

11 Número de publicación: 2 381 152

51 Int. Cl.:

B60G 5/03 (2006.01) **B60G 5/047** (2006.01) **B62D 61/12** (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 09172438 .5
- 96 Fecha de presentación: 07.10.2009
- 97 Número de publicación de la solicitud: 2308701
 97 Fecha de publicación de la solicitud: 13.04.2011
- 64 Título: Sistema de suspensión de eje para un eje trasero de vehículo y eje adicional
- Fecha de publicación de la mención BOPI: 23.05.2012
- (73) Titular/es:

IVECO MAGIRUS AG Nicolaus-Otto-Strasse 25-27 D-89079 Ulm, DE

- Fecha de la publicación del folleto de la patente: 23.05.2012
- 72 Inventor/es:

Baur, Guenter y Kaiser, Markus

74 Agente/Representante:

Ruo, Alessandro

DESCRIPCIÓN

Sistema de suspensión de eje para un eje trasero de vehículo y eje adicional

30

35

40

45

50

- 5 **[0001]** La presente invención se refiere a un sistema de suspensión de eje para un eje trasero accionado de un vehículo, especialmente un vehículo de carga pesado, y un eje adicional dispuesto delante de este último, según el preámbulo de la reivindicación 1.
- [0002] Ya existen sistemas de suspensión de eje para vehículos en muchas realizaciones diferentes. Para los ejes traseros de los vehículos de carga pesados en particular, existen unas suspensiones de eje de la técnica anterior en las que un montante de suspensión se dispone a cada lado del vehículo, extendiéndose dicho montante de suspensión delante del eje trasero hacia debajo a partir del chasis de vehículo para proporcionar un punto de acoplamiento para un brazo de control longitudinal que conecta el eje trasero con el montante de suspensión. Se prevé un guiado en la dirección longitudinal a través del brazo de control longitudinal durante las deformaciones de resorte hacia fuera y hacia dentro del eje trasero. Otros componentes de la suspensión de eje trasero incluyen unos dispositivos para amortiguación y otras construcciones de suspensión para fines de guiado, tal como se encuentran en general en el campo de la construcción de vehículos.
- [0003] Además, se conocen unos sistemas de suspensión para un eje adicional no accionado dispuesto delante del eje trasero accionado en la dirección de desplazamiento del vehículo. Estas suspensiones de eje adicional también comprenden unos brazos de control longitudinal a los lados del vehículo, cada uno de los cuales se conecta en un extremo al eje adicional y, en el otro extremo, al chasis de vehículo. En el presente caso, el brazo de control longitudinal proporciona el guiado lateral para el eje adicional. En las disposiciones de la técnica anterior, este brazo de control longitudinal se extiende hacia delante en la dirección del vehículo hasta un punto de acoplamiento sobre el chasis de vehículo, o hasta un soporte montado en este último.
 - [0004] El brazo de control longitudinal que se extiende hacia delante de la suspensión de eje adicional ocupa una cantidad de espacio relativamente grande en la parte baja del chasis del vehículo, como sucede con las partes de construcción que se acoplan al mismo, tal como un soporte para la conexión del extremo del brazo de control longitudinal al chasis de vehículo. Esto es particularmente problemático en relación con las construcciones de chasis que se ensanchan hacia la parte frontal y tienen unos soportes longitudinales de chasis descentrados, debido a que la labor de conectar el brazo de control longitudinal que apunta hacia delante es difícil en el presente caso. La totalidad del sistema de suspensión de eje, incluyendo la suspensión de eje trasero y la suspensión de eje adicional, es una construcción relativamente grande y compleja en la dirección longitudinal del vehículo.
 - [0005] En los documentos publicados US 2002/067017 y FR 2496015 se describen unos sistemas de suspensión de eje del tipo anterior. En particular, el documento US 2002/067017 da a conocer un sistema de suspensión de eje para un eje trasero accionado de un vehículo, especialmente un vehículo de carga pesado, y un eje adicional dispuesto delante de este último, con una suspensión de eje trasero, que comprende un montante de suspensión a cada lado del vehículo que se extiende delante del eje trasero hacia debajo a partir del chasis de vehículo, y un brazo de control longitudinal que se conecta de forma pivotante al extremo inferior del montante de suspensión respectivo y se extiende hacia debajo desde este último hasta el eje trasero, y con una suspensión de eje adicional, que comprende un brazo de control longitudinal a cada lado del vehículo, que se conecta en un extremo al eje adicional y en el otro extremo al chasis de vehículo, en el que el brazo de control longitudinal de la suspensión de eje adicional se extiende desde el eje adicional hacia debajo hasta el montante de suspensión de la suspensión de eje trasero y se conecta de forma pivotante a este último.
 - **[0006]** La labor de la presente invención es, por lo tanto, simplificar el sistema de suspensión de eje del tipo anterior, y diseñar éste de una forma más compacta, de tal modo que las partes de construcción requeridas puedan alojarse sin problemas en la parte baja del chasis del vehículo en un espacio restringido.
 - [0007] La presente labor se soluciona de acuerdo con la invención mediante un sistema de suspensión de eje con las características de la reivindicación 1.
- [0008] De acuerdo con la invención, el brazo de control longitudinal de la suspensión adicional está ideado de tal modo que éste se extiende hacia debajo desde el eje adicional hasta el montante de suspensión de la suspensión de eje trasero. Éste se conecta de forma flexible a este montante de suspensión por medio de una conexión articulada correspondiente.
- [0009] Por lo tanto, el sistema de suspensión de eje de acuerdo con la invención usa el montante de suspensión para conectar el brazo de control longitudinal de la suspensión de eje adicional de tal modo que este último se guía de forma lateral. Además, la suspensión de eje adicional ya no tiene cualesquiera partes que se extiendan desde el eje adicional hasta la sección de chasis frontal. Por lo tanto, el eje adicional puede, por ejemplo, disponerse directamente contra una parte que se expande de forma lateral del chasis de vehículo con unos soportes longitudinales de chasis descentrados. La totalidad de la disposición del sistema de suspensión de eje es más compacta y requiere menos partes que las suspensiones de eje de la técnica anterior, en las que el eje trasero y las

ES 2 381 152 T3

suspensiones de eje adicional son independientes entre sí.

5

10

30

45

50

55

60

65

figura 2

[0010] En esta construcción, no se tira del eje adicional, como es el caso con las suspensiones de eje adicional que se describen en la introducción de la descripción, sino que éste se empuja por las partes rígidas de la suspensión de eje trasero.

[0011] De acuerdo con una realización preferida de la presente invención, el punto de acoplamiento del brazo de control longitudinal de la suspensión de eje adicional se coloca más alto sobre el montante de suspensión que el punto de acoplamiento del brazo de control longitudinal de la suspensión de eje trasero. De acuerdo con otra realización preferida, el montante de suspensión tiene al menos dos elementos de alojamiento articulados dispuestos uno por encima del otro, para alojar alternativamente el extremo de la barra de control longitudinal de la suspensión de eje adicional.

[0012] La presente realización, por lo tanto, permite que se elija la altura a la que el brazo de control longitudinal de la suspensión de eje adicional se acopla al montante de suspensión, dependiendo de la altura de la parte baja del chasis del vehículo y de las circunstancias en relación con un eje adicional suspendido de forma que puede elevarse o similar.

[0013] El brazo de control longitudinal de la suspensión de eje adicional se idea preferiblemente como un resorte de suspensión. En comparación con un brazo de control longitudinal que se idea como un componente rígido, la ventaja de usar un resorte de suspensión es que éste es capaz de absorber mejor las fuerzas laterales que tienen lugar a lo largo del eje gracias a sus propiedades elásticas. De acuerdo con una realización preferida, el resorte de suspensión de la suspensión de eje adicional comprende dos resortes de lámina dispuestos en paralelo uno por encima de otro.

[0014] De acuerdo con otra realización preferida, la suspensión de eje adicional comprende unos medios para alzar el eje adicional en relación con el chasis de vehículo.

[0015] Un ejemplo preferido de una realización de la invención se describirá a continuación con referencia a los dibujos, en los que

figura 1 es una vista lateral de una realización del sistema de suspensión de eje de acuerdo con la invención, y

es una vista en perspectiva del sistema de suspensión de eje de la figura 1.

[0016] El sistema de suspensión de eje 10 que se muestra en la figura 1 sirve para suspender un eje trasero accionado y un eje adicional dispuesto delante de éste en la dirección de desplazamiento, de un vehículo cuyo chasis de vehículo se designa en general mediante la referencia 12. La dirección de desplazamiento se indica en la presente figura mediante una flecha A (hacia la izquierda). El eje adicional 14 es un eje descentrado que, en su parte media por debajo del chasis de vehículo 12, proporciona un espacio para que el eje de accionamiento (que no se muestra con más detalle) pase a su través hasta el eje trasero.

[0017] La suspensión de eje trasero 16 comprende, a cada lado del vehículo, un montante de suspensión 18 que se conecta de forma lateral mediante su extremo superior a un soporte longitudinal de chasis 20 y se extiende hacia debajo a partir del chasis de vehículo 12.

[0018] En el extremo inferior del montante de suspensión 18, un brazo de control longitudinal 22 se conecta de forma pivotante al montante de suspensión 18 a través de un elemento de unión 24. El brazo de control longitudinal 22 se extiende desde el montante de suspensión 18 al contrario que la dirección de desplazamiento A, hacia la parte posterior, hasta el eje trasero 25. El extremo posterior 26, que se representa de forma libre en la figura 1, del brazo de control longitudinal 22 se conecta al eje trasero 25.

[0019] Otra parte de la suspensión de eje trasero 16 se forma mediante un soporte triangular 28 (figura 2). El extremo posterior 30 del soporte triangular 28, punto en el que ambos brazos 32, 34 del soporte triangular 28 convergen, se conecta al lado de arriba del eje trasero 25. Los extremos que apuntan hacia delante 36 de los brazos 32, 34 se conectan en la parte interior a los soportes longitudinales 20 del chasis 12. Directamente delante de los puntos de acoplamiento 36 entre el soporte triangular 28 y el chasis 12, se coloca un puntal transversal 38 del chasis 12 para proporcionar estabilización.

[0020] La suspensión de eje adicional 40 comprende, a cada lado del vehículo, un resorte de suspensión 42, que se conecta de forma rígida al eje adicional 14 por su extremo frontal en relación con la dirección de desplazamiento A, y al montante de suspensión 18 por su extremo posterior 44. La conexión se prevé mediante un elemento de unión 46 dispuesto en el extremo posterior 44 del resorte de suspensión 42. Los resortes de suspensión 42 de la suspensión de eje adicional 40 se forman mediante dos resortes de lámina paralelos 48, 50 que, colocados uno por encima del otro, comienzan a partir de un punto fijo de unión en el eje adicional 14 y discurren hacia debajo para converger en un ojo de resorte 52 que forma parte del elemento de unión 46. La otra parte se forma mediante un pasador que se inserta en un orificio 54, que se idea en una brida que apunta hacia delante 56 del montante de suspensión 18. Un

ES 2 381 152 T3

segundo orificio 58 se prevé inmediatamente por debajo del primer orificio 54 en la brida 56. Los dos orificios 54,58 forman dos elementos de alojamiento de articulación alternativos, dispuestos uno por encima del otro, para alojar el extremo 44 del resorte de suspensión 42. Por lo tanto, el ojo de resorte 46 puede suspenderse mediante un pasador, o bien en el orificio superior 54 o bien en el orificio inferior 58.

5

[0021] Los extremos que apuntan hacia delante de los resortes de lámina 48, 50 del resorte de suspensión 42 se fijan sobre el cuerpo de eje del eje adicional 14 mediante una placa de sujeción 60 (véase la figura 2). Más allá de la placa de sujeción 60, hay además un fuelle de soporte 62, cuyo lado de arriba se apoya contra un soporte 63 que se monta en brida en el lado del soporte longitudinal de chasis 20. En relación con la dirección de desplazamiento A, un amortiguador 64 se dispone por detrás del fuelle de soporte 62, y se conecta de forma pivotante por su extremo superior al soporte 63 y por su extremo inferior al eje adicional 14.

15

10

[0022] La suspensión de eje adicional 40 comprende además unos medios para elevar el eje adicional 14 en relación con el chasis de vehículo 12. Los presentes medios comprenden unos fuelles de aire 68 dispuestos en la parte media del chasis de vehículo 12, cuyo lado inferior se apoya en un puntal transversal de chasis 70. Apoyándose en los fuelles de aire 68 hay una palanca 72, que se conecta de forma pivotante, mediante un extremo 74 que apunta hacia delante en la dirección de desplazamiento del vehículo A, a otro puntal transversal de chasis 76. Cuando los fuelles de aire 68 suben o bajan, el extremo posterior de la palanca 72 se gira hacia arriba o hacia debajo alrededor del punto de acoplamiento en el puntal transversal de chasis frontal 76. Esto proporciona una estabilización lateral para el movimiento hacia arriba y hacia debajo de los fuelles de aire 68.

20

[0023] Conectados de forma pivotante al extremo de la palanca 72 que se apoya en los fuelles de aire 68, y en cada lado de la misma, hay unos brazos aproximadamente verticales 78, cuyos extremos inferiores se conectan a su vez de forma pivotante a los extremos que apuntan hacia dentro de las placas de sujeción 60. Los brazos verticales 78 forman, junto con las placas de sujeción 60, unos medios de tracción para elevar el eje adicional 14. Cuando los fuelles de aire 68 se expanden y elevan la palanca 72, los brazos 78 ejercen una fuerza de tracción sobre el eje adicional 14 a través de las placas de sujeción 60. Con el fin de crear una conexión entre la palanca 72 y las placas de sujeción 60, los brazos verticales 78 se guían a través de unas aberturas en el puntal transversal de chasis 70, sobre el que se apoyan los fuelles de aire 68.

30

25

[0024] Durante la subida y bajada del eje adicional 14, los resortes de suspensión 42 de la suspensión de eje adicional 40 también completan un movimiento de giro alrededor de los elementos de unión 46 sobre los montantes de suspensión 18. Esto tiene lugar también cuando el eje adicional 14 experimenta una deformación de resorte hacia dentro.

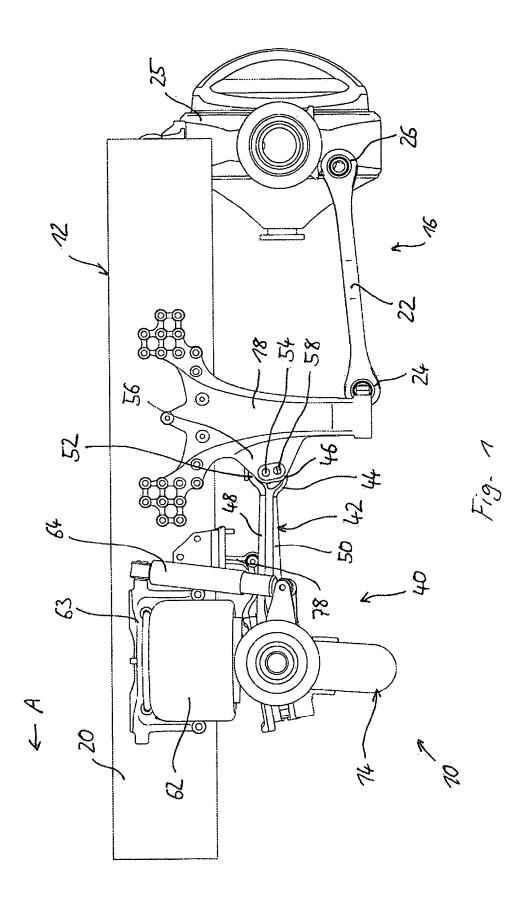
35

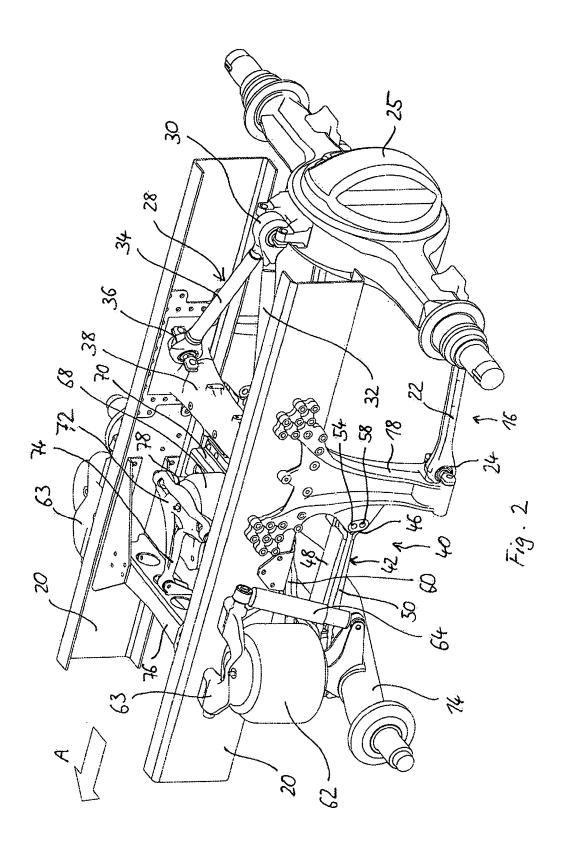
[0025] De acuerdo con la invención, los montantes de suspensión 18 de la suspensión de eje trasero proporcionan también un elemento de unión para los resortes de suspensión 42 de la suspensión de eje adicional, que se dispone delante del eje trasero 25 en relación con la dirección de desplazamiento A. De esta forma, un sistema de suspensión de eje de unión 10 se forma para el eje trasero y el eje adicional 14. Debido a que la suspensión de eje trasero 40 virtualmente no tiene partes que apunten hacia delante a partir del eje adicional 14 en la dirección de desplazamiento A, la suspensión de eje adicional 40 puede disponerse relativamente cerca de otros conjuntos en la parte baja del chasis del vehículo, o cerca de una parte descentrada de los soportes longitudinales de chasis 20, con el fin de ensanchar el chasis de vehículo 12.

40

REIVINDICACIONES

1. Sistema de suspensión de eje (10) para un eje trasero accionado (25) de un vehículo, especialmente un vehículo de carga pesado, y un eje adicional (14) dispuesto delante de este último, con una suspensión de eje trasero (16), que comprende un montante de suspensión (18) a cada lado del vehículo que se extiende delante del eje trasero hacia debajo a partir del chasis de vehículo (12), y un brazo de control longitudinal (22) que se conecta de forma pivotante al extremo inferior del montante de suspensión (18) respectivo y se extiende hacia debajo a partir de este último hasta el eje trasero (25), y con una suspensión de eje adicional (40), que comprende un brazo de control longitudinal (42) a cada lado del vehículo, que se conecta en un extremo al eje adicional (14) y en el otro extremo (44) al chasis de vehículo (12), en el que el brazo de control longitudinal (42) de la suspensión de eje adicional (40) se extiende desde el eje adicional (14) hacia debajo hasta el montante de suspensión (18) de la suspensión de eje trasero (16) y se conecta de forma pivotante a este último, caracterizado por que el punto de acoplamiento del brazo de control longitudinal (42) de la suspensión de eje adicional (40) se encuentra más alto sobre el montante de suspensión (18) que el punto de acoplamiento del brazo de control longitudinal (22) de la suspensión de eje trasero (16).


5


10

15

20

- **2.** El sistema de suspensión de eje de la reivindicación 1 o 2, **caracterizado por que** el montante de suspensión (18) tiene al menos dos elementos de alojamiento de articulación (54, 58), dispuestos uno por encima del otro, proporcionando unos medios alternativos para alojar el extremo (44) del brazo de control longitudinal (42) de la suspensión de eje adicional (40).
- **3.** El sistema de suspensión de eje de una de las reivindicaciones anteriores, **caracterizado por que** el brazo de control longitudinal (42) de la suspensión de eje adicional (40) está ideado como un resorte de suspensión.
- **4.** El sistema de suspensión de eje de la reivindicación 4, **caracterizado por que** los resortes de suspensión (42) de la suspensión de eje adicional (40) comprenden dos resortes de lámina (48, 50) dispuestos uno por encima del otro, en paralelo.
- 5. El sistema de suspensión de eje de una de las reivindicaciones anteriores, caracterizado por que la suspensión de eje adicional (40) comprende unos medios para elevar el eje adicional (14) en relación con el chasis de vehículo (12).

