los artículos se pueden someter a estirado o alargado antes, durante o después de la extracción.

Preferentemente, estos artículos se conforman para dar lugar a láminas o películas. Dichas láminas microporosas y películas se pueden usar como marcadores, membranas de difusión y separadores en dispositivos electroquímicos (por ejemplo, baterías, condensadores y células de combustible). Una batería es un dispositivo electroquímico que presenta un ánodo, un cátodo, un electrolito y un separador intercalado entre el ánodo y el cátodo e impregnado con el electrolito. Preferentemente, la formulación con la sustancia de relleno se usa en las baterías ácidas de plomo. Las formulaciones sin sustancia de relleno se usan preferentemente en las baterías de litio.

Ejemplos

5

10

15

20

25

30

En los siguientes ejemplos, establecidos en las Tablas 1-8, se mezclaron polietileno de peso molecular ultra-elevado

(GUR 4130 y GUR 4170 de Ticona LLC de Summit, NJ), sustancia de relleno (sílice específicamente, HiSil de PPG de Pittsburgh, PA), aceite de procesado (aceite naftalénico de Calumet Co de Princeton, LA) y lubricante y se sometieron a extrusión en un dispositivo de extrusión de doble husillo. El producto sometido a extrusión, la lámina, se sometió a una etapa de extracción para la retirada del aceite de procesado. Durante la extrusión, se midieron el momento (% KW) y la temperatura de fusión para comparación con el control (ejemplos sin aditivo) e indica la cantidad de energía necesaria para mezclar los componentes. Tras la extracción, se determinó la cantidad de aceite restante en el artículo de fabricación (% de aceite final) mediante una técnica de extracción en la que: se pesó (W1) una pieza de lámina seca de 1,33 pulgadas (3,38 cm) x 6 pulgadas (15,24 cm) y posteriormente se sumergió en 200 ml de hexano nuevo, hexano a temperatura ambiente en un baño ultrasónico durante el menos 15 minutos; posteriormente se seca la muestra y se vuelve a pesar (W2). El % de aceite es [(W1-W2)/W1]*100. Se promediaron dos muestras. De manera adicional, se midió el peso de base de forma convencional y el espesor (red) mediante ASTM D 374, la tracción MD mediante ASTM D 638, la porosidad mediante Battery Council International (BCI) TM-3,207 y ER mediante BCI TM-3,218 usando un dispositivo de ensayo convencional de Palico Instrument Limited de Circles Pines, TN, Generalmente, la resistencia a la perforación sique ASTM D3763 exceptuando lo que se anota a continuación: El instrumento usado fue un medidor de fuerza digital Chatillon DFIS 10 sobre un pie de ensayo motorizado TCM 201. Chatillon/Ametek se encuentra localizado en Largo, FL. La punta de perforación es ligeramente redondeada y presenta un diámetro de 1,930 mm y el orificio de la plataforma presenta un diámetro de 6,5 mm. Se fija la velocidad de movimiento en 300 mm/min, y se promedian al menos 10 mediciones a lo largo de la zona representativa de al muestra. Generalmente, este método es independiente del tamaño de la muestra, y el área representativa de la muestra está referida a través de la anchura y la longitud de una muestra de tamaño razonable. Se registra el pico de fuerza necesario para perforar la muestra en unidades de N o libras

5

10

15

20

En las Tablas 1-5, se mezclaron los ingredientes en el cuello del dispositivo de extrusión, y en las Tablas 6-8, se inyectó el lubricante a través de la espiga de husillo del dispositivo de extrusión.

TABLA 1

Ejemplos		1	2	3	4	5	6	7	8
Nombre de aditivo			Α	В	С	D	Е	F	G
Tipo de polímero		4170	4170	4170	4170	4170	4170	4170	4170
Polímero	Kg	4,14	4,14	4,14	4,14	4,14	4,14	4,14	4,14
Sustancia de relleno	Kg	10,76	10,76	10,76	10,76	10,76	10,76	10,76	10,76
Aditivo	Kg	0,00	1,09	1,09	1,09	1,09	1,09	1,09	1,09
Aceite	Kg	27,50	26,41	26,41	26,41	26,41	26,41	26,41	26,41
Momento	% Kw	26	24	25	27	24	25	26	24
Temp. Fusión	°C	210	214	214	216	208	268	208	212
Espesor de la red	Micrómetros	189,2	217,2	220,0	209,8	208,0	206,2	205,5	203,2
Peso de base	g/m²	106,9	140,0	140,9	127,1	134,1	129,4	134,0	127,0
Perforación	N	11,9	24,3	23,6	24,2	17,8	20,0	19,2	16,8
Tracción MD	N/mm ²	17,5	28,9	29,1	29,3	27,3	21,9	26,4	21,6
Porosidad	%	63,1	60,2	60,1	61,9	65,6	63,2	59,0	61,1
ER w/o revestimiento	Mohm-cm ²	582,6	285,2	279,4	285,2	385,2	505,8	705,8	541,3
Aceite final	%	18,2	13,9	14,1	15,2	14,9	16,7	14,5	19,7

TABLA 2

	_	40	- 44	40	40	4.4	4.5	40
	9	10	11	12	13	14	15	16
		Α	В	С	D	E	F	G
	4130	4130	4130	4130	4130	4130	4130	4130
Kg	4,14	4,14	4,14	4,14	4,14	4,14	4,14	4,14
Kg	10,76	10,76	10,76	10,76	10,76	10,76	10,76	10,76
Kg	0,00	1,09	1,09	1,09	1,09	1,09	1,09	1,09
Kg	27,50	26,41	26,41	26,41	26,41	26,41	26,41	26,41
% Kw	28	24	26	27	25	28	25	26
°C	207	211	214	214	203	216	214	221
Micrómetros	179,1	232,2	227,3	211,3	172,0	209,6	202,4	229,4
g/m²	106,6	147,8	139,9	131,8	112,9	135,3	132,1	144,7
N	11,8	20,4	21,0	17,0	14,2	16,6	15,9	14,8
N/mm ²	18,3	24,8	21,9	23,1	21,9	19,1	22,6	16,9
%	67,2	60,7	63,7	63,0	61,6	63,6	60,6	62,2
Mohm-cm ²	461,3	240,0	263,2	283,2	163,2	361,3	362,6	471,6
%	23,8	13,4	15,6	13,7	22,8	14,7	14,3	13,7
	Kg Kg Kg Kg % Kw °C Micrómetros g/m² N N/mm² % Mohm-cm²	Kg 4,14 Kg 10,76 Kg 0,00 Kg 27,50 % Kw 28 °C 207 Micrómetros 179,1 g/m² 106,6 N 11,8 N/mm² 18,3 % 67,2 Mohm-cm² 461,3	Kg 4,14 4,14 Kg 10,76 10,76 Kg 0,00 1,09 Kg 27,50 26,41 % Kw 28 24 °C 207 211 Micrómetros 179,1 232,2 g/m² 106,6 147,8 N 11,8 20,4 N/mm² 18,3 24,8 % 67,2 60,7 Mohm-cm² 461,3 240,0	Kg 4,14 4,14 4,14 4,14 Kg 10,76 10,76 10,76 Kg 0,00 1,09 1,09 Kg 27,50 26,41 26,41 % Kw 28 24 26 °C 207 211 214 Micrómetros 179,1 232,2 227,3 g/m² 106,6 147,8 139,9 N 11,8 20,4 21,0 N/mm² 18,3 24,8 21,9 % 67,2 60,7 63,7 Mohm-cm² 461,3 240,0 263,2	Kg 4,14 4,10 4,10 4,10 4,10 4,10 <	Kg 4,14 4,10 1,09 1,09 1,09 1,09 <	A B C D E 4130 4130 4130 4130 4130 4130 4130 Kg 4,14 4,14 4,14 4,14 4,14 4,14 4,14 Kg 10,76 10,76 10,76 10,76 10,76 10,76 Kg 0,00 1,09 1,09 1,09 1,09 1,09 Kg 27,50 26,41 26,41 26,41 26,41 26,41 26,41 % Kw 28 24 26 27 25 28 °C 207 211 214 214 203 216 Micrómetros 179,1 232,2 227,3 211,3 172,0 209,6 g/m² 106,6 147,8 139,9 131,8 112,9 135,3 N 11,8 20,4 21,0 17,0 14,2 16,6 N/mm² 18,3 24,8 21,9 23,1 21,9 1	A B C D E F 4130 4140 4141 4,14 <t< td=""></t<>

TABLA 3

Ejemplos		17	18	19	20	21	22
Nombre de aditivo			Α	В	С	F	Н
Tipo de polímero		4170	4170	4170	4170	4170	4170
Polímero	Kg	3,10	3,10	3,10	3,10	3,10	3,10
Sustancia de relleno	Kg	8,41	8,41	8,41	8,41	8,41	8,41
Aditivo	Kg	0,00	0,82	0,82	0,82	0,82	0,82
Aceite	Kg	20,35	19,52	19,52	19,52	19,52	19,52
Momento	% Kw	27	24	24	24	26	22
Temp. Fusión	°C	208	211	210	211	210	208
Espesor de la red	Micrómetros	173,0	161,5	177,8	180,1	177,8	191,3
Peso de base	g/m²	111,7	119,6	107,3	123,5	126,3	140,3
Perforación	N	11,4	16,2	13,6	16,0	13,2	20,3
Tracción MD	N/mm ²	20,3	34,5	18,4	24,2	20,6	26,5
Porosidad	%	59,2	58,1	59,7	60,7	59,7	59,1
ER w/o revestimiento	Mohm-cm ²	434,8	127,7	145,8	248,4	435,5	76,1
Aceite final	%	14,0	13,7	13,9	13,7	12,9	12,8

TABLA 4

Ejemplos		17	23	24	25	40
Nombre de aditivo				Α	Н	Α
Tipo de polímero		4170	4130	4170	4170	4170
Polímero	Kg	3,10	3,10	2,87	2,87	4,39
Sustancia de relleno	Kg	8,41	8,41	9,20	9,20	11,86
Aditivo	Kg	0,00	0,82	1,63	1,63	1,12
Aceite	Kg	20,35	20,35	18,78	18,78	26,99
Momento	% Kw	27	24	23	23	23
Temp. Fusión	°C	208	209	211	208	216
Espesor de la red	Micrómetros	173,0	177,8	180,3	172,7	114,3
Peso de base	g/m ²	111,7	113,3	135,4	137,4	83,8
Perforación	N	11,4	10,1	13,5	17,5	11,4
Tracción MD	N/mm ²	20,3	16,9	21,6	32,8	27,1
Porosidad	%	59,2	62,3	59,0	58,5	65,5
ER w/o revestimiento	Mohm-cm ²	434,8	464,5	78,1	64,5	36,1
Aceite final	%	14,0	14,6	12,5	11,6	14,7

TABLA 5

Ejemplos		26	31	27	28	29	30
Nombre de aditivo				I	J	K	K
Tipo de polímero		4130	4170	4170	4170	4170	4170
Polímero	Kg	3,10	4,39	3,10	3,10	4,34	3,25
Sustancia de relleno	Kg	8,41	11,86	8,41	8,41	11,75	8,81
Aditivo	Kg	0,00	0,00	0,82	0,82	0,53	0,82
Aceite	Kg	20,35	28,66	19,52	19,52	27,86	20,48
Momento	% Kw		28	23	23	24	25
Temp. Fusión	°C		217	217		222	227
Espesor de la red	Micrómetros	188,5	192,8	192,8	179,9	198,9	191,5
Peso de base	g/m ²	100,1	102,4	117,9	127,2	114,6	116,7
Perforación	N	9,6	13,1	16,8	22,0	11,5	12,8
Tracción MD	N/mm ²	15,6	20,4	28,4	33,2	12,8	12,5
Porosidad	%	63,0	66,3	62,5	61,1	66,2	65,9
ER w/o revestimiento	Mohm-cm ²	320,3	221,9	109,8	397,4	292,3	220,0
Aceite final	%	13,7	10,9	11,2	11,5	11,9	12,5

TABLA 6

Ejemplos		31	32	33	34	35	41
Nombre de aditivo			J	J	J	J	J
Tipo de polímero		4170	4170	4170	4170	4170	4170
Polímero	Kg	4,39	4,39	4,39	4,39	4,39	3,35
Sustancia de relleno	Kg	11,86	11,86	11,86	11,86	11,86	9,04
Aditivo	Kg	0,00	0,55	1,12	2,32	3,59	1,63
Aceite	Kg	28,66	27,83	26,99	25,25	23,42	23,59
Momento	% Kw	28	28	26	24	25	24
Temp. Fusión	°C	217	210	207	205	204	204
Espesor de la red	Micrómetros	183,4	175,3	182,9	162,6	170,2	182,9
Peso de base	g/m²	102,4	119,2	122,2	126,0	141,2	118,5
Perforación	N	13,1	15,2	20,8	22,5	24,5	17,1
Tracción MD	N/mm ²	20,4	24,3	38,2	48,8	48,5	22,1
Porosidad	%	66,3	65,3	61,4	58,1	57,0	61,1
ER w/o revestimiento	Mohm-cm ²	221,9	198,7	282,6	1052,9	751,6	543,9
Aceite final	%	10,9	12,8	12,5	13,9	13,3	13,8

TABLA 7

Ejemplos		31	36	37	38	39
Nombre de aditivo			Н	Н	Н	Н
Tipo de polímero		4170	4170	4170	4170	4170
Polímero	Kg	4,39	4,39	4,39	4,39	4,39
Sustancia de relleno	Kg	11,86	11,86	11,86	11,86	11,86
Aditivo	Kg	0,00	0,55	1,12	2,32	3,59
Aceite	Kg	28,66	27,83	26,99	25,25	23,42
Momento	% Kw	28	25	24	26	27
Temp. Fusión	°C	217	213	201	200	204
Espesor de la red	Micrómetros	183,4	170,2	182,9	183,6	167,6
Peso de base	g/m²	102,4	108,2	152,2	145,4	156,4
Perforación	N	13,1	12,9	22,5	16,4	14,8
Tracción MD	N/mm ²	20,4	21,3	46,7	38,3	33,4
Porosidad	%	66,3	64,4	61,2	61,1	57,0
ER w/o revestimiento	Mohm-cm ²	221,9	46,5	223,9	593,5	150,3
Aceite final	%	10,9	14,1	12,9	13,8	12,5

TABLA 8

Ejemplos		49	42	43	44	45	46	47	48
Nombre de aditivo			L	М	N	0	Р	Q	R
Tipo de polímero		4170	4170	4170	4170	4170	4170	4170	4170
Polímero	Kg	3,25	3,25	3,25	3,25	3,25	3,25	3,25	3,25
Sustancia de relleno	Kg	8,79	8,79	8,79	8,79	8,79	8,79	8,79	8,79
Aditivo	Kg	0,00	0,82	0,82	0,82	0,82	0,82	0,82	0,82
Aceite	Kg	21,27	20,34	20,34	20,34	20,34	20,34	20,34	20,34
Momento	% Kw	24	24	24	24	23	24	23	24
Temp. Fusión	°C	227	243	233	236	235	234	234	237
Espesor de la red	Micrómetros	157,5	177,8	167,8	175,3	185,4	162,6	180,3	175,3
Peso de base	g/m ²	110,6	126,3	120,0	125,0	129,4	119,4	119,4	125,6
Perforación	N	10,6	18,5	15,9	18,5	16,4	17,5	13,8	17,4
Tracción MD	N/mm ²	16,3	34,8	31,9	45,7	31,6	35,8	33,1	35,8
Porosidad	%	64,5	61,6	62,5	63,0	63,4	61,7	63,0	63,7
ER w/o revestimiento	Mohm-cm ²	470,3	872,9	1707,1	201,3	376,1	225,2	294,8	19,4
Aceite final	%	13,6	12,5	12,7	14,3	14,0	14,8	15,5	14,3

En los siguientes ejemplos, establecidos en la Tabla 9, se mezclaron polietileno de peso molecular ultra-elevado (GUR 4130 de Ticona LLC de Summit, NJ), aceite de procesado (aceite naftalénico de Calumet Co de Princeton, LA) y lubricante (como se identifica en la tabla) y se sometieron a extrusión en un dispositivo de extrusión de doble husillo. Se observó el producto sometido a extrusión a medida que salía del troquel del dispositivo de extrusión y se clasificó mediante una escala de aspecto 1-10. Una puntuación de 10 significó un producto suave que parecía bien mezclado, y una puntuación de 1 significó un aspecto muy granulado y áspero.

TABLA 9

Ejemplos:	46	47	48	49	50	51	52	53	54	55
% en peso de polímero	33,0	38,5	52,9	38,5	52,2	50,0	45,0	61,0	25,0	65,0
% en peso de aceite	33,0	46,1	17,7	38,5	23,9	35,0	20,0	14,0	50,0	12,7
% en peso de aditivo	33,0	15,4	29,4	23,0	23,9	15,0	35,0	25,0	25,0	22,3
Nombre del aditivo	J	J	J	J	J	J	J	J	J	J
PUNTUACIÓN VISUAL	5	6	8	8	9	4	1	10	10	4

A = Éster de fosfato; ésteres de fosfato con mezcla de alcohol graso;

5

Rhodafac LO-11A LA de Rodia HPCII de Cranberry, NJ.

- B = Éster de fosfato; Éster de fosfato de bis(2-etilhexilo) de Rhodia HPCII de Cranberry, NJ.
- C = Éster de fosfato: ésteres de fosfato de bis(2-etilhexilo) + mono(2-etilhexilo) de Rhodia HPCII de Cranberry, NJ.
- D = Éster de fosfonato; éster de fosfonato de 2-etilhexil bis(2-etilhexilo) de Rhodia HPCII de Cranberry, NJ.

- E = Éster de fosfato; éster de fosfato de tris(2-etilhexilo) de Rhodia HPCII de Cranberry, NJ.
- F = Ácidos grasos, insaturados: ácidos linoleico y linolénico; Aceite de linaza
- G = Ácidos grasos, insaturados; ácido eleoesteárico; Aceite de madera
- H = Éster de fosfato; éster de ácido octil fosfónico de Rhodia HPCII de Cranberry, NJ
- I = Ésteres de PEG; aceite de ricino PEG-30 (ricinoleico + oleico + palmítico...); Alkamuls EL-620 de Rhodia HPCII de Cranberry, NJ.
- J = Ésteres de sorbitán; monooleato de sorbitán; Alkamuls SMO de Rhodia HPCII de Cranberry, NJ.
- K = Éster de sulfosuccinato; dioctil sulfosuccinato de sodio; OT-100 de Cytec Industries de Charlotte, NC.
- L = Éster de sorbitán; monolaurato de sorbitán; Alkamuls SML de Rhodia HPCII de Cranberry, NJ.
- M = Éster de sorbitán etoxilado; trioleato de sorbitán; Alkamuls STO de Rhodia HPCII de Cranberry, NJ.
- N = Etoxilato aromático; etoxilatos de dodecil fenol; Igepal RC-360 de Rhodia HPCII de Cranberry, NJ.
- O = Etoxilato aromático; etoxilatos de nonilfenol; Igepal CO-210 de Rhodia HPCII de Cranberry, NJ.
- P = Etoxilato aromático; etoxilatos de nonilfenol; Igepal CO-630 de Rhodia HPCII de Cranberry, NJ.
- Q = Etoxilato de alcohol; etoxilatos de alcohol lineales mixtos;
 - Rhodasurf LA-3 de Rhodia HPCII de Cranberry, NJ
- R = Etoxilato de alcohol; etoxilatos de alcohol lineales mixtos;
 - Rhodasurf LA-12 de Rhodia HPCII de Cranberry, NJ.

En los siguientes ejemplos, establecidos en la Tabla 10, se mezclaron polietileno de peso molecular ultra-elevado (GUR 4170 de Ticona LLC, Summit, NJ), sustancia de relleno (sílice, HiSil de PPG de Pittsburgh, PA), aceite de procesado (aceite naftalénico de Calumet Co., de Pamaton, LA) y lubricante (como se identifica en la tabla) y se sometieron a extrusión en un dispositivo de extrusión de Brabender (BW Brabender Co de South Hackensack, NJ). En el control, se mezclaron 5,42 gramos de UHMWPE con 14,65 g de sustancia de relleno y 30,56 g de aceite. En los otros ejemplos, se mezclaron 5,42 gramos de UHMWPE con 14,65 de sustancia de relleno, 29,06 g de aceite y 1,50 g de lubricante. Se usó este procedimiento para predecir la eficacia del lubricante mediante la observación del tiempo de fusión y del momento terminal. El tiempo de fusión es una medida de cuando se disuelve el polímero en el aceite (inversión de fase del polímero). Típicamente, el tiempo de fusión es el segundo pico de un diagrama de momento en función del tiempo. Típicamente, el tiempo de fusión tiene lugar después del primer pico que indica la humectación del polímero por medio del aceite. El momento terminal se mide después de 10 minutos de mezcla.

TABLA 10

Aditivo	Tiempo de fusión (s)	Momento terminal (mg)	Perforación media (N)
Control – 59 % de aceite	149	576,3	11
Control – 62 %	105	552	10,5
Octil PO4	43	501	18
Antarox 724/P	106	666	
Alkamide STEDA/B	108	918,5	
Rhodasurf LA-12	69	598	18
T(2EH)PO4	64	640	17
Alkamuls SMO	42	668,5	22
Igepal CO-630	41	587,5	18

10

5

Alkamuls STO	108	590,3	16
Alkamuls SML	125	643	18,5
Rhodasurf LA-3	42	614	14
Alkamuls EL-620	149	690,5	17
Igepal CO-210	52	638	16,5
Igepal RC-630	41	635,5	17,5
Aceite de linaza	103	679,5	13
B(2EH)2EHP1	92	610	15
2EHAPO4	95	465	16
DEHPA	100	410	15
Rhodofac LO-11A	109	516	16
Rhodapon BOS	126	578,5	
Aceite de madera	98	638,5	12
OT-75	145	818	12
Rhodapex CD-128	133	598	
Miranol C2M-SF	63	631	
Mirataine COB	138	760,5	
Mirataine CBS	83	750	
Miranate LEC-80	118	753	
Miranol, JEM	149	716,7	
Rhodapon UB	125	763,7	
Supragil WP	138	708,5	
Estearato de Ca	64	570	
Rhodacal N	143	739	
Neustrene 059	112	662,5	
Nuestrene 064	122	705,5	
Kemester 100	103	690	
Rhodamen PN-430	38	616,5	
Rhodamen PN-430	38	616,5	
Rhodamen T-50			
Alkamuls GMS	78	616,5	
Alkamuls EGDS	99	699,5	
Alkamuls JK	126	744,5	
Igepal CA-620	51	636,5	
Igepal CO-530	64	602,5	

Igepal CA-630	68	625,7	
Aceite de silicona 1000 cP	85	561,5	
Aceite de silicona 100 cP	90	578,5	
Aceite de silicona 500 cP	95	557,5	
Aceite de silicona 200 cP	99	566,5	

La presente invención se puede realizar de otras formas y, por consiguiente, se debe hacer referencia a las reivindicaciones adjuntas que indican el alcance de la invención.

REIVINDICACIONES

1.- Un artículo de fabricación que comprende

10

15

50

un polietileno de peso molecular ultra-elevado (UHMWPE) mezclado con un aceite de procesado y un lubricante que se escoge entre el grupo que consiste en ésteres de ácido graso, ésteres de ácido graso etoxilados, ésteres de glicol, ésteres de PEG, ésteres de glicerol, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, etoxilatos de mercaptano, etoxilatos modificados, tensioactivos de amida, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito, sulfatos de alquilo, éteres de ácido graso, sulfatos de éter de alquilo, sulfatos de áter de alquilo, sulfonatos de naftaleno, sulfosuccinatos, ésteres sulfonados, amidas sulfonadas, carboxilatos de éter de alquilo, carboxilatos de éter de alquilarilo, aminas cuaternarias de amino, aminas etoxiladas, derivados de imidazolina, betaínas, sultaínas, aminopropionato, derivados de catecol, ácidos grasos saturados, ácidos grasos insaturados y sus combinaciones.

- 2.- El artículo de la reivindicación 1, en el que dicho lubricante se escoge entre el grupo que consiste en ésteres de ácido graso, ésteres de ácido graso etoxilados, ésteres de PEG, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito y sus combinaciones.
- 3.- El artículo de la reivindicación 1, en el que UHMWPE presenta un peso molecular mayor que 2x10⁶.
- 4.- El artículo de la reivindicación 1, en el que UHMWPE presenta un peso molecular mayor que 5x10⁶.
- 5.- El artículo de la reivindicación 1, en el que el artículo es una membrana microporosa que presenta una porosidad mayor que 30 %.
- 20 6.- Un separador de batería que comprende una membrana microporosa que comprende el artículo de la reivindicación 1.
 - 7.- El separador de la reivindicación 6 para una batería de litio.
 - 8.- El artículo de la reivindicación 1, en el que el polietileno de peso molecular ultra-elevado (UHMWPE) se mezcla con una sustancia de relleno, el aceite de procesado y el lubricante.
- 9.- El artículo de fabricación de la reivindicación 8, en el que dichos lubricantes se escogen entre el grupo que consiste en ésteres de ácido graso, ésteres de ácido graso etoxilados, ésteres de PEG, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito y sus combinaciones.
- 10.- El artículo de fabricación de la reivindicación 8 en el que la proporción en peso de dicho polietileno de peso molecular ultra-elevado con respecto a dicha sustancia de relleno varía de 1:1 a 1:5.
 - 11.- El artículo de fabricación de la reivindicación 8, en el que dicho lubricante comprende hasta 15 % en peso.
 - 12.- El artículo de fabricación de la reivindicación 8, en el que dicho polietileno de peso molecular ultra-elevado presenta un peso molecular mayo que 2x10⁶.
- 13.- Un separador de batería que comprende una membrana microporosa que comprende el artículo de la reivindicación 8.
 - 14.- El separador de la reivindicación 13 para una batería de ácido de plomo.
 - 15.- Un método para fabricar un artículo de polietileno de peso molecular ultra-elevado (UHMWPE) que comprende la etapa de:

mezclar polietileno de peso molecular ultra-elevado, aceite de procesado y un lubricante que se escoge entre el grupo que consiste en ésteres de ácido graso, ésteres de ácido graso etoxilados, ésteres de glicol, ésteres PEG, ésteres de glicerol, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, etoxilatos de mercaptano, etoxilatos modificados, tensioactivos de amida, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito, sulfatos de alquilo, éteres de ácido graso, sulfatos de éter de alquilo, sulfatos de éter de alquilarilo, sulfonatos de naftaleno, sulfosuccinatos, ésteres sulfonados, amidas sulfonadas, carboxilatos de éter de alquilo, carboxilatos de éter de alquilarilo, aminas cuaternarias de amino, aminas etoxiladas, derivados de imidazolina, betaínas, sultaínas, aminopropionato, derivados de catecol, ácidos grasos saturados, ácidos grasos insaturados y sus combinaciones, y

someter dicha mezcla a extrusión.

16.- El método de la reivindicación 15, que además comprende la etapa de someter a extracción el aceite de procesado a partir de dicha mezcla sometida a extrusión.

- 17.- El método de la reivindicación 15, en la que la extrusión comprende además extrusión con husillo, extrusión Brabender y extrusión con película soplada.
- 18.- El método de la reivindicación 15, en el que la proporción en peso de aceite con respecto a lubricante varía de 3:1 a 1:3.
- 5 19.- El método de la reivindicación 15, en el que UHMWPE comprende hasta 80 % en peso de la mezcla.
 - 20.- El método de la reivindicación 15, en el que el lubricante se escoge entre el grupo que consiste en ésteres de ácido graso, ésteres de acido graso etoxilados, ésteres de PEG, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito y sus combinaciones.
- 21.- El método para fabricar un polietileno de peso molecular ultra-elevado (UHMWPE) de la reivindicación 15 en el que la etapa de mezcla incluye mezclar el polietileno de peso molecular ultra-elevado, una sustancia de relleno, el aceite de procesado y el lubricante.
 - 22.- El método de la reivindicación 21, que además comprende la etapa de extraer el aceite de procesado de dicha mezcla sometida a extrusión.
- 23.- El método de la reivindicación 21, en el que la extrusión comprende además extrusión con husillo, extrusión Brabender y extrusión con película soplada.
 - 24.- El método de la reivindicación 21, en el que la proporción en peso de UHMWPE con respecto a la sustancia de relleno varía de 1:1 a 1:5.
- 25.- El método de la reivindicación 21, en el que la proporción en peso de UHMWPE y sustancia de relleno con respecto al aceite varía de 1:1 a 1:2.
 - 26.- El método de la reivindicación 21, en el que el lubricante se escoge entre el grupo que consiste en ésteres de ácido graso, ésteres de ácido graso etoxilado, ésteres de PEG, ésteres etoxilados, ésteres de sorbitol, ésteres de sorbitol etoxilados, etoxilatos aromáticos, etoxilatos de alcohol, ésteres de fosfato, ésteres de fosfonato, ésteres de fosfito y sus combinaciones.
- 27.- El método de la reivindicación 21, en el que el lubricante comprende hasta 15 % en peso de la mezcla.