

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 377 809

51 Int. Cl.: C07D 498/04 A61K 31/538

A61P 35/00

(2006.01) (2006.01) (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96) Número de solicitud europea: 09761399 .6
- 96 Fecha de presentación: 29.05.2009
- Número de publicación de la solicitud: 2300482
 Fecha de publicación de la solicitud: 30.03.2011
- 54 Título: Derivados condensados de la 4-(indazolil)-1,4-dihidropiridina como mediadores del c-Met
- 30 Prioridad: 09.06.2008 EP 08010423

73) Titular/es:

Bayer Pharma Aktiengesellschaft Müllerstrasse 178 13353 Berlin, DE

- Fecha de publicación de la mención BOPI: 02.04.2012
- 72 Inventor/es:

MICHELS, Martin; FOLLMANN, Markus; VAKALOPOULOS, Alexandros; ZIMMERMANN, Katja; TEUSCH, Nicole y ENGEL, Karen

- Fecha de la publicación del folleto de la patente: 02.04.2012
- (74) Agente/Representante:

Carpintero López, Mario

ES 2 377 809 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados condensados de la 4-(indazolil)-1,4-dihidropiridina como mediadores del c-Met

5

10

15

20

25

30

35

40

45

50

55

La presente invención se refiere a nuevos derivados condensados de la 4-(indazolil)-1,4-dihidropiridina que tienen actividad inhibidora de la proteína tirosina quinasa, a un proceso de fabricación de los mismos y al uso de los mismos para el tratamiento de enfermedades mediadas por c-Met o afecciones mediadas por c-Met, particularmente cáncer u otros trastornos proliferativos.

El cáncer es una de las enfermedades comunes más extendidas. Más de 4,4 millones de personas en todo el mundo se diagnosticaron con cáncer de mama, colon, ovario, pulmón o próstata en 2002, y más de 2,5 millones de personas murieron a causa de estas devastadoras enfermedades (Globocan 2002 Report, http://www-dep.iarc.fr/globocan/downloads.htm). Solamente en Estados Unidos, se pronosticaron más de 1,25 millones de casos nuevos y más de 500.000 muertes en 2005. Se esperaba que la mayor parte de estos nuevos casos fueran cánceres de colon (~100 000), pulmón (~170 000), mama (~210 000) y próstata (~230 000). Se pronostica que tanto la incidencia como la prevalencia del cáncer aumente aproximadamente un 15% en los próximos 10 años, reflejando una tasa de crecimiento medio del 1,4% (American Cancer Society, Cancer Facts and Figures 2005; http://www.cancer.org/docroot/STT/ content/STT_1x_Cancer_Facts_Figures_2007.asp).

Hay muchas maneras en los que un cáncer se puede presentar, que es una de las razones por las que su terapia es difícil. Una manera es la transformación de células mediante oncoproteínas, que surgen mediante mutaciones genéticas de proteínas celulares normales, y que resulta en la activación no fisiológica de estas proteínas. Una familia de proteínas a partir de las que derivan varias oncoproteínas son las tirosina quinasas (por ejemplo, src quinasa) y en particular las tirosina quinasas receptoras (RTK). En las últimas dos décadas, numerosas corrientes de investigación han demostrado la importancia de la señalización mediada por tirosina quinasa receptora en la regulación del crecimiento celular de los mamíferos. Recientemente, se han conseguido resultados clínicos con inhibidores selectivos de moléculas pequeñas de la tirosina quinasa como agentes antitumorales.

El receptor c-Met también es una tirosina quinasa receptora. Su potencial oncogénico se identificó a principios de los años 80, cuando se aisló una proteína Met mutada a partir de una línea celular de osteosarcoma humano inducido químicamente que contenía el dominio quinasa del gen Met fusionado a un dominio de dimerización en su extremo N terminal [C.S. Cooper y col., Nature 311: 29-33 (1984)].

La proteína Met celular es una proteína transmembrana heterodimérica sintetizada como un precursor de 190 kd de cadena sencilla [G.A. Rodrigues y col., Mol. Cell Biol. 11: 2962-70 (1991)]. El precursor se escinde intracelularmente después del resto aminoacídico 307 para formar una cadena α de 50 kd y una cadena β de 145 kd, que se conectan mediante puentes disulfuro. La cadena α es completamente extracelular, mientras que la cadena β abarca la membrana plasmática. La cadena β se compone de un dominio de sema N terminal, que junto con la cadena α media la unión de ligando. El resto del ectodominio de la cadena β se compone de un dominio rico en cisteína v cuatro dominios de inmunoglobulinas y se continúa con la región transmembrana y el dominio intracelular. El dominio intracelular contiene un dominio de yuxtamembrana, el dominio quinasa y un dominio C terminal, que media en la señalización corriente abajo. En la unión de ligando, se induce una dimerización del receptor, y el dominio quinasa se activa mediante una cascada de etapas de auto fosforilación de la tirosina en la región yuxtamembrana (Y1003), el bucle de activación de la quinasa (Y1234 e Y1235) y el dominio carboxi terminal (Y1349 e Y1356). Y1349 e Y1356 fosforilados comprenden el sitio de anclaje multisustrato para la unión de las proteínas adaptadoras necesaria para la señalización del c-Met corriente abajo [C. Ponzetto y col., Cell 77: 261-71 (1994)]. Uno de los sustratos más cruciales para la señalización del c-Met es la proteína adaptadora de andamiaje Gab1, que se une al Y1349 o al Y1356 mediante un sitio de unión de fosfotirosina inusual (denominado mbs: sitio de unión met) que causa una única señal intracelular prolongada. Otro sustrato importante es la proteína adaptadora Grb2. Dependiendo del contexto celular, estos adaptadores median la activación de diversas rutas de señalización intracelular como las que señalizan mediante ERK/MAPK, PI3K/Akt, Ras, JNK, STAT, NFκB y catenina β.

C-Met se activa únicamente por el factor de crecimiento de hepatocitos (HGF), también conocido como factor de dispersión, y sus variantes de corte y empalme, que es su único ligando conocido biológicamente activo [L. Naldini y col., Oncogene 6: 501-4 (1991)]. El HGF tiene una estructura distinta que desvela similitudes con proteinasas de la familia del plasminógeno. Se compone de un dominio amino terminal seguido de cuatro dominios Kringle y un dominio de homología de serina proteasa, que no es activo enzimáticamente. De forma similar al c-Met, el HGF se sintetiza como un precursor de cadena sencilla inactivo (pro-HGF), que se escinde extracelularmente mediante serina proteasas (por ejemplo, activadores del plasminógeno y factores de coagulación) y se convierte en un heterodímero activo de cadenas α y β unido por puentes disulfuro. El HGF se une con alta afinidad a proteoglicanos de heparán sulfato, que lo mantiene principalmente asociado con la matriz extracelular y limita su difusión. Los análisis de la estructura cristalina indican que el HGF forma un dímero, que tras su unión al c-Met induce la dimerización del receptor.

El HGF se expresa mediante células mesenquimales, y su unión al c-Met, que se expresa ampliamente en las células epiteliales en particular, resulta en efectos pleiotrópicos en una diversidad de tejidos que incluyen células epiteliales, endoteliales, neuronales y hematopoyéticas. Los efectos generalmente incluyen la totalidad o alguno de

ES 2 377 809 T3

los siguientes fenómenos: i) la estimulación de la mitogénesis; el HGF se identificó mediante su actividad mitogenética en hepatocitos; ii) la estimulación de invasión y migración; en un enfoque experimental independiente, el HGF se identificó como un factor de dispersión basándose en su inducción de la motilidad celular ("dispersión"); y iii) la estimulación de la morfogénesis (tubulogénesis). El HGF induce la formación de túbulos ramificados a partir de células caninas de riñón en una matriz de colágeno. Además, las pruebas a partir de ratones modificados genéticamente y a partir de experimentos con cultivos celulares indican que el c-Met actúa como un receptor de supervivencia y protege las células de la apoptosis [N. Tomita y col., Circulation 107: 1411-1417 (2003); S. Ding y col., Blood 101: 4816-4822 (2003); Q. Zeng y col., J. Biol. Chem. 277: 25203-25208 (2002); N. Horiguchi y col., Oncogene 21: 1791-1799 (2002); A. Bardelli y col., Embo J. 15: 6205-6212 (1996); P. Longati y col., Cell Death Differ. 3: 23-28 (1996); E.M. Rosen, Symp. Soc. Exp. Biol. 47: 227-234 (1993)]. La ejecución coordinada de estos procesos biológicos mediante el HGF resulta en un programa genético específico que se denomina "crecimiento invasivo".

10

15

20

25

30

35

40

45

55

60

En condiciones normales, el c-Met y el HGF son esenciales para el desarrollo embrionario de los ratones, en particular para el desarrollo de la placenta y el hígado y para la migración direccional de los mioblastos de los somitas de los miembros. La disrupción genética de los genes c-Met o HGF resulta en fenotipos idénticos que muestran su interacción única. El papel fisiológico del c-Met/HGF en el organismo adulto se entiende peor, pero las pruebas experimentales sugieren que están involucrados en la curación de heridas, regeneración de tejidos, hemopoyesis, y homeostasis de tejidos.

La identificación de la oncoproteína TPR-MET fue un primer indicio de que el c-Met puede tener un papel en la tumorogénesis. Se derivan pruebas sustanciales adicionales a partir de varios enfoques experimentales diferentes. La sobreexpresión del c-Met o el HGF en líneas celulares murinas y humanas induce la tumorogénesis y un fenotipo metastásico cuando se expresa en ratones desnudos. La sobreexpresión transgénica del c-Met o del HGF induce la tumorogénesis en ratones.

Curiosamente, las mutaciones de sentido erróneo del c-Met o mutaciones que activan el receptor se han identificado en carcinomas de riñón papilares hereditarios (HPRC) y esporádicos así como en otros tipos de cáncer como cánceres de pulmón, gástricos, de hígado, de cabeza y cuello, de ovario y cerebrales. De forma significativa, las mutaciones específicas del c-Met en las familias del HPRC se segregan con la enfermedad, formando un enlace causal entre la activación del c-Met y el cáncer humano [L. Schmidt y col., Nat. Genet. 16: 68-73 (1997); B. Zbar y col., Adv. Cancer Res. 75: 163-201 (1998)]. Las mutaciones de activación con las mayores actividades de transformación se localizan en el bucle de activación (D1228N/H e Y1230H/D/C) y en el bucle P+1 adyacente (M1250T). Se han encontrado mutaciones adicionales más débiles cerca del bucle catalítico y en el interior del lóbulo A del dominio de la quinasa. Además, se han observado algunas mutaciones en el dominio de yuxtamembrana del c-Met en tumores de pulmón que no activan directamente la quinasa, sino que estabilizan la proteína haciéndola resistente a la ubiquitinización y a la degradación posterior [M. Kong-Beltran y col., Cancer Res. 66: 283-9 (2006); T.E. Taher y col., J. Immunol. 169: 3793-800 (2002); P. Peschard y col., Mol. Cell 8: 995-1004 (2001)]. De manera interesante, las mutaciones somáticas de c-Met se asocian con el incremento de la agresividad y con las metástasis extensivas en diversos cánceres. Mientras que la frecuencia de la línea germinal y las mutaciones somáticas es baja (por debajo del 5%), se han observado otros mecanismos importantes que conducen a la desregulación de la señalización del c-Met, en ausencia de mutaciones, mediante mecanismos paracrinos o autocrinos. Se ha observado activación paracrina en tumores que derivan de células mesenquimales, como osteosarcomas o rabdomiosarcomas, que fisiológicamente producen HGF, y en glioblastomas y carcinomas de mama que son de origen ectodérmico.

Sin embargo, los casos más frecuentes son carcinomas cuando el c-Met se sobreexpresa, como se observa en los carcinomas de colon, páncreas, estómago, mama, próstata, ovario e hígado. La sobreexpresión se puede presentar, por ejemplo, por amplificación del gen como se observa en líneas celulares tumorales gástricas y de pulmón. Muy recientemente, se detectó sobreexpresión del c-Met en líneas celulares tumorales de pulmón que adquirieron resistencia a la inhibición del receptor de EGF [J.A. Engelmann y col., Science 316: 1039-1043 (2007)]. Algunos tumores epiteliales que sobreexpresan el c-Met también coexpresan el HGF, resultando en un bucle de estimulación autocrina de c-Met/HGF y por consiguiente sorteando la necesidad de HGF derivado de célula del estroma.

En general, se ha encontrado que la activación aberrante del c-Met en el cáncer humano se asocia generalmente con una prognosis pobre, independientemente del mecanismo específico [J.G. Christensen y col., CancerLett. 225: 1-26 (2005)].

En resumen, se ha realizado un gran número de estudios *in vitro* e *in vivo* que validan el c-Met como un objetivo importante del cáncer, y se puede examinar una lista exhaustiva en http://www.vai.org/met [C. Birchmeier y col., Nat. Rev. Mol. Cell Biol. 4: 915-25 (2003)]. Se han seguido varias estrategias para atenuar la señalización aberrante del Met en tumores humanos incluyendo los antagonistas del HPF y los inhibidores moleculares pequeños, entre otros. Varios de los inhibidores de molécula pequeña están actualmente en desarrollo clínico, tales como ARQ-197 (Arqule), XL-880 (Exelixis), y PH-2341066 (Pfizer); estos se han revisado recientemente [J.J. Cui, Expert Opin. Ther. Patents 17: 1035-45 (2007)].

El problema técnico que se resuelve de acuerdo con la presente invención podría ser, por consiguiente, proporcionar compuestos alternativos que tienen una actividad inhibidora de la c-Met quinasa, y de ese modo ofrecer nuevas

opciones terapéuticas para el tratamiento de las enfermedades mediadas por el c-Met, particularmente el cáncer y otros trastornos proliferativos.

Los derivados de la 4-heteroaril-1,4-dihidropiridina y los usos de los mismos para el tratamiento de determinadas enfermedades se describe, entre otros, en los documentos WO 2004/033444-A1, WO 2005/016885-A2, WO 2006/066011-A2 y WO 2007/051062-A2. En los documentos WO 91/18906-A1, WO 93/11133-A1 y WO 93/11134-A1, se han revelado 1,4-dihidropiridinas condensadas con tiazol con actividad antiasmática y antiinflamatoria. Mientras tanto, los compuestos del tipo de la 1,4-dihidropiridina con actividad inhibidora de la c-Met quinasa se han descrito en el documento WO 2008/071451-A1.

En un aspecto, la presente invención se refiere a derivados condensados de la 4-(indazolil)-1,4-dihidropiridina de fórmula general (I)

$$R^2$$
 R^3
 R^5
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7

en la que

15

20

25

30

40

5

 R^1 se selecciona entre el grupo que consiste en alquilo- (C_1-C_6) , cicloalquilo- (C_3-C_7) , fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, en el que

(i) dichos cicloalquilo- (C_3-C_7) , fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo- (C_1-C_4) , oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) y cicloalquilo- (C_3-C_6) ,

(ii) dicho alquilo- (C_1-C_6) está opcionalmente sustituido con uno, dos o tres sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) , hidroxicarbonilo, alcoxicarbonilo- (C_1-C_4) , aminocarbonilo, mono-alquilaminocarbonilo- (C_1-C_4) , di-aquilaminocarbonilo- (C_1-C_4) -, cicloalquilo- (C_3-C_7) , fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros,

en el que a su vez dichos sustituyentes cicloalquilo- (C_3-C_7) , fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo- (C_1-C_4) , oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , dialquilamino- (C_1-C_4) y cicloalquilo- (C_3-C_6) ,

R¹ es un grupo de la fórmula -NR⁸R⁹, -C(=O)-NR¹⁰R¹¹, -SO₂-NR¹²R¹³, -NR¹⁴-C(=O)-R¹⁵, -NR¹⁶-SO₂-R¹⁷, -OR¹⁸ o -S(=O)_n-R¹⁹, en el que

n es 0, 1 ó 2, 35 R⁸, R⁹, R¹⁰, R¹¹, R¹² y R¹³ se seleccionan independientemente entre el grupo que consiste en hidrógeno, alquilo-(C₁-C₆), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, en el que

(i) dichos cicloalquilo- (C_3-C_7) , fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo- (C_1-C_4) , oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) y cicloalquilo- (C_3-C_6) , y

(ii) dicho alquilo-(C₁-C₆) está opcionalmente sustituido con uno, dos o tres sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi-(C1-C4), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄), hidroxicarbonilo, alcoxicarbonilo-(C₁-C₄), aminocarbonilo, mono-alquilaminocarbonilo-(C1-C4), di-alquilaminocarbonilo-(C1-C4), cicloalquilo-(C3-C7), fenilo, en el que a su vez dichos sustituyentes cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alguilamino-(C₁-C₄), dialquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

10

5

15

20

25

30

35

40

45

 R^3

R⁸ v R⁹, R¹⁰ R¹¹, R¹² v R¹³ se unen en parejas y, tomados junto con él átomo de nitrógeno al que se une cada pareja, forman un anillo heterocicloalquilo de 4 a 7 miembros, que puede contener un segundo heteroátomo en el anillo seleccionado entre N, O y S, y el que es del amino, opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, alquilo-(C₁- C_4), oxo, hidroxi, alcoxi- (C_1-C_4) , mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) y cicloalquilo- (C_3-C_6) , R^{14} y R^{16} , son hidrógeno o alquilo- (C_1-C_6) , R^{15} R^{17} , R^{18} y R^{19} son cada uno seleccionados entre el grupo que consiste en alquilo- (C_1-C_6) , cicloalquilo- (C_1-C_6) , cicloalquilo- (C_1-C_6)

(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, en el que

(i) dichos cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alguilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C3-C6), y

(ii) dicho alquilo-(C₁-C₆) está opcionalmente sustituido con uno, dos o tres sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi-(C1-C4), amino, $mono-alquilamino-(C_1-C_4), \ di-alquilamino-(C_1-C_4), \ hidroxicarbonilo, \ alcoxicarbonilo-(C_1-C_4), \ aminocarbonilo, \ alcoxicarbonilo-(C_1-C_4), \ aminocarbonilo, \ alcoxicarbonilo-(C_1-C_4), \ aminocarbonilo, \ alcoxicarbonilo-(C_1-C_4), \ aminocarbonilo-(C_1-C_4), \ amin$ mono-alquilaminocarbonilo-(C₁-C₄), di-alquilaminocarbonilo-(C₁-C₄), cicloalquilo-(C₃-C₇), heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C3-C7), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

 $R^{16} \ y \ R^{17} \ se$ unen y, tomados junto con el átomo de nitrógeno y el grupo SO_2 al que están unidos, forman un resto heterocíclico de la fórmula

en las que * representa el punto de unión al resto indazol,

y R^{20A} y R^{20B} se seleccionan independientemente entre el grupo que consiste en hidrógeno, flúor y alquilo-

 R^2 es hidrógeno, flúor, cloro o metilo,

> es ciano o un grupo de la fórmula -C(=O)-OR²¹ o -C(=O)-NR²²R²³, en el que R²¹ es alguilo-(C₁-C₆) opcionalmente sustituido con cicloalguilo-(C₃-C₇), o es cicloalguilo-(C₄-C₇),

y R²² y R²³ se seleccionan independientemente entre el grupo que consiste en hidrógeno, alquilo-(C₁-C₆) y cicloalquilo-(C₃-C₇), en el que dicho alquilo-(C₁-C₆) está opcionalmente sustituido con cicloalquilo-(C₃-C₇),

 R^4 es alquilo-(C₁-C₄) opcionalmente sustituido con hasta tres átomos de flúor, o es ciclopropilo o amino,

 R^5 es hidrógeno, alquilo-(C₁-C₆) o cicloalquilo-(C₃-C₇), en el que dicho alquilo-(C₁-C₆) está opcionalmente

ES 2 377 809 T3

sustituido con hasta tres átomos de flúor o con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_3-C_7) y heterocicloalquilo de 4 a 7 miembros,

R⁶ y R⁷ son independientemente hidrógeno o alquilo-(C₁-C₄), o bien (a)

A es O, S, S(=O) o S(=O)₂ y

m es 1 ó 2,

o (b)

5

15

20

25

35

40

A es N(R²⁴), en el que

10 R^{24} es hidrógeno, alquilo- (C_1-C_6) , cicloalquilo- (C_3-C_7) o alquilcarbonilo- (C_1-C_6) , en el que dicho alquilo- (C_1-C_6) , cicloalquilo- (C_3-C_7) y alquilcarbonilo- (C_1-C_6) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) y di-alquilamino- (C_1-C_4) , y

m es 1 ó 2, en cuyo caso

R⁵ y R⁶, además de los significados especificados anteriormente, también pueden tomarse juntos y forman un grupo oxo,

o bien (c)

A es -C(=O)-N(R²⁵)-**, en el que ** representa el punto de unión al grupo CR⁵R⁶,

 R^{25} es hidrógeno, alquilo- $(C_1$ - $C_6)$ o cicloalquilo- $(C_3$ - $C_7)$, en el que dicho alquilo- $(C_1$ - $C_6)$ y cicloalquilo- $(C_3$ - $C_7)$ están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, alcoxi- $(C_1$ - $C_4)$, amino, mono-alquilamino- $(C_1$ - $C_4)$ y di-alquilamino- $(C_1$ - $C_4)$,

m es 0 ó 1.

Los compuestos de acuerdo con la presente invención pueden presentarse también en forma de sus sales, hidratos y/o solvatos.

<u>Las sales</u> para los propósitos de la presente invención son preferentemente sales farmacéuticamente aceptables de los compuestos de acuerdo con la presente invención (por ejemplo, véase S. M. Berge y col., "Pharmaceutical Salts", J. Pharm. Sci. 1977, 66, 1-19).

<u>Las sales farmacéuticamente aceptables</u> incluyen sales de adición de ácidos de ácidos minerales, ácidos carboxílicos y ácidos sulfónicos, por ejemplo sales del ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido fosfórico, ácido metanosulfónico, ácido etanosulfónico, ácido toluenosulfónico, ácido bencenosulfónico, ácido naftalenodisulfónico, ácido acético, ácido propiónico, ácido láctico, ácido tartárico, ácido málico, ácido cítrico, ácido fumárico, ácido maleico y ácido benzoico.

Las sales farmacéuticamente aceptables también incluyen sales de bases tradicionales, como por ejemplo y preferentemente sales de metales alcalinos (por ejemplo sales de sodio y potasio), sales de metales alcalinotérreos (por ejemplo sales de calcio y magnesio), y sales de amonio obtenidas a partir de amoníaco o de aminas orgánicas, tales como, ilustrativa y preferentemente, etilamina, dietilamina, trietilamina, etildiisopropilamina, monoetanolamina, dietanolamina, trietanolamina, diciclohexilamina, dimetilaminoetanol, dibencilamina, N-metilmorfolina, N-metilpiperidina, dihidroabietilamina, arginina, lisina, y etilendiamina.

<u>Los hidratos</u> de los compuestos de la presente invención o sus sales son composiciones estequiométricas de los compuestos con agua, tales como, por ejemplo, hemi, mono, o dihidratos.

45 <u>Los solvatos</u> de los compuestos de la presente invención o sus sales son composiciones estequiométricas de los compuestos con disolventes.

Los compuestos de la presente invención pueden, bien por la naturaleza de los centros asimétricos o bien por la restricción de la rotación, estar presentes en forma de isómeros (enantiómeros, diastereómeros). Puede presentarse cualquier isómero en el que el centro asimétrico esté en la configuración (R)-, (S)- o (R,S).

ES 2 377 809 T3

También se apreciará que cuando uno o más centros asimétricos estén presentes en los compuestos de la presente invención, a menudo serán posibles varios diastereómeros y enantiómeros de las estructuras ilustradas, y que los diastereómeros y enantiómeros puros representan realizaciones preferentes. Se entiende que los estereoisómeros puros, los diastereómeros puros, los enantiómeros puros y las mezclas de los mismos, están dentro del alcance de la presente invención.

5

35

Los isómeros geométricos por naturaleza de los sustituyentes en un doble enlace o un anillo pueden presentarse en la forma *cis* (= *Z*-) o *trans* (= *E*-), y ambas formas isoméricas quedan abarcadas dentro del alcance de la presente invención.

- Todos los isómeros, separados, puros, parcialmente puros, o bien en mezcla racémica, de los compuestos de la presente invención quedan abarcados dentro del alcance de la presente invención. La purificación de dichos isómeros y la separación de dichas mezclas isoméricas puede conseguirse mediante técnicas convencionales conocidas en la técnica. Por ejemplo las mezclas diastereoméricas pueden separarse en los isómeros individuales mediante procedimientos cromatográficos o por cristalización, y los racematos pueden separarse en los respectivos enantiómeros bien mediante procedimientos cromatográficos en fases quirales o bien por resolución.
- Además, todas las posibles formas tautoméricas de los compuestos descritos anteriormente están incluidas de acuerdo con la presente invención.
 - A menos que se indique lo contrario, las siguientes definiciones se aplican para los sustituyentes y residuos usados a lo largo de la presente memoria descriptiva y de las Reivindicaciones:
- Alquilo representa en general un radical hidrocarburo saturado de cadena lineal o ramificada que tiene de 1 a 6, preferentemente de 1 a 4 átomos de carbono. Los ejemplos no limitantes incluyen metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo, terc-butilo, pentilo, isopentilo, neopentilo, hexilo e isohexilo. Lo mismo se aplica a los radicales como alcoxi, alquilamino, alquilcarbonilo y similares.
 - <u>Alcoxi</u> representa ilustrativa y preferentemente metoxi, etoxi, n-propoxi, isopropoxi, n-butoxi y terc-butoxi. Lo mismo se aplica a radicales tales como alcoxicarbonilo.
- Alquilcarbonilo representa en general un radical alquilo de cadena lineal o ramificada que tiene de 1 a 6, preferentemente de 1 a 4 átomos de carbono que esta unido mediante un grupo carbonilo al resto de la molécula. Los ejemplos no limitantes incluyen acetilo, n-propionilo, n-butirilo, isobutirilo, n-pentanoílo, pivaloilo y n-hexanoílo.
 - <u>Alcoxicarbonilo</u> representa ilustrativa y preferentemente metoxicarbonilo, etoxicarbonilo, n-propoxicarbonilo, isopropoxicarbonilo, n-butoxicarbonilo y terc-butoxicarbonilo.
- 30 <u>Monoalquilamino</u> representa en general un radical amino que tiene un residuo alquilo unido al átomo de nitrógeno. Los ejemplos no limitantes incluyen metilamino, etilamino, n-propilamino, iso-propilamino, n-butilamino, tercbutilamino. Lo mismo se aplica a radicales tales como monoalquilaminocarbonilo.
 - <u>Dialquilamino</u> representa en general un radical amino que tiene dos residuos alquilo seleccionados independientemente unidos al átomo de nitrógeno. Los ejemplos no limitantes incluyen *N,N*-dimetilamino, *N,N*-dietilamino, *N-*metil-*N*-n-propilamino, *N-*iso-propil-*N-*n-propilamino, *N*-terc-butil-*N*-metilamino. Lo mismo se aplica a radicales tales como dialquilaminocarbonilo.
 - <u>Monoalquilaminocarbonilo</u> representa ilustrativa y preferentemente metilaminocarbonilo, etilaminocarbonilo, n-propilaminocarbonilo, isopropilaminocarbonilo, n-butilaminocarbonilo y terc-butilaminocarbonilo.
- <u>Dialquilaminocarbonilo</u> representa ilustrativa y preferentemente *N,N*-dimetilaminocarbonilo, *N,N*-dietilaminocarbonilo, *N,N*-diisopropilaminocarbonilo, *N*-etil-*N*-metilaminocarbonilo, *N*-metil-*N*-n-propilaminocarbonilo, *N*-isopropil-*N*-n-propilaminocarbonilo y *N*-terc-butil-*N*-metilaminocarbonilo.
 - <u>Cicloalquilo</u> representa en general un radical hidrocarburo saturado mono o bicíclico que tiene de 3 a 7, preferentemente de 3 a 6 átomos de carbono. Se da preferencia a los radicales cicloalquilo monocíclicos. Los ejemplos no limitantes incluyen ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, biciclo-[2,2,1]heptilo.
- Heterocicloalquilo representa en general un radical heterocíclico saturado, mono o bicíclico, que tiene un número total de 4 a 7, preferentemente 4 a 6 átomos en el anillo, incluyendo de 3 a 6, preferentemente de 3 a 5 átomos de carbono y hasta dos heteroátomos y/o heterogrupos seleccionados independientemente entre el grupo que consiste en N, O, S, SO y SO₂, pudiendo unirse dicho sistema anular mediante un átomo de carbono del anillo o, si es posible, mediante un átomo de nitrógeno del anillo. Los ejemplos no limitantes incluyen azetidinilo, oxetanilo, tietanilo, pirrolidinilo, pirazolidinilo, tetrahidrofuranoílo, tiolanilo, sulfolanilo, 1,3-dioxolanilo, 1,3-oxazolidinilo, 1,3-tiazolidinilo, piperidinilo, piperazinilo, tetrahidropiranilo, tetrahidrotiopiranilo, 1,3-dioxanilo, 1,4-dioxanilo, morfolinilo, tiomorfolinilo, 1,1-dioxidotiomorfolinilo, perhidroazepinilo, perhidro-1,4-diazepinilo, perhidro-1,4-oxazepinilo, 7-azabiciclo[2,2,1]heptilo, 3-azabiciclo-[3,2,0]heptilo, 7-azabiciclo[4,1,0]heptilo, 2,5-diazabiciclo[2,2,1]heptilo, 2-oxa-5-azabiciclo[2,2,1]-heptilo. Se da preferencia particular a radicales heterocicloalquilo monocíclicos de 5 a 6 miembros

que tienen hasta 2 heteroátomos seleccionados entre el grupo que consiste en N, O y S, como ilustrativa y preferentemente tetrahidrofuranoílo, 1,3-dioxolanilo, pirrolidinilo, tetrahidropiranilo, 1,4-dioxanilo, piperidinilo, piperazinilo, morfolinilo y tiomorfolinilo.

Heteroarilo representa en general un radical heterocíclico aromático, mono o bicíclico, que tiene un número total de 5 a 10 átomos en el anillo, incluyendo de 2 a 9 átomos de carbono y hasta 3 heteroátomos seleccionados independientemente entre el grupo que consiste en N, O y S, pudiendo unirse dicho sistema anular mediante un átomo de carbono del anillo o, si es posible, mediante un átomo de nitrógeno del anillo. Los ejemplos no limitantes incluyen furilo, pirrolilo, tienilo, pirazolilo, imidazolilo, tiazolilo, oxazolilo, isoxazolilo, isotiazolilo, triazolilo, oxadiazolilo, tiadiazolilo, piridilo, pirimidinilo, piridazinilo, pirazinilo, triazinilo, benzofuranilo, benzotienilo, benzoimidazolilo, benzotiazolilo, benzotriazolilo, benzotriazolilo, benzotriazolilo, indolilo, isoindolilo, indazolilo, quinolinilo, isoquinolinilo, naftiridinilo, quinazolinilo, quinoxalinilo, ftalazinilo, imidazopiridinilo, pirazolopiridinilo, pirrolopirimidinilo. Se da preferencia a los radicales heteroarilo de seis miembros que tienen hasta dos átomos de nitrógeno, tales como piridilo, pirimidilo, piridazinilo y pirazinilo, y a los radicales heteroarilo de 5 miembros que tienen hasta dos heteroátomos seleccionados entre el grupo que consiste en N, O y S, tales como ilustrativa y preferentemente tienilo, furilo, pirrolilo, pirazolilo, imidazolilo, tiazolilo, oxazolilo, iso-tiazolilo y isoxazolilo.

Halógeno representa radicales de flúor, cloro, bromo y yodo. Se da preferencia a los radicales de flúor y cloro.

Oxo representa un átomo de oxígeno doblemente enlazado.

A lo largo del presente documento, por el bien de la simplicidad, el uso del lenguaje en singular se da con preferencia sobre el lenguaje plural, pero generalmente se supone que se incluye el lenguaje plural si no se especifica lo contrario. Por ejemplo, la expresión "Un procedimiento para el tratamiento de una enfermedad en un paciente, que comprende administrar un paciente una cantidad eficaz de un compuesto de fórmula (I)" se supone que incluye los tratamientos simultáneos de más de una enfermedad así como la administración de más de un compuesto de fórmula (I).

En una realización preferida, la presente invención se refiere a los compuestos de fórmula general (I), en la que

25 R¹ se selecciona entre el grupo que consiste en alquilo-(C₁-C₆), cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en el que

(*i*) dichos cicloalquilo-(C_3 - C_6), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo-(C_1 - C_4), oxo, hidroxi, alcoxi-(C_1 - C_4), amino, monoalquilamino-(C_1 - C_4), di-alquilamino-(C_1 - C_4) y cicloalquilo-(C_3 - C_6),

(ii) dicho alquilo- (C_1-C_6) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) , alcoxicarbonilo- (C_1-C_4) , aminocarbonilo, mono-alquilaminocarbonilo- (C_1-C_4) , di-alquilaminocarbonilo- (C_1-C_4) , cicloalquilo- (C_3-C_6) , fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros.

en el que a su vez dichos sustituyentes cicloalquilo- (C_3-C_6) , fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo- (C_1-C_4) , oxo, hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) y di-alquilamino- (C_1-C_4) ,

o

5

10

15

20

30

35

40

45

50

55

R¹ es un grupo de -NR¹⁶-SO₂-R¹⁷, la fórmula -NR⁸R⁹, -C(=O)-NR¹⁰R¹¹, -SO₂-NR¹²R¹³, -NR¹⁴-C(=O)-R¹⁵,-OR¹⁸ o -S(=O)_n-R¹⁹, en los que

cada uno de R^8 , R^{10} y R^{12} es hidrógeno o alquilo-(C_1 - C_4) que esta opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, (C_1 - C_4)-alcoxi, amino, mono-alquilamino-(C_1 - C_4) y di-alquilamino-(C_1 - C_4),

cada uno de R⁹, R¹¹ y R¹³ se selecciona entre el que consiste en hidrógeno, alquilo-(C₁-C₆), cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en el que

(i) dichos cicloalquilo- (C_3-C_6) , fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, difluorometilo, trifluorometilo, alquilo- (C_1-C_4) , oxo, hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) y di-alquilamino- (C_1-C_4) ,

(ii) dicho alquilo- (C_1-C_6) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) , cicloalquilo- (C_3-C_6) , fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo

de 5 o 6 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo-(C1- C_4), oxo, hidroxi, alcoxi- $(C_1$ - C_4), amino, mono-alquilamino- $(C_1$ - C_4) y di-alquilamino- $(C_1$ - C_4),

R⁸ y R⁹, R¹⁰ y R¹¹, R¹² y R¹³ se unen en parejas y, tomados junto con el átomo de nitrógeno al que se une cada pareja, forman un anillo heterocicloalquilo de 4 a 6 miembros, que puede contener un segundo heteroátomo en el anillo seleccionado entre N, O y S, y que está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en alquilo-(C1-C4), oxo, hidroxi, alcoxi-(C_1 - C_4), amino, mono-alquilamino-(C_1 - C_4) y di-alquilamino-(C_1 - C_4), R^{14} y R^{16} son hidrogeno o alquilo-(C_1 - C_4),

cada uno de R¹⁵, R¹⁷, R¹⁸ y R¹⁹ se selecciona entre el grupo que consiste en alquilo-(C₁-C₆), cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en el que

(i) dichos cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄),

(ii) dicho alquilo-(C₁-C₆) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi-(C1-C4), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄), mono-alquilaminocarbonilo-(C₁-C₄), alquilaminocarbonilo-(C₁-C₄), cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo-(C1-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄),

R¹⁶ v R¹⁷ se unen v. tomados junto con el átomo de nitrógeno v el grupo SO₂ al gue se unen, forman un resto heterocíclico de la fórmula

en el que * representa el punto de unión al resto indazol,

y R^{20A} y R^{20B} son independientemente hidrógeno o metilo,

es hidrógeno, flúor o cloro, es ciano o un grupo de la fórmula -C(=O)-OR²¹ o -C(=O)-NR²²R²³, en la que R^3 R^{21} es alquilo-(C₁-C₄),

y R²² y R²³ se seleccionan independientemente entre el grupo que consiste en hidrógeno y alquilo-(C₁-C₄), es alquilo-(C₁-C₄) opcionalmente sustituido con hasta 3 átomos de flúor, o es amino,

es hidrógeno o alquilo-(C1-C4) opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente del grupo que consiste en hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), dialquilamino-(C₁-C₄) y heterocicloalquilo de 4 a 6 miembros,

son independientemente hidrógeno o metilo,

y o bien (a)

 R^4 R^5

5

10

15

20

25

30

35

40

50

Α es O, S o S(=O)2 y

45 es 1 ó 2, m

o bien (b)

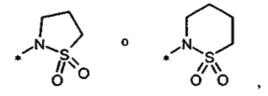
es N(R²⁴), en el que R²⁴ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-C₆) C₆) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, mono-alquilamino-(C1-C4) y di-alquilamino-(C1-C4), y

ES 2 377 809 T3

m

es 1 ó 2,

en cuyo caso R⁵ y R⁶, además de los significados especificados anteriormente, también pueden tomarse juntos y formar un grupo 5 o bien (c) es -C(=O)-N(R²⁵)-**, en el que Α ** representa el punto de unión al grupo CR5R6, R²⁵ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-C₆) 10 C₆) están opcionalmente sustituídos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄), es 0 ó 1. m En una realización preferida adicional, la presente invención se refiere a los compuestos de la fórmula general (I), en 15 la que R² es hidrógeno o flúor. En otra realización preferida, la presente invención se refiere a los compuestos de la fórmula general (I), en la que R³ es ciano. En otra realización preferida, la presente invención se refiere a los compuestos de la fórmula general (I), en la que R⁴ es metilo, difluorometilo, trifluorometilo o amino. 20 En otra realización preferida, la presente invención se refiere a los compuestos de la fórmula general (I), en la que tanto R⁶ como R⁷ son hidrógeno. En otra realización preferida, la presente invención se refiere a los compuestos de la fórmula general (I), en la que A es O, y m es 1. En otra realización preferida, la presente invención se refiere a los compuestos de la fórmula general (I), en la que A es N(R²⁴), y m es 1. 25 En otra realización preferida, la presente invención se refiere a los compuestos de fórmula general (I), en la que A es $-C(=O)-N(R^{25})-**$, en la que ** representa el punto de unión al grupo CR^5R^6 , y m es 0. En otra realización preferida, la presente invención se refiere a los compuestos de fórmula general (I), en los que R^1 se selecciona entre el grupo que consiste en alquilo-(C₁-C₄), cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 30 6 miembros, en el que (i) dichos cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino, (ii) dicho alquilo-(C₁-C₄) está opcionalmente sustituido con uno o dos sustituyentes seleccionados 35 independientemente entre el grupo que consiste en hidroxi, metoxi, atoxi, amino, metilamino, etilamino, dimetilamino, dietilamino, cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que 40 consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino, es un grupo de la fórmula -NR⁸R⁹, -C(=O)-NR¹⁰R¹¹, -SO₂-NR¹²R¹³, -NR¹⁴-C(=O)-R¹⁵, -NR¹⁶-SO₂-R¹⁷, -OR¹⁸ R^1 o $-S(=O)_n-R^{19}$, en las que n es 0 o 2. 45 cada uno de R^8 , R^{10} y R^{12} es hidrógeno o alquilo- (C_1-C_4) que está opcionalmente sustituido con hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino o dietilamino, cada uno de R⁹, R¹¹ y R¹³ se selecciona entre el grupo que consiste en hidrógeno, alquilo-(C₁-C₄), cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en el que (i) dichos grupos cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos 50 con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino, (ii) dicho alquilo-(C₁-C₄) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino, dietilamino, cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino.


R⁸ y R⁹, R¹⁰ y R¹¹, R¹² y R¹³ se unen en parejas y, tomados junto con el átomo de nitrógeno al que se une cada pareja, forman un anillo heterocicloalquilo de 5 o 6 miembros, que puede contener un segundo heteroátomo en el anillo seleccionado entre N y O, y que está opcionalmente sustituido con uno o dos sustituventes seleccionados independientemente entre el grupo que consiste en metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, dimetilamino y dietilamino,

 R^{14} y R^{16} son hidrógeno, metilo o etilo, cada uno de R^{15} , R^{17} , R^{18} y R^{19} se selecciona entre el grupo que consiste en alquilo-(C_1 - C_4), cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en el que

(i) dichos cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

(ii) dicho alquilo-(C₁-C₄) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino, dietilamino, cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino.

R¹⁶ y R¹⁷ se unen y, tomados junto con el átomo de nitrógeno y el grupo SO₂ al que se unen, forman un resto heterocíclico de la fórmula

30

5

10

15

20

25

en el que * representa el punto unión al resto indazol,

 R^2 es hidrógeno o flúor,

 R^3 es ciano,

 R^4 es metilo, trifluorometilo o amino,

 R^5 35 es hidrógeno o alquilo-(C1-C4) opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

R⁶ y R⁷ son hidrógeno,

y o bien (a)

40 Α es O У

> es 1, m

o bien (b)

es N(R²⁴), en el que

R²⁴ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-45 C₆) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

У

es 1, m

en cuyo caso

R⁵ y Ř⁶, además de los significados especificados anteriormente, también pueden tomarse juntos y forman un grupo oxo,

o bien (c)

5

15

es -C(=O)-N(R²⁵)-**, en el que ** representa el punto de unión al grupo CR⁵R⁶,

10

R²⁵ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-C₆) C₆) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, metilamino, etilamino, dimetilamino y dietilamino, y

m

En una realización distinta adicional, la presente invención se refiere a los compuestos de fórmula general (I), en la

 R^1 se selecciona entre el grupo que consiste en alquilo-(C1-C4), fenilo y piridilo, en el que dichos fenilo y piridilo están opcionalmente sustituidos con uno o dos sustituyentes seleccionados

independientemente entre el grupo que consiste en flúor, cloro, metilo y trifluorometilo,

 R^2 es hidrógeno o flúor,

 R^3 20 es ciano,

> R^4 es metilo,

 R^5 , R^6 v R^7 son hidrógeno,

Α es O.

У

30

25 m es 1.

> Las definiciones de los residuos indicadas específicamente en las combinaciones respectivas o en las combinaciones preferentes de los residuos también se reemplazan como se desee mediante definiciones de residuos de otras combinaciones, independientemente de las combinaciones particulares indicadas para los residuos. Las combinaciones de dos o más de los rangos preferentes mencionados anteriormente son particularmente preferentes.

> En otra realización, la presente invención se refiere a un procedimiento para preparar los compuestos de fórmula general (I), caracterizados porque un compuesto de fórmula (II)

$$R^{5}$$
 R^{6}
 R^{7}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{6}

en la que m, A, R³, R⁵, R⁶ y R⁷ tienen los significados descritos anteriormente,

35 que reacciona en un disolvente prótico con catálisis ácida o bien

[A] con un compuesto de fórmula (III)

en la que R^1 , R^2 y R^4 tienen los significados descritos anteriormente, para dar compuestos de fórmula (I) directamente, o bien

[B] con un compuesto de fórmula (IV)

5

10

15

en la que $\ensuremath{\mathsf{R}}^2$ y $\ensuremath{\mathsf{R}}^4$ tienen los significados descritos anteriormente,

y X representa un grupo saliente tal como cloro, bromo o yodo, para producir un compuesto intermedio de fórmula (V)

$$R^2$$
 R^3
 R^5
 R^6
 R^7
 R^7
 (V)

en la que m, A, X, R^2 , R^3 , R^4 , R^5 , R^6 y R^7 tienen los significados descritos anteriormente, que después se acopla mediante catálisis con un metal de transición o bien [B-1] con un compuesto de fórmula (VI)

en la que

R^{1A} representa un residuo R¹ unido a N, O ó S de la fórmula -NR⁸R⁹, -OR¹⁸ o -S(=O)_n-R¹⁹, respectivamente, como se ha definido anteriormente,

para dar un compuesto de fórmula (I-A)

$$R^{2}$$
 R^{3}
 R^{5}
 R^{6}
 R^{7}
 R^{7}
 R^{1A}
 R^{1A}
 R^{1A}
 R^{1A}
 R^{1A}

en la que m, A, R^{1A} , R^2 , R^3 , R^4 , R^5 , R^6 y R^7 tienen los significados descritos anteriormente, o

[B-2] con un compuesto de fórmula (XIV)

 R^{1B} -M (XIV),

en la que

R^{1B} representa un residuo R¹ unido a C opcionalmente sustituido con un sustituyente seleccionado entre el grupo que consiste en alquilo-(C₁-C₆), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, como se ha definido anteriormente,

у

5

10

15

M representa un grupo -B(OR 26)₂, -MgHal, -ZnHal o -Sn(R 27)₃, en el que Hal es halógeno, especialmente cloro, bromo o yodo, R 26 es hidrógeno o alquilo-(C₁-C₄), o ambos residuos R 26 juntos forman un puente -(CH₂)₂-, -C(CH₃)₂-C(CH₃)₂-, -(CH₂)₃- o -CH₂-C(CH₃)₂-CH₂-, y R 27 es alquilo-(C₁-C₄),

para producir un compuesto de fórmula (I-B)

$$R^{2}$$
 R^{3}
 R^{5}
 R^{7}
 R^{7}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

en la que m, A, R^{1B}, R², R³, R⁴, R⁵, R⁶ y R⁷ tienen los significados descritos anteriormente, seguido opcionalmente, cuando sea apropiado, por (*i*) la separación de los compuestos (I), (I-A) y (I-B) en sus respectivos enantiómeros y/o diastereómeros, preferentemente usando procedimientos cromatográficos, y/o (*ii*) la conversión de los compuestos (I), (I-A) y (I-B) en sus respectivos hidratos, solvatos, sales y/o hidratos o solvatos de las sales por tratamiento con los disolventes, ácidos o bases correspondientes.

Los disolventes próticos adecuados para las etapas del procedimiento (II) + (III) \rightarrow (I) y (II) + (IV) \rightarrow (V) son, por ejemplo, alcoholes tales como metanol, etanol, *n*-propanol, isopropanol, *n*-butanol y *terc*-butanol, o ácido acético. Es

20

25

igualmente posible el uso de mezclas de estos disolventes. Son ejemplos de catalizadores ácidos adecuados para dichas reacciones ácido acético, ácido trifluoroacético, ácido metanosulfónico y ácido p-toluenosulfónico. Preferentemente, el ácido acético se usa simultáneamente como disolvente y como catalizador ácido.

Las reacciones (II) + (III) \rightarrow (I) y (II) + (IV) \rightarrow (V) se realizan generalmente en un intervalo de temperatura de +20 °C a +120 °C, preferentemente de +65 °C a +120 °C, a presión atmosférica.

Los disolventes inertes adecuados para las etapas del procedimiento (V) + (VI) \rightarrow (I-A) y (V) + (XIV) \rightarrow (I-B) incluyen, por ejemplo, hidrocarburos aromáticos tales como el benceno, tolueno y xileno, éteres tales como el éter dietílico, éter diisopropílico, metil *terc*-butil éter, 1,2-dimetoxietano, tetrahidrofurano, 1,4-dioxano y bis-(2-metoxietil)-éter, o disolventes apróticos polares tales como acetonitrilo, dimetilsulfóxido (DMSO), N,N-dimetilformamida (DMF), N,N-dimetilacetamida (DMA), N-metilpirrolidinona (NMP), N,N-dimetilpropileno urea (DMPU) y piridina. También es posible usar mezclas de estos disolventes. Son disolventes preferentes, tolueno, tetrahidrofurano, 1,4-dioxano, N,N-dimetilformamida y mezclas de los mismos.

Las reacciones de acoplamiento (V) + (VI) → (I-A) y (V) + (XIV) → (I-B) se realizan con la ayuda de un catalizador de metal de transición. Son adecuados para este propósito en particular los catalizadores de cobre, tales como yoduro de cobre (I), y catalizadores de paladio, tales como paladio sobre carbón activado, bis(dibencilidenoacetona)-paladio (0), tris(dibencilidenoacetona)-dipaladio (0), tetraquis(trifenilfosfina)-paladio (0), cloruro de bis(trifenilfosfina)-paladio (II), cloruro de bis(acetonitrilo)-paladio (II), cloruro de [1,1'-bis(difenilfosfino)ferroceno]-paladio (II) o acetato de paladio (II), opcionalmente junto con ligandos fosfano adicionales como, por ejemplo, diciclohexil-[2',4',6'-tris(1-metiletil)bifenil-2-il]fosfano (XPHOS) o 4,5-bis(difenilfosfino)-9,9-dimetilxanteno (Xantphos) [véase, por ejemplo, J. Hassan y col., Chem. Rev. 102, 1359-1469 (2002); V. Farina, V. Krishnamurthy y W.J. Scott, en: The Stille Reaction, Wiley, Nueva York, 1998].

Las etapas del procedimiento (V) + (VI) \rightarrow (I-A) y (V) + (XIV) \rightarrow (I-B) se realizan normalmente en un intervalo de temperatura de +20 °C a +200 °C, preferentemente de +80 °C a +180 °C, a presión atmosférica. Sin embargo, es también posible realizar estas reacciones a presión elevada o a presión reducida (por ejemplo en un intervalo de 0,5 a 5 bar). Además, dichas reacciones pueden realizarse ventajosamente por medio de irradiación de microondas.

Los compuestos de la fórmula (II) pueden prepararse partiendo de una lactama de la fórmula (VII)

HN
$$R^5$$
 (VII),

en la que m, A, R^5 , R^6 y R^7 tienen los significados descritos anteriormente, que se condensa en primer lugar mediante su derivado éter de lactima de fórmula (VIII)

en la que m, A, R⁵, R⁶ y R⁷ tienen los significados descritos anteriormente, con un cianoacetato o un malonato de fórmula (IX)

$$T \sim R^3$$
 (IX),

en la que R³ tiene el significado descrito anteriormente,

T representa alquilo-(C₁-C₄) o bencilo,

5

10

25

30

para dar un compuesto de la fórmula (X)

T
$$\mathbb{R}^5$$
 \mathbb{R}^6 \mathbb{R}^7 \mathbb{R}^5 \mathbb{R}^6

en la que m, A, T, R³, R⁵, R⁶ y R⁵ tienen los significados descritos anteriormente, que posteriormente, por eliminación del grupo éster y descarboxilación, proporciona el derivado de enamina de la fórmula (II). Este intermedio se emplea en la siguiente reacción con el compuesto (III) o (IV), respectivamente, usando preferentemente un procedimiento directo, es decir, sin aislamiento ni purificación adicionales.

Los compuestos de la fórmula (III) son fácilmente accesibles mediante condensación catalizada por ácidos o bases de un aldehído de fórmula (XI)

$$R^2$$
 R^1
 (XI)

en la que R¹ y R² tienen los significados descritos anteriormente, con un cianoenolato de fórmula (XII)

en la que R⁴ tiene el significado descrito anteriormente.

Los compuestos de la fórmula (IV) pueden prepararse de forma análoga empleando un aldehído de fórmula (XIII)

en la que X y R² tienen los significados descritos anteriormente, en la reacción de condensación.

Los compuestos de las fórmulas (VI), (VII), (IX), (XII), (XII), (XIII) y (XIV) están disponibles en el mercado, son conocidos en la bibliografía, o pueden prepararse a partir de materiales de partida disponibles fácilmente mediante la adaptación de procedimientos convencionales descritos en la bibliografía [para la síntesis de intermedios de indazol,

20

véase, por ejemplo, G. Luo y col., J. Org. Chem. 71, 5392 (2006), y los procedimientos descritos en los documentos WO 2007/124288-A1, WO 2005/056550-A2, US 2005/0227968-A1 y EP 1510516-A1; para la síntesis de precursores de la lactama de la fórmula tipo (VII), véase, por ejemplo, M.L. Fan y col., Synthesis 14, 2286 (2006), M.L. Fan y col., Tetrahedron 62, 6782 (2006), E. Pfeil y col., Angew. Chem. Int. Ed. 6, 178 (1967), G.P. Pollini y col., Tetrahedron Lett. 46, 3699 (2005), y los procedimientos descritos en los documentos WO 2004/083173-A2 y WO 03/061652-A1].

La preparación de los compuestos de la presente invención puede ilustrarse por medio de los siguientes esquemas de síntesis 1 a 3. Se presentan procedimientos más detallados posteriormente en la sección experimental que describen los ejemplos.

Esquema 1

5

[a): Me₃O⁺ BF₄⁻, Na₂CO₃, CH₂Cl₂, 0 °C; b): THF, reflujo; c): HCl ac. 6 M, 100 °C].

Esquema 2

10

[d): ácido acético / piperidina, CH₂Cl₂, tamiz molecular de 4 Å, reflujo].

Esquema 3

[e): ácido acético, 100 °C; f): catalizador de Cu(I), Pd(0) o Pd(II), 1,4-dioxano o DMF, irradiación de microondas, 100-180 °C].

5 Procedimientos de uso

10

Los compuestos de la presente invención se pueden usar para inhibir la actividad o expresión tirosina quinasas receptoras, particularmente de la tirosina quinasa receptora de c-Met. Por consiguiente, se espera que los compuestos de fórmula (I) sean valiosos como agentes terapéuticos. Por consiguiente, en otra realización, la presente invención proporciona un compuesto de fórmula (I) para tratar trastornos relacionados con o mediados por la actividad de la c-Met quinasa en un paciente con necesidad de dicho tratamiento, que comprende administrar al paciente una cantidad eficaz de un compuesto de fórmula (I) como se definió anteriormente. En ciertas realizaciones, los trastornos relacionados con la actividad de la c-Met quinasa son trastornos proliferativos celulares, particularmente cáncer.

El término "tratar" o "tratamiento" como se indica a lo largo del presente documento se usa de manera convencional, por ejemplo, la administración o cuidado de un sujeto con el propósito de combatir, aliviar, reducir, mitigar, mejorar la condición de una enfermedad o trastorno, tal como un carcinoma.

El término "sujeto" o "paciente" incluye organismos que sean capaces de padecer un trastorno proliferativo celular o que podrían beneficiarse de otro modo de la administración de un compuesto de la invención, tales como animales humanos y no humanos. Los seres humanos preferentes incluyen pacientes humanos que padecen o que son propensos a padecer un trastorno proliferativo celular o un estado asociado, como se describe en el presente documento. El término "animales no humanos" incluye vertebrados, por ejemplo, mamíferos tales como primates no humanos, la oveja, la vaca, el perro, el gato y roedores, por ejemplo ratones y animales no mamíferos, tales como pollos, anfibios, reptiles, etc.

5

10

15

20

25

30

40

La expresión "trastornos relacionados con o mediados por c-Met" incluirá enfermedades asociadas con o que impliquen actividad del c-Met, por ejemplo la hiperactividad del c-Met, y las condiciones que acompañan a estas enfermedades. Los ejemplos de "trastornos relacionados con o mediados por c-Met" incluyen trastornos resultantes de la sobreestimulación del c-Met debido a una cantidad anormalmente elevada de c-Met o mutaciones en el c-Met, o trastornos resultantes de una cantidad anormalmente elevada del c-Met debido a una cantidad anormalmente elevada de c-Met o mutaciones en el c-Met.

El término "hiperactividad del c-Met" se refiere a la expresión del c-Met en células en las que normalmente no se expresa el c-Met o la actividad del c-Met en células que normalmente no poseen c-Met activo o incremento de la expresión del c-Met que conduce a una proliferación celular no deseada o a mutaciones que conducen a una activación constitutiva del c-Met

El término "trastorno proliferativo celular" incluye trastornos que implican la proliferación indeseada o incontrolada de una célula. Los compuestos de la presente invención se pueden utilizar en una composición farmacéutica que se use para prevenir, inhibir, bloquear, reducir, disminuir, controlar, etc., la proliferación celular y/o la división celular, y/o la producción de la apoptosis. Este uso comprende la administración a un sujeto con necesidad de la misma, incluyendo a un mamífero, incluyendo a un ser humano, una cantidad de un compuesto de la presente invención, o una sal, isómero, polimorfo, metabolito, hidrato o solvato farmacéuticamente aceptables del mismo que sea eficaz para tratar o prevenir el trastorno.

Los trastornos proliferativos o hiperproliferativos celulares en el contexto de la presente invención incluyen, pero sin limitación, por ejemplo, psoriasis, queloides y otras hiperplasias que afecten a la piel, endometriosis, trastornos del esqueleto, trastornos proliferativos angiogénicos o de los vasos sanguíneos, hipertensión pulmonar, trastornos fibróticos, trastornos proliferativos celulares mesengiales, pólipos de colon, enfermedades de riñón policísticas, hiperplasia benigna de próstata (BHP), y tumores sólidos, tales como cánceres de mama, tracto respiratorio, cerebro, órganos reproductores, tracto digestivo, tracto urinario, ojo, hígado, piel, cabeza y cuello, tiroides, paratiroides, y sus metástasis distantes. Esos trastornos también incluyen linfomas, sarcomas, y leucemias.

Los ejemplos de cáncer de mama incluyen, pero sin limitación, carcinoma ductal invasivo, carcinoma lobular invasivo, carcinoma ductal *in situ*, y carcinoma lobular *in situ*.

Los ejemplos de cánceres del tracto respiratorio incluyen, pero sin limitación, carcinoma de pulmón de células pequeñas y de células no pequeñas, así como adenoma bronquial y blastoma pleuropulmonar.

Los ejemplos de cánceres de cerebro incluyen, pero sin limitación, glioma hipotalámico y del tronco encefálico, astrocitoma cerebral y cerebelar, glioblastoma, meduloblastoma, ependimoma, así como tumor pineal y neuroectodérmico.

Los tumores de los órganos reproductores masculinos incluyen, pero sin limitación, cáncer de testículo y de próstata. Los tumores de los órganos reproductores femeninos incluyen, pero sin limitación, cáncer de endometrio, cervical, de ovario, vaginal, y vulvar, así como sarcoma del útero.

Los tumores del tracto digestivo incluyen, pero sin limitación, cánceres de ano, colon, colorrectales, de esófago, de vesícula biliar, gástricos, pancreáticos, rectales, de intestino delgado, y de glándulas salivares.

Los tumores del tracto urinario incluyen, pero sin limitación, cánceres de vejiga, pene, riñón, pelvis renal, uréter, uretra, y renales papilarios esporádicos y hereditarios.

Los cánceres de ojo incluyen, pero sin limitación, retinoblastoma y melanoma intraocular.

50 Los ejemplos de cánceres de hígado incluyen, pero sin limitación, carcinoma hepatocelular (carcinomas de células hepáticas con o sin variante fibrolamelar), colangiocarcinoma (carcinoma del conducto biliar intrahepático), y colangiocarcinoma hepatocelular mixto.

Los cánceres de piel incluyen, pero sin limitación, carcinoma de células escamosas, sarcoma de Kaposi, melanoma maligno, cáncer de piel de células de Merkel, y cáncer de piel no melanoma.

ES 2 377 809 T3

Los cánceres de cabeza y cuello incluyen, pero sin limitación, cánceres de laringe, hipofaringe, nasofaringe, orofaringe, cáncer de labios y cavidad oral, y cáncer de células escamosas.

Los linfomas incluyen, pero sin limitación, linfoma relacionado con SIDA, linfoma no Hodgkin, linfoma de linfocitos T cutáneos, linfoma de Burkitt, enfermedad de Hodgkin, y linfoma del sistema nervioso central.

5 Los sarcomas incluyen, pero sin limitación, sarcoma del tejido blando, osteosarcoma, histiocitoma fibroso maligno, linfosarcoma, y rabdomiosarcoma.

Las leucemias incluyen, pero sin limitación, leucemia mieloide aguda, leucemia linfoblástica aguda, leucemia linfocítica crónica, leucemia mielógena crónica, y leucemia de células capilares.

Los trastornos proliferativos fibróticos, es decir, la formación anómala de matrices extracelulares, que se pueden tratar con los compuestos y los procedimientos de la presente invención incluyen fibrosis de pulmón, aterosclerosis, reestenosis, cirrosis hepática, y trastornos proliferativos celulares mesangiales, incluyendo enfermedades renales tales como glomerulonefritis, nefropatía diabética, nefrosclerosis maligna, síndromes de microangiopatía trombótica, rechazo de trasplantes, y glomerulopatías.

Otras afecciones en seres humanos o en otros mamíferos que se pueden tratar mediante la administración de un compuesto de la presente invención incluyen el crecimiento de tumores, retinopatía, incluyendo la retinopatía diabética, oclusión de venas retinales isquémicas, retinopatía del prematuro y degeneración macular relacionada con la edad, artritis reumatoide, psoriasis, y trastornos bullosos asociados con la formación de ampollas subepidérmicas, incluyendo el penfigoide bulloso, el eritema multiforme, y la dermatitis herpetiforme.

15

20

35

40

45

50

55

Los compuestos de la presente invención también se pueden usar en una composición farmacéutica para su uso en la prevención y tratamiento de enfermedades de las vías respiratorias y del pulmón, enfermedades del tracto gastrointestinal así como enfermedades de la vejiga y el conducto biliar.

Los trastornos mencionados anteriormente se han caracterizado bien en seres humanos, pero también existen en otros animales con una etiología similar, incluyendo los mamíferos, y se pueden tratar por administración de composiciones farmacéuticas de la presente invención.

Los compuestos de fórmula (I) se pueden administrar como un agente farmacéutico único o en combinación con uno o más agentes terapéuticos adicionales en los que la combinación no cause efectos adversos inaceptables. Esta terapia de combinación incluye la administración de una formulación de dosis farmacéutica única que contiene un compuesto de fórmula (I) y uno o más agentes terapéuticos adicionales, así como la administración del compuesto de fórmula (I) y cada agente terapéutico adicional en su propia formulación de dosis farmacéutica separada. Por ejemplo, un compuesto de fórmula (I) y un agente terapéutico se pueden administrar de forma conjunta al paciente en una composición farmacéutica oral única tal como un comprimido o cápsula, o cada agente se puede administrar en formulaciones farmacéuticas separadas.

Cuando se usan las formulaciones farmacéuticas separadas, el compuesto de fórmula (I) y uno o más agentes terapéuticos adicionales se pueden administrar esencialmente al mismo tiempo (por ejemplo, de forma simultánea) o en momentos escalonados de forma separada (por ejemplo, de forma secuencial).

En particular, los compuestos de la presente invención se pueden usar en combinaciones fijas o separadas con otros agentes antitumorales tales como agentes alquilantes, antimetabolitos, agentes antitumorales derivados de plantas, agentes de terapia hormonal, inhibidores de la topoisomerasa, derivados de la camptotecina, inhibidores de quinasas, fármacos dirigidos, anticuerpos, interferones y/o modificadores de la respuesta biológica, compuestos antiangiogénicos, y otros fármacos antitumorales. Al respecto, la siguiente es una lista no limitante de ejemplos de agentes secundarios que se pueden usar en combinación con los compuestos de la presente invención:

- Los agentes alquilantes incluyen, pero sin limitación, *N*-óxido de mostaza de nitrógeno, ciclofosfamida, ifosfamida, tiotepa, ranimustina, nimustina, temozolomida, altretamina, apaziquone, brostalicina, bendamustina, carmustina, estramustina, fotemustina, glufosfamida, mafosfamida, bendamustina, y mitolactol; los compuestos alquilantes coordinados con platino incluyen, pero sin limitación, cisplatino, carboplatino, eptaplatino, lobaplatino, nedaplatino, oxaliplatino, y satraplatino:
- Los antimetabolitos incluyen, pero sin limitación, metotrexato, ribósido de 6-mercaptopurina, mercaptopurina, 5-fluorouracilo solo o junto con leucovorina, tegafur, doxifluridina, carmofur, citarabina, ocfosfato de citarabina, enocitabina, gemcitabina, fludarabina, 5-azacitidina, capecitabina, cladribina, clofarabina, decitabina, eflornitina, etinilcitidina, arabinósido de citosina, hidroxiurea, melfalán, nelarabina, nolatrexed, ocfosfita, premetrexed disódico, pentostatina, pelitrexol, raltitrexed, triapina, trimetrexato, vidarabina, vincristina, y vinorelbina;
- Los agentes de terapia hormonal incluyen, pero sin limitación, exemestano, Lupron, anastrozol, doxercalciferol, fadrozol, formestano, los inhibidores de la 11-beta hidroxiesteroide deshidrogenasa 1, los inhibidores de la 17-alfa hidroxilasa/17,20 liasa tales como acetato de abiraterona, los inhibidores de la 5-alfa

ES 2 377 809 T3

reductasa tales como finasterida y epristerida, anti-estrógenos tales como citrato de tamoxifeno y fulvestrant, Trelstar, toremifeno, raloxifeno, lasofoxifeno, letrozol, anti-andrógenos tales como bicalutamida, flutamida, mifepristona, nilutamida, Casodex, y anti-progesteronas y combinaciones de los mismos;

- Las sustancias antitumorales derivadas de plantas incluyen, por ejemplo, las seleccionadas de inhibidores de la mitosis, por ejemplo epotilonas tales como sagopilona, ixabepilona y epotilona B, vinblastina, vinflunina, docetaxel, y paclitaxel.
 - Los agentes inhibidores de la topoisomerasa citotóxica incluyen, pero sin limitación, aclarubicina, doxorrubicina, amonafida, belotecan, camptotecina, 10-hidroxicamptotecina, 9-aminocamptotecina, diflomotecan, irinotecan, topotecan, edotecarina, epimbicina, etoposida, exatecan, gimatecan, lurtotecan, mitoxantrona, pirambicina, pixantrona, rubitecan, sobuzoxano, tafluposide, y combinaciones de los mismos;
 - Las sustancias inmunológicas incluyen interferones tales como el interferón alfa, interferón alfa-2a, interferón alfa-2b, interferón beta, interferón gamma-1a e interferón gamma-n1, y otros agentes que mejoran la inmunidad tales como L19-IL2 y otros derivados de la IL2, filgrastim, lentinan, sizofilan, TheraCys, ubenimex, aldesleuquina, alemtuzumab, BAM-002, dacarbazina, daclizumab, denileuquina, gemtuzumab, ozogamicina, ibritumomab, imiquimod, lenograstim, lentinan, la vacuna del melanoma (Corixa), molgramostim, sargramostim, tasonermin, tecleuquina, timalasin, tositumomab, Vimlizin, epratuzumab, mitumomab, oregovomab, pemtumomab, y Provenge;
- Los modificadores de la respuesta biológica son agentes que modifican los mecanismos de defensa de los organismos vivos o las respuestas biológicas tales como la supervivencia, el crecimiento o la diferenciación de las células de los tejidos para dirigirlas hacia una actividad anti tumoral; tales agentes incluyen, por ejemplo krestin, lentinan, sizofiran, picibanilo, ProMune, y ubenimex;
 - Los compuestos anti angiogénicos incluyen, pero sin limitación, acitretin, aflibercept, angiostatina, aplidina, asentar, axitinib, recentina, bevacizumab, brivanib alaninat, cilengtida, combretastatin, DAST, endostatina, fenretinida, halofuginona, pazopanib, ranibizumab, rebimastat, removab, revlimid, sorafenib, vatalanib, escualamina, sunitinib, telatinib, talidomida, ukrain, y vitaxina;
 - Los anticuerpos incluyen, pero sin limitación, trastuzumab, cetuximab, bevacizumab, rituximab, ticilimumab, ipilimumab, lumiliximab, catumaxomab, atacicept, oregovomab, y alemtuzumab;
 - Los inhibidores del VEGF tales como, por ejemplo, sorafenib, DAST, bevacizumab, sunitinib, recentin, axitinib, aflibercept, telatinib, alanilato de brivanib, vatalanib, pazopanib, y ranibizumab;
- Los inhibidores del EGFR (HER1) tales como, por ejemplo, cetuximab, panitumumab, vectibix, gefitinib, erlotinib, y Zactima;
 - Los inhibidores del HER2 tales como, por ejemplo, lapatinib, tratuzumab, y pertuzumab;
 - Los inhibidores del mTOR tales como, por ejemplo, temsirolimus, sirolimus/Rapamicina, y everolimus;
 - Los inhibidores del c-Met;

10

15

- Los inhibidores del PI3K y AKT;
 - Los inhibidores del CDK tales como roscovitina y flavopiridol;
 - Los inhibidores del punto de control de ensamblaje del huso y los agentes antimitóticos dirigidos tales como los inhibidores del PLK, los inhibidores de Aurora (por ejemplo, Hesperadin), los inhibidores de la quinasa del punto de control, y los inhibidores del KSP;
- Los inhibidores del HDAC tales como, por ejemplo, panobinostat, vorinostat, MS275, belinostat, y LBH589;
 - Los inhibidores del HSP90 y del HSP70;
 - Los inhibidores del proteasoma tales como bortezomib y carfilzomib;
 - Los inhibidores de la serina/treonina quinasa incluyendo los inhibidores del MEK y los inhibidores del Raf tales como sorafenib:
- Los inhibidores de la farnesil transferasa tales como, por ejemplo, tipifarnib;
 - Los inhibidores de la tirosina quinasa incluyendo, por ejemplo, dasatinib, nilotibib, DAST, bosutinib, sorafenib, bevacizumab, sunitinib, AZD2171, axitinib, aflibercept, telatinib, mesilato de imatinib, alaninato de brivanib, pazopanib, ranibizumab, vatalanib, cetuximab, panitumumab, vectibix, gefitinib, erlotinib, lapatinib, tratuzumab,

pertuzumab, e inhibidores del c-Kit;

- Los agonistas del receptor de la vitamina D;
- Los inhibidores de la proteína Bcl-2 tales como obatoclax, oblimersen sódico, y gosipol;
- Los antagonistas del receptor del grupo de diferenciación 20 tales como, por ejemplo, rituximab;
- Los inhibidores de la ribonucleótido reductasa tales como, por ejemplo, gemcitabina;
 - Los factores de apoptosis de necrosis tumoral incluyendo los agonistas del receptor de ligando 1 tales como, por ejemplo, mapatumumab;
 - Los antagonistas del receptor de la 5-Hidroxitriptamina tales como, por ejemplo, rEV598, xaliproda, clorhidrato de palonosetron, granisetron, Zindol, y AB-1001;
- Los inhibidores de la integrina incluyendo los inhibidores de la integrina alfa5-beta1 tales como, por ejemplo, E7820, JSM 6425, volociximab, y endostatina;
 - Los antagonistas del receptor de andrógenos incluyendo, por ejemplo, decanoato de nandrolona, fluoximesterona, Android, Prost-aid, andromustina, bicalutamida, flutamida, apo-ciproterona, apo-flutamida, acetato de clormadinona, Androcur, Tabi, acetato de ciproterona, y nilutamida;
- Los inhibidores de la aromatasa tales como, por ejemplo, anastrozol, letrozol, testolactona, exemestano, aminoglutetimida, y formestano;
 - Los inhibidores de metaloproteinasa de la matriz;

20

35

40

 Otros agentes antineoplásicos incluyendo, por ejemplo, alitretinoina, ampligen, atrasentan, bexaroteno, bortezomib, bosentan, calcitriol, exisulind, fotemustina, ácido ibandrónico, miltefosina, mitoxantrona, lasparaginasa, procarbazina, dacarbazina, hidroxicarbamida, pegaspargasa, pentostatina, tazaroten, velcade, nitrato de galio, canfosfamida, darinaparsina y tretinoina.

En una realización preferida, los compuestos de la presente invención se puede usar junto con quimioterapia (es decir, agentes citotóxicos), antihormonas y/o terapias dirigidas tales como otros inhibidores de quinasa (por ejemplo, inhibidores del EGFR), inhibidores del mTOR e inhibidores de la angiogénesis.

Los compuestos de la presente invención también se pueden emplear en el tratamiento del cáncer junto con terapia de radiación y/o intervención quirúrgica.

Además, los compuestos de fórmula (I) se pueden utilizar, como tales o en composiciones, en investigación y diagnóstico, o como patrones de referencia analítica, y similares, que se conocen bien en la técnica.

Composiciones farmacéuticas y procedimientos de tratamiento

30 En otro aspecto, la invención proporciona una composición farmacéutica que comprende un compuesto de fórmula (I) como se ha definido anteriormente, junto con un vehículo farmacéuticamente aceptable.

En otro aspecto más, la presente invención proporciona un procedimiento para preparar una composición farmacéutica. El procedimiento incluye la etapa que comprende la combinación de al menos un compuesto de fórmula (I) como se ha definido anteriormente con al menos un vehículo farmacéuticamente aceptable, y poner la combinación resultante en una forma de administración adecuada.

El componente activo de fórmula (I) puede actuar de forma sistémica y/o local. Para este propósito, se puede aplicar de una manera adecuada, por ejemplo por vía oral, parenteral, pulmonar, nasal, sublingual, lingual, bucal, rectal, transdérmica, conjuntiva, ótica, o como un implante o endoprótesis.

Para estas vías de aplicación, el componente activo de fórmula (I) se puede administrar en formas de aplicación adecuadas.

Las formas de aplicación oral útiles incluyen formas de aplicación que liberan el componente activo rápidamente y/o en forma modificada, tales como, por ejemplo, comprimidos (comprimidos no revestidos y revestidos, por ejemplo con un revestimiento entérico), cápsulas, comprimidos revestidos de azúcar, gránulos, bolitas, polvos, emulsiones, suspensiones, soluciones y aerosoles.

La aplicación parenteral se puede realizar evitando una etapa de absorción (por vía intravenosa, intraarterial, intracardiaca, intraespinal o intralumbar) o con la inclusión de una absorción (por vía intramuscular, subcutánea, intracutánea, percutánea o intraperitoneal). Las formas útiles de aplicación parenteral incluyen inyección y preparados de infusión en forma de soluciones, suspensiones, emulsiones, liofilizados y polvos estériles.

ES 2 377 809 T3

Las formas adecuadas para otras rutas de aplicación incluyen, por ejemplo, formas farmacéuticas inhaladoras (incluyendo inhaladores en polvo, nebulizadores) gotas nasales, soluciones o pulverizaciones, comprimidos o cápsulas que se administran por vía lingual, sublingual o bucal, supositorios, preparaciones para oídos y ojos, cápsulas vaginales, suspensiones acusas (lociones, mezclas agitadas), suspensiones lipófilas, pomadas, cremas, leche, pastas, polvos de uso externo, implantes o endoprótesis.

En una realización preferida, la composición farmacéutica que comprende un compuesto de fórmula (I) como se ha definido anteriormente se proporciona en una forma adecuada para administración oral. En otra realización preferida, la composición farmacéutica que comprende un compuesto de fórmula (I) como se ha definido anteriormente se proporciona en una forma adecuada para su administración intravenosa.

El componente activo de fórmula (I) se puede convertir en las formas de aplicación enumeradas de una manera conocida por sí misma. Esto se realiza utilizando excipientes farmacéuticamente adecuados no tóxicos e inertes. Estos incluyen, entre otros, vehículos (por ejemplo celulosa microcristalina), disolventes (por ejemplo polietilenglicoles líquidos), emulsionantes (por ejemplo dodecil sulfato sódico), agentes dispersantes (por ejemplo polivinilpirrolidona), biopolímeros naturales y sintéticos (por ejemplo albúmina), estabilizadores (por ejemplo antioxidantes tales como el ácido ascórbico), colorantes (por ejemplo pigmentos inorgánicos tales como óxidos de hierro) o correctores del sabor y/o el olor.

En otra realización, la invención proporciona un método para tratar un trastorno proliferativo celular en un paciente con necesidad de dicho tratamiento, que comprende administrar al paciente una cantidad eficaz de un compuesto de fórmula (I) como se ha definido anteriormente. En ciertas realizaciones, el trastorno proliferativo celular es cáncer.

20 En otro aspecto más, la invención proporciona el uso de un compuesto de fórmula (I) como se ha definido anteriormente para manufacturar una composición farmacéutica para el tratamiento o prevención de un trastorno proliferativo celular. En ciertas realizaciones, el trastorno proliferativo celular es cáncer.

25

40

45

50

55

Cuando los compuestos de la presente invención se administran como formas farmacéuticas, a seres humanos y animales, se pueden dar por sí mismos o como una composición farmacéutica que contenga, por ejemplo, de 0,1 a 99,5% (más preferentemente, de 0,5 a 90%) del principio activo junto con un vehículo farmacéuticamente aceptable.

Independientemente de la vía de administración seleccionada, los compuestos de la invención, que se pueden usar en una forma hidratada adecuada, y/o las composiciones farmacéuticas de la presente invención, se formulan en formas de dosificación farmacéuticamente aceptables mediante procedimientos convencionales conocidos por los expertos en la materia.

30 Los niveles de dosificación reales y curso temporal de la administración de los principios activos de las composiciones farmacéuticas de la presente invención se pueden variar para obtener una cantidad del principio activo que sea eficaz para conseguir la respuesta terapéutica deseada para un paciente, composición, y modo de administración determinados, sin que sea tóxico para el paciente. Un intervalo de dosificación ejemplar es de 0,01 a 100 mg/kg por día o de 0,1 a 150 mg/kg por día.

En ciertas realizaciones, el compuesto de la presente invención se puede usar en una terapia combinada con quimioterapia de cáncer convencional. Los regímenes de tratamiento convencional para la leucemia y para otros tumores incluyen radiación, fármacos, o una combinación de ambos.

La determinación de la cantidad antiproliferativa terapéuticamente eficaz o una cantidad antiproliferativa profilácticamente eficaz de los compuestos de la invención se puede hacer fácilmente por el médico o el veterinario (el "especialista clínico asistente"), como un experto en la materia, mediante el uso de técnicas conocidas y mediante la observación de los resultados obtenidos en circunstancias análogas. Las dosis se pueden variar dependiendo de los requisitos del paciente a juicio del especialista clínico asistente; la gravedad de la afección que se trata y el compuesto particular que se emplea. En la determinación de la dosis o cantidad antiproliferativa terapéuticamente eficaz, y la dosis o cantidad antiproliferativa profilácticamente eficaz, se consideran varios factores por el especialista clínico asistente, incluyendo, pero sin limitación: el trastorno proliferativo celular específico implicado; las características farmacodinámicas del agente particular y su modo y vía de administración; el curso de tiempo deseado del tratamiento; la especie de mamífero; su tamaño, edad, y salud general; la enfermedad específica implicada; el grado de participación o la gravedad de la enfermedad; la respuesta del paciente individual; el compuesto particular administrado; el modo de administración; las características de biodisponibilidad de la preparación administrada, el régimen de dosificación seleccionado; el tipo de tratamiento simultáneo (es decir, la interacción del compuesto de la invención con otras sustancias terapéuticas coadministradas); y otras circunstancias pertinentes.

El tratamiento se puede iniciar con dosificaciones más pequeñas, que sean menores que la dosis óptima del compuesto. A partir de entonces, la dosificación se puede aumentar mediante pequeños incrementos hasta alcanzar el efecto óptimo en esas circunstancias. Por conveniencia, la dosificación diaria total se puede dividir y administrar en porciones durante el día si se desea. La cantidad antiproliferativa terapéuticamente eficaz y la cantidad antiproliferativa profilácticamente eficaz de un compuesto de la presente invención se puede esperar que varíe de aproximadamente 0,01 miligramos por kilogramo de peso corporal por día (mg/kg/día) a aproximadamente 100

mg/kg/día.

5

10

Una dosis preferente del compuesto de la invención para la presente invención es el máximo que un paciente pueda tolerar sin desarrollar efectos secundarios graves. De forma ilustrativa, el compuesto de la presente invención se administra en una dosis de aproximadamente 0,01 mg/kg a aproximadamente 100 mg/kg de peso corporal, de aproximadamente 0,01 mg/kg a aproximadamente 10 mg/kg de peso corporal o de aproximadamente 0,1 mg/kg a aproximadamente 10 mg/kg de peso corporal. Los intervalos intermedios de los valores enumerados anteriormente también se entienden como parte de la invención.

Los porcentajes en los ensayos y ejemplos que se citan a continuación son, a menos que se indique otra cosa, en peso; las partes son en peso. Las relaciones de disolvente, las relaciones de dilución y las concentraciones presentadas para soluciones líquido/líquido están todas basadas en volumen.

A. Ejemplos

Abreviaturas y acrónimos:

ac. acuoso (solución)

s a singlete amplio (RMN)

15 conc. concentrado

d doblete (RMN)

DCI ionización química directa (EM)

dd doblete de dobletes (RMN)

DMF N,N-dimetilformamida

20 DMSO dimetilsulfóxido

DMSO-d6 dimetilsulfóxido-d6

ee exceso enantiomérico

equiv. equivalente(s)

ESI ionización por electro-pulverización (EM)

25 Et etilo

EtOAc acetato de etilo

EM-CG espectrometría de masas acoplada a cromatografía de gases

h hora(s)

RMN ¹H espectrometría por resonancia magnética nuclear de protón

30 HOAc ácido acético

HPLC cromatografía líquida de alto rendimiento / alta presión

EM-CL espectrometría de masas acoplada a cromatografía líquida

m multiplete (RMN)

Me metilo

35 MeOH metanol

min minuto(s)

EM espectrometría de masas

m/z relación masa/carga

de t. de la cantidad teórica (rendimiento químico)

40 c cuarteto (RMN)

Rf factor de retención TLC

RP fase inversa (HPLC)

ta temperatura ambiente

Rt tiempo de retención (HPLC)

5 s singlete (RMN)

tBu *terc*-butilo tBuO *terc*-butoxi

TFA ácido trifluoroacético

THF tetrahidrofurano

10 TLC cromatografía de capa fina

t triplete (RMN)

v/v relación volumen/volumen

p/v relación peso/volumen

p/p relación peso/peso

15 **Procedimientos EM-CL y EM-CG:**

Procedimiento 1 (EM-CL):

Instrumento: Micromass ZQ con HPLC Waters Alliance 2795; columna: Phenomenex Synergi 2,5 μ MAX-RP 100A Mercury, 20 mm x 4 mm; eluyente A: 1 I de agua + 0,5 ml de ácido fórmico al 50%, eluyente B: 1 I de acetonitrilo + 0,5 ml de ácido fórmico al 50%; gradiente: 0,0 min 90% A \rightarrow 0,1 min 90% A \rightarrow 3,0 min 5% A \rightarrow 4,0 min 5% A \rightarrow 4,01 min 90% A; caudal: 2 ml/min; horno: 50 °C; detección UV: 210 nm.

Procedimiento 2 (EM-CL):

20

25

Instrumento: Micromass Quattro Premier con HPLC Waters UPLC Acquity; columna: Thermo Hypersil GOLD 1,9 μ , 50 mm x 1 mm; eluyente A: 1 l de agua + 0,5 ml de ácido fórmico al 50%, eluyente B: 1 l de acetonitrilo + 0,5 ml de ácido fórmico al 50%; gradiente: 0,0 min 90% A \rightarrow 0,1 min 90% A \rightarrow 1,5 min 10% A \rightarrow 2,2 min 10% A; horno: 50 °C; caudal: 0,33 ml/min; detección UV: 210 nm.

Procedimiento 3 (EM-CG):

Instrumento: Micromass GCT, GC6890; columna: Restek RTX-35, 15 m x 200 μ m x 0,33 μ m; flujo constante con helio: 0,88 ml/min; horno: 70 °C; entrada: 250 °C; gradiente: 70 °C, 30 °C/min \rightarrow 310 °C (se mantiene durante 3 min).

Procedimiento 4 (EM-CL):

30 Instrumento: Waters Acquity SQD UPLC System; columna: Waters Acquity UPLC HSS T3 1,8μ, 50 mm x 1 mm; eluyente A: 1 l de agua + 0,25 ml de ácido fórmico al 99%, eluyente B: 1 l de acetonitrilo + 0,25 ml de ácido fórmico al 99%; gradiente: 0,0 min 90% A → 1,2 min 5% A → 2,0 min 5% A; horno: 50 °C; caudal: 0,40 ml/min; detección UV: 210-400 nm.

Procedimiento 5 (EM-CL):

Instrumento: Micromass ZQ con HPLC HP 1100 Series; UV DAD; columna: Phenomenex Gemini 3μ 30 mm x 3,00 mm; eluyente A: 1 I de agua + 0,5 ml de ácido fórmico al 50%, eluyente B: 1 I de acetonitrilo + 0,5 ml de ácido fórmico al 50%; gradiente: 0,0 min 90% A → 2,5 min 30% A → 3,0 min 5% A → 4,5 min 5% A; caudal: 0,0 min 1 ml/min → 2,5 min/3,0 min/4,5 min 2 ml/min; horno: 50 °C; detección UV: 210 nm.

Materiales de partida e intermedios:

40 Ejemplo 1A

3-Metil-1*H*-indazol-5-carbaldehído

Se enfrió tetrahidrofurano (600 ml) a -78 °C en una atmósfera de argón. A esta temperatura, se añadió gota a gota una solución 1,7 M de *terc*-butillitio en *n*-pentano (200 ml). Después de 15 minutos a -78 °C, se añadió gota a gota una solución de 22,4 g (106,1 mmol) de 5-bromo-3-metil-1*H*-indazol en THF (300 ml) a una velocidad tal que la temperatura de la disolución su superó -70 °C. La mezcla se agitó durante 30 minutos antes de añadir gota a gota *N,N*-dimetilformamida (24,5 ml). Después de 20 min, el baño de refrigeración se retiró, y se continuó la agitación durante 1 h antes de añadir cuidadosamente agua (250 ml). La mezcla se extrajo varias veces con acetato de etilo (500 ml). Las fases orgánicas combinadas se lavaron con una solución acuosa saturada de cloruro sódico, se secaron sobre sulfato sódico y se concentraron a presión reducida, produciendo 18,5 g de 3-metil-1*H*-indazol-5-carbaldehído en bruto, que se usó en la siguiente etapa sin purificación adicional.

RMN 1 H (DMSO-d₆): δ = 13,13 (s a, 1H), 10,01 (s, 1H), 8,40 (s, 1H), 7,81 (d, 1H), 7,58 (d, 1H), 2,56 (s, 3H) ppm.

Ejemplo 2A

5

10

(2E)-2-[(3-Metil-1H-indazol-5-il)metilideno]-3-oxobutanonitrilo

Una mezcla de 5,0 g (31,2 mmol) de 3-metil-1*H*-indazol-5-carbaldehído (Ejemplo 1A), 3,61 g (34,3 mmol) de (1*Z*)-1-cianoprop-1-en-2-olato sódico, 2,23 ml (39 mmol) de ácido acético y 0,31 ml (3,12 mmol) de piperidina en diclorometano seco (250 ml) que contenía un tamiz molecular de 4 Å se agitó a la temperatura de reflujo durante 12 h. Después de la refrigeración, se formó un precipitado que se recogió por filtración y se lavó con una solución acuosa saturada de bicarbonato sódico y agua. El sólido se disolvió en etanol, y el tamiz molecular se eliminó por filtración. El filtrado se concentró a presión reducida, y el residuo se trató con acetato de etilo y una solución acuosa saturada de carbonato sódico. La fase orgánica se lavó con agua, se secó, y se concentro a presión reducida, proporcionando el compuesto del título (3,5 g, 50% de t.) en forma de un sólido de color amarillo pálido que se usó en la siguiente etapa sin purificación adicional.

CL-EM (procedimiento 1): $T_r = 1,32 \text{ min}$; EM (IEN pos): $m/z = 226 \text{ (M+H)}^+$

25 RMN 1 H (400 MHz, DMSO-d₆): δ = 13,18 (s a, 1H), 8,52 (s, 1H), 8,49 (s, 1H), 8,19 (d, 1H), 7,69 (d, 1H), 2,55 (m a, 6H) ppm.

Ejemplo 3A

5-Metoxi-3,6-dihidro-2H-1,4-oxazina

Una solución de 1,2 g (11,9 mmol) de morfolina-3-ona en diclorometano (70 ml) se enfrió a 0 °C y se trató con 25 g (238 mmol) de carbonato sódico seco. Después de agitar durante 10 min a 0 °C, se añadieron a 0 °C 6,14 g (41,5 mmol) de tetrafluoroborato de trimetiloxonio. La mezcla se dejó calentar a temperatura ambiente y se agitó durante 6 h. Se añadió agua (100 ml), y la fase orgánica se separó. La fase acuosa se extrajo varias veces con diclorometano, y las fases orgánicas combinadas se lavaron con salmuera, se secaron sobre sulfato sódico y se concentraron a presión reducida. El producto en bruto obtenido de esta manera se usó en la siguiente etapa sin purificación adicional.

CG-EM (procedimiento 3): $T_r = 3,36$ min; EM (ESI pos): m/z = 116 (M+H)⁺.

Ejemplo 4A

10 (2E/Z)-ciano(morfolin-3-ilideno)etanoato de terc-butilo

Una mezcla de 0,48 g (4,17 mmol) de 5-metoxi-3,6-dihidro-2*H*-1,4-oxazina (Ejemplo 3A) y 0,61 g (4,34 mmol) de cianoacetato de *terc*-butilo en THF (25 ml) se agitó a la temperatura de reflujo durante 12 h. La mezcla se enfrió después a temperatura ambiente y se concentro a presión reducida. El residuo se purificó por cromatografía ultrarrápida (gel de sílice, eluyente ciclohexano/acetato de etilo 3:1), produciendo el compuesto del título en forma de un sólido de color blanco (0,269 g, 27% de t.).

CL-EM (procedimiento 2): $T_r = 0.99$ min; EM (ESI pos): m/z = 225 (M+H)⁺

RMN 1 H (400 MHz, DMSO-d₆): δ = 10,02 (s a, 1H), 4,47 (s, 2H), 3,84 (t, 2H), 3,37 (m, 2H), 1,44 (s, 9H) ppm.

Ejemplo 5A

15

25

20 1-(5-Bromo-2-fluorofenil)-1-propanol

A una solución de 15 g (73,9 mmol) de 5-bromo-2-fluorobenzaldehído en éter dietílico (100 ml) a 0 °C se añadieron lentamente 27,1 ml (81,3 mmol) de una solución de bromuro de etil magnesio (3 M en éter dietílico). Después de agitar a 0 °C durante 3 h, se añadió cuidadosamente agua (20 ml) y se formó un precipitado de color blanco. El sólido se eliminó por filtración y se lavó con *terc*-butil-metil éter. Los filtrados combinados se lavaron con salmuera, se secaron sobre sulfato sódico y se concentraron a presión reducida. El compuesto del título en bruto obtenido de esta manera (16,1 g, 93% de t.) se usó en la siguiente etapa sin purificación adicional.

CG-EM (procedimiento 3): $T_r = 4,54$ min; EM (ESI pos): m/z = 232 (M)⁺.

Ejemplo 6A

30 1-(5-Bromo-2-fluorofenil)-1-propanona

Una mezcla de 10 g (42,9 mmol) de 1-(5-bromo-2-fluorofenil)-1-propanol (Ejemplo 5A), 8,75 g (85,8 mmol) de óxido aluminio neutro y 18,5 g (85,8 mmol) de clorocromato de piridinio en diclorometano (100 ml) se agitó a temperatura ambiente durante 4 h. Después, la mezcla se filtró a través de gel de sílice (200 g, 0,06-0,2 mm), que se lavó minuciosamente con diclorometano (1000 ml). Los filtrados combinados se lavaron con salmuera, se secaron sobre sulfato sódico y se concentraron a presión reducida. El compuesto del título en bruto obtenido de esta manera (8,6 g, 87% de t.) se usó en la siguiente etapa sin purificación adicional.

CG-EM (procedimiento 3): $T_r = 4,30$ min; EM (EI pos): m/z = 230 (M)⁺.

Ejemplo 7A

10

15

5-Bromo-3-etil-1H-indazol

Una solución de 7,50 g (32,5 mmol) de 1-(5-bromo-2-fluorofenil)-1-propanona (Ejemplo 6A) en 1-metil-2-pirrolidinona (NMP; 100 ml) se trató con 3,25 g (3,16 ml, 64,9 mmol) de hidrato de hidracina y se agitó a temperatura de reflujo durante 16 h. Después de refrigeración, la mezcla se vertió en una mezcla de hielo y agua. El precipitado se recogió por filtración y se lavó minuciosamente con agua, produciendo 4,56 g (62% de t.) del compuesto del título en forma de un sólido de color beige.

CL-EM (procedimiento 4): $T_r = 1,00 \text{ min}$; EM (ESI pos): $m/z = 225 (M+H)^+$.

Ejemplo 8A

3-Etil-1H-indazol-5-carbaldehído

20

25

Una solución de 6,90 g (30,7 mmol) de 5-bromo-3-etil-1*H*-indazol (Ejemplo 7A) en THF (300 ml) se enfrió a -78 °C. A esta temperatura, se añadió lentamente una solución 1,7 M de *terc*-butillitio en *n*-pentano (63,1 ml, 107 mmol). La mezcla se agitó a -78 °C durante 30 minutos antes de añadir lentamente *N*,*N*-dimetilformamida (80,0 ml). El baño de refrigeración se retiró, y se continuó agitando hasta que se alcanzó la temperatura ambiente. Después, se añadió cuidadosamente agua (250 ml). La mezcla se extrajo varias veces con acetato de etilo (500 ml). Las fases orgánicas combinadas se lavaron con una solución acuosa saturada de cloruro sódico, se secaron sobre sulfato sódico y se concentraron a presión reducida, produciendo 4,5 g (84% de t.) del compuesto del título en bruto que se usó en la siguiente etapa sin purificación adicional.

CL-EM (procedimiento 4): $T_r = 0.73$ min; EM (ESI pos): m/z = 175 $(M+H)^+$.

Ejemplo 9A

(2E)-2-[(3-Etil-1H-indazol-5-il)metilideno]-3-oxobutanonitrilo

Una mezcla de 0,50 g (2,87 mmol) de 3-etil-1*H*-indazol-5-carbaldehído (Ejemplo 8A), 0,33 g (3,16 mmol) de (1*Z*)-1-cianoprop-1-en-2-olato sódico, 0,21 ml (3,6 mmol) de ácido acético y 0,028 ml (0,29 mmol) de piperidina en diclorometano seco (25 ml) que cotenía un tamiz molecular de 4 Å, se agitó a la temperatura de reflujo durante 16 h. Después de la refrigeración, se formó un precipitado que se recogió por filtración y se lavó con una solución acuosa saturada de bicarbonato sódico y agua. El sólido se disolvió en etanol y el tamiz molecular se eliminó por filtración. El filtrado se concentró a presión reducida y el residuo se trató con acetato de etilo y una solución acuosa saturada de carbonato sódico. La fase orgánica se lavó con agua, se secó y se concentró a presión reducida, produciendo el compuesto del título (0,60 g, 88% de t.) en forma de un sólido de color amarillo pálido que se usó en las siguientes etapas sin purificación adicional.

CL-EM (procedimiento 1): $T_r = 1,50 \text{ min}$; EM (ESI pos): $m/z = 240 \text{ (M+H)}^+$

RMN 1 H (400 MHz, DMSO-d₆): δ = 13,17 (s a, 1H), 8,59 (s, 1H), 8,51 (s, 1H), 8,17 (d, 1H), 7,67 (d, 1H), 2,97 (c, 2H), 2,55 (m a, 3H), 1,36 (t, 3H) ppm.

Ejemplo 10A

5

10

20

25

3-Bromo-1H-indazol-5-carbaldehído

A una solución de 20 g (137 mmol) de 1*H*-indazol-5-carbaldehído en acetonitrilo (580 ml), se le añadieron 28 g (157 mmol) de 1-bromopirrolidina-2,5-diona durante 20 min a temperatura ambiente. La suspensión resultante se agitó a la temperatura de reflujo durante 30 min, después se enfrió a temperatura ambiente y se concentró a presión reducida. El residuo se disolvió en acetato de etilo (1500 ml) y la solución se lavó con agua y con salmuera, se secó sobre sulfato sódico, se filtró y se concentró a presión reducida. El producto en bruto se trituró con acetato de etilo. Después de la filtración, el precipitado se secó al vacío, produciendo el compuesto del título en forma de un sólido de color blanco (30,9 g, 75% de t.).

CL-EM (procedimiento 4): $T_r = 0.77$ min; EM (ESI pos): m/z = 225 (M+H)⁺

RMN ¹H (400 MHz, DMSO-d₆): δ = 15,01 (s a, 1H), 10,09 (s, 1H), 8,29 (s, 1H), 7,91 (d, 1H), 7,73 (d, 1H) ppm.

Ejemplo 11A

(2E)-2-[(3-Bromo-1*H*-indazol-5-il)metilideno]-3-oxobutanonitrilo

El compuesto del título se preparó a partir de 2,85 g (pureza 70%, 8,87 mmol) de 3-bromo-1*H*-indazol-5-carbaldehído (Ejemplo 10A) y 1,03 g (9,75 mmol) de (1*Z*)-1-cianoprop-1-en-2-olato sódico de forma análoga al procedimiento descrito en el Ejemplo 9A, produciendo 1,12 g (43% de t.) de producto que se usó en las etapas siguientes sin purificación adicional.

CL-EM (procedimiento 4): $T_r = 0.89 \text{ min}$; EM (ESI pos): $m/z = 291 \text{ (M+H)}^+$

RMN 1 H (400 MHz, DMSO-d₆): δ = 13,55 (s a, 1H), 8,75 (d, 1H), 8,42 (s, 1H), 8,38 (s, 1H), 7,58 (d, 1H), 2,5 (s a, 3H) ppm.

Ejemplo 12A

5

15

10 8-(3-Bromo-1*H*-indazol-5-il)-6-metil-1,3,4,8-tetrahidropirido[2,1-c][1,4]oxazina-7,9-dicarbonitrilo

El compuesto del título se preparó a partir de 518 mg (1,78 mmol) de (2*E*)-2-[(3-bromo-1*H*-indazol-5-il)-metilideno]-3-oxobutanonitrilo (Ejemplo 11A) y 400 mg (1,78 mmol) de (2*E*/*Z*)-ciano-(morfolin-3-ilideno)etanoato de *terc*-butilo (Ejemplo 4A) de forma análoga al procedimiento descrito en el Ejemplo 1, y se produjeron 264 mg (pureza 88%, 37% de t.) de producto después de cromatografía ultrarrápida (gel de sílice; eluyente tolueno/etanol 20:1 v/v). Este material se pudo usar en la siguiente etapa sin purificación adicional. Una cantidad de 140 mg se purificó nuevamente mediante RP-HPLC preparativa (gradiente de acetonitrilo/agua), produciendo 61 mg del compuesto puro del título en forma de un sólido de color blanco.

CL-EM (procedimiento 2): $T_r = 1,00 \text{ min}$; EM (ESI pos): $m/z = 396 \text{ (M+H)}^+$

20 RMN 1 H (400 MHz, DMSO-d₆): δ = 13,51 (s, 1H), 7,64 (d, 1H), 7,49 (d, 1H), 7,48 (s, 1H), 4,68 (s, 1H), 4,53 (m, 2H), 3,95 (m, 2H), 3,65 (m, 2H), 2,25 (s, 3H) ppm.

Ejemplo 13A

6-Fluoro-1*H*-indazol-5-carbaldehído

Una suspensión de 4,8 g (30 mmol) de 6-fluoro-1*H*-indazol-5-carbonitrilo [disponible en el mercado; su preparación se proporciona en el documento EP 1510516-A1 (ejemplo de producción 82)] en tolueno anhidro (150 ml) se enfrió a -40 °C. En una atmósfera de gas inerte, se añadió una solución de 48 ml (72 mmol) de hidruro de diisobutilaluminio (1,5 M en tolueno) durante 30 min, y la mezcla resultante se agitó a -40 °C durante 3 h. Después, se añadió acetato de etilo (30 ml) y la mezcla se agitó durante 20 min más a -40 °C seguido de la adición gota a gota de ácido tartárico acuoso (1 M, 30 ml). La mezcla se dejó calentar a 0 °C y se filtró a esta temperatura. El filtrado se extrajo con acetato de etilo varias veces y las fases orgánicas combinadas se lavaron posteriormente con una solución acuosa saturada de carbonato ácido de sodio y salmuera, se secaron sobre sulfato sódico, se filtraron y se concentraron a presión reducida. El producto en bruto obtenido de esta manera (2,60 g, 53% de t.) se usó en la siguiente etapa sin purificación adicional.

CL-EM (procedimiento 4): $T_r = 0.59$ min; EM (ESI pos): m/z = 165 (M+H)⁺.

Ejemplo 14A

(2E)-2-[(6-Fluoro-1H-indazol-5-il)metilideno]-3-oxobutanonitrilo

15

5

10

El compuesto del título se preparó a partir de 3,7 g (pureza 80%, 18,0 mmol) de 6-fluoro-1H-indazol-5-carbaldehído (Ejemplo 13A) y 2,08 g (19,84 mmol) de (1Z)-1-cianoprop-1-en-2-olato sódico de forma análoga al procedimiento descrito en el Ejemplo 9A, produciendo 2,5 g (61% de t.) de producto que se usó en las etapas posteriores sin purificación adicional.

20 CL-EM (procedimiento 2): $T_r = 0.71 \text{ min}$; EM (ESI pos): $m/z = 230 \text{ (M+H)}^+$

RMN 1 H (400 MHz, DMSO-d₆): δ = 13,90 (s, 1H), 8,59 (s, 1H), 8,46 (s, 1H), 8,23 (d, 1H), 7,80 (d, 1H), 2,5 (s a, 3H) ppm.

Ejemplo 15A

 $8-(6-Fluoro-1\textit{H}-indazol-5-il)-6-metil-1,3,4,8-tetrahidropirido \cite{2,1-c}\cite{1,4}\cite{2,1-c}\ci$

El compuesto del título se preparó a partir de 97 mg (0,422 mmol) de (2E)-2-[(6-fluoro-1H-indazol-5-il)-metilideno]-3-oxobutanonitrilo (Ejemplo 14A) y de 95 mg (0,422 mmol) de (2E/Z)-ciano-(morfolin-3-ilideno)etanoato de terc-butilo (Ejemplo 4A) de forma análoga al procedimiento descrito en el Ejemplo 1, produciendo 18 mg (12% de t.) de producto.

CL-EM (procedimiento 4): $T_r = 0.80$ min; EM (ESI pos): m/z = 336 (M+H)⁺ RMN ¹H (400 MHz, DMSO-d₆): $\delta = 13.21$ (s, 1H), 8,13 (s, 1H), 7,80 (d, 1H), 7,39 (d, 1H), 4,80 (s, 1H), 4,53 (m, 2H), 4,05-3,85 (m, 2H), 3,65 (m, 2H), 2,25 (s, 3H) ppm.

Ejemplos de Preparación:

10 Ejemplo 1

5

15

20

6-Metil-8-(3-metil-1*H*-indazol-5-il)-1,3,4,8-tetrahidropirido[2,1-c][1,4]oxazina-7,9-dicarbonitrilo

Una mezcla de 190 mg (0,84 mmol) de (2*E*/*Z*)-ciano(morfolin-3-ilideno)etanoato de *terc*-butilo (Ejemplo 4A) en ácido clorhídrico 6 M (10 ml) se calentó a 100 °C durante 15 min. Después de enfriar a temperatura ambiente, la solución se concentró a presión reducida, y el sólido restante se disolvió en ácido acético (10 ml) a temperatura ambiente. Se añadieron 200 mg (0,88 mmol) de (2*E*)-2-[(3-metil-1*H*-indazol-5-il)metilideno]-3-oxobutanonitrilo (Ejemplo 2A), y la mezcla se agitó a 100 °C durante 15 min. Después de enfriar a temperatura ambiente, la mezcla se concentró a presión reducida y el residuo se purificó por cromatografía ultrarrápida (gel de sílice; eluyente gradiente de acetato de etilo/ciclohexano, mezcla final 1:1 v/v) seguido de RP-HPLC preparativa (gradiente de acetonitrilo/agua), produciendo 18 mg (6% de t.) del compuesto del título recémico.

CL-EM (procedimiento 2): $T_r = 0.90$ min; EM (ESI pos): m/z = 332 (M+H)⁺

RMN 1 H (400 MHz, DMSO-d₆): δ = 12,69 (s, 1H), 7,56 (s, 1H), 7,50 (d, 1H), 7,32 (d, 1H), 4,6-4,45 (m, 3H), 4,03-3,86 (m, 2H), 3,64 (t, 2H), 3,32 (s, 3H), 2,24 (s, 3H) ppm.

Ejemplo 2 y Ejemplo 3

25 6-Metil-8-(3-metil-1*H*-indazol-5-il)-1,3,4,8-tetrahidropirido[2,1-c][1,4]oxazina-7,9-dicarbonitrilo (*Enantiómeros 1 y 2*)

El compuesto racémico del Ejemplo 1 (190 mg) se separó en los enantiómeros mediante cromatografía de HPLC en una fase quiral [columna: Daicel Chiralpak AD-H, 5 μm, 250 mm x 20 mm; eluyente: isohexano/isopropanol 70:30 v/v; caudal: 20 ml/min; temperatura: 25 °C; detección UV: 230 nm]:

5 Ejemplo 2 (Enantiómero 1):

Rendimiento: 11 mg (>99% ee)

 $T_r = 7,40$ min [columna: Daicel Chiralpak AD-H, 5 μ m, 250 mm x 4 mm; eluyente: isohexano/isopropanol 60:40 v/v; caudal: 1 ml/min; temperatura: 30 °C; detección UV: 230 nm].

Ejemplo 3 (Enantiómero 2):

10 Rendimiento: 14 mg (96% ee)

 T_r = 8,59 min [columna: Daicel Chiralpak AD-H, 5 µm, 250 mm x 4 mm; eluyente: isohexano/isopropanol 60:40 v/v; caudal: 1 ml/min; temperatura: 30 °C; detección UV: 230 nm].

Ejemplo 4

8-(3-Etil-1*H*-indazol-5-il)-6-metil-1,3,4,8-tetrahidropirido[2,1-c][1,4]oxazina-7,9-dicarbonitrilo

15

El compuesto del título se preparó a partir de 139 mg (0,58 mmol) de (2*E*)-2-[(3-etil-1*H*-indazol-5-il)-metilideno]-3-oxobutanonitrilo (Ejemplo 9A) y de 130 mg (0,58 mmol) de (2*E*/*Z*)-ciano-(morfolin-3-ilideno)etanoato de *terc*-butilo (Ejemplo 4A) de forma análoga al procedimiento descrito en el Ejemplo 1, produciendo 180 mg (90% de t.) del producto racémico.

20 CL-EM (procedimiento 5): $T_r = 1,86$ min; EM (ESI pos): m/z = 346 (M+H)⁺

RMN 1 H (400 MHz, DMSO-d₆): δ = 12,69 (s, 1H), 7,58 (s, 1H), 7,51 (d, 1H), 7,33 (d, 1H), 4,55 (s, 1H), 4,52 (m, 2H), 4,05-3,85 (m, 2H), 3,64 (m, 2H), 2,94 (c, 2H), 2,32 (s, 3H), 1,32 (t, 3H) ppm.

Ejemplo 5 y Ejemplo 6

8-(3-Etil-1*H*-indazol-5-il)-6-metil-1,3,4,8-tetrahidropirido[2,1-c][1,4]oxazina-7,9-dicarbonitrilo (*Enantiómeros 1 y 2*)

El compuesto racémico del Ejemplo 4 (150 mg) se separó en los enantiómeros mediante cromatografía HPLC en fase quiral [columna: Daicel Chiralpak AD-H, 5 μ m, 250 mm x 20 mm; eluyente: isohexano/isopropanol 70:30 v/v; caudal: 20 ml/min; temperatura: 25 °C; detección UV: 230 nm]:

5 Ejemplo 5 (Enantiómero 1):

Rendimiento: 28 mg (>99% ee)

 $T_r = 6,19$ min [columna: Daicel Chiralpak AD-H, 5 µm, 250 mm x 4 mm; eluyente: isohexano/isopropanol 60:40 v/v; caudal: 1 ml/min; temperatura: 30 °C; detección UV: 230 nm].

Ejemplo 6 (Enantiómero 2):

10 Rendimiento: 50 mg (94% ee)

 $T_r = 6,92$ min [columna: Daicel Chiralpak AD-H, 5 µm, 250 mm x 4 mm; eluyente: isohexano/isopropanol 60:40 v/v; caudal: 1 ml/min; temperatura: 30 °C; detección UV: 230 nm].

Ejemplo 7

 $8-[3-(6-Fluoropiridin-3-il)-1 \\ H-indazol-5-il]-6-metil-1,3,4,8-tetrahidropirido[2,1-c][1,4]-oxazina-7,9-dicarbonitrilo$

15

20

A una solución desgasificada de 125 mg (0,315 mmol) de 8-(3-bromo-1H-indazol-5-il)-6-metil-1,3,4,8-tetrahidropirido[2,1-c][1,4]oxazina-7,9-dicarbonitrilo (Ejemplo 12A) y 53,3 mg (0,379 mmol) de ácido (6-fluoropiridin-3-il)borónico en 1,4-dioxano anhidro (2,2 ml) se añadieron en una atmósfera de gas inerte 36,5 mg (0,032 mmol) de tetraquis(trifenilfosfina)paladio (0) y una solución acuosa de bicarbonato sódico (2 M, 0,56 ml). La mezcla resultante se agitó a 140 °C durante 70 min con irradiación de microondas. Después de enfriar a temperatura ambiente y de concentrar a presión reducida, el sólido restante se disolvió en acetato de etilo (20 ml). La solución se lavó posteriormente con agua y con salmuera, se secó sobre sulfato sódico y se concentró a presión reducida. El producto en bruto se purificó mediante RP-HPLC preparativa (gradiente de acetonitrilo/agua, mezcla final 95:5 v/v), produciendo el compuesto del título en forma de un sólido de color blanco (64 mg. 49% de t.).

25 CL-EM (procedimiento 4): $T_r = 0.90$ min; EM (ESI pos): m/z = 413 (M+H)⁺

RMN 1 H (400 MHz, DMSO-d₆): δ = 13,54 (s, 1H), 8,82 (s, 1H), 8,54 (m, 1H), 8,00 (s, 1H), 7,69 (d, 1H), 7,48 (d, 1H), 7,48 (m, 1H), 4,68 (s, 1H), 4,53 (m, 2H), 3,95 (m, 2H), 3,65 (m, 2H), 2,25 (s, 3H) ppm.

B. Evaluación de la actividad biológica

La demostración de la actividad de los compuestos de la presente invención se puede realizar a través de ensayos *in vitro, ex vivo,* e *in vivo* que son bien conocidos en la técnica. Por ejemplo, para demostrar la actividad de los compuestos de la presente invención, se pueden usar los siguientes ensayos.

Ensayo de la actividad de tirosina quinasa receptora de c-Met (lectura de NADH):

Se usa la proteína c-Met humana recombinante (Invitrogen, Carlsbad, California, Estados Unidos). Se usa como sustrato para la reacción de la quinasa el péptido KKKSPGEYVNIEFG (JPT, Alemania). Para el ensayo, se pipetea 1 μl de una solución concentrada 51 veces del compuesto del ensayo en DMSO en una placa de microtitulación de 384 pocillos blanca (Greiner Bio-One, Frickenhausen, Alemania). Se añaden 25 μl de una solución de c-Met (concentración final 30 nM) y piruvato quinasa/lactato deshidrogenasa (Roche Diagnostics, Mannheim, Alemania; concentración final 8 mg/L) en el tampón de ensayo [ácido 3-(*N*-morfolino)propanosulfónico (MOPS), 50 mM, pH 7; MgCl₂, 10 mM; albúmina de suero bovino (BSA), 0,01%; Triton X 100, 0,01%; DTT, 2 mM], y la mezcla se incuba durante cinco minutos a temperatura ambiente. Después, la reacción de la quinasa se inicia mediante la adición de 25 μl de una solución de adenosín trifosfato (ATP, concentración final 30 μM), sustrato (concentración final 100 μM), dinucleótido de nicotinamida y adenina (NADH, concentración final 50 μM) y ditiotreitol (DTT, concentración final 2 mM) en tampón de ensayo, y la mezcla resultante se incuba durante un tiempo de reacción de 100 minutos a 32 °C.

Posteriormente, la cantidad del sustrato fosforilado se evalúa mediante la medición de la disminución de fluorescencia de NADH. Por tanto, las emisiones de fluorescencia a 465 nm después de la excitación a 340 nm se miden en un lector de fluorescencia, por ejemplo Tecan Ultra (Tecan, Männedorf, Suiza). Los datos se normalizan (reacción enzimática sin inhibidor = 0% de inhibición; cualquier otro componente del ensayo que no sea enzimático = 100% de inhibición). Normalmente, los compuestos del ensayo se ensayan en la misma placa de microtitulación a nueve concentraciones distintas en el intervalo de 10 μ M a 1 nM (10 μ M, 3,1 μ M, 1,0 μ M, 0,3 μ M, 0,01 μ M, 0,003 μ M, 0,001 μ M; series de dilución preparadas antes del ensayo al nivel de las soluciones madre concentradas 51 veces mediante diluciones seriadas 1:3) por duplicado para cada concentración, y se calculan los valores de Cl₅₀ usando un software propio.

25 Los compuestos de la invención, cuando se ensayaron en este ensayo, demostraron la capacidad de inhibir la actividad de tirosina quinasa del c-Met con valores de Cl₅₀ menores de 10 μM, preferentemente menores de 1 μM.

Algunos valores representativos de CI₅₀ se enumeran en la siguiente tabla:

20

30

35

40

45

Ejemplo Nº	CI ₅₀ [μM]
2	0,008
5	0,012
6	0,088
7	0,023

Ensayo de fluorescencia resuelto con el tiempo homogéneo de tirosina quinasa receptora de c-Met (formato alternativo):

Se utiliza el dominio quinasa recombinante N-terminal marcado con His6 del c-Met humano (aminoácidos 960-1390), expresado en células de insecto (SF21) y purificado por cromatografía de afinidad Ni-NTA y consecutiva cromatografía de exclusión por tamaño (Superdex 200). Como alternativa se puede usar el c-Met disponible en el mercado (Millipore). Como sustrato para la reacción de quinasa, se usa el copolímero poli-Glu, Tyr (4:1) biotinilado (nº 61GT0BLC, Cis Biointernational, Marcoule, Francia).

Para el ensayo, se pipetean 50 nl de una solución concentrada 100 veces del compuesto del ensayo en DMSO, en una placa de microtitulación de 384 pocillos negra de bajo volumen (Greiner Bio-One, Frickenhausen, Alemania). Se añaden 2 μ l de una solución de c-Met en tampón de ensayo [Hepes/NaOH 25 mM, pH 7,5; MgCl₂ 5 mM; MnCl₂ 5 mM; ditiotreitol 2 mM; Tween 20 (Sigma) al 0,1% (v/v); albúmina de suero bovino al 0,1% (p/v)], y la mezcla se incuba durante 15 minutos a 22 °C para permitir la unión previa del compuesto de ensayo a la enzima antes de que comience la reacción de quinasa. Después, la reacción de quinasa se inicia mediante la adición de 3 μ l de una disolución de adenosín trifosfato (ATP, 16,7 μ M; la concentración final en el volumen de ensayo de 5 μ l es 10 μ M) y sustrato (2,27 μ g/ml, la concentración final en el volumen de ensayo de 5 μ l es 1,36 μ g/ml ~ 30 nM) en tampón de ensayo, y la mezcla resultante se incuba durante un tiempo de reacción de 30 minutos a 22 °C. La conce ntración de c-Met en el ensayo se ajusta dependiendo de la actividad del lote enzimático y se elige de forma apropiada para mantener el ensayo en un intervalo lineal; las concentraciones enzimáticas típicas están en el intervalo de aproximadamente 0,03 nM (concentración final en el volumen de ensayo de 5 μ l). La reacción se detiene mediante la adición de 5 μ l de una solución de reactivos de detección de HTRF [estreptavidina-XLent 40 nM y PT66-Eu-quelato 2,4 nM, un anticuerpo anti-fosfotirosina marcado con quelato de europio (Perkin-Elmer)] en una solución acuosa de

EDTA [EDTA 100 mM, albúmina de suero bovino al 0,2% (p/v) en HEPES/NaOH 50 mM, pH 7,5].

La mezcla resultante se incuba durante 1 h a 22 $^{\circ}$ C para permitir la unión del péptido fosforilado biotinilado a la estreptavidina-XLent y al PT66-Eu-quelato. Posteriormente una cantidad del sustrato fosforilado se evalúa mediante la medición de la transferencia de energía de resonancia del PT66-Eu-quelato a la estreptavidina-XLent. Por tanto, se miden las emisiones de fluorescencia a 620 nm y 665 nm después de la excitación a 350 nm en un lector HTRF, por ejemplo Rubystar (BMG Lab-technologies, Offenburg, Alemania) o Viewlux (Perkin-Elmer). La relación de las emisiones a 665 nm y a 622 nm se toma como la medida de la cantidad de sustrato fosforilado. Los datos se normalizan (reacción enzimática sin inhibidor = 0% de inhibición; cualquier otro componente del ensayo que no sea enzimático = 100% de inhibición). Normalmente, los compuestos de ensayo se ensayan en la misma placa de microtitulación a 10 concentraciones diferentes en el intervalo de 20 μ M a 1 nM (20 μ M, 6,7 μ M, 2,2 μ M, 0,74 μ M, 0,25 μ M, 82 nM, 27 nM, 9,2 nM, 3,1 nM y 1 nM; series de dilución preparadas antes del ensayo al nivel de las soluciones madre concentradas 100 veces mediante diluciones seriadas 1:3) por duplicado para cada concentración, y los valores de IC50 se calculan mediante un ajuste de cuatro parámetros usando un software propio.

Los compuestos de la invención, cuando se ensayaron en este ensayo, demostraron la capacidad de inhibir la actividad tirosina quinasa del c-Met con valores de Cl₅₀ menores de 10 μM, preferentemente menores de 1 μM.

Algunos valores representativos de CI₅₀ se enumeran en la siguiente tabla:

Ejemplo Nº	CI ₅₀ [μM]
2	0,001
4	0,023
7	0,002

Ensayo de fosfo-c-Met:

10

15

20

25

30

50

Este es un ensayo de tipo ELISA basado en células [Meso Scale Discovery (MSD), Gaithersburg, MD, Estados Unidos] usando células tumorales MKN-45 (carcinoma gástrico, adquirido de ATCC) sin estimulación de factor del crecimiento. Las células se depositan en un medio de crecimiento total (10.000 células/pocillo) en placas de 96 pocillos el día uno. El día dos, después de un tratamiento del fármaco de dos horas en un medio sin suero, las células se lavan y después se lisan (60 μl/pocillo usando tampón de lisis recomendado por MSD) y se congelan a -80 °C. También el día dos, se bloquean los sitios n o específicos de unión a anticuerpo en las placas fosfo-Met de MSD con solución bloqueante A de MSD durante una noche a 4 °C. El día tres, los lisados congelados se descongelan en hielo, y se transfieren 25 μl de lisado a la placa fosfo-Met de MSD, durante una hora con agitación, después de lavar una vez con solución salina tamponada con Tris + Tween 20 al 0,05% (TBST). Después de retirar las proteínas no unidas, se añade el anticuerpo anti-Met Sulfa-TAG de MSD con una concentración final de 5 nM en tampón de dilución de anticuerpo (siguiendo el protocolo de MSD) a la placa durante una hora con agitación. La placa se lava después con tampón TBST tres veces antes de añadir tampón de lectura 1x de MSD. La placa se lee después en el equipo Discovery Workstation de MSD. Los datos en bruto, incluyendo los pocillos con un compuesto de referencia 10 μM (señal mínima), y los pocillos con DMSO sin ningún tratamiento de fármaco (señal máxima), se introducen en el programa Analyze 5 para la determinación de los valores de Cl₅₀.

Ensayo celular de fosfo-c-Met:

Las células del adenocarcinoma gástrico humano (MKN45, adquiridas de ATCC) sembradas sobre placas de microtitulación de 384 pocillos (9000 células/pocillo) se incuban en 25 μl de medio de cultivo total durante 24 horas a 37 ℃ con CO 2 al 5%. El día dos, después de un tratamiento de fármaco de dos horas en un medio reducido en suero que contiene FCS al 0,1%, las células se lavan y se lisan. Los lisados se transfieren a placas bloqueadas con BSA con anticuerpo de captura de c-Met previamente unido [adquirido de Mesoscale Discovery (MSD), Gaithersburg, MD, Estados Unidos] durante una hora con agitación, después de lavar una vez con solución salina tamponada con Tris + Tween 20 al 0,05% (TBST). Siguiendo el protocolo de MSD, se añade a la placa el anticuerpo de detección anti-fosfo-c-Met Sulfa-TAG con una concentración final de 5 nM en tampón de dilución de anticuerpo durante una hora con agitación a temperatura ambiente. Después de lavar los pocillos con tampón Tris, se añade tampón de lectura 1x, y las placas se miden en el Sector Imager 6000 (adquirido de Mesoscale). Los valores de Cl₅₀ se calculan a partir de las curvas de respuesta a dosis usando un ajuste Marquardt-Levenberg.

Ensayo de proliferación celular de un tumor in vitro:

El ensayo de proliferación celular de un tumor adherente usado para ensayar los compuestos de la presente invención implica una lectura llamada Cell Titre-Glo desarrollada por Promega [B.A. Cunningham, "A Growing Issue: Cell Proliferation Assays. Modem kits ease quantification of cell growth", The Scientist 2001, 15 (13), 26; S.P. Crouch y col., "The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity", Journal of Immunological

Methods 1993, 160, 81-88]. La generación de una señal luminiscente corresponde a la cantidad de ATP presente, que es directamente proporcional al número de células (proliferantes) activas metabólicamente.

Las células H460 (carcinoma de pulmón, adquiridas de ATCC) se depositan en placas de 96 pocillos con 3000 células/pocillo en un medio completo con suero de ternera fetal al 10% y se incuban durante 24 horas a 37 ℃. Veinticuatro horas después de la siembra, se añaden los compuestos de ensayo en un intervalo de concentración final de 10 nM a 20 μM en diluciones seriadas con una concentración de DMSO final del 0,2%. Las células se incuban durante 72 horas a 37 ℃ en un medio de cul tivo completo después de la adición del compuesto de ensayo. El día cuatro, usando un kit de ensayo Promega Cell Titre-Glo Luminescent®, las células se lisan, y se añaden 100 μl de mezcla de sustrato/tampón a cada pocillo, se mezcla y se incuba a temperatura ambiente durante ocho minutos. Las muestras se leen en un luminómetro para determinar la cantidad de ATP presente en los lisados celulares de cada pocillo, que se corresponde con el número de células viables en ese pocillo. Los valores leídos en la incubación de 24 horas se restan de los del día 0. Para la determinación de los valores de Cl₅o, se puede usar un análisis de regresión lineal para determinar la concentración de fármaco que proporciona una inhibición del 50% de la proliferación celular usando este formato de ensayo. Este protocolo se puede aplicar a diferentes líneas celulares de interés, que incluyen, pero sin limitación, CAKI-1, MNK-45, GTL-16, HCC2998, K562, H441, K812, MEG01, SUP15 y HCT116.

Aunque la presente invención se ha desvelado con referencia a realizaciones específicas, es evidente que otras realizaciones y variaciones de la presente invención se pueden idear por otros expertos en la materia sin apartarse del verdadero espíritu y alcance de la presente invención. Se pretende que se interprete que las reivindicaciones incluyen todas las realizaciones tales y variaciones equivalentes.

C. Ejemplos relacionados con las Composiciones Farmacéuticas

Las composiciones farmacéuticas de acuerdo con la presente invención se pueden ilustrar como sigue:

Solución estéril intravenosa:

5

10

15

20

30

40

45

50

Se puede preparar una solución de 5 mg/ml del compuesto deseado de la presente invención usando agua inyectable estéril, y ajustando el pH si fuera necesario. La solución se diluye para la administración a 1-2 mg/ml con dextrosa estéril al 5% y se administra en forma de una infusión intravenosa durante aproximadamente 60 minutos.

Polvo liofilizado para administración intravenosa:

Se puede preparar un preparado estéril con (i) 100-1000 mg del compuesto deseado de la presente invención en forma de polvo liofilizado, (ii) 32-327 mg/ml de citrato sódico, y (iii) 300-3000 mg de Dextran 40. La formulación se reconstituye con solución salina inyectable estéril o dextrosa al 5% hasta una concentración de 10 a 20 mg/ml, que se diluye adicionalmente con solución salina o dextrosa al 5% hasta 0,2 a 0,4 mg/ml, y se administra bien en forma de bolo intravenoso o bien mediante infusión intravenosa durante 15-60 minutos.

Suspensión intramuscular:

Se puede preparar la siguiente solución o suspensión para inyección intramuscular:

35 50 mg/ml del compuesto insoluble en agua deseado de la presente invención; 5 mg/ml de carboximetilcelulosa sódica; 4 mg/ml de TWEEN 80; 9 mg/ml de cloruro sódico; 9 mg/ml de alcohol bencílico.

Cápsulas de cubierta dura:

Un gran número de cápsulas unitarias se preparan mediante el relleno de cápsulas de dos piezas convencionales de gelatina dura, cada una con 100 mg de principio activo en polvo, 150 mg de lactosa, 50 mg de celulosa y 6 mg de estearato de magnesio.

Cápsulas de gelatina blanda:

Se prepara una mezcla de principio activo en un aceite digerible tal como el aceite de semilla de soja, aceite de semilla de algodón o aceite de oliva y se inyecta por medio de una bomba de desplazamiento positivo en gelatina fundida para formar cápsulas de gelatina blanda que contengan 100 mg de ingrediente activo. Las cápsulas se lavan y se secan. El principio activo se puede disolver en una mezcla de polietilenglicol, glicerina y sorbitol para preparar una mezcla medicinal miscible en agua.

Comprimidos:

Un gran número de comprimidos se preparan mediante procedimientos convencionales para que la dosis unitaria sea 100 mg de principio activo, 0,2 mg de dióxido de silicio coloidal, 5 mg de estearato de magnesio, 275 mg de celulosa microcristalina, 11 mg de almidón, y 92,8 mg de lactosa. Se pueden aplicar recubrimientos acuosos y no acuosos apropiados para aumentar la apetibilidad, mejorar la elegancia y estabilidad, o retardar la absorción.

REIVINDICACIONES

1. Un compuesto de fórmula (I)

$$R^2$$
 R^3
 R^5
 R^6
 R^7
 R^7
 R^7
 R^7
 R^7
 R^8

en la que

se selecciona entre el grupo que consiste en alquilo-(C₁-C₆), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, en el que

> (i) dichos cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

> (ii) dicho alquilo-(C₁-C₆) está opcionalmente sustituido con uno, dos o tres sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) , hidroxicarbonilo, alcoxi- (C_1-C_4) , amino. alcoxicarbonilo-(C₁-C₄), mono-alquilaminocarbonilo-(C₁-C₄), aminocarbonilo. alquilaminocarbonilo-(C₁-C₄), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros,

> en el que a su vez dichos sustituyentes cicloalquilo-(C3-C7), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁- C_4), amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) y cicloalquilo- (C_3-C_6) ,

 $R^{1} \text{ es un grupo de fórmula -NR}^{8}R^{9}, -C(=0) - NR^{10}R^{11}, -SO_{2} - NR^{12}R^{13}, -NR^{14} - C(=0) - R^{15}, -NR^{16} - SO_{2} - R^{17}. -OR^{18}R^{10} - R^{10}R^{10}R^{11} - R^{10}R^{10}R^{11} - R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10}R^{10}R^{10} - R^{10}R^{10}R^{10}R^{10}R^{10}R^{10}R^{10}R^{10} - R^{10}R^{1$ o -S(=O) $_n$ -R¹⁹, en el que

n es 0, 1 ó 2, R^8 , R^9 , R^{10} , R^{11} , R^{12} y R^{13} se seleccionan independientemente entre el grupo que consiste en hidrógeno, alquilo-(C₁-C₆), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, en el que

(i) dichos cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

(ii) dicho alquilo-(C1-C6) está opcionalmente sustituido con uno, dos o tres sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) , hidroxicarbonilo, alcoxicarbonilo-(C₁-C₄), aminocarbonilo, mono-alquilaminocarbonilo- (C_1-C_4) , alquilaminocarbonilo-(C₁-C₄), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros,

en el que a su vez dichos sustituyentes cicloalquilo-(C3-C7), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos

15

10

5

20

25

30

35

residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

5

R⁸ y R⁹, R¹⁰ y R¹¹, R¹² y R¹³ se unen en parejas y, tomados junto con el átomo de nitrógeno al que se une cada pareja, forman un anillo heterocicloalquilo de 4 a 7 miembros, que puede contener un segundo heteroátomo en el anillo seleccionado entre N, O y S, y que está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, alquilo-(C₁-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

10

R¹⁴ y R¹⁶ son hidrógeno o alquilo-(C₁-C₆), R¹⁵, R¹⁷, R¹⁸ y R¹⁹ se seleccionan cada uno entre el grupo que consiste en alquilo-(C₁-C₆), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, en el que

15

(\emph{i}) dichos cicloalquilo-(C_3 - C_7), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

20

(ii) dicho alquilo-(C1-C6) está opcionalmente sustituido con uno, dos o tres sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) , di-alquilamino- (C_1-C_4) , alcoxicarbonilo-(C₁-C₄), mono-alquilaminocarbonilo- (C_1-C_4) , aminocarbonilo, alquilaminocarbonilo-(C₁-C₄), cicloalquilo-(C₃-C₇), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros.

25

en el que a su vez dichos sustituyentes cicloalquilo-(C3-C7), fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, bromo, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, difluorometoxi, trifluorometoxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃-C₆),

30

 R^{16} v R^{17} se unen y, tomados junto con el átomo de nitrógeno y el grupo SO_2 al que se unen, formando un resto heterocíclico de la fórmula

en la que * representa el punto de unión al resto indazol,*

35

y R^{20A} y R^{20B} se seleccionan independientemente entre el grupo que consiste en hidrógeno, fluoro y alquilo- $(C_1-C_4),$

R² es hidrógeno, flúor, cloro o metilo.

R³ es ciano o un grupo de la fórmula -C(=O)-OR²¹ o -C(=O)-NR²²R²³, en el que

40

R²¹ es alquilo-(C₁-C₆) opcionalmente sustituido con cicloalquilo-(C₃-C₇), o es cicloalquilo-(C₄-C₇),

45

y R²² y R²³ se seleccionan independientemente entre el grupo que consiste en hidrógeno, alquilo-(C₁-C₆) y cicloalquilo-(C₃-C₇), en el que dicho alquilo-(C₁-C₆) está opcionalmente sustituido con cicloalquilo-(C₃-C₇), R⁴ es alquilo-(C₁-C₄) opcionalmente sustituido con hasta tres átomos de flúor, o es ciclopropilo o amino, R⁵ es hidrógeno, opcional e independientemente amino, a alquilo-(C₁-C₆) o cicloalquilo-(C₃-C₇) de 7 miembros, en el que dicho alquilo-(C1-C6) está sustituido con hasta tres átomos de flúor o con uno o dos sustituyentes seleccionados entre el grupo que consiste en hidroxi, alcoxi-(C₁-C₄) y, mono-alquilamino-(C₁- C_4), di-alquilamino- (C_1-C_4) , cicloalquilo- (C_3-C_7) y 4-heterocicloalquilo,

y R⁷ son independientemente hidrógeno o alquilo-(C₁-C₄),

50

y, o bien (a)

A es O, S, S(=O) o S(=O)2 m es 1 ó 2,

o (b)

A es N(R²⁴), en el que R²⁴ es hidrógeno, alquilo-(C₁-C₆), cicloalquilo-(C₃-C₇) o alquilcarbonilo-(C₁-C₆), en el que dichos alquilo-(C₁-C₁-C₂) $C_6), \ \ \text{cicloalquilo-}(C_3\text{-}C_7) \ \ \text{y} \ \ \text{alquilcarbonilo-}(C_1\text{-}C_6) \ \ \text{est\'{a}n} \ \ \text{opcionalmente} \ \ \text{sustituidos} \ \ \text{con} \ \ \text{uno} \ \ \text{o} \ \ \text{dos}$ 5 sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino- (C_1-C_4) y di-alquilamino- (C_1-C_4) , m es 1 ó 2, en cuyo caso R⁵ y Ř⁶, además de los significados especificados anteriormente, también pueden tomarse juntos y formar 10 un arupo oxo. o (c) A es $-C(=O)-N(R^{25})-**$, en el que ** representa el punto de unión al grupo CR⁵R⁶, 15 R²⁵ es hidrógeno, alquilo-(C₁-C₆) o cicloalquilo-(C₃-C₇), en el que dichos alquilo-(C₁-C₆) y cicloalquilo-(C₃-C₇) C₇) están opcionalmente sustituidos con uno o dos sustituventes seleccionados independientemente entre el grupo que consiste en hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄), У 20 m es 0 ó 1, 2. El compuesto de fórmula (I) de acuerdo con la Reivindicación 1, en el que R¹ se selecciona entre el grupo que consiste en alquilo-(C₁-C₆), cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en el que (i) dichos cicloalquilo-(C3-C6), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados 25 independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄) y cicloalquilo-(C₃- $C_6)$, (ii) dicho alquilo-(C₁-C₆) está opcionalmente sustituido con uno o dos sustituyentes seleccionados 30 independientemente entre el grupo que consiste en hidroxi, alcoxi-(C₁-C₄), amino, mono-(C₁-C₄)alcoxicarbonilo- (C_1-C_4) , di-alquilamino- (C_1-C_4) , aminocarbonilo. monodi-alquilaminocarbonilo-(C₁-C₄), alquilaminocarbonilo- (C_1-C_4) , cicloalquilo-(C₃-C₆), fenilo. heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6), fenilo, heterocicloalquilo de 4 a 6 35 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁- $C_4),$ 40 R^{1} es un grupo de la fórmula -NR $^{8}R^{9}$, -C(=0)-NR $^{10}R^{11}$, -SO $_{2}$ -NR $^{12}R^{13}$, NR 14 -C(-0)-R 15 , -NR 16 -SO $_{2}$ -R 17 , - $OR^{18} o - S(=O)_n - R^{19}$, en el que n es 0 ó 2, R⁸, R¹⁰ y R¹² son cada uno hidrógeno o alquilo-(C₁-C₄) que está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, alcoxi-(C1-C4), 45 amino, mono-alquilamino- (C_1-C_4) y di-alquilamino- (C_1-C_4) , R^9 , R^{11} y R^{13} están cada uno seleccionados entre el grupo que consiste en hidrógeno, alquilo- (C_1-C_6) , cicloalguilo- (C_3-C_6) , fenilo, heterocicloalguilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en los que (i) dichos cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros v heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados 50 independientemente entre el grupo que consiste en flúor, cloro, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁- $C_4),$ (ii) dicho alquilo-(C₁-C₆) está opcionalmente sustituido con uno o dos sustituyentes seleccionados 55 independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, (C1 -C4)-alcoxi, amino, mono- $(C_1 - C_4)$ -alquilamino, di-alquilamino- $(C_1 - C_4)$, mono-alquilaminocarbonilo- $(C_1 - C_4)$, dialquilaminocarbonilo-(C₁-C₄), cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y

heteroarilo de 5 o 6 miembros.

en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo- (C_1-C_4) , oxo, hidroxi, alcoxi- (C_1-C_4) , amino, mono-alquilamino- (C_1-C_4) y di-alquilamino- (C_1-C_4) $C_4)$,

R⁸ y R⁹, R¹⁰ y R¹¹, R¹² y R¹³ se unen en parejas y, tomados junto con el átomo de nitrógeno al que se une cada pareja, forman un anillo heterocicloalquilo de 4 a 6 miembros, que puede contener un segundo heteroátomo en el anillo seleccionado entre N, O y S, y que está opcionalmente sustituido con uno o dos sustituventes seleccionados independientemente entre el grupo que consiste en alguilo-(C₁-C₄), oxo. hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄),

R¹⁴ y R¹⁶ son hidrógeno o alquilo-(C₁-C₄), R¹⁵, R¹⁷, R¹⁸ y R¹⁹ están cada uno seleccionados entre el grupo que consiste en alquilo-(C₁-C₆), cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros, en los que

(i) dichos cicloalquilo-(C3-C6), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, difluorometilo, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄),

(ii) dicho alquilo-(C₁-C₆) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, alcoxi-(C1-C4), amino, mono-alquilamino-(C₁-C₄), di-alquilamino-(C₁-C₄), mono-alquilaminocarbonilo-(C₁-C₄), dialquilaminocarbonilo-(C1-C4), cicloalquilo-(C3-C6), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros.

en el que a su vez dichos sustituventes cicloalquilo-(C₃-C₆), fenilo, heterocicloalquilo de 4 a 6 miembros y heteroarilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, cloro, trifluorometilo, alquilo-(C₁-C₄), oxo, hidroxi, alcoxi-(C₁-C₄), amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄),

R¹⁶ y R¹⁷ se unen y, tomados junto con el átomo de nitrógeno y el grupo SO₂ al que se unen, forman un resto heterocíclico de la fórmula

35

40

45

5

10

15

20

25

30

en el que * representa el punto de unión al resto indazol,

 $^{\rm y}$ $^{\rm R^{20A}}$ y $^{\rm R^{20B}}$ son independientemente hidrógeno o metilo,

R² es hidrógeno, flúor o cloro,

R³ es ciano o un grupo de la fórmula -C(=O)-OR²¹ o -C(=O)-NR²²R²³, en el que R^{21} es alquilo-(C_1 - C_4),

R²² v R²³ se seleccionan independientemente entre el grupo que consiste en hidrógeno y alquilo-(C₁-C₄), R⁴ es alquilo-(C₁-C₄) opcionalmente sustituido con hasta tres átomos de flúor, o es amino,

R⁵ es hidrógeno o alquilo-(C₁-C₄) opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, (C₁-C₄)-alcoxi, amino, mono-alquilamino-(C₁- C_4), di-alquilamino-(C_1 - C_4) y heterocicloalquilo de 4 a 6 miembros, R^6 y R^7 son independientemente hidrógeno o metilo,

y, o bien (a)

A es O, S o $S(=O)_2$ 50 m es 1 ó 2,

o (b)

5

10

A es N(R²⁴), en el que

R²⁴ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-C₆) C₆) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, mono-alquilamino-(C₁-C₄), y di-alquilamino-(C₁-C₄),

m es 1 ó 2,

en cuyo caso R^5 y R^6 , además de los significados especificados anteriormente, también pueden tomarse juntos y forman un arupo oxo.

o (c)

A es -C(=O)-N(R²⁵)-**, en el que

** representa el punto unión al grupo CR⁵R⁶,

R²⁵ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-C₆) 15 C₆) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, mono-alquilamino-(C₁-C₄) y di-alquilamino-(C₁-C₄),

m es 0 ó 1.

20 3. El compuesto de fórmula (I) de acuerdo con las Reivindicaciones 1 ó 2, en la que

> R¹ se selecciona entre el grupo que consiste en alquilo-(C₁-C₄), cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en el que

(i) dichos cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

(ii) dicho alquilo-(C₁-C₄) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, metoxi, amino, metilamino, etilamino, dimetilamino, dietilamino, cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino, o

35

40

45

25

30

 $R^{1} \text{ es un grupo de la fórmula -NR}^{8}R^{9}, -C(=O)-NR^{10}R^{11}, -SO_{2}-NR^{12}R^{13}, -NR^{14}-C(=O)-R^{15}, -NR^{16}-SO_{2}-R^{17}, -NR^{18}-R$ $OR^{18} o - S(=O)_n - R^{19}$, en el que

R⁸, R¹⁰ y R¹² son cada uno hidrógeno o alquilo-(C₁-C₄) que está opcionalmente sustituido con hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino o dietilamino, R⁹, R¹³ y R¹³ están cada uno seleccionados entre el grupo que consiste en hidrógeno, alquilo-(C₁-C₄),

cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en los que

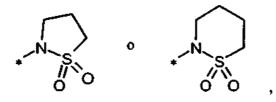
(i) dichos cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino, y (ii) dicho alquilo-(C1-C4) está opcionalmente sustituido con uno o dos

sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino, dietilamino, cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros,

en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

50

R⁸ y R⁹, R¹⁰ y R¹¹, R¹² y R¹³ se unen en parejas y, tomados junto con el átomo de nitrógeno al que se une cada pareja, forman un anillo heterocicloalquilo de 5 o 6 miembros, que puede contener un segundo heteroátomo en el anillo seleccionado entre N y O, y que está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino,


 R^{14} y R^{16} son hidrógeno, metilo o etilo, R^{15} , R^{17} , R^{18} y R^{19} están cada uno seleccionados entre el grupo que consiste en alquilo-(C_1 - C_4), cicloalquilo-(C₃-C₆) y heterocicloalquilo de 5 o 6 miembros, en los que

(i) dichos cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

(ii) dicho alguilo-(C₁-C₄) está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, trifluorometilo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino, dietilamino, cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros.

en el que a su vez dichos sustituyentes cicloalquilo-(C3-C6) y heterocicloalquilo de 5 o 6 miembros están opcionalmente sustituidos con uno o dos residuos seleccionados independientemente entre el grupo que consiste en flúor, metilo, etilo, oxo, hidroxi, metoxi, etoxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

R¹⁶ y R¹⁷ se unen y, tomados junto con el átomo de nitrógeno y el grupo SO₂ al que se unen, forman un resto heterocíclico de la fórmula

20

25

30

35

40

45

5

10

15

en el que * representa el punto de unión al resto indazol,

R² es hidrógeno o flúor,

R³ es ciano,

R⁴ es metilo, trifluorometilo o amino,

R⁵ es hidrógeno o alquilo-(C₁-C₄) opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

R⁶ y R⁷ son hidrógeno,

y, o bien (a)

A es O

m es 1,

o (b)

A es N(R²⁴), en el que

R²⁴ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-C₆) C₆) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

У

m es 1,

en cuyo caso

R⁵ y Ř⁶, además de los significados especificados anteriormente, también pueden tomarse juntos y forman un grupo oxo,

o (c)

A es -C(=O)-N(R²⁵)-**, en el que

** representa el punto de unión al grupo CR5R6,

R²⁵ es hidrógeno, alquilo-(C₁-C₄) o cicloalquilo-(C₃-C₆), en el que dichos alquilo-(C₁-C₄) y cicloalquilo-(C₃-C₆) C₆) están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en hidroxi, amino, metilamino, etilamino, dimetilamino y dietilamino,

50 У m es 0. 4. El compuesto de fórmula (I) de acuerdo con las Reivindicaciones 1, 2 ó 3, en la que

R¹ se selecciona entre el grupo que consiste en alquilo-(C1-C4), fenilo y piridilo, en el que dichos fenilo y piridilo están opcionalmente sustituidos con uno o dos sustituyentes seleccionados independientemente entre el grupo que consiste en flúor, cloro, metilo y trifluorometilo,

R² es hidrógeno o flúor,

R³ es ciano,

R⁴ es metilo, R⁵, R⁶ y R⁷ son hidrógeno,

A es O,

у

5

10

20

m es 1.

5. Un procedimiento para preparar un compuesto de fórmula (I) como se define en las Reivindicaciones 1 a 4, caracterizado porque un compuesto de fórmula (II)

en la que m, A, R³, R⁵, R⁶ y Rⁿ tienen los significados indicados en las Reivindicaciones 1 a 4, se hace reaccionar 15 con un disolvente prótico con catálisis ácida, bien

[A] con un compuesto de fórmula (III)

en la que R¹, R² y R⁴ tienen los significados indicados en las Reivindicaciones 1 a 4, para dar directamente compuestos de fórmula (I),

[B] con un compuesto de fórmula (IV)

en la que R² y R⁴ tienen los significados indicados en las Reivindicaciones 1 a 4, y

X representa un grupo saliente tal como cloro, bromo o yodo,

para producir compuesto intermedio de fórmula (V)

$$R^2$$
 R^3
 R^5
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7

en la que m, A, X, R², R³, R⁴, R⁵, R⁶ y R⁷ tienen los significados descritos anteriormente,, que se acopla posteriormente con catálisis de un metal de transición, bien [B-1] con un compuesto de fórmula (VI)

$$R^{1A}$$
-H (VI),

en la que

 R^{1A} representa un residuo R^1 unido a N, O ó S de fórmula -NR $^8R^9$, -OR 18 o -S(=O)_nR 19 , respectivamente, como se definen las Reivindicaciones 1 a 3, para dar un compuesto de la fórmula (I-A)

$$R^{2}$$
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{7}
 R^{1A}
 R^{1A}
 R^{1A}
 R^{1A}
 R^{1A}

en la que m, A, R^{1A} R^2 , R^3 , R^4 , R^5 , R^6 y R^7 tienen los significados descritos anteriormente, o

[B-2] con un compuesto de fórmula (XIV)

$$R^{1B}$$
-M (XIV),

en la que

 R^{1B} representa un residuo R^1 unido a un C opcionalmente sustituido seleccionado entre el grupo que consiste en alquilo- (C_1-C_6) , cicloalquilo- (C_3-C_7) , fenilo, heterocicloalquilo de 4 a 7 miembros y heteroarilo de 5 a 10 miembros, como se define las Reivindicaciones 1 a 4, y M representa un grupo -B(QR^{26})₂, -MgHal, -ZnHal o -Sn(QR^{27})₃, en el que

Hal es cloro, bromo o yodo,

 R^{26} es hidrógeno o alquilo-(C₁-C₄), o ambos residuos R^{26} juntos forman un puente -(CH₂)₂-, -C(CH₃)₂-, -(CH₂)₃- o -CH₂-C(CH₃)₂-CH₂-, y

5

10

20

15

R²⁷ es alquilo-(C₁-C₄), para dar un compuesto de fórmula (I-B)

$$R^{2}$$
 R^{3}
 R^{5}
 R^{6}
 R^{7}
 R^{7}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

en la que m, A, R^{1B}, R², R³, R⁴, R⁵, R⁶ y R⁷ tienen los significados descritos anteriormente,

opcionalmente seguido, cuando sea apropiado, por (i) la separación de los compuestos (I), (I-A) y (I-B) en sus respectivos enantiómeros y/o diastereómeros, usando preferentemente procedimientos cromatográficos, y/o (ii) la conversión de los compuestos (I), (I-A) y (I-B) en sus respectivos hidratos, solvatos, sales y/o hidratos o solvatos de las sales por tratamiento con los disolventes y/o ácidos o bases correspondientes.

- 10 6. Compuesto como se ha definido en cualquiera de las Reivindicaciones 1 a 4 para el tratamiento o prevención de enfermedades.
 - 7. Uso de un compuesto como se ha definido en cualquiera de las Reivindicaciones 1 a 4 para la fabricación de una composición farmacéutica para el tratamiento o prevención de un trastorno proliferativo celular.
 - 8. El uso de la Reivindicación 7, en el que el trastorno proliferativo celular es cáncer.
- 9. Una composición farmacéutica que comprende un compuesto como se ha definido en cualquiera de las Reivindicaciones 1 a 4, o una sal, hidrato y/o solvato farmacéuticamente aceptable del mismo, y un excipiente farmacéuticamente aceptable.
 - 10. La composición farmacéutica de la Reivindicación 9 que comprende adicionalmente uno o más agentes terapéuticos adicionales.
- 20 11. La composición farmacéutica de la Reivindicación 10, en la que el agente terapéutico adicional es un agente antitumoral.
 - 12. La composición farmacéutica como se ha definido en cualquiera de las Reivindicaciones 9 a 11 para su uso en el tratamiento o prevención de un trastorno proliferativo celular.