

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 377 578

(2006.01)

51 Int. Cl.: C08K 3/22

C08J 3/22 (2006.01) B29C 49/00 (2006.01) C08K 5/01 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 07747421 .1
- 96 Fecha de presentación: 04.05.2007
- Número de publicación de la solicitud: 2024433
 Fecha de publicación de la solicitud: 18.02.2009
- 54 Título: Concentrado de color en base a dióxido de titanio para materiales de poliéster
- 30 Prioridad: **05.05.2006 EP 06076006**

73 Titular/es: HOLLAND COLOURS N. V. HALVEMAANWEG 1 7323 RW APELDOORN, NL

- Fecha de publicación de la mención BOPI: 29.03.2012
- 72 Inventor/es:

WERINK, Johan Jozef Marinus; DE JAGER, Andries Maria; STOOP, Jeroen y ROELOFS, Jules Caspar Albert Anton

- Fecha de la publicación del folleto de la patente: 29.03.2012
- (74) Agente/Representante:

Durán Moya, Carlos

ES 2 377 578 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Concentrado de color en base a dióxido de titanio para materiales de poliéster

- 5 La presente invención pertenece al sector de los materiales de poliéster, más en particular al sector de los concentrados de color para poliéster en la fabricación de envases, tales como botellas, para el almacenamiento de productos que son sensibles a la luz visible o UV.
- Los efectos de la luz sobre la leche y otros productos lácteos vendidos en supermercados pueden afectar negativamente al producto si no es cuidadosamente envasado y manipulado. Se pueden emplear varias estrategias para minimizar o eliminar la fotooxidación en la leche, que puede resultar de los efectos de la luz. La utilización de recipientes pigmentados formulados de forma adecuada puede reducir significativamente la oxidación de la leche y el agotamiento de las vitaminas, sin embargo, existen algunos problemas potenciales con los pigmentos. La pérdida de nutrientes en la leche se puede evitar en gran medida mediante el control de la iluminación de almacenamiento, estableciendo temperaturas de almacenamiento adecuadas y utilizando de cajas cerradas para el almacenamiento.

En la actualidad, casi toda la leche se compra en tiendas minoristas, tales como supermercados y tiendas de conveniencia. El polietileno de alta densidad (HDPE) es ampliamente utilizado aún como envase para la leche, ya que los consumidores les gusta su facilidad de manejo, su capacidad de resellado y nivel de llenado visible. Inicialmente, el HDPE reemplazó las botellas de vidrio, pero desde 1971 su crecimiento ha sido en gran parte a expensas de las cajas de cartón. Hoy en día, se utilizan también materiales de envasado tales como bolsas, pero sobretodo las botellas de tereftalato de polietileno (PET) se encuentran cada vez más en el centro de atención. Las dificultades técnicas relacionadas con la protección de productos lácteos/leche han impedido hasta el momento la aplicación de los envases de PET en esta área.

Se han hecho intentos para modificar las botellas para minimizar la transmisión de la luz. Estos incluyen la utilización de absorbentes de luz ultravioleta (UV), así como la incorporación de diversos pigmentos en el plástico. El vidrio permite la transmisión de luz más elevada a través del espectro visible. La adición de un absorbente de UV a la botella natural proporciona una excelente protección en el intervalo de luz ultravioleta por debajo de 380 nanómetros, pero otorga pocos beneficios en el intervalo del espectro visible azul-violeta crítico de 400-550 nanómetros.

Las botellas multicapas de la técnica anterior (PET con TiO_2 / capa negra (PET) / PET con TiO_2) no permite la transmitancia de luz, sin embargo, la capa de color negro brilla a través de la botella (aspecto realmente de color gris) y las multicapas capas son más caras y el procesado es más difícil. Lo mismo se aplica para una multicapa con una capa de color rojo (la mayor parte del rojo absorbe hasta 550 nm) ya que la capa de color rojo brilla, lo que resulta en un aspecto rojizo, rosado.

La incorporación de pigmento blanco (dióxido de titanio, TiO₂) en el material reduce de forma significativa la transmisión de luz en la dañina región azul-violeta, pero no la elimina por completo. Un papel cartón no es totalmente opaco. Este también permite cierta transmisión de luz en el área visible crítica. Sin embargo, mediante la incorporación de altos niveles de TiO₂ en el poliéster, es decir, cantidades de 4% en peso o más, se ha hecho posible obtener un material opaco con un grado de transmisión que es lo suficientemente bajo para almacenar productos lácteos tratados por UHT durante un período de tiempo suficientemente largo. Por lo general, este tipo de productos lácteos tiene un tiempo de vida en anaquel aproximadamente de 3 meses fuera de la nevera. En la solicitud de patente internacional WO 2005/102865 se describe este tipo de material de envasado.

Tal como se ha mencionado anteriormente, las botellas que se describen en el documento WO 2005/102865 proporcionan una opacidad y protección razonablemente buena de los contenidos de las mismas. Sin embargo, aún existe la necesidad de mejora. Además, las propiedades de procesado del material no son muy buenas, ya que es relativamente sensible a la deslaminación después del moldeo por soplado. Esto significa que en las paredes de los envases ocurre deslaminación, con el resultado de la disminución de las propiedades de barrera y el fallo (rotura) del envase, especialmente bajo presión.

- La causa de este fenómeno es incierta, pero se ha encontrado que mediante la utilización de un concentrado de color en base a dióxido de titanio específico, estos problemas se pueden superar. Además, se ha encontrado que las propiedades de transmisión (o bloqueo de la luz) del material se mejoran en el caso que se utilizan ciertas combinaciones específicas de componentes.
- Por consiguiente, una primera realización de la presente invención se refiere a un concentrado de color basado en dióxido de titanio, adecuado para dar color a materiales de poliéster, comprendiendo dicho concentrado, en base al peso del concentrado, más del 50% de dióxido de titanio, hasta un 20%, como mínimo, de una cera seleccionada del grupo que comprende monoestearato de glicerina, aceite de ricino hidrogenado y glicoles polietoxilados, y hasta un 30% como mínimo, de un poliéster, tal como tereftalato de polietileno.

65

20

25

30

35

50

ES 2 377 578 T3

La presente invención está basada en la utilización combinada de dióxido de titanio, una cera específica y poliéster en el concentrado. La utilización de un concentrado en base a estos componentes para dar color a botellas moldeadas por soplado u otros materiales de envasado estirados biaxialmente, resulta en un producto que posee una buena resistencia contra la deslaminación (aunque el material tiene un alto contenido de dióxido de titanio), mientras que al mismo tiempo tiene un buen perfil de transmisión, es decir, es opaco para la luz visible y UV, proporcionando así un envase que permite una larga vida en anaquel para productos lácteos. Cabe señalar que otros sistemas de aditivos, tales como los descritos en la patente de EE.UU. 6.649.083, no proporcionan las propiedades superiores obtenidas por la presente combinación de compuestos, tal como se muestra en los ejemplos comparativos.

10

El primer componente del concentrado es el dióxido de titanio. Este puede estar presente en diversas formas cristalinas, siendo las más importantes rutilo y anatasa. La cantidad de dióxido de titanio es más de un 50% en peso, preferentemente, como mínimo, de un 60% en peso. El límite superior no es muy crítico, pero a efectos prácticos es preferente una cantidad, como máximo, de un 75% en peso.

15

- El segundo componente es una cera, que está presente preferentemente en una cantidad de un 1 a un 10% en peso. Esta cera se selecciona del grupo que comprende monoestearato de glicerina, aceite de ricino hidrogenado y glicoles polietoxilados.
- 20 Por lo general, es preferente que la cera tenga las siguientes propiedades:
 - es sólida a 20°C y tiene una consistencia, a esa temperatura, que puede variar de suave y plástica, a quebradiza y dura:
- 25 si es sólida, entonces cristalina de gruesa a fina, transparente a opaca, pero no vidriosa;
 - se funde sin descomposición por encima de 40°C;
 - tiene una viscosidad relativamente baja a una temperatura que está algo por encima de su punto de fusión;

30

- varía considerablemente en consistencia y solubilidad por cambio de la temperatura;
- se puede pulir por roce a una presión ligera.
- 35 En el caso que se utiliza un glicol polietoxilado, es preferente polietilénglicol. También se pueden utilizar combinaciones de ceras en la presente invención.

Otro componente del material de la presente invención es, como mínimo, un poliéster, opcionalmente, una combinación de dos o más poliésteres. Las cantidades de los mismos son de hasta un 30% en peso, preferentemente, como mínimo, de un 5% en peso.

El poliéster adecuado es un producto de condensación de un ácido dibásico y un glicol. Habitualmente, el ácido dibásico comprende un ácido dibásico aromático, o éster o anhidrido del mismo, tales como ácido isoftálico, ácido tereftálico, ácido naftaleno-1,4-dicarboxílico, ácido naftaleno-2,6,-dicarboxílico, ácido ftálico, anhidrido tetrahidroftálico, anhidrido trimelítico, ácido difenoxietano-4, 4'-dicarboxílico, ácido difenil-4,4'-dicarboxílico y mezclas de los mismos. El ácido dibásico también puede ser un ácido dibásico alifático o anhidrido, tales como ácido adípico, ácido sebácico, ácido decano-1,10-dicarboxílico, ácido fumárico, anhidrido succínico, ácido succínico, ácido ciclohexanodiacético, ácido glutárico, ácido azeleico y mezclas de los mismos. También se pueden utilizar otros ácidos dibásicos aromáticos y alifáticos conocidos por los expertos en la técnica. Preferentemente, el ácido dibásico comprende un ácido dibásico aromático, opcionalmente comprende además hasta un 20% en peso del componente ácido dibásico, de un ácido dibásico alifático.

El componente glicol, o diol, del poliéster comprende etilen glicol, propilen glicol, butano-1,4-diol, dietilen glicol, un polietilenglicol, un polipropileno glicol, neopentil glicol, un politetrametilen glicol, 1,6-hexilenglicol, pentano-1,5-diol, 3-metilpentanodiol-(2,4), 2-metilpentanodiol (1,4), 2,2,4-trimetilpentanodiol (1,3), 2-etilhexanodiol-(1,3), 2,2-dietilpropanodiol (1,3), hexanodiol (1,3), 1,4-di-(hidroxietoxi) benceno, 2,2-bis-(4-hidroxiciclohexil) propano, 2,4-dihidroxi-1,1,3,3-tetrametilciclobutano, 2,2-bis-(3-hidroxietoxifenil) propano, 2,2-bis-(4-hidroxipropoxifenil) propano, 1,4-dihidroximetilciclohexanoe y mezclas de los mismos. También se pueden utilizar glicoles adicionales conocidos por los expertos en la técnica como componente glicol del poliéster diluyente.

60

65

45

50

55

En particular, el poliéster preferentemente comprende PET, por ejemplo, sin constituir limitación, PET virgen grado botella o PET post consumo (PC-PET)), copolímero de ciclohexano dimetanol / PET (PETG), naftalato de polietileno (PEN), tereftalato de polibutileno (PBT), y mezclas de los mismos. Entre los poliésteres adecuados también se pueden incluir enlaces a polímeros, cadenas laterales y grupos terminales diferentes de los precursores formales de los poliésteres simples previamente especificados.

Habitualmente, los poliésteres adecuados para su utilización en la presente invención tienen una viscosidad intrínseca aproximadamente de 0,2 hasta aproximadamente 1,2, y más preferiblemente aproximadamente de 0,2 a 0,6 (para una mezcla 60/40 de disolvente fenol/tetracloroetano). Para PET, un valor de viscosidad intrínseca de 0,6 se corresponde aproximadamente con una viscosidad de peso molecular promedio de 36.000, y un valor de viscosidad intrínseca de 1,2 se corresponde aproximadamente con una viscosidad de peso molecular promedio de 103.000.

Opcionalmente el poliéster puede comprender aditivos que no afecten negativamente al premezclado, o preformas o recipientes preparados a partir del mismo. Los aditivos opcionales comprenden, sin constituir limitación, estabilizadores, por ejemplo, antioxidantes o agentes de protección a la luz ultravioleta, ayudantes de la extrusión, agentes de secado, cargas, agentes contra las obstrucciones, ayudantes para la cristalización, modificadores de impacto, aditivos diseñados para hacer el polímero más degradable o combustible, colorantes, otros pigmentos y mezclas de los mismos. Los aditivos opcionales están presentes en el poliéster en una cantidad de 0% hasta aproximadamente un 2% en peso del poliéster, de manera individual, y de 0% hasta aproximadamente un 10% en peso del poliéster, en total. Los colorantes y otros pigmentos se pueden utilizar para proporcionar un color específico al producto final, sin influir negativamente en las propiedades de transmisión.

Con el fin de mejorar las propiedades de transmisión de luz del envase final, es decir, disminuir la transmisión de la parte de la luz visible y ultravioleta que es perjudicial para el tiempo de vida en anaquel de productos sensibles a la luz, tales como los productos lácteos, se puede añadir una cantidad de óxido de hierro u óxidos de mezclas de metales que comprenden Ni, Fe, Mn, Ti, Co, Cr, Cu, Sn, Sb y combinaciones de los mismos. Son ejemplos el Pigmento Negro 11 (número Cl 77499), Pigmento Negro 12 (número Cl 77543), Pigmento Negro 28 ((número Cl 77428) o Pigmento Negro 30 (número Cl 77.504) y mezclas de los mismos. Estos compuestos pueden ser adquiridos comercialmente en empresas productoras de pigmentos, por ejemplo, la Compañía Shepherd Colour, Cincinnati, EE.UU.. Esta cantidad puede ser hasta de un 3% en peso. La cantidad preferente es entre un 0,1 y un 1% en peso. Otros componentes que se pueden utilizar en el concentrado son grafito y negro de carbono.

El concentrado se pueden preparar utilizando procedimientos adecuados conocidos por el experto en la materia. Los métodos preferentes se basan en el mezclado por fusión de los diferentes componentes a una temperatura, de manera que el poliéster o los poliésteres y el compuesto de cera están en forma fundida. El material fundido obtenido de esta manera posteriormente se lleva a forma sólida adecuada. El mezclado por fusión se puede llevar a cabo de manera adecuada en un extrusor y cortar el material extrudido enfriado en un producto de tamaño adecuado.

- La presente invención también se refiere a la utilización del concentrado para dar color a envases, incluyendo botellas, que se prepara a partir de poliésteres, más en particular PET, PBT y PEN mediante moldeo por soplado de una preforma en un producto de forma adecuada. El concentrado se incorpora en el poliéster del que se hace la preforma, en general, mediante la alimentación del concentrado en forma de partículas, junto con el poliéster (y opcionalmente otros aditivos), a la extrusora en la que se preparan las preformas. A continuación, las preformas se moldean por soplado, en una etapa distinta, en la forma del envase final (botella). Las condiciones para la preparación de la preforma y del moldeo por soplado del producto final son las condiciones convencionales, que son fácilmente determinadas por el experto en la materia, en base a los diferentes parámetros involucrados, tales como el tipo y tamaño de la botella, el tipo de poliéster, etc.
- La cantidad de concentrado que se añade al poliéster puede variar entre intervalos amplios. Las cantidades preferentes son hasta de un 15% en peso del concentrado, basado en el peso combinado del poliéster y el concentrado. Cantidades más preferentes son entre un 2,5 y un 15% en peso. Se pueden utilizar cantidades mayores del 15% en peso, pero generalmente no son necesarias, tal como puede observarse en los ejemplos.
- 50 La presente invención es explicada en base a los siguientes ejemplos no limitativos.

EJEMPLOS

Una mezcla de 3.490 g de TiO₂, 1250 g de resina PET (IV de 0,60), 250 g de GMS (monoestearato de glicerol) y 10 g de Pigmento Negro 12 (número Cl 77.543) se mezcló/granuló en una extrusora de laboratorio (APV doble husillo de 19 mm) y perfil de temperatura entre 270 y 240°C a 300 rpm.

El granulado resultante se utilizó para preparar botellas mediante moldeo por inyección (Boy 50T2) y moldeo por soplado y estirado (SP 2000B B/J de Suyash PET International Ltd.) a varias concentraciones (1, 2, 4, 6, 8, 10, 12% en peso).

Un lote maestro de TiO₂ al 60% se tomó como patrón de comparación. El lote maestro se utilizó para preparar botellas mediante moldeo por inyección utilizando el mismo equipo tal como se describió anteriormente a varias concentraciones (1, 2, 6, 12, 17,5, 22,5 y 29% en peso).

65

60

5

10

15

20

25

30

ES 2 377 578 T3

Las curvas de transmisión de 200 a 700 nm de las botellas moldeadas por soplado se recopilaron utilizando un Cary 5000 equipado con una esfera de integración. El porcentaje de transmisión a 550 nm se tomó en función del nivel de dosificación. Los resultados se muestran en la figura 1. Como se puede observar, la cantidad de luz transmitida utilizando el concentrado de la presente invención (UHT blanco) es significativamente menor, a niveles de dosificación menores, que cuando se utiliza el lote maestro patrón.

EJEMPLOS COMPARATIVOS

5

15

20

25

30

Con el fin de comparar los resultados de la patente de EE.UU. 6.469.083 con los resultados de la presente invención, se prepararon dos muestras que consistieron en 70,0 partes en peso de un paquete de aditivos que comprendía únicamente pigmento de TiO₂ con 30,0 partes en peso de un portador.

Muestra R7923, los componentes éster de pentaeritritol de colofonia de madera parcialmente hidrogenada al 20,0% (en peso) (Hercules FORAL 105); polímero núcleo-envoltura al 22,0% (en peso) (Rohm & Haas PARALOID EXL-2300) PET termoplástico (SIV = 0,94 dl/g) al 58,0% (en peso) (Die Mossi & Ghisolfi Gruppe TRAYTUF-T95).

Muestra R7924 los componentes éster de pentaeritritol de colofonia de madera parcialmente hidrogenada al 20,0% (en peso) (Hércules FORAL 105); polímero núcleo-envoltura al 22,0% (en peso) (Rohm & Haas PARALOID EXL-2600) PET termoplástico (SIV = 0,94 dl/q) al 58,0% (en peso) (Die Mossi & Ghisolfi Gruppe TRAYTUF-T95).

En ambos casos, los componentes se mezclaron en seco y se mezclaron/granularon en una extrusora de laboratorio (APV de doble husillo de 19 mm) con un perfil de temperatura entre 270 y 240°C a 300 rpm. El granulado resultante se utilizó para preparar botellas mediante moldeo por inyección (Arburg Allrounder 320) y moldeo por soplado y estirado (SP 2000B B/J de Suyash PET International Ltd.) a 10% y 14%. Para comparar, el material de muestra UHT Blanco descrito en el ejemplo 1 se dosificó a 5% y 10%.

La figura 2 muestra los resultados de las mediciones de transmisión desde 300 a 700 nm de las botellas moldeadas por sopladas, que fueron recolectados utilizando un Cary 5000 equipado con una esfera de integración. Como se puede observar, la cantidad de luz transmitida utilizando el concentrado de la presente invención (UHT blanco) es significativamente menor, a niveles de dosificación menores que los de las muestras de comparación R7923 y R7924

REIVINDICACIONES

1. Concentrado de color en base a dióxido de titanio, adecuado para dar color a materiales de poliéster, comprendiendo dicho concentrado, en base al peso del concentrado, más de un 50% de dióxido de titanio, hasta un 20%, como mínimo, de una cera

5

45

seleccionada del grupo que comprende monoestearato de glicerina, aceite de ricino hidrogenado y glicoles polietoxilados y hasta un 30%, como mínimo, de un poliéster.

- 2. Concentrado de color, según la reivindicación 1, en el que la cantidad de dióxido de titanio en el concentrado está entre un 60 y un 75% en peso.
 - 3. Concentrado, según la reivindicación 1 ó 2, en el que la cantidad de cera está entre un 1 y un 10% en peso.
- 4. Concentrado, según las reivindicaciones 1-3, en el que la cantidad de poliéster es, como mínimo, de un 5% en peso.
- 5. Concentrado, según las reivindicaciones 1-4, en el que dicho poliéster es tereftalato de polietileno que tiene una viscosidad intrínseca (IV) entre 0,2 y 1,2, preferentemente entre 0,2 y 0,65 (para una mezcla 60/40 de disolvente fenol/tetracloroetano).
 - 6. Concentrado, según las reivindicaciones 1-5, en el que además están presentes en el concentrado óxido de hierro, óxido de mezcla de metales, grafito, negro de carbono o combinaciones de los mismos, preferentemente en una cantidad de hasta un 3% en peso.
- Concentrado, según las reivindicaciones 1-6, en el que el óxido mezclado se selecciona del grupo que comprende Pigmento Negro 11 (número Cl 77499), Pigmento Negro 12 (número Cl 77543), Pigmento Negro 28 (número Cl 77428) o Pigmento Negro 30 (número Cl 77504) y mezclas de los mismos.
- 30 8. Concentrado, según las reivindicaciones 1-7, en el que el concentrado además comprende un poliéster adicional, preferentemente seleccionado del grupo que comprende tereftalato de polietileno, copolímero de ciclohexano dimetanol/PET (PETG), naftalato de polietileno (PEN), tereftalato de polibutileno (PBT) y mezclas de los mismos.
- 9. Uso de un concentrado, según las reivindicaciones 1-8, para dar color a poliéster, tal como tereftalato de polietileno, tereftalato de polietileno, preferentemente preformas de poliéster para botellas u otros recipientes.
- 10. Uso, según la reivindicación 9, en el que dichas botellas son para almacenar productos sensibles a la luz, tales como leche o productos lácteos.
 - 11. Procedimiento de preparación de botellas de poliéster adecuadas para el almacenamiento de leche o productos lácteos y que tienen una baja transmisión de luz visible y ultravioleta, comprendiendo dicho procedimiento preparar una preforma de dichas botellas a partir de poliéster y el concentrado según las reivindicaciones 1-8 y moldear por soplado la preforma en forma de botella.
 - 12. Procedimiento, según la reivindicación 11, en el que el concentrado se utiliza en una cantidad de un 2,5 a un 15% en peso del peso del poliéster.
- 50 13. Botella preparada mediante el procedimiento según las reivindicaciones 11 ó 12.

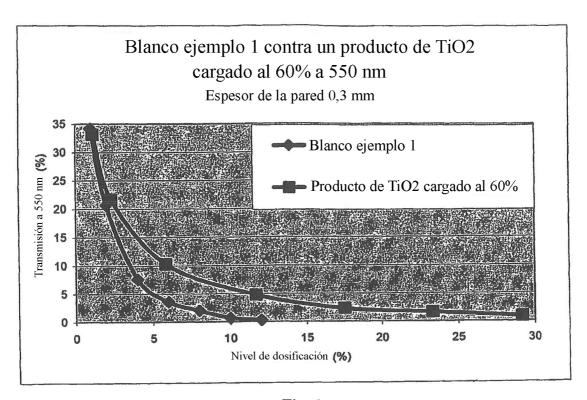


Fig. 1

Comparación muestras Blanco 14 5% UHT Blanco 10% R7924 12 5% UHT 10% R7923 14% R7923 10 14% R7924 Transmisión (%) 10% UHT Blanco 8 10% R7924 6 14% R7,923 10%,R7923 4 14% R7924 2 10% UHT ▲ 0 300 400 500 600 700 Longitud de onda (nm)

Fig. 2