

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 383 236

51 Int. Cl.: **D06F 35/00**

(2006.01)

TRADUCCIÓN DE PATENTE EUROPE	_	
(12) TDADI ICCIONI DE DATENTE ELIDODE	\sim	,
	(12)	
	(14)	IRADULUION DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 09001862 .3
- 96 Fecha de presentación: 11.02.2009
- 97) Número de publicación de la solicitud: 2088231
 97) Fecha de publicación de la solicitud: 12.08.2009
- 54 Título: Procedimiento para tratar la colada en una máquina lavadora y máquina lavadora
- 30 Prioridad: 11.02.2008 DE 102008008645

73 Titular/es: MIELE & CIE. KG CARL-MIELE-STRASSE 29 33332 GÜTERSLOH, DE

Fecha de publicación de la mención BOPI: 19.06.2012

72 Inventor/es:

Fechler, Marion; Karweg, Volker y Sieding, Dirk

Fecha de la publicación del folleto de la patente: 19.06.2012

(74) Agente/Representante:

Zuazo Araluze, Alexander

ES 2 383 236 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimiento para tratar la colada en una máquina lavadora y máquina lavadora

- La invención se refiere a un procedimiento para tratar la colada en una máquina lavadora con un recipiente de lavado, en el que está apoyado un tambor que puede girar esencialmente en horizontal y un dispositivo calentador, incluyendo el procedimiento un ciclo para alisar la colada, en el que se hace girar el tambor.
- La invención se refiere además a una máquina lavadora o a una secadora de ropa con una carcasa y un recipiente de lavado dispuesto en su interior y fijado tal que puede vibrar, en el que está apoyado tal que puede girar un tambor que puede accionarse mediante un motor, y un dispositivo calentador dispuesto en el recipiente de lavado y un equipo de control, mediante el que puede controlarse el motor y el equipo calentador para realizar el procedimiento antes citado.
- Al lavar la colada en una máquina lavadora de tambor, se mueve la colada durante unos 40 a 120 minutos en el tambor, con lo que se provoca la actuación del mecanismo de lavado. Entonces se encuentra agua en el recipiente de lavado o en el tambor, eliminándose por lavado la suciedad mediante el movimiento de la colada. Debido al movimiento, se arruga la ropa, reforzándose el arrugado durante el centrifugado final, cuando las piezas de colada debido a la fuerza centrífuga se aprietan contra la cubierta del tambor. Para reducir el arrugado o alisar de nuevo la colada, se conoce por el documento EP 1 657 345 A2 la inyección de vapor en el tambor, mientras se hace girar el tambor. Entonces puede influir negativamente el que la colada aún húmeda absorba poco vapor y con ello apenas se logre un efecto de eliminación de arrugas. Además es necesario un medio adicional para generar el vapor, lo que incrementa la inversión técnica y los costes de la máquina lavadora.
- Por el documento EP 1 275 767 A1 se conoce la generación de vapor mediante el elemento calentador para el líquido de lavado en el recipiente de lavado. Por el documento EP 1 555 338 A2 se conoce el giro del tambor a una velocidad de giro superior a la de adherencia, mientras se inyecta vapor en el tambor. Entonces puede suceder que las arrugas ya existentes se refuercen al apoyarse la colada en la cubierta del tambor. Tampoco es muy intensa la actuación para eliminar las arrugas, ya que la ropa húmeda no puede absorber vapor alguno, o sólo muy poco.
 - La invención tiene como tarea básica aportar un procedimiento mejorado para eliminar las arrugas de la colada en una máquina lavadora de tambor, así como una máquina lavadora para realizar el procedimiento.
- La tarea se resuelve mediante un procedimiento con las características de la reivindicación 1 y mediante una máquina lavadora con las características de la reivindicación 11. Ventajosas formas constructivas resultan de las reivindicaciones dependientes 2 a 10.
- La ventaja esencial del procedimiento correspondiente a la invención es que de manera sencilla se proporciona una eliminación de las arrugas de las piezas de colada, no siendo necesarias medidas adicionales de diseño en la máquina lavadora. En el procedimiento correspondiente a la invención está previsto que en el ciclo para alisar la colada se caliente la pared del tambor y se haga girar el tambor a una baja velocidad de giro, en la que la colada sólo se levanta tal que la misma desliza a lo largo de la cubierta del tambor. En este ciclo no se encuentra en el recipiente de lavado o en el tambor líquido de lavado alguno, o sólo una pequeña cantidad, con lo que no se empapan las piezas de colada. Con ello se desliza la colada aún húmeda a lo largo de la cubierta del tambor caliente y/o esencialmente seca o bien el tambor desliza con su cubierta del tambor a lo largo por debajo de la colada, con lo que la colada se alisa, de manera similar a en el planchado con una plancha. La humedad existente en la colada se evapora entonces al menos en parte en la cubierta caliente del tambor, con lo que la colada se seca adicionalmente. El vapor que resulta entonces mejora a su vez el ahuecado de la colada, con lo que se reducen las arrugas que ya existan.
 - Al respecto es conveniente que la velocidad de giro del tambor se encuentre en la gama de 15 a 25 vueltas/min. Con ello se logra en un tambor para una máquina lavadora doméstica tradicional de manera fiable el efecto de deslizamiento deseado, evitándose el arrastre de la colada hasta soltarse de la cubierta del tambor. Con velocidades de giro en la citada gama se arrastra la colada sólo desde la posición de las 6 horas como máximo hasta la posición de las 9 horas o de las 3 horas, deslizando la misma partiendo de la posición de las 9 horas o de las 3 horas hasta la posición de las 6 horas a lo largo de la cubierta del tambor.

55

60

- En un perfeccionamiento ventajoso corresponde el giro parcial a aproximadamente $\frac{1}{4}$ hasta $\frac{1}{2}$ de una vuelta completa. Así queda asegurado que la colada no es arrastrada tal que tenga lugar una caída de la misma.
- Al respecto es ventajoso que la cubierta del tambor se caliente hasta una temperatura de unos 50 a 70°C. Con ello se logra un efecto de planchado como cuando se plancha con una plancha con paño húmedo o una plancha de vapor.

Para asegurar que en lo posible todas las piezas de colada se deslice a lo largo de la cubierta del tambor, incluye el ciclo varias fases, girando en una fase de deslizamiento el tambor en 2 a 6 fracciones de vuelta en cada caso con una baja velocidad de giro y en una fase de nuevo apilamiento a continuación con una velocidad de giro más elevada, que provoca un nuevo apilamiento de la colada dentro del tambor.

En un perfeccionamiento conveniente se encuentra la velocidad de giro más elevada en la gama de 40 a 60 vueltas/min, con lo que tiene lugar un nuevo apilamiento fiable de la colada dentro del tambor.

En un perfeccionamiento ventajoso duran la fase de deslizamiento unos 30 a 60 segundos y las fases de nuevo apilamiento unos 5 a 10 segundos, abarcando el ciclo para alisar la colada más de dos fases de deslizamiento con las correspondientes fases de nuevo apilamiento que van a continuación.

Es además conveniente que el ciclo incluya 6 a 10 fases de deslizamiento con las correspondientes fases de nuevo apilamiento a continuación. Con ello queda asegurado que todas las piezas de colada llegan a estar en contacto varias veces con la cubierta caliente del tambor. Tras la última fase de nuevo apilamiento, sigue una fase de enfriamiento, en la que está desconectado el dispositivo calentador y el tambor se hace girar a la inversa con la velocidad de giro más elevada durante unos 60 a 120 segundos. De esta manera se ahueca la ropa mientras se enfría la misma, con lo que se reducen de nuevo o se eliminan las arrugas de la colada.

La invención se refiere además a una máquina lavadora con una carcasa y un recipiente de lavado dispuesto en su interior, fijado tal que puede vibrar, en el que se apoya tal que puede girar un tambor que puede accionarse mediante un motor, una válvula de entrada de agua, un dispositivo de desagüe y un equipo de control con el que puede controlarse el motor, la válvula de entrada del agua y el dispositivo de desagüe para realizar el procedimiento antes indicado o las ejecuciones antes indicadas.

25

Un ejemplo de ejecución de la invención se representa en los dibujos de manera simplemente esquemática y se describirá a continuación más en detalle. Se muestra en

figura 1: una máquina lavadora en una representación esquemática en sección,

figura 2: un programa de lavado como diagrama a lo largo del tiempo,

5

15

30

55

60

65

figuras 3a, 3b: el ciclo para alisar GL como diagrama a lo largo del tiempo y

figuras 4 a 9: los movimientos del tambor o bien posiciones en representación esquemática.

En la figura 1 se representa de manera simplemente esquemática una máquina lavadora 1 con un recipiente de 35 lavado 2. Las indicaciones de posición y orientación se refieren a la posición de emplazamiento correspondiente al funcionamiento de la máquina lavadora 1. Dentro del recipiente de lavado 2 está dispuesto un tambor 3 apoyado tal que puede girar y accionado mediante un motor eléctrico 13, que mueve las piezas de colada 8 que se encuentran en el recipiente de lavado 2. El tambor 3 está fabricado en el presente ejemplo de ejecución de acero fino y está dotado de múltiples aberturas para el paso del flujo a su través. La carcasa 4 tiene una abertura de carga 9, a través 40 de la que puede alcanzarse el interior del tambor 3 a través del manguito de obturación 6. La abertura de carga 9 puede cerrarse mediante una puerta 5. En la zona inferior del recipiente de lavado 2 está dispuesto un elemento calentador 7, que puede calentar el líquido de lavado en el recipiente de lavado. En la zona superior de la máquina 1 está dispuesta una válvula de entrada 15, que controla la entrada del agua procedente de la red de suministro. Mediante el cajetín de mezcla de lavado 11 se conduce el agua a través del tubo de unión 14 recipiente de lavado 2, 45 mezclándose el detergente introducido en el cajetín de mezcla de lavado 11 en el recipiente de lavado 2. Por debajo del recipiente de lavado 2 está dispuesto un dispositivo de desagüe 12, que evacúa el líquido de lavado o el agua de lavado utilizados desde el recipiente de lavado 2 hasta la tubería de desagüe 16, que por lo general desemboca en un canal de aguas residuales. El equipo de control 17 controla la entrada de agua 15, la actividad del dispositivo de desagüe 12, el motor de accionamiento 13, que es recorrido por corriente a través de la parte de potencia o de un 50 convertidor de frecuencia 18, así como el elemento calentador 7.

En la figura 2 se representa a modo de ejemplo una secuencia completa de un programa de lavado WP en un diagrama. Sobre el eje de tiempos t se dibuja al respecto a modo de ejemplo la duración de los distintos ciclos del programa dentro del programa de lavado WP en minutos. La secuencia del programa WP aquí representada incluye un ciclo de lavado W, un centrifugado intermedio Z, un ciclo de aclarado Sp y un ciclo de centrifugado Sc, en el que se elimina el agua de la colada. En estos ciclos del programa se controla correspondientemente la entrada de agua 15 y el desagüe 16. También se controla correspondientemente el elemento calentador 7, para calentar el líquido de lavado hasta la temperatura prescrita. Al ciclo de centrifugado Sc le sigue un ciclo para alisar GL la colada 7, que en este ejemplo dura unos 10 minutos. Para el ciclo de lavado están asignados unos 30 minutos, durando el centrifugado intermedio unos 10 minutos, el ciclo de aclarado unos 20 minutos y el centrifugado Sc para eliminar el agua unos 10 minutos.

En la figura 3a se representa el ciclo del programa para alisar GL la colada en un eje de tiempos ampliado. Al comienzo, hasta el instante 1 minuto, se mueve la colada a la inversa con una velocidad de giro de unas 50 vueltas/minuto, apilándose de nuevo las piezas de colada 8 debido a la caída de la colada así originada o bien

soltándose de la cubierta del tambor 3a tras el ciclo de centrifugado. A continuación tras 1 minuto se realiza el alisado de la colada 8, girando el tambor 3 a la inversa con una reducida velocidad de giro de unas 20 vueltas/minuto. Debido a la baja velocidad de giro, se levantan las piezas de colada 8 de la cubierta del tambor 3a sólo tal que no tiene lugar aún una caída de la colada. Ésta es la primera fase GP, en la que la colada 8 desliza a lo largo de la cubierta del tambor 3a. Tras aprox. 1 minuto, se hace girar el tambor durante unos 20 segundos a la inversa con una elevada velocidad de giro, aquí 50 vueltas/minuto, con lo que se produce una caída de la colada y debido a ello se realiza un nuevo apilamiento (UM) de la colada 8. Estas dos fases se repiten varias veces, en este ejemplo 7 veces, activándose, tal como se representa en la figura 3b, el elemento calentador 7, tal que la cubierta del tambor 3a presenta durante este tiempo una temperatura de unos 70°C. Tras aprox. 8 minutos se desconecta el elemento calentador 7, girando el tambor, tal como puede observarse en la figura 3a, con la velocidad más alta, aquí unas 50 vueltas/minuto, con lo que la colada 8 se ahueca durante la fase de enfriamiento AK.

La fase GP, en la que la colada 8 desliza a lo largo de la cubierta del tambor 3a, se muestra en las figuras 4 a 6 en una vista esquemática, frontal, del tambor. La figura 4 muestra el instante de partida, en el que las piezas de colada 8 se apoyan en la zona inferior, aquí en la llamada posición de las 6 horas, en la cubierta del tambor 3a. Según la figura 5 se hace girar el tambor 3 en una fracción de vuelta TUR, aquí desde la posición de las 6 horas hasta la posición de las 9 horas hacia la derecha, levantándose las piezas de colada 8 sólo en una fracción HR de la trayectoria que recorre la cubierta del tambor 3a con su fracción de vuelta TUR. Al respecto puede observarse claramente que la cubierta del tambor 3a se desliza a lo largo por debajo de la colada. Según la figura 6 se hace girar el tambor 3 en una fracción de vuelta, aquí desde la posición de las 6 horas hasta la posición de las 3 horas hacia la izquierda, levantándose las piezas de colada 8 sólo en una fracción HL de la trayectoria que recorre la cubierta del tambor 3a con su fracción de vuelta TUL. También en este giro hacia la izquierda desliza la cubierta del tambor con su superficie a lo largo de la colada 8. En la figura 7 se representa que la colada tras el levantamiento en la trayectoria HL puede deslizar de nuevo a lo largo de la cubierta del tambor 3a hacia abajo, tal como se indica esquemáticamente con la flecha FA.

En la figura 8, que esboza la situación al realizarse el nuevo apilamiento de la colada dentro del tambor 3, se hace girar el tambor 3 en una o varias vueltas con una elevada velocidad de giro, que provoca el despegue MR de la colada 8 hasta la posición de las 10 horas. A continuación tiene lugar el desprendimiento respecto a la cubierta del tambor 3a y con ello la caída de la colada WF. Tal como se muestra esquemáticamente en la figura 9, se encuentra a continuación la colada 8 en una posición que ha variado en la zona inferior o bien aproximadamente en la posición de las 6 horas sobre la cubierta del tambor 3a.

REIVINDICACIONES

- 1. Procedimiento para tratar la colada en una máquina lavadora (1) con un recipiente de lavado (2), en el que está apoyado un tambor (3) que puede girar esencialmente en horizontal y un dispositivo calentador (7), incluyendo el procedimiento un ciclo (GL) para alisar la colada, en el que se hace girar el tambor (3), caracterizado porque en este ciclo (GL) se calienta la pared del tambor (3a) y porque se hace girar el tambor (3) con una velocidad de giro en la que la colada (8) se levanta sólo hasta que la misma desliza a lo largo de la cubierta del tambor (3a).
 - Procedimiento para tratar la colada según la reivindicación 1, caracterizado porque la velocidad de giro se encuentra en la gama de 15 a 25 vueltas/min.

10

20

30

- Procedimiento para tratar la colada según la reivindicación 1,
 caracterizado porque el tambor (3) se hace girar a la inversa, en cada caso en una fracción de vuelta (TUR, TUL).
 - 4. Procedimiento para tratar la colada según la reivindicación 3, caracterizado porque las fracciones de vuelta (TUR, TUL) corresponden en cada caso a aprox. ¼ a ½ de una vuelta completa.
 - 5. Procedimiento para tratar la colada según la reivindicación 1, caracterizado porque la cubierta del tambor (3a) se calienta hasta una temperatura de unos 50 a 80°C.
- 25 6. Procedimiento para tratar la colada según una de las reivindicaciones 1 a 5, caracterizado porque el ciclo (GL) incluye varias fases, haciéndose girar el tambor (3) en una fase de deslizamiento (GP) durante en cada caso 2 a 6 fracciones de vuelta con la velocidad de giro baja y en una siguiente fase de nuevo apilamiento (UM) con una elevada velocidad de giro, que provoca un nuevo apilamiento de la colada (8) dentro del tambor (3).
 - 7. Procedimiento para tratar la colada según la reivindicación 6, caracterizado porque la velocidad de giro más elevada se encuentra en la gama de 40 a 60 vueltas/minuto.
- 8. Procedimiento para tratar la colada según la reivindicación 6 ó 7,

 caracterizado porque la fase de deslizamiento (GP) dura aprox. 30 a 60 segundos y la fase de nuevo apilamiento (UM) aprox. 5 a 10 segundos, incluyendo el ciclo (GL) más de dos fases de deslizamiento con las correspondientes fases de apilamiento que van a continuación.
- 9. Procedimiento para tratar la colada según la reivindicación 8,
 40 caracterizado porque el ciclo (GL) incluye 6 a 10 fases de deslizamiento (GP) con las correspondientes fases de nuevo apilamiento (UM) que van a continuación, siguiendo a la última fase de apilamiento (UM) una fase de enfriamiento (AK), en la que se desconecta del dispositivo calentador (7) y se hace girar el tambor (3) a la inversa con la velocidad de giro más elevada durante unos 60 a 120 segundos.
- 45 10. Procedimiento para tratar la colada según una de las reivindicaciones 1 a 8, caracterizado porque el ciclo (GL) tiene una duración total en la gama de 6 a 12 minutos.
- 11. Máquina lavadora (1) o secadora de ropa con una carcasa (4) y un recipiente de lavado (2) allí dispuesto, fijado tal que puede vibrar, en el que está apoyado tal que puede girar un tambor (3) que puede accionarse mediante un motor (13) y un dispositivo calentador (7) dispuesto en el recipiente de lavado (2) y un equipo de control (17) con el que pueden controlarse el motor (13) y el equipo calentador (7) para realizar el procedimiento según una de las reivindicaciones 1 a 10.

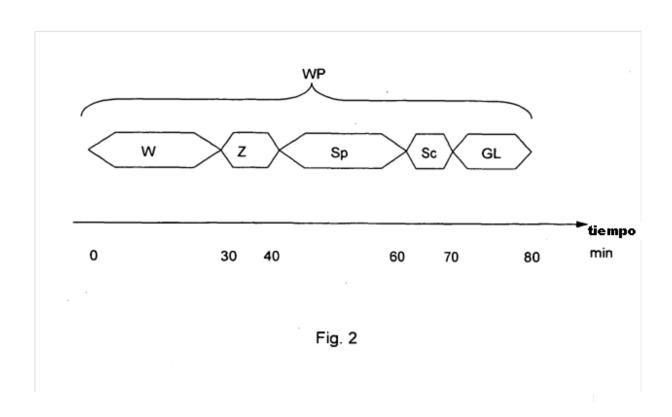
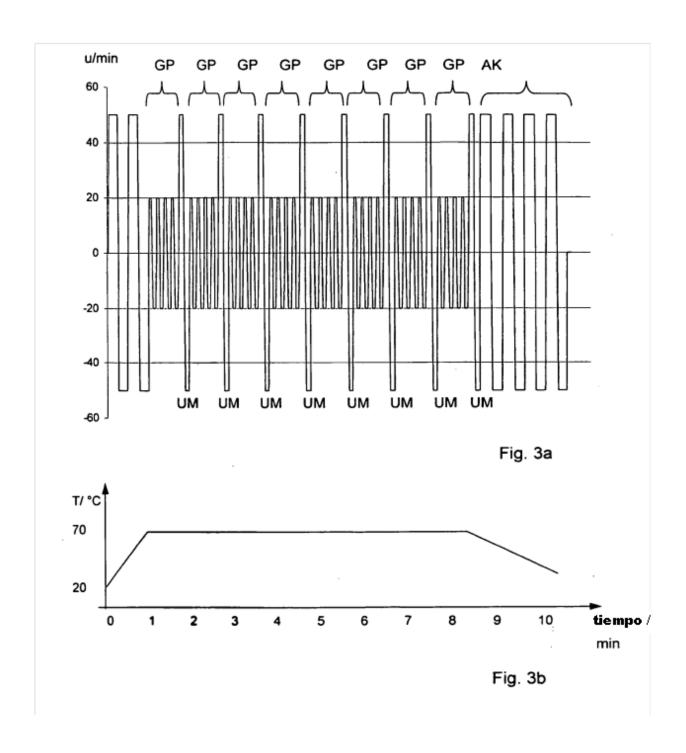




Fig. 1

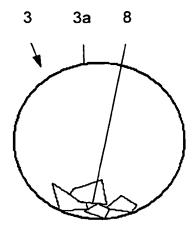


Fig. 4

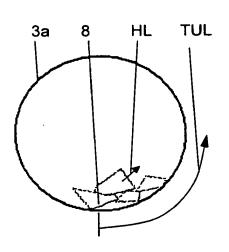


Fig. 6

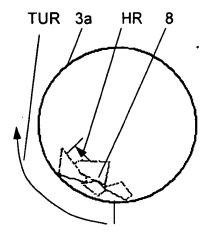


Fig. 5

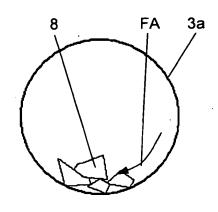
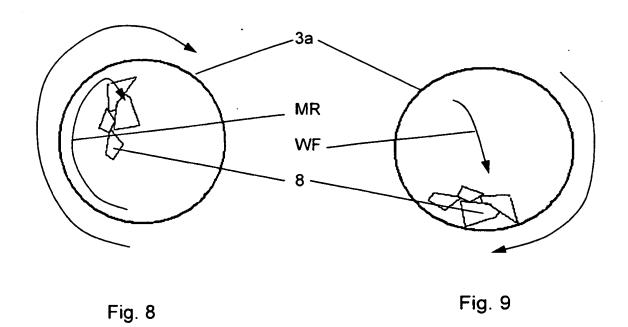



Fig. 7

