

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 376 534

51 Int. Cl.: A61P 25/00 A61K 38/17

(2006.01) (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 06763485 .7
- (96) Fecha de presentación: **02.06.2006**
- Número de publicación de la solicitud: 1888100
 Fecha de publicación de la solicitud: 20.02.2008
- (54) Título: USO DE ISOFORMAS DE IL-18BP PARA EL TRATAMIENTO Y/O PREVENCIÓN DE ENFERMEDADES INFLAMATORIAS NEUROLÓGICAS.
- 30 Prioridad: 03.06.2005 EP 05104863 07.06.2005 US 688057 P

73 Titular/es:
MERCK SERONO SA
CENTRE INDUSTRIEL
1267 COINSINS, VAUD, CH

- Fecha de publicación de la mención BOPI: 14.03.2012
- 72 Inventor/es:

SAGOT, Yves; CHVATCHKO, Yolande y CORBAZ, Anne

- Fecha de la publicación del folleto de la patente: 14.03.2012
- (74) Agente/Representante: de Elzaburu Márquez, Alberto

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Uso de isoformas de IL-18BP para el tratamiento y/o prevención de enfermedades inflamatorias neurológicas

CAMPO DE LA INVENCIÓN

La presente invención se encuentra en general en el campo de las enfermedades neurológicas asociadas a la neuroinflamación. Más específicamente, la presente invención se refiere al uso de isoformas de IL-18BP que no se fijan a la IL-18, tales como IL-18BPb e IL-18BPd, para la elaboración de un medicamento para el tratamiento y/o prevención de las enfermedades inflamatorias neurológicas.

ANTECEDENTES DE LA INVENCIÓN

1.- Enfermedades neurológicas asociadas a la neuroinflamación

La neuroinflamación es una característica frecuente de la mayoría de las enfermedades neurológicas. Muchos estímulos desencadenan la neuroinflamación, que puede ser inducida por sufrimiento tanto neuronal como de la oligondendroglia. o ser una consecuencia de un traumatismo, o una lesión nerviosa periférica o central, o una infección vírica o bacteriana. Las principales consecuencias de la neuroinflamación son (1) secreción de diferentes quimiocinas inflamatorias desde los astrocitos; y (2) reclutamiento de más leucocitos, que a su vez estimularán a los astrocitos. En las enfermedades neurodegenerativas crónicas, tales como la esclerosis múltiple (EM), la enfermedad de Alzheimer (EA) o la esclerosis lateral amiotrófica (ELA), la presencia de neuroinflamación persistente se cree que participa en la progresión de la enfermedad. Las enfermedades neurológicas asociadas a la neuroinflamación también pueden denominarse enfermedades inflamatorias neurológicas.

Enfermedades neurodegenerativas crónicas

5

30

35

40

45

50

55

En las enfermedades neurodegenerativas crónicas, la patología está asociada a una respuesta inflamatoria. Las pruebas más recientes sugieren que la inflamación sistémica podría afectar a la inflamación local del cerebro enfermo y llevarlo a un exceso de síntesis de citocinas inflamatorias y de otros mediadores en el cerebro, lo que a su vez afectaría al comportamiento (Perry, 2004). Las enfermedades neurodegenerativas crónicas comprenden, entre otras, la esclerosis múltiple (EM), la enfermedad de Alzheimer (EA), la enfermedad de Parkinson (EP), la enfermedad de Huntington (EH), la esclerosis lateral amiotrófica (ELA), la atrofia multisistémica (AMS), la enfermedad priónica y el síndrome de Down.

La enfermedad de Alzheimer (EA) es un trastorno que implica el deterioro de la funciones mentales debido a cambios en el tejido cerebral. Incluye el encogimiento de los tejidos encefálicos, que no se debe a trastornos de los vasos sanguíneos, demencia degenerativa primaria y atrofia encefálica difusa. La enfermedad de Alzheimer también se denomina demencia senil de tipo Alzheimer (DSTA). Una gran parte de los datos obtenidos en la pasada década apoyan la conclusión de que la neuroinflamación está asociada a la patología de la enfermedad de Alzheimer (EA) (Tuppo y Arias, 2005). Se trata de la causa más frecuente de retroceso intelectual con la edad. La incidencia es de aproximadamente 9 por cada 10 000 personas. El trastorno afecta un poco más a las mujeres que a los hombres y se produce principalmente en los más ancianos. Su origen es desconocido. Los factores neuroquímicos que podrían participar en la generación de la enfermedad incluyen la ausencia de las sustancias utilizadas por las células nerviosas para transmitir los impulsos nerviosos (neurotransmisores), entre ellos acetilcolina, somatostatina, sustancia P y noradrenalina. Los factores infecciosos incluyen infecciones con priones (organismos parecidos a los virus) que afectan al cerebro y la médula espinal (sistema nervioso central). En algunas familias (esto representa del 5 al 10% de los casos) hay una predisposición hereditaria a padecer la enfermedad, pero no sigue unos patrones hereditarios estrictos (mendelianos). El diagnóstico se suele hacer descartando las otras causas de la demencia. Su aparición se caracteriza por pérdida de memoria, con un deterioro metal progresivo. Pueden producirse cambios de ánimo, cambios en la capacidad del habla, cambios en la marcha y otros cambios a medida que progresa la afección. Hay una disminución de tamaño (atrofia) de los tejidos encefálicos, aumento de tamaño de los ventrículos (los espacios dentro del cerebro) y depósitos en el interior de los tejidos encefálicos.

La enfermedad de Parkinson (EP) es un trastorno del cerebro caracterizado por temblores y problemas con la marcha, con el movimiento y con la coordinación. La enfermedad también está asociada a daños en una parte del cerebro que controla el movimiento muscular. También se denomina parálisis agitante. Se acumulan resultados de estudios con humanos y animales que sugieren que la neuroinflamación contribuye de forma importante a la pérdida neuronal en la EP (Gao et al, 2003). La enfermedad afecta aproximadamente a 2 de cada 1000 personas, y en la mayoría se manifiesta a partir de los 50 años. Afecta tanto a hombres como a mujeres y es una de las enfermedades inflamatorias neurológicas más frecuentes de los ancianos. La terminología «parkinsonismo» se refiere a cualquier enfermedad que implique una combinación de los tipos de alteraciones del movimiento observados en la enfermedad de Parkinson, que resulta ser la enfermedad más frecuente que provoca este tipo de síntomas. El parkinsonismo puede deberse a otras enfermedades o a factores externos (parkinsonismo secundario). La enfermedad de Parkinson está ocasionada por el deterioro progresivo de las células nerviosas de la parte del cerebro que controla el movimiento muscular (los ganglios basales y el área extrapiramidal). La dopamina, que es una de las sustancias utilizadas por las células para transmitir los impulsos (transmisores) se sintetiza normalmente en esta zona. El deterioro de esta zona del cerebro reduce la cantidad de dopamina disponible en el cuerpo. Al no haber suficiente dopamina, las células nerviosas no transmiten

correctamente los mensajes, y esto da lugar a la pérdida de función muscular. Se desconoce la razón exacta por la que las células del cerebro se van deteriorando. La enfermedad puede afectar a uno o a los dos lados del cuerpo, con pérdidas funcionales de diferente grado. Además de la pérdida del control muscular, algunas personas con la enfermedad de Parkinson sufren una depresión profunda. Aunque la pérdida precoz de la capacidad mental es poco frecuente, los enfermos de párkinson grave pueden mostrar un deterioro mental global (que incluye demencia, alucinaciones y similares). La demencia también puede ser un efecto secundario de algunos medicamentos utilizados para tratar la enfermedad.

5

10

15

20

25

30

35

40

45

50

55

60

La enfermedad de Huntington (EH) es una enfermedad inflamatoria neurológica dominante autosómica que se hereda. La enfermedad no suele manifestarse clínicamente hasta los 50 años y da lugar a trastornos psiquiátricos, trastorno de los movimientos involuntarios y deterioro cognitivo asociados a la inexorable progresión hasta la muerte, típicamente 17 años después de la aparición. El gen responsable de la enfermedad de Huntington se denomina huntingtina. Está localizado en el cromosoma 4p y ofrece un modo eficaz de diagnóstico preclínico y prenatal. La alteración genética consiste en un número excesivo de repeticiones en tándem de la secuencia nucleotídica CAG. Otras enfermedades con repeticiones de CAG incluyen, por ejemplo, las atrofias musculares espinales (AME), tal como la enfermedad de Kennedy, y la mayoría de las ataxias cerebelosas dominantes autosómicas (ACDA) que se conocen como ataxias espinocerebelosas (AEC) en la nomenclatura genética. En la EH no se sabe la manera en que este gen ampliamente expresado da lugar a la muerte celular selectiva. Además, los análisis de secuencia revelaron que no había homología obvia con otros genes conocidos, ni se identificaron dominios estructurales o funcionales que proporcionaran claramente más conocimiento sobre su función. En particular, sigue sin respuesta la pregunta de cómo estos genes tan ampliamente expresados ocasionan la muerte neuronal selectiva.

La esclerosis lateral amiotrófica (ELA) es un trastorno que provoca la pérdida progresiva del control nervioso de los músculos voluntarios debido a la destrucción de las células nerviosas del cerebro y de la médula espinal. La esclerosis lateral amiotrófica, también conocida como enfermedad de Lou Gehrig, es un trastorno que implica la pérdida del uso y control de los músculos. Los nervios que controlan estos músculos se encogen y desaparecen, lo que da lugar a una pérdida de tejido muscular debido a la ausencia de estímulos nerviosos. Aunque el origen primigenio de la ELA sigue sin conocerse, la neuroinflamación desempeña una función importante en la ELA (Consilvio et al., 2004). Disminuyen la fuerza muscular y la coordinación, comenzando por los músculos voluntarios (los que están bajo el control consciente, tales como los músculos de brazos y piernas). El grado de pérdida del control muscular sigue progresando y cada vez hay más músculo afectado. Puede haber una pérdida de la estimulación nerviosa de los músculos semivoluntarios, tales como los músculos que controlan la respiración y la deglución. No se ven afectados ni la capacidad de pensar ni la de razonar. Se desconoce su origen. La ELA afecta aproximadamente a 1 de cada 100 000 personas. En algunos casos aparece como algo propio de las familias. El trastorno afecta más a los hombres que a las mujeres. Los síntomas no suelen aparecer hasta la edad adulta, y a menudo no antes de los 50 años.

La atrofia multisistémica (AMS) es una enfermedad neurodegenerativa esporádica que aparece en los adultos, cuyas causas se desconocen. La afección puede ser única entre las enfermedades neurodegenerativas crónicas porque la oligodendroglia desempeña una función prominente, o incluso principal, en el proceso patogénico. Los datos apoyan la importancia de los genes relacionados con la inflamación en el riesgo de AMS (Infante et al., 2005). La principal diferencia con la enfermedad de Parkinson es que los pacientes con AMS no responden al tratamiento con L-dopa.

La esclerosis múltiple (EM) es una enfermedad desmielinizante inflamatoria del sistema nervioso central (SNC) que sigue un curso de recurrencia-remisión o de progresión. La EM no es la única enfermedad desmielinizante. Su homóloga en el sistema nervioso periférico (SNP) es la polirradiculoneuropatía desmielinizante inflamatoria crónica (PDIC). Además, existen trastornos monofásicos y agudos, tales como la polirradiculoneuropatía desmielinizante inflamatoria denominada síndrome de Guillain-Barré (SGB) en el SNP, y la encefalomielitis diseminada aguda (EMDA) en el SNC. Tanto la EM como el SGB son síndromes heterogéneos. En la EM, las distintas agresiones exógenas junto con los factores genéticos pueden dar lugar a un curso de la enfermedad que finalmente cumpla los criterios diagnósticos. En ambas enfermedades, el daño axónico se puede añadir a la lesión desmielinizante primaria y ocasionar deficiencias neurológicas permanentes. La EM es una enfermedad autoinmunitaria en la que los leucocitos del sistema inmunitario arman un ataque contra la sustancia blanca del sistema nervioso central (SNC). La sustancia gris también se ve afectada. Aunque las causas precisas de la EM no se conocen, parece que contribuyen factores entre los que se incluyen la genética y las infecciones bacterianas y víricas. En su manifestación clásica (el 85% de los casos), se caracteriza por la alternancia de fases de recurrencia y remisión, que se corresponden con los episodios de disfunción neurológica que duran varias semanas, seguidos por una recuperación sustancial o completa (Noseworthy, 1999). Los periodos de remisión se vuelven cada vez más cortos. Muchos pacientes pasan entonces a la fase final de la enfermedad, que se caracteriza por una pérdida gradual de la función neurológica con recuperación parcial, o sin recuperación. Es lo que se denomina EM progresiva secundaria. Una pequeña proporción (~15% de los pacientes con EM) sufre un empeoramiento gradual e ininterrumpido de la función neurológica tras la aparición de la enfermedad (EM progresiva primaria). El mecanismo molecular que sería responsable de la patogenia de la EM parece proceder de factores genéticos y ambientales, que incluyen infecciones víricas y bacterianas. Estos mecanismos promueven el aumento de la migración de los linfocitos T y de los macrófagos, atravesando la barrera hematoencefálica hacia el interior del tejido del SNC. Los elementos genéticos y ambientales conducen a que se incremente la entrada de células inflamatorias a través de la barrera hematoencefálica. Esto da lugar a un incremento de la migración de los linfocitos T autorreactivos y de los macrófagos al interior del tejido del SNC. La secreción de citocinas desde los linfocitos T activa las células presentadoras de antígeno (CPA). Cuando los linfocitos T autorreactivos en el contexto de moléculas del CMH de clase II sobre las CPA se encuentran con posibles «antígenos de EM», a menudo las proteínas que forman parte de la vaina de mielina, entonces se activan. Varios mecanismos posteriores pueden actuar dañando los oligodendrocitos y la mielina. La citotoxicidad mediada por anticuerpos y por el complemento puede ocasionar la mayor parte del daño en algunos pacientes, mientras que en otros pacientes, la señalización por el ligando de Fas y la liberación de citocinas proinflamatorias, como TNF-α, desde los linfocitos T CD4+ podían atacar a la sustancia blanca. Los macrófagos activados también desempeñan una función en el refuerzo de la fagocitosis y de la secreción de factores. Esto ocasiona la diseminación de la desmielinización y la posterior pérdida de la eficacia conductora entre los axones del SNC. Sin embargo, los mecanismos de reparación posterior pueden conseguir la remielinización una vez que el proceso inflamatorio se ha resuelto. Los axones remielinizados de los pacientes con EM se reconocen desde el punto de vista de la anatomía patológica por la manifiesta delgadez de la vaina que rodea los axones remielinizados. En la membrana de los axones desmielinizados a menudo se encuentran insertados más canales de sodio y un repertorio anormal de canales iónicos, en un intento por compensar la pérdida de la eficacia conductora. Estos patrones de expresión anormales sugieren que la EM también puede incluir una canalopatía. Los precursores de la oligodendroglia podrían potenciar la remielinización de las lesiones de la EM.

La enfermedad priónica y el síndrome de Down también se ha visto que implican una neuroinflamación (Eikelenboom et al., 2002, Hunter et al., 2004).

Enfermedades inflamatorias neurológicas tras una infección

10

20

40

50

55

Algunas neuropatías, tales como, por ejemplo, la encefalomielitis diseminada aguda, suelen aparecer tras una infección vírica o una vacunación con virus (o, muy raramente, una vacunación con bacterias), lo que sugiere que la enfermedad tiene una causa inmunitaria. Las neuropatías periféricas inflamatorias agudas que aparecen después de una vacunación con virus o del síndrome de Guillain-Barré son trastornos desmielinizantes similares que se supone que tienen la misma inmunopatogenia, pero que afectan solo a las estructuras periféricas.

La mielopatía asociada al HTLV, una enfermedad de la médula espinal de progresión lenta que está asociada a la infección por el virus linfótrofo de linfocitos T humanos, se caracteriza por una debilidad espástica de ambas piernas.

Las infecciones del sistema nervioso central son extremadamente graves; la meningitis afecta a las membranas que rodean el encéfalo y la médula espinal; la encefalitis afecta al propio cerebro. Los virus que infectan el sistema nervioso central (encéfalo y médula espinal) incluyen herpesvirus, arbovirus, coxsackievirus, ecovirus y enterovirus. Algunas de estas infecciones afectan principalmente a las meninges (los tejidos que recubren el encéfalo) y producen meningitis; otras afectan principalmente al cerebro y dan lugar a las encefalitis; muchas afectan tanto a las meninges como al encéfalo y producen meningoencefalitis. En los niños, la meningitis es mucho más frecuente que la encefalitis. Los virus afectan al sistema nervioso central de dos maneras. Infectan y destruyen directamente las células durante la fase aguda de la enfermedad. Después de recuperarse de la infección, la respuesta inmunitaria del cuerpo contra la infección a veces ocasiona lesiones secundarias en las células que rodean los nervios. Estas lesiones secundarias (encefalomielitis posinfecciosa) se traducen en que el niño presenta síntomas varias semanas después de la recuperación de la enfermedad aguda.

Enfermedades inflamatorias neurológicas tras las lesiones

La lesión del SNC inducida por agresiones agudas, que incluyen traumatismo, hipoxia e isquemia, afectan tanto a la sustancia blanca como a la gris. Las lesiones del SNC implican neuroinflamación. Por ejemplo, la infiltración de leucocitos en el SNC después de un traumatismo o una inflamación viene desencadenada en parte por la activación de la quimiocina MCP-1 en los astrocitos (Panenka et al., 2001).

El traumatismo es una lesión o daño de un nervio. Puede tratarse de un traumatismo de la médula espinal, que es una lesión de la médula espinal que afecta a todas las funciones nerviosas que están controladas en el nivel de la lesión y por debajo de él, que incluyen control y sensibilidad musculares, o traumatismo encefálico, tal como el traumatismo ocasionado por una lesión cerrada de la cabeza.

La hipoxia cerebral es la falta de oxígeno específicamente en los hemisferios cerebrales, y más típicamente, se usa el término para referirse a la falta de oxígeno en todo el encéfalo. Según la gravedad de la hipoxia, los síntomas pueden oscilar de confusión a daño cerebral irreversible, coma y muerte.

El accidente cerebrovascular suele ocasionarlo la reducción del riego sanguíneo (isquemia) del cerebro. También se denomina ictus. Se trata de un grupo de trastornos cerebrales que implican la pérdida de funciones cerebrales que se produce cuando se ve interrumpido el riego sanguíneo a cualquier parte del cerebro. El cerebro requiere aproximadamente el 20% de la circulación de la sangre en el cuerpo. La sangre riega el cerebro principalmente a través de dos arterias del cuello (arterias carótidas), que entonces se ramifican dentro del encéfalo en numerosas arterias, cada una de las cuales riega una zona específica del cerebro. Incluso una pequeña interrupción del riego sanguíneo puede ocasionar una disminución del funcionamiento del cerebro (deficiencia neuronal). Los síntomas varían según la zona del cerebro que se ve afectada y suele incluir problemas tales como alteraciones de la visión, alteraciones del habla, disminución del movimiento y la sensibilidad en una parte del cuerpo, o alteraciones en el nivel de consciencia. Si el riego sanguíneo resulta insuficiente durante más de unos pocos segundos, las células cerebrales de la zona quedan destruidas (infartadas), lo que ocasiona el daño permanente de ese área del cerebro o incluso su muerte. Un accidente

cerebrovascular afecta a 4 de cada 1000 personas. Se trata de la tercera causa de muerte en los países más desarrollados, incluidos los EE.UU. La incidencia del accidente cerebrovascular aumenta drásticamente con la edad, duplicándose cada década después de cumplir los 35 años. Aproximadamente el 5% de las personas de más de 65 años han sufrido al menos uno. El trastorno se produce en los hombres con más frecuencia que en las mujeres. Las causas de los ictus isquémicos son los coágulos de sangre que se forman en el cerebro (trombos) y los coágulos de sangre o los trozos de la placa ateroesclerótica y de otro material que viajan al cerebro desde distintas posiciones (embolias). Un derrame (hemorragia) dentro del cerebro puede ocasionar síntomas que se parecen al accidente cerebrovascular. Los accidentes cerebrovasculares que se producen tras la ateroesclerosis (trombosis cerebral) y los producidos por embolias (coágulo de sangre en movimiento) son los tipos más frecuentes.

La lesión traumática de nervios puede afectar tanto al SNC como el SNP. La lesión traumática del cerebro, también denominada simplemente traumatismo craneoencefálico o traumatismo encefálico cerrado, se refiere a una lesión en la que se daña el cerebro porque un cuerpo extraño entra en la cabeza. Se da principalmente durante los accidentes de coche o de bicicleta, pero también puede pasar tras casi ahogarse, tras un ataque al corazón, un accidente cerebrovascular e infecciones. Este tipo de lesión traumática del cerebro suele dar lugar a una falta de oxígeno o de riego sanguíneo en el cerebro y, por lo tanto, se puede denominar «lesión anóxica». El traumatismo craneoencefálico o traumatismo craneano cerrado se produce cuando hay un impacto en la cabeza, como en los accidentes de tráfico o en una caída. Podría haber un periodo de inconsciencia inmediatamente después del traumatismo, que puede durar minutos, semanas o meses. La principal lesión cerebral se produce en el momento de la lesión, principalmente en los lugares que reciben los impactos, en particular cuando se produce una fractura craneal. Las contusiones extensas podrían estar asociadas a la hemorragia intracerebral, o venir acompañadas de desgarros corticales. Las lesiones axónicas difusas se producen como resultado de la cizalladura o las fuerzas tensoras de los axones neuronales producidas por los movimientos de rotación del cerebro dentro del cráneo. Puede haber lesiones hemorrágicas pequeñas o daños difusos de los axones, que solo se detectarían al microscopio. El daño cerebral secundario se produce como resultado de las complicaciones que se desarrollan después del momento de la lesión. Incluyen la hemorragia intracraneal, el daño traumático de las arterias extracerebrales, la hernia intracraneal, el daño hipóxico del cerebro o de las meningitis.

Las lesiones de la médula espinal explican la mayoría de los ingresos hospitalarios por paraplejía y tetraplejía. Más del 80% se producen como resultado de accidentes de tráfico. Desde el punto de vista clínico se reconocen dos grupos principales de lesiones: las lesiones abiertas y las cerradas. Las lesiones abiertas ocasionan el traumatismo directo de la médula espinal y de las raíces de los nervios. Las lesiones perforantes pueden ocasionar una rotura extensa y hemorragia. Las lesiones cerradas explican la mayoría de las lesiones espinales y suelen estar asociadas a la fractura o luxación de la columna vertebral, lo que se puede demostrar con radiografías. El daño de la médula depende de la extensión de las lesiones óseas y se puede considerar en dos etapas principales: el daño primario, que son contusiones, corte transversal de las fibras nerviosas y necrosis hemorrágica, y el daño secundario, que son hematomas extradurales, infarto, infección y edema.

Neuropatía periférica

5

10

15

20

25

30

35

40

45

50

55

60

La neuropatía periférica es un síndrome de hipoestesia, debilidad muscular y atrofia, disminución de los reflejos tendinosos profundos, y síntomas vasomotores, solos o combinados de cualquier manera. La neuropatía periférica está asociada a la degeneración axónica, un proceso que también se denomina degeneración de Waller. La neuroinflamación interviene en la degeneración de Waller (Stoll et al., 2002).

La enfermedad puede afectar a un solo nervio (mononeuropatía), dos o más nervios en áreas independientes (mononeuropatía múltiple), o muchos nervios simultáneamente (polineuropatía). Lo más afectado suele ser el axón (por ejemplo, en la diabetes mellitus, en la enfermedad de Lyme, en la uremia o con agentes tóxicos) o la vaina de mielina o la célula de Schwann (por ejemplo, en la polineuropatía inflamatoria aguda o crónica, en las leucodistrofias, o en el síndrome de Guillain-Barré). Los daños de las fibras pequeñas mielinizadas o desmielinizadas da lugar principalmente a la pérdida de temperatura y la sensación de dolor; los daños de las fibras mielinizadas largas dan lugar a deficiencias motoras o propiorreceptoras. Algunas neuropatías (por ejemplo debido a la toxicidad del plomo, el uso de dapsona, la enfermedad de Lyme [ocasionada por la picadura de la garrapata], la porfiria o el síndrome de Guillain-Barré) afectan principalmente a las fibras motoras; otras (por ejemplo debido a la ganglionitis de la raíz dorsal en el cáncer, lepra, SIDA, diabetes mellitus, o intoxicación crónica con piridoxina) afectan principalmente a los ganglios de la raíz dorsal o las fibras sensitivas, lo que produce síntomas sensitivos. Ocasionalmente se ven afectados los pares craneales (por ejemplo en el síndrome de Guillain-Barré, en la enfermedad de Lyme, en la diabetes mellitus y en la difteria). La identificación de las modalidades involucradas ayudan a determinar la causa.

El traumatismo es la causa más frecuente de una lesión localizada en un único nervio. La actividad muscular violenta o la hiperextensión forzada de una articulación podría producir una neuropatía focal, al igual que con la repetición de traumatismos pequeños (por ejemplo, agarrar con fuerza herramientas pequeñas, exceso de vibración de los martillos hidráulicos). La parálisis por presión o por compresión suele afectar a los nervios superficiales (cubital, radial, peroneal) en las prominencias óseas (por ejemplo, durante el sueño profundo o durante la anestesia de personas delgadas o caquécticas y, a menudo, en los alcohólicos) o en los canales estrechos (por ejemplo, el síndrome del túnel carpiano). La parálisis por presión también se puede deber a tumores, hiperostosis ósea, escayolas, muletas o posturas de prensión fuerte prolongadas (por ejemplo en la jardinería). La hemorragia en un nervio y la exposición al frío o la

radiación podría ocasionar la neuropatía. La mononeuropatía puede surgir directamente de la invasión tumoral.

5

15

20

25

30

35

40

45

50

55

Muchas mononeuropatías suelen aparecer después de trastornos del colágeno vasculares (por ejemplo, poliarteritis nudosa, LES, síndrome de Sjögren, AR), sarcoidosis, enfermedades metabólicas (por ejemplo, diabetes, amiloidosis), o enfermedades infecciosas (por ejemplo, enfermedad de Lyme, infección del VIH). Los microorganismos podrían ocasionar muchas mononeuropatías por invasión directa del nervio (por ejemplo, en la lepra).

La polineuropatía debida a las enfermedades febriles agudas puede surgir a raíz de una toxina (por ejemplo, en la difteria) o de una reacción autoinmunitaria (por ejemplo, en el síndrome de Guillain-Barré); la polineuropatía que a veces sigue a las inmunizaciones probablemente sean autoinmunitarias.

Los agentes tóxicos suelen ocasionar polineuropatía, pero a veces mononeuropatía. Incluyen emetina, hexobarbital, barbital, clorobutanol, sulfamidas, fenitoína, nitrofurantoína, los alcaloides de vinca, metales pesados, monóxido de carbono, fosfato de triortocresilo, ortodinitrofenol, muchos disolventes, otros venenos industriales y ciertos fármacos contra el SIDA (por ejemplo, zalcitabina, didanosina).

La neuropatía inducida por la quimioterapia es un efecto secundario grave y prominente de algunas medicaciones quimioterápicas usadas con frecuencia, que incluyen los alcaloides de vinca (vinblastina, vincristina y vindesina), fármacos con platino (cisplatino) y los taxanos (paclitaxel). La inducción de neuropatía periférica es un factor que limita con frecuencia el tratamiento con fármacos quimioterápicos.

Las deficiencias nutricionales y los trastornos metabólicos pueden dar lugar a una polineuropatía. La causa suele ser la falta de vitamina B (por ejemplo, en el alcoholismo, en el beriberi, en la anemia perniciosa, en la deficiencia de piridoxina inducida por la isoniazida, en los síndromes de malabsorción y en la hiperémesis del embarazo). La polineuropatía también se produce en el hipotiroidismo, en la porfiria, en la sarcoidosis, en la amiloidosis y en la uremia. La diabetes mellitus puede ocasionar polineuropatía distal sensimotora (lo más frecuente), mononeuropatía múltiple y mononeuropatía focal (por ejemplo, de los nervios motores oculares externo o común).

La polineuropatía debida a trastornos metabólicos (por ejemplo, diabetes mellitus) o a insuficiencia renal se desarrolla lentamente, a menudo durante meses o años. Con frecuencia comienza con anomalías sensoriales en las extremidades inferiores que a menudo son más graves en su extremo que en su parte proximal. A menudo resultan muy patentes el hormigueo periférico, la insensibilidad, el dolor urente o las deficiencias en la propiosensibilidad y sensación vibratoria articulares. El dolor empeora con frecuencia por la noche y se puede agravar al tocar la zona afectada o con los cambios de temperatura. En los casos graves, existen signos objetivos de hipoestesia, típicamente con distribución en guante y calcetín. El talón de Aquiles y otros reflejos tendinosos profundos están disminuidos o ausentes. Las úlceras indoloras en los dedos o la articulación de Charcot pueden aparecer cuando la hipoestesia es profunda. Las deficiencias sensitivas o propiosensitivas podrían conducir a anomalías en la marcha. Respecto a las funciones motoras afectadas, se produce debilidad muscular distal y atrofia. El sistema nervioso autónomo podría verse adicional o selectivamente implicado, lo que conduce a diarrea nocturna, a incontinencia fecal y urinaria, a impotencia o a hipotensión postural. Varían los síntomas vasomotores. La piel se vuelve más pálida y más seca de lo normal, a veces con un extraño color oscuro; se podría sudar en exceso. Los cambios tróficos (piel lisa y brillante, uñas picoteadas y estriadas, osteoporosis) son habituales en los casos prolongados y graves.

La polineuropatía nutricional es muy frecuente entre los alcohólicos y los desnutridos. Una axonopatía importante podría conllevar una posterior desmielinización y destrucción del axón de los nervios más largos y gruesos. No está claro si la causa es la carencia de tiamina o de otra vitamina (por ejemplo, piridoxina, ácido pantoténico, ácido fólico). La neuropatía debida a la falta de piridoxina suele producirse solo en las personas que toman isoniazida contra la tuberculosis; los niños con carencia o dependencia de piridoxina pueden sufrir convulsiones. El agotamiento y la debilidad simétrica de la parte distal de las extremidades suele ser gradual, pero puede progresar rápidamente, a veces acompañados de hipoestesia, parestesia y dolor. Pueden empeorar con la palpación el dolor sordo, los espasmos, la sensación de frío, el dolor urente y la insensibilidad en las pantorrillas y en los pies. Cuando se desconoce la causa, se pueden administrar numerosas vitaminas, pero no se ha demostrado que produzca algún beneficio.

Las neuropatías hereditarias se clasifican como neuropatías sensitivomotoras o neuropatías sensitivas. La enfermedad de Charcot-Marie-Tooth es la neuropatía sensitivomotora hereditaria más frecuente. Las neuropatías sensitivomotoras menos frecuentes comienzan al nacer y se traducen en una mayor incapacidad. En las neuropatías sensitivas, que son poco habituales, la pérdida del dolor distal y de la sensibilidad a la temperatura son más prominentes que la pérdida de la sensibilidad vibratoria y el sentido de la posición. El problema principal es la mutilación del pie debido a la insensibilidad al dolor, con infecciones frecuentes y osteomielitis. Las neuropatías hereditarias también incluyen la neuropatía intersticial hipertrófica y la enfermedad de Dejerine-Sottas.

Las neoplasias malignas también puede provocar una polineuropatía a través de la gammapatía monoclonal (mieloma múltiple, linfoma), de la invasión amiloide o de déficits nutricionales, o como un síndrome paraneoplásico.

A pesar de sus distintas etiologías, tales como patógenos infecciosos o ataques autoinmunitarios, todas las enfermedades inflamatorias neurológicas provocan la pérdida de la función neurológica y pueden conducir a la parálisis y a la muerte. Aunque existen unos pocos agentes terapéuticos que reducen los ataques inflamatorios en algunas enfermedades inflamatorias neurológicas, se necesitan desarrollar nuevos tratamientos que puedan conducir a la

recuperación de la función neurológica.

2. Señalización mediante las STAT

En muchos sistemas biológicos se ha descrito la función de la señalización de las proteínas STAT como moduladora de la respuesta pro- y antiinflamatoria (Pfitzner et al. 2004).

La activación de STAT2 puede deberse al interferórβ (INF -β). El promotor de STAT2 tiene un elemento de respuesta estimulado por interferón (ISRE, por su nombre en inglés) (Yan et al., 1995). En los astrocitos humanos, la activación de STAT2 hace disminuir la inducción de la quimiocina MCP-1 (Hua et al., 2002). Las quimiocinas tales como MCP-1 dirigen la atracción de los leucocitos hacia los sitios de inflamación y también pueden participar en la regulación de la producción de citocinas desde los linfocitos T auxiliares indiferenciados. El efecto beneficioso del IFN-β debido a la disminución de la síntesis de MCP-1 en los pacientes con EM se ha confirmado mediante experimentos *ex vivo* (Comabella et al., 2002).

Las actividades fisiológicas asociadas a la MCP-1 se han estudiado detalladamente con animales transgénicos y otros modelos de animales, demostrándose que MCP-1 controla la atracción de los monocitos y de otros tipos celulares (astrocitos, por ejemplo) en muchas enfermedades infecciosas, inflamatorias y autoinmunitarias, así como la expresión de las citocinas relacionada con las respuesta de linfocitos T auxiliares. También se ha demostrado que MCP-1 interviene en las infecciones parasitarias ocasionadas por *Trichinella spiralis* (Conti y DiGioacchino, 2001). Por lo tanto, en muchas situaciones patológicas, se piensa que la MCP-1 potencia la respuesta inflamatoria al atraer a los macrófagos.

La activación de STAT2, al conducir a la disminución de la inducción de MCP-1, es una manera prometedora de tratar los trastornos asociados a la neuroinflamación.

3. La proteína de fijación a IL-18 (IL-18BP)

15

25

30

35

40

45

50

55

En 1989, se describió una actividad sérica inducida por endotoxina que inducía el interfeconimo -y) obtenido de esplenocitos de ratón (Nakamura et al. 1989). El factor responsable de esta actividad se denominó factor inductor del IFN-y (IGIF, por su nombre en inglés) y más tarde interleucina 18 (IL-18). La secuencia del ADNc humano de la IL-18 se describió en 1996 (Ushio et al, 1996). La IL-18 recombinante induce el IFN-y con más fuerza de lo que lo hace la IL-12, aparentemente por una vía distinta (Micallef et al., 1996). La IL-18 no induce al IFN-γ por sí misma, sino que actúa principalmente como un coestimulador con mitógenos o con IL-2. La IL-18 potencia la proliferación de los linfocitos T, aparentemente a través de una vía dependiente de IL-2, y potencia la producción de citocina de los Th1 in vitro y muestra sinergia cuando se combina con la IL-12 en términos de aumento de la producción de IFN-γ (Maliszewski et al. 1990). La IL-18 es posible que intervenga en la inmunorregulación o en la inflamación al aumentar la actividad funcional del ligando de Fas sobre los linfocitos Th1 (Conti et al., 1997). La IL-18 también se expresa en la corteza suprarrenal y, por lo tanto, podría ser un neuroinmunomodulador secretado que desempeñaría una función importante a la hora de coordinar el sistema inmunitario tras experimentar una situación de estrés (Chater, 1986). Además, la expresión de IL-18 está regulada de forma anómala en los ratones autoinmunitarios NOD y está estrechamente asociada a la aparición de la diabetes (Rothe et al, 1997). In vivo, la IL-18 se forma por la escisión de la pro-IL-18, y su actividad endógena parece explicar la producción de IFN-y en P. acnes y la mortalidad debida al LPS. La IL-18 madura se genera a partir de su precursor mediante la enzima convertidora de IL-1β (ICE, caspasa-1).

El receptor de la IL-18 consiste en al menos dos componentes, que cooperan en la fijación del ligando. Los sitios de alta y baja afinidad de la IL-18 se encontraron en los linfocitos T estimulados con la IL-12 murina, lo que sugiere que es un complejo receptor con varias cadenas (Yoshimoto et al., 1998). Se han identificado dos subunidades receptoras hasta ahora, y ambas pertenecen a la familia del receptor de IL-1 (Parnet et al, 1996). La transducción de la señal de IL-18 implica la activación del NF-κB (DiDonato et al., 1997).

Recientemente se ha aislado de la orina humana una proteína soluble que tiene una gran afinidad por la IL-18, y se han descrito sus ADNc de humano y de ratón (Novick et al., 1999c) (WO 99/09063). La proteína se ha denominado proteína de fijación a IL-18 (IL-18BP, por su nombre en inglés).

La IL-18BP no es el dominio extracelular de uno de los receptores de IL-18 conocidos, sino una proteína circulante natural que se secreta. Pertenece a una nueva familia de proteínas secretadas. La familia incluye además varias proteínas codificadas por poxvirus que son muy homólogas a la IL-18BP (Novick et al. 1999b). La IL-18BP se expresa constitutivamente en el bazo, pertenece a la superfamilia de las inmunoglobulinas y tiene poca homología con el receptor de tipo II de la IL-1. Su gen se ha localizado en el cromosoma humano 11q13 y no se ha hallado ningún exón que codifique un dominio transmembranario en una secuencia genómica de 8,3 kb (Novick et al., 1999a).

Las cuatro isoformas humanas de IL-18BP y las dos de ratón procedentes del ayuste del ARNm que se han encontrado en varias genotecas de ADNc, se han expresado y purificado, y se les ha valorado su capacidad de fijación y neutralización de las actividades biológicas de la IL-18 (Kim et al., 2000b). La isoforma a de la IL-18BP humana (IL-18BPa) presentaba la mayor afinidad por la IL-18, con una asociación rápida y una disociación lenta, y una constante de disociación (K_d) de 399 pM. La IL-18BPc comparte el dominio Ig de la IL-18BPa, salvo los 29 aminoácidos del extremo carboxilo; la K_d de la IL-18BPc es 10 veces menor (2,94 nM). No obstante, la IL-18BPa y la IL-18BPc neutralizan la IL-18

a más del 95% con un exceso molar de dos. Las isoformas humanas IL-18BPb e IL-18BPd carecen completamente del dominio Ig y no tienen la capacidad de fijarse ni de neutralizar a la IL-18. La modelización molecular identificó un sitio de fijación hidrófobo y electrostático mixto y grande en el dominio Ig de la IL-18BP, que podría explicar su gran afinidad por la fijación al ligando (Kim et al., 2000a).

La IL-18BPa y la IL-18BPc actúan como inhibidores de la IL-18, y se ha propuesto que estas isoformas tienen un potencial terapéutico para el tratamiento de las enfermedades asociadas a una respuesta inmunitaria ligada a la actividad de la IL-18. Sin embargo, todavía no se ha sugerido cuál sería el efecto beneficioso de las isoformas de la IL-18BP en las enfermedades que no dependen de la IL-18. Además, el significado biológico de las isoformas IL-18BPb e IL-18BPd se conoce poco en la técnica anterior.

COMPENDIO DE LA INVENCIÓN

El objeto de la presente invención es el de dar a conocer nuevas formas de tratamiento y/o prevención de una enfermedad inflamatoria neurológica.

La presente invención se define por el conjunto de reivindicaciones que se anexan.

10

20

BREVE DESCRIPCIÓN DE LOS DIBUJOS

En la figura 1 se representa esquemáticamente la estructura del gen de la IL-18BP humana y de las formas de ayuste humanas IL-18BPa, IL-18BPb, IL-18BPc e IL-18BPd.

En la figura 2 se muestra la secuencia de aminoácidos de las isoformas humanas IL-18BPa, IL-18BPb, IL-18BPc e IL-18BPd.

En la figura 3A se muestra el efecto de la IL-18BPb y de la IL-18BPd sobre la translocación nuclear de STAT2 en las células de astroglioma humano U373.

En la figura 3B se muestra el efecto de la IL-18BPd sobre la translocación nuclear de STAT1, STAT2 y STAT3. Los controles son: translocación de STAT1 inducida por el IFN-γ, y translocación de STAT2 y STAT3 inducida por el IFN-β. La significación se calculó frente a las células sin estimular, *p < 0,01, **p < 0,001.

En la figura 4 se muestra el efecto de la IL-18 y de la IL-18BPa sobre la translocación nuclear de STAT2 en las células U373. El control positivo es la translocación inducida por el IFN. La significación se calculó frente a los pocillos sin estimulación, *p < 0,01, **p < 0,001.

En la figura 5A se muestra el efecto de la IL-18BPb sobre la secreción de MCP-1 desde las células U373 estimuladas por la IL-1 β y el IFN- γ , 48 horas después de la estimulación. La significación se calculó frente a las células estimuladas que no se trataron con IL-18BPb, *p < 0,05, ***p < 0,005, ***p < 0,001.

30 En la figura 5B se muestra el efecto de la IL-18BPb sobre la secreción de la IL-6 desde las células U251 estimuladas por la IL-1β y el IFN-γ, 24 horas después de la estimulación. La significación se calculó frente a las células estimuladas que no se trataron con IL-18BPb, *p < 0,05, **p < 0,005, ***p < 0,001.

En la figura 6 se muestra el efecto de la IL-19BPb y de la IL-18BPd sobre la apoptosis inducida por TRAIL en las células L929. La significación se calculó frente a las células estimuladas con TRAIL, *p < 0,05, **p < 0,005.

35 En la figura 7 se muestra la expresión de la IL-18BPd en diferentes tejidos humanos. La expresión de la GAPDH se utilizó como control interno.

BREVE DESCRIPCIÓN DE LAS SECUENCIAS

La SEQ ID n.º 1 corresponde a la secuencia de aminoácidos de la isoforma IL-18BPb.

La SEQ ID n.º 2 corresponde a la secuencia de aminoácidos de la isoforma IL-18BPd.

40 La SEQ ID n.º 3 corresponde a la secuencia de aminoácidos de la isoforma IL-18BPa.

La SEQ ID n.º 4 corresponde a la secuencia de aminoácidos de la isoforma IL-18BPc.

Las SEQ ID n.º 5-12 corresponden a la secuencia de nucleótidos de los cebadores utilizados en el ejemplo 5.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

En el marco de la presente invención se ha hallado que la IL-18BPb y la IL-18BPd disminuyen la secreción tanto de la citocina proinflamatoria IL-6 como de la quimiocina MCP-1 en los astrogliocitos coestimulados por la IL-1β y por el IFN-γ.

Además de esto, se ha mostrado que, a diferencia de la IL-18a y de la IL-18c, la IL-18BPb y la IL-18BPd inducen la translocación nuclear de STAT2 en la células de glioblastoma, siendo STAT2 un factor que actúa como modulador de la

respuesta inflamatoria.

5

10

15

20

25

30

35

40

45

La invención también se basa en el hallazgo de que la IL-18BPb y la IL-18BPd protegen significativamente a las células fibroblásticas frente a la apoptosis inducida por TRAIL.

Los resultados experimentales presentados en la presente memoria dan a conocer una nueva posibilidad de tratamiento de las enfermedades inflamatorias neurológicas.

Por lo tanto, la invención se refiere al uso de una isoforma de IL-18BP que no se fija a la IL-18 para la fabricación de un medicamento para el tratamiento y/o prevención de las enfermedades inflamatorias neurológicas.

La terminología «IL-18BP», tal y como se usa en la presente memoria, se refiere a las proteínas que se fijan a la IL-18 tal y como se define en la patente internacional WO 99/09063 o en Novick et al. (1999), e incluye las variantes de ayuste y/o las isoformas de las proteínas de fijación a IL-18. La terminología «IL-18BP», tal y como se usa en la presente memoria, abarca además muteínas, proteínas de fusión, derivados funcionales, fracciones o fragmentos activos, o derivados por permutación circular, o sales de los mismos. En la actualidad se conocen cuatro isoformas humanas diferentes: IL-18BPa, IL-18BPb, IL-18BPc e IL-18BPd. Estas isoformas se definen en Kim et al. (2000). La IL-18BPb corresponde a la SEQ ID n.º 1, la IL-18BPd corresponde a la SEQ ID n.º 2, la IL-18BPa corresponde a la SEQ ID n.º 4.

Tal y como se utiliza en la presente memoria, la terminología «isoforma de IL-18BP que no se fija a la IL-18» se refiere a una isoforma de la IL-18BP que carece de la capacidad para fijarse y/o neutralizar a la IL-18 tal y como se define en Kim et al. (2000). La terminología «la isoforma de IL-18BP que no se fija a la IL-18» se refiere a los polipéptidos que se sintetizan de forma natural así como a las muteínas, sales, proteínas de fusión, derivados funcionales, fracciones activas o derivados por permutación circular de los mismos. Las isoformas de la IL-18BP que se sintetizan de forma natural que no se fijan a la IL-18 incluyen la IL-18BPb humana y la IL-18BPd humana. Una «isoforma de IL-18BP que no se fija a la IL-18» también se puede hacer referencia a una «isoforma de IL-18BP de acuerdo con la invención».

La capacidad de una isoforma de IL-18BP para fijarse a la IL-18 se puede medir, por ejemplo, mediante un chip sensor de BIAcore con la IL-18 madura inmovilizada tal y como está descrito, como aparece en Kim et al. (2000). Tal método permite el cálculo de la constante de disociación media, la velocidad de asociación y la velocidad de disociación. La capacidad que una isoforma de IL-18BP tiene para neutralizar la IL-18 puede, por ejemplo, medirse mediante la medición del efecto que la isoforma de IL-18BP tiene sobre la actividad biológica de la IL-18 en un ensayo tal como, por ejemplo, los recogidos en el párrafo titulado «Human and Mouse IL-18 assays» en las páginas 1190-1191 de Kim et al. (2000). Alternativamente, la capacidad que tiene una isoforma de IL-18BP para neutralizar la IL-18 se puede medir como se enseña en el párrafo titulado «Titration of IL-18BP activity» en la página 1192 de Kim et al. (2000).

Las terminologías «tratar», «tratamiento», «prevenir» y «prevención», tal y como se usan en la presente memoria, se debe entender que previenen, inhiben, atenúan, mejoran o revierten uno o más de los síntomas o causas de la enfermedad inflamatoria neurológica, así como los síntomas, enfermedades o complicaciones que acompañan a la enfermedad inflamatoria neurológica. Cuando se «trata» una enfermedad inflamatoria neurológica, las sustancias según la invención se dan después de la aparición de la enfermedad, «prevención» se refiere a la administración de las sustancias antes de que los signos de la enfermedad resulten observables en el paciente.

La terminología «enfermedades inflamatorias neurológicas», tal y como se usa en la presente memoria, abarca todas las enfermedades o trastornos inflamatorios neurológicos, o lesiones del SNC o del SNP. Preferentemente, dicha enfermedad inflamatoria neurológica es una enfermedad neurológica asociada a la neuroinflamación, denominada «enfermedad inflamatoria neurológica». Estas enfermedades incluyen las descritas con detalle en los «Antecedentes de la invención».

Las enfermedades inflamatorias neurológicas comprenden trastornos relacionados con la disfunción del SNP o el SNC, tales como las enfermedades relacionadas con la neurotransmisión, dolor de cabeza, traumatismo craneoencefálico, infecciones del SNC, trastornos de los pares craneales y neurooftalmológico, función y disfunción de los trastornos de los lóbulos cerebrales del movimiento, sopor y coma, enfermedades desmielinizantes, delirio y demencia, anomalías de las articulaciones craneocervicales, trastornos convulsivos, trastornos de la médula espinal, trastornos del sueño, trastornos del sistema nervioso periférico, enfermedad cerebrovascular, o trastornos musculares. Para las definiciones de estos trastornos, véase por ejemplo *The Merck Manual for Diagnosis and Therapy*, 17.ª edición, publicada por Merck Research Laboratories en 1999.

Preferentemente, las enfermedades inflamatorias neurológicas de la invención se seleccionan entre el grupo que consiste en lesión nerviosa traumática, accidente cerebrovascular, enfermedades desmielinizantes del SNC o del SNP, neuropatías y enfermedades neurodegenerativas crónicas.

La lesión nerviosa traumática puede afectar al SNP o al SNC, puede ser un traumatismo encefálico o de la médula espinal, incluida la paraplejía, como se describe más arriba en los «Antecedentes de la invención».

El accidente cerebrovascular puede estar ocasionado por hipoxia o por isquemia del cerebro. También se denomina ictus. El accidente cerebrovascular puede implicar la pérdida de las funciones cerebrales (déficits neurológicos)

ocasionados por el cese del riego sanguíneo a determinadas áreas del cerebro. El cese del riego sanguíneo podría deberse a los coágulos de sangre que se forman en el cerebro (trombos), o a fragmentos de placas ateroscleróticas o de otros materiales que viajan al cerebro desde cualquier otra localización (embolia). El sangrado (hemorragia) dentro del cerebro podría ocasionar síntomas que se parecen al accidente cerebrovascular. La causa más frecuente de accidente cerebrovascular es el que aparece debido a la aterosclerosis (trombosis cerebral) y, por lo tanto, la invención también se refiere al tratamiento de la aterosclerosis.

5

10

15

25

30

50

55

La neuropatía periférica podría estar relacionada con un síndrome de hipoestesia, debilidad y atrofia musculares, disminución de los reflejos tendinosos profundos, y síntomas vasomotores, solos o en combinación. La neuropatía podría afectar a un único nervio (mononeuropatía), a dos o más nervios en áreas diferentes (mononeuropatía múltiple) o a muchos nervios simultáneamente (polineuropatía). Pueden verse afectados de forma importante el axón (por ejemplo en la diabetes mellitus, la enfermedad de Lyme o uremia o con agentes tóxicos), o la vaina de mielina o la célula de Schwann (por ejemplo en la polineuropatía inflamatoria crónica o aguda, en las leucodistrofias o en el síndrome de Guillain-Barré). Otras neuropatías, que se pueden tratar de acuerdo con la presente invención, podrían, por ejemplo, deberse a la toxicidad del plomo, al uso de la dapsona, a la mordedura de una garrapata, a la porfiria o al síndrome de Guillain-Barré, y podrían afectar de manera importante a las fibras motoras. Otras, tales como las debidas a la ganglionitis de la raíz dorsal debida al cáncer, lepra, SIDA, diabetes mellitus o intoxicación crónica con piridoxina, afectarían principalmente a los ganglios de la raíz dorsal o a las fibras sensitivas, produciendo síntomas sensitivos. Los pares craneales también se pueden ver implicados, tal como en el síndrome de Guillain-Barrñe, en la enfermedad de Lyme, en la diabetes mellitus y en la difteria.

La enfermedad de Alzheimer es un trastorno en el que se deterioran las funciones mentales debido a cambios en el tejido encefálico. Puede incluir un encogimiento de los tejidos encefálicos, demencia degenerativa primaria y atrofia cerebral difusa. La enfermedad de Alzheimer también se denomina demencia senil de tipo Alzheimer (DSTA).

La enfermedad de Parkinson es un trastorno del cerebro que incluye temblores y dificultad la marcha, el movimiento y la coordinación. La enfermedad está asociada a lesiones en una parte del cerebro que controla el movimiento muscular y también se denomina parálisis agitante.

La enfermedad de Huntington es una enfermedad inflamatoria neurológica hereditaria autosómica dominante. La anomalía genética consiste en un número excesivo de repeticiones en tándem de los nucleótidos CAG. Otras enfermedades con repeticiones CAG incluyen, por ejemplo, las atrofias musculares espinales (AME), tal como la enfermedad de Kennedy, y la mayoría de las ataxias cerebelosas autosómicas dominantes (ACAD), que se conocen como ataxias espinocerebelosas (AEC) en la nomenclatura genética.

La esclerosis lateral amiotrófica (ELA) es un trastorno que ocasiona una pérdida progresiva del control nervioso de los músculos voluntarios, e incluye la destrucción de células nerviosas en el cerebro y en la médula espinal. La esclerosis lateral amiotrófica, también denominada enfermedad de Lou Gehrig, es un trastorno que implica la pérdida del uso y del control de los músculos.

La esclerosis múltiple (EM) es una enfermedad inflamatoria del sistema nervioso central (SNC) que sigue un curso progresivo de remisión y recidiva. La EM no es la única enfermedad desmielinizante. Su contrapartida en el sistema nervioso periférico (SNP) es la polirradiculoneuropatía desmielinizante inflamatoria crónica (PDIC). Además, hay trastornos agudos y monofásicos, tales como la polirradiculoneuropatía desmielinizante inflamatoria denominada síndrome de Guillain-Barré (SGB) en el SNP, y la encefalomielitis diseminada aguda (EMDA) en el SNC.

Las enfermedades inflamatorias neurológicas también se pueden deber a trastornos metabólicos congénitos. En una realización preferente de la invención, la enfermedad inflamatoria neurológica se debe por lo tanto a una deficiencia metabólica congénita. Los trastornos metabólicos congénitos abarcados por la presente invención podrían ser, por ejemplo, diabetes, fenilcetonuria y otras aminoacidurias, enfermedades de Tay-Sachs, Niemann-Pick y Gaucher, síndrome de Hurler; enfermedad de Krabbe y otras leucodistrofias. Podrían afectar a la vaina de mielina en desarrollo, principalmente en el SNC.

También se encuentran dentro del alcance de la presente invención las enfermedades inflamatorias neurológicas que se conocen menos, tales como la neurofibromatosis o la atrofia multisistémica (AMS). Otros trastornos que se tratarían de acuerdo con la presente invención se han descrito en detalle con anterioridad en «Antecedentes de la invención».

En una realización preferente adicional, la enfermedad inflamatoria neurológica es una neuropatía periférica, más preferentemente neuropatía diabética. Las neuropatías asociadas o inducidas por la quimioterapia también son preferentes de acuerdo con la presente invención. La terminología «neuropatía diabética» se refiere a cualquier forma de neuropatía diabética, o a uno o más de los síntomas o trastornos que acompañan a la neuropatía diabética o están ocasionados por ella, o a complicaciones de la diabetes que afectan a los nervios, como se describe en detalle más arriba en los «Antecedentes de la invención». La neuropatía diabética puede ser una polineuropatía. En la polineuropatía diabética se ven afectados muchos nervios a la vez. La neuropatía diabética también puede ser una mononeuropatía. En la mononeuropatía focal, por ejemplo, la enfermedad afecta a un único nervio, tal como los nervios motores oculares externo o común. También puede ser una mononeuropatía múltiple cuando dos o más nervios se ven afectados en zonas diferentes.

En otra realización preferente más, la enfermedad inflamatoria neurológica es una enfermedad desmielinizante. Las enfermedades desmielinizantes comprenden preferentemente afecciones desmielinizantes del SNC, como la encefalomielitis diseminada aguda (EMDA) y la esclerosis múltiple (EM), así como enfermedades desmielinizantes del sistema nervioso periférico (SNP). Las últimas comprenden enfermedades tales como polirradiculoneuropatía desmielinizante inflamatoria crónica (PDIC) y trastornos monofásicos agudos, tal como la polirradiculoneuropatía desmielinizante inflamatoria denominada síndrome de Guillain-Barré (SGB).

Otra realización preferente de la invención se refiere al tratamiento y/o prevención de una enfermedad neurodegenerativa. La enfermedad neurodegenerativa se selecciona entre el grupo que consiste en enfermedad de Alzheimer, enfermedad de Parkinson, enfermedad de Huntington y ELA.

- 10 La isoforma de la IL-18BP de acuerdo con la reivindicación 1 se selecciona entre el grupo que consiste en:
 - a) Un polipéptido que comprende la SEQ ID n.º 1;

5

- b) Un polipéptido que comprende los aminoácidos 29 a 113 de la SEQ ID n.º 1;
- c) Un polipéptido que comprende los aminoácidos 78 a 113 de la SEQ ID n.º 1;
- d) Un polipéptido que comprende la SEQ ID n.º 2;
- e) Un polipéptido que comprende los aminoácidos 29 a 161 de la SEQ ID n.º 2;
 - f) Una muteína de una cualquiera de (a), (b), (d) o (e), en la que la secuencia de aminoácidos tiene al menos un 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% o 99% de identidad con al menos una de las secuencias de (a) a (e);
 - g) Una muteína de una cualquiera de (a) a (e) que está codificada por una secuencia de ADN que se hibrida con el complemento de la secuencia de ADN nativa que codifica una cualquiera de (a) a (e) en condiciones moderadamente rigurosas o en condiciones muy rigurosas;
 - h) Una muteína de una cualquiera de (a) a (e), en la que cualquier cambio de la secuencia de aminoácidos es una sustitución por un aminoácido conservativo en las secuencias de aminoácidos de (a) a (e);
 - i) Una sal o una proteína de fusión, derivado funcional, fracción activa o derivado de permutación circular de una cualquiera de (a) a (h).
- El experto en la técnica apreciará que las muteínas, las variantes alélicas, las sales, las proteínas fusionadas, los derivados funcionales de una isoforma de IL-18BP de acuerdo con la presente invención, las fracciones activas o los derivados de permutación circular de una isoforma de IL-18BP que se produce de forma natural de acuerdo con la presente invención, retendrán una actividad biológica similar, o incluso mejor, que la isoforma que se produce de forma natural.
- Las fracciones activas preferentes tienen una actividad que es igual o mejor que la actividad de la IL-18BPb o la IL-18BPd, o que tienen otras ventajas, tales como una mejor estabilidad o una menor toxicidad o inmunogenia, o que son más fáciles de producir en grandes cantidades, o más fáciles de purificar. El experto en la técnica se dará cuenta de que las muteínas, los fragmentos activos y los derivados funcionales se pueden generar al clonar el correspondiente ADNc en los plásmidos adecuados y luego verificarlos en un ensayo de cocultivo, como se ha mencionado más arriba.
- Las proteínas de acuerdo con la presente invención pueden estar glucosiladas o sin glucosilar, se pueden obtener de fuentes naturales, tales como los líquidos corporales, o se podrían producir preferentemente por medios recombinantes. La expresión recombinante se puede llevar a cabo en sistemas de expresión procarióticos, tales como *E. coli*, o eucarióticos, tales como las células de insectos, y preferentemente en sistemas de expresión de mamíferos, tales como las células CHO o las células HEK.
- Tal y como se usa en la presente invención, la terminología «muteínas» se refiere a los análogos de la IL-18BPb o la IL-18BPd, en los que uno o más restos aminoacídicos de la isoforma natural de la IL-18BP están reemplazados por diferentes residuos aminoacídicos, o están delecionados, o se añaden uno o varios restos aminoacídicos a la secuencia natural de la isoforma IL-18BP, sin cambiar considerablemente la actividad de los productos resultantes en comparación con la isoforma silvestre de la IL-18BP. Estas muteínas se preparan mediante técnicas sintéticas conocidas y/o mutagénesis dirigida, o mediante cualquier otra técnica conocida adecuada para ello. La terminología «muteínas» engloba las variantes alélicas que se producen en la naturaleza de un polipéptido IL-18BPb de SEQ ID n.º 1 y/o las variantes alélicas que se producen en la naturaleza de un polipéptido IL-18BPb de SEQ ID n.º 2.
- Las muteínas de una isoforma de IL-18BP de acuerdo con la presente invención, que se pueden usar de acuerdo con la presente invención, o el ácido nucleico que la codifica, incluye un conjunto finito de secuencias sustancialmente correspondientes como polipéptidos de sustitución o polinucleótidos que se pueden obtener de forma sistemática por cualquier experto en la técnica, sin excesiva experimentación, basándose en las enseñanzas y en las orientaciones presentadas en la presente memoria.

Las muteínas de acuerdo con la presente invención incluyen las proteínas codificadas por un ácido nucleico, tal como ADN o ARN, que se hibrida a ADN o ARN, que codifica una isoforma de IL-18BP de acuerdo con la presente invención, en condiciones de muy rigurosas a moderadamente rigurosas. La terminología «condiciones rigurosas» se refieren a la hibridación y posteriores condiciones de lavado, que los expertos en la técnica denominan convencionalmente «rigurosas». Véase Ausubel et al., *Current Protocols in Molecular Biology*, Interscience, N.Y. §§6.3 y 6.4 (1987-1992), y Sambrook et al., (Sambrook, J. C., Fritsch, E. F. y Maniatis, T. [1989] *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

5

10

25

30

35

40

45

50

55

Sin quedar limitados a ellos, entre los ejemplos de condiciones rigurosas se incluyen condiciones de lavado de 12-20 °C por debajo de la Tm calculada para el híbrido en estudio en, por ejemplo, SSC a 2X y SDS al 0,5% durante 5 min, SSC a 2X y SDS al 1% durante 15 minutos; SSC a 0,1X y SDS al 0,5% a 37 °C durante 30-60 minutos, y luego SSC a 0,1X y SDS al 0,5% a 68 °C durante 30-60 minutos. Los expertos en esta técnica saben que el rigor de las condiciones también depende de la longitud de las secuencias de ADN, de las sondas oligonucleotídicas (tales como 10-40 bases) o de la mezcla de sondas oligonucleotídicas. Si se usa una mezcla de sondas, es preferible el uso del cloruro de tetrametilamonio (TMAC por su nombre en inglés) en lugar de SSC. Véase Ausubel, más arriba.

En una realización preferente, cualquiera de las muteínas tiene una identidad de al menos el 40% con la secuencia de SEQ ID n.º 1 o con la secuencia de SEQ ID n.º 2 de la lista de secuencias anexa. Más preferentemente, tiene una identidad de al menos el 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% o, más preferentemente, de al menos el 90%, 95%, 96%, 97%, 98% o 99% con ellas.

En otra realización preferente, tal muteína tiene una identidad de al menos el 40% con la secuencia de una isoforma de IL-18BP que se produce en la naturaleza que no se fija a la IL-18BP. Más preferentemente, tiene una identidad de al menos el 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% o, más preferentemente, de al menos el 90%, 95%, 96%, 97%, 98% o 99% con ella.

La identidad refleja la relación entre dos o más secuencias de polipéptidos o dos o más secuencias de nucleótidos, y se determina al comparar las secuencias. En general, la identidad hace referencia a extraer nucleótido a nucleótido o aminoácido la correspondencia de las secuencias de los dos polinucleótidos o de los dos polipéptidos, respectivamente, a lo largo de toda la secuencia que se está comparando.

Para las secuencias en las que no hay una correspondencia exacta, se puede determinar un «% de identidad». En general, las dos secuencias a comparar se alinean para dar una correlación máxima entre las secuencias. Esto puede incluir la inserción de «huecos» en alguna de las secuencias o en ambas para mejorar el grado de alineamiento. Un % de identidad se puede determinar a partir de la longitud completa de cada una de las secuencias que se están comparando (también denominado «alineamiento global»), que es particularmente adecuado para las secuencias con la misma longitud, o muy similar, o a lo largo de longitudes más cortas bien definidas (denominado «alineamiento local»), que es más adecuado para las secuencias de longitud desigual. En el marco de la presente invención, el «% de identidad» se refiere al porcentaje global de identidad que se ha determinado sobre la longitud completa de cada una de las secuencias que se están comparando.

Los programas informáticos conocidos se pueden usar para determinar si algún polipéptido en particular tiene un porcentaje de identidad con una secuencia de la presente invención. Tales algoritmos y programas incluyen, por ejemplo, TBLASTN, BLASTP, FASTA, TFASTA y CLUSTALW (Altschul et al., 1990a; Altschul et al., 1997a; Higgins et al., 1996; Pearson y Lipman, 1988; Thompson et al., 1994). Las homologías de secuencia de ácidos nucleicos y proteínas se evalúan preferentemente con la herramienta BLAST (Basic Local Alignment Search Tool), que se conoce bien en la técnica (Altschul et al., 1990b; Altschul et al., 1997b; Karlin y Altschul, 1990b).

Los programas de BLAST identifican secuencias homólogas mediante la identificación de segmentos parecidos, que se denominan en la presente memoria «pares de segmentos de alta puntuación» entre una secuencia problema de aminoácidos o de nucleótidos y una secuencia de referencia que se obtiene preferentemente de una base de datos de secuencias de nucleótidos o de aminoácidos. Los pares de segmentos de alta puntuación se identifican preferentemente (esto es, se alinean) mediante matrices de ponderación, muchas de las cuales se conocen en la técnica. La matriz de ponderación utilizada puede ser la matriz BLOSUM62 (Gonnet et al., 1992; Henikoff y Henikoff, 1993). También se pueden utilizar las matrices PAM o PAM250 (véase, por ejemplo, Schwartz y Dayhoff eds. [1978] Matrices for detecting distance relationships: Atlas of protein sequence and structure, Washington: National Biomedical Research Foundation). Los programas de BLAST evalúan la significación estadística de los pares de segmentos de alta puntuación que se han identificado, y seleccionan preferentemente los segmentos que satisfacen un umbral de significación especificado por el usuario, tal como un porcentaje de homología especificado por el usuario. Preferentemente, la significación estadística de los pares de segmentos de alta puntuación se evalúan con la fórmula de significación estadística de Karlin (Karlin y Altschul, 1990a). Los programas de BLAST se pueden usar con los parámetros por defecto o con parámetros modificados proporcionados por el usuario.

Un método preferente para determinar el mejor emparejamiento global entre una secuencia problema (una secuencia de la presente invención) y una secuencia de referencia, también denominado un alineamiento global de secuencias, se puede determinar con el programa informático FASTDB basado en el algoritmo de Brutlag (Brutlag et al., 1990). En un alineamiento de secuencias, tanto la secuencia problema como la secuencia de referencia son secuencias de

aminoácidos. El resultado de dicho alineamiento global de secuencias es el porcentaje de identidad. Los parámetros preferentes usados en un alineamiento de aminoácidos con FASTDB son: matriz = PAM, k-tupla = 2, penalización por apareamiento erróneo = 1, penalización por reunión = 20, grupo de aleatorización = 25, longitud = 0, valor de corte = 1, tamaño de la ventana = longitud de la secuencia, penalización por hueco = 5, penalización por tamaño del hueco = 0,05, tamaño de la ventana = 247 o la longitud de la secuencia de aminoácidos de la referencia, la que sea más corta.

Si la secuencia de referencia es más corta que la secuencia problema debido a deleciones en el extremo amino o en el carboxilo, y no a deleciones internas, los resultados del porcentaje de identidad hay que corregirlos manualmente porque el programa FASTDB no tiene en cuenta estos truncamientos de los extremos carboxilo y amino de la secuencia de referencia cuando calcula el porcentaje de identidad global. Para las secuencias de referencia truncadas en los extremos amino y carboxilo, en relación con la secuencia problema, el porcentaje de identidad se corrige mediante el cálculo del número de restos de la secuencia problema que están en los extremos carboxilo y amino de la secuencia de referencia, que no están emparejados o alineados con el resto correspondiente en la referencia, como un porcentaje del total de bases de la secuencia problema. Que un resto se empareje o alinee se determina por los resultados del alineamiento de secuencias de FASTDB. Este porcentaje se sustrae entonces del porcentaje de identidad, que se calcula mediante el programa FASTDB anterior usando los parámetros especificados, para alcanzar un valor del porcentaje de identidad final. Para los propósitos de la presente invención se utiliza el valor del porcentaje de identidad final. Para los propósitos del ajuste manual del valor del porcentaje de identidad solo se consideran los residuos de los extremos amino y carboxilo de la secuencia de referencia que no están emparejados o alineados con la secuencia problema. Esto es, solo los restos aminoacídicos problema más alejados de los restos de los extremos amino y carboxilo de la secuencia de referencia.

Por ejemplo, una secuencia de referencia de 90 aminoácidos se alinea con una secuencia problema de 100 restos para determinar el porcentaje de identidad. La deleción se encuentra en el extremo amino de la secuencia de referencia y, por lo tanto, en el alineamiento de FASTDB no aparecen alineados o emparejados con los primeros restos del extremo amino. Los 10 restos desapareados representan el 10% de la secuencia (el número de restos de los extremos amino y carboxilo que no están emparejados dividido por el número total de restos de la secuencia problema), por lo que se sustrae un 10% del valor del porcentaje de identidad calculado por el programa FASTDB. Si los restantes 90 restos están perfectamente emparejados, el porcentaje de identidad final sería del 90%.

Los cambios preferentes para las muteínas de acuerdo con la presente invención son los conocidos como sustituciones «conservativas». Las sustituciones conservativas de aminoácidos de las isoformas de IL-18BP de acuerdo con la presente invención pueden incluir los aminoácidos sinónimos dentro de un grupo que tiene propiedades fisicoquímicas similares suficientes, de manera que la sustitución de los miembros del grupo no alterará la función biológica de la molécula (Grantham, 1974). Está claro que las inserciones y deleciones de aminoácidos también se pueden hacer en las secuencias definidas más arriba sin alterar su funcionamiento, en particular si las inserciones o deleciones solo afectan a unos pocos aminoácidos, por ejemplo por debajo de 30, y preferentemente por debajo de 10, y no eliminan ni desplazan los aminoácidos que son críticos para la conformación funcional, por ejemplo, restos de cisteína. Las proteínas y muteínas producidas por tales deleciones y/o inserciones se encuentran dentro del alcance de la presente invención.

Preferentemente, los grupos de aminoácidos sinónimos son los que se definen en la tabla I. Más preferentemente, los grupos de aminoácidos sinónimos son los que se definen en la tabla II; y lo más preferentemente, los grupos de aminoácidos sinónimos son los que se definen en la tabla III.

<u>TABLA I</u>

5

10

15

20

25

30

35

40

Grupos preferentes de aminoácidos sinónimos

	Aminoácido	Grupo sinónimo
	Ser	Ser, Thr, Gly, Asn
45	Arg	Arg, Gln, Lys, Glu, His
	Leu	lle, Phe, Tyr, Met, Val, Leu
	Pro	Gly, Ala, Thr, Pro
	Thr	Pro, Ser, Ala, Gly, His, Gln, Thr
	Ala	Gly, Thr, Pro, Ala
50	Val	Met, Tyr, Phe, Ile, Leu, Val
	Gly	Ala, Thr, Pro, Ser, Gly
	lle	Met. Tvr. Phe. Val. Leu. Ile

	Phe	Trp, Met, Tyr, Ile, Val, Leu, Phe
	Tyr	Trp, Met, Phe, Ile, Val, Leu, Tyr
	Cys	Ser, Thr, Cys
	His	Glu, Lys, Gln, Thr, Arg, His
5	Gln	Glu, Lys, Asn, His, Thr, Arg, Gln
	Asn	Gln, Asp, Ser, Asn
	Lys	Glu, Gln, His, Arg, Lys
	Asp	Glu, Asn, Asp
	Glu	Asp, Lys, Asn, Gln, His, Arg, Glu
10	Met	Phe, Ile, Val, Leu, Met
	Trp	Trp

TABLA II

Grupos más preferentes de aminoácidos sinónimos

	Aminoácido	Grupo sinónimo
15	Ser	Ser
	Arg	Lys, His, Arg
	Leu	Leu, Ile, Phe, Met,
	Pro	Ala, Pro
	Thr	Thr
20	Ala	Pro, Ala
	Val	Val, Met, Ile
	Gly	Gly
	lle	lle, Met, Phe, Val, Leu
	Phe	Met, Tyr, Ile, Leu, Phe
25	Tyr	Phe, Tyr
	Cys	Ser, Cys
	His	His, Gln, Arg
	Gln	Glu, Gln, His
	Asn	Asp, Asn
30	Lys	Arg, Lys
	Asp	Asn, Asp
	Glu	Gln, Glu
	Met	Met, Phe, Ile, Val, Leu
	Trp	Trp
35	TABLA III	

35 <u>TABLA III</u>

Los grupos más preferentes de aminoácidos sinónimos

Aminoácido Grupo sinónimo

	Ser	Ser
	Arg	Arg
	Leu	Leu, Ile, Met,
	Pro	Pro
5	Thr	Thr
	Ala	Ala
	Val	Val
	Gly	Gly
	lle	Ile, Met, Leu
10	Phe	Phe
	Tyr	Tyr
	Cys	Ser, Cys
	His	His
	Gln	Gln
15	Asn	Asn
	Lys	Lys
	Asp	Asp
	Glu	Glu
	Met	Met, Ile, Leu
20	Trp	Trp

30

35

40

Ejemplos de producción de sustituciones de aminoácidos en las proteínas que se pueden usar para obtener muteínas de la isoforma de IL-18BP que se produce de forma natural de acuerdo con la presente invención, para uso en la presente invención, incluye cualquiera de las etapas de los métodos conocidos, tales como los presentados en las patentes de los EE.UU. 4 959 314, 4 588 585 y 4 737 462 de Mark et al.; 5 116 943 de Koths et al.; 4 956 195 de Namen et al.; 4 879 111 de Chong et al.; y 5 017 691 de Lee et al; y las proteínas sustituidas con lisina presentadas en la patente de los EE.UU. n.º 4 904 584 (Shaw et al.).

La terminología «proteína fusionada» se refiere a un polipéptido que comprende una isoforma de IL-18BP que se produce de forma natural de acuerdo con la presente invención, o una muteína o fragmento de la misma fusionada con otra proteína que, por ejemplo, tiene un mayor tiempo de permanencia en los líquidos corporales. La isoforma de IL-18BP de acuerdo con la presente invención se puede así fusionar con otra proteína, polipéptido o similar, por ejemplo una inmunoglobulina o un fragmento de la misma. Las porciones Fc de las inmunoglobulinas son particularmente idóneas para la producción de proteínas de fusión con lg diméricas o multiméricas. La isoforma de la IL-18BP de acuerdo con la presente invención puede, por ejemplo, conectarse a porciones de una inmunoglobulina de tal manera que se produzca una isoforma de IL-18BP de acuerdo con la presente invención dimerizada por la parte Fc de la lg. En otra realización, la secuencia de la isoforma de la IL-18BP de acuerdo con la presente invención se fusiona a un péptido señal y/o a una secuencia líder que potencia su secreción. La secuencia líder puede, por ejemplo, corresponder al prepropéptido lgSP-tPA descrito en la solicitud de patente PCT PCT/EP2004/052302.

Los «derivados funcionales» tal y como se utilizan en la presente memoria cubren los derivados de la isoforma de IL-18BP que se produce de forma natural de acuerdo con la presente invención y sus muteínas y proteínas fusionadas, que se pueden preparar con el uso de los grupos funcionales que aparecen como cadenas laterales de los restos o de los grupos de los extremos amino o carboxilo, mediante los métodos conocidos en la técnica, y que se incluyen en la invención siempre y cuando permanezcan farmacéuticamente aceptables, por ejemplo, no destruyen la actividad de la proteína que es sustancialmente similar a la actividad de la IL-18BPb y/o II-18BPd, y no confieren propiedades tóxicas a las composiciones que la contienen.

45 Estos derivados pueden, por ejemplo, incluir cadenas laterales de polietilenglicol, que podrían enmascarar los sitios antigénicos y extender la permanencia de las isoformas de IL-18BP en los líquidos corporales. Otros derivados incluyen ésteres alifáticos de los grupos carboxilo, amidas de los grupos carboxilo mediante reacción con amoníaco o con

aminas primarias o secundarias, derivados N-acilados de los grupos amino libres de los restos aminoacídicos formados con restos acilo (por ejemplo grupos alcanoílo o aroílo carbocíclico) o derivados O-acilados de los grupos hidroxilo libres (por ejemplo, el de los restos serilo o treonilo) formados con restos acilo.

Como «fracciones activas» de las isoformas de la IL-18BP que se producen de forma natural de acuerdo con la presente invención, las muteínas y las proteínas de fusión, la presente invención abarca cualquier fragmento o precursores de la cadena polipeptídica de la molécula proteica sola o junto a restos o moléculas asociados unidos a la misma, por ejemplo, restos de azúcar o fosfato, o agregados de la molécula proteica o de los restos de azúcares por sí mismos, con tal de que dicha fracción tenga una actividad sustancialmente similar a la IL-18BPb y/o a la IL-18BPd.

5

20

35

40

45

55

La terminología «sales» se refiere en la presente memoria tanto a sales de grupos carboxilo como a sales por adición de ácido de los grupos amino de una isoforma de IL-18BP de acuerdo con la presente invención o análogos de la misma. Las sales de un grupo carboxilo se pueden formar con los medios conocidos en la técnica e incluyen sales inorgánicas, por ejemplo, sodio, calcio, amoníaco, sales férricas o de cinc, y similares, y las sales con las bases orgánicas como las formadas, por ejemplo, con las aminas, tales como trietanolamina, arginina o lisina, piperidina, procaína y similares. Las sales por adición de ácido incluyen, por ejemplo, sales con ácidos minerales, tales como, por ejemplo, ácido clorhídrico o ácido sulfúrico, y sales con ácidos orgánicos, tales como, por ejemplo, ácido acético o ácido oxálico. Por supuesto, cualquiera de estas sales debe retener la actividad biológica de la isoforma de IL-18BP relevante para la presente invención.

Los derivados funcionales de las isoformas de la IL-18BP de acuerdo con la presente invención pueden estar conjugados a polímeros para mejorar las propiedades de la proteína, tal como la estabilidad, semivida, biodisponibilidad, tolerancia para el cuerpo humano, o inmunogenia. Para alcanzar este objetivo, la isoforma de la IL-18BP de acuerdo con la presente invención puede estar unida covalentemente, por ejemplo, a polietilenglicol (PEG). La PEGilación se puede llevar a cabo por los métodos conocidos, descritos en la patente internacional WO 92/13095, por ejemplo.

Por lo tanto, en una realización preferente de la presente invención, la isoforma de IL-18BP de acuerdo con la presente invención está PEGilada.

En otra realización preferentemente de la invención, la proteína fusionada comprende una fusión con inmunoglobulina (Ig). La fusión puede ser directa o a través de un péptido conector corto que puede tener tan solo de 1 a 3 aminoácidos de longitud, o ser más largo, por ejemplo de 13 aminoácidos de longitud. Dicho conector puede ser un tripéptido de secuencia E-F-M (Glu-Phe-Met), por ejemplo, o una secuencia conectora de 13 aminoácidos que comprende la secuencia Glu-Phe-Gly-Ala-Gly-Leu-Val-Leu-Gly-Gly-Gln-Phe-Met introducida entre la secuencia de la isoforma de la IL-18BP y la secuencia de la inmunoglobulina, por ejemplo. La proteína de fusión resultante tiene mejores propiedades, tal como una extensión del tiempo de permanencia en los líquidos corporales (semivida), o un incremento de la actividad específica o incremento del nivel de expresión. La fusión a lg también podría facilitar la purificación de la proteína de fusión.

En otra realización preferente más, una isoforma de IL-18BP de acuerdo con la presente invención se fusiona con la región constante de una molécula de Ig. Preferentemente, se fusiona con regiones de la cadena pesada, como los dominios CH2 y CH3 de la IgG1 humana, por ejemplo. Otras isoformas de las moléculas de Ig también son adecuadas para la generación de proteínas de fusión de acuerdo con la presente invención, tales como las isoformas IgG2 o IgG4, u otras clases de Ig, como IgM, por ejemplo. Las proteínas de fusión puede ser monoméricas o multiméricas, heteromultiméricas u homomultiméricas. La porción de la inmunoglobulina de la proteína de fusión se puede modificar adicionalmente de manera que no active la fijación del complemento ni la cascada del complemento ni se fije a los receptores de Fc.

La invención se refiere además al uso de una combinación de una isoforma de IL-18BP de acuerdo con la presente invención como un agente inmunosupresor para la fabricación de un medicamento para el tratamiento y/o prevención de una enfermedad inflamatoria neurológica, mediante uso simultáneo, secuencial o independiente. Los agentes inmunosupresores pueden ser esteroides, metotrexato, ciclofosfamida, anticuerpos antileucocito (tales como CAMPATH-1), y similares.

La invención se refiere además al uso simultáneo, secuencial o independiente de:

- 1) una isoforma de IL-18BP tal y como se define en la reivindicación 1; y
- 2) un polipéptido seleccionado entre el grupo que consiste en interferón, osteopontina y clusterina
- 50 para la fabricación de un medicamento para el tratamiento y/o prevención de una enfermedad inflamatoria neurológica.

La terminología «interferón» tal y como se usa en la presente solicitud de patente se pretende que incluya cualquier molécula definida como tal en la bibliografía, y comprende por ejemplo cualquier tipo de IFN mencionado en el apartado anterior titulado «Antecedentes de la invención». Preferentemente, el interferón puede ser humano, pero también derivado de otras especies, siempre y cuando la actividad biológica sea similar a la de los interferones humanos, y que la molécula no sea inmunógena en los humanos. En particular, en la definición anterior se incluye cualquier tipo de IFN-α, IFN-β e IFN-γ. El IFN-β, y más específicamente el IFN -β1a, es el IFN preferente de acuerdo con la presente

invención. Las terminología «interferón β (IFN- β)», tal y como se usa en la presente invencŏn, se pretende que incluya el interferón de los fibroblastos humanos, que se obtiene por aislamiento a partir de los líquidos biológicos o mediante técnicas de ADN recombinante a partir de células hospedadoras procarióticas o eucarióticas, así como sus sales, derivados funcionales, variantes, análogos y fragmentos. Los interferones también se pueden conjugar con polímeros para mejorar la estabilidad de las proteínas. Por ejemplo, en la patente internacional WO99/55377 se ha descrito un conjugado entre el interferón β y el poliol polietilenglicol (PEG).

«Osteopontina», tal y como se usa en la presente memoria, abarca también las muteínas, fragmentos, fracciones activas y derivados funcionales de la osteopontina. Estas proteínas se describen, por ejemplo, en la patente internacional WO 02/092122.

40 «Clusterina», tal y como se usa en la presente memoria, abarca también las muteínas, fragmentos, fracciones activas y derivados funcionales de la clusterina. Estas proteínas se describen, por ejemplo, en la patente internacional WO 04/084932.

En una realización preferente de la presente invención, la isoforma de IL-18BP de acuerdo con la presente invención se usa en una cantidad de:

a) unos 0,001 a 100 mg/kg de masa corporal; o

5

45

- b) unos 0,01 a 10 mg/kg de masa corporal; o
- c) unos 0,1 a 1 mg/kg de masa corporal; o
- d) unos 9, 8, 7, 6, 5, 4, 3, 2 o 1 mg/kg de masa corporal.

La invención se refiere adicionalmente al uso de una molécula de ácido nucleico para fabricar un medicamento para el tratamiento y/o prevención de una enfermedad neurológica periférica, en la que la molécula del ácido nucleico comprende una secuencia de ácido nucleico de acuerdo con la reivindicación 1, en particular, que codifica un polipéptido que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en:

- a) Un polipéptido que comprende la SEQ ID n.º 1;
- b) Un polipéptido que comprende los aminoácidos 29 a 113 de la SEQ ID n.º 1;
- 25 c) Un polipéptido que comprende los aminoácidos 78 a 113 de la SEQ ID n.º 1;
 - d) Un polipéptido que comprende la SEQ ID n.º 2;
 - e) Un polipéptido que comprende los aminoácidos 29 a 161 de la SEQ ID n.º 2;
 - f) Una muteína de una cualquiera de (a), (b), (d) o (e), en la que la secuencia de aminoácidos tiene al menos un 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% o 99% de identidad con al menos una de las secuencias de (a) a (e);
- g) Una muteína de una cualquiera de (a) a (e) que está codificada por una secuencia de ADN que se hibrida con el complemento de la secuencia de ADN nativa que codifica una cualquiera de (a) a (e) en condiciones moderadamente rigurosas o en condiciones muy rigurosas;
 - h) Una muteína de una cualquiera de (a) a (e), en la que cualquier cambio de la secuencia de aminoácidos es una sustitución conservativa de aminoácido en las secuencias de aminoácidos de (a) a (e);
- i) Una sal o una proteína de fusión, derivado funcional, fracción activa o derivado de permutación circular de una cualquiera de (a) a (h).

El ácido nucleico se puede administrar, por ejemplo, como una molécula desnuda de ácido nucleico, por ejemplo, mediante inyección intramuscular.

Podría comprender además secuencias de vector, tales como secuencia vírica, útiles para la expresión del gen codificado por la molécula de ácido nucleico del cuerpo humano, preferentemente en las células o los tejidos adecuados.

Por lo tanto, en una realización preferente, la molécula de ácido nucleico comprende además una secuencia del vector de expresión. Las secuencias de vectores de expresión se conocen bien en la técnica, y comprenden otros elementos que sirven para expresar el gen de interés. Pueden comprender secuencias reguladoras, tal como secuencias promotoras y potenciadoras, secuencias de marcadores de selección, orígenes de replicación, y similares. Por esta razón se utiliza una estrategia genoterápica para tratar y/o prevenir la enfermedad. Ventajosamente, la expresión de la isoforma de IL-18BP de acuerdo con la presente invención será *in situ*.

En una realización preferente de la invención, el vector de expresión se puede administrar mediante una inyección intramuscular.

El uso de un vector para inducir y/o potenciar la producción endógena de una isoforma de la IL-18BP de acuerdo con la invención en una célula que normalmente no expresa dicha isoforma de IL-18BP, o que expresa una cantidad de dicha isoforma de IL-18BP que no es suficiente, también están contempladas de acuerdo con la invención. El vector puede comprender secuencias reguladoras funcionales en las células que se desea que expresen la isoforma de IL-18BP de acuerdo con la presente invención. Tales secuencias reguladoras pueden ser promotores o potenciadores, por ejemplo. La secuencia reguladora se puede entonces introducir en el locus adecuado del genoma mediante recombinación homóloga, quedando así operativamente unidas la secuencia reguladora y el gen cuya expresión es necesario inducir o potenciar. La tecnología se suele denominar «activación génica endógena» (AGE), y se describe por ejemplo en la patente internacional WO 91/09955.

La invención se refiere adicionalmente al uso de una célula que se ha modificado genéticamente para que sintetice la isoforma de IL-18BP de acuerdo con la invención para fabricar un medicamento para el tratamiento y/o la prevención de las enfermedades neurológicas periféricas.

También se describe una célula que se ha modificado genéticamente para que sintetice una isoforma de IL-18BP de acuerdo con la invención para la fabricación de un medicamento para el tratamiento y/o prevención de las enfermedades neurológicas. Así pues, se podría utilizar una estrategia genoterápica para administrar el fármaco a las partes adecuadas del cuerpo humano.

Se describen además composiciones farmacéuticas, particularmente útiles para la prevención y/o el tratamiento de las enfermedades inflamatorias neurológicas, que comprenden:

- a) una cantidad terapéuticamente eficaz de una isoforma de IL-18BP de acuerdo con la invención, o de un agonista de la misma:
- b) un excipiente farmacéuticamente aceptable; y opcionalmente

5

15

20

- c) una cantidad terapéuticamente eficaz de un inmunosupresor.
- El inmunosupresor puede ser, por ejemplo, un polipéptido seleccionado entre el grupo que consiste en un interferón, osteopontina y clusterina.
- Con la definición de «vehículo farmacéuticamente aceptable» se pretende englobar a cualquier vehículo que no interfiera con la eficacia de la actividad biológica del ingrediente activo y que no sea tóxico para el hospedador al que se administre. Por ejemplo, para la administración parenteral, la proteína o proteínas activas se pueden formular en una forma de dosis unitaria para la inyección en vehículos, tales como disolución salina, disolución con dextrosa, seroalbúmina y disolución de Ringer.
- Los ingredientes activos de la composición farmacéutica de acuerdo con la invención se pueden administrar a un individuo de muchas maneras. Las rutas de administración incluyen las vías intradérmica, transdérmica (por ejemplo, en formulaciones de liberación prolongada), intramuscular, intraperitoneal, intravenosa, subcutánea, oral, epidural, tópica, intratecal, rectal e intranasal. Se puede usar cualquier otra vía de administración terapéuticamente eficaz, por ejemplo la absorción a través de los tejidos endoteliales o epiteliales, o mediante genoterapia, en donde una molécula de ADN que codifica el agente activo se administra al paciente (por ejemplo, mediante un vector), lo que provoca que el agente activo se exprese y se secrete *in vivo*. Además, la proteína o proteínas de acuerdo con la invención se pueden administrar junto a otros componentes de agentes biológicamente activos, tales como tensioactivos, excipientes, portadores, diluyentes y vehículos farmacéuticamente aceptables.
- Para la administración parenteral (por ejemplo, intravenosa, subcutánea, intramuscular), la proteína o proteínas activas se pueden formular como una solución, suspensión, emulsión o polvo liofilizado en asociación con un vehículo parenteral farmacéuticamente aceptable (por ejemplo, agua, solución salina, solución de dextrosa) y aditivos que mantienen la isotonía (por ejemplo, manitol) o la estabilidad química (por ejemplo, conservantes y tampones). La formulación se esteriliza mediante las técnicas que se utilizan más habitualmente.
- La biodisponibilidad de la proteína o proteínas activas de acuerdo con la invención se puede mejorar mediante procedimientos de conjugación que incrementan la semivida de la molécula en el cuerpo humano, por ejemplo uniendo covalentemente la molécula con el polietilenglicol, tal y como se describe en la solicitud de patente internacional PCT WO 92/13095.
- La cantidad terapéuticamente eficaz de la proteína o proteínas activas estará en función de muchas variables, que incluyen el tipo de proteína, la afinidad de la proteína, cualquier actividad citotóxica residual que muestren los antagonistas, la vía de administración, la situación clínica del paciente (que incluye la deseabilidad de mantener un nivel no tóxico de actividad de IL-18BP endógena).
 - Una «cantidad terapéuticamente eficaz» es aquella que, cuando se administra, la isoforma de IL-18BP de acuerdo con la presente invención ejerce un efecto beneficioso sobre la enfermedad inflamatoria neurológica. La dosis administrada, como dosis única o múltiple, a un individuo variará según una serie de factores, entre ellos las propiedades farmacocinéticas de la IL-18BP, la vía de administración, el estado del paciente y sus características (sexo, edad, masa

corporal, salud, tamaño), la extensión de los síntomas, los tratamientos simultáneos, la frecuencia del tratamiento y el efecto deseado.

La isoforma de IL-18BP de acuerdo con la invención se puede usar preferentemente en una cantidad de unos 0,001 a 10 mg/kg o de unos 0,01 a 5 mg/kg de masa corporal, o de unos 0,1 a 3 mg/kg de masa corporal o aproximadamente de 1 a 2 mg/kg de masa corporal. Las cantidades más preferentes de IL-18BP son cantidades de unos 0,1 a 1000 μg/kg de masa corporal o de aproximadamente 1 a 100 μg/kg de masa corporal o de unos 10 a 50 μg/kg de masa corporal.

La vía de administración que se prefiere de acuerdo con la invención es la administración por vía subcutánea. La administración muscular es también preferente de acuerdo con la invención.

En otras realizaciones preferentes, la isoforma de IL-18BP de acuerdo con la invención se administra cada día o en días alternos.

Las dosis diarias se administran normalmente en dosis divididas o en formas de liberación prolongada que resultan eficaces para alcanzar los resultados deseados. La segunda administración o las posteriores se pueden realizar en una dosificación que sea la misma, menor o mayor que la dosis inicial o previa que se ha administrado a un individuo. Una segunda administración, o posterior, se puede administrar durante la enfermedad o antes de que aparezca.

- De acuerdo con la invención la isoforma de IL-18BP de acuerdo con la invención se puede administrar preventiva o terapéuticamente a un individuo antes, a la vez o secuencialmente con otras pautas o agentes terapéuticos (por ejemplo, pautas multifarmacológicas), en una cantidad terapéuticamente eficaz, en particular con un interferón. Los agentes activos que se administran a la vez que otros agentes terapéuticos se pueden administrar en la misma composición, o en composiciones independientes.
- La descripción precedente de las realizaciones específicas también revelarán completamente la naturaleza general de la invención que otros pueden, aplicando los conocimientos que se conocen en la técnica (incluido el contenido de las referencias que aquí se citan), modificarla y/o adaptarla fácilmente para las distintas aplicaciones tales como las realizaciones específicas, sin experimentación innecesaria, sin alejarse del concepto general de la presente invención. Por lo tanto, tales adaptaciones y modificaciones se pretende que estén dentro del margen significativo de equivalentes de las realizaciones descritas, basándose en las enseñanzas y en la orientación presentadas en la presente memoria. Hay que entender que la fraseología o la terminología de la presente memoria tienen el propósito de describir y no de limitar, de tal forma que la terminología o fraseología de la presente especificación la tiene que interpretar el experto en la técnica a la luz de las enseñanzas y orientaciones presentadas en la presente memoria, en combinación con el conocimiento del propio experto en la técnica.
- 30 Estando ya descrita la invención, se entenderá mejor al hacer referencia a los siguientes ejemplos que se dan a conocer a modo de ilustración y que no se pretende que limiten el alcance de la presente invención.

Ejemplos

35

40

5

EJEMPLO 1: expresión recombinante de las isoformas IL-18BPb v d

Las isoformas IL-18BPb e IL-18BPd, fusionadas a una etiqueta en sus extremos carboxilo para permitir su purificación, se expresaron en las células HEK y se purificaron como sigue.

Se diluyeron 100 ml de muestra de medio de cultivo que contiene la proteína recombinante con 10 ml de tampón A frío (NaH₂PO₄ a 50 mM; NaCl a 600 mM; glicerol al 8,7% (p/v), pH 7,5). La muestra se filtró a través de un filtro estéril de 0,22 μm (Millipore, unidad de filtro de 500 ml) y se mantuvo en una botella de medio cuadrada y estéril (Nalgene).

La purificación se realizó a 4 °C en una estación de trabajo VISIO (Applied Biosystems) conectada a un cargador de muestras automático (Labomatic). El procedimiento de purificación comprendió dos etapas sucesivas: cromatografía de afinidad específica de la etiqueta y luego filtración en gel en una columna (1,0 x 10 cm) de medio Sephadex G-25 (Amersham Pharmacia).

En la primera etapa cromatográfica se eluyó la proteína, que se recogió en una fracción de 1,6 ml.

Para la segunda etapa de cromatografía, la columna de filtración en gel Sephadex G-25 se regeneró con 2 ml de tampón D (NaCl a 1,137 M; KCl a 2,7 mM, KH₂PO₄ a 1,5 mM; Na₂HPO₄ a 8 mM, pH 7,2), y equilibrado posterior con 4 volúmenes de la columna de tampón C (NaCl a 137 mM; KCl a 2,7 mM, KH₂PO₄ a 1,5 mM; Na₂HPO₄ a 8 mM; glicerol al 20% (p/v), pH 7,4). La fracción del pico eluida en la primera etapa se cargó automáticamente en la columna de Sephadex G-25 mediante el cargador de muestras integrado del aparato VISION. La proteína se eluyó con el tampón C a una velocidad de flujo de 2 ml/min. La muestra desalada se recuperó en una fracción de 2,2 ml. La fracción se filtró por un filtro de centrifugación estéril de 0,22 μm (Millipore), se congeló y se conservó a –80 °C. Se analizó una alícuota de la muestra en una electroforesis en gel de poliacrilamida con SDS (gel NuPAGE al 4-12%, Novex) mediante tinción con Coomassie e inmunotransferencia con anticuerpos anti-tag.

Tinción con Coomassie: el gel NuPAGE se tiño con la solución de tinción de azul de Coomassie R250 al 0,1% (metanol al 30%, ácido acético al 10%) a temperatura ambiente durante 1 hora y se destiñó posteriormente en una solución de

metanol al 20% y ácido acético al 7,5% hasta que el fondo se volvió transparente y las bandas de proteínas se veían con claridad.

Inmunotransferencia: tras la electroforesis, las proteínas se electrotransfirieron desde el gel a una membrana de nitrocelulosa a 290 mA durante 1 h a 4 °C. La membrana se bloqueó con leche en polvo al 5% en el tampón E (NaCl a 137 mM; KCl a 2,7 mM, KH₂PO₄ a 1,5 mM; Na₂HPO₄ a 8 mM; Tween 20 al 0,1%, pH 7,4) durante 1 h a temperatura ambiente. La membrana se incubó posteriormente durante una noche a 4 °C con una mezcla de 2 anticuerpos policlonales de conejo anti-etiqueta (G-18 y H-15, cada uno a 0,2 µg/ml; Santa Cruz) en el tampón E que contiene leche en polvo al 2,5%. Tras una hora adicional de incubación a temperatura ambiente, la membrana se lavó con el tampón E (3 x 10 min) y se incubó durante 2 h a temperatura ambiente con un anticuerpo secundario anticonejo conjugado a HRP (DAKO, HRP 0399) diluido a 1/3000 en tampón E que contiene leche en polvo al 2,5%. Después de lavar con el tampón E (3 x 10 min), se reveló la membrana con el kit ECL (Amersham, Pharmacia) durante 1 min. La membrana se expuso posteriormente en un Hyperfilm (Amersham Pharmacia), se reveló la película y se analizó a simple vista la imagen de la inmunotransferencia.

Ensayo de proteínas: La concentración de proteínas se determinó con el kit de ensayo de proteínas BCA (Pierce) con seroalbúmina bovina como estándar. La media de recuperación de la proteína era de 216 µg de IL-18 purificada por 500 ml de medio de cultivo.

<u>EJEMPLO 2:</u> efecto de las isoformas IL-18BPb e IL-18BPd sobre la translocación nuclear de STAT2 en las células U373 de glioblastoma humano

Abreviaturas:

5

10

25

35

40

45

20 <u>STAT</u>: transductor de señales y activador de transcripción.

U373: células de glioblastoma de origen humano.

ArrayScan HCS System (de CellomicsTM): sistema de análisis de imagen.

<u>Unidades de translocación nuclear</u>: la translocación nuclear se midió con el programa «Translocación del citoplasma al núcleo» del sistema de análisis de imagen ArrayScan HCS System (CellomicsTM). Las unidades de translocación nuclear representan la medición de la intensidad media de la diana en la región nuclear menos la intensidad media de la región citoplásmica. Las unidades de translocación nuclear son un promedio del valor de todas las células analizadas en un pocillo dado (unas 100 células/pocillo). En el programa que se utilizó, el nombre de la función es «MeanNucCytoIntenDiff» y las unidades son «Intensidad de fluorescencia».

EEM: error estándar de la media.

30 Introducción

Se ha evaluado el efecto de IL-18BPb y de IL-18BPd sobre la biología de los astrocitos. En la línea celular U373 de astroglioma humano se han realizado una serie de ensayos basados en la translocación de factores de transcripción tales como c-Jun, NFκB, STAT1, STAT2 y STAT3 desde el citoplasma hasta el núcleo. Los controles positivos fueron la IL-1β para los ensayos de c-Jun y NFκB, el IFNγ para los ensayos de STAT1 y STAT3, y el IFNβ para los ensayos de STAT2.

Materiales y métodos

Las células U373 (ECACC, n.º de referencia 89081403) se inocularon a una densidad de 4000 células/pocillo en placas de 96 pocillos (Packard ViewPlateTM-96, negras, n.º de catálogo 6005225) en 80 µl de DMEM con STF al 10%. La placas se dejaron una noche a 37 °C en un incubador humidificado con CO₂ al 5%. Al día siguiente se añadieron a los pocillos 20 µl del medio de cultivo que contiene la proteína a analizar. Una vez transcurridos 30 min se retiró el medio y se fijaron las células con formaldehído al 3,7% (Sigma, n.º de catálogo 25,254-9).

Las células se prepararon para la inmunotinción con kits comerciales y de acuerdo con las instrucciones del fabricante. Para el ensayo de c-Jun se utilizó el HitKitTM de activación de c-Jun de Cellomics (n.º de catálogo K01-0003-1). Para el ensayo de NFkB se utilizó el HitKitTM de activación de NFkB de Cellomics (n.º de catálogo K01-0001-1). Para el ensayo de STAT1 se utilizó el HitKitTM de activación de STAT1 de Cellomics (n.º de catálogo K01-0002-1). Para el ensayo de STAT2 se utilizó el HitKitTM de activación de STAT2 de Cellomics (n.º de catálogo K01-0005-1). Para el ensayo de STAT3 se utilizó el HitKitTM de activación de STAT3 de Cellomics (n.º de catálogo K01-0008-1).

Después de la inmunotinción, se leyeron las placas en un dispositivo Array-Scan II.

Controles positivos: para los ensayos de translocación nuclear de Nk̄B y c -Jun se utilizaron 0,5 ng/ml de IL-1β (R&D Systems, n.º de catálogo 201-LB) como control positivo. Para los ensayos de translocación nuclear de STAT2 se utilizaron 1000 Ul/ml del IFN-β humano recombinante como control positivo. Para los ensayos de STAT1 y STAT3 se utilizaron 5000 Ul/ml de IFN-γ (R&D Systems, n.º de catálogo 285-IF-100) como control positivo.

Análisis de datos

Los resultados se expresaron como unidades de translocación nuclear. Para comparar varios experimentos, los resultados se expresaron como un porcentaje de la estimulación máxima calculada con los controles positivos (IL-1 β , IFN- γ e IFN- β). Los adissis estadísticos se realizaron con la prueba de la t de Student o el análisis de varianza (ANOVA) y el ANOVA monofactorial, seguido por la prueba de Dunnett según el número de grupos por experimento. El umbral de significación se fijó a una p < 0,05. Los resultados se expresaron como la media \pm error estándar de la media (EEM).

Resultados

La adición de IL-18BPb o de IL-18BPd a las células U373 estimuló significativamente la translocación nuclear de STAT2 (figura 3a). La estimulación corresponde a un 30-50% de la estimulación máxima alcanzada con el IFNβ. Ni la IL-18BPb ni la IL-18BPd indujeron la translocación nuclear de STAT1, STAT3, c-Jun o NFκB (figura 3b para los resultados obtenidos con STAT1 y STAT 3).

La IL-18BPa recombinante humana, la IL-18BPc recombinante humana y la IL-18BPd recombinante de ratón (el ortólogo de la IL-18BPa humana) también se utilizaron para analizar la translocación nuclear de STAT2 en las células U373. Ninguna de estas isoformas de IL-18BP ni sus variantes estimuló la translocación de STAT2 (figura 4 para los resultados obtenidos con IL-18BPa de humano e IL-18BPd de ratón).

El ligando natural de IL-18BPa e IL-18BPc es IL-18, que no induce tampoco la translocación de STAT2 (figura 4), lo que resalta el hecho de que el efecto obtenido con las IL-18BPb y d no es un efecto común de todas las isoformas de IL-18BP.

20 Conclusiones

15

25

Los experimentos anteriores muestran que la IL-18BPb y la IL-18BPd tienen la capacidad de iniciar la señalización extracelular al inducir la translocación nuclear de STAT2 en las células U373. La inducción de la translocación nuclear de STAT2 es específica porque otros factores de transcripción tales como c-Jun, NFkB, STAT1 y STAT3 no se ven inducidos. El hecho de que IL-18BPa e IL-18BPc no estimulen la translocación de STAT2, junto con la comparación de las secuencias de aminoácidos de todas las isoformas (figura 2), sugiere que los 36 aminoácidos carboxiterminales de IL-18BPb e IL-18BPd son los responsables de la especificidad de la respuesta. Estos 36 aminoácidos carboxiterminales de la IL-18BPb y de la IL-18BPd corresponden a los aminoácidos 78 a 113 de la SEQ ID. n.º 1.

EJEMPLO 3: las IL-18BPb y d atenúan la producción de IL-6 y MCP-1 en las células de glioblastoma humano U373 y U251

30 Introducción

IL-6 y MCP-1 con quimiocinas proinflamatorias. La IL-1 β y el IFN γ estimulan la secreción de IL-6 y MCP-1 en las células de glioblastoma humano U373 y U251. Se analizó el efecto de las IL-18BPb y d sobre la secreción de IL-6 y MCP-1 en las células U373 y U251 estimuladas con IL-1 β e IFN γ .

Materiales y métodos

Se inocularon células U373 (ECACC, n.º de referencia 89081403) o U251 (Health Science Research Resources Bank [HSRRB] de referencia U-251 MG) a una densidad de 4000 células / pocillo en placas de 96 pocillos (Packar ViewPlateTM-96, negras, n.º de catálogo 6005225) en 100 μl de DMEM con STF al 10%. Las células de dejaron una noche a 37 °C en un incubador humidificado con CO₂ al 5%. Al día siguiente se tomaron 20 μl del medio de cultivo que contiene la proteína a ensayar y se añadieron a los pocillos junto con 80 μl de medio de cultivo que contenía IL-1β e IFNγ. Las concentraciones finales de IL-1β e IFNγ fueron las siguientes: 0, 1, 3, 10 y 30 μg/ml. Transcurridas 24 y 48 h, se recogieron 50 μl del medio. Se midió la cantidad de IL-6 y de MCP-1 mediante kits de ELISA (R&D Systems: Duoset Human IL-6, n.º de catálogo DY206; Duoset Human MCP-1, n.º de catálogo DY279).

Análisis de datos

Los resultados se expresaron como picogramos de proteína por mililitro. Los análisis estadísticos se realizaron con la prueba de la t de Student o del análisis de varianza (ANOVA) y el ANOVA monofactorial, seguido por la prueba de Dunnett según el número de grupos por experimento. El umbral de significación se fijó a p < 0,05. Los resultados se expresaron como la media \pm error estándar de la media (EEM).

Resultados

50

El tratamiento de las células U373 con la IL-1β indujo tanto la secreón de IL -6 como la de MCP-1 de una forma dependiente de la dosis. Al añadir también el IFŊ se aumentó más la secreción de IL-6 y de MCP-1 (figura 5a). Al tratar las células con IL-18BPb o IL-18BPd a la vez que IL-1β ± IFNγ disminuyó significativamente la cantidad de IL-6 que se secretaba, y la cantidad de MCP-1 que se secretaba (figura 5a) de una forma dependiente de la dosis. Se obtuvo el mismo efecto con otras líneas celulares de astroglía humana, la U251 (figura 5b). También se muestra que la IL-

18BPb sola o la IL-18BPd sola no inducen la secreción ni de IL-6 ni de MCP-1 en ninguna de las células U373 ni U251.

Conclusiones

Esta serie de experimentos demuestran la actividad antiinflamatoria de la IL-18Bpb y de la IL-18BPd en un modelo de respuesta inducida por IL-1 β e IFN γ .

5 EJEMPLO 4: la IL-18BPb y la IL-18BPd protegen frente a la apoptosis inducida por TRAIL

Introducción

Se investigó la capacidad que tienen la IL-18BPb y la IL-18BPb para rescatar a las células de la apoptosis inducida por TRAIL en las células L929, una línea celular de fibroblastos murinos.

Materiales y métodos

Los fibroblastos de ratón L929 (CCL-1) se inocularon en placas de 96 pocillos a razón de 20 000 células/pocillo en 100 μl de DMEM con STF al 2%. Las células se incubaron una noche a 37 °C en una cámara humidificada con CO₂ al 5%. Al día siguiente, el medio se reemplazó por medio nuevo que contenía 1 μg/ml de actinomicina D (Fluka, referencia n.º 01817) y 2 ng/ml de TRAIL (R&D, TRAIL recombinante humana/TNFS10, n.º de catálogo 375-TEC) para inducir la apoptosis. Transcurridas 24 horas, se determinó la cantidad de LDH en el sobrenadante (Promega, n.º de referencia G179A). Como control positivo se utilizó osteoprotegerina (R&D, n.º de catálogo 185-OS).

Análisis de datos

Los resultados se expresaron como densidad óptica (DO). Los análisis estadísticos se realizaron con la medición del análisis de varianza (ANOVA) y el ANOVA monofactorial, seguido de la prueba de Dunnett. El nivel de significación se fijó a p < 0.05. Los resultados se expresaron como la media \pm error estándar de la media (EEM).

20 Resultados

Al añadir la IL-18Bpb o la IL-18BPd al medio de cultivo, las células L929 se protegieron significativamente de la apoptosis inducida por TRAIL. El nivel de protección obtenido con 30 μg/ml de IL-18BPb fue igual al 47% de la protección obtenida con la osteoprotegerina, y el nivel de protección obtenido con 30 μg/ml de IL-18BPd fue igual al 55% de la protección obtenida con la osteoprotegerina (figura 6).

25 Conclusión

35

40

45

Estos experimentos revelan la función protectora de IL-18Bpb y de IL-18BPd en un ensayo de muerte celular debida a la apoptosis. Así pues, la IL-18BPb y la IL-18BPd muestran una actividad antiapoptósica sobre los fibroblastos.

EJEMPLO 5: expresión tisular de la isoforma IL-18BPd

Introducción

30 Se realizó un análisis por PCR en tiempo real de la expresión de la IL-18Bpd en diferentes tejidos humanos para conseguir información sobre la distribución tisular.

Materiales y métodos

Los cebadores de SEQ ID n.º 7-12 se diseñaron con el programa Primer Express de PE Applied Biosystems (Foster City, CA). Las SEQ ID n.º 5 y 6 corresponden a cebadores específicos de la GAPDH (control de mantenimiento). Las SEQ ID n.º 7 y 8 corresponden a cebadores de intrón de la GAPDH (control de contaminación de DNA). Las SEQ ID n.º 9 y 10 corresponden a cebadores que amplifican todas las isoformas humanas de IL-18BP. Las SEQ ID n.º 11 y 12 corresponden a los cebadores específicos de la isoforma humana de IL-18BPd.

La posible contaminación con DNA genómico se excluyó al realizar la PCR con los cebadores específicos de intrón de GAPDH. La ausencia de amplificación inespecífica se confirmó al analizar los productos de PCR por electroforesis en gel de agarosa. La PCR en tiempo real se realizó con 5 µl/pocillo de productos de retrotranscripción (0,5 ng de RNA total), 25 µl/pocillo de la mezcla madre para PCR de SYBR Green (PE Applied Biosystems) y 0,5 U/pocillo de la uracilo N-glucosilasa AmpErase y cebadores a 300 nM. La PCR se realizó a 50 °C durante 2 min y 95 °C durante 10 min, y luego se continuó con 40 ciclos de 95 °C durante 15 s y 60 °C durante 1 min en el sistema de detección ABI PRISM 7700 (PE Applied Biosystems). Las muestras ADNc de tejidos restrotranscritas se amplificaron y se les determinaron los valores de ciclo umbral. Todos los valores de ciclo umbral se normalizaron con el gen de mantenimiento GAPDH.

Resultados

Los análisis de Taqman revelaron diferencias importantes en la distribución tisular de la IL-18BPd. La IL-19BPd se expresaba predominantemente en el bazo, el páncreas y la placenta (el 80% o más de la expresión de GAPDH) (figura 7).

Cuando se usan los cebadores que amplifican los ARNm de las cuatro isoformas, los transcritos se detectaron en el corazón y los músculos (resultados no mostrados). Es conveniente destacar que el corazón y los músculos carecían del ARNm de IL-18BPd (figura 7). Los transcritos de la IL-18BP detectados en estos órganos probablemente correspondan con los ARNm de la isoforma IL-18BPa, que se había demostrado previamente que se expresaba en estos órganos (Mallat et al., 2004).

Conclusión:

5

Estos resultados sugieren que la expresión de la IL-18BPd tiene una regulación dependiente del órgano. Además, confirman el hecho de que la expresión de la IL-18BPd no es un producto colateral de la IL-18BPa.

En conclusión, la isoforma IL-18BPd muestra tanto su propio mecanismo de acción como su propio patrón de expresión.

10 <u>REFERENCIAS</u>

- 1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. y Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
- 2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. y Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
- 3. Brutlag, D. L., Dautricourt, J. P., Maulik, S. y Relph, J. (1990). Improved sensitivity of biological sequence database searches, Comput. Appl. Biosci. 6, 237-245.
 - 4. Chater, K. F. Sixth International Symposium on Actinomycetales Biology. 45-54. 1986. Akademiai Kaido. Budapest, Hungría.
- 5. Comabe|la, M., Imitola, J., Weiner, H. L., y Khoury, S. J. (2002). Interferon-beta treatment alters peripheral blood monocytes chemokine production in MS patients, J. Neuroimmunol, 126, 205-212.
 - 6. Consilvio, C., Vincent, A. M. y Feldman, E. L. (2004). Neuroinflammation, COX-2, and ALS—a dual role? Exp. Neurol. 187, 1-10.
 - 7. Conti, B., Jahng, J. W., Tinti, C., Son, J. H. y Joh, T. H. (1997). Induction of interferon-gamma inducing factor in the adrenal cortex, J. Biol. Chem. 272, 2035-2037.
- 8. Conti, P. y DiGioacchino, M. (2001). MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc. 22, 133-137.
 - 9. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. y Karin, M. (1997). A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388, 548-554.
- 10. Eikelenhoom, P., Bate, C., Van Gool, W. A., Hoozemans, J. J., Rozemuller, J. M., Veerhuis, R. y Williams, A. (2002).

 Neuroinflammation in Alzheimer's disease and prion disease. Glia 40, 232-239.
 - 11. Gao, H. M., Liu, B., Zhang, W. y Hong, J. S. (2003). Novel anti-inflammatory therapy for Parkinson's disease. Trends Pharmacol. Sci. 24, 395-401.
 - 12. Gonnet, G. H., Cohen, M. A. y Benner, S. A. (1992). Exhaustive matching of the entire protein sequence database. Science 256, 1443-1445.
- 35 13. Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science 185, 862-864.
 - 14. Henikoff, S. y Henikoff, J. G. (1993). Performance evaluation of amino acid substitution matrices. Proteins 17, 49-61.
 - 15. Higgins, D. G., Thompson, J. D. y Gibson, T. J. (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383-402.
- 16. Hua, L. L., Kim, M. O., Brosnan, C. F. y Lee, S. C. (2002). Modulation of astrocyte inducible nitric oxide synthase and cytokine expression by interferon beta is associated with induction and inhibition of interferon gamma-activated sequence binding activity. J. Neurochem. 83, 1120-1128.
 - 17. Hunter, C. L., Bachman, D. y Granholm, A. C, (2004). Minocycline prevents cholinergic loss in a mouse model of Down's syndrome, Ann. Neurol. 56, 675-688.
- 18. Infante, J., Llorca, J., Berciano, J. y Combarros, O. (2005). Interleukin-8, intercellular adhesion molecule-1 and tumour necrosis factor-alpha gene polymorphisms and the risk for multiple system atrophy. J. Neurol. Sci. 228, 11-13.
 - 19. Karlin, S. y Altschul, S. F. (1990). Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. U. S. A. 87, 2264-2268.

- 20. Kim, S. H., Eisenstein, M., Reznikov, L., Fantuzzi, G., Novick, D., Rubinstein, M. y Dinarello, C. A. (2000). Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc. Natl. Acad. Sci. U. S. A. 97, 1190-1195.
- 21. Maliszewski, C. R., Sato, T. A., Vanden Bos, T., Waugh, S., Dower, S. K., Slack, J., Beckmann, M. P. y Grabstein, K.
 H. (1990). Cytokine receptors and B cell functions, I. Recombinant soluble receptors specifically inhibit IL-1- and IL-4-induced B cell activities in vitro. J. Immunol. 144, 3028-3033.
 - 22. Mallat, Z., Heymes, C., Corbaz, A., Logeart, D., Alouani, S., Cohen-Solal, A., Seidler, T., Hasenfuss, G., Chvatchko, Y., Shah, A. M. y Tedgui, A. (2004). Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J. 18, 1752-1754.
- 23. Micallef, M. J., Ohtsuki, T., Kohno, K., Tanabe, F., Ushio, S., Namba, M., Tanimoto, T., Torigoe, K., Fujii, M., Ikeda, M., Fukuda, S. y Kurimoto, M. (1996). Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur. J. Immunol. 26, 1647-1651.
- 24. Nakamura, K., Okamura, H., Wada, M., Nagata, K. y Tamura, T. (1989), Endotoxin-induced serum factor that stimulates gamma interferon production. Infect. Immun. 57, 590-595.
 - 25. Noseworthy, J. H. (1999). Progress in determining the causes and treatment of multiple sclerosis. Nature 399, A40-A47.
 - 26. Novick, D., Kim, S. H., Fantuzzi, G., Reznikov, L. L., Dinarello, C.A. y Rubinstein, M. (1999). Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity. 10, 127-136.
- 27. Panenka, W., Jijon, H., Herx, L. M., Armstrong, J. N., Feighan, D., Wei, T., Yong, V. W., Ransohoff, R. M. y MacVicar, B. A. (2001). P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J. Neurosci. 21, 7135-7142.
 - 28. Parnet, P., Garka, K. E., Bonnert, T. P., Dower, S. K. y Sims, J. E. (1996). IL-1Rrp is a novel receptor-like molecule similar to the type I interleukin-1 receptor and its homologues T1/ST2 and IL-1R AcP. J. Biol. Chem. 271, 3967-3970.
- 29. Pearson, W. R. y Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U. S. A. 85, 2444-2448.
 - 30. Perry, V. H. (2004). The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav. Immun. 18, 407-413.
- 31. Pfitzner, E., Kliem, S., Baus, D. y Litterst, C. M. (2004). The role of STATs in inflammation and inflammatory diseases. Curr. Pharm. Des. 10, 2839-2850.
 - 32. Rothe, H., Jenkins, N. A., Copeland, N. G. y Kolb, H. (1997). Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near Idd2. J. Clin. Invest. 99, 469-474.
 - 33. Stoll, G., Jander, S. y Myers, R. R. (2002). Degeneration and regeneration of the peripheral nervous system: from Augustus Walter's observations to neuroinflammation. J. Peripher. Nerv. Syst. 7, 13-27.
- 34. Thompson, J. D., Higgins, D. G. y Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
 - 35. Tuppo, E. E. y Arias, H. R. (2005). The role of inflammation in Alzheimer's disease. Int. J. Biochem. Cell Biol. 37, 289-305.
- 36. Ushio, S., Namba, M., Okura, T., Hattori, K., Nukada, Y., Akita, K., Tanabe, F., Konishi, K., Micallef, M., Fujii, M., Torigoe, K., Tanimoto, T., Fukuda, S., Ikeda, M., Okamura, H. y Kurimoto, M. (1996). Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J. Immunol. 156, 4274-4279.
- 37. Yan, R., Qureshi, S., Zhong, Z., Wen, Z. y Darnell, J. E., Jr. (1995). The genomic structure of the STAT genes: multiple exons in coincident sites in Stat1 and Stat2. Nucleic Acids Res. 23, 459-463.
 - 38. Yoshimoto, T., Takeda, K., Tanaka, T., Ohkusu, K., Kashiwamura, S., Okamura, H., Akira, S. y Nakanishi, K. (1998). IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J. Immunol. 161, 3400-3407.

LISTADO DE SECUENCIAS

<110> Applied Research Systems ARS Holding N. V.

<120> USO DE ISOFORMAS DE IL-18BP PARA EL TRATAMIENTO Y/O LA PREVENCIÓN DE ENFERMEDADES INFLAMATORIAS NEUROLÓGICAS

5 <130> 1043 WO

<150> 60/688 057

<151> 2005-06-07

<150>EP05104863.5

<151> 2005-06-03

10 <160> 12

<170> PatentIn, versión 3.1

<210> 1

<211> 113

<212> PRT

15 <213> Homo sapiens

<220>

<221> SEÑAL

<222> (1)..(28)

<223>

20 <400> 1

Met Arg His Asn Trp Thr Pro Asp Leu Ser Pro Leu Trp Val Leu Leu

1 10 15

Leu Cys Ala His Val Val Thr Leu Leu Val Arg Ala Thr Pro Val Ser 20 25 30

Gln Thr Thr Ala Ala Thr Ala Ser Val Arg Ser Thr Lys Asp Pro 35 40 45

Cys Pro Ser Gln Pro Pro Val Phe Pro Ala Ala Lys Gln Cys Pro Ala 50 55 60

Leu Glu Val Thr Trp Pro Glu Val Glu Val Pro Leu Ser Trp Ala Glu 65 70 75 80

Gly Asn Leu Ala Pro His Pro Arg Ser Pro Ala Leu Gln Pro Gln Gln 85 90 95

Ser Thr Ala Ala Gly Leu Arg Leu Ser Thr Gly Pro Ala Ala Ala Gln 100 105 110

Pro

<210> 2 <211> 161 <212> PRT <213> Homo sapiens <220> <221> SEÑAL <222> (1)..(28) <223> <400> 2 Met Arg His Asn Trp Thr Pro Asp Leu Ser Pro Leu Trp Val Leu Leu 10 Leu Cys Ala His Val Val Thr Leu Leu Val Arg Ala Thr Pro Val Ser 25 Gln Thr Thr Ala Ala Thr Ala Ser Val Arg Ser Thr Lys Asp Pro Cys Pro Ser Gin Pro Pro Val Phe Pro Ala Ala Lys Gin Cys Pro Ala Leu Glu Val Thr Trp Pro Glu Val Glu Val Pro Leu Asn Gly Thr Leu 70 75 Ser Leu Ser Cys Val Ala Cys Ser Arg Phe Pro Asn Phe Ser Ile Leu 90 95 Tyr Trp Leu Gly Asn Gly Ser Phe Ile Glu His Leu Pro Gly Arg Leu 100 Trp Glu Gly Ser Thr Ser Arg Glu Arg Gly Ser Thr Gly Trp Ala Glu 120 115 Gly Asn Leu Ala Pro His Pro Arg Ser Pro Ala Leu Gln Pro Gln Gln 130 Ser Thr Ala Ala Gly Leu Arg Leu Ser Thr Gly Pro Ala Ala Ala Gln 155 160 145 150 Pro <210>3 <211> 192 <212> PRT

5

10

<213> Homo sapiens

<220> <221> SEÑAL <222> (1)..(28) <223> <400> 3 Met Arg His Asn Trp Thr Pro Asp Leu Ser Pro Leu Trp Val Leu Leu Leu Cys Ala His Val Val Thr Leu Leu Val Arg Ala Thr Pro Val Ser 25 Gln Thr Thr Ala Ala Thr Ala Ser Val Arg Ser Thr Lys Asp Pro 35 40 4.5 Cys Pro Ser Gln Pro Pro Val Phe Pro Ala Ala Lys Gln Cys Pro Ala 50 55 Leu Glu Val Thr Trp Pro Glu Val Glu Val Pro Leu Asn Gly Thr Leu 65 70 Ser Leu Ser Cys Val Ala Cys Ser Arg Phe Pro Asn Phe Ser Ile Leu Tyr Trp Leu Gly Asn Gly Ser Phe Ile Glu His Leu Pro Gly Arg Leu 100 105 110 Trp Glu Gly Ser Thr Ser Arg Glu Arg Gly Ser Thr Gly Thr Gln Leu 120 Cys Lys Ala Leu Val Leu Glu Gln Leu Thr Pro Ala Leu His Ser Thr 135 Asn Phe Ser Cys Val Leu Val Asp Pro Glu Gln Val Val Gln Arg His 150 155 Val Val Leu Ala Gln Leu Trp Ala Gly Leu Arg Ala Thr Leu Pro Pro 165 170 175 Thr Gln Glu Ala Leu Pro Ser Ser His Ser Ser Pro Gln Gln Gln Gly 180 185 190 <210> 4 <211> 197 <212> PRT <213> Homo sapiens

5

10

<220>

<221> SEÑAL <222> (1)..(28) <223> <400> 4 Met Arg His Asn Trp Thr Pro Asp Leu Ser Pro Leu Trp Val Leu Leu Leu Cys Ala His Val Val Thr Leu Leu Val Arg Ala Thr Pro Val Ser Gln Thr Thr Ala Ala Thr Ala Ser Val Arg Ser Thr Lys Asp Pro Cys Pro Ser Gln Pro Pro Val Phe Pro Ala Ala Lys Gln Cys Pro Ala 50 55 60 Leu Glu Val Thr Trp Pro Glu Val Glu Val Pro Leu Asn Gly Thr Leu 65 70 75 Ser Leu Ser Cys Val Ala Cys Ser Arg Phe Pro Asn Phe Ser Ile Leu 85 90 Tyr Trp Leu Gly Asn Gly Ser Phe Ile Glu His Leu Pro Gly Arg Leu Trp Glu Gly Ser Thr Ser Arg Glu Arg Gly Ser Thr Gly Thr Gln Leu 115 120 125 Cys Lys Ala Leu Val Leu Glu Gln Leu Thr Pro Ala Leu His Ser Thr 135 Asn Phe Ser Cys Val Leu Val Asp Pro Glu Gln Val Val Gln Arg His 150 155 160 Val Val Leu Ala Gln Leu Trp Val Arg Ser Pro Arg Arg Gly Leu Gln Glu Glu Glu Leu Cys Phe His Met Trp Gly Gly Lys Gly Leu 185 190 Cys Gln Ser Ser Leu 195 <210> 5 <211> 22 <212> DNA <213> Artificial

5

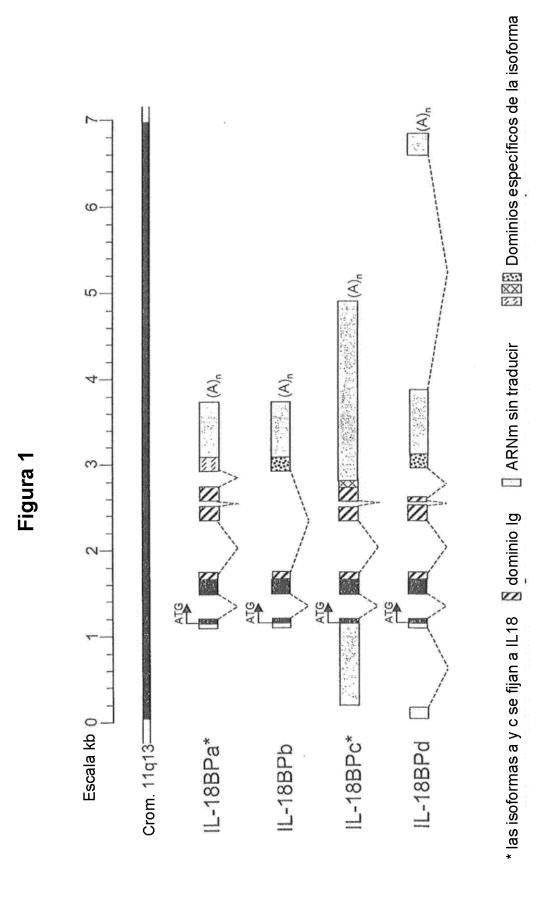
	<220>			
	<223> cebador			
	<400> 5			
	gatgggattt	ccattgatga	ca	22
5	<210> 6			
	<211> 22			
	<212> DNA			
	<213> Artificial			
	<220>			
10	<223> cebador			
	<400> 6			
	gatgggattt	ccattgatga	ca	22
	<210> 7			
	<211> 21			
15	<212> DNA			
	<213> Artificial			
	<220>			
	<223> cebador			
	<400> 7			
20	cctagtccca	gggctttgat	t	21
	<210> 8			
	<211> 22			
	<212> DNA			
	<213> Artificial			
25	<220>			
	<223> cebador			
	<400> 8			
	ctgtgctccc	actectgatt	tc	22
	<210> 9			
30	<211> 24			
	<212> DNA			
	<213> Artificial			
	<220>			
	<223> cebador			
35	<400> 9			
	tcccatgtct	ctgctcattt	agtc	24

	<210> 10	
	<211> 19	
	<212> DNA	
	<213> Artificial	
5	<220>	
	<223> cebador	
	<400> 10	
	aaccaggctt gagcgttcc	19
	<210> 11	
10	<211> 28	
	<212> DNA	
	<213> Artificial	
	<220>	
	<223> cebador	
15	<400> 11	
	acgcagagae tgctactaca tettatte	28
	<210> 12	
	<211> 21	
	<212> DNA	
20	<213> Artificial	
	<220>	
	<223> cebador	
	<400> 12	
	cccggtcctt aatttgttcc t	21
25		

REIVINDICACIONES

- 1.- Utilización de una isoforma de IL-18BP que carece de la capacidad de fijarse a la IL-18 o de neutralizarla y que induce la translocación nuclear de STAT2, para la fabricación de un medicamento para el tratamiento y/o la prevención de una enfermedad inflamatoria neurológica, en donde dicha isoforma de IL-18BP se caracteriza por una secuencia de aminoácidos que contiene los 36 aminoácidos carboxiterminales de la IL-18BPb (SEQ ID n.º 1) y de la IL-18BPd (SEQ ID n.º 2) y que se selecciona entre el grupo que consiste en:
- a) un polipéptido que comprende la SEQ ID. n.º 1;
- b) un polipéptido que comprende los aminoácidos 29 a 113 de la SEQ ID. n.º 1;
- c) un polipéptido que comprende los aminoácidos 78 a 113 de la SEQ ID. n.º 1;
- 10 d) un polipéptido que comprende la SEQ ID. n.º 2;

15

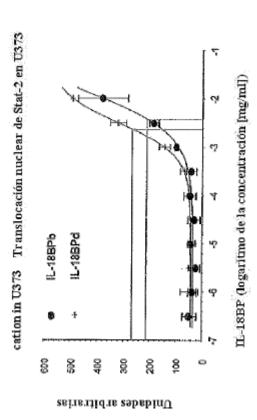

25

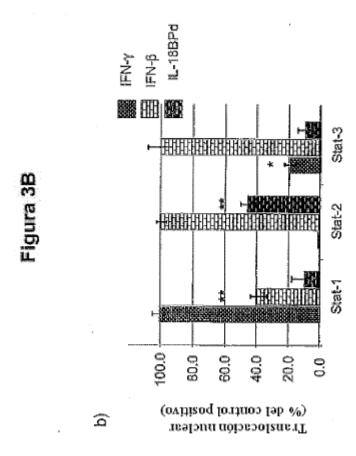
- e) un polipéptido que comprende los aminoácidos 29 a 161 de la SEQ ID. n.º 2;
- f) una muteína de una de a), b), d) o e), en donde la secuencia de aminoácidos tiene una identidad de al menos el 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% o 99% con al menos una de las secuencias de a) a e);
- g) una muteína de una de a) a e) que está codificada por una secuencia de ADN que se hibrida con el complemento de la secuencia de ADN nativa que codifica cualquiera de a) a e) en condiciones moderadamente rigurosas o en condiciones muy rigurosas;
 - h) una muteína de una de a) a e) en donde cualquier cambio de la secuencia de aminoácidos es una sustitución de aminoácido conservativa de las secuencias de aminoácidos de a) a e);
- i) una sal o proteína de fusión, derivado funcional, fracción activa o derivado de permutación circular de una cualquiera de a) a h),
 - las muteínas, sales, proteínas de fusión, derivados funcionales, fracciones activas o derivados de permutación circular de f) a i) retienen una actividad biológica similar, o incluso mejor, que la de la forma que se produce en la naturaleza.
 - **2.-** Utilización según la reivindicación 1, en la que la enfermedad inflamatoria y/o neurológica se selecciona entre el grupo que consiste en lesión nerviosa traumática, accidente cerebrovascular, enfermedades desmielinizantes del SNC o del SNP, neuropatías y enfermedades neurodegenerativas crónicas.
 - 3.- Utilización según la reivindicación 2, en la que la enfermedad desmielinizante del SNC o del SNP es una neuropatía periférica.
 - 4.- Utilización según la reivindicación 3, en la que la neuropatía periférica es neuropatía diabética.
- 5.- Utilización según la reivindicación 2, en la que la enfermedad neurodegenerativa crónica se selecciona entre esclerosis múltiple (EM), enfermedad de Alzheimer (EA), enfermedad de Parkinson (EP), enfermedad de Huntington (EH) y esclerosis lateral amiotrófica (ELA).
 - **6.-** Utilización según la reivindicación 1, en la que la enfermedad inflamatoria y/o neurológica está ocasionada por un trastorno metabólico congénito.
- 7.- Utilización según una cualquiera de las reivindicaciones 1 a 6, en la que dicha isoforma de IL-18BP está fusionada a una molécula transportadora, a un péptido o a una proteína que le ayuda a atravesar la barrera hematoencefálica.
 - 8.- Utilización según la reivindicación 7, en la que dicha isoforma de IL-18BP está PEGilada.
 - 9.- Utilización según la reivindicación 7, en la que dicha isoforma de IL-18BP está fusionada a un dominio de inmunoglobulina (Ig).
- 10.- Utilización según una cualquiera de las reivindicaciones anteriores, en la que dicho medicamento comprende además un polipéptido seleccionado entre el grupo que consiste en interferón, osteopontina y clusterina, para el uso simultáneo, secuencial o independiente.
 - 11.- Utilización según una cualquiera de las reivindicaciones anteriores, en la que dicha isoforma de IL-18BP se usa en una cantidad de aproximadamente 0,001 a 100 mg/kg de masa corporal, o aproximadamente de 0,01 a 10 mg/kg de masa corporal o aproximadamente 9, 8, 7, 6, 5, 4, 3, 2 o 1 mg/kg de masa corporal o aproximadamente de 0,1 a 1 mg/kg de masa corporal.
 - **12.-** Isoforma de IL-18BP que carece de la capacidad de fijarse a la IL-18 o de neutralizarla y que induce la translocación nuclear de STAT2, en donde dicha isoforma de IL-18BP se caracteriza por una secuencia de aminoácidos que contiene los 36 aminoácidos carboxiterminales de la IL-18BPb (SEQ ID n.º 1) y de la IL-18BPb (SEQ ID n.º 2) y que

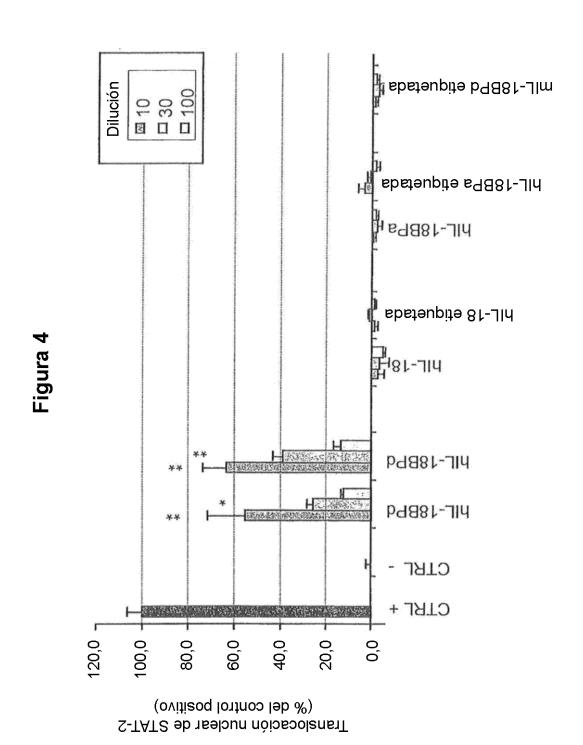
se selecciona entre el grupo que consiste en:

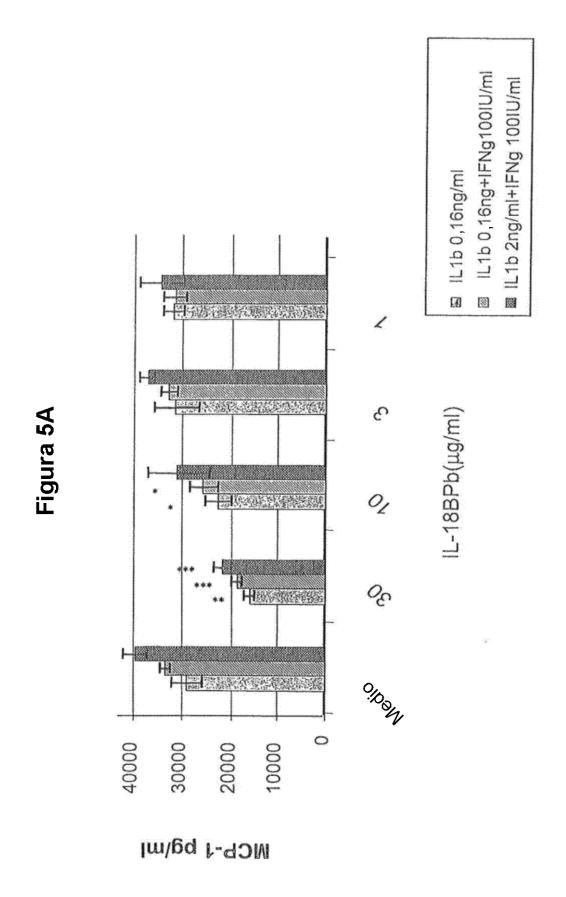
- a) un polipéptido que comprende la SEQ ID. n.º 1;
- b) un polipéptido que comprende los aminoácidos 29 a 113 de la SEQ ID. n.º 1;
- c) un polipéptido que comprende los aminoácidos 78 a 113 de la SEQ ID. n.º 1;
- d) un polipéptido que comprende la SEQ ID. n.º 2;
 - e) un polipéptido que comprende los aminoácidos 29 a 161 de la SEQ ID. n.º 2;
 - f) una muteína de una de a), b), d) o e), en donde la secuencia de aminoácidos tiene una identidad de al menos el 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% o 99% con al menos una de las secuencias de a) a e);
- g) una muteína de una de a) a e) que está codificada por una secuencia de ADN que se hibrida con el complemento de la secuencia de ADN nativa que codifica cualquiera de a) a e) en condiciones moderadamente rigurosas o en condiciones muy rigurosas;
 - h) una muteína de una de a) a e) en donde cualquier cambio de la secuencia de aminoácidos es una sustitución de aminoácido conservativa de las secuencias de aminoácidos de a) a e);
- i) una sal o proteína de fusión, derivado funcional, fracción activa o derivado de permutación circular de una cualquiera de a) a h),

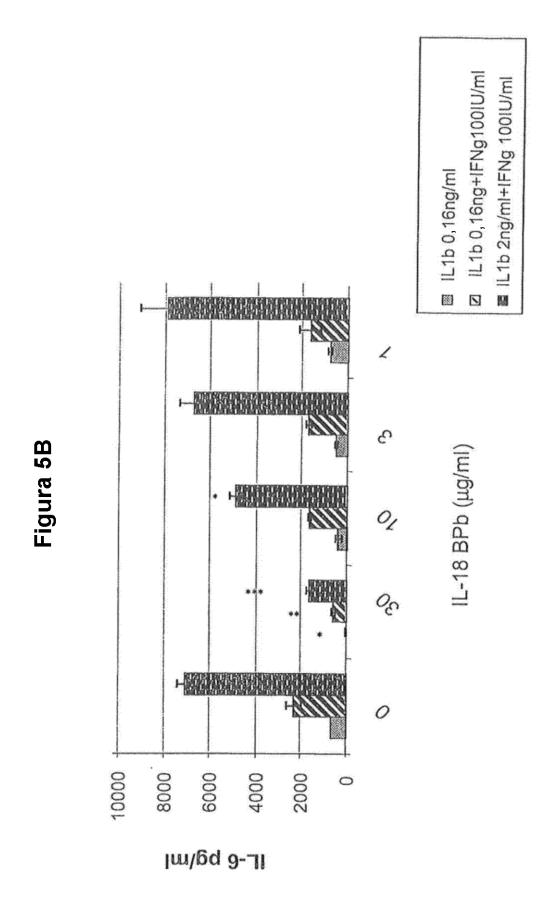
las muteínas, sales, proteínas de fusión, derivados funcionales, fracciones activas o derivados de permutación circular de f) a i) retienen una actividad biológica similar, o incluso mejor, que la de la forma que se produce en la naturaleza para uso en el tratamiento y/o prevención de una enfermedad inflamatoria neurológica.




33


Figura 2


IL-18BPa	TPVSQTTTAA TASVRSTKDP CPSQPPVFPA AKQCPALEVT WPEVEVPL
IL-18BPc	TPVSQTTTAA TASVRSTKDP CPSQPPVFPA AKQCPALEVT WPEVEVPL
IL-18BPd	TPVSQTTTAA TASVRSTKDP CPSQPPVFPA AKQCPALEVT WPEVEVPL
IL-18BPb	TPVSQTTTAA TASVRSTKDP CPSQPPVFPA AKQCPALEVT WPEVEVPL
IL-18BPa	NGTLSLSCVACS RFPNFSILYW LGNGSFIEHL PGRLWEGSTS RERGSTG
IL-18BPc	NGTLSLSCVACS RFPNFSILYW LGNGSFIEHL PGRLWEGSTS RERGSTG
IL-18BPd	NGTLSLSCVACS RFPNFSILYW LGNGSFIEHL PGRLWEGSTS RERGSTG
IL-18BPb	
IL-18BPa	TOLCKALVLEQLT PALHSTNFSC VLVDPEQVVQ RHVVLAQLW
IL-18BPc	TQLCKALVLEQLT PALHSTNFSC VLVDPEQVVQ RHVVLAQLW
IL-18BPd	
IL-18BPb	distriction of the section of the se
IL-18BPa	AGLRATIPPT QEALPSSHSS PQQQG
IL-18BPc	VRSPRGLQE QEELCFHMWG GKGGLCQSSL
IL-18BPd	-WAEGNLAPH PRSPALQPQQ STAAGLRLST GPAAAQP
IL-18BPb	SWAEGNLAPH PRSPALOPQO STAAGLRLST GPAAAQP


Figura 3A

