

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 382 677

(2006.01)

(51) Int. Cl.: C07D 241/52 (2006.01) C07D 401/04 (2006.01) A61K 31/497 (2006.01)

A61P 25/28

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 09769668 .6
- 96 Fecha de presentación: 25.06.2009
- Número de publicación de la solicitud: 2321286
 Fecha de publicación de la solicitud: 18.05.2011
- 54 Título: Derivados de N-óxido pirazina sustituidos
- 30 Prioridad: 26.06.2008 EP 08290619

73 Titular/es:

Mitsubishi Tanabe Pharma Corporation 2-6-18, Kitahama Chuo-ku Osaka-shi Osaka 541-8505, JP y SANOFI

- Fecha de publicación de la mención BOPI: 12.06.2012
- (72) Inventor/es:

LOCHEAD, Alistair; SAADY, Mourad y YAICHE, Philippe

- 45 Fecha de la publicación del folleto de la patente: 12.06.2012
- (74) Agente/Representante:

de Elzaburu Márquez, Alberto

ES 2 382 677 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados de N-óxido pirazina sustituidos

Campo técnico

5

10

15

25

30

55

La presente invención se refiere a compuestos que son útiles como ingredientes activos de un medicamento para el tratamiento preventivo y/o terapéutico de enfermedades neurodegenerativas producidas por la actividad anormal de GSK3β.

Técnica anterior

La GSK3β (glucógeno-sintasa-cinasa 3β) es una cinasa de treonina, serina dirigida por prolina que juega un papel importante en el control del metabolismo, la diferenciación y la supervivencia. Se identificó inicialmente como una enzima capaz de fosforilar y por tanto de inhibir la glucógeno-sintasa. Se reconoció más tarde que la GSK3β era idéntica a la proteína tau cinasa 1 (TPK1), una enzima que fosforila la proteína tau en epítopos que se ha encontrado también que están hiperfosforilados en la enfermedad de Alzheimer y en varias tauopatías. De modo interesante, la fosforilación de GSK3β por la proteína-quinasa B (AKT) da como resultado una pérdida de su actividad quinasa, y se ha planteado como hipótesis que esta inhibición puede mediar algunos de los efectos de los factores neurotróficos. Además, la fosforilación por GSK3β de la β-catenina, una proteína implicada en la supervivencia de las células, resulta en su degradación por la ruta del proteasoma dependiente de una ubiquitinilación.

Así, parece que la inhibición de la actividad de la GSK3β puede resultar en actividad neurotrófica. Efectivamente hay indicios de que el litio, un inhibidor no competitivo de la GSK3β, mejora la neuritogénesis en algunos modelos y también aumenta la supervivencia neuronal, a través de la inducción de los factores de supervivencia tales como Bcl-2 y la inhibición de la expresión de factores proapoptóticos tales como P53 y Bax.

Estudios recientes han demostrado que la proteína β-amiloide aumenta la actividad de la GSK3β y la fosforilación de la proteína tau. Además, esta hiperfosforilación así como los efectos neurotóxicos del β-amiloide se bloquean por el cloruro de litio y por un ARNm antisentido de GSK3β. Estas observaciones sugieren claramente que la GSK3β puede ser la conexión entre los dos principales procesos patológicos de la enfermedad de Alzheimer: el proceso anormal de APP (proteína precursora del amiloide) y la hiperfosforilación de la proteína tau.

Aunque la hiperfosforilación de tau da como resultado una desestabilización del citoesqueleto neuronal, las consecuencias patológicas de la actividad anormal de GSK3 β , lo más probable, no son sólo debidas a una fosforilación patológica de la proteína tau porque, como se ha mencionado anteriormente, una actividad excesiva de esta cinasa puede afectar a la supervivencia a través de la modulación de la expresión de factores apoptóticos y antiapoptóticos. Además, se ha mostrado que el aumento de la actividad de la GSK3 β inducido por el β -amiloide resulta en la fosforilación y, por tanto la inhibición, de la piruvato-deshidrogenasa, una enzima esencial en la producción de energía y en la síntesis de la acetilcolina.

En conjunto, estas observaciones experimentales indican que GSK3β puede encontrar aplicación en el tratamiento de las consecuencias neuropatológicas y de los déficit cognitivo y de atención asociados con la enfermedad de Alzheimer, así como otras enfermedades neurodegenerativas agudas y crónicas y otras patologías en las que GSK3β está desregulada (Nature reviews Vol.3, Junio 2004, págs. 479-487; Trends in Pharmacological Sciences Vol. 25 N° 9, Sept. 2004, págs. 471-480; Journal of Neurochemistry 2004, 89, 1313-1317; Medicinal Research Reviews, Vol. 22, N° 4, 373-384, 2002).

Las enfermedades neurodegenerativas incluyen, de una forma no limitante, la enfermedad de Parkinson, tauopatías (por ejemplo, demencia frontotemporal, degeneración corticobasal, enfermedad de Pick, parálisis supranuclear progresiva), enfermedad de Wilson, enfermedad de Huntington (The Journal of biological chemistry Vol. 277, N° 37, expedido el 13 de septiembre, págs. 33791-33798, 2002), enfermedad por priones (Biochem. J. 372, p.129-136, 2003) y otras demencias incluyendo demencia vascular; apoplejía aguda y otras lesiones traumáticas; accidentes cerebrovasculares (por ejemplo, la degeneración macular relacionada con la edad); traumatismos cerebrales y de la médula espinal; esclerosis lateral amiotrófica (European Journal of Neuroscience, Vol. 22, págs. 301-309, 2005), neuropatías periféricas; retinopatías y glaucoma. Estudios recientes también han demostrado que la inhibición de GSK3β da como resultado la diferenciación neuronal de las células madre embrionarias (ESC) y apoya la renovación de las ESC humanas y de ratón y el mantenimiento de su pluripotencia. Esto sugiere que los inhibidores de GSK3β podrían tener aplicaciones en medicina regenerativa (Nature Medicine 10, págs. 55 - 63, 2004).

Los inhibidores de GSK3 β también pueden encontrar aplicación en el tratamiento de otros trastornos del sistema nervioso, tales como los trastornos bipolares (enfermedad maníaco-depresiva). Por ejemplo, el litio se ha utilizado durante más de 50 años como un estabilizador del estado de ánimo y como el principal tratamiento para el trastorno bipolar. Las acciones terapéuticas del litio se observan a dosis (1-2 mM) en las que es un inhibidor directo de GSK3 β . Aunque el mecanismo de acción del litio no está claro, se podrían utilizar los inhibidores de GSK3 β para

imitar los efectos estabilizadores del estado de ánimo que tiene el litio. También se han implicado en la patogénesis de la esquizofrenia alteraciones en la señalización de Akt-GSK3β.

Además, la inhibición de GSK3β podría ser útil en el tratamiento de cánceres, tales como cáncer colorrectal, cáncer de próstata, cáncer de mama, carcinoma no microcítico de pulmón, cáncer de tiroides, leucemia de células T o B y varios tumores inducidos por virus. Por ejemplo, se ha demostrado que la forma activa de GSK3β está elevada en los tumores de los pacientes con cáncer colorrectal y la inhibición de GSK3β en las células del cáncer colorrectal activa la apoptosis dependiente de p53 y antagoniza el crecimiento del tumor. La inhibición de GSK3β también potencia la apoptosis inducida por TRAIL en las líneas celulares del cáncer de próstata. GSK3β también juega un papel en la dinámica del huso mitótico y los inhibidores de GSK3β evitan el movimiento de los cromosomas y conducen a una estabilización de los microtúbulos y a una parada de tipo prometafase que es similar a la observada con dosis bajas de Taxol. Otras aplicaciones posibles para inhibidores de GSK3β incluyen la terapia para diabetes no insulinodependiente (tal como diabetes tipo II), obesidad y alopecia.

Los inhibidores de la GSK3β humana también pueden inhibir la pfGSK3, un ortólogo de esta enzima encontrado en Plasmodium falciparum, y como consecuencia podrían utilizarse para el tratamiento de la malaria (Biochimica et Biophysica Acta 1697, 181- 196, 2004). Recientemente, tanto los estudios genéticos humanos como los estudios en animales han señalado el papel de la ruta Wnt/LPR5 como un regulador muy importante de la acumulación de la masa ósea. La inhibición de GSK3β da lugar a la activación consiguiente de la señalización canónica de Wnt. Debido a que la deficiente señalización de Wnt se ha implicado en trastornos de reducción de masa ósea, los inhibidores de GSK3β también pueden utilizarse para tratar trastornos de reducción de masa ósea, patologías relacionadas con los huesos y osteoporosis.

Según datos recientes, los inhibidores de GSK3 β pueden utilizarse en el tratamiento o prevención de Pemphigus vulgaris.

Estudios recientes demuestran que el tratamiento con inhibidores de GSK3beta mejora la recuperación de neutrófilos y megacariocitos. Por lo tanto, los inhibidores de GSK3beta serán útiles para el tratamiento de la neutropenia inducida por la quimioterapia del cáncer.

Estudios previos han demostrado que la actividad de GSK3 disminuye la LTP, una correlación electrofisiológica de la consolidación de la memoria, lo que sugiere que el inhibidor de esta enzima puede tener actividad procognitiva. Los efectos procognitivos del compuesto podrían encontrar aplicación para el tratamiento de los déficit de memoria característicos de la enfermedad de Alzheimer, la enfermedad de Parkinson, la pérdida de memoria asociada con la edad, el deterioro cognitivo leve, traumatismo cerebral, esquizofrenia y otras afecciones en las que se observan dichos déficit.

Los inhibidores de GSK3β también pueden encontrar aplicación en el tratamiento de enfermedades del parénquima renal (Nelson PJ, Kidney International Advance publicación en línea, 19 dic 2007) y en la prevención o tratamiento de la atrofia muscular (J. Biol. Chem (283) 2008, 358-366)

35 Descripción de la invención

5

10

15

20

25

30

40

Un objeto de la presente invención es proporcionar compuestos útiles como ingredientes activos de un medicamento para el tratamiento preventivo y/o terapéutico de una enfermedad causada por la actividad anormal de GSK3β, más particularmente de enfermedades neurodegenerativas. Más específicamente, el objeto es proporcionar nuevos compuestos útiles como ingredientes activos de un medicamento que permite la prevención y/o el tratamiento de enfermedades neurodegenerativas tales como la enfermedad de Alzheimer.

Así, los autores de la presente invención han identificado compuestos que poseen actividad inhibidora contra GSK3β. Como resultado, encontraron que los compuestos representados por la siguiente fórmula (I) tenían la actividad deseada y eran útiles como ingredientes activos de un medicamento para el tratamiento preventivo y/o terapéutico de las enfermedades mencionadas anteriormente.

Por lo tanto, la presente invención proporciona como un objeto de la invención los derivados de N-óxido pirazina representados por la fórmula (I) o sales de los mismos, solvatos de los mismos o hidratos de los mismos:

en la que:

R1 representa un anillo de 4-piridina o un átomo de halógeno;

R2 representa un átomo de hidrógeno;

R3 representa un átomo de hidrógeno;

5

40

45

50

R4 representa: - un grupo fenil-alquilo C₁₋₃, estando este grupo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados entre un grupo alquilo C₁₋₆, un átomo de halógeno, un grupo alquilo C₁₋₂ perhalogenado, un grupo alquilo C₁₋₃ halogenado, un grupo hidroxilo, un grupo alcoxi C₁₋₆, un grupo alcoxi C₁₋₆ perhalogenado, un grupo alquil C₁₋₆-sulfonilo, un nitro, un ciano, un amino, un grupo monoalquil C₁₋₆-amino o un grupo dialquil C₂₋₁₂-amino, un grupo acetoxi o un grupo aminosulfonilo;

R5 representa un átomo de hidrógeno;

10 en forma de una base libre o de una sal de adición con un ácido. De acuerdo con otro aspecto de la presente invención, se proporciona un medicamento que comprende como ingrediente activo una sustancia seleccionada entre el grupo que consiste en los derivados de N-óxido pirazina representados por la fórmula (I) y las sales aceptables fisiológicamente de los mismos, y los solvatos de los mismos y los hidratos de los mismos. Como realizaciones preferidas del medicamento, se proporciona el medicamento mencionado anteriormente que se usa 15 para el tratamiento preventivo y/o terapéutico de enfermedades causadas por la actividad anormal de GSK3β, y el medicamento mencionado anteriormente que se usa para el tratamiento preventivo y/o terapéutico de enfermedades neurodegenerativas y además otras enfermedades tales como: Diabetes no dependientes de insulina (tal como la diabetes tipo II) y la obesidad; malaria, trastornos bipolares (enfermedad maníaco-depresiva); esquizofrenia; alopecia o cánceres tales como cáncer colorrectal, cáncer de próstata, cáncer de mama, carcinoma no microcítico de pulmón, cáncer de tiroides, leucemia de células T o B, diversos tumores inducidos por virus y patologías 20 relacionadas con los huesos; el tratamiento de enfermedades del parénquima renal y en la prevención o tratamiento de atrofia muscular; el tratamiento de déficit cognitivo y de memoria. El medicamento también podría encontrar una aplicación en la medicina regenerativa.

Como realizaciones adicionales de la presente invención, se proporcionan el medicamento mencionado anteriormente, en el que las enfermedades son enfermedades neurodegenerativas y se seleccionan entre el grupo que consiste en enfermedad de Alzheimer, enfermedad de Parkinson, tauopatías (por ejemplo, demencia frontotemporal, degeneración corticobasal, enfermedad de Pick, parálisis supranuclear progresiva), enfermedad de Wilson, enfermedad de Huntington, enfermedad por priones y otras demencias incluyendo demencia vascular; ictus agudo y otras lesiones traumáticas; accidentes cerebrovasculares (por ejemplo, la degeneración macular relacionada con la edad); traumatismos cerebrales y de la médula espinal; esclerosis lateral amiotrófica; neuropatías periféricas; retinopatías y glaucoma, y el medicamento mencionado antes en la forma de composición farmacéutica que contiene la sustancia anterior como ingrediente activo junto con uno o más aditivos farmacéuticos.

Como realizaciones adicionales de la presente invención, se proporcionan el medicamento mencionado anteriormente, en el que la patología relacionada con los huesos es osteoporosis.

35 La presente invención proporciona además un inhibidor de la actividad de GSK3β que comprende como ingrediente activo una sustancia seleccionada entre el grupo que consiste en los derivados de N-óxido pirazina de fórmula (I) y las sales de los mismos, y los solvatos de los mismos y los hidratos de los mismos.

De acuerdo con aspectos adicionales de la presente invención, se proporciona una cantidad preventivo y/o terapéuticamente eficaz de una sustancia seleccionada del grupo que consiste en derivados de N-óxido pirazina de la fórmula (I) y las sales fisiológicamente aceptables de los mismos y los solvatos de los mismos y los hidratos de los mismos para uso en un método para el tratamiento preventivo y/o terapéutico de enfermedades neurodegenerativas causadas por la actividad anormal de GSK3β; y el uso de una sustancia seleccionada entre el grupo que consiste en los derivados de N-óxido pirazina de la fórmula (I) y las sales fisiológicamente aceptables de los mismos, y los solvatos de los mismos y los hidratos de los mismos, para la fabricación del medicamento mencionado anteriormente.

Como se usa en la presente memoria, el grupo alquilo C_{1-6} representa un grupo alquilo lineal, ramificado o cíclico que tiene de 1 a 6 átomos de carbono, opcionalmente sustituido con un grupo alquilo C_{1-6} lineal, ramificado o cíclico, por ejemplo, un grupo metilo, un grupo etilo, un grupo n-propilo, un grupo isopropilo, un grupo n-butilo, un grupo isobutilo, un grupo sec-butilo, un grupo terc-butilo, un grupo n-pentilo, un grupo isopentilo, un grupo n-pentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopentilo, un grupo isopentilo, un grupo n-hexilo, un grupo isopentilo, un grupo isopent

El grupo dialquil C₂₋₁₂-amino representa un grupo amino sustituido con dos grupos alquilo C₁₋₆, por ejemplo, un grupo dimetilamino, un grupo dietilamino, un grupo metilpropilamino y un grupo diisopropilamino y similares;

El "grupo fenilalquilo C₁₋₃, estando este grupo opcionalmente sustituido" representa una sustitución opcional sobre la parte alquilo o la parte fenilo del grupo fenilalquilo C₁₋₃

Un grupo saliente L representa un grupo que podría escindirse y sustituirse fácilmente; dicho grupo puede ser, por ejemplo, un tosilo, un mesilo, un bromuro y similares.

Los compuestos representados por la formula (I) mencionada anteriormente pueden formar una sal. Los ejemplos de la sal incluyen, cuando existe un grupo ácido, sales de metales alcalinos y de metales alcalinotérreos tales como litio, sodio, potasio, magnesio, y calcio; sales de amonio y aminas tales como metilamina, dimetilamina, trimetilamina, diciclohexilamina, tris(hidroximetil)aminometano, *N,N*-bis(hidroxietil)piperazina, 2-amino-2-metil-1-propanol, etanolamina, *N*-metilglucamina, y L-glucamina; o sales con aminoácidos básicos tales como lisina, δ-hidroxilisina y arginina. Las sales de adición de bases de los compuestos ácidos se preparan por procedimientos estándar bien conocidos en la técnica.

Cuando existe un grupo básico, los ejemplos incluyen sales con ácidos minerales tales como ácido clorhídrico y ácido bromhídrico; sales con ácidos orgánicos tales como ácido acético, ácido propiónico, ácido tartárico, ácido fumárico, ácido maleico, ácido oxálico, ácido succínico, ácido cítrico, ácido benzoico y similares.

Las sales de adición de ácidos de los compuestos básicos se preparan por procedimientos convencionales bien conocidos en la técnica que incluyen, pero sin limitación, disolver la base libre en una solución acuosa de alcohol que contiene el ácido apropiado y aislar la sal por evaporación de la solución, o hacer reaccionar la base libre y un ácido en un disolvente orgánico, en cuyo caso la sal se separa directamente, o se precipita con un segundo disolvente orgánico, o puede obtenerse por concentración de la solución. Los ácidos que se pueden usar para preparar las sales de adición de ácido incluyen preferiblemente aquellos que producen, cuando se combinan con la base libre, sales farmacéuticamente aceptables, esto es, sales cuyos aniones son relativamente inocuos para el organismo animal en dosis farmacéuticas de las sales, de forma que las propiedades beneficiosas inherentes a la base libre no están comprometidas por los efectos secundarios atribuibles a los aniones. Aunque se prefieren las sales medicinalmente aceptables de los compuestos básicos, todas las sales de adición de ácido están dentro del alcance de la presente invención.

Además de los derivados de N-óxido pirazina representados por la fórmula (I) mencionada anteriormente y sales de los mismos, sus solvatos e hidratos también están dentro del alcance de la presente invención.

Los derivados de N-óxido pirazina representados por la fórmula (I) mencionada anteriormente pueden tener uno o más átomos de carbono asimétricos. En cuanto a la estereoquímica de dichos átomos de carbono asimétricos, éstos pueden estar independientemente en la configuración (R) o en la configuración (S), y el derivado puede existir en forma de estereoisómeros tales como isómeros ópticos o diastereoisómeros. Todos los estereoisómeros en forma pura, las mezclas de estereoisómeros, los racematos y similares están dentro del alcance de la presente invención.

En una primera realización de la invención, se proporcionan compuestos

en los que:

5

15

20

30

45

R1 representa un anillo de 4-piridina o un átomo de halógeno;

35 R2 representa un átomo de hidrógeno;

R3 representa un átomo de hidrógeno;

R4 representa: un grupo fenilalquilo $C_{1.3}$, estando este grupo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados entre un átomo de halógeno o un grupo hidroxilo;

R5 representa un átomo de hidrógeno;

40 en forma de una base libre o de una sal de adición con un ácido.

Ejemplos de compuestos de la presente invención se muestran en la tabla 1 más adelante en esta memoria. Sin embargo, el alcance de la presente invención no está limitado por estos compuestos. La nomenclatura se proporciona de acuerdo con las reglas de la IUPAC.

Un objeto adicional de la presente invención incluye el grupo de compuestos de la <u>tabla 1</u> de la fórmula que se define más adelante:

- 1. 4-óxido de N-(2-feniletil)-6-piridin-4-ilpirazin-2-amina
- 2. (+/-)2-[(4-oxido-6-piridin-4-ilpirazin-2-il)amino]-1-feniletanol
- 3. (+/-)2-[(6-cloro-4-oxidopirazin-2-il)amino]-1-feniletanol
- 4. 4-óxido de 6-cloro-N-(2-feniletil)pirazin-2-amina
- Como un objeto adicional, la presente invención también se refiere a métodos para preparar los compuestos de Nóxido pirazina representados por la fórmula (I) mencionada anteriormente. Estos compuestos pueden prepararse, por ejemplo, según los métodos que se explican a continuación.

Método de preparación

Los compuestos de N-óxido pirazina representados por la fórmula (I) mencionada anteriormente pueden prepararse de acuerdo con el método que se describe en el esquema 1.

Esquema 1

15

25

30

35

40

(En el esquema anterior, la definición de R1, R2, R3, R4, R5 es la misma que las ya descrita para el compuesto de fórmula (I). Según este método, la amina de fórmula (III), en donde R5 y R4 se definen para el compuesto de fórmula (I), se deja que reaccione con un compuesto de fórmula (II), a una temperatura adecuada que oscila de 25° a 180°C con aire ordinario para obtener un compuesto de fórmula(I).

Cuando R1 representa un grupo 4-piridina, el compuesto de fórmula (I) se deja reaccionar con un compuesto de fórmula (IV), en la que M representa un ácido borónico o un grupo estannilo. La reacción puede realizarse en la reacción de acoplamiento bien conocida habitual tal como reacciones de Suzuki o Stille para producir el compuesto de fórmula (I).

20 Los compuestos de fórmula (II), (III) y (IV) están disponibles en el mercado o pueden sintetizarse de acuerdo con métodos bien conocidos por un especialista en la técnica.

Los compuestos de la presente invención tienen actividad inhibidora contra GSK3\(\beta\). Por tanto, los compuestos de la presente invención son útiles como ingredientes activos para la preparación de un medicamento, que permite el tratamiento preventivo y/o terapéutico de una enfermedad causada por la actividad anormal de GSK3ß y más particularmente de enfermedades neurodegenerativas tales como la enfermedad de Alzheimer. Además, los compuestos de la presente invención son útiles también como ingredientes activos para la preparación de un medicamento para el tratamiento preventivo y/o terapéutico de enfermedades neurodegenerativas tales como la enfermedad de Parkinson, tauopatías (por ejemplo, demencia frontotemporal, degeneración corticobasal, enfermedad de Pick, parálisis supranuclear progresiva), enfermedad de Wilson, enfermedad de Huntington, enfermedad por priones y otras demencias incluyendo demencia vascular; ictus agudo y otras lesiones traumáticas; accidentes cerebrovasculares (por ejemplo, la degeneración macular relacionada con la edad); traumatismos cerebrales y de la médula espinal; esclerosis lateral amiotrófica, neuropatías periféricas; retinopatías y glaucoma, y otras enfermedades tales como diabetes no dependientes de insulina (tal como la diabetes tipo II) y la obesidad; malaria, enfermedad maníaco-depresiva; esquizofrenia; alopecia; cánceres tales como cáncer colorrectal, cáncer de próstata, cáncer de mama, carcinoma no microcítico de pulmón, cáncer de tiroides, leucemia de células T o B, diversos tumores inducidos por virus y patologías relacionadas con los huesos; enfermedades del parénquima renal o atrofia muscular. El medicamento también podría encontrar una aplicación en la medicina regenerativa. El medicamento podría encontrar también una aplicación en el tratamiento o prevención de Pemphigus vulgaris. El medicamento también podría encontrar una aplicación en el tratamiento de neutropenia inducida por quimioterapia para el cáncer. El medicamento podría encontrar también aplicación para el tratamiento terapéutico de una enfermedad caracterizada por déficit cognitivo y de memoria tal como enfermedad de Alzheimer, enfermedad de Parkinson, pérdida de memoria asociada a la edad, deterioro cognitivo leve, traumatismo cerebral, esquizofrenia y otras enfermedades en que se observan dichos déficit.

La presente invención se refiere además a un método para tratar enfermedades neurodegenerativas provocadas por la actividad anormal de GSK3β y de las enfermedades mencionadas anteriormente, que comprende administrar a un organismo mamífero que lo necesita, una cantidad eficaz de un compuesto de la fórmula (I).

Como ingrediente activo del medicamento de la presente invención, se puede utilizar una sustancia que se selecciona del grupo que consiste en el compuesto representado por la fórmula (I) mencionada anteriormente y sus sales, sus solvatos y sus hidratos farmacológicamente aceptables. La sustancia, per se, puede administrarse como el medicamento de la presente invención; sin embargo, es deseable administrar el medicamento en forma de una composición farmacéutica que comprende la sustancia anteriormente mencionada como ingrediente activo y uno o más aditivos farmacéuticos. Como ingrediente activo del medicamento de la presente invención, se pueden usar en combinación dos o más de las sustancias mencionadas. La composición farmacéutica anterior se puede suplementar con un ingrediente activo de otro medicamento para el tratamiento de las enfermedades mencionadas antes. El tipo de composición farmacéutica no está particularmente limitado, y la composición se puede proporcionar como cualquier formulación para administración oral o parenteral. Por ejemplo, la composición farmacéutica puede ser formulada, por ejemplo, en la forma de composiciones farmacéuticas para administración oral tales como granulados, granulados finos, polvos, cápsulas duras, cápsulas blandas, jarabes, emulsiones, suspensiones, disoluciones y similares, o en la forma de composiciones farmacéuticas para administración parenteral tales como inyecciones para administración intravenosa, intramuscular, o subcutánea, perfusiones por goteo, preparaciones transdérmicas, preparaciones transmucosales, gotas nasales, inhalantes, supositorios y similares. Las invecciones o las perfusiones por goteo se pueden preparar como preparaciones en polvo tal como en la forma de preparaciones liofilizadas, y se pueden usar disolviéndolas, justo antes de su uso, en un medio acuoso apropiado tal como disolución salina fisiológica. Las preparaciones de liberación controlada tales como las recubiertas con un polímero se pueden administrar directamente intracerebralmente.

Los tipos de aditivos farmacéuticos utilizados para la fabricación de la composición farmacéutica, las relaciones de contenido de los aditivos farmacéuticos respecto al ingrediente activo y los métodos para preparar la composición farmacéutica, pueden ser seleccionados apropiadamente por los expertos en la técnica. Pueden utilizarse sustancias inorgánicas u orgánicas, o sustancias sólidas o líquidas como aditivos farmacéuticos. En general, los aditivos farmacéuticos pueden incorporarse en una proporción que varía de 1% en peso a 90% en peso con respecto al peso de un ingrediente activo.

Los ejemplos de excipientes usados para la preparación de composiciones farmacéuticas sólidas incluyen, por ejemplo, lactosa, sacarosa, almidón, talco, celulosa, dextrina, caolín, carbonato de calcio y similares. Para la preparación de composiciones líquidas para administración oral, se puede usar un diluyente inerte convencional tal como agua o un aceite vegetal. La composición líquida puede contener, además del diluyente inerte, agentes auxiliares tales como agentes humectantes, auxiliares para la suspensión, edulcorantes, aromatizantes, colorantes, y conservantes. La composición líquida se puede llenar en cápsulas hechas de un material absorbible tal como gelatina. Los ejemplos de disolventes o medios de suspensión usados para la preparación de composiciones para la administración parenteral, por ejemplo, inyecciones, supositorios, incluyen agua, propilenglicol, polietilenglicol, alcohol bencílico, oleato de etilo, lecitina y similares. Los ejemplos de materiales de base usados para supositorios incluyen, por ejemplo, manteca de cacao, manteca de cacao emulsionada, lípido laurico y witepsol.

La dosis y la frecuencia de administración del medicamento de la presente invención no están particularmente limitadas y pueden elegirse apropiadamente dependiendo de las condiciones tales como un propósito de tratamiento preventivo y/o terapéutico, un tipo de enfermedad, el peso corporal o la edad de un paciente, la gravedad de una enfermedad y similares. Generalmente, una dosis diaria para administración oral a un adulto puede ser de 0,01 a 1.000 mg (el peso del ingrediente activo), y la dosis se puede administrar una vez al día o varias veces al día en porciones divididas, o una vez en varios días. Cuando el medicamento se usa como inyección, las administraciones pueden realizarse preferiblemente de forma continua o intermitente en una dosis diaria de 0,001 a 100 mg (peso de un ingrediente activo) a un adulto.

Ejemplos químicos

5

10

15

20

35

40

45

55

50 Ejemplo 1 (Compuesto No. 4 de la tabla 1)

4-óxido de 6-cloro-N-(2-feniletil)pirazin-2-amina

Una suspensión de 0,330 g (2,0 mmol) de 4-óxido de 2,6-dicloro-pirazina en 0,485 g (4,0 mmol) de fenetilamina se dejó en agitación a la temperatura de reflujo durante 10 min.

Se añadió agua fría y la mezcla se extrajo con diclorometano, se secó sobre sulfato sódico y se evaporó a sequedad.

El residuo obtenido se purificó por cromatografía sobre gel de sílice eluyendo con una mezcla de diclorometano/metanol/dietilamina en una proporción de 97/3/0,3 para dar, después de la trituración con éter dietílico, 0,370 g (74%) del producto puro en forma de un sólido de color gris. Pf:142-143°C RMN 1 H (CDCl₃; 200 MHz) δ (ppm): 7,50 (s, 1H), 7,30-7,10 (m, 5H), 5,10 (s a, 1H), 3,60 (dd, 2H), 2,90 (dd, 2H).

5 Ejemplo 2 (Compuesto Nº 1 de la tabla 1)

4-óxido de N-(2-feniletil)-6-piridin-4-ilpirazin-2-amina

Una mezcla que contenía 0,250 g (1,0 mmol) de 4-óxido de 6-cloro-*N*-(2-feniletil)pirazin-2-amina, 0,296 g (2,40 mmol) de ácido 4-piridina borónico, 0,60 ml (1,2 mmol) de una solución 2 M de carbonato sódico en agua y 0,116 g (0,1 mmol) de tetraquis(trifenilfosfina)paladio (0) en 5 ml de una mezcla de etanol/agua en una proporción de 5/1 se agitó a la temperatura de reflujo durante 16 h. Se añadió agua fría y la mezcla se extrajo con diclorometano, se secó sobre sulfato sódico y se evaporó a sequedad. El residuo obtenido se purificó por cromatografía sobre gel de sílice eluyendo con una mezcla de diclorometano/metanol/dietilamina en una proporción de 98/2/0,2 para dar, después de la trituración con éter dietílico, 0,058 g (20%) del producto puro en forma de un sólido de color amarillo.

Pf: 184-185°C.

10

20

15 RMN ¹H (CDCl₃; 200 MHz):

 δ (ppm): 8,70 (d, 2H); 7,90 (s, 1H); 7,70 (d, 2H); 7,45 (s, 1H), 7,30-7,00 (m, 5H); 4,80 (t a, 1H), 3,70 (m, 2H); 2,90 (t, 2H).

En la tabla 1 se da una lista de estructuras químicas y datos físicos de los compuestos de fórmula (I) mencionada anteriormente, que ilustran la presente invención. Los compuestos se han preparado según los métodos de los ejemplos. En la tabla, (Rot.) indica las propiedades levorrotatorias o dextrorrotatorias del compuesto enantiomérico.

Tabla 1

Nº	Rot	R5 N R4	R1	R3	R2	Pf °C	sal
1		I-Z		Н	Н	184-185	Base libre
2	(+/-)	OH H		Н	Н	224-225	Base libre
3	(+/-)	OH H	CI	Н	Н	175-176	Base libre

N°	Rot	R5 N R4	R1	R3	R2	Pf °C	sal
4		Z-I	CI	н	Н	142-143	Base libre

Ejemplo de Ensayo: Actividad inhibidora del medicamento de la presente invención frente a GSK3β:

Se pueden usar cuatro protocolos diferentes.

5

15

20

En un primer protocolo: se incubó péptido GS1 prefosforilado 7,5 μM y ATP 10 μM (que contenía 300.000 cpm de ³³P-ATP) en Tris-HCl 25 mM, pH 7,5, DTT 0,6 mM, MgCl₂ 6 mM, EGTA 0,6 mM y 0,05 mg/ml de tampón BSA durante 1 hora a temperatura ambiente en presencia de GSK3beta (volumen de reacción total: 100 microlitros).

En un segundo protocolo: se incubó péptido GS1 prefosforilado 4,1 μM y ATP 42 μM (que contenía 260.000 cpm de ³³P-ATP) en Mes-NaOH 80 mM, pH 6,5, acetato de Mg 1 mM, EGTA 0,5 mM, 2-mercaptoetanol 5 mM, Tween 20 al 0,02% y tampón de glicerol al 10% durante 2 horas a temperatura ambiente en presencia de GSK3beta.

En un tercer protocolo: se incubó péptido GS1 prefosforilado 7,5 μM y ATP 10 μM (que contenía 300.000 cpm de 33 P-ATP) en Hepes 50 mM, pH 7,2, DTT 1 mM, MgCl₂ 1 mM, EGTA 1 mM, tampón Tween 20 al 0,01% durante una hora a temperatura ambiente en presencia de GSK3beta (volumen total de reacción : 100 microlitros).

En un cuarto protocolo: se incubó péptido GS1 prefosforilado 7,5 μ M y ATP 10 μ M (que contenía 300,000 cpm de 33 P-ATP) en Hepes 50 mM, pH 7,2, DTT 1 mM, MgCl $_2$ 1 mM, EGTA 1 mM, tampón Tween 20 al 0,01% durante 90 minutos a temperatura ambiente en presencia de GSK3beta comercial (Millipore) (volumen total de reacción: 100 microlitros).

Se disolvieron los inhibidores en DMSO (concentración de disolvente en el medio de reacción, 1 %).

La reacción se paró con 100 microlitros de una disolución hecha de 25 g de ácido polifosfórico (P_2O_5 al 85%), 126 ml de H_3PO_4 al 85%, H_2O hasta 500 ml, y diluida después a 1:100 antes de usar. Se transfirió entonces una alícuota de la mezcla de reacción a filtros de intercambio catiónico Whatman P81 y se lavaron con la disolución descrita anteriormente. La radiactividad de ^{33}P incorporada se determinó por espectrometría de centelleo de líquidos.

El péptido GS-1 fosforilado tenía la secuencia siguiente: NH2-YRRAAVPPSPSLSRHSSPHQS(P)EDEE-COOH.(Woodgett, J. R. (1989) Analytical Biochemistry 180, 237-241.

La actividad inhibidora de GSK3β de los compuestos de la presente invención se expresa en Cl₅₀, y como ilustración, el intervalo de valores de Cl₅₀ de los compuestos de la tabla 1 está comprendido entre concentraciones 0.1 nanomolar y 3 micromolar.

Por ejemplo, en el protocolo 3, el compuesto Nº 2 de la tabla 1 muestra un valor de CI₅₀ de 0,506 μM.

Ejemplo de formulación

(1) Comprimidos

Los ingredientes a continuación se mezclaron mediante un método ordinario y se comprimieron utilizando un aparato convencional.

Compuesto del ejemplo 1	30 mg	
Celulosa cristalina	60 mg	
Almidón de maíz	100 mg	
Lactosa	200 mg	
Estearato de Magnesio	4 mg	

(2) Cápsulas blandas

Los ingredientes indicados a continuación se mezclaron por un método ordinario y se rellenaron en cápsulas blandas.

Compuesto del ejemplo 1	30 mg	
Aceite de oliva	300 mg	
Lecitina	20 mg	

(3) Preparaciones parenterales

Los ingredientes indicados a continuación se mezclaron por un método ordinario para preparar inyecciones contenidas en una ampolla de 1 ml.

Compuesto del ejemplo 1	3 mg
Cloruro de sodio	4 mg
Agua destilada para inyección	1 ml

10

5

Aplicabilidad industrial

Los compuestos de la presente invención tienen actividad inhibitoria de GSK3β y son útiles como ingredientes activos de un medicamento para el tratamiento preventivo y/o terapéutico de enfermedades causadas por la actividad anormal de GSK3β y, más particularmente, de enfermedades neurodegenerativas.

REIVINDICACIONES

1. Un derivado de N-óxido pirazina representado por la fórmula (I) o una sal del mismo:

en los que:

5 R1 representa un anillo de 4-piridina o un átomo de halógeno;

R2 representa un átomo de hidrógeno;

R3 representa un átomo de hidrógeno;

R4 representa:

- un grupo fenil-alquilo C_{1-3} , estando este grupo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados entre un grupo alquilo C_{1-6} , un átomo de halógeno, un grupo alquilo C_{1-2} perhalogenado, un grupo alquilo C_{1-3} halogenado, un grupo hidroxilo, un grupo alcoxi C_{1-6} , un grupo alcoxi C_{1-2} perhalogenado, un grupo alquil C_{1-6} -sulfonilo, un nitro, un ciano, un amino, un grupo monoalquil C_{1-6} -amino o un grupo dialquil C_{2-12} -amino, un grupo acetoxi o un grupo aminosulfonilo;

R5 representa un átomo de hidrógeno;

- en forma de una base libre o de una sal de adición con un ácido.
 - 2. Un derivado de N-óxido pirazina o una sal del mismo:

en los que:

15

R1 representa un anillo de 4-piridina o un átomo de halógeno;

20 R2 representa un átomo de hidrógeno;

R3 representa un átomo de hidrógeno;

R4 representa: un grupo fenilalquilo $C_{1:3}$, estando este grupo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados entre un átomo de halógeno o un grupo hidroxilo;

R5 representa un átomo de hidrógeno;

- en forma de una base libre o de una sal de adición con un ácido.
 - **3.** Un derivado de N-óxido pirazina o una sal del mismo, o un solvato del mismo o uno hidrato del mismo de acuerdo con la reivindicación 1 y 2, que se selecciona entre el grupo que consiste en:
 - 4-óxido de N-(2-feniletil)-6-piridin-4-ilpirazin-2-amina
 - (+/-)2-[(4-oxido-6-piridin-4-ilpirazin-2-il)amino]-1-feniletanol
- (+/-)2-[(6-cloro-4-oxidopirazin-2-il)amino]-1-feniletanol
 - 4-óxido de 6-cloro-N-(2-feniletil)pirazin-2-amina

- **4.** Un medicamento que comprende como ingrediente activo una sustancia seleccionada entre el grupo que consiste en un derivado de N-óxido pirazina representado por la fórmula (I) o sales del mismo, o un solvato del mismo o un hidrato del mismo de acuerdo con las reivindicaciones 1 a 3.
- **5.** Un inhibidor de GSK3β seleccionado entre el grupo de un derivado de N-óxido pirazina representado por la fórmula (I) o sales del mismo, o un solvato del mismo o un hidrato del mismo de acuerdo con la reivindicación 1.

5

- **6.** Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento preventivo y/o terapéutico de una enfermedad provocada por una actividad anormal de GSK3β.
- 7. Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento preventivo y/o terapéutico de una enfermedad neurodegenerativa.
- 8. Compuesto de acuerdo con la reivindicación 7, en el que la enfermedad neurodegenerativa se selecciona entre el grupo que consiste en enfermedad de Alzheimer, enfermedad de Parkinson, tauopatías, demencia vascular; ictus agudo, lesiones traumáticas; accidentes cerebrovasculares, traumatismo cerebral, traumatismo de la médula espinal; neuropatías periféricas; retinopatías o glaucoma.
- 9. Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento preventivo y/o terapéutico de diabetes no dependiente de la insulina; obesidad; enfermedad maniaco depresiva; esquizofrenia; alopecia; cánceres; enfermedades del parénquima renal o atrofia muscular.
 - **10.** Compuesto de acuerdo con la reivindicación 9, en el que el cáncer es cáncer de mama, carcinoma no microcítico de pulmón, cáncer de tiroides, leucemia de células T o B o tumores inducidos por virus.
- **11.** Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento preventivo y/o terapéutico de malaria.
 - **12.** Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento preventivo y/o terapéutico de enfermedades óseas.
 - **13.** Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento preventivo y/o terapéutico de Pemphigus vulgaris.
- **14.** Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento preventivo y/o terapéutico de neutropenia inducida por la guimioterapia del cáncer.
 - **15.** Compuesto de acuerdo con las reivindicaciones 1 a 3 para uso en el tratamiento terapéutico de una enfermedad caracterizada por déficit cognitivo y de memoria.