

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 377 153

(2006.01)

(51) Int. Cl.: F16H 61/32 (2006.01) F16H 63/18 (2006.01) F16D 1/08 (2006.01) F16D 7/02

(12) TRADUCCIÓN DE PATENTE EU	
12) TRADUCCIÓN DE PATENTE EU	RUPEA

T3

- 96 Número de solicitud europea: 08013283 .0
- 96) Fecha de presentación: **23.07.2008**
- 97) Número de publicación de la solicitud: 2019235 (97) Fecha de publicación de la solicitud: 28.01.2009
- (54) Título: Dispositivo de control de cambio automático
- (30) Prioridad: 24.07.2007 JP 2007191559

(73) Titular/es:

YAMAHA HATSUDOKI KABUSHIKI KAISHA 2500 SHINGAI, IWATA-SHI SHIZUOKA-KEN SHIZUOKA 438-8501, JP

- (45) Fecha de publicación de la mención BOPI: 22.03.2012
- (72) Inventor/es:

Takeuchi, Yoshihiko

- (45) Fecha de la publicación del folleto de la patente: 22.03.2012
- (74) Agente/Representante: Ungría López, Javier

ES 2 377 153 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Dispositivo de control de cambio automático

15

20

25

30

35

50

55

60

La presente invención se refiere a un dispositivo de control de cambio automático de acuerdo con el preámbulo de la reivindicación 1. Un dispositivo de cambio de control automático de este tipo se puede tomar del documento de la técnica anterior EP 1 329 651 A1. Dicho documento ilustra un medio de accionamiento para un dispositivo automático de control de cambio automático que tiene un motor de accionamiento y una transmisión de engranaje planetario fijada al eje de salida de dicho motor. Entre un cubo de salida que tiene la sección de cilindro y un cubo de entrada se dispone una brida de acero del resorte helicoidal, que constituye un medio de limitación del par de torsión para limitar el par de torsión que se transmitiría del motor al dispositivo de accionamiento adicional. Una disposición básicamente comparable se conoce también a partir del otro documento de la técnica anterior WO 01/50041 A2.

Se han conocido vehículos que incluyen un dispositivo de control de cambio automático para cambiar automáticamente engranajes de cambio de velocidad. Un dispositivo de control de cambio automático de este tipo incluye normalmente; una transmisión que tiene una pluralidad de pares de engranajes de cambio de velocidad con relaciones de cambio de transmisión que son diferentes entre sí y un mecanismo de selección de marchas para seleccionar un par de torsión para transmitir potencia entre la pluralidad de pares para transmitir potencia; un actuador de cambio para accionar el mecanismo de selección de marchas, y un de mecanismo de transmisión de potencia cambio para transmitir la potencia del actuador de cambio al mecanismo de selección de marchas.

En una transmisión que tiene engranajes de dientes, los engranajes no se pueden enganchar o desenganchar suavemente durante el cambio de marchas. En tal caso, por ejemplo, en una transmisión de tipo de pedal en la que el mecanismo de selección de marchas se impulsa por medio de un pedal de cambio, la operación a pie se puede repetir varias veces para que los engranajes se enganchen o desenganchen para completar la operación de cambio de marchas. Sin embargo, cuando se desea llevar a cabo dicha operación de forma automática por medio de un dispositivo de control de cambio automático, es necesario controlar adecuadamente una entrada del actuador de cambio en una forma de control complicada. Por otro lado, cuando permanece la situación en la que los engranajes no se pueden enganchar o desenganchar suavemente, ha habido un problema de que, mientras que el actuador de cambio se energiza, el giro del mecanismo de transmisión de potencia de cambio se limita y por lo tanto, el actuador de cambio no puede girar, por lo que el actuador de cambio se sobrecarga.

Por consiguiente, en la Patente japonesa 3044498B2 & JP 50 39 865 A se ha propuesto un dispositivo de control de cambio automático en el que un resorte helicoidal se dispone entre el actuador de cambio y el tambor de cambio del mecanismo de selección de marchas. De acuerdo con el dispositivo de control de cambio automático de dicho documento, en el caso en que se energiza el actuador de cambio, pero se limita el giro del mecanismo de transmisión de potencia de cambio, el resorte helicoidal se deforma elásticamente, y por lo tanto, se evita la sobrecarga del actuador de cambio.

Sin embargo, con el fin de evitar la sobrecarga del actuador de cambio mediante el uso de la deformación elástica del resorte helicoidal, un módulo de elasticidad del resorte helicoidal necesita ser menor. En otras palabras, una carga de compresión cuando el resorte helicoidal se deforma elásticamente (en adelante, referido como "la carga de compresión del resorte helicoidal") necesita ser menor. En concreto, la carga de compresión del resorte helicoidal necesaria debe ser menor para que el funcionamiento del actuador de cambio se permite en un estado que detenga al mecanismo de transmisión de potencia de cambio.

Sin embargo, cuanto menor es la carga de compresión del resorte helicoidal, se hace más difícil para desenganchar los dientes de los engranajes de dientes. En consecuencia, ha surgido otro problema que cuando la carga de compresión del resorte helicoidal se configura para ser menor, los engranajes acoplados no se pueden desenganchar fácilmente para prolongar el tiempo desde el comienzo hasta la finalización de la operación de cambio de marchas.

Por otro lado, cuando la carga de compresión del resorte helicoidal se configura para ser mayor, la supresión de la sobrecarga del actuador de cambio no se puede obtener tanto como se esperaba. Por lo tanto, además es necesario la prevención de la sobrecarga mediante la supresión del par de torsión del actuador de cambio.

Sin embargo, la supresión del par de torsión del actuador de cambio reduce también la velocidad de giro del mismo. Por lo tanto, en este caso, el problema plantea también que el tiempo desde el inicio hasta la finalización de la operación de cambio de marcha aumenta.

En vista de la circunstancia anterior, uno de los objetivos de la presente invención es proporcionar un dispositivo de control de cambio automático en el que se suprima la sobrecarga de un actuador de cambio y el tiempo desde el inicio hasta la finalización de la operación de cambio de marchas se acorte.

De acuerdo con la presente invención, dicho objetivo se resuelve mediante un dispositivo de control de cambio automático que tiene las características de la reivindicación independiente 1. Las realizaciones preferidas se

expresan en las reivindicaciones dependientes. Por consiguiente, se proporciona un dispositivo de control de cambio automático, que comprende: un mecanismo de selección de marchas configurado para seleccionar un par de engranajes de una transmisión para transmitir fuerza motriz de una entrada a una salida de la transmisión; un actuador de cambio configurado para generar potencia para conducir el mecanismo de selección de marchas, un mecanismo de transmisión de potencia de cambio configurado para transmitir la potencia del actuador de cambio al la mecanismo de selección de marchas, y un limitador del par de torsión que tiene un primer miembro de giro al que se puede transmitir la potencia del actuador de cambio y un segundo miembro de giro al que se puede transmitir la potencia del primer miembro de giro se hace girar conjuntamente con el segundo miembro de giro para transmitir la potencia del actuador de cambio al segundo miembro de giro como par de torsión, cuando el par de torsión que se tiene que transmitir al segundo miembro de giro es igual o menor que un par de torsión límite predeterminado, el primer miembro de giro que gira en relación con el segundo miembro de giro limita el par de torsión transmitido a la par de torsión límite predeterminado o menos cuando el par de torsión que se transmite al segundo miembro de giro supera el par de torsión límite predeterminado.

En este caso, el par de torsión límite predeterminado es un par de torsión que tiene como finalidad evitar la sobrecarga del actuador de cambio. El par de torsión límite se puede fijar arbitrariamente, siempre y cuando el actuador de cambio no esté sobrecargado. Por el contrario, cuando el par de torsión transmitido se limita definiendo un par de torsión de cierto valor como un límite en el estado en que el actuador de cambio no está sobrecargado, el par de torsión en el límite se corresponde con el par de torsión límite. En otras palabras, el par de torsión límite puede ser el límite máximo del par de torsión transmitido por el mecanismo de transmisión de potencia de cambio por encima del que se puede sobrecargar el actuador de cambio, o puede ser un valor inferior al límite máximo. El par de torsión límite se determina en función del tipo de actuador de cambio. El limitador del par de torsión mencionado anteriormente puede limitar el par de torsión transmitido a no más de varias veces el par de torsión límite predeterminado, en lugar de una sola vez.

25

30

35

40

45

50

60

De acuerdo con el dispositivo de control de cambios automático mencionado anteriormente, se proporciona el limitador del par de torsión que tiene el primer miembro de giro y el segundo miembro de giro. Un primer miembro de giro del limitador del par de torsión se hace girar conjuntamente con un segundo miembro de giro cuando el par de torsión que se transmite al segundo miembro de giro es igual o menor que el par de torsión límite predeterminado, y gira en relación con el segundo miembro de giro cuando el par de torsión que se transmite al segundo miembro de giro supera el par de torsión límite predeterminado. Por lo tanto, incluso cuando el par de torsión de giro en el mecanismo de transmisión de potencia de cambio excede el par de torsión límite predeterminado por alguna razón, el primer miembro de giro gira en relación con el segundo miembro de giro para limitar el par de torsión transmitido al mecanismo de selección de marchas al par de torsión límite predeterminado o menos. Como resultado, la sobrecarga del actuador de cambio se suprime.

En el presente documento, bajo el significado de "limitar el par de torsión transmitido al par de torsión límite o menos", el par de torsión no se puede limitar más que al par de torsión límite determinado que no es cero, o se puede limitar a cero.

Además, de acuerdo con el dispositivo de control de cambio automático mencionado anteriormente, mientras que para limitar la sobrecarga del actuador de cambio, el par de torsión del actuador de cambio en sí no se suprime y un limitador del par de torsión formado por un elemento elástico con un modulo de elasticidad menor no se utiliza, es posible acortar el tiempo desde el inicio hasta la finalización de la operación de cambio de marchas. Por lo tanto, es posible lograr la prevención de la sobrecarga del actuador de cambio y la reducción en el tiempo de la operación de cambio de marchas al mismo tiempo.

Además, se puede proporcionar un dispositivo de control de cambio automático que elimine la sobrecarga del actuador de cambio y reduzca el tiempo desde el inicio hasta la finalización de la operación de cambio de marchas.

Preferiblemente, el limitador del par de torsión está incluido en el mecanismo de transmisión de potencia de cambio.

Además, preferiblemente el limitador del par de torsión se base en fricción y/o se base en acoplamiento.

Aún más, preferiblemente el primer miembro de giro y el segundo miembro de giro están en contacto directo.

Sin embargo, aún más, preferiblemente el primer miembro de giro está configurado para transmitir la potencia del actuador de cambio al segundo miembro de giro como par de torsión, debido a la fuerza de fricción generada entre el primer miembro de giro y el segundo miembro de giro, y cuando el par de torsión que se transmite al segundo miembro de giro supera el par de torsión límite predeterminado, el primer miembro de giro se desliza en relación con el segundo miembro de giro.

Preferiblemente, el primer miembro de giro y el segundo miembro de giro se ajustan a presión entre sí.

Además, preferiblemente una capa que tiene propiedades de auto-lubricación se forma entre el primer miembro de giro y en el segundo miembro de giro.

Aún más, preferiblemente, la capa es una capa sulfurizada formada en una porción de la superficie del primer miembro de giro y/o del segundo miembro de giro.

- De acuerdo con una realización preferida, el mecanismo de transmisión de potencia de cambio cuenta con un mecanismo de reducción que tiene una pluralidad de ejes y una pluralidad de engranajes de reducción que se instalan, preferiblemente, a presión en los respectivos ejes, el primer miembro de giro es un engranaje de reducción de la pluralidad de engranajes de reducción, y el segundo miembro de giro es un eje de la pluralidad de ejes al que el primer miembro de giro se monta, preferiblemente, a presión.
- Preferiblemente, el primer miembro de giro es el engranaje de reducción más aguas abajo de la pluralidad de engranajes de reducción.

15

30

Además, preferiblemente, el primer miembro de giro cuenta con el mayor diámetro entre la pluralidad de engranajes de reducción.

Aún más, preferiblemente el limitador del par de torsión incluye un eje como el segundo miembro de giro y una palanca de accionamiento como el primer miembro de giro montado, preferiblemente, a presión en el eje.

De acuerdo con otra realización preferida, un sensor de ángulo se configura para detectar la posición angular del segundo miembro de giro, y, preferiblemente, un mecanismo de detención configurado para restringir el giro del segundo miembro de giro dentro de un área de detección del sensor de ángulo, teniendo preferiblemente el mecanismo de detención una parte giratoria, preferiblemente la palanca de accionamiento, que se une al segundo miembro de giro con el fin girar conjuntamente con el segundo miembro de giro, y una parte fija que se forma por separado de la parte giratoria y que colinda con la parte giratoria para restringir el giro del segundo miembro de giro dentro de un intervalo angular predeterminado.

También se proporciona un vehículo, en particular, un vehículo del tipo de montar a horcajadas tal como una motocicleta, que comprende una transmisión y un dispositivo de control de cambio automático de acuerdo a una de las realizaciones anteriores.

A continuación, la presente invención se explica con mayor detalle por medio de realizaciones de la misma junto con los dibujos adjuntos, en los que:

35	La Figura 1	es una vista lateral de una motocicleta;
	La Figura 2	es una vista lateral que muestra una disposición de un actuador de un dispositivo de control de cambio automático;
40	La Figura 3	es una vista en sección transversal de un motor;
	La Figura 4	es una vista en corte transversal en despiece de un motor de cambio y de un mecanismo de transmisión de potencia de cambio;
45	La Figura 5	es una vista ampliada de un actuador de cambio y de una palanca de accionamiento de la Figura 4;
	La Figura 6	es una vista en corte transversal ampliada que muestra una porción colocada a presión de un tercer eje de la Figura 5;
50	La Figura 7	es una vista lateral de una unidad de accionamiento del embrague;
	La Figura 8	es una vista lateral de la unidad de accionamiento del embrague;
55	La Figura 9	es una vista lateral ampliada de una varilla de cambio y alrededores;
	La Figura 10	es un cuadro del sistema de un dispositivo de control de transmisión automático;
	La Figura 11	es una vista en perspectiva de una porción de interruptor en una sujeción del mango;
60	La Figura 12	es un diagrama de correlación de un par de torsión transmitido y una velocidad de deslizamiento, en el que el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio está en el eje de abscisas y una velocidad relativa del tercer engranaje de reducción y de un tercer eje se encuentra en las ordenadas; y
65	Las Figuras 13(a) (b)	son diagramas que muestran el funcionamiento del limitador del par de torsión de acuerdo

con una variación que no se cubre por la reivindicación independiente.

Entre otros, los siguientes signos de referencia se utilizan en las figuras:

1 motocicleta (vehículo del tipo de montar a horcajadas)

31 cigüeñal

32 cárter

5

30

50

40 de transmisión 41 eje principal 42 eje de transmisión

43 mecanismo de selección de marchas

10 44 mecanismo de embrague

49 engranaje de cambio de marcha

50 dispositivo de control de cambio automático 70 motor de cambio (actuador de cambio)

70a eje del motor

15 70d engranaje

80 mecanismo de transmisión de potencia de cambio

81 mecanismo de reducción

81a primer eje 81b segundo eje

20 81c tercer eje (segundo miembro de giro, eje)

81e primer engranaje de reducción 81f segundo engranaje de reducción

81g tercer engranaje de reducción (primer miembro de giro, engranaje de reducción)

81p porción colocada a presión

25 81x capa sulfurada

82 varilla de cambio

83 mecanismo de unión de cambios

84 palanca de accionamiento (parte giratoria)

85 palanca de accionamiento 87 mecanismo de detención 88 limitador del par de torsión

89 miembro de detención (parte fija)

95 controlador del motor

420 engranaje de cambio de velocidad

35 421 leva de cambios (mecanismo de selección de marchas)

422 horquilla de cambio (mecanismo de selección de marchas)

En adelante, se describen las realizaciones en detalle con referencia a los dibujos.

A continuación, se describen las realizaciones de un vehículo del tipo de montar a horcajadas. Aunque las realizaciones que siguen a continuación presentan los aspectos más preferidos, la enseñanza técnica no se limita a esto. Aunque el vehículo del tipo de montar a horcajadas de las siguientes realizaciones es una motocicleta, el vehículo del tipo de montar a horcajadas no se limita a la misma y puede ser un vehículo de tres ruedas, vehículo tipo buggy, y similares. En general, un vehículo del tipo de montar a horcajadas tiene una carrocería y un asiento en el que un conductor se puede sentar a horcajadas en la carrocería del vehículo cuando está sentado.

Como se muestra en las Figuras 1 y 2, una motocicleta 1 de un acuerdo con la presente realización incluye un tubo principal 3 y un bastidor del cuerpo 2. El bastidor del cuerpo 2 incluye al menos un bastidor principal 4 que se extiende hacia la parte posterior desde el tubo principal 3 y un soporte de brazo trasero 5 que se extiende hacia abajo desde la parte trasera del bastidor principal 4. Una suspensión trasera 7 se une a la parte superior 5a del soporte de brazo trasero 5. La parte trasera de un carril de asiento 6 y la parte trasera de la suspensión trasera 7 se conectan entre sí.

Una horquilla delantera 10 se gira en el tubo principal 3. En el extremo superior de la horquilla delantera 10, se dispone un manillar 11, en el extremo inferior, se dispone una rueda delantera 12. Un tanque de combustible 13 se dispone sobre el bastidor principal 4, un asiento 14 se dispone detrás del tanque de combustible 13. El asiento 14 se coloca en el carril de asiento 6.

El soporte de brazo trasero 5 soporta el extremo delantero de un brazo trasero 21 a través de un eje de giro 22 con el fin de permitir que el brazo trasero 21 gire hacia arriba y hacia abajo. En la parte trasera del brazo trasero 21, se soporta una rueda trasera 23. El brazo trasero 21 se soporta por el bastidor del cuerpo 2 a través de un mecanismo de unión 24 y amortiguador trasero 25.

Un motor 20 se suspende a través del bastidor principal 4 y los soportes del brazo trasero 5. Aunque el motor 20 en la presente realización es un motor refrigerado por agua, de cuatro tiempos y de cuatro cilindros en paralelo, el tipo de motor 20 no se limita. El motor 20 se dispone de manera que los ejes de cilindro (no mostrados) del mismo se

orienten hacia la parte delantera del vehículo y ligeramente oblicuos a un plano horizontal. Un cárter 32 que contiene un cigüeñal 31 se suspende a ambos lados del bastidor del cuerpo 2 en una dirección a lo largo de la anchura del vehículo.

- 5 Un eje principal 41 se presenta en paralelo al cigüeñal 31. El cigüeñal 31 se conecta al eje principal 41 a través de un mecanismo de embrague 44 de un tipo de múltiples discos. Los detalles de la configuración del mecanismo de embrague 44, se describen más adelante.
- En el eje principal 41, se montan engranajes de cambio de velocidad de etapas múltiples 49 de diferentes diámetros.

 Un eje de transmisión 42 se dispone paralelo al eje principal 41, y los engranajes de cambio de velocidad 420 que corresponden a los engranajes de cambio de velocidad 49 se montan en el eje de transmisión 42. Cada engranaje de cambio de velocidad 49 en el eje principal 41 se acopla con el correspondiente engranaje de cambio de velocidad 420 montados en el eje de transmisión 42. Los engranajes de cambio de velocidad 49 y 420 se montan de manera que uno o ambos de los engranajes de cambio de velocidad 49 y 420 a excepción de un par seleccionado libremente giran (giran libremente) en relación con el eje principal 41 o el eje de transmisión 42. De esta manera, el giro se transmite desde el eje principal 41 al eje de transmisión 42 por medio del único par seleccionado de los engranajes de cambio de velocidad.
- En la presente realización, una transmisión 40 se forma por el eje principal 41, el eje de transmisión 42, los pares de los engranajes de cambio de velocidad 49 y 420, así como un mecanismo de selección de marchas 43, que selecciona un par de torsión para transmitir potencia entre los pares de los engranajes de cambio de velocidad 49 y 420. La transmisión 40 se monta íntegramente en el cárter 32. Por medio de los engranajes seleccionados y acoplados 49, 420, la transmisión 40 transmite fuerza motriz de su lado de entrada a su lado de salida.
- Como se muestra en la Figura 2, la motocicleta 1 incluye un motor de cambio 70 para generar potencia para impulsar el mecanismo de selección de marchas 43 de la transmisión 40 y un mecanismo de transmisión de potencia de cambio 80 para transmitir el par de torsión generado por el motor de cambio 70 al mecanismo de selección de marchas 43.
- 30 La motocicleta 1 de acuerdo con la presente realización incluye un mecanismo de transmisión manual automático 50 (véase Figura 10, y en adelante, se refiere como "un dispositivo de control de cambio automático 50"), que acciona automáticamente el mecanismo de embrague 44 y cambia los engranajes de cambio de velocidad de la transmisión 40. Los detalles de la configuración del dispositivo de control de cambio automático 50 se describen más adelante.
- Como se muestra en la Figura 1, una rueda dentada de transmisión 48a se proporciona en el eje de transmisión 42. En la rueda trasera 23, se proporciona una rueda dentada de transmisión 48b. Una cadena 47 se extiende entre la rueda dentada de transmisión 48a, y la rueda dentada de transmisión 48b. Por lo tanto, la potencia del motor 20 transmitida al eje de transmisión 42 a través de la transmisión 40 se transmite a la rueda trasera 23 a través de la cadena 47.

40

55

- La configuración general de la motocicleta 1 se ha descrito. El mecanismo de embrague 44 se describirá en detalle a continuación con referencia a la Figura 3.
- El mecanismo de embrague 44 en la presente realización es un embrague de fricción de múltiples discos, e incluye una carcasa del embrague 443 de una forma cilíndrica, un bulón del embrague 447 de una forma cilíndrica, una pluralidad de discos de fricción 445 y las placas de embrague 449 que sirven como discos de fricción, y una placa de presión 451. El mecanismo de embrague 44 incluye también un engranaje 441 que se acopla con un engranaje 310 formado en el cigüeñal 31. En un extremo del cigüeñal 31, se monta un sensor de velocidad de giro del motor S30. El eje principal 41 está provisto de un sensor de giro del eje principal S31.
 - La carcasa del embrague 443 se monta sobre el eje principal 41 a fin de permitir el giro relativo. La carcasa del embrague 443 se forma para tener una forma cilíndrica. En un extremo de la carcasa del embrague 443 (a la izquierda en la Figura 3), se proporciona una porción de acoplamiento 443B que tiene un orificio de acoplamiento 443A. Una proyección de acoplamiento 441a del engranaje 441 encaja en el orificio de acoplamiento 443A de modo que el engranaje 441 y la carcasa del embrague 443 se acoplan entre sí para evitar el giro relativo. La superficie interna de la parte cilíndrica de la carcasa del embrague 443 se forma con una pluralidad de surcos que se extienden en una dirección axial del eje principal 41.
- Los discos de fricción 445 se forman cada uno de una placa fina en forma de anillo. Cada uno de los discos de fricción 445 tiene una pluralidad de dientes formas en un borde externo de los discos de fricción 445. Cada uno de los discos de fricción 445 se une a la carcasa del embrague 443 de modo que la pluralidad de dientes formas en el borde exterior de los discos de fricción 455 se acopla con la pluralidad de surcos formados en la superficie interna de la carcasa del embrague 443, evitando el giro relativo. Cada disco de fricción 445 se desliza en la carcasa del embrague 443 en la dirección axial del eje principal 41. Cada disco de fricción 445 se une a la carcasa del embrague 443 de tal manera que una cara del disco de fricción 445 es aproximadamente perpendicular a la dirección axial del eje principal 41.

El bulón del embrague 447 se dispone hacia el interior en dirección radial de la carcasa del embrague 443 en relación con el eje principal 41, y unido al eje principal 41 a fin de impedir el giro relativo. El bulón del embrague 447 se forma para tener una forma cilíndrica. En un extremo del bulón del embrague 447 (a la izquierda en la Figura 3), se proporciona una porción de brida en forma de disco 447A, teniendo la porción de brida en forma de disco 447A un diámetro exterior que es aproximadamente igual al de los discos del embrague 449. El bulón del embrague 447 se fija al eje principal 41 de tal manera que la porción de brida 447A se encuentra en el lado de la porción de acoplamiento 443B de la carcasa del embrague 443. En el lado de las placas de embrague 449 de la porción de brida 447A, se forma un miembro de presión 447B para intercalar los discos de fricción 445 y las placas de embrague 449 en la dirección axial del eje principal 41, junto con la placa de presión 451. La superficie externa de la porción cilíndrica del bulón del embrague 447 se forma por una pluralidad de surcos 447C que extienden en la dirección axial del eje principal 41.

Las placas de embrague 449 se forman cada una para ser una placa fina en forma de anillo. Un borde interior de la placa de embrague 449 se forma por una pluralidad de dientes. Cada una de las placas de embrague 449 se conectan con el bulón del embrague 447 de tal manera que los dientes formados en los bordes internos de las placas de embrague 449 se acoplan con la pluralidad de surcos 447C formados en la superficie exterior del bulón del embrague 447, por lo tanto, impiden el giro relativo. Cada una de las placas de embrague 449 se fije de forma deslizante al bulón del embrague 447 en la dirección axial del eje principal 41. Cada una de las placas de embrague 449 se monta en el bulón del embrague 447 de tal manera que una cara de la placa de embrague 449 es aproximadamente perpendicular a la dirección axial del eje principal 41.

15

20

35

40

55

60

Los discos de fricción 445 y las placas de embrague 449 se disponen alternativamente en la dirección axial del eje principal 41.

La placa de presión 451 se proporciona para deslizarse en relación con el bulón del embrague 447 en la dirección axial del eje principal 41, pero no gira en relación con el bulón del embrague 477. La placa de presión 451 se impulsa por un motor de embrague 60. La placa de presión 451 se forma con un miembro de presión similar a una placa 451B para intercalar los discos de fricción 445 y las placas de embrague 449 en la dirección axial del eje principal 41 junto con el miembro de presión 447B de la porción de brida 447A.

En el mecanismo de embrague 44, se proporciona una pluralidad de resortes helicoidales 450 para rodear, respectivamente, a una pluralidad de surcos cilíndricos 447C. Cada uno de los resortes helicoidales 450 desvía la placa de presión 451 a la izquierda en la Figura 3. En otras palabras, cada uno de los resortes helicoidales 450 desvía la placa de presión 451 en una dirección en la que el miembro de presión 45B de la placa de presión 451 se acerca al miembro de presión 447B del bulón del embrague 447.

El centro de la placa de presión 451 se acopla con un extremo de una varilla de empuje 455 (a la derecha de la Figura 3), por ejemplo, a través de un rodamiento, tal como un rodamiento de bolas de surco profundo 457, por lo que la placa de presión gira libremente con respecto a la varilla de empuje 455. El otro extremo de la varilla de empuje 455 (a la izquierda en la Figura 3) se acopla con una parte interior del extremo del eje cilíndrico principal 41. En el interior del eje cilíndrico principal 41, se proporciona una bola esférica 459 junto al otro extremo (el extremo izquierdo) de la varilla de empuje 455, y, además, una varilla de empuje 461 se proporciona junto a la bola 459, en el lado izquierdo de la bola 459.

Uno de los extremos (extremo izquierdo) 461A de la varilla de empuje 461 se proyecta desde el otro extremo (extremo izquierdo) del eje cilíndrico principal 41. El extremo saliente 461A de la varilla de empuje 461 se integra con un pistón 463 que está conectado al motor del embrague 60. El pistón 463 se guía por un cuerpo de cilindro 465 para deslizar libremente en la dirección axial del eje principal 41.

La configuración del mecanismo de embrague 44 se ha descrito. El mecanismo de selección de marchas 43 y el mecanismo de transmisión de potencia de cambio 80 se describirán continuación en detalle.

Como se muestra en la Figura 3, el mecanismo de selección de marchas 43 incluye una leva de cambio 421 que sirve como un eje de entrada de cambios, así como horquillas de cambio 422. Una pluralidad de surcos de leva 421a se forman en la superficie exterior de la leva de cambio 421. La horquilla de cambio 422 tiene una forma ramificada, de la raíz en dos puntas. La raíz de la horquilla de cambio 422 se une de forma deslizante a un eje de la horquilla de cambio 423 en la dirección axial del eje. Una punta de la horquilla de cambio 422 se acopla con el surco de leva 421a de la leva de cambio 421. La otra punta de la horquilla de cambio 422 se acopla con surcos anulares 49a y 420a proporcionados en los engranajes de cambio de velocidad 49 y 420.

Con esta configuración, cuando la leva de cambio 421 se hace girar, las horquillas de cambio 422 se desplazan axialmente a lo largo del surco de levas 421a, para mover axialmente los engranajes de cambio de velocidad 49 y 420. De esta manera, sólo un par del engranaje de cambio de velocidad 49 y del engranaje de cambio de velocidad 420 se fija, respectivamente, en el eje principal 41 y en el eje de transmisión 42 mediante estrías. La posición de los engranajes de cambio de velocidad está por tanto determinada, y la transmisión de giro entre el eje principal 41 y el eje de transmisión 42 se ejecuta en una relación de cambio de velocidad especifica mediante el engranaje de

cambio de velocidad 49 y el engranaje de cambio de velocidad 420.

10

15

20

25

35

Como se muestra en la Figura 4, el mecanismo de transmisión de potencia de cambio 80 incluye un mecanismo de reducción 81 para reducir la velocidad del motor de cambio 70, una varilla de cambio 82, y un mecanismo de unión de cambio 83. Aunque en la presente realización, el motor de cambio 70 de un tipo eléctrico se utiliza como un actuador de cambio, un actuador hidráulico se puede utilizar como el actuador de cambio. Como se muestra en la Figura 5, el motor de cambio 70 en la presente realización, así como un dispositivo de detección de la posición de cambio S2 y el mecanismo de reducción 81, se integran como la unidad del actuador de cambio 72. La integración del motor de cambio 70 y del mecanismo de reducción 81 como el actuador de cambio 72 facilita el mantenimiento, la instalación, etc.

Como se muestra en la Figura 5, el mecanismo de reducción 81 en la presente realización incluye cuatro ejes 70a, 81a, 81b, 81c y tres y engranajes de reducción 81e, 81f, y 81g. El mecanismo de reducción 81 se encuentra dentro de cajas de engranajes 81h y 81i.

El primero de los cuatro ejes se forma por el eje del motor 70a del motor de cambio 70. Del segundo al cuarto de los cuatro ejes se forman, respectivamente, por un primer eje 81a, un segundo eje 81b y un tercer eje 81c. El primer eje, es decir, el eje del motor 70a forma un eje de entrada del mecanismo de reducción 81. En un extremo del eje del motor 70a, se forma un engranaje 70d. El cuarto eje, es decir, el tercer eje 81c forma un eje (eje de salida) del mecanismo de reducción 81.

Un primer engranaje de reducción 81e se monta a presión en el primer eje 81a. El primer engranaje de reducción 81e se dispone para acoplarse con el engranaje 70d del eje del motor 70a. El primer eje 81 tiene un engranaje 81s formado en el mismo.

Un segundo engranaje de reducción 81f se monta a presión en el segundo eje 81b. El segundo engranaje de reducción I 81f se dispone para acoplarse con el engranaje 81s del primer eje 81a. El segundo eje 81b tiene un engranaje 81t formado en el mismo.

30 Un tercer engranaje de reducción 8 g se monta a presión en el tercer eje 81 c. El tercer engranaje de reducción 81g se dispone para acoplarse con el engranaje 81t del segundo eje 81 b.

De esta manera, el primer engranaje de reducción 81e, el engranaje 81s, el segundo engranaje de reducción 81f, el engranaje 81t y el tercer engranaje de reducción 81g forman un tren de engranajes de reducción 81A, que reduce el giro del motor de cambio 70. El primer engranaje de reducción 81e en la parte más aguas arriba del tren de engranajes de reducción 81A se acopla con el engranaje 70d. Con esta disposición, el par de torsión del motor de cambio 70 se transmite al tren de engranajes de reducción 81A través del engranaje 70d y aumenta.

En la presente realización, el tercer engranaje de reducción 81g y el tercer eje 81c forman un limitador del par de torsión 88. El limitador del par de torsión 88 limita la sobrecarga del motor de cambio 70 mediante la restricción del giro del mecanismo de transmisión de potencia de cambio 80, por ejemplo, cuando los engranajes de cambio de velocidad 49 y 420 no se acoplan o desacoplan fácilmente. En esta realización, el limitador del par de torsión 88 se basa en fricción.

45 En concreto, una superficie de una porción ajustada a presión 81p del tercer eje 81c a la que se ajusta a presión el tercer engranaie de reducción 81g se trata con Corbett (es decir. se sulfuriza a baia temperatura) para formar una capa sulfurizada 81x con propiedades de auto-lubricación en la superficie de una porción ajustada a presión 81p, como se muestra en la Figura 6. En general, dicha capa se forma entre el tercer eje 81c, y el tercer engranaje de reducción 81q. Dicha capa se puede formar en una porción de la superficie del tercer engranaje de reducción 81q 50 y/o tercer eje 81c. Después, el tercer engranaje de reducción 81g se coloca a presión en el tercer eje 81c con el fin de girar conjuntamente con el tercer eje 81c cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 no es más que un par de torsión límite predeterminado L, y con el fin de deslizarse (es decir, girar relativamente) en relación con el tercer eje 81c cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 excede al par de torsión límite predeterminado L. En 55 concreto, cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 no es más que el par de torsión límite predeterminado L, el tercer engranaje de reducción 81g se hace girar conjuntamente con el tercer eje 81c, debido a la fuerza de fricción producida entre el tercer engranaje de reducción 81g y el tercer eje 81c. En otras palabras, el tercer engranaje de reducción 81 g, y el tercer eje 81c giran a la misma velocidad de giro. Por otro lado, cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 excede el par de torsión el límite predeterminado L, contra la fuerza de fricción generada 60 entre el tercer engranaje de reducción 81g y el tercer eje 81c, el tercer engranaje de reducción 81g se desliza en relación con el tercer eje 81 c. En otras palabras, el tercer engranaje de reducción 81g y el tercer eje 81c giran relativamente.

El primer engranaje de reducción 81e y el segundo engranaje de reducción 81f tienen una interferencia montado a presión (es decir, el diámetro del eje/diámetro del engranaje ajustado a presión) mayor que la del tercer engranaje de reducción 81g. Con la mayor interferencia, el par de torsión del motor aumenta, y el par de torsión cuando

comienza el giro relativo aumenta también. En consecuencia, aun cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 excede el par de torsión límite predeterminado L, el primer engranaje de reducción 81e y el segundo engranaje de reducción 81f no giran en relación con el primer eje 81a ni segundo eje 81b, respectivamente.

5

Como se muestra en la Figura 5, el dispositivo de detección de posición de cambio S2 se dispone en un extremo del tercer eje 81c, que es el eje de transmisión (es decir, el eje de salida) del mecanismo de reducción 81. El dispositivo de detección de posición de cambio (sensor de ángulo) S2 se dispone al final del tercer eje 81 c, y se fija a la caja de engranajes 81h con pernos de fijación 81j, como se muestra en la Figura 7.

10

15

Como se muestra en la Figura 5, una palanca de accionamiento 84 se fija en el otro extremo del tercer eje 81c. En concreto, como se muestra en la Figura 8, la palanca de accionamiento 84 está provista de una perforación de acoplamiento 84a, que se acopla con el tercer eje de reducción 81c, y la perforación de acoplamiento 84a, y el tercer eje de 81c tiene un dentado formado al respecto. La palanca de accionamiento 84 se fija al tercer eje 81c acoplando el dentado del tercer eje 81c con el de la palanca de accionamiento 84 y fijando un perno 81 k. Por lo tanto, al asegurar la palanca de accionamiento 84 se hace imposible girar relativamente en relación con el tercer eje 81 c. En consecuencia, tras el giro del tercer eje 81c que es el eje de transmisión (es decir, el eje de salida) del mecanismo de reducción 81, la palanca de accionamiento 84 oscila.

20 Mi

Miembros de retención 89 y 89 que restringen la oscilación de la palanca de accionamiento 84 dentro de un determinado intervalo angular D se unen a la caja de engranajes 81i. El miembro del detención 89 y 89 junto la palanca de accionamiento 84 forman un mecanismo de detención 87. El mecanismo de detención 87 limita la oscilación de la palanca de accionamiento 84 dentro de un intervalo angular predeterminado D para restringir el giro del tercer eje 81c a una posición angular fuera de la región de detección del dispositivo de detección de posición de cambio (sensor de ángulo) S2.

30

25

Como se muestra en las Figuras 4 y 9, porción de conexión 82a de la varilla de cambio 82 en el lado del motor de cambio se conecta a la palanca de accionamiento 84 a través de un perno 82b (véase Figura 4). Como se muestra en la Figura 4, la porción de conexión 82a en el lado del motor cambio se apoya en un rodamiento 82c y gira libremente con respecto al perno 82d. Por lo tanto, la oscilación de la palanca de accionamiento 84 mueve la varilla de cambio 82, en el sentido longitudinal de la varilla.

35

Como se muestra en las Figuras 4 y 9, la varilla de cambio 82 incluye la porción de conexión 82a en el lado del motor cambio, un primer cuerpo de varilla 82A, un segundo cuerpo de varilla 82B y la porción de conexión 82 en el lado de mecanismo de unión de cambio. Una porción del primer cuerpo de varilla 82A en el lado del mecanismo de unión de cambio se forma por un cuerpo tubular 82d. Como se muestra en la Figura 4, en el interior del cuerpo tubular 82d, se forma un paso 82e con un diámetro mayor que el de otras partes. Por otro lado, el segundo cuerpo de varilla 82B se forma con una porción de diámetro mayor 82f con un diámetro mayor que el de otras partes en el extremo del motor de cambio. El segundo cuerpo de varilla 82B se inserta en el cuerpo tubular 82d de modo que la porción de diámetro mayor 82f se encuentra en el paso 82e del primer cuerpo varilla 82A. Se proporcionan resortes helicoidales 86 en el interior del cuerpo tubular 82 y a ambos lados axiales de la porción de diámetro mayor 82f. Los resortes helicoidales 86 soportan elásticamente la porción de diámetro mayor 82f.

45

50

40

El extremo del primer cuerpo de varilla 82A en lado del motor de cambio 70 (a la derecha de la Figura 4) se atornilla a una porción roscada 82g de la porción de conexión 82a en el lado del motor de cambio. Por el contrario, el extremo del segundo cuerpo de varilla 82B en el lado del mecanismo de unión de cambio (a la izquierda de la Figura 4) se atornilla a una porción roscada 82i de la porción de conexión 82m en el lado del mecanismo de unión de cambio. Tras el giro del primer cuerpo de varilla 82A o segundo cuerpo de varilla 82B, una longitud de atornillado de la porción roscada 82g o la porción roscada 82i se varía de modo que la longitud de la varilla de cambio 82 se puede ajustar. Por tanto, la longitud de la varilla de cambio 82 se puede ajustar fácilmente con sólo girar el primer cuerpo de varilla 82A o el segundo cuerpo de varilla 82B. Esto hace que sea posible seleccionar la posición del motor de cambio 70 con mayor libertad. La estructura por la que la longitud de la varilla de cambio 82 se puede ajustar no se limita a la que se muestra en la Figura 4 y se pueden utilizar cualquiera de las diferentes estructuras.

55

La porción de conexión 82m del segundo cuerpo de varilla 82B en el lado del mecanismo de unión de cambio se conecta a una palanca de accionamiento 85 por medio de un perno 82n. La porción de conexión 82m de porción de conexión en el lado de la unión de cambio se soporta por un rodamiento 82o y gira libremente con respecto al perno 82n. Por lo tanto, el movimiento de la varilla de cambio 82 en la dirección longitudinal de la misma causa la oscilación de la palanca de accionamiento 85.

60

La palanca de accionamiento 85 se fija a un eje de accionamiento de cambio 83a del mecanismo de unión de cambio 83. En concreto, en la palanca de accionamiento 85, se proporciona una perforación de acoplamiento que se acopla con el eje de accionamiento de cambio 83a. En cada una de la perforación de acoplamiento y palancas de accionamiento de cambio 83a, se forma un dentado. La palanca de accionamiento 85 se asegura al eje de accionamiento de cambio 83a acolando el dentado de la palanca de accionamiento 85 con el eje de accionamiento de cambio 83a y fijando un perno 83b. Por lo tanto asegurando la palanca de acoplamiento 85 es imposible el giro

relativo en relación con el eje de accionamiento de cambio 83a. En consecuencia, cuando la palanca de accionamiento 85 oscila, el eje de accionamiento de cambio 83a se hace girar.

El mecanismo de unión de cambio 83 se dispone dentro del cárter 32 y tiene el eje de accionamiento de cambio 83 anteriormente. Como se ha descrito anteriormente, la palanca de accionamiento 85 se fija al extremo 83c del eje de accionamiento de cambio 83. Una palanca de unión 83e se une al otro extremo 83d del eje de accionamiento de cambio 83a para no girar relativamente. Una sujeción 83f se fija hacia el interior de la palanca de unión 83e del otro extremo 83d del eje de accionamiento de cambio 83a, y un resorte helicoidal 83g se enrolla alrededor de la superficie externa de la sujeción 83f. Un eje de soporte 83i se une a uno de los extremos 83h de la palanca de unión 83e. Un trinquete 83k se fija de forma que pueda girar libremente al eje de soporte 83i. Con esta configuración, el giro del eje de accionamiento de cambio 83a oscila la palanca de unión 83e. Como resultado, una porción de acoplamiento 83m del trinquete 83k empuja una clavija (no mostrada) en el extremo de la leva de cambio 421 (véase Figura 3) para hacer girar la leva de cambio 421. El resorte helicoidal 83g soporta y desvía el trinquete 83k a la posición neutra del mismo.

La configuración del mecanismo de selección de marchas 43 y del mecanismo de transmisión de potencia de cambio de 80 se ha descrito anteriormente. El dispositivo de control de cambio automático 50 se describirá a

continuación.

Como se muestra en la Figura 10, el dispositivo de control de cambio automático 50 acciona el mecanismo de embrague 44 y cambia automáticamente el los engranajes de cambio de velocidad de velocidad de la transmisión 40. El dispositivo de control de cambio automático 50 incluye un controlador de motor 95, el motor de embrague 60 para accionar el mecanismo de embrague 44, un mecanismo de transmisión de potencia del embrague 62 (véase Figura 3) para transmitir de la potencia del motor de embrague 60 al mecanismo de embrague 44, el motor de cambio 70 para impulsar el mecanismo de selección de marchas 43 de la transmisión 40, el mecanismo de transmisión de potencia de cambio 80 para transmitir la potencia del motor de cambio 70 al mecanismo de selección de marchas 43, y otros componentes (distintos sensores) necesarios para el control de cambio automático (transmisión manual automatizada).

30 Ahora se describe el sistema del dispositivo de control de cambio automático 50.

Como se muestra en la Figura 11, un manillar 11 tiene, por ejemplo, un interruptor de cambio SW1 en el puño izquierdo. El interruptor de cambio SW1 se forma, por ejemplo, por un interruptor de cambio de marcha hacia arriba SW1a1 y un interruptor de cambio hacia abajo SW1a2, y cambia la posición de cambio del engranaje de cambio de velocidad entre una primera y una velocidad mayor (por ejemplo, sexta marcha) según sea adecuado por la operación manual de un conductor. En el puño izquierdo, un interruptor de cambio SW2, un interruptor indicador SW3, un interruptor de hom SW4, y un interruptor de luz SW5 se proporcionan también. Un interruptor de cambio SW2 cambia la operación del cambio de marchas entre un modo semi-automático y un modo completamente

automático.

35

A continuación se describirá la operación del mecanismo de selección de marchas 43 y del mecanismo de embrague 44 durante el cambio de marchas a través del dispositivo de control de cambio automático 50.

Como se muestra en la Figura 10, el cambio del mecanismo de selección de marchas 43 y del mecanismo de embrague 44 se ejecuta en el dispositivo de control de cambio automático 50. En la motocicleta 1, se proporcionan varios sensores, tal como un dispositivo de detección de la posición del embrague del motor embrague 60 (no mostrado) y un sensor de velocidad, además de los dispositivos para detectar la posición de cambio S2 del motor de cambio 70.

En primer lugar, el cambio del mecanismo de selección de marchas 43 y del mecanismo de embrague 44 se inicia cuando el interruptor de cambio SW1 se opera por un conductor. Un controlador de motor 95 impulsa el embrague del motor 60 y el motor de cambio 70 en base a datos detectados por los diferentes sensores y una instrucción del interruptor de cambio SW1. En concreto, el controlador de motor 95 realiza automáticamente una serie de operaciones de cambio de desconexión del mecanismo de embrague 44, desactivando el engranaje de cambio de velocidad de la transmisión 40, y la conexión del mecanismo de embrague 44 de acuerdo con un programa predeterminado almacenado de ante mano en el controlador de motor 95 y mediante otros circuitos aritméticos. La operación de cambio de marchas se describirá a continuación con mayor detalle.

En primer lugar, se describe la desconexión del mecanismo de embrague 44.

60

En un primer momento, el controlador del motor 95 impulsa y gira el motor de embrague 60 en base a la instrucción del interruptor de cambio SW1. Después, un eje de salida 60g se mueve a la izquierda en la Figura 3. Como resultado, un pistón 60l de un cilindro 60k se empuja hacia la izquierda en la Figura 3, de modo que el aceite presente en una cámara de aceite 60n pasa a través de una manguera de aceite 60Q a un espacio 467 rodeado por el cuerpo del cilindro 465 y el pistón 463. Cuando el aceite se suministra en el espacio 467, el pistón 463 se mueve a la derecha en la Figura 3. La cámara de aceite 60n se comunica con un tanque de reserva 60t a través de una

manguera de de reserva 60s (véase Figura 2).

15

20

40

45

60

65

El movimiento hacia la derecha del pistón 463 hace que la placa de presión 451 se empuje en la dirección hacia la derecha en la Figura 3 a través de la varilla de empuje 461, la bola 459, la varilla de empuje 455, y el rodamiento de bolas de surco profundo 457. Cuando la presión llega a ser mayor que la fuerza con la que el resorte 450 desvía la placa de presión 451 a la izquierda en la Figura 3, la placa de presión 451 se mueve a la derecha en la Figura 3. Por lo tanto, el miembro de presión 451B de la placa de presión 451 se separa de los discos de fricción 445. Como resultado, el contacto entre cada disco de fricción 445 y cada placa de embrague 449 se libera para que no se genere ninguna fuerza de fricción para transmitir el par de torsión entre cada disco de fricción 445 y cada placa de embrague 449. De esta manera, el mecanismo de embrague 44 se desconecta.

Tras la desconexión del mecanismo de embrague 44, el cambio de los engranajes de cambio de velocidad de la transmisión 40 se realiza posteriormente. La operación de cambio de los engranajes de cambio de velocidad se describe a continuación.

Tras la desconexión del mecanismo de embrague 44, el controlador del motor 95 impulsa y gira el motor de cambio 70 mientras mantiene el mecanismo de embrague 44 desconectado. Como resultado, el engranaje 70d del eje del motor 70a se hace girar. Como se muestra en la Figura 4, un giro del engranaje 70d hace que el primer engranaje de reducción 81e, el primer eje 81a, el engranaje 81s, el segundo engranaje de reducción 81f, el segundo eje 81b, el engranaje 81t, y el tercer engranaje de reducción 81g se interbloqueen en un orden secuencial y giren. Como resultado, el tercer eje 81c, que es el eje de transmisión (es decir, el eje de salida) del mecanismo de reducción 81 gira.

Como se muestra en la Figura 4, el dispositivo de detección de posición de cambio S2 se fija al extremo del tercer eje 81c. El dispositivo de detección de posición de cambio S2 determina la información de posición en base al giro del tercer eje 81 c, y envía la información de posición al controlador del motor 95. El controlador del motor 95 controla el motor de cambio 70 en base a la información de la posición antes mencionada.

Cuando se hace girar el tercer eje 81 c, la palanca de accionamiento 84 oscila, y cuando la palanca de accionamiento 84 oscila, la varilla de cambio 82 se mueve en la dirección longitudinal de la varilla. Cuando la varilla de cambio 82 se mueve, la palanca de accionamiento 85 oscila, cuando la palanca de accionamiento 85 oscila, el eje de accionamiento de cambio 83a gira. Entonces, cuando el eje de accionamiento de cambio 83a gira, la palanca de unión 83e oscila, y el leva de cambio 421 gira un ángulo predeterminado a través de porción de acoplamiento 83m del trinquete 83k.

Como se muestra en la Figura 3, el giro de la leva de cambio 421 hace que las horquillas de cambio 422 se muevan a lo largo de los surcos de leva 421a en la dirección axial de la leva en una cantidad predeterminada. Este movimiento axial de las horquillas de cambio 422 hace que un par del engranaje de cambio de velocidad 49 y engranaje de cambio de velocidad 420 se fijen posteriormente en el eje principal 41 y en el eje de transmisión 42. De acuerdo con la operación mencionada, el par de los engranajes de cambio de velocidad para transmitir la fuerza motriz se selecciona y se cambia. Por lo tanto, la fuerza motriz de giro transmitida al eje principal 41 se transmite al eje de transmisión 42 en una relación de engranaje de transmisión predeterminada.

En ocasiones, la transmisión 40 no puede funcionar porque, por ejemplo, los engranajes de cambio de velocidad 49 y 420 no se acoplan o desacoplan fácilmente, por lo que el mecanismo de transmisión de potencia de cambio 80 no pueden transmitir el par de torsión del motor de cambio 70 a la transmisión 40, aun cuando el motor de cambio 70 se impulsa. En tales casos, se puede generar un par de torsión excesivo en el mecanismo de transmisión de potencia de cambio 80 y el motor de cambio 70 se sobrecarga.

Sin embargo, el dispositivo de control de cambio automático 50 de la motocicleta 1 incluye el limitador del par de torsión 88. Por lo tanto, es posible suprimir la sobrecarga del motor de cambio 70. En concreto, cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 excede el par de torsión límite predeterminado L, contra la fuerza de fricción generada entre el tercer engranaje de reducción 81g y el tercer eje 81c, el tercer engranaje de reducción 81g se desliza con respecto al tercer eje 81c. En otras palabras, el tercer engranaje de reducción 81g gira en relación con el tercer eje 81c. Como resultado, el par de torsión aplicado al mecanismo de transmisión de potencia de cambio 80 se libera y se suprime la carga en el motor de cambio 70.

El par de torsión límite predeterminado L se selecciona a fin de no sobrecargar el motor de cambio 70. De acuerdo con la presente realización, el par de torsión límite L se establece en el par de torsión máximo transmitido por el mecanismo de transmisión de potencia de cambio 80. Sin embargo, es posible establecer el par de torsión límite L como se desee y un valor por debajo del par de torsión máximo mencionado se puede establecer.

En la presente realización, una forma en que se desliza el tercer engranaje de reducción 81g y el tercer eje 81c que constituye el limitador del par de torsión 88 no se limita particularmente. La operación de deslizamiento antes mencionada se puede realizar de una forma, como se muestra en la Figura 12. La Figura 12 muestra un diagrama de correlación del par de torsión transmitido y la velocidad de deslizamiento, con el par de torsión que se transmite

por el mecanismo de transmisión de potencia de cambio 80 estando en el eje de las abscisas y la velocidad relativa entre el tercer engranaje de reducción 81 g tercero y el tercer eje 81c estando en el eje de las ordenadas. Como se muestra en la Figura 12, la el tercer engranaje de reducción 81g y el tercer eje 81c no giran relativamente hasta que el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 alcanza el par de torsión límite predeterminado L. Cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 excede el par de torsión límite L, el limitador del par de torsión 88 funciona, provocando el giro relativo del tercer engranaje de reducción 81g y tercer eje 81 c. Como resultado, el par de torsión transmitido entre el tercer engranaje de reducción 81g, y el tercer eje 81 se mantiene inferior al par de torsión límite L. De acuerdo con la presente realización, por lo tanto, el limitador del par de torsión 88 funciona para limitar el par de torsión transmitido por el mecanismo de transmisión de potencia de cambio 80 al par de torsión límite L o menos. Como resultado, el par de torsión transmitido por el mecanismo de transmisión de potencia de cambio 80 no será superior y ni aumentará el par de torsión límite L.

La relación entre el par de torsión transmitido y la velocidad de deslizamiento no se limita a la que se muestra en la Figura 12. En otras palabras, la velocidad de giro relativa entre el tercer engranaje de reducción 81g y el tercer eje 81c no se limita a la que se muestra en la Figura 12, en la que después de que el par de torsión que se transmite supera el par de torsión límite L, el par de torsión aumenta de manera escalonada. Por ejemplo, la mencionada velocidad de giro relativa puede aumentar poco a poco después de que el par de torsión que se transmite supera el par de torsión límite L.

15

20

25

55

60

Como se ha descrito anteriormente, incluso cuando la transmisión 40 no puede funcionar fácilmente, por alguna razón, el limitador del par de torsión 88 limita el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 al par de torsión límite L o menos. Esto limita la carga en el motor de cambio 70 para suprimir la condición de sobrecarga del motor de cambio 70. Esto limita también la fuerza ejercida sobre los engranajes de cambio de velocidad 49 y 420 para evitar que la operación de cambio de marcha se detenga debido a la presión excesiva sobre los engranajes de cambio de velocidad de 49 y 420. En consecuencia, los engranajes de cambio de velocidad 49 y 420 pueden llegar a acoplarse o desacoplarse eventualmente para fijarse en el eje principal 41 y en el eje de transmisión 42, completando así la operación de cambio de marchas.

30 Después de que los engranajes de cambio de velocidad se cambian como se ha descrito anteriormente, el mecanismo de embrague 44 se pasa de desconectado a conectado. La operación de conexión del mecanismo de embrague 44, se describe a continuación.

Después que se completa el cambio de los engranajes de cambio de velocidad, el controlador del motor 95 impulsa y hace girar el embrague del motor 60 en la dirección contraria. Como resultado, el eje de salida 60g del motor de embrague 60 se mueve gradualmente hacia la derecha en la Figura 3, y mueve el pistón 60l a la derecha en la Figura 3. El movimiento del pistón 60l hace que el aceite fluya desde el espacio 467 rodeado por el cuerpo del cilindro 465 y el pistón 463 a la cámara de aceite 60n a través de la manguera de aceite 60q.

El aceite hace que el pistón 463 desviado por la placa de presión 451 y los resortes 450 se muevan poco a poco a la izquierda en la Figura 3. La placa de presión 451 se mueve también poco a poco a la izquierda en la Figura 3. El miembro de presión 451B de la placa de presión 451 entra en contacto con el disco de fricción 445 y empuja el disco de fricción 445 a la izquierda en la Figura 3. Como resultado, los discos de fricción 445 y las placas de embrague 449 se intercalan por el miembro de presión 447B del bulón del embrague 447 y el miembro de presión 451B de la placa de presión 451 de modo que se genera un fuerza de fricción entre cada disco de fricción 445 y cada placa de embrague 449. A medida que la placa de presión 451 se mueve más a la izquierda de la Figura 3, la fuerza de fricción generada entre cada disco de fricción 445 y cada placa de embrague aumenta 449 debido a la fuerza de empuje de los resortes 450. Como resultado, casi no ocurre deslizamiento entre los discos de fricción 445 y las placas de embrague 449 y una fuerza de fricción suficiente para transmitir el par de torsión de la carcasa del embrague 443 al bulón de embrague 447 se genera entre el disco de fricción 445 y la placa de embrague 449. De esta manera, el mecanismo de embrague 44 se conecta nuevamente.

Como se ha descrito anteriormente, el dispositivo de control de cambio automático 50 de la presente realización incluye el limitador del par de torsión 88 previsto en el mecanismo de transmisión de potencia de cambio 80 y que transmite la potencia del motor de cambio 70, como el par de torsión y limita el par de torsión que se transmite al par de torsión límite predeterminado L o menos cuando el par de torsión que se transmite supera el par de torsión límite predeterminado L. El tercer engranaje de reducción 81g del limitador del par de torsión 88 se hace girar conjuntamente con el tercer eje 81c cuando el par de torsión que se transmite no es mayor que el par de torsión límite determinado L, y gira en relación con el tercer eje 81c cuando el par de torsión que se transmite supera el par de torsión límite predeterminado L. En otras palabras, el tercer engranaje de reducción 81g y el tercer eje 81c giran a la misma velocidad cuando el par de torsión que se transmite no es mayor que el par de torsión límite predeterminado L y, giran relativamente cuando el par de torsión que se transmite supera el par de torsión límite predeterminado L. Por lo tanto, aun cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 excede temporalmente el par de torsión límite predeterminado L, el giro relativo del tercer engranaje de reducción 81g, y el tercer eje 81c limita el par de torsión al par de torsión límite predeterminado L o menos. Por lo tanto, se puede restringir la sobrecarga del motor de cambio 70.

Además, el dispositivo de control de cambio automático 50 de acuerdo con la presente realización limita la sobrecarga del motor de cambio 70, sin limitar el par de torsión del motor de cambio por sí mismo o utilizando un limitador del par de torsión formado, por ejemplo, por un elemento elástico con un módulo de elasticidad bajo. En consecuencia, es posible acortar el tiempo desde el comienzo hasta la finalización de la operación de cambio de marchas. Por lo tanto, con el dispositivo de control de cambio automático 50 de acuerdo con la presente realización, puede lograr suprimir la sobrecarga del motor de cambio 70 y reducir del tiempo de los cambios de marchas al mismo tiempo.

En el dispositivo de control de cambio automático 50 de acuerdo con la presente realización, el tercer eje 81c, y el tercer engranaje de reducción 81g ajustado a presión en el tercer eje 81c forman del limitador del par de torsión 88. El tercer engranaje de reducción 81g y el tercer eje 81c giran conjuntamente cuando el par de torsión transmitido por el tercer engranaje de reducción 81g al tercer eje 81c, no excede el par de torsión límite predeterminado L, y el tercer engranaje de reducción 81g gira relativamente al tercer eje 81c para liberar una parte del par de torsión hacia el exterior del mecanismo de transmisión de potencia de cambio 80 cuando el par de torsión que se transmite desde el tercer engranaje de reducción de 81 g al tercer eje 81 c excede el par de torsión límite predeterminado L. De esta forma, con el dispositivo de control de cambio automático 50, una sencilla configuración puede limitar el par de torsión transmitido por el mecanismo de transmisión de potencia de cambio 80 al par de torsión límite determinado L, o incluso menos, cuando el par de torsión que se transmite supera el par de torsión límite predeterminado L y, por tanto, se puede limitar la sobrecarga del motor de cambio 70.

20

25

55

60

65

Con el dispositivo de control de cambio automático 50, el tercer engranaje de reducción 81g y el tercer eje 81c no se disponen para girar relativamente cuando el par de torsión que se transmite no excede el par de torsión límite predeterminado L. Por lo tanto, cuando el tercer engranaje de reducción 81g gira en relación con el tercer eje 81c de modo que el par de torsión transmitido se reduce al par de torsión predeterminado L o menos, el tercer engranaje de reducción 81g y el tercer eje 81c vuelven a su estado original y no giran relativamente. Por lo tanto, el limitador del par de torsión 88 del dispositivo de control de cambio automático 50 se puede utilizar varias veces, y se puede utilizar para limitar la sobrecarga del motor cambio 70 varias veces sin tener que reemplazarse.

En el dispositivo de control de cambio automático 50, el limitador del par de torsión 88 se forma por el tercer engranaje de reducción 81g, y el tercer eje 81c, que es uno de los engranajes de reducción 81e a 81g y uno de los ejes 81a a 81c, formando ambos el mecanismo de reducción 81. En otras palabras, en el dispositivo de control de cambio automático 50, el limitador del par de torsión 88 se forma de una parte del mecanismo de reducción 81. Por lo tanto, es posible formar simplemente el limitador del par de torsión 88. Además, es posible añadir la función de limitar el par de torsión mencionada anteriormente en un mecanismo de reducción 81 existente sin proporcionar el limitador del par de torsión 88 por separado. Por lo tanto, el dispositivo de control de cambio automático 50 puede evitar el aumento del número de componentes y el tamaño del dispositivo debido a la adición de la función de limitar el par de torsión.

En la presente realización, el par de torsión límite predeterminado L se ajusta de acuerdo a la interferencia de ajuste 40 a presión (es decir, el diámetro del eje/diámetro del engranaje ajustado a presión). Por lo tanto, cuanto menor sea el diámetro interior del engranaje ajustado a presión, mayor será el ajuste del par de torsión límite L que se pueda influenciar por la desviación entre las interferencias reales y dianas (es decir, la tolerancia de la interferencia de ajuste a presión).

Por lo tanto, en el dispositivo de control de cambio automático 50, el limitador del par de torsión 88 se forma por el tercer engranaje de reducción 81g y el tercer eje 81c, que están más aguas abajo de los engranajes de reducción 81e a 81g, y que los ejes 81a a 81c que conforman el mecanismo de reducción 81. El tercer engranaje de reducción 81g se encuentra más aguas abajo y tiene el diámetro más grande entre los tres engranajes de reducción 81e a 81g por lo que la tolerancia de la interferencia de ajuste a presión influencia menos al ajuste del par de torsión límite L. De esta manera, el dispositivo de control de cambio automático 50 facilita el ajuste del par de torsión límite L y la producción del limitador del par de torsión 88.

En el dispositivo de control de cambio automático 50, la superficie de la porción de ajuste a presión 81p del tercer eje 81c al que se ajusta a presión el tercer engranaje de reducción 81g se trata por Corbett (es decir, sulfuriza a una baja temperatura) para formar una capa sulfurizada con propiedades de auto- lubricación la superficie de la porción de ajuste a presión 81 p. Por lo tanto, un par de torsión excesivo puede ser convenientemente reducido. Por lo tanto, la configuración para limitar la sobrecarga del motor de giro 70 se proporciona fácilmente. Dado que la función para limitar el par de torsión se proporciona mediante el tratamiento por Corbett (es decir, sulfurización a baja temperatura) de los componentes existentes sin necesidad de añadir un miembro con propiedades de auto-lubricación, el limitador del par de torsión 88 se forma fácilmente.

El dispositivo de control de cambio automático 50 incluye también el mecanismo de detención 87. Por lo tanto, es posible restringir el giro del tercer eje 81c de tal modo que el tercer eje 81c en uno de cuyos extremos se adjunta el dispositivo de detección de posición de cambio (sensor de ángulo) S2 no gira a una posición angular fuera de la región de detección del dispositivo de detección de posición de cambio (sensor de ángulo) S2.

Aunque la parte giratoria del mecanismo de detención 87 se forma de la palanca de accionamiento 84 y la parte fija del mecanismo de detención 87 se forma por los miembros de detención 89 y 89 en la presente realización, se contempla que la parte giratoria se puede proporcionar en el tercer engranaje de reducción 81g y los miembros de detención como una parte fija se pueden proporcionar dentro de la caja de engranajes 81h. Sin embargo, en la presente realización, el limitador del par de torsión 88 se forma por el tercer engranaje de reducción 81g, y el tercer eje 81c, y el tercer engranaje de reducción 81g gira en relación con el tercer eje 81c, cuando el par de torsión transmitido supera el par de torsión límite predeterminado L. Por lo tanto, ya que se cambia la posición angular entre el dispositivo de detección de posición de cambio (sensor de ángulo) S2 y la parte giratoria, la función de retén no se puede obtener.

10

15

25

30

35

40

Sin embargo, en el dispositivo de cambio de control automático 50 de acuerdo con de la presente realización, la parte giratoria del mecanismo de detención 87 se forma por la palanca de accionamiento 84, y se une al tercer eje 81c. Por lo tanto, la posición angular entre el dispositivo de detección de posición de cambio (sensor de ángulo) S2 y la palanca de accionamiento 84 como la parte giratoria no cambia aun cuando el tercer engranaje de reducción 81g gira en relación con el tercer eje 81c durante el funcionamiento del limitador del par de torsión 88. En consecuencia, es posible formar el limitador del par de torsión 88 a partir del tercer engranaje de reducción 81g y del tercer eje 81c, y demostrar la función del mecanismo de detención 87.

Por otra parte, de acuerdo con la motocicleta 1, ya que se proporciona el dispositivo de control de cambio automático 50, se puede proporcionar el vehículo del tipo de montar a horcajadas en el que el tiempo desde el inicio hasta la finalización de la operación de cambio de marchas se puede reducir, mientras que se puede suprimir la sobrecarga del motor de cambio 70.

En la presente realización, el limitador del par de torsión 88 se forma por el tercer engranaje de reducción 81g, y el tercer eje 81c, que se encuentran más aguas abajo entre los engranajes de reducción 81e a 81g e y que los ejes de 81a a 81c del mecanismo de reducción 81. Sin embargo, el limitador del par de torsión motor no se limita a lo anterior. El limitador del par de torsión 88 se puede formar por el segundo engranaje de reducción 81f y el segundo eje 81 b del mecanismo de reducción 81, o formarse por el primer engranaje de reducción 81e, y el primer eje 81a del mecanismo de reducción 81. Por otra parte, el limitador del par de torsión 88 se puede formar por la palanca de accionamiento 84 y el tercer eje 81c. En concreto, la palanca de accionamiento 84 se puede ajustar a presión en el tercer eje 81c de tal manera que la palanca de accionamiento 84 y el tercer eje 81c giren conjuntamente cuando el par de torsión no excede el límite predeterminado L, y girar relativamente cuando el par de torsión excede el par de torsión límite predeterminado L. Por otra parte, el limitador del par de torsión 88 se puede formar por la palanca de accionamiento 85 y el eje de accionamiento de cambio 83a. En concreto, la palanca de accionamiento 85 se puede ajustar a presión en el eje de accionamiento de cambio 83a de modo que la palanca de accionamiento 85 y el eje de accionamiento 85 y el eje de accionamiento de cambio 83a giren relativamente cuando el par de torsión supere el par de torsión límite predeterminado L.

45

Además, el limitador del par de torsión 88 de acuerdo con la presente realización no se limita a uno de estos, en el que se transmite el par de torsión debido a la fuerza de fricción generada entre el primer miembro de giro en el lado de entrada (es decir, tercer engranaje de reducción 81g) y el segundo miembro de giro en el lado de salida (es decir, tercer eje 81c), y el par de torsión se libera cuando se supera el par de torsión límite predeterminado L deslizando en el primer miembro de giro en relación con el segundo miembro de giro. Por ejemplo, el limitador del par de torsión puede ser aquel en el que el primer miembro de giro en el lado de entrada y el segundo miembro de giro en el lado de salida se acoplen entre sí para transmitir el par de torsión, el primer miembro de giro y el segundo miembro de giro se desacoplen temporalmente para girar relativamente cuando el par de torsión que se transmite supera el par de torsión límite predeterminado L, y se vuelvan a acoplan entre sí cuando se tengan que hacer girar relativamente por el ángulo predeterminado. En concreto, un ejemplo de un limitador del par de torsión puede ser el siguiente.

50

55

Como se muestra en la Figura 13(a), un limitador del par de torsión 88 incluye un cuerpo de giro 101, un cuerpo de giro 102, miembros de acoplamiento 103 y un resorte helicoidal 104. El cuerpo de giro 101 cuenta con orificios de acoplamiento 101a para acoplarse con los miembros de acoplamiento 103. El cuerpo de giro 102 está provisto de miembros de restricción 102 que limitan el movimiento de los miembros de acoplamiento 103 en una dirección circunferencial del cuerpo de giro 102. El resorte helicoidal 104 está previsto entre el cuerpo de giro 101 y el cuerpo de giro 102 y se proporciona para presionar los miembros de acoplamiento 103 contra el cuerpo de giro 101. El cuerpo de giro 101 constituye un primer miembro de giro 111, mientras que el cuerpo de giro 102, los miembros de acoplamiento 103 y el resorte helicoidal 104 forman un segundo miembro de giro 112. En esta realización, el limitador del par de torsión 88 se basa en acoplamiento. Además, pueden ser posibles combinaciones de limitadores de par de torsión en base a acoplamiento y en base a fricción.

60

Con tal configuración, en el estado que el miembro de acoplamiento 103 se acopla con los orificios de acoplamiento 101a del cuerpo de giro 101, el primer miembro de giro 111 y el segundo miembro de giro 112 se acoplan entre sí a través de los miembros de acoplamiento 103 de modo que el primer miembro de giro 111 y el segundo miembro de giro 112 no pueden girar relativamente. Cuando el cuerpo de giro 101 gira en este estado acoplado, el par de torsión del cuerpo de giro 101 se transmite al cuerpo de giro 102 a través de los miembros de acoplamiento 103 y el cuerpo

de giro 102 se hace girar.

Por otro lado, cuando el par de torsión del cuerpo de giro 101 al cuerpo de giro 102 excede el par de torsión límite predeterminado L, las superficies de las paredes de los orificios de acoplamiento 101a del cuerpo de giro 101 presionan los miembros de acoplamiento 103 al cuerpo de giro 102 contra de una fuerza de empuje del resorte helicoidal 104. Como resultado, los miembros de acoplamiento 103 se desacoplan de los orificios de acoplamiento 101 a fin de que el acoplamiento entre el cuerpo de giro 101 y el miembro de acoplamiento 103 se libere. Por lo tanto, el estado acoplado entre el primer miembro de giro 111 y el segundo miembro de giro 112 se libera. Como resultado, el primer miembro de giro 111 gira en relación con el segundo miembro de giro 112 (véase Figura 13 (b)).

10

Cuando el cuerpo de giro 101 del primer miembro de giro 111 se hace girar un ángulo predeterminado (aproximadamente 90 grados en la Figura 13), cada miembro de acoplamiento 103 se encaja en otro orificio de acoplamiento 101a. Por lo tanto, el primer miembro de giro 111 y el segundo miembro de giro 112 se acoplan nuevamente, impidiendo el giro relativo.

15

20

Como se ha descrito anteriormente, el limitador del par de torsión 88 puede estar formado por el primer miembro de giro 111 y el segundo miembro de giro 112, que se acoplan entre sí y giran conjuntamente cuando el par de torsión transmitido no excede el par de torsión límite predeterminado L, se desacoplan y giran relativamente cuando el par de torsión transmitido excede el par de torsión límite predeterminado L, y se acoplan nuevamente y vuelven a girar conjuntamente cuando han girado a ángulo predeterminado. También, de acuerdo con dicha forma de realización, cuando el par de torsión que se transmite por el mecanismo de transmisión de potencia de cambio 80 supera temporalmente el par de torsión límite predeterminado L por alguna razón, el acoplamiento del primer miembro de giro 111 con el segundo miembro de giro 112 se libera para permitir el giro relativo de ambos miembros de modo que el par de torsión se limita al par de torsión límite predeterminado L o menos. Por lo tanto, se puede restringir la sobrecarga del motor de cambio 70. Además, dado que el primer miembro de giro 111 y el segundo miembro de giro 112 se acoplan nuevamente cuando giran relativamente a un ángulo predeterminado, es posible limitar la sobrecarga del motor de cambio 70 varias veces.

30

25

El limitador del par de torsión 88 puede tener otra estructura. Por ejemplo, se conocen limitadores de par de torsión, descritos en la publicación de patente japonesa no examinada Nº 10-252773 (limitador del par de torsión de dos vías), la publicación de patente japonesa no examinada Nº 2006-38039 (limitador del par de torsión con un resorte en forma de C), la publicación de patente japonesa no examinada Nº 2006-170248 (limitador del par de torsión con dos pares de surcos que mantienen el material elástico instalado a través de cada par de surcos), que se pueden utilizar como el limitador del par de torsión 88.

35

Como se ha descrito anteriormente, la enseñanza actual puede ser útil para el dispositivo de control de cambio automático que efectúa automáticamente la operación cambio de marchas de la transmisión y para el vehículo del tipo de montar a horcajadas provisto del dispositivo de control de cambio automático.

40

45

50

Entre otros, la descripción anterior revela una realización de un dispositivo de control de cambio automático, que comprende: una transmisión que incluye una pluralidad de pares de engranajes de cambio de velocidad y un mecanismo de selección de marchas para seleccionar de un par de engranajes de cambio de velocidad para transmitir potencia entre la pluralidad de pares, teniendo la pluralidad de pares relaciones de transmisión de engranajes que son diferentes entre sí, un actuador de cambio para generar de potencia para impulsar el mecanismo de selección de marchas; un mecanismo de transmisión de potencia de cambio para transmitir potencia del actuador de cambio al mecanismo de selección de marchas, y un limitador del par de torsión que forma parte del mecanismo de transmisión de potencia de cambio y que tiene un primer miembro de giro al que se transmite la potencia del actuador de cambio y un segundo miembro de giro al que la potencia transmitida al primer miembro de giro se transmite desde el primer miembro de giro como un par de torsión, en el que cuando el par de torsión que se transmite al segunda miembro de giro es igual o inferior a un par de torsión límite predeterminado, el primer miembro de giro se hace girar conjuntamente con el segundo miembro de giro para transmitir la potencia del actuador de cambio al segunda miembro de giro como el par de torsión, y cuando el par de torsión que se transmite al segundo miembro de giro supera el par de torsión límite predeterminado, el primer miembro de giro gira en relación con el segundo miembro de giro para limitar el par de torsión transmitido al par de torsión límite predeterminado o menos.

55

Preferiblemente, el primer miembro de giro y el segundo miembro de giro están en contacto entre sí, y el primer miembro de giro transmite la potencia del actuador de cambio al segundo miembro de giro como el par de torsión debido a la fuerza de fricción generada entre el primer miembro de giro y el segundo miembro de giro, y cuando el par de torsión que se transmite al segundo miembro de giro supera el par de torsión límite predeterminado, el primer miembro de giro se desliza en relación con el segundo miembro de giro.

60

Preferiblemente, el mecanismo de transmisión de potencia de cambio cuenta con un mecanismo de reducción que tiene una pluralidad de ejes y una pluralidad de engranajes de reducción, respectivamente, montados a presión en la pluralidad de ejes, el primer miembro de giro es un engranaje de reducción individual de la pluralidad de engranajes de reducción , y el segundo miembro de giro es un eje de la pluralidad de ejes al que se ajusta a presión el engranaje de reducción que es el primer miembro de giro.

Además, preferiblemente el mecanismo de transmisión de potencia de cambio cuenta con un mecanismo de reducción que tiene una pluralidad de ejes y una pluralidad de engranajes de reducción, respectivamente, ajustados a presión en los respectivos ejes, el primer miembro de giro es un engranaje de reducción más aguas abajo de la pluralidad de engranajes de reducción, y el segundo miembro de giro es un eje de la pluralidad de ejes al que se ajusta a presión el engranaje de reducción que es el primer miembro de giro.

Preferiblemente, una capa que tiene propiedades de auto-lubricación se forma sobre una superficie de una porción del segundo miembro de giro a la que se ajusta a presión el primer miembro de giro.

Además, preferiblemente la superficie de la porción del segundo miembro de giro a la que se ajusta a presión el primer miembro de giro se somete a sulfurización a baja temperatura.

15

20

30

35

El dispositivo de control de cambio automático comprende preferiblemente además: un sensor de ángulo para la detección de una posición angular unido al segundo miembro de giro; y un mecanismo de detención para limitar el giro del segundo miembro de giro a la posición angular de un área de detección del sensor de ángulo; en el que el mecanismo de detención tiene una parte giratoria que se adjunta al segundo miembro de giro y se hace girar conjuntamente con el segundo miembro de giro, y una parte fija que se forma por separado de la parte giratoria y colinda con la parte giratoria para restringir el giro del segundo miembro de giro dentro de un intervalo angular predeterminado.

Un vehículo del tipo de montar a horcajadas comprende preferiblemente un dispositivo de control de cambio automático de acuerdo con cualquiera de las realizaciones anteriores.

Con el fin de proporcionar un dispositivo de control de cambio automático en el que se suprime la sobrecarga del motor cambio en tanto se reduce el tiempo desde el inicio hasta la finalización de la operación de cambio de marcha, se sugiere lo siguiente:

El dispositivo de control de cambio automático comprende: una transmisión que incluye una pluralidad de pares de engranajes de cambio de velocidad y un mecanismo de selección de marchas; un motor de cambio 70 para impulsar el mecanismo de selección de marchas; un mecanismo de transmisión de potencia de cambio 80 para transmitir potencia del motor de cambio 70 al mecanismo de selección de marchas, y un limitador del par de torsión 88 que tiene un tercer engranaje de transmisión 81g y un tercer eje 81c, que forman parte del mecanismo de transmisión de potencia de cambio 80. El limitador del par de torsión 88 transmite la potencia del motor de cambio 70 como par de torsión. Cuando el par de torsión transmitido no supera un par de torsión límite predeterminado L, el tercer engranaje de reducción 81g se hace girar conjuntamente con el tercer eje 81c. Cuando el par de torsión transmitido supera el par de torsión límite predeterminado L, el tercer engranaje de reducción 81g gira en relación con el tercer eje 81c para limitar el par de torsión transmitido al par de torsión límite predeterminado L o menos.

REIVINDICACIONES

1. Dispositivo de control de cambio automático, que comprende:

mecanismo de selección de marchas (43) configurado para seleccionar un par de engranajes (49, 420) de una transmisión (40) para transmitir la potencia de accionamiento desde una entrada hasta una salida de la transmisión (40):

un actuador de cambio (70) configurado para generar la potencia para impulsar al mecanismo de selección de marchas (43);

un mecanismo de transmisión de potencia de cambio (80) configurado para transmitir la potencia del actuador de cambio (70) al mecanismo de selección de marchas (43), y

un limitador del par de torsión (88) que tiene un primer miembro de giro (81g) al que se puede transmitir la potencia del actuador de cambio (70) y un segundo miembro de giro (81c) al que se puede transmitir la potencia del primer miembro de giro (81g), girando conjuntamente el primer miembro de giro (81g) con el segundo miembro de giro (81c) para transmitir la potencia del actuador de cambio (70) al segundo miembro de giro (81c) como par de torsión, cuando el par de torsión que se transmite al segundo miembro de giro (81c) es igual o inferior a un par de torsión límite predeterminado, girando relativamente el primer miembro de giro (81g) con el segundo miembro de giro (81c) para limitar el par de torsión transmitido al par de torsión límite predeterminado o menos, cuando el par de torsión que se transmite al segunda miembro de giro (81c) excede el par de torsión límite predeterminado, en el que el limitador del par de torsión (88) se basa en fricción, y el primer miembro de giro (81g) se configura para transmitir la potencia del actuador de cambio (70) al segundo miembro de giro (81c) como par de torsión, debido a fuerza generada entre el primer miembro de giro (81g) y el segundo miembro de giro (81c), y cuando el par de torsión que se transmite al segunda miembro de giro (81c) excede el par de torsión límite predeterminado, el primer miembro de giro (81c) desliza en relación con el segundo miembro de giro (81c),

caracterizado por que

una capa que tiene propiedades de auto-lubricación se forma entre el primer miembro de giro (81g) y el segundo miembro de giro (81c), y la capa es una capa sulfurizada (81x) formada en una porción de la superficie del primer miembro de giro (81g) y/o el segundo miembro de giro (81c).

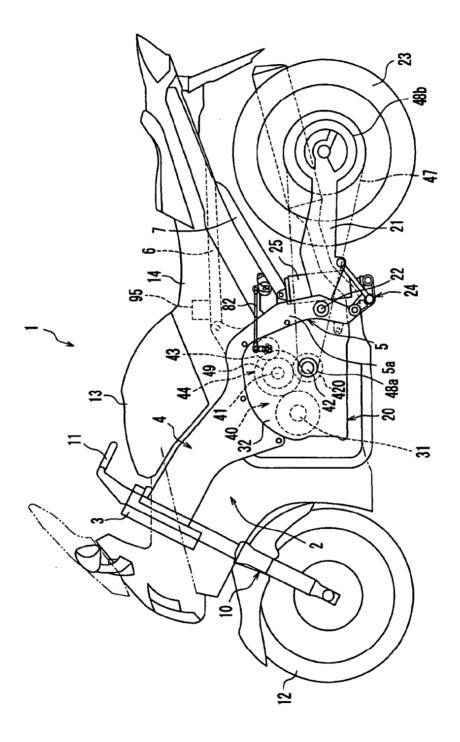
30

50

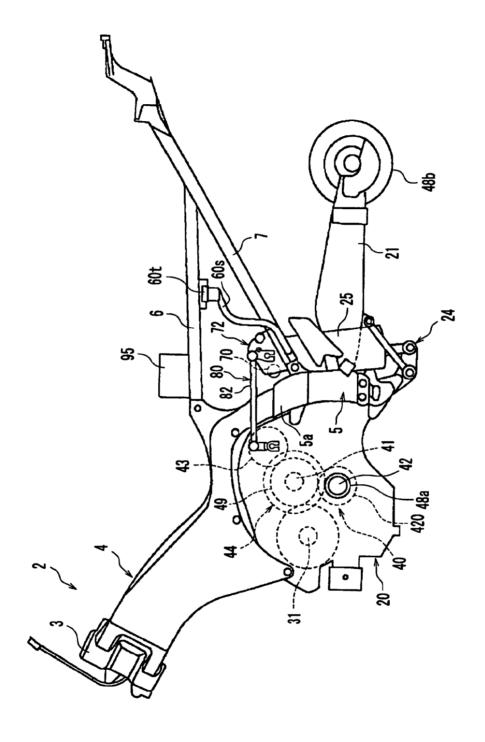
5

10

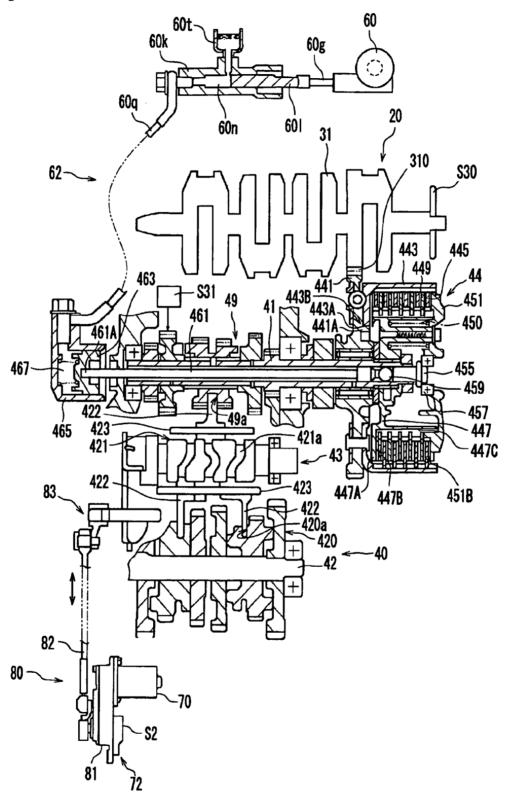
15

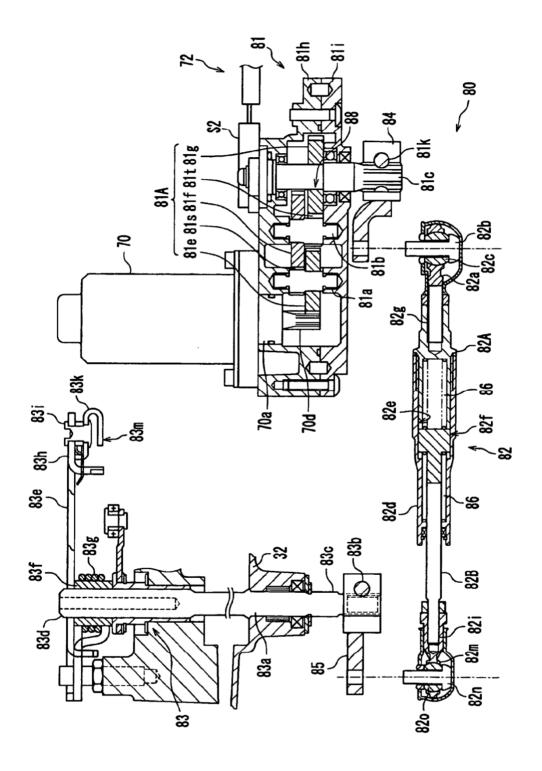

20

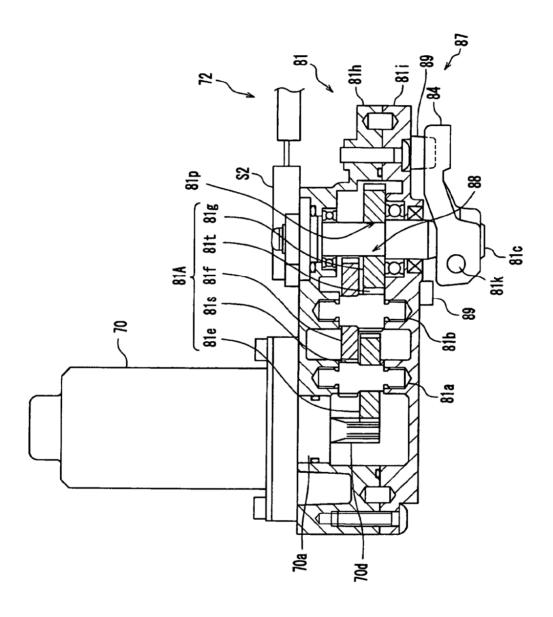
25

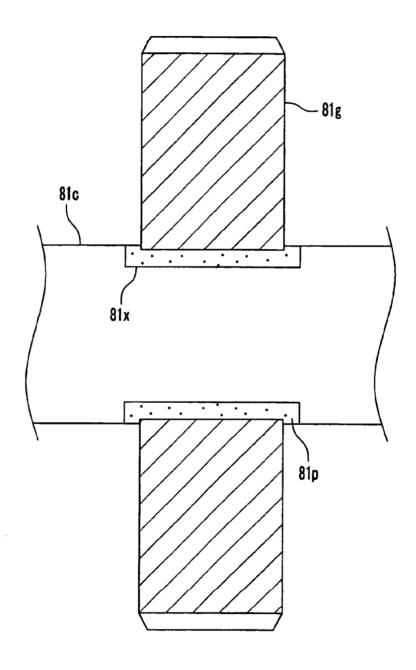

- 2. Dispositivo de control de cambio automático de acuerdo con la reivindicación 1, caracterizado por que el limitador del par de torsión (88) está incluido en el mecanismo de transmisión de potencia de cambio (80).
- 3. Dispositivo de control de cambio automático de acuerdo con la reivindicación 1 ó 2, **caracterizado por que** el primer miembro de giro (81g, 111) y el segundo miembro de giro (81c, 112) están en contacto entre sí.
 - 4. Dispositivo de control de cambio automático de acuerdo con una de las reivindicaciones 1 a 3, **caracterizado por que** el primer miembro de giro (81g) y el segundo miembro de giro (81c) se ajustan a presión entre sí.
- 5. Dispositivo de control de cambio automático de acuerdo con una de las reivindicaciones 1 a 4, caracterizado por que el mecanismo de transmisión de potencia de cambio (80) comprende un mecanismo de reducción (81) que tiene una pluralidad de ejes (81a-81c) y una pluralidad de engranajes de reducción (81e-81g), que se ajustan a presión, preferiblemente, en los respectivos ejes (81a-81c), el primer miembro de giro (81g, 111) es uno de los engranaje de reducción de la pluralidad de engranajes de reducción (81 e-81g), y el segundo miembro de giro (81c, 112) es un eje de la pluralidad de ejes (81a-81c) al que se ajusta a presión, preferiblemente, el primer miembro de giro (81g).
 - 6. Dispositivo de control de cambio automático de acuerdo con la reivindicación 5, **caracterizado por que** el primer miembro de giro (81g) es el engranaje de reducción más aguas abajo de la pluralidad de engranajes de reducción (81e-81g).
 - 7. Dispositivo de control de cambio automático de acuerdo con la reivindicación 5 ó 6, **caracterizado por que** el primer miembro de giro (81g) tiene el mayor diámetro entre la pluralidad de engranajes de reducción (81e-81g).
- 8. Dispositivo de control de cambio automático de acuerdo con una de las reivindicaciones 1 a 7, **caracterizado por que** limitador del par de torsión (88) incluye un eje (81c, 83a) como el segundo miembro de giro y una palanca de accionamiento (84,85) como el primer miembro de giro, preferiblemente, ajustado a presión en el eje (81c, 83a).
- 9. Dispositivo de control de cambio automático de acuerdo con una de las reivindicaciones 1 a 7, caracterizado por que un sensor de ángulo (S2) se configura para detectar una posición angular del segundo miembro de giro (81c), y, preferiblemente, un mecanismo de detención (87) configurado para restringir el giro del segundo miembro de giro (81c) dentro de un área de detección del sensor de ángulo (S2), teniendo preferiblemente el mecanismo de detención (87) una parte giratoria (84), preferiblemente la palanca de accionamiento (84), que se adjunta al segundo miembro de giro (81c) con el fin de girar conjuntamente con el segundo miembro de giro (81c), y una parte fija (89)
 65 que se forma por separado de la parte giratoria (84) y que colinda con la parte giratoria (84) para restringir el giro del segundo miembro de giro (81c) dentro de un intervalo angular predeterminado.

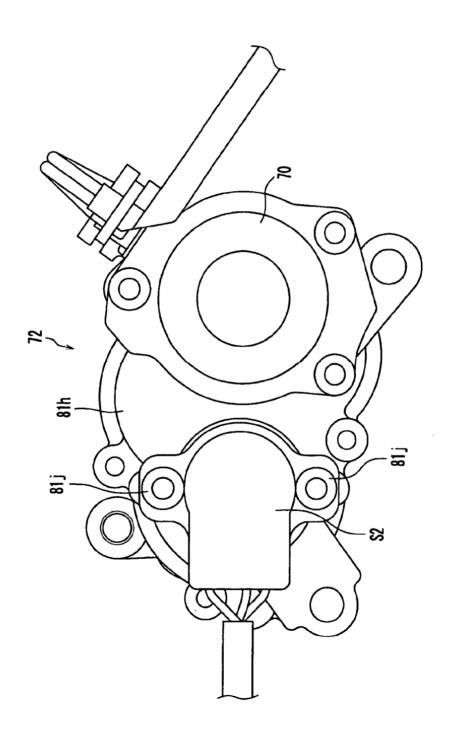
10. Vehículo, en particular, un vehículo del tipo de montar a horcajadas, tal como una motocicleta, que comprende una transmisión (40) y un dispositivo de control de cambio automático (50) de acuerdo con una de las reivindicaciones 1 a 9.

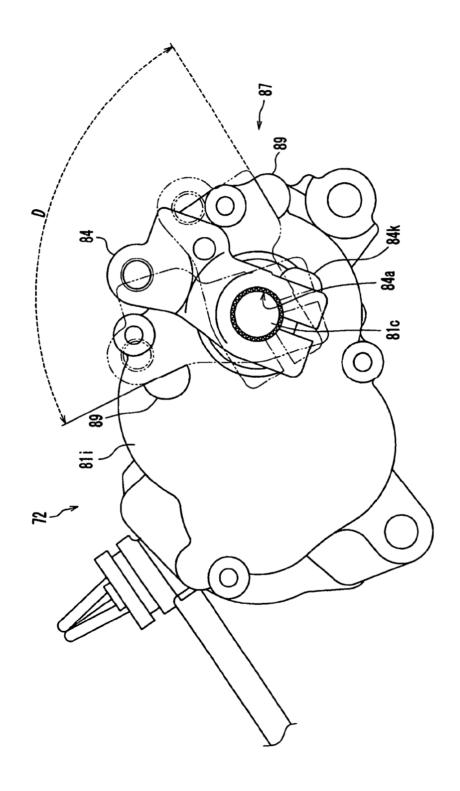

[Fig.1]

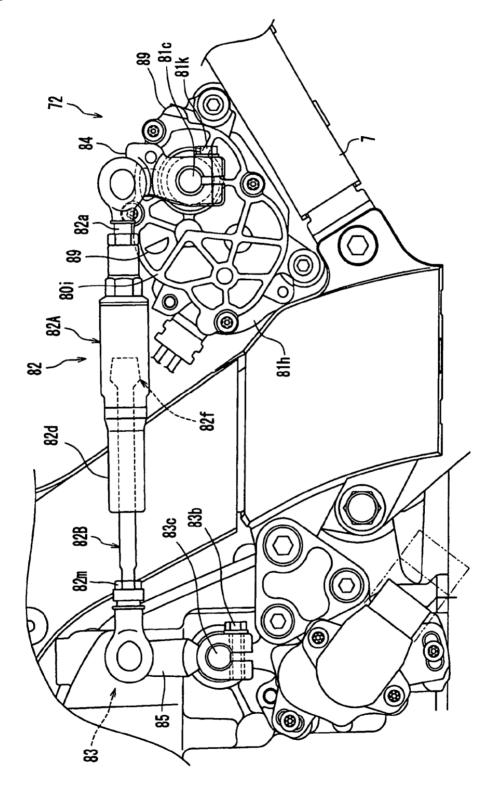

[Fig.2]

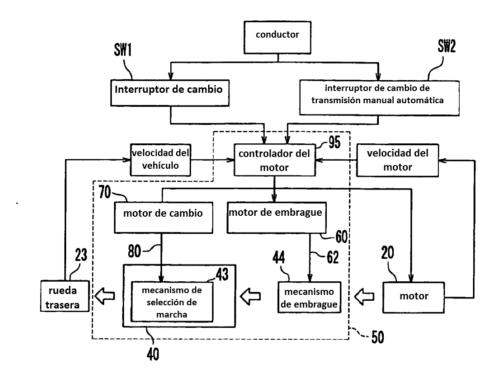

[Fig.3]

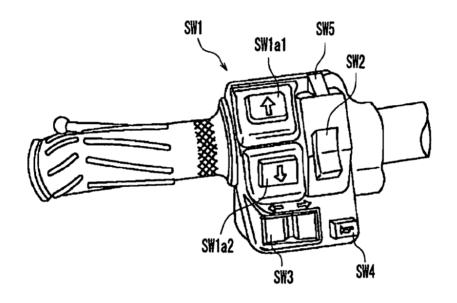

[Fig.4]

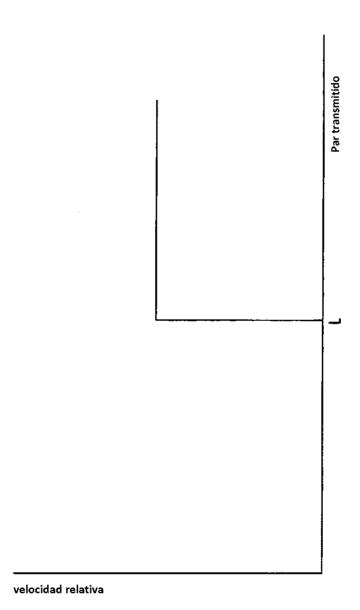

[Fig.5]


[Fig.6]

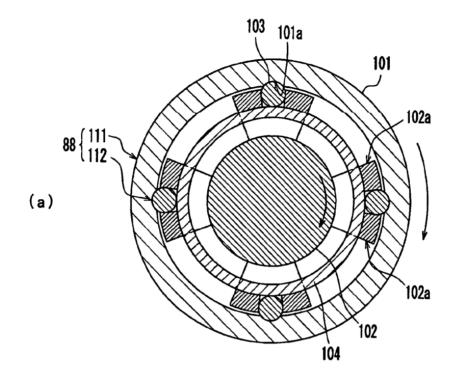

[Fig.7]

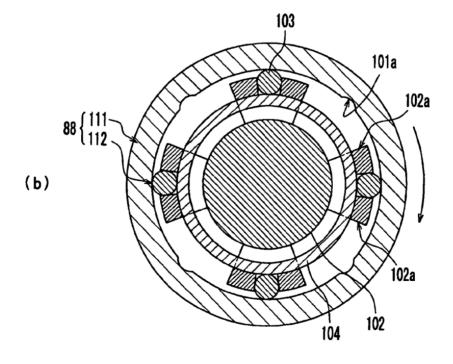

[Fig.8]


[Fig.9]


[Fig.10]

[Fig.11]




[Fig.12]

30

[Fig.13]

