

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 377 063

51 Int. Cl.: **D06L 3/12**

(2006.01)

TRADUCCIÓN DE PATENTE EUROPEA 96 Número de solicitud europea: 04741696 .1 96 Fecha de presentación: 02.06.2004 97 Número de publicación de la solicitud: 1631715 97 Fecha de publicación de la solicitud: 08.03.2006 64 Título: Formulaciones de agentes de blanqueamiento fluorescentes estables durante su almacenamiento 73 Titular/es:	
Fecha de publicación de la mención BOPI: 22.03.2012	72 Inventor/es: ZELGER, Josef y SCHROEDER, Serge
Fecha de la publicación del folleto de la patente: 22.03.2012	(74) Agente/Representante: Carvajal y Urquijo, Isabel

ES 2 377 063 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Formulaciones de agentes de blanqueamiento fluorescentes estables durante su almacenamiento

La presente invención se relaciona con formulaciones de agentes de blanqueamiento fluorescentes estables durante su almacenamiento, con un proceso para su preparación y con su uso.

- 5 Las formulaciones de agentes de blanqueamiento fluorescentes estables durante su almacenamiento de acuerdo con la invención comprenden
 - (a) 5 60% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un compuesto de fórmula (1)

$$X_{1} \xrightarrow{N} X_{2}$$

$$X_{1} \xrightarrow{N} X_{2}$$

$$N = X_{1} \xrightarrow{N} X_{2}$$

$$N = X_{2} \xrightarrow{N} X_{3}$$

$$N = X_{3} \xrightarrow{N} X_{4}$$

$$X_{4} \xrightarrow{N} X_{2}$$

$$X_{4} \xrightarrow{N} X_{2}$$

$$X_{5} \xrightarrow{N} X_{2}$$

$$X_{4} \xrightarrow{N} X_{2}$$

$$X_{5} \xrightarrow{N} X_{5}$$

$$X_{4} \xrightarrow{N} X_{5}$$

$$X_{5} \xrightarrow{N} X_{5}$$

$$X_{5} \xrightarrow{N} X_{5}$$

$$X_{5} \xrightarrow{N} X_{5}$$

10 donde

 R_1 y R_2 son, independientemente entre sí, hidrógeno; alquilo C_1 - C_8 no sustituido o alquilo C_1 - C_8 sustituido.

 X_1 y X_3 son -NH₂,

X₂ y X₄ son, independientemente entre sí, un radical de fórmula -N(R₃)R₄, donde

R₃ y R₄ son, independientemente entre sí, hidrógeno; ciano; alquilo C₁ - C₈ que está sustituido o no sustituido por hidroxi, carboxi, -COOH, ciano, -CONH₂, NHC(NH)NH₂ o fenilo, y donde el grupo alquilo C₁ - C₈ está interrumpido o no interrumpido por -O-; ciclohexilo no sustituido o ciclohexilo sustituido por alquilo C₁ - C₄; o

 R_3 y R_4 , junto con el átomo de nitrógeno enlazado con ellos, forman un anillo de morfolina, piperidina o pirrolidina no sustituido o un anillo de morfolina, piperidina o pirrolidina sustituido con alquilo C_1 - C_4 .

- 20 M es hidrógeno o un catión,
 - (b) 0,01 1 % en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un polisacárido aniónico,
 - (c) 0 25% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un electrolito.
- (d) 0 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un dispersante.
 - (e) 0 30% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un agente blanqueador fluorescente adicional,
- (f) 0 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un componente opcional adicional, y
 - (g) agua hasta completar un 100% en peso.

Estas nuevas formulaciones son suspensiones, y son estables durante varios meses incluso a temperaturas elevadas.

Dentro del alcance de las definiciones anteriores, alquilo C₁ - C₈ puede ser metilo, etilo, n- o isopropilo, n-, sec.- o t-butilo, o pentilo, hexilo, heptilo o octilo lineal o ramificado. Se prefieren los grupos alquilo C₁ - C₄. En caso de que los grupos alquilo estén sustituidos, los ejemplos de posibles sustituyentes son hidroxilo, halógeno, tal como flúor, cloro o bromo, sulfo, sulfato, carboxi y alcoxi C₁ - C₄, tal como metoxi y etoxi. Otros sustituyentes de tales grupos alquilo son, por ejemplo, ciano, -CONH₂ y fenilo. Los sustituyentes preferidos son hidroxi, carboxi, ciano, -COOH, H₂NC(NH)NH₂, -CONH₂ y fenilo, especialmente hidroxi y carboxi. Además, los sustituyentes altamente preferidos

son hidroxi y alcoxi C₁ - C₄, especialmente hidroxi. Los grupos alquilo pueden estar también interrumpidos o no interrumpidos por -O- (en el caso de los grupos alquilo que contienen dos o más átomos de carbono).

El ciclohexilo puede estar sustituido o no sustituido por, por ejemplo, alquilo C₁ - C₄, tal como metilo. Se prefiere ciclohexilo no sustituido.

- 5 Halógeno puede ser flúor, cloro, bromo o yodo, preferiblemente cloro.
 - Si R_3 y R_4 junto con el átomo de nitrógeno forman un anillo heterocíclico tal sistema de anillo puede ser, por ejemplo, de morfolina, piperidina o pirrolidina. El anillo heterocíclico puede estar sustituido o no sustituido. Un ejemplo para tales sustituyentes es alquilo C_1 C_4 , especialmente metilo.
- El catión M es preferiblemente un catión de metal alcalino, un catión de metal alcalinotérreo, amonio o un catión formado a partir de una amina. Se prefieren Li, Na, K, Ca, Mg, amonio, mono, di, tri o tetra-alquilamonio C_1 C_4 , mono, di o tri-hidroxialquilamonio C_2 C_4 o amonio que está di o trisustituido con una mezcla de grupos alquilo C_1 C_4 e hidroxialquilo C_2 C_4 . Se prefiere especialmente el sodio.
 - R_1 y R_2 son preferiblemente, independientemente entre sí, hidrógeno; alquilo C_1 - C_4 no sustituido o alquilo C_1 - C_4 sustituido, especialmente hidrógeno.
- R₃ y R₄ son preferiblemente, independientemente entre sí, hidrógeno; ciano; alquilo C₁ C₈ que está sustituido o no sustituido por hidroxi, carboxi, ciano, -COOH, -H₂NC(NH)NH₂-, -CONH₂ o fenilo, especialmente por hidroxi o carboxi, y donde el grupo alquilo C₁ C₈ está interrumpido o no interrumpido por -O-; ciclohexilo no sustituido o sustituido por alquilo C₁ C₄; o R₃ y R₄, junto con el átomo de nitrógeno que los enlaza, forman un anillo de morfolina, piperidina o pirrolidina no sustituido o un anillo de morfolina, piperidina o pirrolidina sustituido con alquilo C₁ C₄.
- Los significados más preferidos para R_3 y R_4 son, independientemente entre sí, hidrógeno; alquilo C_1 C_8 no sustituido o alquilo C_1 C_8 sustituido con hidroxi; o R_3 y R_4 , junto con el átomo de nitrógeno que los enlaza, forman un anillo de morfolina, piperidina o pirrolidina no sustituido o un anillo de morfolina, piperidina o pirrolidina sustituido con alquilo C_1 C_4 .
- Se prefieren especialmente anillos de morfolina, piperidina o pirrolidina no sustituidos o anillos de morfolina, piperidina o pirrolidina sustituidos con alquilo C₁ C₄, anillos de piperidina o de pirrolidina, especialmente de morfolina, formados por R₃ y R₄ junto con el átomo de nitrógeno que los enlaza.
 - Ejemplos de grupo de -N(R₃)R₄ son -NH₂; -NHCH₃; -NHC₂H₅; -NH(n-C₃H₇); -NH(i-C₃H₇); -NH(i-C₄H₉); -N(CH₃)₂; -N(C₂H₅)₂; -N(i-C₃H₇)₂; -NH(CH₂CH₂OH); -N(CH₂CH₂OH)₂; -N(CH₂CH(OH)CH₃)₂; -N(CH₃)(CH₂CH₂OH); -N(C₂H₅) (CH₂CH₂OH); -N(i-C₃H₇)(CH₂CH₂CH₂OH); -NH(CH₂CH(OH)CH₃); -N(C₂H₅)(CH₂CH(OH)CH₃); -NH(CH₂CH₂OCH₃); -NH(CH₂CH₂OOH); -NH(CH₂COOH); -NH(CH₂COOH); -NH(CH₃COOH); -NH(CN);

$$-NH - \stackrel{CH_3}{C} - CH_2 - OH \stackrel{\cdot}{\cdot} - NH - \stackrel{CH_2}{C} - CH_2 - CH_3 \stackrel{\cdot}{\cdot} - NH - \stackrel{\cdot}{\cdot} \stackrel{\cdot}{\cdot}$$

35 X₂ y X₄ tienen preferiblemente el mismo significado.

30

ES 2 377 063 T3

Altamente preferidos son los compuestos de fórmula (1), donde

R₁ y R₂ son, independientemente entre sí, hidrógeno o alquilo C₁ - C₄ no sustituido,

 X_1 y X_3 son -NH₂, y

 X_2 y X_4 son un radical de fórmula -N(R_3) R_4 , donde

R₃ y R₄ son, independientemente entre sí, hidrógeno; ciano; alquilo C₁ - C₈ que está sustituido o no sustituido por hidroxi, carboxi, -COOH, ciano, -CONH₂, NHC(NH)NH₂ o fenilo, y donde el grupo alquilo C₁ - C₈ está interrumpido o no interrumpido por -O-; ciclohexilo no sustituido o ciclohexilo sustituido por alquilo C₁ - C₄; ciclopentilo no sustituido o ciclopentilo sustituido por alquilo C₁ - C₄ o R₃ y R₄, junto con el átomo de nitrógeno que los enlaza, forman un anillo de morfolina, piperidina o pirrolidina no sustituido o un anillo de morfolina, piperidina o pirrolidina sustituido con alquilo C₁ - C₄.

De interés particular son los compuestos de fórmula (1), donde

R₁ y R₂ son, independientemente entre sí, hidrógeno o alquilo C₁ - C₂ no sustituido,

 X_1 y X_3 son -NH₂, y

40

45

50

 X_2 y X_4 son un radical de fórmula -N(R_3) R_4 , donde

- R₃ y R₄ son, independientemente entre sí, hidrógeno; alquilo C₁ C₈ no sustituido o alquilo C₁ C₈ sustituido por hidroxi; ciclohexilo no sustituido o sustituido con C₁ C₄; o R₃ y R₄, junto con el átomo de nitrógeno que los enlaza, forman un anillo de morfolina, piperidina o pirrolidina no sustituido o un anillo de morfolina, piperidina o pirrolidina sustituido con alquilo C₁ C₄.
- Los compuestos más interesantes de fórmula (1) son aquellos donde R_3 y R_4 , junto con el átomo de nitrógeno que los enlaza, forman un anillo de morfolina, piperidina o pirrolidina no sustituido, o un anillo de morfolina, piperidina o pirrolidina sustituido con alquilo C_1 C_4 .

La cantidad de(de los) compuesto(s) de fórmula (1) es de 5 a 60% en peso, preferiblemente de 5 a 50% en peso, más preferiblemente de 10 a 50% en peso, lo más preferible de 10 a 45% en peso, con base en el peso total de la formulación del agente de blanqueamiento .

25 Los compuestos de las fórmulas (1) son conocidos o pueden ser preparados en analogía con procesos conocidos.

Los compuestos de fórmula (1) pueden ser producidos por reacción, bajo condiciones de reacción conocidas, de cloruro cianúrico, sucesivamente, en cualquier secuencia deseada, con cada uno de entre ácido 4,4'-diaminoestilbeno-2,2'-disulfónico, y los compuestos amino capaces de introducir los grupos X₁, X₂, X₃ y X₄. Preferiblemente, 2 moles de cloruro cianúrico reaccionan inicialmente con 1 mol de ácido 4,4'-diaminoestilbeno-2,2'-disulfónico y luego reacciona el producto intermedio obtenido en cualquier orden con compuestos amino capaces de introducir los grupos X₁, X₂, X₃ y X₄. Para la preparación de compuestos donde X₁ y X₃ tienen el mismo significado, y también X₂ y X₄ tienen el mismo significado, se prefiere que reaccione el producto intermedio obtenido primero con un compuesto amino capaz de introducir X₁ y X₃, y, finalmente con un compuesto amino capaz de introducir X₂ y X₄. También es posible llevar a cabo la reacción con los compuestos amino en una etapa por reacción del producto intermedio con una mezcla de compuestos amino; en tal caso usualmente se obtienen mezclas correspondientes de compuestos de fórmula (1).

Los polisacáridos aniónicos que pueden ser utilizados de acuerdo con la invención pertenecen al grupo de polisacáridos modificados que pueden derivarse de celulosa, almidón o los heteropolisacáridos, siendo posible que las cadenas laterales contengan monosacáridos adicionales, por ejemplo manosa y ácido glucurónico. Ejemplos de polisacáridos aniónicos son alginato de sodio, guar carboximetilado, carboximetilcelulosa, carboximetil-almidón, harina de algarroba carboximetilada y, particularmente preferiblemente, goma xantana.

La cantidad de polisacárido es de 0,01 a 1% en peso, siendo preferido un rango de 0,05 a 0.5% en peso y siendo particularmente preferido un rango de 0,1 a 0,3% en peso, en cada caso con base en el peso total de la formulación del agente de blanqueamiento. Sin embargo, se pueden exceder estos rangos en las formulaciones de concentración muy alta o de concentración muy baja.

Se pueden utilizar una o más sales de metal alcalino y sales de ácidos carboxílicos inferiores, por ejemplo, como el electrolito. Los ejemplos de electrolitos son cloruro de sodio, sulfato de sodio, fosfato de sodio, carbonato de sodio, formato de sodio, citrato de sodio o una de las correspondientes sales de potasio, y mezclas de estos electrolitos. Se prefieren aquí cloruro de sodio, citrato de sodio y los formatos. La cantidad de electrolito puede ser de 0 a 25% en peso, preferiblemente de 0,5 a 20% en peso y lo más preferible de 0,5 a 15% en peso, con base en el peso total de la formulación del agente de blanqueamiento.

Los dispersantes que pueden ser utilizados son aquellos del tipo aniónico o no aniónico. Los ejemplos de estos son alquilbencenosulfonatos, sales de alquilo o de éter sulfonato de alquenilo, ácidos grasos saturados o insaturados, sales de alquilo o de éter carboxílico de alquileno, sales de sulfo-ácido graso o ésteres, ésteres de fosfato, polioxietilén alquilo o éteres de alquenilo, polioxietilén alquilvinil éteres, polioxipropilén alquilo o alquenil éteres, polioxibutilén alquilo o alquenil éteres, alcanolamidas de ácidos grasos superiores o aductos de óxido de alquileno, ésteres de sacarosa/ácido graso, monoésteres de ácido graso/glicol monoésteres, óxidos de alquilamina y productos de condensación de ácidos sulfónicos aromáticos con formaldehído, y sulfonatos de lignina, o mezclas de los dispersantes anteriormente mencionados. Se prefieren los productos de condensación de ácidos sulfónicos aromáticos con formaldehído, y sulfonatos de lignina. Se prefieren particularmente los productos de condensación de ácidos naftalenosulfónicos con formaldehído, y de ácidos ditolil éter-sulfónicos con formaldehído.

El contenido de dispersante es de 0 a 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, preferiblemente de 0,1 a 20% en peso, más preferiblemente de 0,1 a 10% en peso, lo más preferible de 0,2 a 5% en peso.

Las formulaciones de agentes de blanqueamiento fluorescentes estables durante su almacenamiento de acuerdo con la invención pueden incluir adicionalmente 0 - 30% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un agente blanqueador fluorescente adicional de fórmula (2)

donde

10

R₆ y R₈, independientemente entre sí, son hidrógeno; alquilo C₁ - C₈ no sustituido o alquilo C₁ - C₈ sustituido,

R₇ y R₉, independientemente entre sí, son hidrógeno; fenilo no sustituido; alquilo C₁ - C₈ no sustituido o alquilo C₁ - C₈ sustituido, o

NR₆R₇ y/o NR₈R₉ forman un anillo de morfolina,

y M es hidrógeno o un catión,

y/o de al menos un agente blanqueador fluorescente adicional de fórmula (3)

donde

25

 R_{10} y R_{11} , independientemente entre sí, son hidrógeno; alquilo C_1 - C_8 sustituido o alquilo C_1 - C_8 no sustituido; alcoxi C_1 - C_8 o halógeno, y M es hidrógeno o un catión.

Los compuestos preferidos de fórmula (2) son aquellos donde

30 R₆ y R₈, independientemente entre sí, son hidrógeno; alquilo C₁ - C₄ no sustituido o alquilo C₁ - C₄ sustituido,

 R_7 y R_9 , independientemente entre sí, son fenilo no sustituido; alquilo C_1 - C_4 no sustituido o alquilo C_1 - C_4 sustituido, o

NR₆R₇ y/o NR₈R₉ forman un anillo de morfolina,

y M es un átomo de metal alcalino, un átomo de metal alcalinotérreo, amonio o un catión formado a partir de una amina.

Los compuestos más preferidos de fórmula (2) son aquellos donde

 R_6 y R_8 , independientemente entre sí, son hidrógeno; alquilo C_1 - C_2 no sustituido o alquilo C_1 - C_4 , que está sustituido por hidroxi o alcoxi C_1 - C_4 ,

 R_7 y R_9 , independientemente entre sí, son fenilo no sustituido; alquilo C_1 - C_2 no sustituido o alquilo C_1 - C_4 , que está sustituido por hidroxi o alcoxi C_1 - C_4 , o

5 NR₆R₇ y/o NR₈R₉ forman un anillo de morfolina,

y M es un átomo de metal alcalino.

Los compuestos especialmente preferidos de fórmula (2) son aquellos de fórmula (2a)

donde

10 R'₆ es hidrógeno; alquilo C₁ - C₂ no sustituido o alquilo C₁ - C₄, que está sustituido por hidroxi o alcoxi C₁ - C₄,

 R'_7 es un fenilo no sustituido; alquilo C_1 - C_2 no sustituido o alquilo C_1 - C_4 , que está sustituido por hidroxi o alcoxi C_1 - C_4 , o $NR'_6R'_7$ forma un anillo de morfolina,

y M es un átomo de metal alcalino, preferiblemente sodio.

Los ejemplos de tales compuestos preferidos de fórmula (2) son aquellos de fórmula (2b) - (2f)

15

У

15

20

30

Los compuestos preferidos de fórmula (3) son aquellos donde

5 R₁₀ y R₁₁, independientemente entre sí, son hidrógeno; alquilo C₁ - C₄ no sustituido o alquilo C₁ - C₄ sustituido; alcoxi C₁ - C₄ o halógeno, y M es hidrógeno o un catión.

Los compuestos de fórmula (2) y (3) así como sus procesos de producción son conocidos.

En las mezclas de compuestos de las fórmulas (1) y (2) y/o (3) la proporción molar del compuesto (1) con respecto al compuesto (2) y/o al compuesto (3) está usualmente en el rango de 0,1:99.9 a 99.9:0.1, preferiblemente de 1:99 a 99:1 y más preferiblemente de 5:95 a 95:5. Especialmente preferida es una proporción molar de 10:90 a 90:10, especialmente de 20:80 a 80:20. La más importante es una proporción molar de 30:70 a 70:30, especialmente de 40:60 a 60:40.

El contenido del(de los) agente(s) blanqueador(es) fluorescentes adicionales es de 0 - 30% en peso, con base en el peso total de la formulación del agente de blanqueamiento, preferiblemente de 0 a 25% en peso, más preferiblemente de 0 a 20% en peso.

Si es conveniente, la formulación del agente de blanqueamiento de acuerdo con la invención puede incluir adicionalmente componentes opcionales; los ejemplos son preservantes o mezclas de preservantes, tales como cloroacetamida, derivados de triazina, benzoisotiazolinas, 2-metil-2H-isotiazol-3-ona, 2-octil-2H-isotiazol-3-ona, 2-bromo-2-nitropropano-1,3-diol o una solución acuosa de formaldehído; silicatos de Mg/Al o mezclas de silicatos de Mg/Al, tales como bentonita, montmorillonita, zeolitas o ácidos silícicos altamente dispersos; mejoradores de olor y agentes perfumantes o mezclas de los mismos; agentes antiespumantes o mezclas de los mismos; constructores o mezclas de los mismos; coloides protectores o mezclas de los mismos; estabilizadores o mezclas de los mismos; agentes secuestrantes y agentes anticongelantes o mezclas de los mismos, tales como propilén glicol.

El contenido de estos componentes opcionales es de 0 a 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, preferiblemente de 0,1 a 20% en peso, más preferiblemente de 0,1 a 10% en peso, lo más preferible de 0,2 a 5% en peso.

Los ejemplos de constructores adecuados o de coloides protectores son polisacáridos modificados derivados de celulosa o heteropolisacáridos, tales como goma xantana, carboximetilcelulosa y polivinil alcoholes (PVA), polivinilpirrolidonas (PVP), polietilén glicoles (PEG) y silicatos de aluminio o silicatos de magnesio. Ellos son usualmente utilizados en un rango de concentración de 0,01 a 2% en peso y preferiblemente de 0,05 a 0,5% en peso, con base en el peso total de la formulación del agente de blanqueamiento.

Los ejemplos de auxiliares que pueden ser utilizados para estabilización son etilén glicol, propilén glicol o dispersantes en una cantidad de 0,2 a 5% en peso y preferiblemente de 0,3 a 2% en peso, con base en el peso total de la formulación del agente de blanqueamiento.

Los compuestos que son utilizados como preservantes son cloroacetamida, derivados de triazina, benzoisotiazolinas, 2-metil-2H-isotiazol-3-ona, 2-octil-2H-isotiazol-3-ona, 2-bromo-2-nitropropano-1,3-diol o solución acuosa de formaldehído en una cantidad de 0,1 a 1% en peso y preferiblemente de 0,1 a 0,5% en peso con base en el peso total de la formulación del agente de blanqueamiento.

Formulaciones más preferidas de agentes de blanqueamiento fluorescentes estables durante su almacenamiento de acuerdo con la invención comprenden

(a) 10 - 50% en peso, preferiblemente de 10 - 45% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un compuesto de fórmula (1 ")

$$\begin{array}{c|c} N & \stackrel{\mathsf{NH}_2}{\longrightarrow} \\ N & \stackrel{\mathsf{NO}_3S}{\longrightarrow} \\ N & \stackrel{\mathsf{N}}{\longrightarrow} \\ N & \stackrel{\mathsf{N}}{\longrightarrow} \\ N & \stackrel{\mathsf{NH}_2}{\longrightarrow} \\ N$$

donde

5

10

20

30

R₁ y R₂ son, independientemente entre sí, hidrógeno; metilo o etilo,

 R_3 y R_4 son, independientemente entre sí, hidrógeno; ciano; alquilo C_1 - C_8 que está sustituido o no sustituido por hidroxi, carboxi, -COOH, -CONH₂, H_2 NC(NH)NH₂, fenilo y donde el grupo alquilo C_1 - C_8 está interrumpido o no interrumpido por -O-; ciclohexilo no sustituido o ciclohexilo sustituido con alquilo C_1 - C_4 ; o

R₃ y R₄, junto con el átomo de nitrógeno que los enlaza, forman un anillo de morfolina, piperidina o pirrolidina no sustituido, o un anillo de morfolina, piperidina o pirrolidina sustituido con alquilo C₁ - C₄; y

M es Li; Na; Ca; Mg; amonio; mono, di, tri o tetra-alquilamonio C_1 - C_4 ; mono, di o tri-hidroxialquilamonio C_2 - C_4 o amonio que está di o tri-sustituido con una mezcla de grupos alquilo C_1 - C_4 e hidroxialquilo C_2 - C_4 ,

(b) 0,05 - 0,5% en peso, preferiblemente 0,1 - 0,3% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un polisacárido aniónico del grupo que consiste de alginato de sodio; guar carboximetilado; carboximetilcelulosa; carboximetil-almidón; harina de algarroba carboximetilada y goma xantana,

(c) 0 - 25% en peso, preferiblemente 0,5 - 20% en peso, más preferiblemente 0,5 - 15% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un electrolito del grupo que consiste de cloruro de sodio o de potasio; sulfato de sodio o de potasio; fosfato de sodio o de potasio; carbonato de sodio o de potasio; formato de sodio o de potasio; citrato de sodio o de potasio;

(d) 0 - 20% en peso, preferiblemente 0,1 - 20% en peso, más preferiblemente, 0,1 -10% en peso, especialmente preferido 0,2 - 5% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un dispersante del grupo que consiste de alquilbencenosulfonatos; sales de alquilo o sales de éter-sulfonato de alquenilo; ácidos grasos saturados o insaturados; sales de alquilo o sales de éter-carboxílico de alquileno; sales de sulfo-ácido graso o ésteres; ésteres de fosfato; polioxietilén alquilo o alquenil éteres; polioxietilén alquilo o alquenil éteres; polioxipropilén alquilo o alquenil éteres; polioxibutilén alquilo o alquenil éteres; alcanolamidas de ácido graso superior o aductos de óxido de alquileno; ésteres de sacarosa/ácido graso; monoésteres de ácido graso/glicol; óxidos de alquilamina y productos de condensación de ácidos naftaleno sulfónicos con formaldehído; y sulfonatos de lignina,

(e) 0 - 25% en peso, más preferiblemente 0 - 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un agente blanqueador fluorescente adicional del grupo que consiste de compuestos de fórmula (2a)

35 donde

R'₆ es hidrógeno; alquilo C₁ - C₂ no sustituido o alquilo C₁ - C₄, que está sustituido por hidroxi o alcoxi C₁ - C₄,

 R'_7 es fenilo no sustituido; alquilo C_1 - C_2 no sustituido o alquilo C_1 - C_4 , que está sustituido por hidroxi o alcoxi C_1 - C_4 , o $NR'_6R'_7$ forma un anillo de morfolina,

y M es un átomo de metal alcalino, preferiblemente sodio,

5 y compuestos de fórmula (3)

donde

R₁₀ y R₁₁, independientemente entre sí, son hidrógeno; alquilo C₁ - C₂; alcoxi C₁ - C₂; Cl o Br, y

M es hidrógeno o un átomo de metal alcalino, preferiblemente sodio,

- (f) 0 20% en peso, preferiblemente 0,1 a 20% en peso, más preferiblemente 0,1 a 10% en peso, particularmente preferiblemente 0,2 a 5% en peso con base en el peso total de la formulación del agente de blanqueamiento, de al menos un componente opcional adicional del grupo que consiste de cloroacetamida; derivados de triazina; benzoisotiazolinas; 2-metil-2H-isotiazol-3-ona; 2-octil-2H-isotiazol-3-ona; 2-bromo-2-nitropropano-1,3-diol; solución acuosa de formaldehído; bentonita; montmorillonita; zeolitas; polivinil alcoholes (PVA), polivinilpirrolidonas (PVP), polietilén glicoles (PEG); silicatos de aluminio; silicatos de magnesio; etilén glicol y propilén glicol ,
 - (g) agua hasta completar un 100% en peso.

Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento especialmente preferida de acuerdo con la invención comprende

(a) 10 - 45% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un compuesto de fórmula (1 ")

donde

 $R_1\ y\ R_2\ son,$ independientemente entre sí, hidrógeno; metilo o etilo,

 $R_3 \ y \ R_4 \ son, \ independientemente \ entre \ sí, \ -NH_2; \ -NHCH_3; \ -NHC_2H_5; \ -NH(n-C_3H_7); \ -NH(i-C_3H_7); \ -NH(i-C_4H_9); \ -N(CH_3)_2; \ -N(C_2H_5)_2; \ -N(i-C_3H_7)_2; \ -NH(CH_2CH_2OH); \ -N(CH_2CH_2OH)_2; \ -N(CH_2CH(OH)CH_3)_2; \ -N(CH_3)(CH_2CH_2OH); \ -N(C_2H_5)(CH_2CH_2OH); \ -NH(CH_2CH(OH)CH_3); \ -N(C_2H_5)(CH_2CH(OH)CH_3); \ -NH(CH_2CH_2OCH_3); \ -NH(CH_2CH_2OCH_2OH); \ -NH(CH_2COOH); \ -NH(CH_2COOH); \ -N(CH_3)(CH_2COOH); \ -NH(CN); \ -N$

$$-NH - \stackrel{C}{C} - CH_2 - OH; -NH - \stackrel{C}{C} - CH_2 CH_3; -NH - \stackrel{C}{C} + \stackrel{C}{A}_3; -NH - \stackrel{C}{C} + \stackrel{C}{C} + \stackrel{$$

M es Li; Na; Ca; Mg; amonio; mono, di, tri o tetra-alquilamonio C_1 - C_4 ; mono, di o tri-hodroxialquilamonio C_2 - C_4 o amonio que está di o tri-sustituido con una mezcla de grupos alquilo C_1 - C_4 e hidroxialquilo C_2 - C_4 ,

(b) 0,05 - 0,5% en peso, preferiblemente 0,1 - 0,3% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un polisacárido aniónico del grupo que consiste de alginato de sodio; guar carboximetilado; carboximetilcelulosa; carboximetil-almidón; harina de algarroba carboximetilada y goma xantana,

5

10

25

- (c) 0 25% en peso, preferiblemente 0,5 20% en peso, más preferiblemente 0,5 15% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un electrolito del grupo que consiste de cloruro de sodio o de potasio; sulfato de sodio o de potasio; fosfato de sodio o de potasio; carbonato de sodio o de potasio; formato de sodio o de potasio; citrato de sodio o de potasio,
- (d) 0 20% en peso, preferiblemente 0,1 20% en peso, más preferiblemente, 0,1 -10% en peso, lo más preferible 0,2 5% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un dispersante del grupo que consiste de alquilbencenosulfonatos; sales de alquilo o de éter sulfonato de alquenilo; ácidos grasos saturados o insaturados; sales de alquilo o de éter carboxílico de alquileno; sales de sulfo-ácido graso o ésteres; ésteres de fosfato; polioxietilén alquilo o alquenil éteres; polioxietilén alquilvinil éteres; polioxipropilén alquilo o alquenil éteres; polioxibutilén alquilo o alquenil éteres; alcanolamidas de ácido graso superior o aductos de óxido de alquileno; ésteres de sacarosa/ácido graso; monoésteres de ácido graso/glicol; óxidos de alquilamina y productos de condensación de ácidos naftaleno sulfónicos con formaldehído; y sulfonatos de lignina,
 - (e) 0 25% en peso, más preferiblemente 0 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un agente blanqueador fluorescente adicional del grupo que consiste de compuestos de fórmula

у

5

y compuestos de fórmula (3')

donde

 R_{10} y R_{11} , independientemente entre sí, son hidrógeno; alquilo C_1 - C_2 ; alcoxi C_1 - C_2 ; CI o Br, y

10 M es hidrógeno o un átomo de metal alcalino, preferiblemente sodio,

(f) 0 - 20% en peso, preferiblemente de 0,1 a 20% en peso, más preferiblemente de 0,1 a 10% en peso, particularmente preferiblemente de 0,2 a 5% en peso con base en el peso total de la formulación del agente de blanqueamiento, de al menos un componente opcional adicional del grupo que consiste de cloroacetamida;

derivados de triazina; benzoisotiazolinas; 2-metil-2H-isotiazol-3-ona; 2-octil-2H-isotiazol-3-ona; 2-bromo-2-nitropropano-1,3-diol; solución acuosa de formaldehído; bentonita; montmorillonita; zeolitas; polivinil alcoholes (PVA), polivinilpirrolidonas (PVP), polietilén glicoles (PEG); silicatos de aluminio; silicatos de magnesio; etilén glicol y propilén glicol ,

5 (g) agua hasta completar un 100% en peso.

Las formulaciones estables durante su almacenamiento de esta invención se preparan por mezcla de la torta húmeda del filtrado o también el polvo seco, que contiene al menos un agente blanqueador fluorescente de fórmula (1) en una cantidad de 5 - 60% en peso, con base en el peso total de la formulación, con 0,01 - 1 % en peso de un polisacárido aniónico y agua, y homogenización de las formulaciones.

- El contenido deseado de agente blanqueador fluorescente aniónico en la suspensión puede ser ajustado ya sea por medio de la adición de agua, un electrolito acuoso, una suspensión, un agente(s) fluorescente(s) adecuado(s) de las fórmulas (2) y/o (3) o polvo seco adicional a la torta húmeda del filtrado. Este ajuste puede hacerse antes, durante o después de la adición del polisacárido aniónico.
- La formulación concentrada así preparada puede ser utilizada para el blanqueamiento fluorescente de papel o de material textil, por ejemplo en detergentes. Para este propósito, en general se diluyen hasta la concentración óptima para la aplicación práctica por medio de la adición de componentes adicionales o de agua.

Las nuevas formulaciones blanqueadoras fluorescentes estables durante su almacenamiento se utilizan en particular para ser incorporadas en agentes de lavado, por ejemplo permitiendo que la cantidad requerida de la formulación del agente de blanqueamiento fluorescente de acuerdo con la invención corra desde un tanque dentro del dispositivo de mezcla que contiene una suspensión del agente de lavado o el dispersante.

También es posible preparar una forma sólida de la formulación de acuerdo con la presente invención. Tal formulación sólida puede ser preparada de acuerdo con métodos convencionales, tales como por ejemplo secado por aspersión.

- La presente invención por lo tanto también se relaciona con un proceso para la preparación de agentes de lavado sólidos y líquidos, y con los agentes de lavado obtenidos por medio de este proceso, que comprende la mezcla, por ejemplo, de una suspensión de detergentes habituales para agentes de lavado con una suspensión, de acuerdo con la invención, de de blanqueamiento, y el secado de la mezcla. El procedimiento de secado puede ser llevado a cabo así, por ejemplo, por medio de un método de secado por aspersión.
- Los siguientes ejemplos ilustran la invención, sin limitarla a los mismos. Los datos de porcentaje se relacionan con el peso total de la formulación.

EJEMPLO 1

20

Los componentes enlistados más abajo se mezclan y homogenizan con agitación a 20°C:

30,0% en peso del agente de blanqueamiento fluorescente de fórmula

- 35 0,5% en peso de propilén glicol;
 - 0,25% en peso de Xantana,
 - 0,4% en peso del Acticida MBS® (Nombre comercial de Acti-Chem Specialties Inc.) y agua desionizada hasta completar un 100%.

EJEMPLO 2

40 Los componentes enlistados más abajo se mezclan y homogenizan con agitación a 20°C: 11,1 % en peso del agente blanqueador fluorescente de fórmula

18,9% en peso del agente de blanqueamiento fluorescente de fórmula

- 0,5% en peso de propilén glicol;
- 5 0,25% en peso de Xantana,
 - 0,4% en peso del Acticida MBS® (Nombre comercial de Acti-Chem Specialties Inc.)
 - 0,001% en peso de Surfinol 104 PG 50% (Nombre comercial de Air Products and Chemicals Inc.) y agua desionizada hasta completar un 100%.

REIVINDICACIONES

- 1. Una formulación de un agente de blanqueamiento fluorescente estable durante su almacenamiento que comprende
- (a) 5 60% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un compuesto de fórmula (1)

$$X_{1} \longrightarrow \begin{pmatrix} X_{2} \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} MO_{3}S \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} R_{2} \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\$$

donde

30

R₁ y R₂ son, independientemente entre sí, hidrógeno; alquilo C₁ - C₈ no sustituido o alquilo C₁ - C₈ sustituido,

 X_1 y X_3 son -NH₂,

10 X₂ y X₄ son, independientemente entre sí, un radical de fórmula -N(R₃)R₄, donde

 R_3 y R_4 son, independientemente entre sí, hidrógeno; ciano; alquilo C_1 - C_8 que está sustituido o no sustituido por hidroxi, carboxi, -COOH, ciano, -CONH $_2$, NHC(NH)NH $_2$ o fenilo, y donde el grupo alquilo C_1 - C_8 está interrumpido o no interrumpido por -O-; ciclohexilo no sustituido o ciclohexilo sustituido por alquilo C_1 - C_4 ; o

R₃ y R₄, junto con el átomo de nitrógeno enlazado con ellos, forman un anillo de morfolina, piperidina o pirrolidina no sustituido o un anillo de morfolina, piperidina o pirrolidina sustituido con alguilo C₁ - C₄.

M es hidrógeno o un catión,

- (b) 0,01 1 % en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un polisacárido aniónico,
- (c) 0 25% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un electrolito,
 - (d) 0 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un dispersante,
 - (e) 0 30% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un agente blanqueador fluorescente adicional,
- 25 (f) 0 20% en peso, con base en el peso total de la formulación del agente de blanqueamiento, de al menos un componente opcional adicional, y
 - (g) agua hasta completar un 100% en peso.
 - 2. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con la reivindicación 1 que contiene de 5 a 50% en peso, preferiblemente de 10 a 50% en peso, con base en el peso total de la formulación, de al menos un compuesto de fórmula (1).
 - 3. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con la reivindicación 1 o la reivindicación 2 donde el polisacárido aniónico se selecciona de entre el grupo que consiste de alginato de sodio, guar carboximetilado, carboximetilcelulosa, carboximetil-almidón, harina de algarroba carboximetilada y goma xantana.
- 4. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes que contiene de 0,05 a 0,5% en peso, preferiblemente de 0,1 a 0,3% en peso, con base en el peso total de la formulación, de al menos un polisacárido aniónico.

- 5. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes donde el electrolito o la mezcla de electrolitos se seleccionan de entre el grupo que consiste de sales de metal alcalino y sales de ácidos carboxílicos inferiores.
- 6. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes que contiene de 0,5 a 20% en peso, preferiblemente de 0,5 a 15% en peso, con base en el peso total de la formulación, de al menos un electrolito.
 - 7. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes donde el dispersante o la mezcla de dispersantes se seleccionan de entre el grupo que consiste de alquilbencenosulfonatos, sales de alquilo o sales de éter-sulfonato de alquenilo, ácidos grasos saturados o insaturados, sales de alquilo o sales de éter-carboxílico de alquileno, sales de sulfo-ácido graso o ésteres, ésteres de fosfato, polioxietilén alquilo o alquenil éteres, polioxietilén alquilo in alquilo o alquenil éteres, polioxipropilén alquilo o alquenil éteres, polioxibutilén alquilo o alquenil éteres, alcanolamidas de ácido graso superior o aductos de óxido de alquileno, ésteres de sacarosa/ácido graso, monoésteres de ácido graso/glicol, óxidos de alquilamina y productos de condensación de ácidos naftaleno sulfónicos con formaldehído y sulfonatos de lignina.
 - 8. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes que contiene de 0,1 a 20% en peso, preferiblemente de 0,1 a 10% en peso, con base en el peso total de la formulación, de al menos un dispersante.
- 9. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes que contiene al menos un agente de blanqueamiento fluorescente adicional de fórmula (2)

donde

10

15

R₆ y R₈, independientemente entre sí, son hidrógeno; alquilo C₁ - C₈ no sustituido o alquilo C₁ - C₈ sustituido,

R₇ y R₉, independientemente entre sí, son hidrógeno; fenilo no sustituido; alquilo C₁ - C₈ no sustituido o alquilo C₁ - C₈ sustituido, o

NR₆R₇ y/o NR₈R₉ forman un anillo de morfolina,

y M es hidrógeno o un catión.

- 10. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con 30 la reivindicación 9 donde
 - R_6 y R_8 , independientemente entre sí, son hidrógeno; alquilo C_1 C_2 no sustituido o alquilo C_1 C_4 , que está sustituido por hidroxi o alcoxi C_1 C_4 ,
 - R_7 y R_9 , independientemente entre sí, son fenilo no sustituido; alquilo C_1 C_2 no sustituido o alquilo C_1 C_4 , que está sustituido por hidroxi o alcoxi C_1 C_4 , o
- 35 NR₆R₇ y/o NR₈R₉ forman un anillo de morfolina,

y M es un átomo de metal alcalino.

11. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes que contiene al menos un agente de blanqueo fluorescente adicional de fórmula (3)

donde

20

 R_{10} y R_{11} , independientemente entre sí, son hidrógeno; alquilo C_1 - C_8 ; alcoxi C_1 - C_8 o halógeno, y M es hidrógeno o un catión.

- 5 12. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes que contiene de 0 a 25% en peso, preferiblemente de 0 a 20 % en peso, de al menos un agente de blanqueamiento fluorescente adicional de fórmula (2) y/o de fórmula (3).
- 13. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes donde los componentes opcionales se seleccionan de entre el grupo que consiste de preservantes; silicatos de Mg/Al; mejoradores de olor; agentes perfumantes; agentes antiespumantes; constructores; coloides protectores; estabilizadores; agentes secuestrantes y agentes anticongelantes.
- 14. Una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes que contiene de 0,1 a 20% en peso, preferiblemente de 0,1 a 10% en peso, particularmente preferiblemente de 0,2 a 5% en peso con base en el peso total de la formulación, de al menos un componente opcional.
 - 15. Un proceso para la preparación de una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones precedentes, que comprende la mezcla de la torta húmeda del filtrado o el polvo seco del agente de blanqueo fluorescente de fórmula (1) con al menos un polisacárido aniónico y agua, y homogenización de la formulación.
 - 16. El uso de una formulación del agente de blanqueamiento fluorescente estable durante su almacenamiento de acuerdo con cualquiera de las reivindicaciones 1 14 para la preparación de una composición detergente.