

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 383 716

51 Int. Cl.: C12N 15/11 C12N 15/82

A01H 5/00

(2006.01) (2006.01) (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 08708671 .6
- 96 Fecha de presentación: **05.02.2008**
- Número de publicación de la solicitud: 2111452
 Fecha de publicación de la solicitud: 28.10.2009
- (54) Título: Composiciones y métodos que utilizan ARN de interferencia de un gen del tipo OPR3 para el control de nemátodos
- 30 Prioridad: 08.02.2007 US 900146 P

73) Titular/es:

BASF Plant Science GmbH 67056 Ludwigshafen, DE

- Fecha de publicación de la mención BOPI: 25.06.2012
- 72 Inventor/es:

WIIG, Aaron

- Fecha de la publicación del folleto de la patente: 25.06.2012
- (74) Agente/Representante:

Carvajal y Urquijo, Isabel

ES 2 383 716 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Composiciones y métodos que utilizan ARN de interferencia de un gen del tipo OPR3 para el control de nematodos.

La invención se refiere al control de los nemátodos. Se divulgan aquí métodos para la producción de plantas transgénicas con mayor resistencia a los nemátodos, vectores de expresión que contienen polinucleótidos que confieren resistencia a los nemátodos, y plantas transgénicas y las semillas generadas de los mismas.

Los nemátodos son gusanos microscópicos que se alimentan de las raíces, las hojas y los tallos de más de 2.000 cultivos en hileras, vegetales, frutos y plantas ornamentales, causando un estimado de \$ 100 mil millones en pérdidas de cultivos en todo el mundo. Una variedad de especies de nemátodos parásitos infectan a las plantas de cultivo, incluyendo los nemátodos agalladores (RKN), nemátodos formadores de quistes y formadores de lesiones. Los nemátodos agalladores, que se caracterizan por causar la formación de agallas en la raíz en los sitios de alimentación, tienen una gama relativamente amplia de huéspedes y por tanto son patógenas en un gran número de especies de cultivo. Las especies de nemátodos formadores de lesiones y de quistes tienen una gama más limitada de huéspedes, pero aún así causan pérdidas considerables en los cultivos susceptibles.

Los nemátodos patógenos están presentes en todo Estados Unidos, presentándose las mayores concentraciones en las regiones húmedas y cálidas del Sur y el oeste y en suelos arenosos. Los nemátodos formadores de quistes de la soja (Heterodera glycines), la plaga más grave de las plantas de soja, fue descubierta por primera vez en los Estados Unidos en Carolina del Norte en 1954. Algunas áreas están tan fuertemente infestadas por el nemátodo formador de quistes de la soya (SCN) que la producción de soja ya no es económicamente posible sin la utilización de medidas de control. Aunque la soja es el cultivo más importante económicamente que es atacado por SCN, SCN parasita a unos cincuenta huéspedes en total, incluidos cultivos de campo, vegetales, plantas ornamentales y malezas.

Los signos de daño causado por nemátodos incluyen retraso del crecimiento y amarillamiento de las hojas y el marchitamiento de las plantas durante los períodos cálidos. Sin embargo, la infestación por nemátodos puede causar pérdidas significativas de rendimiento sin ningún tipo de síntomas de la enfermedad obvias por encima del suelo. Las principales causas de reducción del rendimiento se deben a daño de las raíces por debajo del suelo. Las raíces infectadas por el SCN se ven empequeñecidas o atrofiadas. La infestación por nemátodos también puede disminuir el número de nódulos fijadores de nitrógeno en las raíces, y puede volver a las raíces más susceptibles a los ataques por parte de otros patógenos de las plantas transmitidos por el suelo.

25

El ciclo de vida de los nemátodos tiene tres grandes etapas: huevo, juvenil, y adulta. El ciclo de vida varía entre las especies de nemátodos. Por ejemplo, el ciclo de vida del SCN por lo general se puede completar en 24 a 30 días en condiciones óptimas mientras que otras especies pueden llegar a tardar hasta un año o más, para completar el ciclo de vida. Cuando los niveles de temperatura y humedad son favorables en la primavera, los gusanos eclosionan del huevo como jóvenes en el suelo. Sólo los nemátodos en la etapa de desarrollo juvenil son capaces de infectar las raíces de la soja.

- El ciclo de vida del SCN ha sido objeto de muchos estudios, y como tales, son un ejemplo útil para comprender el ciclo de vida de los nemátodos. Después de penetrar las raíces de la soja, los SCN en etapa juvenil se mueven a través de la raíz hasta que se ponen en contacto con el tejido vascular, momento en el que dejan de migrar y comienzan a alimentarse. Con un estilete, el nemátodo inyecta secreciones que modifican ciertas células de la raíz y las transforman en sitios de alimentación especializados. Las células de la raíz se transforman morfológicamente en grandes sincitios multinucleados (o en células gigantes en el caso del RKN), que se utilizan como fuente de nutrientes para los nemátodos. Los nemátodos se alimentan activamente robando así nutrientes esenciales de la planta lo que resulta en la pérdida de rendimiento. A medida que se alimentan los nemátodos hembra, se hinchan y eventualmente se hacen tan grandes que sus cuerpos romper el tejido de la raíz y quedan expuestos sobre la superficie de la raíz.
- Después de un período de alimentación, los nemátodos SCN machos, que no están hinchados cuando son adultos, migrar fuera de la raíz hacia el suelo y fecundar a las hembras adultas agrandadas. Los machos mueren entonces, mientras que las hembras permanecen adheridas al sistema de raíces y continúan alimentándose. Los huevos en las hembras hinchadas comenzar a desarrollarse, en un principio en una masa o saco de huevos fuera del cuerpo, y luego dentro de la cavidad corporal del nemátodo. Eventualmente, toda la cavidad corporal de la hembra adulta está llena de huevos, y muere el nemátodo. Es el cuerpo lleno de huevo de la hembra muerta lo que se conoce como el quiste. Los quistes eventualmente desalojan y se encuentran libres en el suelo. Las paredes del quiste se hacen muy duros, proporcionando una excelente protección para los aproximadamente 200 a 400 huevos que contiene. Los huevos del SCN sobreviven dentro del quiste hasta que se presentan condiciones adecuadas para eclosionar. Aunque muchos de los huevos pueden eclosionar durante el primer año, muchos de ellos también sobreviven dentro de los quistes protectores durante varios años.

Un nemátodo puede moverse a través del suelo únicamente unas pocas pulgadas por año por sus propios medios. Sin embargo, la infestación por nemátodos se puede propagar a distancias significativas en una variedad de maneras. Cualquier cosa que pueda mover el suelo infestado es capaz de propagar la infestación, incluida la maquinaria agrícola, vehículos y herramientas, viento, agua, animales, y los trabajadores agrícolas. Partículas de suelo del tamaño de las semillas a menudo contaminan la semilla cosechada. En consecuencia, la infestación por nemátodos se puede propagar cuando la semilla contaminada de los campos infestados se siembra en campos no infestados. Incluso, existe evidencia de que ciertas especies de nemátodos pueden ser transmitidas por las aves. Sólo algunas de estas causas se pueden prevenir.

Las prácticas tradicionales de manejo de la infestación por nemátodos incluyen: el mantenimiento de los nutrientes adecuados del suelo y los niveles de pH del suelo infestado con nemátodos; el control de otras enfermedades de las plantas, así como de las plagas de insectos y de malezas; utilización de prácticas de saneamiento tales como el arado, la siembra y el cultivo de los campos infestados con nemátodos sólo después de trabajar los campos no infestados; limpieza a fondo de los equipos con agua a alta presión o vapor de agua después de trabajar en los campos infestados; no utilizar semillas cultivadas en tierras infestadas para la siembra de los campos no infestados a menos que la semilla haya sido adecuadamente limpiada; rotación de los campos infestados y alternando los cultivos hospederos con cultivos no hospederos; uso de nematicidas; y plantación de variedades de plantas resistentes.

Se han propuesto métodos para la transformación genética de las plantas a fin de conferirles mayor resistencia a los nemátodos que parasitan las plantas. Las patentes de los Estados Unidos Nos. 5.589.622 y 5.824.876 están dirigidas a la identificación de los genes de las plantas que se expresan específicamente en o en forma adyacente al sitio de alimentación de la planta después de la fijación por el nemátodo. Los promotores de estos genes objetivo de las plantas pueden entonces ser utilizados para dirigir la expresión específica de proteínas o enzimas perjudiciales, o la expresión de ARN antisentido al gen objetivo o a genes de la célula en general. Los promotores de la planta también pueden ser utilizados para conferir resistencia a los nemátodos específicamente en el sitio de alimentación mediante la transformación de la planta con un constructo que comprende al promotor del gen objetivo de la planta ligado a un gen cuyo producto induce letalidad en el nemátodo después de la ingestión.

Recientemente se ha propuesto al ARN de interferencia (ARNi), también denominado como el silenciador de genes, como un método para controlar los nemátodos. Cuando el ARN bicatenario (ARN bicatenario) correspondiente esencialmente a la secuencia de un gen objetivo o a un ARNm se introduce en una célula, se inhibe la expresión del gen objetivo (véase, por ejemplo, la Patente de los Estados Unidos No. 6.506.559). La Patente de los Estados Unidos No. 6.506.559 demuestra la eficacia del ARNi contra los genes conocidos en Caenorhabditis elegans, pero no demuestra la utilidad del ARNi para el control de nemátodos parásitos de las plantas.

30

Se ha propuesto el uso de ARNi para genes objetivo esenciales de nemátodos, por ejemplo, en los documentos WO 01/96584, WO 01/37654, la solicitud de patente de los Estados Unidos No. 2004/0098761, la solicitud de patente de los Estados Unidos 2005/0188438, la solicitud de patente de los Estados Unidos 2005/0188438, la solicitud de patente de los Estados Unidos 2006/0080749, la solicitud de patente de los Estados Unidos 2006/0080749, la solicitud de patente de los Estados Unidos 2007/0250947.

Se han propuesto una serie de modelos para la acción del ARNi. En los sistemas de mamíferos, los ARN bicatenario mayores a 30 nucleótidos activan la inducción de la síntesis de interferón y una inactivación global de la síntesis de proteínas, en una forma no específica de la secuencia. Sin embargo, la Patente de Estados Unidos No. 6.506.559 divulga que en los nemátodos, la longitud del ARN bicatenario correspondiente a la secuencia del gen objetivo puede ser al menos de 25, 50, 100, 200, 300, ó 400 bases, y que incluso los ARN bicatenario más grandes también fueron efectivos en la inducción de ARNi en *C. elegans*. Se sabe que cuando los constructos de ARN de horquilla que contienen regiones bicatenarias que van desde 98 hasta 854 nucleótidos fueron transformados en una cantidad de especies de plantas, se silenciaron en forma efectiva los genes de plantas objetivo. Existe consenso general de que en muchos organismos, incluidos nemátodos y plantas, se escinden grandes pedazos de ARN bicatenario en fragmentos de aproximadamente 19 - 24 nucleótidos (ARN corto de interferencia) dentro de las células, y que estos ARNci son los mediadores reales del fenómeno de ARNi.

La enzima OPR3 (12-oxifitodienoato reductasa) está involucrada en la biosíntesis del ácido jasmónico (JA). La enzima OPR3 convierte 12-oxo-cis-10,15-fitodienoato (OPDA) en 3-oxo-2-cis (cis-2-pentenil)-ciclopentano-1-octanoato, que se somete a 3 rondas de oxidación en beta para generar (+)-7-isojasmonato (JA). Las plantas mutantes opr3 de Arabidopsis son incapaces de acumular JA y son machos estériles (Stintzi y Navegación, 2000, PNAS. 97: 10625 - 10630). El tratamiento de plantas opr3 de Arabidopsis con OPDA exógeno favoreció la expresión de varios genes y divulgó dos vías distintas de señalización, una a través de COL1, y la otra a través de un efecto electrófilo de las ciclopentonas (Stintzi et al., 2001, PNAS 98: 12317 - 12319). OPDA de acuerdo con JA afina la expresión de genes de defensa. La resistencia a ciertos insectos y hongos puede ocurrir en ausencia de JA (Stintzi et al., 2001, PNAS 98: 12837 - 42).

Aunque han hecho numerosos esfuerzos para utilizar ARNi para controlar los nemátodos parásitos de las plantas, hasta la fecha no se ha desregulado en ningún país a las plantas transgénicas resistentes a los nemátodos. Por consiguiente, continúa existiendo la necesidad de identificar composiciones seguras y eficaces y métodos para el control de nemátodos que parasitan las plantas utilizando ARNi, y para la producción de plantas que tengan mayor resistencia a los nemátodos que parasitan las plantas.

Los presentes inventores han descubierto que la expresión del gen objetivo de la soja, tipo 12-oxifitodienato reductasa (tipo OPR3) también denominado como 45174942 (SEQ ID NO: 1), está favorecida en los sincitios inducidos por SCN en comparación con tejido no infectado de la raíz. Los presentes inventores han demostrado que la inhibición de los niveles de OPR3 utilizando ARNi afecta la capacidad de la planta para resistir la infestación por nemátodos.

La presente invención provee las realizaciones caracterizadas en cualquiera de las reivindicaciones 1 a 11.

5

10

La presente invención se puede entendida más fácilmente haciendo referencia a la siguiente descripción detallada de las realizaciones preferidas de la invención y los ejemplos incluidos en este documento. A menos que se indique otra cosa, los términos utilizados aquí deben entenderse de acuerdo con el uso convencional por parte de aquellos ordinariamente capacitados en la técnica pertinente. Además de las definiciones de los términos que aparecen a continuación, se pueden encontrar también las definiciones de términos comunes en biología molecular en Rieger et al, 1991, Glosary of genetics: clasical and molecular, 5ª Ed., Berlín: Springer-Verlag, y en Current Protocols in Molecular Biology, F. M. Ausubel et al., eds. Current Protocols, una empresa conjunta entre Greene Publishing Associates, Inc. y John Wiley & Sons, Inc., (1998, Suplemento). Debe entenderse que tal como se utiliza en la memoria descriptiva y en las reivindicaciones, "un" o "una" puede significar uno o más, dependiendo del contexto en el que se utiliza. Así, por ejemplo, la referencia a "una célula" puede significar que al menos una célula puede ser utilizada. Debe entenderse que la terminología usada aquí es para el propósito de describir las realizaciones específicas únicamente y no se pretende que sea limitativa.

A lo largo de esta solicitud, se referencian diferentes publicaciones de patentes y de la literatura. Las divulgaciones de todas estas publicaciones y las referencias citadas en esas publicaciones se incorporan aquí en su totalidad como referencia con el fin de describir más completamente el estado de la técnica a la que pertenece esta invención.

Un "gen tipo OPR3" de una planta se define aquí como un gen que tiene al menos una identidad de secuencia del 60% con el polinucleótido 45174942 que tiene una secuencia como la expuesta en la SEQ ID NO: 1, que es el gen tipo OPR de G. max. Los gens tipo OPR3 incluyen a los genes que tienen secuencias tales como las expuestas en las SEQ ID NOs: 2, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 y 29, que son homólogas del gen tipo OPR3 para G. max de la SEQ ID NO: 1. Los genes tipo OPR3 definidos aquí codifican polipéptidos que tienen al menos una identidad de secuencia del 60% con el polipéptido tipo OPR3 de G. max que tiene una secuencia como la expuesta en la SEQ ID NO: 30. Tales polipéptidos incluyen polipéptidos tipo OPR3 que tienen secuencias como las expuestas en las SEQ ID NOs: 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 y 28.

Genes adicionales tipo OPR3 (homólogos del gen tipo OPR3) pueden ser aislados de otras plantas diferentes a la soja usando la información proporcionada en este documento y las técnicas conocidas por los expertos en la técnica de la biotecnología. Por ejemplo, una molécula de ácido nucleico de una planta que hibrida bajo condiciones rigurosas con el ácido nucleico de la SEQ ID NO: 1 puede ser aislado a partir de bibliotecas de ADNc de tejidos 40 vegetales. Alternativamente, el ARNm puede ser aislado de las células vegetales (por ejemplo, por medio del procedimiento de extracción de guanidinio-tiocianato de Chirgwin et al., 1979, Biochemistry 18: 5294 - 5299), y se puede preparar ADNc utilizando la transcriptasa inversa (por ejemplo, transcriptasa inversa MLV de Moloney, que puede ser adquirida a Gibco / BRL, Bethesda, MD, o transcriptasa inversa AMV, que puede ser adquirida a Seika-Gaku America, Inc., St. Petersburg, FL). Los iniciadores de oligonucleótidos sintéticos para amplificación por medio 45 de reacción en cadena de la polimerasa pueden ser diseñados con base en la secuencia de nucleótidos mostrada en la SEQ ID NO: 1. Iniciadores de oligonucleótidos adicionales pueden ser diseñados con base en las secuencias de los genes tipo OPR3 que tienen secuencias como las expuestas en las SEQ ID NOs: 2, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 y 29. Moléculas de ácido nucleico correspondientes a los genes objetivo tipo OPR3 definidos en este documento pueden ser amplificadas utilizando ADNc o, alternativamente, ADNc genómico, como molde e iniciadores 50 de oligonucleótidos apropiados de acuerdo con técnicas estándar de amplificación por medio de PCR. Las moléculas de ácido nucleico así amplificadas pueden ser clonadas en vectores apropiados y caracterizadas por medio de análisis de secuencia de ADN.

Como se usa aquí, "ARNi" o "ARN de interferencia" se refiere al proceso de silenciamiento del gen posttranscripcional específico de la secuencia en plantas , mediado por ARN bicatenario (ARN bicatenario). Como se usa aquí, "ARN bicatenario" se refiere al ARN que es parcial o completamente bicatenario. ARN bicatenario también se refiere a ARN pequeño o corto de interferencia (ARNci), ácido nucleico corto de interferencia (ANci), ARN corto de interferencia, micro-ARN (miARN), y similares. En el proceso del ARNi, se introduce ARN bicatenario que comprende una primera cadena que es sustancialmente idéntica a una porción de un gen objetivo, por ejemplo un gen tipo OPR3, y una segunda cadena que es complementaria a la primera cadena en una planta. Después de su introducción en la planta, se procesa el ARN bicatenario específico del gen objetivo en fragmentos relativamente pequeños (los ARNci) y, posteriormente, puede ser distribuido por toda la planta, dando lugar a una mutación con pérdida de la función que tiene un fenotipo que, durante el período de una generación, puede llegar a parecerse estrechamente al fenotipo resultante de una supresión completa o parcial del gen objetivo. Alternativamente, el ARN bicatenario específico del gen objetivo está operativamente asociado con un elemento regulador o promotor que da como resultado la expresión del ARN bicatenario en un tejido, de manera temporal, espacial o inducible y además pueden ser procesado en fragmentos relativamente pequeños por una célula vegetal que contiene la maquinaria para el procesamiento de ARNi, y se obtiene el fenotipo de pérdida de la función. Además, el elemento regulador o promotor puede dirigir la expresión de preferencia a las raíces o a los sincitios o a las células gigantes en donde el ARN bicatenario puede ser expresado ya sea constitutivamente en esos tejidos o por inducción por medio de la alimentación del nemátodos o del nemátodo juvenil, tal como los nemátodos J2.

10

45

50

55

60

Como se usa aquí, teniendo en cuenta la sustitución de uracilo por timina al comparar secuencias de ARN y de ADN, el término "sustancialmente idénticas" como se aplica para ARN bicatenario significa que la secuencia de nucleótidos de una cadena del ARN bicatenario es al menos aproximadamente 80% - 90% idéntica a 20 o más nucleótidos contiguos del gen objetivo, más preferiblemente, aproximadamente al menos 90 - 95% idéntica a 20 o más nucleótidos contiguos del gen objetivo, y lo más preferiblemente aproximadamente al menos 95%, 96%, 97%, 98% o 99% idéntica o absolutamente idéntica a 20 o más nucleótidos contiguos del gen objetivo. 20 o más nucleótidos significa una porción, siendo aproximadamente al menos de 20, 21, 22, 23, 24, 25, 50, 100, 200, 300, 400, 500, 1000, 1500 ó 2000 bases consecutivas o hasta la longitud completa del gen objetivo.

Como se usa aquí, polinucleótidos "complementarios" son aquellos que son capaces de aparearse con bases de acuerdo con las reglas estándar de complementariedad de Watson-Crick. Específicamente, las purinas se aparearán con pirimidinas para formar una combinación de guanina apareada con citosina (G:C) y la adenina se apareará ya sea con timina (A:T) en el caso del ADN, o la adenina se apareará con uracilo (A:U) en el caso de ARN. Se entiende 25 que dos polinucleótidos pueden hibridarse entre sí, incluso si no son totalmente complementarias entre sí, siempre y cuando cada una tenga al menos una región que es sustancialmente complementaria a la otra. Como se usa aquí, el término "sustancialmente complementarias" significa que dos secuencias de ácido nucleico son complementarias al menos sobre un 80% de sus nucleótidos. Preferiblemente, las dos secuencias de ácido nucleico son complementarios sobre al menos 85%, 90%, 95%, 96%, 97%, 98%, 99% o más o todos sus nucleótidos. 30 Alternativamente, "sustancialmente complementarias" significa que dos secuencias de ácido nucleico puede hibridar bajo condiciones de alta rigurosidad. Como se utiliza aquí, el término "sustancialmente idénticas" o "correspondientes a" significa que dos secuencias de ácido nucleico tienen al menos 80% de identidad de secuencia. Preferiblemente, las dos secuencias de ácido nucleico tienen al menos 85%, 90%, 95%, 96%, 97%, 98%, 99% o 100% de identidad de secuencia.

También como se utilizan aquí, los términos "nucleico ácido "y" polinucleótido "se refieren al ARN o al ADN que son lineales o ramificados, monocatenarios o bicatenarios, o un híbrido de los mismos. El término también abarca híbridos de ADN / ARN. Cuando se produce sintéticamente ARN bicatenario, las bases menos comunes, tales como inosina, 5-metilcitosina, 6-metiladenina, hipoxantina y otras también pueden ser utilizadas para apareamiento antisentido, de ARN bicatenario, y de ribozima. Por ejemplo, los polinucleótidos que contienen análogos propino C-5 de uridina y de citidina han demostrado que enlazan ARN con una alta afinidad y que son potentes inhibidores antisentido de la expresión del gen. También pueden hacerse otras modificaciones, tales como una modificación de la columna vertebral de fosfodiéster, o la 2'-hidroxi en el grupo del azúcar ribosa del ARN.

Como se utiliza aquí, el término "control", cuando se usa en el contexto de una infección, se refiere a la reducción o a la prevención de una infección. La reducción o la prevención de una infección por un nemátodo causará que una planta tenga mayor resistencia a los nemátodos; sin embargo, tal mayor resistencia no implica necesariamente que la planta tenga 100% de resistencia a la infección. En realizaciones preferidas, la resistencia a la infección por un nemátodo en una planta resistente es mayor al 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% ó 95% en comparación con una planta de tipo silvestre que no es resistente a los nemátodos. Preferiblemente, la planta de tipo silvestre es una planta de un genotipo similar, más preferentemente idéntico al de la planta que tiene mayor resistencia a los nemátodos, pero no contiene un ARN bicatenario dirigido al gen objetivo. La resistencia de la planta a la infección por el nemátodo puede ser debida a la muerte, esterilidad, retardo en el desarrollo, o movilidad debilitada del nemátodo después de exposición a la planta que contiene ARN bicatenario específico a un gen esencial para el desarrollo o el mantenimiento de un sitio de alimentación funcional, sincitios, o células gigantes. El término "resistente a la infección por nemátodos" o "una planta que tiene resistencia a los nemátodos" como se usan aquí se refieren a la capacidad de una planta, en comparación con una planta de tipo silvestre, para evitar la infección por nemátodos, para matar nemátodos o para obstaculizar, reducir o detener el desarrollo, crecimiento o multiplicación de los nemátodos. Esto puede lograrse mediante un proceso activo, por ejemplo, mediante la producción de una sustancia perjudicial para el nemátodo, o por medio de un proceso pasivo, como tener un valor nutricional reducido para el nemátodo o no desarrollar estructuras inducidas por el sitio de alimentación del nemátodo como sincitios o células gigantes. El nivel de resistencia del nemátodo de una planta se puede determinar de diferentes maneras, por ejemplo, contando los nemátodos que son capaces de establecer parasitismo sobre esa planta, o midiendo los tiempos de desarrollo de los nemátodos, la proporción de los nemátodos macho y hembra o, para los nemátodos del quiste, contando el número de quistes o de huevos de nemátodos producidos en las raíces de una planta infectada o un sistema de ensayo de la planta.

El término "planta" pretende abarcar las plantas en cualquier etapa de maduración o de desarrollo, así como cualquiera de los tejidos u órganos (partes de la planta) tomados o derivados de cualquiera de tales plantas, a menos que se indique claramente otra cosa por el contexto. Las partes de la planta incluyen, pero no se limitan a, tallos, raíces, flores, óvulos, estambres, semillas, hojas, embriones, regiones meristemáticas, tejido calloso, cultivos de antera, gametófitos esporofitos, polen, microesporas, protoplastos, cultivos de raíces velludas, y similares. La presente invención también incluye semillas producidas por las plantas de la presente invención. En una realización, las semillas son líneas genéticamente puras para una mayor resistencia a la infección por nemátodos en comparación con una variedad de tipo silvestre de la semilla de la planta. Como se usa aquí, una "célula de una planta" incluye, pero no está limitado a, un protoplasto, una célula productora de gametos, y una célula que se regenera en una planta completa. El cultivo de tejido de diferentes tejidos de plantas y la regeneración de las plantas a partir de allí es bien conocido en la técnica y publicado ampliamente.

Como se usa aquí, el término "transgénico" se refiere a cualquier planta, célula de la planta, callo, tejido de la planta, o parte de la planta que contiene todo o parte de al menos un polinucleótido recombinante. En muchos casos, todo o parte del polinucleótido recombinante está integrado en forma estable en un cromosoma o en un elemento extracromosómico estable, de modo que sea trasmitido a las generaciones sucesivas. Para los fines de la invención, el término "polinucleótido recombinante" se refiere a un polinucleótido que ha sido alterado, reordenado, o modificado por medio de ingeniería genética. Los ejemplos incluyen cualquier polinucleótido clonado, o polinucleótidos, que están ligados o unidos a secuencias heterólogas. El término "recombinante" no se refiere a alteraciones de polinucleótidos que resultan de eventos de ocurrencia natural, tales como mutaciones espontáneas, o de mutagénesis no espontánea seguida por reproducción selectiva.

20

40

Como se usa aquí, el término "cantidad suficiente para inhibir la expresión" se refiere a una concentración o cantidad del ARN bicatenario que es suficiente para reducir los niveles o la estabilidad del ARNm o de la proteína producida a partir de un gen objetivo en una planta. Como se usa aquí, "inhibición de la expresión" se refiere a la ausencia o a la disminución observable en el nivel de proteína y / o del producto del ARNm de un gen objetivo. La inhibición de la expresión del gen objetivo puede ser letal para el nemátodo parásito ya sea directa o indirectamente a través de la modificación o de la erradicación del sitio de alimentación, los sincitios o las células gigantes, o tal inhibición puede retrasar o impedir la entrada en una etapa particular de desarrollo (por ejemplo, la metamorfosis), si el acceso a un sitio de alimentación totalmente funcional, a los sincitios, o a las células gigantes está asociado con una etapa particular del ciclo de vida del nemátodo parásito. Las consecuencias de la inhibición puede ser confirmadas por medio del examen de la raíz de la planta para la reducción o la eliminación de los quistes o de otras propiedades del nemátodo o e la infestación por nemátodos (tal como se presenta más adelante en el Ejemplo 3).

De acuerdo con los usos de la invención, un planta se transforma con un ácido nucleico o un ARN bicatenario, que inhibe específicamente la expresión de un gen tipo OPR3 en la planta que es esencial para el desarrollo o el mantenimiento de un sitio de alimentación, sincitios, o de células gigantes; en última instancia afectan la supervivencia, metamorfosis, o reproducción del nemátodo. En una realización, el ARN bicatenario es codificado por un vector que ha sido transformado en un antepasado de la planta infectada. Preferiblemente, la secuencia de ácido nucleico que expresa dicho ARN bicatenario está bajo el control transcripcional de un promotor específico de la raíz o de un promotor específico de la célula que alimenta al nemátodo parásito o un promotor inducible por un nemátodo.

En consecuencia, el ARN bicatenario mencionado de acuerdo con la invención comprende una primera cadena que es sustancialmente idéntica a una porción del gen objetivo tipo OPR3 de un genoma de la planta, y una segunda cadena que es sustancialmente complementaria a la primera cadena. El gen objetivo se selecciona de entre el grupo que consiste de: a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29; b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en la SEQ ID NO: 3 ó 30; y c) un polinucleótido que tiene 70% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29. La longitud de las secuencias de nucleótidos bicatenarias sustancialmente idénticas puede ser al menos aproximadamente de 19, 20, 21, 22, 23, 24, 25, 50, 100, 200, 300, 400, 500, 1000, 1500 bases consecutivas o hasta la longitud completa del gen tipo OPR3. En una realización preferida, la longitud de la secuencia de nucleótidos bicatenaria es aproximadamente de 19 hasta aproximadamente 200 - 500 nucleótidos consecutivos de longitud. En otra realización preferida, el ARN bicatenario es sustancialmente idéntico o es idéntico a las bases 1 a 229 de la SEQ ID NO: 2.

Como se mencionó anteriormente, los fragmentos de ARN bicatenario aproximadamente mayores a 19 - 24 nucleótidos de longitud se escinden en forma intracelular por parte de los nemátodos y plantas, hasta ARN bicatenario de alrededor de 19 - 24 nucleótidos de longitud, y estos ARN bicatenario son los mediadores reales del

fenómeno del ARNi. La tabla en las Figuras 5a - 5j expone un ejemplo de 21 mers de los genes tipo OPR3 como se define aquí. Esta tabla también puede ser utilizada para calcular los 19, 20, 22, 23 ó 24 mers por medio de la adición o sustracción del número apropiado de nucleótidos de cada 21 mers. De este modo, el ARN bicatenario de la presente invención puede variar en longitud desde aproximadamente 21 nucleótidos a 200 nucleótidos. Preferiblemente, el ARN bicatenario mencionado de acuerdo con la invención tiene una longitud de aproximadamente 21 nucleótidos hasta 600 nucleótidos consecutivos o hasta la longitud total del gen tipo OPR3. Más preferiblemente, dicho ARN bicatenario tiene una longitud de aproximadamente 21 nucleótidos hasta 500 nucleótidos consecutivos, o desde aproximadamente 21 nucleótidos hasta aproximadamente de 200 nucleótidos consecutivos.

- Como se describe en este documento, no se requiere de una identidad de secuencia del 100% entre el ARN y el gen objetivo para practicar la presente invención. Aunque se prefiere un ARN bicatenario que contiene una secuencia de nucleótidos idéntica a una porción del gen tipo OPR3 para la inhibición, la invención se pueden tolerar variaciones de la secuencia de las que pueden ser esperadas debido a la manipulación de genes o la síntesis, mutación genética, polimorfismo de cadena, o divergencia evolutiva. De este modo, los ARN bicatenarios también abarcan a los ARN bicatenario que contienen una falta de correspondencia con el gen objetivo de al menos 1, 2 o más nucleótidos. Por ejemplo, se contempla en la presente invención que las secuencias de ARN bicatenario de 21 mers ejemplificadas en las Figuras 5a 5j puede contener una adición, supresión o sustitución de 1, 2 o más nucleótidos, siempre y cuando la secuencia resultante aún interfiera con la función del gen tipo OPR3.
- La identidad de secuencia entre los ARN bicatenarios y los genes objetivo tipo OPR3 puede ser optimizada por medio de los algoritmos de comparación y alineación de secuencias conocidos en la técnica (véase Gribskov y Devereux, Sequence Analysis Primer, Stockton Press, 1991, y las referencias allí citadas) y calculando la diferencia porcentual entre las secuencias de nucleótidos, por ejemplo, por medio del algoritmo de Smith-Waterman como el implementado en el programa de software BESTFIT utilizando parámetros predeterminados (por ejemplo, del University of Wisconsin Genetic Computing Group). Se prefiere una identidad de secuencia superior al 80%, una identidad de secuencia del 90%, o incluso una identidad de secuencia del 100%, entre el ARN inhibidor y la porción del gen objetivo. Alternativamente, la región dúplex del ARN puede ser definida funcionalmente como una secuencia de nucleótidos que es capaz de hibridar con una porción del transcripto del gen objetivo bajo condiciones rigurosas (por ejemplo, NaCl 400 mM, PIPES 40 mM de pH 6,4, EDTA 1 mM, hibridación a 60°C durante 12 16 horas, seguido por lavado a 65°C con SDS al 0,1% y SSC al 0,1% durante aproximadamente 15 60 minutos).
- Cuando el ARN bicatenario tiene una longitud aproximadamente mayor a 21 nucleótidos, por ejemplo, de 50 nucleótidos de 1000 nucleótidos, será escindido al azar hasta ARN bicatenario de alrededor de 21 nucleótidos dentro de la célula de la planta o de la célula del nemátodo parásito, los ARNci. La escisión de un ARN bicatenario más largo de la invención dará lugar a una reunión de los ARN bicatenario de 21 mers (en el rango de 19 mers hasta 24 mers), derivados del ARN bicatenario más largo. Esta reunión de los ARN bicatenario de aproximadamente 21 mers está también abarcada dentro del alcance de la presente invención, ya sea generada en forma intracelular dentro de la planta o el nemátodo o sintéticamente utilizando métodos conocidos de síntesis de oligonucleótidos.
- Los ARNci mencionados de acuerdo con la invención tienen secuencias correspondientes a fragmentos de 19 24 nucleótidos contiguos a través de toda la secuencia de un gen objetivo tipo OPR3. Por ejemplo, una reserva de ARNci de la invención derivada de los genes tipo OPR3 como los expuestos en las SEQ ID NOs: 1, 2, 7, 9, 11, 13, 40 15, 17, 19, 21, 23, 25, 27, ó 29 puede incluir una multiplicidad de moléculas de ARN que se seleccionan del grupo que consta de oligonucleótidos que contienen una cadena que es sustancialmente idéntica a los nucleótidos de 21 mers de las SEQ ID NOs: 1, 2 ó 29 encontradas en las Figuras 5a - 5j. Una reserva de ARNci como la mencionada de acuerdo con la invención derivada de genes tipo OPR3 descritos por las SEQ ID NOs: 1, 2 ó 29 o también puede incluir combinación de las moléculas específicas de ARN que tengan cualquiera de las 21 secuencias contiguas de 45 nucleótidos derivadas de las SEQ ID NOs: 1, 2 ó 29 expuestas en las figuras 5a - 5j. Además, como se señaló anteriormente, varias Dicers especializadas múltiples en las plantas generan los ARNci típicamente en en rango de tamaño desde 19 nt hasta 24 nt (véase Henderson et al., 2006. Nature Genetics 38: 721 - 725.). Dichos ARNci pueden variar desde aproximadamente 19 secuencias contiguas de nucleótidos hasta aproximadamente 24 secuencias contiguas de nucleótidos. De manera similar, una reserva de ARNci de la invención puede incluir una 50 multiplicidad de moléculas de ARN que tengan cualquiera entre aproximadamente 19, 20, 21, 22, 23 ó 24 secuencias contiguas de nucleótidos derivadas de las SEQ ID NOs: 1, 2. Alternativamente, la reserva de ARNci puede comprender una multiplicidad de moléculas de ARN que tienen una combinación de cualquiera entre aproximadamente 19, 20, 21, 22, 23, y/o 24 secuencias contiguas de nucleótidos derivadas de las SEQ ID NOs: 1, 2
- El ARN bicatenario de acuerdo con la invención puede comprender opcionalmente un solo voladizo monocatenario en cualquiera o en ambos extremos. La estructura bicatenaria puede estar formada por una sola cadena autocomplementaria de ARN (es decir, que forma un bucle de horquilla) o dos cadenas complementarias de ARN. La formación de ARN dúplex se puede iniciar ya sea dentro o fuera de la célula. Cuando el ARN bicatenario de la invención forma un bucle de horquilla, puede opcionalmente contener un intrón, como el expuesto en la solicitud de

patente de los Estados Unidos No. 2003/0180945A1 o un espaciador de nucleótidos, que es un tramo de secuencia entre las cadenas de ARN complementario para estabilizar el transgén en horquilla en las células. Los métodos para elaborar diversas moléculas de ARN bicatenario se exponen, por ejemplo, en el documento WO 99/53050 y en la Patente de los Estados Unidos No. 6.506.559. El ARN puede ser introducido en una cantidad que permita el suministro de al menos una copia por célula. Dosis más altas de material bicatenario pueden producir una inhibición más efectiva.

Se divulga aquí un vector de expresión recombinante aislado que comprende un ácido nucleico que codifica una molécula de ARN bicatenario como se describió anteriormente, en donde la expresión del vector en una célula huésped de una planta da como resultado una mayor resistencia a un nemátodo parásito, en comparación con una 10 variedad de tipo silvestre de una célula huésped de una planta. Como se usa aquí, el término "vector" se refiere a una molécula de ácido nucleico capaz de transportar otro ácido nucleico al cual se ha ligado. Un tipo de vector es un "plásmido", que se refiere a un bucle circular de ADN bicatenario dentro del cual se pueden ligar segmentos adicionales de ADN. Otro tipo de vector es un virus vector viral, en donde los segmentos adicionales de ADN se pueden ligar dentro del genoma viral. Ciertos vectores son capaces de replicación autónoma en una célula huésped 15 de una planta dentro de la cual se introducen. Otros vectores se integran en el genoma de una célula huésped de una planta después de la introducción en la célula huésped, y con ello se replican junto con el genoma huésped. Además, ciertos vectores son capaces de dirigir la expresión de genes a los que están enlazados operativamente. Tales vectores se denominan aquí como "vectores de expresión." En general, los vectores de expresión de utilidad en las técnicas de ADN recombinante son a menudo en forma de plásmidos. En la presente memoria descriptiva, 20 "plásmido" y "vector" se puede utilizar indistintamente ya que el plásmido es la forma más usual de vector. Sin embargo, se pretende incluir otras formas de vectores de expresión, tales como vectores virales (por ejemplo, el virus X de la patata, el virus sonajero del tabaco, y Geminivirus), que sirven funciones equivalentes.

Dichos vectores de expresión recombinante comprenden un ácido nucleico de la invención en una forma adecuada para la expresión del ácido nucleico en una célula huésped de una planta, lo que significa que el vector de expresión 25 recombinante incluye una o más secuencias reguladoras, por ejemplo, promotores, seleccionados con base en las células huésped de la planta que son utilizadas para la expresión, que están operativamente enlazadas a la secuencia de ácido nucleico que va a ser expresada. Con respecto a un vector de expresión recombinante, los términos "operativamente enlazado" y "en asociación operativa" son intercambiables y se pretende que signifiquen que la secuencia de nucleótidos de interés está enlazada a la(s) secuencia(s) reguladora(s) en una forma que 30 permita la expresión de la secuencia de nucleótidos (por ejemplo, en una célula huésped de una planta cuando se introduce el vector en la célula huésped de la planta). El término "secuencia reguladora" pretende incluir promotores, reforzadores, y otros elementos de control de la expresión (por ejemplo, señales de poliadenilación). Tales secuencias reguladoras están descritas, por ejemplo, en Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) y en Gruber y Crosby, en: Methods in Plant Molecular 35 Biology y Biotechnology, Eds. Glick and Thompson, capítulo 7, 89 - 108, CRC Press: Boca Raton, Florida, incluidas las referencias citadas allí. Las secuencias reguladoras incluyen aquellas que dirigen la expresión constitutiva de una secuencia de nucleótidos en muchos tipos de células huésped y aquellas que dirigen la expresión de la secuencia de nucleótidos sólo en ciertas células huésped o bajo ciertas condiciones. Se apreciará por parte de aquellos capacitados en el arte que el diseño del vector de expresión puede depender de factores tales como la 40 elección de la célula huésped que va a ser transformada, el nivel de expresión del ARN bicatenario deseado, etc. Los vectores de expresión de la invención pueden ser introducidos en células de una planta huésped para producir con ello las moléculas de ARN bicatenarias de la invención codificadas por ácidos nucleicos como se describe aquí.

El vector de expresión recombinante comprende una secuencia reguladora operativamente enlazada a una secuencia de nucleótidos que es un molde para una o ambas cadenas de las moléculas de ARN bicatenario de la invención. La molécula de ácido nucleico comprende además un promotor que flanquea ambos extremos de la molécula de ácido nucleico, en donde los promotores dirigen la expresión de cada cadena individual de ADN, generando de este modo dos ARN complementarios que hibridan y forman el ARN bicatenario. La molécula de ácido nucleico comprende una secuencia de nucleótidos que se transcribe en ambas cadenas del ARN bicatenario en una unidad de transcripción, en la que la cadena sentido se transcribe a partir del extremo 5' de la unidad de transcripción y la cadena antisentido se transcribe a partir del extremo 3', en donde las dos hebras se separan por aproximadamente 3 hasta aproximadamente 500 pares de bases o más, y en donde después de la transcripción, el transcritos de ARN se pliegan sobre sí mismos para formar una horquilla. La región espaciadora en la transcripción en forma de horquilla puede ser cualquier fragmento de ADN.

Cualquier polinucleótido introducido puede ser mantenido en la célula vegetal en forma estable si se incorpora dentro de un replicón autónomo no cromosómico o se integra en los cromosomas de la planta. Alternativamente, el polinucleótido introducido puede estar presente sobre un vector no replicante extracromosómico y se expresa de forma transitoria o transitoriamente activa. Si está presente en un vector no replicante extracromosómico o en un vector que está integrado en un cromosoma, el polinucleótido reside preferiblemente en un casete de expresión de la planta. Un casete de expresión de la planta contiene preferiblemente secuencias reguladoras capaces de dirigir la expresión génica en células de la planta que están operativamente enlazadas de manera que cada secuencia pueda

cumplir su función, por ejemplo, la terminación de la transcripción por medio de señales de poliadenilación. Las señales de poliadenilación preferidas son las que se originan a partir del ADN-t de *Agrobacterium tumefaciens*, tales como el gen 3 conocido como octopina sintasa del plásmido Ti pTiACH5 (Gielen et al., 1984, EMBO J. 3: 835) o equivalentes funcionales del mismo, pero también son adecuados todos los otros terminadores funcionalmente activos en plantas. Como la expresión del gen de la planta a menudo no se limita a niveles transcripcionales, un casete de expresión de una planta preferiblemente contiene otras secuencias operativamente enlazadas como reforzadoras de la traducción, tales como la secuencia intensificadora (*overdrive*) que contiene la secuencia líder no traducida 5' del virus del mosaico del tabaco que mejora la relación de polipéptido por ARN (Gallie et al., 1987, Nucl. Acids Research 15: 8693 - 8711). Los ejemplos de vectores de expresión de las plantas incluyen aquellos detallados en: Becker, D. et al, 1992, New plant binary vectors with selectable markers located proximal to the left border, Plant Mol. Biol. 20: 1195 - 1197; Bevan, M. W., 1984, Binary Agrobacterium vectors for plant transformation, Nucl. Ácid. Res. 12: 8711 - 8721 y Vectors for Gene Transfer in Higher Plants; en: Transgenic Plants, Vol. 1, Engineering and Utilization, eds.: Kung y R. Wu, Academic Press, 1993, S. 15 - 38.

La expresión del gen de la planta debe estar operativamente enlazada a un promotor apropiado que confiere la 15 expresión del gen en una forma temporal preferida, espacial preferida, preferida por el tipo de célula, y / o preferida por el tejido. Los promotores útiles en los casetes de expresión de la invención incluyen a cualquier promotor que sea capaz de iniciar la transcripción en una célula vegetal presente en las raíces de la planta. Tales promotores incluyen, pero no se limitan a, aquellos que pueden obtenerse a partir de plantas, virus y bacterias de plantas que contienen genes que se expresan en las plantas, tales como Agrobacterium y Rhizobium. Preferiblemente, el casete 20 de expresión de la invención comprende un promotor específico de la raíz, un promotor inducible por un patógeno, o un promotor inducible por un nemátodo. Más preferiblemente, el promotor inducible por un nemátodo es un promotor específico del sitio de alimentación del nemátodo parásito. Un promotor específico del sitio de alimentación del nemátodo parásito puede ser específico para células sincitiales o células gigantes o específico para ambos tipos de células. Un promotor es inducible, si su actividad, medida sobre la cantidad de ARN producida bajo el control del 25 promotor, es al menos 30%, 40%, 50%, preferiblemente al menos 60%, 70%, 80%, 90%, más preferiblemente al menos 100%, 200%, 300% más alta en su estado inducido, que en su estado no inducido. Un promotor es específico de la célula, del tejido o del órgano, si su actividad, medida sobre la cantidad de ARN producida bajo el control del promotor, es al menos 30%, 40%, 50%, preferiblemente al menos 60%, 70%, 80%, 90%, más preferiblemente al menos 100%, 200%, 300% más alta en un determinado tipo de célula, tejido u órgano, además en 30 otros tipos de células o tejidos de la misma planta, preferiblemente los otros tipos de células o tejidos son tipos de células o tejidos del mismo órgano de la planta, por ejemplo, una raíz. En el caso de promotores específicos de un órgano, la actividad del promotor tiene que ser comparada con la actividad del promotor en otros órganos de la planta, por ejemplo, hojas, tallos, flores o semillas.

El promotor puede ser constitutivo, inducible, preferido de una etapa de desarrollo, preferido de un tipo de célula, 35 preferido de un tejido o preferido de un órgano. Los promotores constitutivos son activos en la mayoría de condiciones. Ejemplos no limitantes de promotores constitutivos incluyen a los promotores 19S y 35S del CaMV (Odell et al., 1985, Nature 313: 810 - 812), al promotor 35S del CaMV SX (Kay et al., 1987, Science 236: 1299 1302), al promotor Sep1, al promotor de actina de arroz (McElroy et al., 1990, Plant Cell 2: 163 - 171), al promotor de actina de Arabidopsis, al promotor de ubiquitina (Christensen et al., 1989, Plant Molec. Biol.. 18: 675 - 689); pEmu 40 (Last et al., 1991, Theor Appl Genet 81: 581 - 588), al promotor 35S del virus del mosaico de escrofularia, al promotor Smas (Velten et al, 1984, EMBO J. 3: 2723 - 2730), al promotor GRP1-8, al promotor de la cinamil alcohol deshidrogenasa (Patente de los Estados Unidos No. 5.683.439), los promotores del ADN-T de Agrobacterium, tales como manopina sintasa, nopalina sintasa, y de la octopina sintasa, la subunidad pequeña del promotor de la ribulosa bifosfato carboxilasa (ssuRUBISCO), y similares. Se prefieren los promotores que expresan el ARN bicatenario en 45 una célula que es alcanzada por nemátodos parásitos. Alternativamente, el promotor puede dirigir la expresión del ARN bicatenario en un tejido de la planta distante del sitio de contacto con el nemátodo, y el ARN bicatenario puede ser transportado entonces por la planta hasta una célula que es alcanzada por el nemátodo parásito en células particulares de, o cerca de los sitios de alimentación del nemátodo, por ejemplo, células sincitiales o células gigantes.

50 Los promotores inducibles son activos bajo ciertas condiciones ambientales, tales como la presencia o la ausencia de un nutriente o metabolito, de frío o calor, luz, de un ataque por patógenos, de condiciones anaeróbicas, y similares. Por ejemplo, los promotores TobRB7, AtRPE, AtPyk10, Gemini19 y AtHMG1 han demostrado ser inducidos por nemátodos (para una revisión de los promotores inducibles por nemátodos, véase Ann Rev. Phytopathol (2002) 40: 191 - 219; veáse también la Patente de los Estados Unidos No. 6.593.513). Los métodos 55 para aislar promotores adicionales, que son inducibles por nemátodos se exponen en las Patentes de los Estados Unidos Nos. 5.589.622 y 5.824.876. Otros promotores inducibles incluyen al promotor hsp80 de la especie Brassica, que es inducible por choque térmico; al promotor PPDK que es inducido por luz; al promotor PR-1 del tabaco; Arabidopsis y maíz son inducibles por infección con un patógeno; y el promotor Adh1 es inducido por hipoxia y estrés por frío. La expresión de genes de plantas también puede ser facilitada a través de un promotor inducible 60 (para revisión, véase Gatz, 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 89 - 108). Los promotores químicamente inducibles son especialmente adecuados si se desea la expresión del gen específica en el tiempo. Los ejemplos no limitantes de tales promotores son un promotor inducible por ácido salicílico (Solicitud PCT No. WO

95/19443), un promotor inducible por tetraciclina (Gatz et al., 1992, Plant J. 2: 397 - 404) y un promotor inducible por etanol (solicitud PCT No. WO 93/21334).

Los promotores preferidos en etapa de desarrollo se expresan preferentemente en ciertas etapas del desarrollo. Los promotores preferidos de órganos y tejidos incluyen a aquellos que son preferentemente expresados en determinados tejidos u órganos, tales como hojas, raíces, semillas o xilema. Los ejemplos de promotores preferidos de los tejidos y preferidos de órganos incluyen, pero no se limitan a promotores preferidos de los frutos, preferidos del óvulo, preferidos de tejido macho, preferidos de la semilla, preferidos del integumento, preferidos de los tubérculos, preferidos del tallo, preferidos del pericarpio, y preferidos de la hoja, preferidos del estigma, preferidos del polen, preferidos de la antera, preferidos del pétalo, preferidos del sépalo, preferidos del pedicelo, preferidos de la silicua, preferidos del tallo, preferidos de la raíz y similares. Los promotores preferidos de la semilla se expresan preferentemente durante el desarrollo de la semilla y / o la germinación. Por ejemplo, los promotores preferidos de la semilla pueden ser preferidos del embrión, preferidos del endospermo y preferidos del recubrimiento de la semilla. Véase Thompson et al., 1989, BioEssays 10: 108. Los ejemplos de promotores preferidos de la semilla incluyen, pero no se limitan a celulosa sintasa (celA), Cim1, gamma-zeína, globulina-1, zeína del maíz de 19 kDa (cZ19B1) y similares.

Otros promotores adecuados preferidos del tejido o de órganos incluyen, pero no se limitan a, el promotor del gen de napina de la colza (Patente de los Estados Unidos No. 5.608.152), el promotor de USP de Vicia faba (Baeumlein et al., 1991, Mol Gen Genet. 225(3): 459 - 67), el promotor de oleosina de Arabidopsis (Solicitud PCT No. WO 98/45461), el promotor de faseolina de Phaseolus vulgaris (Patente de los Estados Unidos No. 5.504.200), el promotor de Bce4 de Brassica (Solicitud PCT No. WO 91/13980), o el promotor B4 de legúmina (LeB4;. Baeumlein et al., 1992, Plant Journal, 2(2): 233 - 9), así como promotores que confieren expresión específica de semilla en plantas monocotiledóneas como el maíz, la cebada, el trigo, el centeno, el arroz, etc. Los promotores adecuados a tener en cuenta son el promotor del gen lpt2 o lpt1 de la cebada (Solicitud PCT No. WO 95/15389 y la solicitud PCT No. WO 95/23230), o los descritos en la Solicitud PCT No. WO 99/16890 (promotores del gen de la hordelina de la cebada, del gen de la glutelina del arroz, del gen de la glutelina del arroz, del gen de la prolamina del arroz, del gen de la glutelina del trigo, del gen de la glutelina del centeno).

20

25

50

55

Otros promotores útiles en los casetes de expresión de la invención incluyen, pero no se limitan a, el promotor principal de la proteína de enlazamiento de clorofila a/b, los promotores de la histona, el promotor de Ap3, el promotor de β-conglicina, el promotor de napina, el promotor de lecitina de la soja, el promotor de zeína del maíz de 15 kD, el promotor de zeína de 22 kD, el promotor de zeína de 27 kD, el promotor de g-zeína, los promotores cerosos, shrunken 1, shrunken 2, y bronze, el promotor Zm13 (Patente de los Estados Unidos No. 5.086.169), los promotores de la poligalacturonasa del maíz (PG) (Patentes de los Estados Unidos Nos. 5.412.085 y 5.545.546), y el promotor SGB6 (Patente de los Estados Unidos No. 5.470.359), así como promotores sintéticos u otros naturales.

Un casete de expresión comprende una secuencia de control de la expresión operativamente enlazada a una secuencia de nucleótidos que es un molde para una o ambas cadenas del ARN bicatenario. El molde de ARN bicatenario comprende (a) un primer soporte que tiene secuencia sustancialmente idéntica a aquella de aproximadamente 19 a 500, o hasta la longitud completa, nucleótidos consecutivos de un gen tipo OPR3; y (b) una segunda cadena que tiene una secuencia sustancialmente complementaria a la primera cadena. En otras realizaciones, un promotor flanquea cualquier extremo de la secuencia de nucleótidos del molde, en donde los promotores dirigen la expresión de cada cadena individual de ADN, generando de este modo dos ARN complementarios que hibridan y forman el ARN bicatenario. En realizaciones alternativas, se transcribe la secuencia de nucleótidos en ambas cadenas del ARN bicatenario sobre una unidad de transcripción, en donde la cadena de sentido se transcribe a partir del extremo 5' de la unidad de transcripción y la cadena antisentido se transcribe a partir del extremo 3', en donde las dos cadenas están separadas por 3 a 500 pares de bases, y en donde después de la transcripción, la transcripción del ARN se pliega sobre sí misma para formar una horquilla.

El vector puede contener también un promotor bidireccional, que dirige la expresión de dos moléculas de ácido nucleico, con lo cual una molécula de ácido nucleico codifica para la secuencia sustancialmente idéntica a una porción de un gen tipo OPR3 y la otra molécula de ácido nucleico codifica para una segunda secuencia que es sustancialmente complementaria a la cadena primera y capaz de formar un ARN bicatenario, cuando se transcriben ambas secuencias. Un promotor bidireccional es un promotor capaz de mediar la expresión en dos direcciones.

El vector puede contener también dos promotores, uno que media la transcripción de la secuencia sustancialmente idéntica a una porción de un gen tipo OPR3 y otro promotor que media la transcripción de una segunda secuencia que es sustancialmente complementaria a la primera cadena y capaz de formar un ARN bicatenario, cuando se transcriben ambas secuencias. El segundo promotor puede ser un promotor diferente.

Un promotor diferente significa un promotor que tiene una actividad diferente en lo que respecta a la especificidad de

la célula o del tejido, o que muestra expresión sobre diferentes inductores, por ejemplo, patógenos, estrés abiótico o productos químicos. Por ejemplo, un promotor podría ser constitutivo o específico del tejido y otro podría ser específico del tejido o inducible por patógenos. En una realización un promotor media la transcripción de una molécula de ácido nucleico adecuada para la sobreexpresión de un gen tipo OPR3, mientras que otro promotor media la transcripción específica de la célula o del tejido de la transcripción o la expresión inducible por patógeno del ácido nucleico complementario.

La invención también está incluida en una planta transgénica capaz de expresar el ARN bicatenario mencionado anteriormente y por lo tanto inhibir los genes objetivo, por ejemplo, en las raíces, el sitio de alimentación, los sincitios y / o las células gigantes. La planta o la planta transgénica puede ser cualquier planta, tal como, pero sin limitarse a 10 árboles, flores cortadas, plantas ornamentales, vegetales o plantas de cultivo. La planta puede ser de un genero seleccionado del grupo que consiste de Medicago, Lycopersicon, Brassica, Cucumis, Solanum, Juglans, Gossypium, Malus, Vitis, Antirrhinum, Populus, Fragaria, Arabidopsis, Picea, Capsicum, Chenopodium, Dendranthema, Pharbitis, Pinus, Pisum, Oryza, Zea, Triticum, Triticale, Secale, Lolium, Hordeum, Glycine, Pseudotsuga, Kalanchoe, Beta, Helianthus, Nicotiana, Cucurbita, Rosa, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, 15 Linum, Geranium, Manihot, Daucus, Raphanus, Sinapis, Atropa, Datura, Hyoscyamus, Nicotiana, Petunia, Digitalis, Majorana, Ciahorium, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Browaalia, Phaseolus, Avena, y Allium, o se puede seleccionar la planta de un género seleccionado del grupo que consiste de Arabidopsis, Medicago, Lycopersicon, Brassica, Cucumis, Solanum, Juglans, Gossypium, Malus, Vitis, Antirrhinum, Brachipodium, Populus, Fragaria, Arabidopsis, 20 Picea, Capsicum, Chenopodium, Dendranthema, Pharbitis, Pinus, Pisum, Oryza, Zea, Triticum, Triticale, Secale, Lolium, Hordeum, Glycine, Pseudotsuga, Kalanchoe, Beta, Helianthus, Nicotiana, Cucurbita, Rosa, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Raphanus, Sinapis, Atropa, Datura Hyoscyamus, Nicotiana, Petunia, Digitalis, Majorana, Ciahorium, Lactuca, Bromus, Asparagus. Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, 25 Browaalia, Phaseolus, Avena, y Allium. En una realización, la planta es una planta de mono-cotiledónea o una planta dicotiledónea.

En otra realización de la planta es una planta de cultivo. Las plantas de cultivo son todas las plantas utilizadas en agricultura. Por consiguiente, en una realización la planta es una planta monocotiledónea, preferiblemente una planta de la familia Poaceae, Musaceae, Liliaceae o Bromeliaceae, preferentemente de la familia Poaceae. Por lo tanto, en aún otra realización la planta es una planta de Poaceae del género Zea, Triticum, Oryza, Hordeum, Secale, Avena, Saccharum, Sorghum, Pennisetum, Setaria, Panicum, Eleusine, Miscanthus, Brachypodium, Festuca o Lolium. Cuando la planta es del género Zea, la especie preferida es Z. mays. Cuando la planta es del género Triticum, la especie preferida es T. aestivum, T. speltae o T. durum. Cuando la planta es del género Oryza, la especie preferida es O. sativa. Cuando la planta es del género Hordeum, la especie preferida es H. vulgare. Cuando la planta es del género Secale, la preferida especies es S. cereale. Cuando la planta es de genero Avena, la especie preferida es A. sativa. Cuando la planta es del género Saccarum, la especie preferida es S. officinarum. Cuando la planta es del género Sorghum, la especie preferida es S. vulgare, S. bicolor o S. sudanense. Cuando la planta es del género Pennisetum, la especie preferida es P. glaucum. Cuando la planta es del género Setaria, la especie preferida es S. italica. Cuando la planta es del género Panicum, la especie preferida es P. miliaceum o P. virgatum. Cuando la planta es del género Eleusine, la especie preferida es E. coracana. Cuando la planta es del género Miscanthus, la especie preferida es M. sinensis. Cuando la planta es una planta del género Festuca, la especie preferida es F. arundinaria, F. rubra o F. pratensis. Cuando la planta es del género Lolium, la especie preferida es L. perenne o L. multiflorum. Alternativamente, la planta puede ser Triticosecale.

30

35

40

Alternativamente, en una realización la planta es una planta dicotiledónea, preferentemente una planta de la familia 45 Fabaceae, Solanaceae, Brassicaceae, Chenopodiaceae, Asteraceae, Malvaceae, Linacea, Euphorbiaceae, Convolvulaceae Rosaceae, Cucurbitaceae, Theaceae, Rubiaceae, Sterculiaceae o Citrus. En una realización, la planta es una planta de la familia Fabaceae, Solanaceae o Brassicaceae. Por consiguiente, en una realización la planta es de la familia Fabaceae, preferiblemente del género Glycine, Pisum, Arachis, Cicer, Vicia, Phaseolus, Lu-Pinus, Medicago o Lens. Las especies preferidas de la familia Fabaceae son M. truncatula, H. sativa, G. max, P. 50 sativum, A. hipogeos, C. arietinum, V. faba, P. vulgaris, Lupinus albus, Lupinus luteus, Lupinus angustifolius o Lens culinaris . Más preferidas son las especies G. Max, A. hipogeos y M. sativa. La más preferida es la especie G. max. Cuando la planta es de la familia Solanaceae, el género preferido es Solanum, Lycopersicon, Nicotiana o Capsicum. Las especies preferidas de la familia Solanaceae son S. tuberosum, L. esculentum, N. tabaccum o C. chinense. La más preferida es S. tuberosum. Por consiguiente, en una realización la planta es de la familia Brassicaceae, 55 preferiblemente del género Brassica o Raphanus. Las especies preferidas de la familia Brassicaceae son las especies B. napus, B. oleracea, B. juncea y B. rapa. La más preferida es la especie B. napus. Cuando la planta es de la familia Chenopodiaceae, el género preferido es Beta y la especie preferida es la B. vulgaris. Cuando la planta es de la familia Asteraceae, el género preferido es Helianthus y la especie preferida es H. annuus. Cuando la planta es de la familia Malvaceae, el género preferido es Gossypium o Abelmoschus. Cuando el género es Gossypium, la 60 especie preferida es G. hirsutum o G. barbadense y la especie más preferidas es G. hirsutum. Una especie preferida del género Abelmoschus es la especie A. esculentus. Cuando la planta es de la familia Linacea, el género preferido es Linum y la especie preferida es L. usitatissimum. Cuando la planta es de la familia Euphorbiaceae, del género preferido es Manihot, Jatropa o Rhizinus y las especies preferidas son M. esculenta, J. curcas o R. comunis. Cuando la planta es de la familia Convolvulaceae, el género preferido es Ipomea y la especie preferida es I. batatas. Cuando la planta es de la familia Rosaceae, el género preferido es Rosa, Malus, Pyrus, Prunus, Rubus, Ribes, Vaccinium o Fragaria y la especie preferida es el híbrido Fragaria xananassa. Cuando la planta es de la familia Cucurbitaceae, el género preferido es Cucumis, Citrullus o Cucurbita y la especie preferida es Cucumis sativus, Citrullus lanatus o Cucurbita pepo. Cuando la planta es de la familia Theaceae, el género preferido es Camellia y la especie preferida es C. arábica o C. canephora. Cuando la planta es de la familia Sterculiaceae, el género preferido es Theobroma y la especie preferida es T. cacao. Cuando la planta es del género Citrus, la especie preferida es C. sinensis, C. limon, C. reticulata, C. maxima y los híbridos de la especie Citrus, o similares. En una realización preferida de la invención, la planta es una planta de soja, de patata o de maíz. En una realización, la planta es una planta Fabaceae y el gen objetivo es sustancialmente similar al de las SEQ ID NOs: 1, 2 ó 29.

Los métodos adecuados para transformar o transfectar células huésped incluidas células vegetales son bien conocidos en el arte de la biotecnología de plantas. Cualquier método puede ser utilizado para transformar el vector de expresión recombinante en células de plantas para producir las plantas transgénicas de la invención. Los métodos generales para la transformación de plantas dicotiledóneas se describen, por ejemplo, en las Patentes de los Estados Unidos Nos. 4.940.838, 5.464.763, y similares. Los métodos para la transformación de plantas dicotiledóneas específicas, por ejemplo, algodón, se exponen en las Patentes de los Estados Unidos Nos. 5.004.863, 5.159.135 y 5.846.797. Los métodos de transformación de soja que pueden ser utilizados se exponen en las Patentes de los Estados Unidos Nos. 4.992.375, 5.416.011, 5.569.834, 5.824.877, 6.384.301 y en EP 0301749B1.

Los métodos de transformación puede incluir métodos de transformación directos e indirectos. Los métodos directos adecuados incluyen la incorporación de ADN inducida por polietilén glicol, la transformación mediada por liposomas (Patente de los Estados Unidos No. 4.536.475), métodos biolísticos utilizando la pistola de genes (Fromm M. E. et al, Biol/Technology 8 (9): 833 - 9, 1990; Gordon-Kamm et al. Plant Cell 2: 603, 1990), electroporación, incubación de embriones secos de la planta en una solución que contiene ADN, y microinyección. En el caso de estos métodos de transformación directa, los plásmidos utilizados no tienen que cumplir ningún requerimiento particular. Se pueden utilizar plásmidos simples, tales como aquellos de la serie pUC, pBR322, de la serie M13mp, pACYC184 y similares. Si se deben regenerar plantas intactas a partir de células transformadas, se localiza preferiblemente un gen marcador seleccionable adicional sobre el plásmido. Las técnicas de transformación directa son igualmente adecuadas para plantas dicotiledóneas y monocotiledóneas.

La transformación también puede llevarse a cabo por medio de infección bacteriana a través de Agrobacterium (por ejemplo el documento EP 0 1 16 718), de infección viral por medio de vectores virales (EP 0 067 553; la Patente de los Estados Unidos No. 4.407.956, WO 95/34668, WO 93/03161) o por medio de polen (EP 0 270 356, WO 85/01856; la Patente de los Estados Unidos No. 4.684.611). Las técnicas de transformación basadas en Agrobacterium (especialmente para las plantas dicotiledóneas) son bien conocidas en el arte. La cepa de Agrobacterium (por ejemplo, Agrobacterium tumefaciens o Agrobacterium rhizogenes) incluyen un plásmido (plásmido Ti o Ri) y un elemento de ADN-T que se transfiere a la planta después de la infección con Agrobacterium. El ADN-T (ADN transferido) se integra dentro del genoma de la célula vegetal. El ADN-T puede estar localizado sobre el plásmido Ti o Ri o está incluido por separado en el así llamado vector binario. Los métodos para la transformación mediada por Agrobacterium se describen, por ejemplo, en Horsch R. B. et al. (1985) Science 225: 1229. La transformación mediada por Agrobacterium se adapta mejor a las plantas dicotiledóneas, pero también se ha adaptado a las plantas monocotiledóneas. La transformación de plantas por medio de Agrobacterium se describe, por ejemplo, en White F. F., Vectors for Gene Transfer in Higher Plants, Transgenic Plants, Vol. 1, Engineering and Utilization, editado por S. D. Kung y R. Wu, Academic Press, 1993, páginas 15 - 38; Jenes B et al. Techniques for Gene Transfer, Vol. 1, Engineering and Utilization, editado por S. D. Kung y R. Wu, Academic Press, 1993, páginas 128 - 143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol. 42: 205 - 225.

35

40

45

55

La transformación puede dar lugar a transformación y expresión estables o transitorias. Aunque se puede insertar una secuencia de nucleótidos de la presente invención en cualquier planta y célula de la planta que caiga dentro de estas clases amplias, es particularmente útil en las células de plantas de cultivo.

Diferentes tejidos son adecuados como material de partida (explantes) para el proceso de transformación mediado por Agrobacterium incluyendo pero sin limitarse a callo (Patente de los Estados Unidos No. 5.591,616; EP-A1 604 662), embriones de planta inmaduras (EP-A1 672 752), polen (Patente de los Estados Unidos No. 5.929.300), ápice del brote (Patente de los Estados Unidos No. 5.164.310), o en transformación de planta (Patente de los Estados Unidos No. 5.994.624). El método y el material descritos en este documento se puede combinar con casi todos los métodos de transformación mediados por Agrobacterium conocidos en el arte. Las plantas transgénicas de la invención se pueden cruzar con plantas transgénicas similares o con plantas transgénicas que carecen de los ácidos nucleicos de la invención o con plantas no transgénicas, utilizando métodos conocidos de fitomejoramiento de plantas, para preparar las semillas. Además, la planta transgénica de la presente invención puede incluir, y / o ser

cruzada con otra planta transgénica que comprende uno o más ácidos nucleicos, creando así una "pila" de transgenes en la planta y / o en su progenie. Se planta luego la semilla para obtener una planta transgénica fértil cruzada que contiene el ácido nucleico de la invención. La planta transgénica fértil cruzada puede tener el casete de expresión particular heredado a través de un progenitor hembra o a través de un progenitor macho. La segunda planta puede ser una planta endogámica. La planta transgénica fértil cruzada puede ser un híbrido. También se incluyen dentro de la presente invención semillas de cualquiera de estas plantas transgénicas fértiles cruzadas. Las semillas de esta invención pueden ser cosechadas de las plantas transgénicas fértiles y ser utilizadas para cultivar generaciones de progenie de plantas transformadas de la presente invención, incluyendo líneas de plantas híbridas que contienen el constructo de ADN.

10 El "apilamiento de genes" también puede lograrse mediante la transferencia de dos o más genes en el núcleo de la célula por transformación de las plantas. Múltiples genes pueden ser introducidos en el núcleo de la célula durante la transformación ya sea en forma secuencial o al unísono. Se puede reducir la expresión de múltiples genes en plantas o en especies patógenas objetivo por medio de mecanismos de silenciamiento de genes, específicamente ARNi, por medio del uso de un solo transgén que dirige múltiples secuencias parciales de intereses. También se 15 pueden sobreexpresar múltiples genes apilados bajo el control de promotores individuales para obtener un fenotipo deseado único o múltiple. Los constructos que contienen pilas de genes tanto de genes sobreexpresados como de objetivos silenciados también pueden ser introducidos en plantas que producen fenotipos agronómicamente importantes únicos o múltiples. En ciertas realizaciones las secuencias de ácido nucleico de la presente invención se puede apilar con cualquier combinación de secuencias de polinucleótidos de interés para crear fenotipos deseados. 20 Las combinaciones pueden producir plantas con una variedad de combinaciones de rasgos incluyendo, pero sin limitarse a, resistencia a enfermedades, tolerancia a los herbicidas, mejora el rendimiento, tolerancia a la seguía y al frío. Estas combinaciones apiladas pueden ser creadas por cualquier método incluyendo, pero sin limitarse a cruzamiento de plantas para fitomejoramiento por medio de métodos convencionales o por transformación genética. Si se amontonan los rasgos por transformación genética, las secuencias de polinucleótidos de interés se pueden 25 combinar de forma secuencial o simultánea en cualquier orden. Por ejemplo, si se van a introducir dos genes, las dos secuencias pueden estar contenidas en casetes de transformación separados o en el mismo casete de transformación. La expresión de las secuencias puede ser dirigida por los mismos promotores o diferentes.

De acuerdo con esta realización, se produce la planta transgénica de la invención por un método que comprende las etapas de proporcionar un gen objetivo tipo OPR3, la preparación de un casete de expresión que tiene una primera región que es sustancialmente idéntica a una porción del gen seleccionado tipo OPR3 y una segunda región que es complementaria a la primera región, la transformación del casete de expresión en una planta, y la selección de la progenie de la planta transformada que expresa al constructo de ARN bicatenario mencionado anteriormente.

Una mayor resistencia a la infección por nemátodos es un rasgo general deseado que se hereda en una amplia variedad de plantas. La presente invención puede ser utilizada para reducir la destrucción de cultivos por cualquier nemátodo parásito de las plantas. Preferiblemente, los nemátodos parásitos pertenecen a familias de nemátodos que inducen células gigantes o sincitiales. Los nemátodos que inducen células gigantes o sincitiales se encuentran en las familias Longidoridae, Trichodoridae, Heterodidae, Meloidogynidae, Pratylenchidae o Tylenchulidae. En particular, en las familias Heterodidae y Meloidogynidae.

35

50

55

En consecuencia, los nemátodos parásitos objetivo de la presente invención pertenecen a uno o más géneros seleccionados entre el grupo de Naccobus, Cactodera, Dolichodera, Globodera, Heterodera, Punctodera, Longidorus o Meloidogyne. En una realización preferida, los nemátodos parásitos pertenecen a uno o más géneros seleccionados entre el grupo de Naccobus, Cactodera, Dolichodera, Globodera, Heterodera, Punctodera o Meloidogyne. En una realización más preferida los nemátodos parásitos pertenecen a uno o más géneros seleccionados entre el grupo de Globodera, Heterodera, o Meloidogyne. En una realización aún más preferida, los nemátodos parásitos pertenecen a uno o a ambos géneros seleccionados entre el grupo de Globodera o Heterodera. En otra realización, los nemátodos parásitos pertenecen al género Meloidogyne.

Cuando los nemátodos parásitos son del género Globodera, las especies son preferiblemente del grupo que consiste de G. achilleae, G. artemisiae, G. hypolysi, G. mexicana, G. millefolii, G. mali, G. pallida, G. rostochiensis, G. tabacum, y G. virginiae. En otra realización preferida, los nemátodos parásitos Globodera incluyen al menos una de las especies G. pallida, G. tabacum, o G. rostochiensis. Cuando los nemátodos parásitos son del género Heterodera, las especies pueden ser preferiblemente del grupo que consiste de H. avenae, H. carotae, H. ciceri, H. cruciferae, H. delvii, H. elachista, H. filipjevi, H. gambiensis, H. glycines, H. goettingiana, H. graduni, H. humuli, H. hordecalis, H. latipons, H. major, H. medicaginis, H. oryzicola, H. pakistanensis, H. rosii, H. sacchari, H. schachtii, H. sorghi, H. trifolii, H. urticae, H. vigni y H. zeae. En otra realización preferida, los nemátodos parásitos de Heterodera incluyen al menos uno de la especie H. glycines, H. avenae, H. cajani, H. Gottingiana, H. trifolii, H. zeae o H. schachtii. En una realización más preferida, los nemátodos parásitos incluyen al menos uno de la especie H. glycines o H. schachtii. En una realización más preferida, el nemátodo parásito es la especie H. glycines.

Cuando los nemátodos parásitos son del género Meloidogyne, el nemátodo parásito puede ser seleccionado del

grupo que consiste de M. acronea, M. arabica, M. arenaria, M. artiellia, M. brevicauda, M. camelliae, M. chitwoodi, M. cofeicola, M. esigua, M. graminicola, M. hapla, M. incognita, M. indica, M. inomata, M. javanica, M. lini, M. mali, M. microcephala, M. microtyla, M. naasi, M. salasi y M. thamesi. En una realización preferida, los nemátodos parásitos incluyen al menos uno de la especie M. javanica, M. incognita, M. hapla, M. arenaria o M. chitwoodi.

5 Los siguientes ejemplos no pretenden limitar el alcance de las reivindicaciones de la invención, sino por el contrario están destinadas a servir como ejemplo de ciertas realizaciones. Cualquier variación en los métodos ejemplificados que se presenten a la persona capacitada se pretende que caigan dentro del alcance de la presente invención.

Breve descripción de los dibujos

La figura 1 muestra la tabla de las SEQ ID NOs asignadas a las secuencias correspondientes.

- Las figuras 2a 2c muestran una alineación de aminoácidos de las proteínas del tipo OPR3: la proteína tipo GmOPR3 de longitud completa (SEQ ID NO: 30), Q9FEW9 de tomate (SEQ ID NO: 8), la proteína codificada por At2g06050 de Arabidopsis (SEQ ID NO: 10), AAY27752 de Hevea (SEQ ID NO: 12), EAZ42984 de arroz (SEQ ID NO: 14), AAY26527 de maíz (SEQ ID NO: 16), AAY26528 de maíz (SEQ ID NO: 18), EG030595 de Arachis (SEQ ID NO: 20), la proteína codificada por TA29350_4113 de Solanum (SEQ ID NO: 22), la proteína codificada por TA4283_3760 de Prunus (SEQ ID NO: 24), la proteína codificada por TA4248_49390 de Coffea (SEQ ID NO: 28). La alineación se realizó con el paquete
- 26) y la proteína codificada por TA7248_49390 de Coffea (SEQ ID NO: 28). La alineación se realizó con el paquete de software Vector NTI (penalización por apertura de un espacio = 10, penalización por extensión del espacio = 0,05, penalización por separación del espacio = 8). Se determinó la secuencia tipo GmOPR3 de longitud completa a través de PCR RACE 5' como se describe en el Ejemplo 4.
- La figura 3 muestra el porcentaje de identidad global de aminoácidos de ejemplos de genes tipo OPR3: proteína tipo GmOPR3 de longitud completa (SEQ ID NO: 30), Q9FEW9 de tomate (SEQ ID NO: 8), la proteína codificada por At2g06050 de Arabidopsis (SEQ ID NO: 10), AAY27752 de Hevea (SEQ ID NO: 12), EAZ42984 de arroz (SEQ ID NO: 14), AAY26527 de maíz (SEQ ID NO: 16), AAY26528 de maíz (SEQ ID NO: 18), EG030595 de Arachis (SEQ ID NO: 20), la proteína codificada por TA29350_41 13 de Solanum (SEQ ID NO: 22), la proteína codificada por
- TA4283_3760 de Prunus (SEQ ID NO: 24), la proteína codificada por TA23750_3635 de Gossypium (SEQ ID NO: 26) y la proteína codificada por TA7248_49390 de Coffea (SEQ ID NO: 28). Las alineaciones por pares y el porcentaje de identidad se calcularon utilizando Needle de EMBOSS-4.0.0 (Needleman, S. B. y Wunsch, C. D. (1970) J. Mol. Biol. 48, 443 453).
- La figura 4 muestra el porcentaje de identidad global de ejemplos de nucleótidos de genes tipo OPR3: el ADN tipo GMOPR3 de longitud completa (SEQ ID NO: 29), ADN para Q9FEW9 de tomate (SEQ ID NO: 7), ADN para At2g06050 de Arabidopsis (SEQ ID NO: 9), ADN para AAY27752 de Hevea (SEQ ID NO: 11), ADN para EAZ42984 del arroz (SEQ ID NO: 13), ADN para AAY26527 de maíz (SEQ ID NO: 15), ADN para AAY26528 de maíz (SEQ ID NO: 17), ADN para EG030595 de Arachis (SEQ ID NO: 19), ADN para TA29350_4113 de Solanum (SEQ ID NO: 21), ADN para TA4283_3760 de Prunus (SEQ ID NO: 23), ADN para TA23750_3635 de Gossypium (SEQ ID NO: 35) y ADN para TA7248_49390 de Coffea (SEQ ID NO: 27). Las alineaciones por pares y el porcentaje de identidad
 - se calcularon utilizando la Needle de EMBOSS-4.0.0.

Las figuras 5a - 5j muestran diferentes 21 mers por la posible posición de los nucleótidos para los ejemplos de polinucleótidos que codifican el tipo OPR3 de las SEC ID NOs: 1, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, o una secuencia de polinucleótidos que codifica un homólogo tipo OPR3.

40 EJEMPLOS

Ejemplo 1: Clonación del gen tipo OPR3 de soja

Se germinó Glycine max cv. Williams 82 y un día después, se inoculó cada plántula con juveniles de la segunda etapa (J2) de H. glycines raza 3. Seis días después de la inoculación, se tomaron nuevas muestras de tejido de la raíz en trozos de 1 cm de largo, se las fijó, embebió en un Cryomold y se hizo una selección utilizando métodos conocidos. Se identificaron las células de sincitios por su morfología única de tamaño de celda alargada, pared celular engrosada, y citoplasma denso y se hizo una disección en amortiguador de extracción de ARN utilizando un microscopio PALM (P. A. L. M. Microlaser Technologies GmbH, Bemried, Alemania).

Se extrajo, amplificó y marcó en forma fluorescente ARN celular total, utilizando métodos conocidos. Como controles, se aisló ARN total tanto de raíces de control "sin sincitios" como no tratadas sometidas al mismo proceso de amplificación del ARN. El ARN amplificado se hibridó con arreglos patentados de ADNc de soja.

Se identificó el clon de ADNc de soja 45174942 por tener expresión reducida en sincitios de las raíces de soja infectadas con SCN. Se determinó que la secuencia de ADNc 45174942 (SEQ ID NO: 1) no era de longitud completa ya que no hay un codón de inicio ATG. Se identificaron los residuos restantes en la secuencia de longitud completa (SEQ ID NO: 29) correspondiente a 45174942 a través de PCR RACE 5' como se describe en el Ejemplo 4.

Tabla 2

Nombre del Gen	Sincitios # 1 (N)	Sincitios # 2 (N)	Sin sincitios	Raíces de control
45174942 [§]	311 ± 54(4)	194 ± 46(5)	no detectado	no detectadas

Ejemplo 2. Generación de raíces de soja transgénica y bioensayo con nemátodos

Este método de ejemplo emplea vectores binarios que contienen el gen objetivo 45174942. El vector se compone de un fragmento de sentido (SEQ ID NO: 2) y el gen objetivo 45174942, un espaciador, un fragmento antisentido del gen objetivo y una columna vertebral de vector. El fragmento de gen objetivo (SEQ ID NO: 2) correspondiente a los nucleótidos 556 a 784 de la SEQ ID NO: 1 se utilizó para construir los vectores binarios RCB564, RCB573 y RCB582. En estos vectores, el ARN bicatenario para el gen objetivo tipo OPR3 se expresó bajo un promotor preferido de sincitios o de la raíz, un promotor de TPP (SEQ ID NO: 4) en RCB564, un promotor de A. thaliana del locus At5g12170 (SEQ ID NO: 5), en un promotor RCB573 o tipo MtN3 (SEQ ID NO: 6) en RCB582. Estos promotores dirigen la expresión del transgén preferentemente en las raíces y / o en los sincitios o células gigantes. El marcador de selección para la transformación era la forma mutada del gen de selección de la acetohidroxi ácido sintasa (AHAS) (también denominado como AHAS2) de Arabidopsis thaliana (Sathasivan et al., Plant Phys. 97: 1044 - 50, 1991), que confiere resistencia al herbicida ARSENAL (Imazapyr, BASF Corporation, Mount Olive, Nueva Jersey). La expresión de AHAS2 fue impulsada por un promotor de ubiquitina del perejil (WO 03/102198).

Ejemplo 3. Ensayos de explantes enraizados

5

25

30

35

40

50

El ensayo del explante enraizado fue empleado para demostrar la expresión de ARN bicatenario y la resistencia resultante a los nemátodos. Este ensayo puede ser encontrado en la solicitud en trámite 12/001.234, cuyos contenidos se incorporan aquí como referencia.

Se esterilizó la superficie de semillas de soja limpias de la variedad cultivada y se germinaron. Tres días antes de la inoculación, se inició un cultivo líquido durante la noche del cultivo desactivado de Agrobacterium, por ejemplo, la cepa desactivada de A. rhizogenes K599 que contiene al vector binario RCB564, RCB573 o RCB582. Al siguiente día, se esparció el cultivo sobre una placa de agar LB que contenía kanamicina como un agente de selección. Las placas se incubaron a 28° C durante dos días. Se preparó una placa por cada 50 explantes a ser inoculados. Se utilizaron los cotiledones que contienen el extremo próximo de su conexión con las plántulas como el explante para la transformación. Después de retirar los cotiledones se raspó la superficie con un bisturí alrededor del sitio de corte. El cotiledón cortado y raspado fue el objetivo para la inoculación de Agrobacterium. Los explantes preparados se sumergieron en las colonias desactivadas gruesas de A. rhizogenes preparadas anteriormente de modo que las colonias eran visibles sobre la superficie cortada y raspada. Los explantes fueron luego colocados en agar al 1% en placas de Petri para el co-cultivo bajo la luz durante 6 - 8 días.

Después de la transformación y el co-cultivo, los explantes de soja se transfirieron a medio de inducción del enraizamiento con un agente de selección, por ejemplo S-B5-708 para el gen de la acetohidroxi ácido sintasa mutada (AHAS) (Sathasivan et al., Plant Phys. 97: 1044 - 50, 1991). Los cultivos se mantuvieron en la misma condición que en la etapa de co-cultivo. El medio S-B5-708 se compone de: sales B5 0,5X, MES 3 mM, sacarosa al 2%, vitaminas B5 1X, 400 µg/ml de Timentina, agar Noble al 0,8%, e Imazapyr 1 mM (agente de selección para el gen de AHAS) (BASF Corporation, Florham Park, NJ) a pH 5,8.

Dos a tres semanas después de la selección e inducción de la raíz, se formaron las raíces transformadas sobre los extremos cortados de los explantes. Se trasfirieron los explantes al mismo medio de selección (medio S-B5-708) para selección adicional. Las raíces transgénicas proliferaron bien en el lapso de una semana en el medio y estaban listas para ser sub-cultivadas.

Se cortaron las raíces de soja blancas y fuertes de los explantes enraizados y se las cultivó en un medio de crecimiento para las raíces suplementado con 200 mg/l de Timentina (medio S-MS-606) en placas de seis pozos. Los cultivos se mantuvieron a temperatura ambiente a oscuras. El medio S-MS-606 contiene: sales MS 0,2X y vitaminas B5, sacarosa al 2%, y 200 mg/l de Timentina a pH 5,8.

De uno a cinco días después del subcultivo, las raíces fueron inoculadas con nemátodos juveniles esterilizados de superficie en placas de múltiples pozos para el gen de interés. Como control, se utilizaron raíces del vector de

control de Jack y el vector de control Williams 82 de la variedad de cultivo de soja. Los cultivos de raíces de cada línea que ocupaban al menos la mitad del pozo fueron inoculados con la raza 3 descontaminada en la superficie del nemátodo juvenil de segunda etapa (J2) del quiste de soja (SCN) a nivel de 500 J2/pozo. Se sellaron luego las placas y se las volvió a colocar en la incubadora a 25 ° C en la oscuridad. Se generaron varias líneas de raíces independientes a partir de cada transformación del vector binario y se utilizaron las líneas para el bioensayo. Cuatro semanas después de la inoculación del nemátodo, se contaron los quistes en cada pozo. Para cada línea transformada, el número promedio de quistes por línea, el índice femenino y los valores de error estándar se determinaron a través de varios pozos replicados (índice femenino = número promedio de quistes del SCN que se desarrollan sobre las raíces transgénicas expresado como el porcentaje del número promedio de quistes que se desarrollan sobre las raíces de control susceptibles de tipo silvestres W82). Múltiples experimentos independientes, biológicamente replicados, se realizaron para cada constructo de expresión. Los cultivos de explantes enraizados transformados con los constructos RCB564 RCB573 y RCB582 exhibieron una tendencia general de un número reducido de quistes y un índice femenino en relación con la variedad susceptible conocida, Williams 82.

Ejemplo 4. PCR RACE para la región de codificación 45174942 de longitud completa del clon

- Se aisló una secuencia de longitud completa de la transcripción con 100% de homología con el clon de ADNc parcial 45174942 (SEQ ID NO: 1) utilizando el kit de GeneRacer (L1502-01) de Invitrogen siguiendo las instrucciones del fabricante. Se preparó el ARN total de las raíces de soja recolectado 6 días después de la infección con SCN de acuerdo con el protocolo del kit GeneRacer de Invitrogen. Se transcribió en forma inversa el ARN preparado de acuerdo con el protocolo del kit GeneRacer y se lo utilizó como el molde de la biblioteca de RACE para la PCR para aislar los extremos del ADNc 5' utilizando las reacciones PCR primarias y secundarias (anidadas) según el protocolo del kit GeneRacer. Las reacciones PCR anidadas se llevaron a cabo de acuerdo con las instrucciones del fabricante para obtener el producto de amplificación deseado.
- Los productos específicos de la reacción PCR secundaria fueron separados por medio de electroforesis en gel. Los fragmentos fueron purificados a partir del gel de agarosa y clonados en vectores pCR4-TOPO (Invitrogen) siguiendo las instrucciones del fabricante. Las colonias resultantes fueron sometidas a miniprep y secuenciadas. Uno de los fragmentos de longitud completa descritos como la SEQ ID NO: 29 (ADN tipo GmOPR3 de longitud completa) tenía 100% de identidad con la región de superposición de la SEQ ID NO: 1 (secuencia de ADN 45174942). La alineación entre las proteínas codificadas por la secuencia tipo GmOPR3 de Glycine de longitud completa y los genes tipo OPR3 de otras especies de plantas se muestra en las Figuras 2a 2c.
- Aquellos capacitados en el arte reconocerán, o serán capaces de determinar usando únicamente experimentación rutinaria, muchos equivalentes para las realizaciones específicas de la invención aquí descrita. Se pretende que tales equivalentes estén abarcados por las reivindicaciones que se presentan más adelante.

LISTADO DE SECUENCIAS

<110> BASF Plant Science GmbH

35 Wiig, Aaron

<120> Composiciones y Métodos que Utilizan ARN de Interferencia del tipo OPR3

<130> PF 58862

<160> 30

<170> PatentIn versión 3.4

40 <210> 1

<211> 1410

<212> ADN

<213> Glycine max

	cagataactc	aattagctta	ttttctccat	acaacaagat	gggcaaattc	aacctctctc	60
	atagggtggt	attggctccc	atgaccagat	gcagagcgct	caatgggact	ccactggcag	120
	cacatgctga	atactacgct	cagagatcaa	caccgggtgg	atttctcatc	actgaaggca	180
	ccttgatctc	tccaacttct	tctgggtttc	ctcatgttcc	tggaatatac	tcagatgaac	240
	aggtagaggc	atggagaaat	gtagtggacg	ccgtgcatgc	caacggcagc	tttatcttct	300
	gtcaactctg	gcatgttggc	cgtgcatcac	atccagtgta	tcagcctggt	ggggctctac	360
	cctcttcgtc	caccagcaaa	cccatatcag	acaagtggaa	aattctcatg	cccgatggct	420
	cccatggcat	ctatccagag	cctcgtgcac	ttaccacttc	tgagatatct	gaaatagtgc	480
	atcattatcg	ccaagcagct	attaatgcaa	ttcgagcagg	ttttgatgga	atcgagattc	540
	atggagcaca	tgggtatctc	attgatcaat	tcttaaagga	tgcaatcaat	gatagaacag	600
	atgaatacgg	tggaccacta	gaaaaccggt	gcaggttctt	aatggaggta	gttgaagctg	660
	ttgtctctgc	cattggagcg	gaaagagttg	ctatcagaat	ttcaccagca	attgatttca	720
	atgacgcctt	tgactctgac	ccacttgggc	taggcttagc	agtgattgaa	agactcaaca	780
	atttgcagaa	acaagtgggc	acaaaactcg	cttatcttca	tgttactcag	cctcgattca	840
	cacttttggc	gcaaaccgag	tcagtgagtg	aaaaggagga	agctcatttc	atgcagaaat	900
	ggagagaggc	ttatgaggga	acattcatgt	gtagtggagc	ttttactagg	gactcaggaa	960
	tggaagctgt	agctgaaggc	catgctgatt	tggtatccta	tggtcgtctt	ttcatctcca	1020
	atccagactt	ggttttaagg	cttaagctca	atgcacctct	taccaagtat	aacaggaaca	1080
	cattttacac	ccaagatcct	gttataggct	acacagatta	tcctttcttt	aatggaacaa	1140
	ctgagacaaa	attaagtaac	tagctaaggc	catgcatgcc	ctttaatttt	aatctccata	1200
	tggctttttg	aataataatg	ttcataacat	tcaaaactct	tcagttgagt	ttatcctcag	1260
	acaaacaaat	taagtggttc	attcacttgt	tagggtattt	agatcttagg	ttaattagtc	1320
	tccggcattt	tgatttcatt	tcaatttgta	ttcagtcttt	cattttgaat	aaaataatat	1380
	taagttttt	gccttaaaaa	aaaaaaaaa				1410
<2	210> 2						
<2	211> 229						
<2	212> ADN						
<2	213> Glycine max						
<4	100> 2						
	atctcattga	tcaattctta	aaggatgcaa	tcaatgatag	aacagatgaa	tacggtggac	60
	cactagaaaa	ccggtgcagg	ttcttaatgg	aggtagttga	agctgttgtc	tctgccattg	120
	gagcggaaag	agttgctatc	agaatttcac	cagcaattga	tttcaatgac	gcctttgact	180
	ctgacccact	tagactagac	ttancantna	ttgaaagact	caacaattt		229

<210>3

<211> 386

<212> PRT

<213> Glycine max

5 <400>3

Asp Asn Ser Ile Ser Leu Phe Ser Pro Tyr Asn Lys Met Gly Lys Phe 1 10 15 Asn Leu Ser His Arg Val Val Leu Ala Pro Met Thr Arg Cys Arg Ala 20 25 30 Leu Asn Gly Thr Pro Leu Ala Ala His Ala Glu Tyr Tyr Ala Gln Arg 35 40 45 Thr Pro Gly Gly Phe Leu Ile Thr Glu Gly Thr Leu Ile Ser Pro 50 60 Thr Ser Ser Gly Phe Pro His Val Pro Gly Ile Tyr Ser Asp Glu Gln 65 70 75 80 Val Glu Ala Trp Arg Asn Val Val Asp Ala Val His Ala Asn Gly Ser 85 90 95 Phe Ile Phe Cys Gln Leu Trp His Val Gly Arg Ala Ser His Pro Val 100 105 110 Tyr Gln Pro Gly Gly Ala Leu Pro Ser Ser Ser Thr Ser Lys Pro Ile 115 120 125 Ser Asp Lys Trp Lys Ile Leu Met Pro Asp Gly Ser His Gly Ile Tyr 130 135 140 Pro Glu Pro Arg Ala Leu Thr Thr Ser Glu Ile Ser Glu Ile Val His 145 150 155 160 His Tyr Arg Gln Ala Ala Ile Asn Ala Ile Arg Ala Gly Phe Asp Gly
165 170 175 Ile Glu Ile His Gly Ala His Gly Tyr Leu Ile Asp Gln Phe Leu Lys 180 185 190

Asp Ala Ile Asn Asp Arg Thr Asp Glu Tyr Gly Gly Pro Leu Glu Asn 195 200 Arg Cys Arg Phe Leu Met Glu Val Val Glu Ala Val Val Ser Ala Ile 210 215 220 Gly Ala Glu Arg Val Ala Ile Arg Ile Ser Pro Ala Ile Asp Phe Asn 225 230 235 240 Asp Ala Phe Asp Ser Asp Pro Leu Gly Leu Gly Leu Ala Val Ile Glu 245 250 Arg Leu Asn Asn Leu Gln Lys Gln Val Gly Thr Lys Leu Ala Tyr Leu 260 265 270 His Val Thr Gln Pro Arg Phe Thr Leu Leu Ala Gln Thr Glu Ser Val 275 280 285 Ser Glu Lys Glu Glu Ala His Phe Met Gln Lys Trp Arg Glu Ala Tyr 290 295 300 Glu Gly Thr Phe Met Cys Ser Gly Ala Phe Thr Arg Asp Ser Gly Met 305 310 315 320 Glu Ala Val Ala Glu Gly His Ala Asp Leu Val Ser Tyr Gly Arg Leu 325 330 335 Phe Ile Ser Asn Pro Asp Leu Val Leu Arg Leu Lys Leu Asn Ala Pro 340 350 Leu Thr Lys Tyr Asn Arg Asn Thr Phe Tyr Thr Gln Asp Pro Val Ile 355 360 365 Gly Tyr Thr Asp Tyr Pro Phe Phe Asn Gly Thr Thr Glu Thr Lys Leu 370 375 380 Ser Asn 385

<210> 4

<211> 1999

<212> ADN

5 <213> Arabidopsis thaliana

gtagtgccct	tcatggatac	caaaagagaa	aatttgattt	agtgcataca	tataacaata	60
taacgccgca	taataatact	gtataaaaca	gtcatgtaac	gatatgacag	cagtaataca	120
gttccaagag	acgttataat	cgtatgcaat	catatgcttg	cgtagatttt	ccaacagttt	180
tgtttcgttg	ataggaggaa	ctcaacactc	tagggtagtg	attggtagac	actattagca	240
caaaaaatat	taattttact	ctgatgttta	ccaaaaaagt	taccaatcaa	atatttaaga	300
gatcgtactc	ttccacggcg	actctaaaaa	ccaaagatat	aggttagact	cataactact	360
ttataaagaa	aatgtttaac	gataactacc	gagatctaat	aaataaacct	tcattttcaa	420
gtatattata	tttgcttctt	ttgtttatat	atcaaaccaa	gttctggttt	ataaaaatat	480
tagataaaac	tcgtctaaat	aggtaggtgt	aaaataaaat	tttaaatttt	tatcgataat	540
_	_	ataatgatcc			-	600
tttttgtatt	aaataaaatt	tcaatcatat	acattcgatt	tttctataca	ttttaactat	660
ctatttctgc	ataataaact	gtattttcat	tttatacgct	tcatcttatg	gatgatattt	720
aaattttaaa	tagtaattca	tacacttttt	aatatttaat	ttagtatttt	cttaaatcca	780
aattttaatc	ttacaattta	aatatctact	ttaacataat	acaaatacaa	tttaatttca	840
ttgtattaaa	ttcaaatata	atttgattat	aataaaatac	aatttaattc	taaaaagtcc	900
atcttagatt	ttaattttcc	tttttagttt	tgaaaattaa	aaatttaaat	ttattagata	960
tatatgttac	tttttcagtt	ttcctattta	tttaagaaaa	aaatatttt	taacacatgt	1020
caacttgtaa	acaatagact	gaacacgtca	ttttatatta	tgtttagttt	tgaaaattaa	1080
agttaattaa	atatttatat	ttctttttt	tagcttttct	aattatttt	aaaatagtaa	1140
atattttaa	tacaaatcaa	tatctgaaca	atagatttga	tacataacat	aatcctataa	1200
attattaact	tggaaaacga	tagtttatat	aataaaatta	ttttcttaag	ttctctaacc	1260
ataacaatta	aactatattt	tagcgaagaa	aagaagagaa	taccgagaga	acgcaacttg	1320
cactaaaagc	taccactttg	gcaaatcact	catttatatt	attatatact	atcacctcaa	1380
ttcaatcgaa	acctcaaaat	aacactaata	tatacacaaa	gaaacaacag	aataacaccg	1440
aagaatatag	gtttaggaaa	atccagaatt	tgttgagact	aaagagatca	aattttcgat	1500
acaaggtttt	gctcaatttg	tattttcata	ataaaattct	ttatttcacc	atagacttac	1560
atgattagtt	tttcttttaa	taaaaaaaaa	cacgcgacat	gaaaattata	ttatctcagt	1620
gttgtcgaat	ttgaatttga	attttgagtt	aaatactaca	catttgttga	caacttatta	1680
aactttacaa	gtctgctaca	aatattgtca	aatatttact	aattaatgga	ccaaaatcct	1740
ctaacttgca	aatttgtatc	tacatcaact	taaaaattag	gaatatgcga	cccaaaaaaa	1800
aaaaaactag	gaataataat	aaaaaaatgg	aatgatgtgg	aggaagctct	ttactctttg	1860
agaggaagtt	tataaattga	ccacacattt	agtctattat	catcacatgt	attaagactt	1920
gacaacttgt	ctttctcaca	ccaaacccct	ctcctctgtt	tcataacatc	tgctctttct	1980
ttttttcct	aagccccta					1999

<210> 5

<211> 1476

<212> ADN

<213> Arabidopsis thaliana

5 <400> 5

gctcgcgtta	gttccactca	aggagtatcc	tttcttcctt	gcgcaactct	ccaccttcgg	60
gtaaagtacc	atctctagca	tcttgagtct	tgatcaactt	ctgttttgct	tactctcaaa	120
atgcattaat	tttttttat	actagatcat	agtattatat	ctcttaatct	acctattgaa	180
atctacttaa	tgtttttact	aaaacctacg	tgtttctctt	tagagaattt	tgtgctatgc	240
atgaattaga	ggttagtaat	gtgtaatact	tcataagtct	agatttattt	gttggttaac	300
acgtttagta	attcacacac	acacaccacc	ttagatattt	tactgtgaat	tagaaaaaga	360
tacatagtta	ggagtgtttt	tttaaaaaaa	ttcaatcatg	agaaaattag	aggtgtgatg	420
ttatacatta	tgaaaatgca	aagggcagat	acgaataaat	tagaaacttg	tttaacgggt	480
cagagttggc	ttctagtctc	tttcgacttg	gatacttctt	cttctacaat	tgggacatta	540
ttgtaggcgc	attatatcat	ttctctacat	gcaatgaatg	tacatacatt	aattcacatt	600
tatttttgga	ataatcatat	gagtgatcga	agtttgtatt	tatatattca	atcttcacaa	660
actactttta	tttaaaaatc	atttgcaaaa	tgctatttta	ttgacaaaaa	gatatatgct	720
ataaaataaa	ataaaattca	caaactatag	tcattaatac	aaaaagaaat	cattgaatat	780
ggtagagggg	aaacaaaaaa	aaaacacgac	gatgtaagtt	ggtggaacca	cattatcaaa	840
ataaaagaag	gtggtggaac	caaattgaat	aaagtccgtc	catatcatta	tccgtccctt	900
aggagcctct	aattagtaat	attcttatgg	gtccactgtg	gcttagagga	cttgattaaa	960
accattctta	tttagtgcta	actttgtgag	ggttggaata	acgaaccaag	ctgattcaaa	1020
ccattccaaa	acaaagttgt	cacatatttc	aaaaccaaag	tttaccggac	agagaaatat	1080
ggtgtgtttt	tctcaaacca	agctaaatgg	aatccattgt	aaaccaaaat	gttcacacct	1140
acctattctt	ttggagtccc	ttttccatgt	gtttgctgtc	tgctagtcaa	gtttcattag	1200
ctgattgcct	tgcatcatat	tcttggatca	acttttttt	tttttttt	tggggtaatt	1260
aacaaaatgc	ttaaatttct	caagactata	ggatcacatt	acctgtgtgc	ttaacataac	1320
ttttagatag	gctagagaat	tgatctatta	caagataatc	aataatttac	agaagaaaac	1380
attcttttt	ttgttctatt	tccttcatgt	aggtatgtag	ctgtatatta	tactatcttg	1440
tattttcgat	atcgtgctgg	aactgtcaca	gatgca			1476

<210> 6

<211> 609

<212> ADN						
<213> Glycine max	<					
<400> 6						
gaagccacgt	catgaagagt	atatcatttc	agtaatgttt	tgagacgcct	ctataatgct	60
ttaccaacaa	aacaaaacaa	aaaaaagaac	atttgaaacc	atttgtatta	aaaaaaaaa	120
ggtatattag	gccataatat	tataggtaac	atgaaatatc	aaatgacacg	caagagtttt	180
gtcaaaaatg	aaaccatcac	acatcagaga	ttatggcaaa	taatgttttg	tgtgtctctt	240
gcttcaccca	taacataagc	ctctataact	ggagagaaga	aaaaaaaag	tggaggggct	300
agggtgggaa	tttggaagaa	tacagttata	ttgagcattg	agcaagttga	tagaaagctt	360
ctcaatttgt	acaaaatttg	catccacatg	attattaaag	acgtagacag	cacttcttcc	420
ttctttttt	ctataagttt	cttatatatt	gttcttcatg	ttttaatatt	attactttat	480
gtacgcgtct	aacagtagtc	ctcccaaact	gctataaata	gagcctcttc	aacgcacctc	540
ttggcagtac	aaaaattatt	catctcttct	aagttctaat	tttctaagca	ttcagtaaaa	600
gaactaacc			J	3	J	609
_						
<210> 7						
<211> 1191						
<212> ADN						
<213> Lycopersico	n esculentum					

5

```
atggcgtctt cagctcaaga tggaaacaat ccccttttct ctccttacaa gatgggcaag
                                                                       60
ttcaatctat cccacagggt agtattggct ccgatgacaa ggtgcagagc actgaataat
                                                                      120
                                                                      180
attccacagg cggcgctagg ggagtattac gagcagagag cgacggccgg tggatttctg
atcactgaag gcactatgat ttctccgact tcagctgggt ttcctcatgt gccagggatt
                                                                      240
                                                                      300
ttcacaaagg aacaagtaag ggaatggaag aaaatagttg atgtagtgca tgcaaagggt
qctqtcatat tttqtcaqct qtqqcatqtt qqtcqtqcat ctcatqaaqt gtatcaacct
                                                                      360
gctggagctg caccaatatc atccactgag aagcctatat caaataggtg gagaattcta
                                                                      420
atgcctgatg gaactcatgg gatttatcca aaaccaagag caattggaac ctatgagatc
                                                                      480
tcacaagttg ttgaagatta tcgcaggtcg gccttgaatg ctattgaagc aggtttcgat
                                                                      540
                                                                      600
ggtattgaaa tccatggagc tcacggttac ttgattgatc aattcttgaa agatgggatc
aatgaccgga cagatgagta tggtggatca ctagccaacc ggtgcaaatt catcacacag
                                                                      660
                                                                      720
gtggttcaag cagtagtctc agcaatagga gctgatcgcg taggcgttag agtttcacca
gcaatagatc atcttgatgc catggactct aatccactca gccttggctt agcagttgtt
                                                                      780
gaaagactaa acaaaatcca actccattct ggttccaagc ttgcctatct tcatgtaaca
                                                                      840
                                                                      900
cagccacgat acgtagcata tgggcaaact gaagcaggca gacttggcag tgaagaggaa
                                                                      960
gaggctcgtt taatgaggac tttgaggaac gcgtatcagg ggacattcat ttgcagtggt
ggatacacta gggaactagg aattgaggct gtggcacaag gtgatgctga tctcgtgtca
                                                                     1020
                                                                     1080
tatggtcgtc ttttcatctc taatcctgat ttggttatga gaatcaagct aaatgcacct
ctaaataagt ataacaggaa gacattctat actcaagatc cagttgtggg atacacagat
                                                                     1140
taccctttcc ttcaaggaaa tggaagcaat ggaccgttat cgcgtctgtg a
                                                                     1191
```

<210>8

<211> 396

<212> PRT

5 <213> Lycopersicon esculentum

<400> 8

Met Ala Ser Ser Ala Gln Asp Gly Asn Asn Pro Leu Phe Ser Pro Tyr $1 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Met Gly Lys Phe Asn Leu Ser His Arg Val Val Leu Ala Pro Met 20 25 30

Thr Arg Cys Arg Ala Leu Asn Asn Ile Pro Gln Ala Ala Leu Gly Glu

35 40 45

Tyr Tyr Glu Gln Arg Ala Thr Ala Gly Gly Phe Leu Ile Thr Glu Gly 50 60 Thr Met Ile Ser Pro Thr Ser Ala Gly Phe Pro His Val Pro Gly Ile 65 70 75 80 Phe Thr Lys Glu Gln Val Arg Glu Trp Lys Lys Ile Val Asp Val Val 85 90 95 His Ala Lys Gly Ala Val Ile Phe Cys Gln Leu Trp His Val Gly Arg 100 105 110 Ala Ser His Glu Val Tyr Gln Pro Ala Gly Ala Ala Pro Ile Ser Ser 115 120 125 Thr Glu Lys Pro Ile Ser Asn Arg Trp Arg Ile Leu Met Pro Asp Gly 130 140 Thr His Gly Ile Tyr Pro Lys Pro Arg Ala Ile Gly Thr Tyr Glu Ile 145 150 155 160 Ser Gln Val Val Glu Asp Tyr Arg Arg Ser Ala Leu Asn Ala Ile Glu 165 170 175 Ala Gly Phe Asp Gly Ile Glu Ile His Gly Ala His Gly Tyr Leu Ile 180 185 190 Asp Gln Phe Leu Lys Asp Gly Ile Asn Asp Arg Thr Asp Glu Tyr Gly 195 205 Gly Ser Leu Ala Asn Arg Cys Lys Phe Ile Thr Gln Val Val Gln Ala 210 220 Val Val Ser Ala Ile Gly Ala Asp Arg Val Gly Val Arg Val Ser Pro 225 230 235 240 Ala Ile Asp His Leu Asp Ala Met Asp Ser Asn Pro Leu Ser Leu Gly 245 250 Leu Ala Val Glu Arg Leu Asn Lys Ile Gln Leu His Ser Gly Ser 260 265 270 Lys Leu Ala Tyr Leu His Val Thr Gln Pro Arg Tyr Val Ala Tyr Gly 275 280 285 Gln Thr Glu Ala Gly Arg Leu Gly Ser Glu Glu Glu Glu Ala Arg Leu 290 295 300 Met Arg Thr Leu Arg Asn Ala Tyr Gln Gly Thr Phe Ile Cys Ser Gly 305 310 315 320

Gly Tyr Thr Arg Glu Leu Gly Ile Glu Ala Val Ala Gln Gly Asp Ala 325 330

Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile Ser Asn Pro Asp Leu Val 340 345 350

Met Arg Ile Lys Leu Asn Ala Pro Leu Asn Lys Tyr Asn Arg Lys Thr 355 360 365

Phe Tyr Thr Gln Asp Pro Val Val Gly Tyr Thr Asp Tyr Pro Phe Leu 370 380

Gln Gly Asn Gly Ser Asn Gly Pro Leu Ser Arg Leu 385 390 395

<210>9

<211> 1176

5 <212> ADN

<213> Arabidopsis thaliana

```
atgacggcgg cacaagggaa ctctaacgag actctgtttt cttcttacaa gatgggaaga
                                                                      60
ttcgatctct ctcatcgagt ggttctggcg ccgatgacgc ggtgcagggc gttgaacgga
                                                                      120
                                                                      180
gtaccaaacg cggcgttggc agagtattat gctcaacgga ccactcccgg cggttttctc
                                                                     240
atctccgaag gcaccatggt ctctcccgga tccgcagggt tcccacatgt gcctggaatc
tattcagatg aacaagtaga agcatggaag caagttgtgg aagcagttca cgctaaggga
                                                                     300
                                                                     360
ggtttcatct tttgtcaatt atggcatgtt ggacgtgctt ctcatgcagt gtatcaacct
aatggaggat caccaatatc gtcaacgaac aaaccaatct cggaaaacag gtggcgagtt
                                                                     420
ttgttgcccg atggttccca cgtgaagtac ccgaaacctc gggctttaga agcttccgag
                                                                     480
                                                                     540
atacctcggg tggtggagga ttattgcctt tctgctttga atgcgattcg agctggtttc
                                                                     600
gatgggattg agatccacgg ggcgcatggt taccttattg atcagttttt gaaagatggg
atcaatgacc gtactgacca atacggagga tccattgcaa accgttgtag attcttgaaa
                                                                     660
                                                                     720
caagtagtgg aaggtgtagt ttcagccata ggagctagta aagttggtgt gagggtatct
                                                                     780
ccggctatag atcacttgga cgcaactgat tctgacccac tatcactcgg gctagccgtg
                                                                     840
gttggcatgc tcaataagtt acaaggtgtt aatggctcaa agctcgctta ccttcacgtt
                                                                     900
acacaacctc gctaccacgc ctacgggcaa acagagtctg gaaggcaagg gagtgatgag
gaagaagcta agctaatgaa gagcttgagg atggcttata atggaacctt tatgtctagt
                                                                     960
ggaggattca ataaggaact aggtatgcaa gctgttcaac aaggtgatgc tgatttggtt
                                                                    1020
                                                                    1080
tcatatggca gactgtttat cgcaaacccg gatttggttt cgcggttcaa gattgatgga
gagttgaata aatataatcg gaagacgttt tacactcaag atccagttgt tggctacacg
                                                                    1140
                                                                    1176
gattatcctt tcttggctcc tttttcccgc ctctga
```

<210> 10

<211> 391

<212> PRT

5 <213> Arabidopsis thaliana

Met Thr Ala Ala Gln Gly Asn Ser Asn Glu Thr Leu Phe Ser Ser Tyr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Lys Met Gly Arg Phe Asp Leu Ser His Arg Val Val Leu Ala Pro Met 20 25 30 Thr Arg Cys Arg Ala Leu Asn Gly Val Pro Asn Ala Ala Leu Ala Glu 35 40 45Tyr Tyr Ala Gln Arg Thr Thr Pro Gly Gly Phe Leu Ile Ser Glu Gly 50 60 Thr Met Val Ser Pro Gly Ser Ala Gly Phe Pro His Val Pro Gly Ile 65 70 75 80 Tyr Ser Asp Glu Gln Val Glu Ala Trp Lys Gln Val Val Glu Ala Val His Ala Lys Gly Gly Phe Ile Phe Cys Gln Leu Trp His Val Gly Arg 100 105 110 Ala Ser His Ala Val Tyr Gln Pro Asn Gly Gly Ser Pro Ile Ser Ser 115 120 125 Thr Asn Lys Pro Ile Ser Glu Asn Arg Trp Arg Val Leu Leu Pro Asp 130 135 140 Gly Ser His Val Lys Tyr Pro Lys Pro Arg Ala Leu Glu Ala Ser Glu 145 150 155 160 Ile Pro Arg Val Val Glu Asp Tyr Cys Leu Ser Ala Leu Asn Ala Ile 165 170 175 Arg Ala Gly Phe Asp Gly Ile Glu Ile His Gly Ala His Gly Tyr Leu 180 185 190 Ile Asp Gln Phe Leu Lys Asp Gly Ile Asn Asp Arg Thr Asp Gln Tyr 195 200 205 Gly Gly Ser Ile Ala Asn Arg Cys Arg Phe Leu Lys Gln Val Glu 210 215 220 Gly Val Val Ser Ala Ile Gly Ala Ser Lys Val Gly Val Arg Val Ser 225 230 235 240 Pro Ala Ile Asp His Leu Asp Ala Thr Asp Ser Asp Pro Leu Ser Leu 245 250 255

Gly Leu Ala Val Val Gly Met Leu Asn Lys Leu Gln Gly Val Asn Gly Zan Asn Gly Gln Thr Glu Ser Gly Arg Gln Gly Ser Asp Glu Glu Glu Ala Lys Asn Met Lys Ser Leu Arg Met Ala Tyr Asn Gly Thr Phe Met Ser Ser Asp Glu Gly Phe Asn Lys Glu Leu Gly Met Gln Ala Val Gln Gln Gln Gly Asp Asp Asn Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile Ala Asn Pro Asp Leu Asn Lys Tyr Asn Arg Lys Asp Asp Tyr Thr Gln Asp Pro Val Val Gly Tyr Thr Asp Tyr Pro Phe Leu Ala Pro Phe Ser Arg Leu Asn Lys Tyr Thr Gln Asp Pro Val Val Gly Tyr Thr Asp Tyr Pro Phe Ass Ala Pro Phe Ser Arg Leu Asn Lys Tyr Asp Tyr Pro Phe Ass Ala Pro Phe Ser Arg Leu Asn Lys Tyr Asp Tyr Pro Phe

<210> 11

<211> 1200

<212> ADN

5 <213> Hevea brasiliensis

atggctgaaa	ctggaacaga	agggaccggg	atcaccaccc	tattttctcc	ttacaaaatg	60
ggcaagttca	gcctctccca	cagggtggtg	ctggctccca	tgactagatg	cagagcgttg	120
aacgggatac	caaacgcagc	gctggtggat	tactacacgc	agagatcaac	tcccggcgga	180
tttctcatca	cggaaggcac	tctggtttcc	cctactgccc	ctgggtttcc	tcatgtccct	240
ggaatttata	cagaagaaca	agcggaggca	tggaagaggg	tggtggatgc	agttcatgcc	300
aaagggagca	tcatattctg	tcaattatgg	catgttggcc	gcgcatctca	tcaggtttat	360
caacctaatg	gagctgcacc	aatatcatcg	acgggcaagg	ccatctcaaa	cagatggaga	420
attctcatgc	cagatggatc	atatgggaaa	tacccaacac	ctaggccctt	ggaaacacct	480
gaaatactag	aggtagtgaa	gaattatcgc	cagtcagcct	tgaatgccat	tcgagcaggc	540
tttgatggaa	ttgaggtcca	cggggctcat	ggttacctta	ttgatcaatt	cttaaaagac	600
gggatcaatg	accgaacaga	tgagtatggt	ggatcaatca	acaatcgatg	cagattccta	660
atgcaggtga	ttcaggcagt	agttgcagct	attggtgctg	atcgagttgg	tttcagaatg	720
tcaccggcaa	ttgatcacct	agatgccata	gattctgatc	cgctcaactt	gggtcttgct	780
ataatcaaaa	gacttaacaa	acttcanttn	aaccttqqat	caaaactcac	ttatctccat	840
gtaattyaya	gacttaataa	acttcagttg	aaccttggat	Caaaacccac	ccaccccac	
gtcactcagc	ctcgctacac	agcttatggc	caaacagaat	caggcagaca	tggtactgaa	900
gaagaggaag	ctagattaat	gagaacttgg	agaagggctt	ataagggaac	tttcatctgt	960
agcggtgggt	tcacgaggga	gctaggaatg	gaagctatag	ctcaagatga	tgcagatttg	1020
gtatcttatg	gccgactttt	tatttcaaac	ccagacttag	tcttgagatt	taagctcaat	1080
gcgcccttga	ataagtatgt	caggaaaaca	ttctacaccc	aagatcctgt	tgttgggtac	1140
acagactacc	catttttcag	aaaagtagac	gggagccagg	agccacgatc	acgcctttga	1200

<210> 12

<211> 399

5 <212> PRT

<213> Hevea brasiliensis

Met Ala Glu Thr Gly Thr Glu Gly Thr Gly Ile Thr Thr Leu Phe Ser 1 10 15Pro Tyr Lys Met Gly Lys Phe Ser Leu Ser His Arg Val Val Leu Ala 20 25 30 Pro Met Thr Arg Cys Arg Ala Leu Asn Gly Ile Pro Asn Ala Ala Leu 35 40 45 Val Asp Tyr Tyr Thr Gln Arg Ser Thr Pro Gly Gly Phe Leu Ile Thr 50 60 Glu Gly Thr Leu Val Ser Pro Thr Ala Pro Gly Phe Pro His Val Pro 65 70 75 80 Gly Ile Tyr Thr Glu Glu Gln Ala Glu Ala Trp Lys Arg Val Val Asp 85 90 95 Ala Val His Ala Lys Gly Ser Ile Ile Phe Cys Gln Leu Trp His Val 100 105 110 Gly Arg Ala Ser His Gln Val Tyr Gln Pro Asn Gly Ala Ala Pro Ile 115 120 125 Ser Ser Thr Gly Lys Ala Ile Ser Asn Arg Trp Arg Ile Leu Met Pro 130 140 Asp Gly Ser Tyr Gly Lys Tyr Pro Thr Pro Arg Pro Leu Glu Thr Pro 145 150 155 160 Glu Ile Leu Glu Val Val Lys Asn Tyr Arg Gln Ser Ala Leu Asn Ala 165 170 175 Ile Arg Ala Gly Phe Asp Gly Ile Glu Val His Gly Ala His Gly Tyr 180 185 190

Leu Ile Asp Gln Phe Leu Lys Asp Gly Ile Asn Asp Arg Thr Asp Glu 195 200 205 Tyr Gly Gly Ser Ile Asn Asn Arg Cys Arg Phe Leu Met Gln Val Ile 210 215 220 Gln Ala Val Val Ala Ala Ile Gly Ala Asp Arg Val Gly Phe Arg Met 225 230 235 240 Ser Pro Ala Ile Asp His Leu Asp Ala Ile Asp Ser Asp Pro Leu Asn 245 250 255 Leu Gly Leu Ala Val Ile Glu Arg Leu Asn Lys Leu Gln Leu Asn Leu 260 265 270 Gly Ser Lys Leu Thr Tyr Leu His Val Thr Gln Pro Arg Tyr Thr Ala 275 280 285 Tyr Gly Gln Thr Glu Ser Gly Arg His Gly Thr Glu Glu Glu Glu Ala 290 295 300 Arg Leu Met Arg Thr Trp Arg Arg Ala Tyr Lys Gly Thr Phe Ile Cys 305 310 315 320 Ser Gly Gly Phe Thr Arg Glu Leu Gly Met Glu Ala Ile Ala Gln Asp 325 330 335Asp Ala Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile Ser Asn Pro Asp 340 345 350 Leu Val Leu Arg Phe Lys Leu Asn Ala Pro Leu Asn Lys Tyr Val Arg 355 360 365 Lys Thr Phe Tyr Thr Gln Asp Pro Val Val Gly Tyr Thr Asp Tyr Pro 370 380 Phe Phe Arg Lys Val Asp Gly Ser Gln Glu Pro Arg Ser Arg Leu 385 390 395

<210> 13

<211> 1185

<212> ADN

5 <213> Oryza sativa

atggatcggc	cgccgccgga	tcagcagcgg	cagaagcagg	cgccgctctt	ctcgccgtac	60
cagatgcccc	gcttccgcct	caaccaccgg	gtggtgctgg	cgccgatgac	gcggtgcagg	120
gcgatcggcg	gggtgcccgg	cccggcgctg	gcggagtact	acgctcagcg	gaccacccag	180
ggtggcctgc	tcatctccga	gggcaccgtc	gtctcgcccg	ctggcccggg	gtttcctcat	240
gtccctggga	tatacaatca	agagcagact	gatgcatgga	agaaggtggt	ggatgctgtt	300
		+ ++-+	****	+	++++	260
catgccaagg	gaggcatctt	tttctgccag	ttatggcatg	taggcagagc	ttctcaccaa	360
gtataccagc	caaacggtgc	tgcaccaata	tcctcaactg	ataagccaat	atcagcaaga	420
tggagaatac	tgatgcctga	tggctcctat	ggcaagtatc	ctaaacctag	gcgcctggca	480
gcatcggaaa	tacctgaaat	tgtcgaacaa	tatcgtcaag	ccgccattaa	tgccattgaa	540
gcaggttttg	atggcattga	gatccatggt	gctcatggct	atatcattga	tcaattccta	600
aaggatggaa	tcaatgaccg	cactgacgag	tatggtggct	cactttccaa	ccgctgccgg	660
ttcctacttg	aggtaactag	ggctgtggtt	tctgccattg	gagcagaccg	agtcgcggtg	720
aggatatcac	cagccattga	tcaccttgac	gcctatgatt	cagaccccat	taagctcggc	780
atggccgttg	ttgagcggct	gaatgctctc	cagcagcagt	cagggcggct	cgcctacctc	840
cacgtcacgc	agccacggta	caccgcctac	gggcagaccg	agtctgggca	gcatggcagt	900
gccgaggagg	agagccgcct	gatgcgcacc	ctccggggca	cgtaccaggg	cacattcatg	960
tgcagtggcg	gctacacgcg	ggagcttggg	ttggaagcag	tggagagcgg	cgatgccgac	1020
ctggtgtcgt	acgggcggct	cttcatatca	aacccggacc	tggtcgagcg	gttcaggctg	1080
aacgccgggc	tgaacaagta	cgtgcgcaag	acattctaca	cgcccgatcc	tgtcgtgggt	1140
tacacggact	atccgttcct	cggacagcct	aagtcgcgga	tgtaa		1185

<210> 14

<211> 394

5 <212> PRT

<213> Oryza sativa

Met Asp Arg Pro Pro Pro Asp Gln Gln Arg Gln Lys Gln Ala Pro Leu Phe Ser Pro Tyr Gln Met Pro Arg Phe Arg Leu Asn His Arg Val Val Leu Ala Pro Met Thr Arg Cys Arg Ala Ile Gly Gly Val Pro Gly Pro Ala Leu Ala Glu Tyr Tyr Ala Gln Arg Thr Thr Gln Gly Gly Leu Leu Gle Ser Glu Gly Thr Val Val Ser Pro Ala Gly Pro Gly Phe Pro His Ro Pro Gly Ile Tyr Asn Gln Glu Gln Thr Asp Ala Trp Lys Lys Val Asp Ala Val His Ala Lys Gly Gly Ile Phe Phe Cys Gln Leu Trp His Val Gly Arg Ala Ser His Gln Val Tyr Gln Pro Asp Gly Ala Ala

Pro Ile Ser Ser Thr Asp Lys Pro Ile Ser Ala Arg Trp Arg Ile Leu 130 140 Met Pro Asp Gly Ser Tyr Gly Lys Tyr Pro Lys Pro Arg Arg Leu Ala 145 150 155 160 Ala Ser Glu Ile Pro Glu Ile Val Glu Gln Tyr Arg Gln Ala Ala Ile 165 170 175 Asn Ala Ile Glu Ala Gly Phe Asp Gly Ile Glu Ile His Gly Ala His 180 185 190 Gly Tyr Ile Ile Asp Gln Phe Leu Lys Asp Gly Ile Asn Asp Arg Thr 195 200 205 Asp Glu Tyr Gly Gly Ser Leu Ser Asn Arg Cys Arg Phe Leu Leu Glu 210 215 220 Val Thr Arg Ala Val Val Ser Ala Ile Gly Ala Asp Arg Val Ala Val 225 230 235 240 Arg Ile Ser Pro Ala Ile Asp His Leu Asp Ala Tyr Asp Ser Asp Pro 245 250 255 Ile Lys Leu Gly Met Ala Val Val Glu Arg Leu Asn Ala Leu Gln Gln 260 265 270 Gln Ser Gly Arg Leu Ala Tyr Leu His Val Thr Gln Pro Arg Tyr Thr 275 280 285 Ala Tyr Gly Gln Thr Glu Ser Gly Gln His Gly Ser Ala Glu Glu Glu 290 295 300 Ser Arg Leu Met Arg Thr Leu Arg Gly Thr Tyr Gln Gly Thr Phe Met 305 310 315 320 Cys Ser Gly Gly Tyr Thr Arg Glu Leu Gly Leu Glu Ala Val Glu Ser 325 330 335 Gly Asp Ala Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile Ser Asn Pro 340 350 Asp Leu Val Glu Arg Phe Arg Leu Asn Ala Gly Leu Asn Lys Tyr Val 355 360 365 Arg Lys Thr Phe Tyr Thr Pro Asp Pro Val Val Gly Tyr Thr Asp Tyr 370 375 380 Pro Phe Leu Gly Gln Pro Lys Ser Arg Met 385

<210> 15 <211> 1200 <212> ADN <213> Zea mays

5 <400> 15

60 atggcctcca cggatcgctc cacgccggcg gaggacgagc aacagcagaa gcgcccgtct 120 ctcttctcgc cgtaccagat gccccgcttc cgcctcgccc accgggtggt gctggcgccg 180 atgaccaggt gcagggcgcc cgacgcggtc ccaggccccg cgctcgcgga gtactacgcg 240 cagcggtcca cggacggcgg cttgctcatc tccgagggca ccatcatctc gccgtccggc 300 cctgggttcc ctcgtgtccc tgggatatac aatcaagaac agactgatgc atggagaaag 360 gtggttgatg ctgttcatgc caagggagct atcttttct gccaactatg gcatgtaggc 420 cgagcttctc accaagtata tcagccgggt gctgctgctc cgatatcctc aactgataag ccaatatcat caagatggag gatactgatg cccgatggat cctatggcaa gtatccaact 480 540 ccgaggcgcc tagccacatc cgagatacca gaaattgttg agcaataccg tcaagcagcc gtaaacgcca tcaaagcagg tttcgatggc atcgagatcc atggcgccca tggctacctc 600 660 atcgatcagt tcctcaaggg cggtatcaac gaccggactg acgagtacgg tggctcactc 720 tccaaccgtt gccggttcct cctggaggtg acccgagccg tggtctctgc gataggggca 780 gaccgcgtcg cggtccgagt gtccccggcc atcgaccatc tcgacgccta cgactccaac 840 cccctgcagc tcggcctggc cgtggtggag cgtctcaacg ctctccagca ggaggccggg 900 cggctggcct acctccacgt gacgcagcca cggtacacgg cgtacgggca gacagagtct ggccagcacg ggagtgccga ggaggagagc cggctgatgc gtgccgtgcg aggtgcctac 960 1020 cgtggcacgt tcatgtgcag cggtgggtac acgcgggagc tcgggggtcga ggccatcgag tccggggacg ctgacctggt gtcctacggg cggctgttca tcgctaatcc cgacctggtg 1080 gagcggtttc ggcgcgacgc cccgctgaac aaatacgtgc gcaagacgtt ctacacgccg 1140 gaccccgtcg tcggttacac ggactacaca ttcctcggcc agcctaaggc acgcatgtga 1200

<210> 16

<211> 399

<212> PRT

10 <213> Zea mays

Met Ala Ser Thr Asp Arg Ser Thr Pro Ala Glu Asp Glu Gln Gln 15 10 15

Lys Arg Pro Ser Leu Phe Ser Pro Tyr Gln Met Pro Arg Phe Arg Leu 20 25 30

Ala His Arg Val Val Leu Ala Pro Met Thr Arg Cys Arg Ala Pro Asp 35 40 45

Ala Val Pro Gly Pro Ala Leu Ala Glu Tyr Tyr Ala Gln Arg Ser Thr 50 55 60

Asp Gly Gly Leu Leu Ile Ser Glu Gly Thr Ile Ile Ser Pro Ser Gly 65 70 75 80 Pro Gly Phe Pro Arg Val Pro Gly Ile Tyr Asn Gln Glu Gln Thr Asp 85 90 95 Ala Trp Arg Lys Val Val Asp Ala Val His Ala Lys Gly Ala Ile Phe 100 105 110 Phe Cys Gln Leu Trp His Val Gly Arg Ala Ser His Gln Val Tyr Gln 115 120 125 Pro Gly Ala Ala Pro Ile Ser Ser Thr Asp Lys Pro Ile Ser Ser 130 140 Arg Trp Arg Ile Leu Met Pro Asp Gly Ser Tyr Gly Lys Tyr Pro Thr 145 150 155 160 Pro Arg Arg Leu Ala Thr Ser Glu Ile Pro Glu Ile Val Glu Gln Tyr 165 170 175 Arg Gln Ala Ala Val Asn Ala Ile Lys Ala Gly Phe Asp Gly Ile Glu 180 185 190 Ile His Gly Ala His Gly Tyr Leu Ile Asp Gln Phe Leu Lys Gly Gly 195 200 205 Ile Asn Asp Arg Thr Asp Glu Tyr Gly Gly Ser Leu Ser Asn Arg Cys
210 215 220 Arg Phe Leu Leu Glu Val Thr Arg Ala Val Val Ser Ala Ile Gly Ala 225 230 235 Asp Arg Val Ala Val Arg Val Ser Pro Ala Ile Asp His Leu Asp Ala 245 250 255 Tyr Asp Ser Asn Pro Leu Gln Leu Gly Leu Ala Val Glu Arg Leu 260 265 270 Asn Ala Leu Gln Gln Glu Ala Gly Arg Leu Ala Tyr Leu His Val Thr 275 280 285 Gln Pro Arg Tyr Thr Ala Tyr Gly Gln Thr Glu Ser Gly Gln His Gly 290 295 300 Ser Ala Glu Glu Ser Arg Leu Met Arg Ala Val Arg Gly Ala Tyr 305 310 315 320 Arg Gly Thr Phe Met Cys Ser Gly Gly Tyr Thr Arg Glu Leu Gly Val 325 330 335

Glu Ala Ile Glu Ser Gly Asp Ala Asp Leu Val Ser Tyr Gly Arg Leu 340 345 350

Phe Ile Ala Asn Pro Asp Leu Val Glu Arg Phe Arg Asp Ala Pro 355 360 365

Leu Asn Lys Tyr Val Arg Lys Thr Phe Tyr Thr Pro Asp Pro Val Val 370 375 380

Gly Tyr Thr Asp Tyr Thr Phe Leu Gly Gln Pro Lys Ala Arg Met 385 390 395

<210> 17

<211> 1200

5 <212> ADN

<213> Zea mays

```
60
atggcctcca cggatcgctc cgcgccggcg gaggaccagc aacagccgca gcgcccgtcc
                                                                      120
ctcttctcgc cgtaccagat gccccacttc cgcctcgcgc accgggtggt gctggcgccg
                                                                      180
atgaccaggt gccgggcgcc cgatgcgctc ccgggccccg cgctcgcgga gtactacgcg
cagcggtcca cggaaggcgg cttgctcatc tccgagggca ccatcatctc gcccgccggc
                                                                      240
cctgggttcc ctcgtgtccc tgggatatac aatcaagagc agactgatgc atggaaaaag
                                                                      300
gtggttgatg ctgttcatgc caagggagcc atctttttct gccaactatg gcatgtaggt
                                                                      360
cgagcttctc accaagtata tcagccgggt ggttctgctc caatatcctc tactgataaa
                                                                      420
ccaatatcat caagatggag gatactgatg cccgatggat cctatggcaa gtatccaact
                                                                      480
                                                                      540
ccgaggcgcc tagccacatc cgagatacca gaaattgtcg agcaataccg acaggctgcc
                                                                      600
ataaacgcca tcaaagcagg tttcgatggc atcgagatcc acggtgccca tggctaccta
                                                                      660
atcgaccagt tcctcaagga cggtatcaac gacagggctg acgagtacgg tggctcactc
                                                                      720
tccaaccgct gccggttcct cctggaggtg acccgcgccg tggtctccgc gataggggca
gaccgggtgg cggtccgggt gtccccggcc atcgaccacc tcgacgcgta cgactccaac
                                                                      780
                                                                      840
ccgctgcagc tcggcctggc cgtagtggac cgcctcaacg ctctccagga ggagaccggg
                                                                     900
cggctggcct acctgcacgt gacgcagcca cggtacacgg cgtacgggca gacggagtcc
                                                                      960
ggccagcacg ggagcgccga ggaggagagc cggctgatgc gcgccctgcg gggcgcctac
cgcggcacgt tcatgtgcag cggtgggtac acgcgcgagc tcggcgtgga ggccgtcgag
                                                                     1020
tcgtgggacg ccgacctggt gtcctacggg cggctgttca tcgctaaccc ggacctggtg
                                                                     1080
gagcggttcc ggcgcgacgc cccgctgaac agatacgtgc gcaagacgtt ctacaccccg
                                                                     1140
                                                                     1200
gatcccgtcg ttggttacac ggactacccg ttcctcggcc agcctaaggc gcgcatgtga
```

<210> 18

<211> 399

<212> PRT

5 <213> Zea mays

Met Ala Ser Thr Asp Arg Ser Ala Pro Ala Glu Asp Gln Gln Pro
1 10 15 Gln Arg Pro Ser Leu Phe Ser Pro Tyr Gln Met Pro His Phe Arg Leu 20 25 30Ala His Arg Val Val Leu Ala Pro Met Thr Arg Cys Arg Ala Pro Asp 35 40 45 Ala Leu Pro Gly Pro Ala Leu Ala Glu Tyr Tyr Ala Gln Arg Ser Thr 50 60 Glu Gly Gly Leu Leu Ile Ser Glu Gly Thr Ile Ile Ser Pro Ala Gly 65 70 75 80 Pro Gly Phe Pro Arg Val Pro Gly Ile Tyr Asn Gln Glu Gln Thr Asp 85 90 95 Ala Trp Lys Lys Val Val Asp Ala Val His Ala Lys Gly Ala Ile Phe 100 105 Phe Cys Gln Leu Trp His Val Gly Arg Ala Ser His Gln Val Tyr Gln
115 120 125 Pro Gly Gly Ser Ala Pro Ile Ser Ser Thr Asp Lys Pro Ile Ser Ser 130 140 Arg Trp Arg Ile Leu Met Pro Asp Gly Ser Tyr Gly Lys Tyr Pro Thr 145 150 155 160 Pro Arg Arg Leu Ala Thr Ser Glu Ile Pro Glu Ile Val Glu Gln Tyr 165 170 175 Arg Gln Ala Ala Ile Asn Ala Ile Lys Ala Gly Phe Asp Gly Ile Glu 180 185 190 Ile His Gly Ala His Gly Tyr Leu Ile Asp Gln Phe Leu Lys Asp Gly 195 200 205 Ile Asn Asp Arg Ala Asp Glu Tyr Gly Gly Ser Leu Ser Asn Arg Cys 210 220 Arg Phe Leu Leu Glu Val Thr Arg Ala Val Val Ser Ala Ile Gly Ala 225 230 235 240 Asp Arg Val Ala Val Arg Val Ser Pro Ala Ile Asp His Leu Asp Ala 245 250 255 Tyr Asp Ser Asn Pro Leu Gln Leu Gly Leu Ala Val Asp Arg Leu 260 265 270

Asn Ala Leu Gln Glu Glu Thr Gly Arg Leu Ala Tyr Leu His Val Thr Gln Pro Arg Tyr Thr Ala Tyr Gly Gln Thr Glu Ser Gly Gln His Gly Ser Ala Glu Glu Ser Arg Leu Met Arg Ala Leu Arg Gly Ala Tyr 320 Arg Gly Thr Phe Met Cys Ser Gly Gly Tyr Thr Arg Glu Leu Gly Val Glu Ala Val Glu Ser Trp Asp Ala Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile Ala Asn Arg Tyr Val Arg Leu 360 Glu Arg Phe Arg Arg Asp Ala Pro Leu Asn Arg Tyr Val Arg Lys Thr Phe Tyr Thr Pro Asp Pro Val Val Gly Tyr Thr Asp Tyr Thr Asp Tyr Pro Phe Leu Gly Gln Pro Lys Ala Arg Met

<210> 19

<211> 762

5 <212> ADN

<213> Arachis hypogaea

atggcagaca	acgagtccag	cagcctgttt	tctgcttaca	agatggcaaa	attcagtctc	60
tcgcacaggg	tggtgttggc	gcccatgacc	aggtgcagag	ccttgaacgg	catcccacgt	120
gccgctcacg	cggagtatta	cgctcagaga	tccacacccg	gtggattcct	catcaccgaa	180
gggactttga	tctctcccac	tgctcctggc	ttccctcatg	tacctggaat	atactctgag	240
gagcaagttg	aggcatggag	aaacgtcgtg	gatgccgtgc	atgccaaagg	cagcttcatc	300
ttctgtcaac	tctggcatgc	tggccgtgca	tctcatcccg	tgtatcagcc	tggggcggcg	360
ccgcccattt	cctccacaaa	caaggctatt	tcctccagat	ggagaattct	cttgccggat	420
cagtcctacg	gcgtgtatcc	agagccccga	ccacttgact	cttctgagat	accacaaata	480
gtggaccact	atcgccagtc	agcggtcaac	gctatccgag	caggtttcga	tggaattgag	540
attcacggtg	cacacggcta	tctgattgat	caattcttga	aggacgggat	caatgagcga	600
agagatgagt	atggtggatc	catttcaaat	aggtgcaggt	tcttaatgca	ggtagttaaa	660
gcagttgttt	ctgcaattgg	agcagaaaga	gtaggtgtta	gaatctcacc	ggcaatcgac	720
cacctggatg	ccatggactc	cgacccgctt	gcctggggct	ag		762

<210> 20

<211> 250

<212> PRT

5 <213> Arachis hypogaea

Met Ala Asp Asn Glu Ser Ser Ser Leu Phe Ser Ala Tyr Lys Met Ala 1 10 15 Lys Phe Ser Leu Ser His Arg Val Val Leu Ala Pro Met Thr Arg Cys 20 25 30 Arg Ala Leu Asn Gly Ile Pro Arg Ala Ala His Ala Glu Tyr Tyr Ala 35 40 45 Gln Arg Ser Thr Pro Gly Gly Phe Leu Ile Thr Glu Gly Thr Leu Ile 50 60 Ser Pro Thr Ala Pro Gly Phe Pro His Val Pro Gly Ile Tyr Ser Glu 65 70 75 80 Glu Gln Val Glu Ala Trp Arg Asn Val Val Asp Ala Val His Ala Lys 85 90 95 Gly Ser Phe Ile Phe Cys Gln Leu Trp His Ala Gly Arg Ala Ser His 100 105 110 Pro Val Tyr Gln Pro Gly Ala Ala Pro Pro Ile Ser Ser Thr Asn Lys 115 120 125 Ala Ile Ser Ser Arg Trp Arg Ile Leu Leu Pro Asp Gln Ser Tyr Gly 130 140 Val Tyr Pro Glu Pro Arg Pro Leu Asp Ser Ser Glu Ile Pro Gln Ile 145 150 155 160 Val Asp His Tyr Arg Gln Ser Ala Val Asn Ala Ile Arg Ala Gly Phe 165 170 175 Asp Gly Ile Glu Ile His Gly Ala His Gly Tyr Leu Ile Asp Gln Phe 180 185 190 Leu Lys Asp Gly Ile Asn Glu Arg Arg Asp Glu Tyr Gly Gly Ser Ile 195 200 205 Ser Asn Arg Cys Arg Phe Leu Met Gln Val Val Lys Ala Val Val Ser 210 215 220 Ala Ile Gly Ala Glu Arg Val Gly Val Arg Ile Ser Pro Ala Ile Asp 225 230 235 240 His Leu Asp Ala Met Asp Ser Asp Pro Leu 245 250

<210> 21

<212> ADN <213> Solanum tuberosum

<400> 21

60 atggctaaaa cgacatcgtc ttcagctcaa gatggaagca atcccctctt ctctccttac 120 aagatggcaa agttcaatct atcccacagg atagtattgg ctccgatgac aaggtgcaga gcattgaata atattccttc ggcggcgctg ggggaatatt acgagcagag agcgacggcc 180 240 ggtggatttc tgatcactga aggcactatg atttctccga cttcagctgg gtttcctcat gtgccaggga ttttcacaaa ggagcaagta gaggaatgga agaaaatagt tgatgtagtg 300 catgcaaagg gtgctgtcat attttgtcag ttgtggcatg ttggtcgtgc atctcatgaa 360 gtgtatcaac ctgctggagc tgcaccaata tcatctactg agaagcctat atcaaagagg 420 480 tggagaattc tgatgcctga tggaactcat gggatttatc caaaaccaag agcaattgga acctatgaga tctcacaagt ggttgaagat tattgcaggt cggccttgaa tgctattgaa 540 gcaggttttg atggtattga aatccatgga gctcacggtt acttgattga ccaattcttg 600 660 aaagatggga tcaatgaccg gacagatgag tatggtggat cactagccaa ccggtgcaaa 720 ttcatcacac aggtggttca agcagtcatc tcagcaatag gagctgatcg tgtaggcgtt 780 agagtttcac cagcaataga tcatcttgat gccatggact ctaatccact cagcctaggc 840 ttagcagttg ttgaaagact aaacaaaatc caactccatt ctggttccaa gcttgcctat 900 cttcatgtaa cacagccacg atacgtagca tatgggcaaa ccgaagcagg cagacttggc 960 agtgaagagg aggaggcgca tttaatgagg actttgagga acgcatatca ggggacattc atttgcagtg gtggatacac tagggagcta ggaattgagg ctgtggcaca aggtgatgct 1020 gatctcgtgt catatggacg tcttttcatc tctaatcctg atttggttat gagaatcaag 1080 1140 ctaaatgcac ctctaaataa gtataacagg aagacattct atactcaaga tccagttgtg 1200 ggatacacag attacccttt ccttcaagga aatggaagca acggaccgtt atcgcgtctg 1203 tga

5 <210> 22

<211> 400

<212> PRT

<213> Solanum tuberosum

<400> 22

10

Met Ala Lys Thr Thr Ser Ser Ser Ala Gln Asp Gly Ser Asn Pro Leu $1 \hspace{1cm} 15$ Phe Ser Pro Tyr Lys Met Ala Lys Phe Asn Leu Ser His Arg Ile Val 20 25 30Leu Ala Pro Met Thr Arg Cys Arg Ala Leu Asn Asn Ile Pro Ser Ala 35 40 45Ala Leu Gly Glu Tyr Tyr Glu Gln Arg Ala Thr Ala Gly Gly Phe Leu 50 60

Ile Thr Glu Gly Thr Met Ile Ser Pro Thr Ser Ala Gly Phe Pro His 65 70 75 80 Val Pro Gly Ile Phe Thr Lys Glu Gln Val Glu Glu Trp Lys Lys Ile 85 90 95 Val Asp Val Val His Ala Lys Gly Ala Val Ile Phe Cys Gln Leu Trp 100 105 110 His Val Gly Arg Ala Ser His Glu Val Tyr Gln Pro Ala Gly Ala Ala 115 120 125 Pro Ile Ser Ser Thr Glu Lys Pro Ile Ser Lys Arg Trp Arg Ile Leu 130 135 140 Met Pro Asp Gly Thr His Gly Ile Tyr Pro Lys Pro Arg Ala Ile Gly 145 150 155 160 Thr Tyr Glu Ile Ser Gln Val Val Glu Asp Tyr Cys Arg Ser Ala Leu 165 170 175 Asn Ala Ile Glu Ala Gly Phe Asp Gly Ile Glu Ile His Gly Ala His 180 185 190 Gly Tyr Leu Ile Asp Gln Phe Leu Lys Asp Gly Ile Asn Asp Arg Thr 195 200 205 Asp Glu Tyr Gly Gly Ser Leu Ala Asn Arg Cys Lys Phe Ile Thr Gln 210 220 Val Val Gln Ala Val Ile Ser Ala Ile Gly Ala Asp Arg Val Gly Val 225 230 235 240 Arg Val Ser Pro Ala Ile Asp His Leu Asp Ala Met Asp Ser Asn Pro 245 250 255 Leu Ser Leu Gly Leu Ala Val Glu Arg Leu Asn Lys Ile Gln Leu 260 265 270 His Ser Gly Ser Lys Leu Ala Tyr Leu His Val Thr Gln Pro Arg Tyr 275 280 285 Val Ala Tyr Gly Gln Thr Glu Ala Gly Arg Leu Gly Ser Glu Glu Glu 290 295 300 Glu Ala His Leu Met Arg Thr Leu Arg Asn Ala Tyr Gln Gly Thr Phe 305 310 315 320 Ile Cys Ser Gly Gly Tyr Thr Arg Glu Leu Gly Ile Glu Ala Val Ala 325 330 335

Gln Gly Asp Ala Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile Ser Asn 340 345 350

Pro Asp Leu Val Met Arg Ile Lys Leu Asn Ala Pro Leu Asn Lys Tyr 355 360 365

Asn Arg Lys Thr Phe Tyr Thr Gln Asp Pro Val Val Gly Tyr Thr Asp 370 375 380

Tyr Pro Phe Leu Gln Gly Asn Gly Ser Asn Gly Pro Leu Ser Arg Leu 385 390 400

<210> 23

<211> 1191

<212> ADN

5 <213> Prunus persica

```
60
atggcggagg cttcatctca gggacccact ctcttttctc cgttcaagat gggcaagttc
                                                                     120
aatctgtctc acagggtggt gcttgcgccg atgacgaggt gccgagcgtt gaacggcttg
ccgcagccgg cgctggccga gtactacact caaaggtcaa ccaacggcgg ctttctgatc
                                                                     180
accgaaggca ctttggtctc cgacactggc gccgggtttc cacatgttcc tgggatttac
                                                                     240
                                                                     300
aatgatgaac aggtggaggc atggaagaag gtggtggatg ccgttcacgc caaaggtgcc
                                                                     360
attattttct gtcaactttg gcatgtaggt cgtgcttctc atgaagttta ccaacctggt
gggggttcac caatatcttc aaccgatgtt cccatttcga ggaggtggag aattctatta
                                                                     420
                                                                     480
ccggatgcgt ctcatgccac ttaccctaag cctagacgct tagaaacccc tgaaatcctc
                                                                     540
caagtggtgg agcattatcg acaggctgcc ttgaatgcca ttagagcagg ttttgatgga
                                                                     600
attgagattc atggggcaca tggctacctc attgatcaat tcttgaaaga tgggatcaat
gatcgaacag atgagtatgg cggatcactt gcaaaccgtt gcaaattctt gcttcaggtg
                                                                     660
                                                                     720
gttcaagcag tagttggagc cgtaggtgct gatagggttg gtgtcagaat ctcaccagcc
attgatcacc ttgatgcagt tgactctgct ccacttaccc taagccttgg agtgattgaa
                                                                     780
aggctcaaca agcttcaaca agactggggc tcaaaactca cttatctcca tgttactcag
                                                                     840
ccccgttacg cagcatatgg ccaaaccgaa tctggcaaac ctggcagtga tgaagaggaa
                                                                     900
                                                                     960
gctgtgttta tgaggacttt aagaaatgct tatcgtggta catttgttgc tagtggtggg
                                                                    1020
tacactaggg agcttggaat tcatgctgtg gcttctaggg atgctgattt agtgtcttat
ggtcgccttt ttatctcgaa ccccgacttg gttttgagat tgaagcttaa tgcacctttg
                                                                    1080
accaggtata acaggaagac tttctacacg caagaccctg ttgttgggta cacagactac
                                                                    1140
                                                                    1191
ccttttctga gcaatgcaaa tgggaaagag gaaccactct cccgcctctg a
```

<210> 24

<211> 396

<212> PRT

5 <213> Prunus persica

Met Ala Glu Ala Ser Ser Gln Gly Pro Thr Leu Phe Ser Pro Phe Lys
1 10 15 Met Gly Lys Phe Asn Leu Ser His Arg Val Val Leu Ala Pro Met Thr 20 25 30 Arg Cys Arg Ala Leu Asn Gly Leu Pro Gln Pro Ala Leu Ala Glu Tyr 35 40 45 Tyr Thr Gln Arg Ser Thr Asn Gly Gly Phe Leu Ile Thr Glu Gly Thr 50 60Leu Val Ser Asp Thr Gly Ala Gly Phe Pro His Val Pro Gly Ile Tyr 65 70 75 80 Asn Asp Glu Gln Val Glu Ala Trp Lys Lys Val Val Asp Ala Val His Ala Lys Gly Ala Ile Ile Phe Cys Gln Leu Trp His Val Gly Arg Ala 100 105 110 Ser His Glu Val Tyr Gln Pro Gly Gly Gly Ser Pro Ile Ser Ser Thr 115 120 125 Asp Val Pro Ile Ser Arg Arg Trp Arg Ile Leu Leu Pro Asp Ala Ser 130 135 140 His Ala Thr Tyr Pro Lys Pro Arg Arg Leu Glu Thr Pro Glu Ile Leu 145 150 155 160 Gln Val Val Glu His Tyr Arg Gln Ala Ala Leu Asn Ala Ile Arg Ala 165 170 175 Gly Phe Asp Gly Ile Glu Ile His Gly Ala His Gly Tyr Leu Ile Asp 180 185 190 Gln Phe Leu Lys Asp Gly Ile Asn Asp Arg Thr Asp Glu Tyr Gly Gly 195 200 205 Ser Leu Ala Asn Arg Cys Lys Phe Leu Leu Gln Val Val Gln Ala Val 210 215 220 Val Gly Ala Val Gly Ala Asp Arg Val Gly Val Arg Ile Ser Pro Ala 225 230 235 240 Ile Asp His Leu Asp Ala Val Asp Ser Ala Pro Leu Thr Leu Ser Leu 245 250 255 Gly Val Ile Glu Arg Leu Asn Lys Leu Gln Gln Asp Trp Gly Ser Lys 260 265 270

Leu Thr Tyr Leu His Val Thr Gln Pro Arg Tyr Ala Ala Tyr Gly Gln

Thr Glu Ser Gly Lys Pro Gly Ser Asp Glu Glu Glu Ala Val Phe Met

Arg Thr Leu Arg Asn Ala Tyr Arg Gly Thr Phe Val Ala Ser Gly Gly 320

Tyr Thr Arg Glu Leu Gly Ile His Ala Val Ala Ser Arg Asp Ala Asp

Leu Val Ser Tyr Gly Arg Leu Phe Ile Ser Asn Pro Asp Leu Val Leu

Arg Leu Lys Leu Asn Ala Pro Leu Thr Arg Tyr Asn Arg Lys Thr Phe

Tyr Thr Gln Asp Pro Val Val 375 Gly Tyr Thr Asp Tyr Pro Phe Leu Ser

Asn Ala Asn Gly Lys Glu Glu Pro Leu Ser Arg Leu

Ser Arg Leu Ser Arg Asp Leu Ser

Asn Ala Asn Gly Lys Glu Glu Pro Leu Ser Arg Leu

Ser Arg Leu Ser

<210> 25

<211> 1209

<212> ADN

5 <213> Gossypium hirsutum

atggagcatg gagaaaaagt aaaaatggcg gattctcaag aaacccctac gctgttct	ct 60
ccttacaaga tgggcaaatt caatctttcc cacagggtgg tgctagcgcc tatgacga	iga 120
tgcagggcgt tgaatggaat tccaaggccg gcgcttgctg aatattacac gcagaggt	cc 180
actcctggcg gctttctcat cactgaagga acgttgatct ccgacactgg agcagggt	tt 240
ccacatgttc ctggaatcta caatgaagaa caggtggagg catggaagat gattgtgg	jat 300
gctgttcatg ccaaaggggg catcattttc tgtcaactat ggcatgttgg ccgagcat	ct 360
catacagtgt atcaacctgg cggagtggca ccaatatcct caacaaacaa gcccatct	ca 420
aagaggtgga gaattcttat gccagatggt agctatggca tatatcccaa acctcgac	cc 480
ctggaaacat cagaaataca agaggttgta gagcattacc gcaaagcagc cttgaatg	jcc 540
attcgagcag gttttgatgg gattgagatt catggagcac atggttatct catcgacc	aa 600
ttcttaaaag atgggatcaa tgatcgcaca gatgagtacg gtggatcatt ggcaaacc	gc 660
tgcaaattct taatgcaaat tgttcaagca gtagcttcag ccattggtat agatagag	tt 720
gcggtcagaa tgtcgcctgc aattgatcac ctcgatgcaa ccgactctaa tccgctca	ac 780
ctaggcttgg ctgtgattga gagacttaac aagctccagc tacagctggg gtcaaaac	tc 840
gcttatcttc atgtgacgca acctcgttat catgcatacg ggcaaactga atcaggca	aa 900
cacagaaata aagacaagaa agattattta ttaagagacac taaagagaac ctatcaca	ıga 960
cacgggaatg aagacgagga agcttattta ttgagggcac tgaagcggac ctatcacg	
actttcatgt gtagtggcgg gttcaatagg gagctgggaa tgcaagctgt ggccgagg	gt 1020
gatgcagatc ttgtatctta tggccgcctt ttcatctcaa atcctgacct agtcttta	ıgg 1080
ttgaaggtca atgcaccatt aaataggtac attaggaaga cgttctatac tcatgato	ct 1140
gttgttgggt acacagacta tccattcctg aacgaagaga agggtagaca agtactgt	ca 1200
cgcctttga	1209

<210> 26

<211> 402

5 <212> PRT

<213> Gossypium hirsutum

Met Glu His Gly Glu Lys Val Lys Met Ala Asp Ser Gln Glu Thr Pro 1 10 15 Thr Leu Phe Ser Pro Tyr Lys Met Gly Lys Phe Asn Leu Ser His Arg 20 25 30 Val Val Leu Ala Pro Met Thr Arg Cys Arg Ala Leu Asn Gly Ile Pro 35 40 45 Arg Pro Ala Leu Ala Glu Tyr Tyr Thr Gln Arg Ser Thr Pro Gly Gly 50 60 Phe Leu Ile Thr Glu Gly Thr Leu Ile Ser Asp Thr Gly Ala Gly Phe 65 70 75 80 Pro His Val Pro Gly Ile Tyr Asn Glu Glu Gln Val Glu Ala Trp Lys 85 90 95 Met Ile Val Asp Ala Val His Ala Lys Gly Gly Ile Ile Phe Cys Gln 100 105 110Leu Trp His Val Gly Arg Ala Ser His Thr Val Tyr Gln Pro Gly Gly 115 125 Val Ala Pro Ile Ser Ser Thr Asn Lys Pro Ile Ser Lys Arg Trp Arg 130 135 140 Ile Leu Met Pro Asp Gly Ser Tyr Gly Ile Tyr Pro Lys Pro Arg Pro 145 150 155 160 Leu Glu Thr Ser Glu Ile Gln Glu Val Val Glu His Tyr Arg Lys Ala 165 170 175 Ala Leu Asn Ala Ile Arg Ala Gly Phe Asp Gly Ile Glu Ile His Gly 180 185 190 Ala His Gly Tyr Leu Ile Asp Gln Phe Leu Lys Asp Gly Ile Asn Asp

195 200 205

Arg Thr Asp Glu Tyr Gly Gly Ser Leu Ala Asn Arg Cys Lys Phe Leu 210 215 220 Met Gln Ile Val Gln Ala Val Ala Ser Ala Ile Gly Ile Asp Arg Val 225 230 235 240 Ala Val Arg Met Ser Pro Ala Ile Asp His Leu Asp Ala Thr Asp Ser 245 250 255 Asn Pro Leu Asn Leu Gly Leu Ala Val Ile Glu Arg Leu Asn Lys Leu 260 265 270 Gln Leu Gln Leu Gly Ser Lys Leu Ala Tyr Leu His Val Thr Gln Pro 275 280 285 Arg Tyr His Ala Tyr Gly Gln Thr Glu Ser Gly Lys His Gly Asn Glu 290 295 300 Asp Glu Glu Ala Tyr Leu Leu Arg Ala Leu Lys Arg Thr Tyr His Gly 315 320 Thr Phe Met Cys Ser Gly Gly Phe Asn Arg Glu Leu Gly Met Gln Ala 325 330 335 Val Ala Glu Gly Asp Ala Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile 340 345 350 Ser Asn Pro Asp Leu Val Phe Arg Leu Lys Val Asn Ala Pro Leu Asn 355 360 365 Arg Tyr Ile Arg Lys Thr Phe Tyr Thr His Asp Pro Val Val Gly Tyr 370 375 380 Thr Asp Tyr Pro Phe Leu Asn Glu Glu Lys Gly Arg Gln Val Leu Ser 385 390 395 400

Arg Leu

<210> 27

<211> 1200

<212> ADN

5 <213> Coffea canephora

atggctgaaa	ctaagtcaga	tcaaggaagc	ccatctctct	tttctccata	caagatggga	60
aagttcaatc	tgtctcacag	ggtggttctg	gcgccgatga	caagatgcag	ggccataaat	120
agcattcctc	agcctgccat	ggcggagtac	tacgcccaaa	gagcaaccaa	tggtggcttt	180
ctcatcacgg	agggcaccat	gatctcccca	agtgctgccg	ggtttccgca	tgtgccgggg	240
atctttacaa	aggaacaagt	ggaggcatgg	aagcaagtgg	ttgatgcagt	acatgccaag	300
ggtgctatta	ttttctgtca	actgtggcac	gttggccgtg	catcacatga	agtttatcaa	360
cctggtggtg	gtgcacccat	atcatcaacg	ggaaagccta	tatcaaagag	gtggaggata	420
ttgatgcctg	atggcagcca	tgggatctac	cctaaaccac	gtccattaac	aacagcgcat	480
gagattgcgc	aagttgtgga	agattaccgc	cagtcggcct	tgaatgccat	tgaagccggt	540
tttgatggta	ttgaaatcca	tggagcacat	ggctacctaa	ttgaccagtt	cttgaaagat	600
gggatcaatg	atcggacaga	tgaatatggt	ggatctgttg	caaatcgctg	caaattcatt	660
gtgcaggtgg	ttcaggctgt	tgtttcagca	attggtgcag	atcgtgttgg	tgtcagaatt	720
tcccctgcta	ttgaccatct	tgatgccatg	gactctgatc	cactaagctt	aggcctggca	780
gtgattgaga	gacttaacga	gctccaactg	aattcaggct	ccaagttaac	atacttgcac	840
gtgactcaac	ctcgatatac	agcgtatggc	cagacagagg	caggcagaca	ggggagtgaa	900
gaagaggagg	cccaactagt	gaggaccttg	cgaaaagctt	atcaaggaac	tttcatttcc	960
agtggtgggt	tcaccagaga	gctaggagtt	gaagcggtag	ctcagggtga	tgctgatttg	1020
gtttcctatg	gtcgcctttt	tatctcaaat	ccagacttag	ttttacgctt	taagctaaat	1080
gctcctttga	ttaggtataa	tagatctacc	ttctatactc	atgatcctgt	tgtaggatac	1140
acagattacc	cttttctaag	caatggtacc	agtggcaatg	taccacaatc	acgtctgtaa	1200

<210> 28

<211> 399

5 <212> PRT

<213> Coffea canephora

Met Ala Glu Thr Lys Ser Asp Gln Gly Ser Pro Ser Leu Phe Ser Pro 15 Pro 16 Pro 1

115 120 125

Ser Thr Gly Lys Pro Ile Ser Lys Arg Trp Arg Ile Leu Met Pro Asp 130 135 Gly Ser His Gly Ile Tyr Pro Lys Pro Arg Pro Leu Thr Thr Ala His 145 150 155 Glu Ile Ala Gln Val Val Glu Asp Tyr Arg Gln Ser Ala Leu Asn Ala 165 170 175 Ile Glu Ala Gly Phe Asp Gly Ile Glu Ile His Gly Ala His Gly Tyr 180 185 190 Leu Ile Asp Gln Phe Leu Lys Asp Gly Ile Asn Asp Arg Thr Asp Glu 195 200 205 Tyr Gly Gly Ser Val Ala Asn Arg Cys Lys Phe Ile Val Gln Val Val 210 220 Gln Ala Val Val Ser Ala Ile Gly Ala Asp Arg Val Gly Val Arg Ile 225 230 235 240 Ser Pro Ala Ile Asp His Leu Asp Ala Met Asp Ser Asp Pro Leu Ser 245 250 255 Leu Gly Leu Ala Val Ile Glu Arg Leu Asn Glu Leu Gln Leu Asn Ser 260 265 270 Gly Ser Lys Leu Thr Tyr Leu His Val Thr Gln Pro Arg Tyr Thr Ala 275 280 285 Tyr Gly Gln Thr Glu Ala Gly Arg Gln Gly Ser Glu Glu Glu Glu Ala 290 295 Gln Leu Val Arg Thr Leu Arg Lys Ala Tyr Gln Gly Thr Phe Ile Ser 310 315 320Ser Gly Gly Phe Thr Arg Glu Leu Gly Val Glu Ala Val Ala Gln Gly 325 330 335 Asp Ala Asp Leu Val Ser Tyr Gly Arg Leu Phe Ile Ser Asn Pro Asp 340 350 Leu Val Leu Arg Phe Lys Leu Asn Ala Pro Leu Ile Arg Tyr Asn Arg 355 360 365 Ser Thr Phe Tyr Thr His Asp Pro Val Val Gly Tyr Thr Asp Tyr Pro 370 380 Phe Leu Ser Asn Gly Thr Ser Gly Asn Val Pro Gln Ser Arg Leu 385 390 395

<210> 29
<211> 1414
<212> ADN
<213> Glycine max

5 <220>
<221> CDS
<222> (1)..(1167)
<220>
<221> 3'UTR

10 <222> (1168)..(1414)
<400> 29

						agc Ser										48
aaa Lys	ttc Phe	aac Asn	ctc Leu 20	tct Ser	cat His	agg Arg	gtg Val	gta Val 25	ttg Leu	gct Ala	ccc Pro	atg Met	acc Thr 30	aga Arg	tgc Cys	96
aga Arg	gcg Ala	ctc Leu 35	aat Asn	ggg Gly	act Thr	cca Pro	ctg Leu 40	gca Ala	gca Ala	cat His	gct Ala	gaa Glu 45	tac Tyr	tac Tyr	gct Ala	144
cag Gln	aga Arg 50	tca Ser	aca Thr	ccg Pro	ggt Gly	gga Gly 55	ttt Phe	ctc Leu	atc Ile	act Thr	gaa Glu 60	ggc Gly	acc Thr	ttg Leu	atc Ile	192
tct Ser 65	cca Pro	act Thr	tct Ser	tct Ser	ggg Gly 70	ttt Phe	cct Pro	cat His	gtt Val	cct Pro 75	gga Gly	ata Ile	tac Tyr	tca Ser	gat Asp 80	240
gaa Glu	cag Gln	gta Val	gag Glu	gca Ala 85	tgg Trp	aga Arg	aat Asn	gta Val	gtg Val 90	gac Asp	gcc Ala	gtg Val	cat His	gcc Ala 95	aac Asn	288
ggc Gly	agc Ser	ttt Phe	atc Ile 100	ttc Phe	tgt Cys	caa Gln	ctc Leu	tgg Trp 105	cat His	gtt Val	ggc Gly	cgt Arg	gca Ala 110	tca Ser	cat His	336
cca Pro	gtg Val	tat Tyr 115	cag Gln	cct Pro	ggt Gly	ggg Gly	gct Ala 120	cta Leu	ccc Pro	tct Ser	tcg Ser	tcc Ser 125	acc Thr	agc Ser	aaa Lys	384
						aaa Lys 135										432
atc Ile 145	tat Tyr	cca Pro	gag Glu	cct Pro	cgt Arg 150	gca Ala	ctt Leu	acc Thr	act Thr	tct Ser 155	gag Glu	ata Ile	tct Ser	gaa Glu	ata Ile 160	480
gtg Val	cat His	cat His	tat Tyr	cgc Arg 165	caa Gln	gca Ala	gct Ala	att Ile	aat Asn 170	gca Ala	att Ile	cga Arg	gca Ala	ggt Gly 175	ttt Phe	528
gat Asp	gga Gly	atc Ile	gag Glu 180	att Ile	cat His	gga Gly	gca Ala	cat His 185	ggg Gly	tat Tyr	ctc Leu	att Ile	gat Asp 190	caa Gln	ttc Phe	576
tta Leu	aag Lys	gat Asp 195	gca Ala	atc Ile	aat Asn	gat Asp	aga Arg 200	aca Thr	gat Asp	gaa Glu	tac Tyr	ggt Gly 205	gga Gly	cca Pro	cta Leu	624

gaa Glu	aac Asn 210	cgg Arg	tgc Cys	agg Arg	ttc Phe	tta Leu 215	atg Met	gag Glu	gta Val	gtt Val	gaa Glu 220	gct Ala	gtt Val	gtc Val	tct Ser	672
gcc Ala 225	att Ile	gga Gly	gcg Ala	gaa Glu	aga Arg 230	gtt Val	gct Ala	atc Ile	aga Arg	att Ile 235	tca Ser	cca Pro	gca Ala	att Ile	gat Asp 240	720
ttc Phe	aat Asn	gac Asp	gcc Ala	ttt Phe 245	gac Asp	tct Ser	gac Asp	cca Pro	ctt Leu 250	ggg Gly	cta Leu	ggc Gly	tta Leu	gca Ala 255	gtg Val	768
att Ile	gaa Glu	aga Arg	ctc Leu 260	aac Asn	aat Asn	ttg Leu	cag Gln	aaa Lys 265	caa Gln	gtg Val	ggc Gly	aca Thr	aaa Lys 270	ctc Leu	gct Ala	816
tat Tyr	ctt Leu	cat His 275	gtt Val	act Thr	cag Gln	cct Pro	cga Arg 280	ttc Phe	aca Thr	ctt Leu	ttg Leu	gcg Ala 285	caa Gln	acc Thr	gag Glu	864
tca Ser	gtg Val 290	agt Ser	gaa Glu	aag Lys	gag Glu	gaa Glu 295	gct Ala	cat His	ttc Phe	atg Met	cag Gln 300	aaa Lys	tgg Trp	aga Arg	gag Glu	912
								agt Ser								960
gga Gly	atg Met	gaa Glu	gct Ala	gta Val 325	gct Ala	gaa Glu	ggc Gly	cat His	gct Ala 330	gat Asp	ttg Leu	gta Val	tcc Ser	tat Tyr 335	ggt Gly	1008
cgt Arg	ctt Leu	ttc Phe	atc Ile 340	tcc Ser	aat Asn	cca Pro	gac Asp	ttg Leu 345	gtt Val	tta Leu	agg Arg	ctt Leu	aag Lys 350	ctc Leu	aat Asn	1056
								aac Asn								1104
								ttc Phe								1152
		agt Ser		tag	ctaa	aggco	at g	gcato	JCCC1	t ta	aatti	taat	t cto	ccata	atgg	1207
cttt	ttga	aat a	ataa	atgti	tc at	aaca	attca	a aaa	actci	tca	gtt	gagti	tta 1	tcct	cagaca	1267
aaca	aatt	aa g	gtggt	tcat	tt ca	actt	gttag	g ggt	atti	aga	tctt	aggt	tta a	attag	gtctcc	1327
ggca	tttt	ga t	ttca	attt	ca at	ttgt	tatto	agt	ctt	cat	tttg	gaata	aaa a	ataat	tattaa	1387
atti	-+++	icc t	taaa	1222	aa aa	2222	12									1414

<210> 30

<211> 388

<212> PRT

5 <213> Glycine max

Met Ala Asp Asn Ser Ile Ser Leu Phe Ser Pro Tyr Asn Lys Met Gly $1 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Phe Asn Leu Ser His Arg Val Val Leu Ala Pro Met Thr Arg Cys

20 25 30

Arg Ala Leu Asn Gly Thr Pro Leu Ala Ala His Ala Glu Tyr Tyr Ala 35 40 45 Gln Arg Ser Thr Pro Gly Gly Phe Leu Ile Thr Glu Gly Thr Leu Ile 50 60 Ser Pro Thr Ser Ser Gly Phe Pro His Val Pro Gly Ile Tyr Ser Asp 65 70 75 80 Glu Gln Val Glu Ala Trp Arg Asn Val Val Asp Ala Val His Ala Asn 85 90 95 Gly Ser Phe Ile Phe Cys Gln Leu Trp His Val Gly Arg Ala Ser His $100 \hspace{1cm} 105 \hspace{1cm} 110$ Pro Val Tyr Gln Pro Gly Gly Ala Leu Pro Ser Ser Ser Thr Ser Lys 115 120 125 Pro Ile Ser Asp Lys Trp Lys Ile Leu Met Pro Asp Gly Ser His Gly 130 140 Val His His Tyr Arg Gln Ala Ala Ile Asn Ala Ile Arg Ala Gly Phe 165 170 175 Asp Gly Ile Glu Ile His Gly Ala His Gly Tyr Leu Ile Asp Gln Phe 180 185 190 Leu Lys Asp Ala Ile Asn Asp Arg Thr Asp Glu Tyr Gly Gly Pro Leu 195 200 205 Glu Asn Arg Cys Arg Phe Leu Met Glu Val Val Glu Ala Val Val Ser 210 215 220 Ala Ile Gly Ala Glu Arg Val Ala Ile Arg Ile Ser Pro Ala Ile Asp 225 230 235 240 Phe Asn Asp Ala Phe Asp Ser Asp Pro Leu Gly Leu Gly Leu Ala Val 245 250 255 Ile Glu Arg Leu Asn Asn Leu Gln Lys Gln Val Gly Thr Lys Leu Ala 260 265 270 Tyr Leu His Val Thr Gln Pro Arg Phe Thr Leu Leu Ala Gln Thr Glu 275 280 285 Ser Val Ser Glu Lys Glu Glu Ala His Phe Met Gln Lys Trp Arg Glu 290 295 300

Ala Tyr Glu Gly Thr Phe Met Cys Ser Gly Ala Phe Thr Arg Asp Ser 305 310 315 320

Gly Met Glu Ala Val Ala Glu Gly His Ala Asp Leu Val Ser Tyr Gly 325 330 335

Arg Leu Phe Ile Ser Asn Pro Asp Leu Val Leu Arg Leu Lys Leu Asn $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$

Ala Pro Leu Thr Lys Tyr Asn Arg Asn Thr Phe Tyr Thr Gln Asp Pro 355 360 365

Val Ile Gly Tyr Thr Asp Tyr Pro Phe Phe Asn Gly Thr Thr Glu Thr 370 380

Lys Leu Ser Asn 385

REIVINDICACIONES

- 1. El uso de una molécula de ARN bicatenario que comprende i) una primera cadena que contiene una secuencia al menos 80% idéntica a 20 o más nucleótidos contiguos de una porción de un gen tipo OPR3, y ii) una segunda cadena que contiene una secuencia complementaria al menos sobre el 80% de sus nucleótidos con la primera cadena, en donde la porción del gen tipo OPR3 es de un polinucleótido seleccionado entre el grupo que consiste de:
 - a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
 - b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30:
- 10 c) un polinucleótido que tiene al menos 70% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
 - d) un polinucleótido que codifica un polipéptido que tiene al menos 70% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30;
 - para la generación de plantas transgénicas resistentes a la infestación por nemátodos.
- 2. El uso de una reserva de moléculas de ARN bicatenario que comprende una multiplicidad de moléculas de ARN cada una conteniendo una región bicatenaria que tiene una longitud de 19 a 24 nucleótidos, en donde dichas moléculas de ARN bicatenario se derivan de una porción de un polinucleótido seleccionado entre el grupo que consiste de:
 - a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
- b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30.
 - c) un polinucleótido que tiene al menos 90% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29; y
- d) un polinucleótido que codifica un polipéptido que tiene 90% de identidad de secuencia con un polipéptido que 25 tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30;
 - para la generación de plantas transgénicas resistentes a la infestación por nemátodos.
 - 3. Una planta transgénica resistente a los nemátodos capaz de expresar un ARN bicatenario que es al menos 80% idéntico a 20 o más nucleótidos contiguos de una porción de un gen tipo OPR3, en donde la porción del gen tipo OPR3 es de un polinucleótido seleccionado entre el grupo que consiste de:
- 30 a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;

40

- b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30;
- c) un polinucleótido que tiene al menos 70% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
- d) un polinucleótido que codifica un polipéptido que tiene al menos 70% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30.
 - 4. La planta transgénica resistente a los nemátodos de la reivindicación 3, en donde el ARN bicatenario comprende una multiplicidad de moléculas de ARN cada una conteniendo una región bicatenaria que tiene una longitud de 19 a 24 nucleótidos, en donde dichas moléculas de ARN se derivan de una porción de un polinucleótido seleccionado entre el grupo que consiste de:

- a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
- b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30:
- c) un polinucleótido que tiene al menos 90% de identidad de secuencia con un polinucleótido que tiene una 5 secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29; y
 - d) un polinucleótido que codifica un polipéptido que tiene al menos 90% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30.
- 5. La planta transgénica de la reivindicación 3 ó 4, en donde la planta se selecciona entre el grupo que consiste de maíz, trigo, cebada, sorgo, centeno, triticale, arroz, caña de azúcar, árboles de cítricos, piña, coco, plátano, café, té, tabaco, girasol, guisantes, alfalfa, soja, zanahoria, apio, tomate, patata, algodón, tabaco, berenjena, pimiento, colza, canola, remolacha, col, coliflor, brócoli, lechuga, *Lotus sp., Medicago truncatula*, gramíneas perennes, raigrás, y *Arabidopsis thaliana*.
- 6. Un método para elaborar una planta transgénica resistente a los nemátodos capaz de expresar un ARN bicatenario que inhibe la expresión de un gen objetivo tipo OPR3 en la planta, dicho método comprende las etapas de i) preparar un ácido nucleico que tiene una región que es al menos 80% idéntica a 20 o más nucleótidos contiguos de una porción del tipo OPR3, en donde el ácido nucleico es capaz de formar una transcripción bicatenaria una vez expresada en la planta; ii) transformar una planta receptora con dicho ácido nucleico; iii) producir uno o más descendientes transgénicos de dicha planta receptora; y iv) seleccionar el descendiente para la expresión de dicha transcripción, en donde la porción del gen objetivo es de 19 a 500 nucleótidos de un polinucleótido seleccionado entre el grupo que consiste de:
 - a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
 - b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30:
- c) un polinucleótido que tiene al menos 70% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
 - d) un polinucleótido que codifica un polipéptido que tiene al menos 70% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30.
- 7. El método de la reivindicación 6, en donde el ARN bicatenario comprende una multiplicidad de moléculas de ARN cada una conteniendo una región bicatenaria que tiene una longitud de 19 a 24 nucleótidos, en donde dichas moléculas de ARN se derivan de un polinucleótido seleccionado entre el grupo que consiste de:
 - a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
 - b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30:
- c) un polinucleótido que tiene al menos 90% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29; y
 - d) un polinucleótido que codifica un polipéptido que tiene al menos 90% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30.
- 8. El método de la reivindicación 6 ó 7, en donde la planta se selecciona entre el grupo que consiste de soja, patata, tomate, maní, algodón, mandioca, café, coco, piña, árboles de cítricos, plátano, maíz, colza, remolacha, girasol, sorgo, trigo, avena, centeno, cebada, arroz, judías verdes, habas, guisantes, y tabaco.
 - 9. El método de cualquiera de las reivindicaciones 6 a 8, en donde el ARN bicatenario se expresa en las raíces de la planta o en los sitios de alimentación del nemátodo.
 - 10. Un método para conferir resistencia a los nemátodos a una planta, dicho método comprendiendo las etapas de:

- a) preparar un ácido nucleico que codifica una molécula de ARN bicatenario que tiene una región que es al menos 80% idéntica a 20 o más nucleótidos contiguos de una porción de un gen tipo OPR3, en donde el ácido nucleico es capaz de formar una transcripción bicatenaria de una porción de un gen tipo OPR3 una vez expresado en la planta, en donde la porción del gen tipo OPR3 es de un polinucleótido seleccionado entre el grupo que consiste de:
- 5 a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
 - b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30:
 - c) un polinucleótido que tiene al menos 70% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
- d) un polinucleótido que codifica un polipéptido que tiene al menos 70% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30;
 - b) transformar una planta receptora con dicho ácido nucleico;
 - c) producir uno o más descendientes transgénicos de dicha planta receptora; y
 - d) seleccionar la descendencia para resistencia a los nemátodos.
- 11. Un método para controlar la infección de una planta por un nemátodo parásito, que comprende las etapas de transformar la planta con un ácido nucleico que codifica una molécula de ARN bicatenario operativamente enlazada a un promotor preferido del sitio de alimentación del nemátodo, inducible por el nemátodo o preferido de la raíz, mediante el cual el ARN bicatenario que contiene una cadena que es al menos 80% idéntica a 20 o más nucleótidos contiguos de una porción de un ácido nucleico objetivo esencial para la formación, desarrollo o soporte del sitio de alimentación, en particular la formación, desarrollo o soporte de sincitios o células gigantes, controlando así la infección de la planta por parte del nemátodo removiendo o incapacitando funcionalmente el sitio de alimentación, los sincitios o las células gigantes, en donde al ácido nucleico objetivo es un gen del tipo OPR3, en donde la porción del gen tipo OPR3 es de un polinucleótido seleccionado entre el grupo que consiste de:
 - a) un polinucleótido que comprende una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
- b) un polinucleótido que codifica un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: 3 ó 30:
 - c) un polinucleótido que tiene al menos 70% de identidad de secuencia con un polinucleótido que tiene una secuencia como la expuesta en las SEQ ID NOs: 1, 2 ó 29;
- d) un polinucleótido que codifica un polipéptido que tiene al menos 70% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NOs: $3 \circ 30$.

Figura 1

Nombre del gen	<u>Especie</u>	SEQ ID NO:
ADNc parcial de 45174942	Glycine max	1
Fragmento sentido de 45174942	Glycine max	2
Traducción del ADN parcial de 45174942	Glycine max	3
Promotor tipo TPP	Arabidopsis thaliana	4
Promotor At5g12170	Arabidopsis thaliana	5
Promotor tipo MtN3	Glycine max	6
ADN de tomate Q9FEW9	Lycopersicon esculentum	7
Proteína de tomate Q9FEW9	Lycopersicon esculentum	8
ADN de Arabidopsis thaliana	Arabidopsis thaliana	9
Proteína de Arabidopsis At2g06050	Arabidopsis thaliana	10
ADN de Hevea AAY27752	Hevea brasiliensis	11
Proteína Hevea AAY27752	Hevea brasiliensis	12
ADN de Oryza EAZ42984	Oryza sativa	13
Proteína de Oryza EAZ42984	Oryza sativa	14
ADN de Zea AAY26527	Zea mays	15
Proteína de Zea AAY26527	Zea mays	16
ADN de Zea AAY26528	Zea mays	17
Proteína de Zea AAY26528	Zea mays	18
ADN de Arachis EG030595	Arachis hypogaea	19
Proteína de Arachis EG030595	Arachis hypogaea	20
ADN de patata TA29350_4113	Solanum tuberosum	21
Proteína de patata TA29350_4113	Solanum tuberosum	22
ADN de Prunus TA4283_3760	Prunus persica	23
Proteína de Prunus TA4283_3760	Prunus persica	24
ADN de Gossypium TA23750_3635	Gossypium hirsutum	25
Proteína de Gossypium TA23750_3635	Gossypium hirsutum	26
ADN de Coffea TA7248_49390	Coffea canephora	27
Proteína de Coffea TA7248_49390	Coffea canephora	28
ADN tipo GmOPR3 de longitud completa	Glycine max	29
Proteína tipo GmOPR3 de longitud completa	Glycine max	30

Figura 2a

Tipo GmOPR3	(1)	MADN-SISLFSPYNKMGKFNLSHRVVLAPMTRCRALNG
EG030595 Arachis	(1)	MADNESSSLFSAY-KMAKFSLSHRVVLAPMTRCRALNG
AAY27752 Hevea	(1)	MAETGTEGTGITTLFSPY-KMGKFSLSHRVVLAPMTRCRALNG
At2g06050_Arabidopsis	(1)	MTAAQGNSNETLFSSY-KMGRFDLSHRVVLAPMTRCRALNG
Q9FEW9_tomate	(1)	MASSAQDGNNPLFSPY-KMGKFNLSHRVVLAPMTRCRALNN
TA29350 4113_patata	(1)	MAKTTSSSAQDGSNPLFSPY-KMAKFNLSHRIVLAPMTRCRALNN
TA23750_3635_Gossypium	(1)	MEHGEKVKMADSQETPTLFSPY-KMGKFNLSHRVVLAPMTRCRALNG
TA4283 - 3760- Prunus	(1)	MAEASSQGPTLFSPF-KMGKFNLSHRVVLAPMTRCRALNG
TA7248 - 49390- Coffea	(1)	MAETKSDQGSPSLFSPY-KMGKFNLSHRVVLAPMTRCRAINS
AAY26528 Zea	(1)	MASTDRSAPAEDQQQPQRPSLFSPY-QMPHFRLAHRVVLAPMTRCRAPDA
AAY26527 Zea	(1)	MASTDRSTPAEDEQQQKRPSLFSPY-QMPRFRLAHRVVLAPMTRCRAPDA
EAZ42984_0ryza	(1)	MDRPPPDQQRQKQAPLFSPY-QMPRFRLNHRVVLAPMTRCRAIGG
Tipo GmOPR3	(38)	TPLAAHAEYYAQRSTPGGFLITEGTLISPTSSGFPHVPGIYSDEQVEAWR
EG030595 Arachis	(38)	IPRAAHAEYYAQRSTPGGFLITEGTLISPTAPGFPHVPGIYSEEQVEAWR
AAY27752 Hevea	(43)	IPNAALVDYYTQRSTPGGFLITEGTLVSPTAPGFPHVPGIYTEEQAEAWK
At2g06050_Arabidopsis	(41)	VPNAALAEYYAQRTTPGGFLISEGTMVSPGSAGFPHVPGIYSDEQVEAWK
Q9FEW9_tomate	(41)	IPQAALGEYYEQRATAGGFLITEGTMISPTSAGFPHVPGIFTKEQVREWK
TA29350_4113_patata	(45)	IPSAALGEYYEQRATAGGFLITEGTMISPTSAGFPHVPGIFTKEQVEEWK
TA23750 3635_Gossypium	(47)	IPRPALAEYYTQRSTPGGFLITEGTLISDTGAGFPHVPGIYNEEQVEAWK
TA4283 3760 Prunus	(40)	LPQPALAEYYTQRSTNGGFLITEGTLVSDTGAGFPHVPGIYNDEQVEAWK
TA7248- 49390- Coffea	(42)	IPQPAMAEYYAQRATNGGFLITEGTMISPSAAGFPHVPGIFTKEQVEAWK
AAY26528 Zea	(50)	LPGPALAEYYAQRSTEGGLLISEGTIISPAGPGFPRVPGIYNQEQTDAWK
AAY26527 Zea	(50)	VPGPALAEYYAQRSTDGGLLISEGTIISPSGPGFPRVPGIYNQEQTDAWR
EAZ42984_0ryza	(45)	VPGPALAEYYAQRTTQGGLLISEGTVVSPAGPGFPHVPGIYNQEQTDAWK
Tipo GmOPR3	(88)	NVVDAVHANGSFIFCQLWHVGRASHPVYQPGGALPSSSTSKPIS-DKWKI
EG030595 Arachis	(88)	NVVDAVHAKGSFIFCQLWHAGRASHPVYQPGAAPPISSTNKAIS-SRWRI
AAY27752 Hevea	(93)	RVVDAVHAKGSIIFCQLWHVGRASHQVYQPNGAAPISSTGKAIS-NRWRI
At2g06050_Arabidopsis	(91)	QVVEAVHAKGGFIFCQLWHVGRASHAVYQPNGGSPISSTNKPISENRWRV
Q9FEW9_tomate	(91)	KIVDVVHAKGAVIFCQLWHVGRASHEVYQPAGAAPISSTEKPIS-NRWRI
TA29350_4113_patata	(95)	KIVDVVHAKGAVIFCQLWHVGRASHEVYQPAGAAPISSTEKPIS-KRWRI
TA23750 3635_Gossypium	(97)	MIVDAVHAKGGIIFCQLWHVGRASHTVYQPGGVAPISSTNKPIS-KRWRI
TA4283 3760 Prunus	(90)	KVVDAVHAKGAIIFCQLWHVGRASHEVYQPGGGSPISSTDVPIS-RRWRI
TA7248 49390 Coffea	(92)	QVVDAVHAKGAIIFCQLWHVGRASHEVYQPGGGAPISSTGKPIS-KRWRI
AAY26528 Zea	(100)	KVVDAVHAKGAIFFCQLWHVGRASHQVYQPGGSAPISSTDKPIS-SRWRI
AAY26527 Zea	(100)	KVVDAVHAKGAIFFCQLWHVGRASHQVYQPGAAAPISSTDKPIS-SRWRI
EAZ42984_0ryza	(95)	KVVDAVHAKGGIFFCQLWHVGRASHQVYQPNGAAPISSTDKPIS-ARWRI

Figura 2b

Tipo GmOPR3
EG030595 Arachis
AAY27752 Hevea
At2g06050_Arabidopsis
Q9FEW9_tomate
TA29350 4113_patata
TA23750_3635_Gossypium
TA4283 3760 Prunus
TA7248 - 49390 - Coffea
AAY26528 Zea
AAY26527 Zea
EAZ42984_0ryza

(137) LMPDGSHGIYPEPRALTTS-EISEIVHHYRQAAINAIRAGFDGIEIHGAH (137) LLPDQSYGVYPEPRPLDSS-EIPQIVDHYRQSAVNAIRAGFDGIEIHGAH (142) LMPDGSYGKYPTPRPLETP-EILEVVKNYRQSALNAIRAGFDGIEVHGAH (141) LLPDGSHVKYPKPRALEAS-EIPRVVEDYCLSALNAIRAGFDGIEIHGAH (140) LMPDGTHGIYPKPRAIGTY-EISQVVEDYRRSALNAIEAGFDGIEIHGAH (144) LMPDGTHGIYPKPRAIGTY-EISQVVEDYCRSALNAIEAGFDGIEIHGAH (146) LMPDGSYGIYPKPRPLETS-EIQEVVEHYRKAALNAIRAGFDGIEIHGAH (139) LLPDASHATYPKPRRLETP-EILQVVEHYRQAALNAIRAGFDGIEIHGAH (141) LMPDGSHGIYPKPRPLTTAHEIAQVVEDYRQSALNAIEAGFDGIEIHGAH (149) LMPDGSYGKYPTPRRLATS-EIPEIVEQYRQAAINAIKAGFDGIEIHGAH (149) LMPDGSYGKYPTPRRLATS-EIPEIVEQYRQAAVNAIKAGFDGIEIHGAH (144) LMPDGSYGKYPKPRRLATS-EIPEIVEQYRQAAVNAIKAGFDGIEIHGAH (144) LMPDGSYGKYPKPRRLAAS-EIPEIVEQYRQAAVNAIKAGFDGIEIHGAH

Tipo GmOPR3
EG030595 Arachis
AAY27752 Hevea
At2g06050_Arabidopsis
Q9FEW9_tomate
TA29350_4113_patata
TA23750_3635_Gossypium
TA4283- 3760- Prunus
TA7248- 49390- Coffea
AAY26528 Zea
AAY26527 Zea
EAZ42984 Oryza

(186) GYLIDQFLKDAINDRTDEYGGPLENRCRFLMEVVEAVVSAIGAERVAIRI (186) GYLIDQFLKDGINERRDEYGGSISNRCRFLMQVVKAVVSAIGAERVGVRI (191) GYLIDQFLKDGINDRTDEYGGSINNRCRFLMQVIQAVVAAIGADRVGFRM (190) GYLIDQFLKDGINDRTDQYGGSIANRCRFLKQVVEGVVSAIGASKVGVRV (189) GYLIDQFLKDGINDRTDEYGGSLANRCKFITQVVQAVVSAIGADRVGVRV (193) GYLIDQFLKDGINDRTDEYGGSLANRCKFITQVVQAVVSAIGADRVGVRV (195) GYLIDQFLKDGINDRTDEYGGSLANRCKFLMQIVQAVASAIGIDRVAVRM (188) GYLIDQFLKDGINDRTDEYGGSLANRCKFLLQVVQAVVGAVGADRVGVRI (191) GYLIDQFLKDGINDRTDEYGGSVANRCKFIVQVVQAVVSAIGADRVGVRI (198) GYLIDQFLKDGINDRADEYGGSLSNRCRFLLEVTRAVVSAIGADRVAVRV (198) GYLIDQFLKGGINDRTDEYGGSLSNRCRFLLEVTRAVVSAIGADRVAVRV (199) GYLIDQFLKDGINDRTDEYGGSLSNRCRFLLEVTRAVVSAIGADRVAVRV

Tipo GmOPR3
EG030595 Arachis
AAY27752 Hevea
At2g06050_Arabidopsis
Q9FEW9_tomate
TA29350_4113_patata
TA23750_3635_Gossypium
TA4283_3760_Prunus
TA7248 49390_Coffea
AAY26528_Zea
AAY26527_Zea

EAZ42984_0ryza

Figura 2c

T: 0 0000	(200) OTEOV OF WELL AND WARD AVE OTEN OOO AFT DOOM FAVA FOLLADI
Tipo GmOPR3	(286) QTESVSEKEEAHFMQKWREAYEGTFMCSGAFTRDSGMEAVAEGHADL
EG030595 Arachis	(251)
AAY27752 Hevea	(291) QTESGRHGTEEEEARLMRTWRRAYKGTFICSGGFTRELGMEAIAQDDADL
At2g06050_Arabidopsis	(290) QTESGRQGSDEEEAKLMKSLRMAYNGTFMSSGGFNKELGMQAVQQGDADL
Q9FEW9_tomate	(289) QTEAGRLGSEEEEARLMRTLRNAYQGTFICSGGYTRELGIEAVAQGDADL
TA29350 4113_patata	(293) QTEAGRLGSEEEEAHLMRTLRNAYQGTFICSGGYTRELGIEAVAQGDADL
TA23750_3635_Gossypium	(295) QTESGKHGNEDEEAYLLRALKRTYHGTFMCSGGFNRELGMQAVAEGDADL
TA4283 3760 Prunus	(288) QTESGKPGSDEEEAVFMRTLRNAYRGTFVASGGYTRELGIHAVASRDADL
TA7248 - 49390 - Coffea	(291) QTEAGRQGSEEEEAQLVRTLRKAYQGTFISSGGFTRELGVEAVAQGDADL
AAY26528 Zea	(297) QTESGQHGS~EEESRLMRALRGAYRGTFMCSGGYTRELGVEAVESWDADL
AAY26527 Zea	(297) QTESGQHGSAEEESRLMRAVRGAYRGTFMCSGGYTRELGVEAIESGDADL
EAZ42984_0ryza	(292) QTESGQHGSAEEESRLMRTLRGTYQGTFMCSGGYTRELGLEAVESGDADL
Tipo GmOPR3	(333) VSYGRLFISNPDLVLRLKLNAPLTKYNRNTFYTQDPVIGYTDYPFFNGTT
EG030595 Arachis	(251)
AAY27752 Hevea	(341) VSYGRLFISNPDLVLRFKLNAPLNKYVRKTFYTQDPVVGYTDYPFFRKVD
At2g06050_Arabidopsis	(340) VSYGRLFIANPDLVSRFKIDGELNKYNRKTFYTQDPVVGYTDYPFLAPF
Q9FEW9_tomate	(339) VSYGRLFISNPDLVMRIKLNAPLNKYNRKTFYTQDPVVGYTDYPFLQGNG
TA29350_4113_patata	(343) VSYGRLFISNPDLVMRIKLNAPLNKYNRKTFYTQDPVVGYTDYPFLQGNG
TA23750_3635_Gossypium	(345) VSYGRLFISNPDLVFRLKVNAPLNRYIRKTFYTHDPVVGYTDYPFLNEEK
TA4283- 3760- Prunus	(338) VSYGRLFISNPDLVLRLKLNAPLTRYNRKTFYTQDPVVGYTDYPFLSNAN
TA7248- 49390- Coffea	(341) VSYGRLFISNPDLVLRFKLNAPLIRYNRSTFYTHDPVVGYTDYPFLSNGT
AAY26528 Zea	(347) VSYGRLFIANPDLVERFRRDAPLNRYVRKTFYTPDPVVGYTDYPFLGQ
AAY26527 Zea	(347) VSYGRLFIANPDLVERFRRDAPLNKYVRKTFYTPDPVVGYTDYTFLGQ
EAZ42984_0ryza	(342) VSYGRLFISNPDLVERFRLNAGLNKYVRKTFYTPDPVVGYTDYPFLGQ
Tipo GmOPR3	(383) ETKLSN
EG030595 Arachis	(251)
AAY27752 Hevea	(391) GSQEPRSRL
At2g06050_Arabidopsis	(389)SRL
Q9FEW9_tomate	(389) SNG-PLSRL
TA29350_4113_patata	(393) SNG-PLSRL
TA23750_3635_Gossypium	(395) GRQV-LSRL
TA4283_3760_Prunus	(388) GKEEPLSRL
TA7248 49390_Coffea	(391) SGNVPQSRL
AAY26528_Zea	(395)PKARM
AAY26527_Zea	(395)PKARM
EAZ42984_0ryza	(390)PKSRM

Figura 3: Porcentaje global de identidad de aminoácidos entre ejemplos de los genes tipo OPR3

	Tipo GmOPR3	EG030595 Arachis	AAY27752 Hevea	At2g06050 Arabidopsis	Q9FEW9 tomate	TA29350_4113 patata	TA23750_3635 Gossypium	TA4283_3760 Prunus	TA7248_49390 Coffea	AAY26528 Zea	AAY26527 Zea	EAZ42984 Oryza
Tipo GmOPR3	100	82	73	70	72	72	74	72	73	69	70	70
EG030595 Arachis		100	79	76	73	73	78	75	78	73	74	72
AAY27752 Hevea			100	74	77	75	78	77	78	72	73	74
At2g06050 Arabidop.				100	75	74	74	74	74	70	70	72
Q9FEW9 tomate					100	97	77	77	83	72	72	73
TA29350_4113 patata						100	76	76	83	70	70	72
TA23750_3635 Gos.							100	79	78	73	72	73
TA4283_3760 Prunus								100	79	74	72	73
TA7248_49390 Cof.									100	74	. 73	74
AAY26528 Zea										100	94	87
AAY26527 Zea											100	87
EAZ42984 Oryza												100

Figura 4: Porcentaje global de identidad de nucleótidos entre ejemplos de genes tipo OPR3

	Tipo GmOPR3	EG030595 Arachis	AAY27752 Hevea	AT2G06050 Arabidopsis	AJ278332 tomate	TA29350_4113 Solanum	TA23750_3635 Gossypium	TA4283_3760 Prunus	TA7248_49390 Coffea	AAY26527 Zea	AAY26528 Zea	EAZ42984 arroz
Tipo GmOPR3	100	79	72	68	72	71	73	71	70	63	62	65
EG030595 Arachis		100	75	70	72	71	74	72	70	69	68	68
AAY27752 Hevea			100	70	74	73	77	76	74	66	65	68
AT2G06050 Arabi.				100	70	69	71	70	69	63	63	66
AJ278332 tomate					100	97	74	74	77	65	64	66
TA29350_4113 So.						100	73	73	77	64	64	65
TA23750_3635 Gos.			,				100	76	74	66	66	68
TA4283_3760 Prun.		·						100	75	66	66	68
TA7248_49390 Cof.									100	66	65	65
AAY26527 Zea										100	94	82
AAY26528 Zea											100	82
EAZ42984 arroz												100

Figura 5a

	pos	iciones	de los n	ucleó	tidos d	le 21 mer	rs de ι	ın polinu	cleótido de	codific	cación tip	o OPR3	de la	
			SI	EQ ID	NO. 1	1, 7, 9, 11	I, 13, ⁻	15, 17, 1	9, 21, 23, 2	5, 27,	29, ó			
			una sec	uenc	ia de p	olinucleá	tidos	que codi	fica un hom	ólogo	tipo OPF	R3		
1	а	21	31	а	51	61	а	81	91	а	111	121	а	141
2	а	22	32	а	52	62	а	82	92	а	112	122	а	142
3	а	23	33	а	53	63	а	83	93	а	113	123	а	143
4	а	24	34	а	54	64	а	84	94	а	114	124	а	144
5	а	25	35	а	55	65	а	85	95	а	115	125	а	145
6	а	26	36	а	56	66	а	86	96	а	116	126	а	146
7	а	27	37	а	57	67	а	87	97	а	117	127	а	147
8	а	28	38	а	58	68	а	88	98	а	118	128	а	148
9	а	29	39	а	59	69	а	89	99	а	119	129	а	149
10	а	30	40	а	60	70	а	90	100	а	120	130	а	150
11	а	31	41	а	61	71	а	91	101	а	121	131	а	151
12	а	32	42	а	62	72	а	92	102	а	122	132	а	152
13	а	33	43	а	63	73	а	93	103	а	123	133	а	153
14	а	34	44	а	64	74	а	94	104	а	124	134	а	154
15	а	35	45	а	65	75	а	95	105	а	125	135	а	155
16	а	36	46	а	66	76	а	96	106	а	126	136	а	156
17	а	37	47	а	67	77	а	97	107	а	127	137	а	157
18	а	38	48	а	68	78	а	98	108	а	128	138	а	158
19	а	39	49	а	69	79	а	99	109	а	129	139	а	159
20	а	40	50	а	70	80	а	100	110	а	130	140	а	160
21	а	41	51	а	71	81	а	101	111	а	131	141	а	161
22	а	42	52	а	72	82	а	102	112	а	132	142	а	162
23	а	43	53	а	73	83	а	103	113	а	133	143	а	163
24	а	44	54	а	74	84	а	104	114	а	134	144	а	164
25	а	45	55	а	75	85	а	105	115	а	135	145	а	165
26	а	46	56	а	76	86	а	106	116	а	136	146	а	166
27	а	47	57	а	77	87	а	107	117	а	137	147	а	167
28	а	48	58	а	78	88	а	108	118	а	138	148	а	168
29	а	49	59	а	79	89	а	109	119	а	139	149	а	169
30	а	50	60	а	80	90	а	110	120	а	140	150	а	170

Figura 5b

	ро	siciones	de los nuc	cleótic	los de 2	1 mers d	e un	polinucle	eótido de	codific	ación tipo	OPR3 d	e la	
			SEC	1 DI	NO. 1, 7,	9, 11, 13	3, 15,	17, 19,	21, 23, 2	5, 27, 2	29, ó			
			una secu	encia	de polin	ucleótido	os qu	e codific	a un hom	ólogo	tipo OPR	3		
151	а	171	181	а	201	211	а	231	241	а	261	271	а	291
152	а	172	182	а	202	212	а	232	242	а	262	272	а	292
153	а	173	183	а	203	213	а	233	243	а	263	273	а	293
154	а	174	184	а	204	214	а	234	244	а	264	274	а	294
155	а	175	185	а	205	215	а	235	245	а	265	275	а	295
156	а	176	186	а	206	216	а	236	246	а	266	276	а	296
157	а	177	187	а	207	217	а	237	247	а	267	277	а	297
158	а	178	188	а	208	218	а	238	248	а	268	278	а	298
159	а	179	189	а	209	219	а	239	249	а	269	279	а	299
160	а	180	190	а	210	220	а	240	250	а	270	280	а	300
161	а	181	191	а	211	221	а	241	251	а	271	281	а	301
162	а	182	192	а	212	222	а	242	252	а	272	282	а	302
163	а	183	193	а	213	223	а	243	253	а	273	283	а	303
164	а	184	194	а	214	224	а	244	254	а	274	284	а	304
165	а	185	195	а	215	225	а	245	255	а	275	285	а	305
166	а	186	196	а	216	226	а	246	256	а	276	286	а	306
167	а	187	197	а	217	227	а	247	257	а	277	287	а	307
168	а	188	198	а	218	228	а	248	258	а	278	288	а	308
169	а	189	199	а	219	229	а	249	259	а	279	289	а	309
170	а	190	200	а	220	230	а	250	260	а	280	290	а	310
171	а	191	201	а	221	231	а	251	261	а	281	291	а	311
172	а	192	202	а	222	232	а	252	262	а	282	292	а	312
173	а	193	203	а	223	233	а	253	263	а	283	293	а	313
174	а	194	204	а	224	234	а	254	264	а	284	294	а	314
175	а	195	205	а	225	235	а	255	265	а	285	295	а	315
176	а	196	206	а	226	236	а	256	266	а	286	296	а	316
177	а	197	207	а	227	237	а	257	267	а	287	297	а	317
178	а	198	208	а	228	238	а	258	268	а	288	298	а	318
179	а	199	209	а	229	239	а	259	269	а	289	299	а	319
180	а	200	210	а	230	240	а	260	270	а	290	300	а	320

Figura 5c

	ро	siciones							ótido de co			OPR3 de	la	
			SE	Q ID N	10. 1, 7,	9, 11, 13	, 15,	17, 19,	21, 23, 25,	27, 29	9, ó			
			una secu	iencia	de polin	ucleótido	s que	codifica	a un homól	ogo ti	po OPR	3		
301	а	321	331	а	351	361	а	381	391	а	411	421	а	441
302	а	322	332	а	352	362	а	382	392	а	412	422	а	442
303	а	323	333	а	353	363	а	383	393	а	413	423	а	443
304	а	324	334	а	354	364	а	384	394	а	414	424	а	444
305	а	325	335	а	355	365	а	385	395	а	415	425	а	445
306	а	326	336	а	356	366	а	386	396	а	416	426	а	446
307	а	327	337	а	357	367	а	387	397	а	417	427	а	447
308	а	328	338	а	358	368	а	388	398	а	418	428	а	448
309	а	329	339	а	359	369	а	389	399	а	419	429	а	449
310	а	330	340	а	360	370	а	390	400	а	420	430	а	450
311	а	331	341	а	361	371	а	391	401	а	421	431	а	451
312	а	332	342	а	362	372	а	392	402	а	422	432	а	452
313	а	333	343	а	363	373	а	393	403	а	423	433	а	453
314	а	334	344	а	364	374	а	394	404	а	424	434	а	454
315	а	335	345	а	365	375	а	395	405	а	425	435	а	455
316	а	336	346	а	366	376	а	396	406	а	426	436	а	456
317	а	337	347	а	367	377	а	397	407	а	427	437	а	457
318	а	338	348	а	368	378	а	398	408	а	428	438	а	458
319	а	339	349	а	369	379	а	399	409	а	429	439	а	459
320	а	340	350	а	370	380	а	400	410	а	430	440	а	460
321	а	341	351	а	371	381	а	401	411	а	431	441	а	461
322	а	342	352	а	372	382	а	402	412	а	432	442	а	462
323	а	343	353	а	373	383	а	403	413	а	433	443	а	463
324	а	344	354	а	374	384	а	404	414	а	434	444	а	464
325	а	345	355	а	375	385	а	405	415	а	435	445	а	465
326	а	346	356	а	376	386	а	406	416	а	436	446	а	466
327	а	347	357	а	377	387	а	407	417	а	437	447	а	467
328	а	348	358	а	378	388	а	408	418	а	438	448	а	468
329	а	349	359	а	379	389	а	409	419	а	439	449	а	469
330	а	350	360	а	380	390	а	410	420	а	440	450	а	470

Figura 5d

	po	siciones	de los nu	cleótid	os de 21	mers de	un p	olinucle	ótido de co	odifica	ción tipo	OPR3 de	la	
			SE	Q ID N	IO. 1, 7,	9, 11, 13	, 15,	17, 19, 2	21, 23, 25,	27, 29	9, ó			
			una secu	iencia	de polini	ucleótido	s que	codifica	a un homól	ogo ti	oo OPR	3		
451	а	471	481	а	501	511	а	531	541	а	561	571	а	591
452	а	472	482	а	502	512	а	532	542	а	562	572	а	592
453	а	473	483	а	503	513	а	533	543	а	563	573	а	593
454	а	474	484	а	504	514	а	534	544	а	564	574	а	594
455	а	475	485	а	505	515	а	535	545	а	565	575	а	595
456	а	476	486	а	506	516	а	536	546	а	566	576	а	596
457	а	477	487	а	507	517	а	537	547	а	567	577	а	597
458	а	478	488	а	508	518	а	538	548	а	568	578	а	598
459	а	479	489	а	509	519	а	539	549	а	569	579	а	599
460	а	480	490	а	510	520	а	540	550	а	570	580	а	600
461	а	481	491	а	511	521	а	541	551	а	571	581	а	601
462	а	482	492	а	512	522	а	542	552	а	572	582	а	602
463	а	483	493	а	513	523	а	543	553	а	573	583	а	603
464	а	484	494	а	514	524	а	544	554	а	574	584	а	604
465	а	485	495	а	515	525	а	545	555	а	575	585	а	605
466	а	486	496	а	516	526	а	546	556	а	576	586	а	606
467	а	487	497	а	517	527	а	547	557	а	577	587	а	607
468	а	488	498	а	518	528	а	548	558	а	578	588	а	608
469	а	489	499	а	519	529	а	549	559	а	579	589	а	609
470	а	490	500	а	520	530	а	550	560	а	580	590	а	610
471	а	491	501	а	521	531	а	551	561	а	581	591	а	611
472	а	492	502	а	522	532	а	552	562	а	582	592	а	612
473	а	493	503	а	523	533	а	553	563	а	583	593	а	613
474	а	494	504	а	524	534	а	554	564	а	584	594	а	614
475	а	495	505	а	525	535	а	555	565	а	585	595	а	615
476	а	496	506	а	526	536	а	556	566	а	586	596	а	616
477	а	497	507	а	527	537	а	557	567	а	587	597	а	617
478	а	498	508	а	528	538	а	558	568	а	588	598	а	618
479	а	499	509	а	529	539	а	559	569	а	589	599	а	619
480	а	500	510	а	530	540	а	560	570	а	590	600	а	620

Figura 5e

	ро	siciones							ótido de co			OPR3 de	la	
			SE	Q ID N	IO. 1, 7,	9, 11, 13	, 15,	17, 19, 2	21, 23, 25,	27, 29	9, ó			
			una secu	iencia	de polin	ucleótido	s que	codifica	a un homól	ogo ti	po OPR	3		
601	а	621	631	а	651	661	а	681	691	а	711	721	а	741
602	а	622	632	а	652	662	а	682	692	а	712	722	а	742
603	а	623	633	а	653	663	а	683	693	а	713	723	а	743
604	а	624	634	а	654	664	а	684	694	а	714	724	а	744
605	а	625	635	а	655	665	а	685	695	а	715	725	а	745
606	а	626	636	а	656	666	а	686	696	а	716	726	а	746
607	а	627	637	а	657	667	а	687	697	а	717	727	а	747
608	а	628	638	а	658	668	а	688	698	а	718	728	а	748
609	а	629	639	а	659	669	а	689	699	а	719	729	а	749
610	а	630	640	а	660	670	а	690	700	а	720	730	а	750
611	а	631	641	а	661	671	а	691	701	а	721	731	а	751
612	а	632	642	а	662	672	а	692	702	а	722	732	а	752
613	а	633	643	а	663	673	а	693	703	а	723	733	а	753
614	а	634	644	а	664	674	а	694	704	а	724	734	а	754
615	а	635	645	а	665	675	а	695	705	а	725	735	а	755
616	а	636	646	а	666	676	а	696	706	а	726	736	а	756
617	а	637	647	а	667	677	а	697	707	а	727	737	а	757
618	а	638	648	а	668	678	а	698	708	а	728	738	а	758
619	а	639	649	а	669	679	а	699	709	а	729	739	а	759
620	а	640	650	а	670	680	а	700	710	а	730	740	а	760
621	а	641	651	а	671	681	а	701	711	а	731	741	а	761
622	а	642	652	а	672	682	а	702	712	а	732	742	а	762
623	а	643	653	а	673	683	а	703	713	а	733	743	а	763
624	а	644	654	а	674	684	а	704	714	а	734	744	а	764
625	а	645	655	а	675	685	а	705	715	а	735	745	а	765
626	а	646	656	а	676	686	а	706	716	а	736	746	а	766
627	а	647	657	а	677	687	а	707	717	а	737	747	а	767
628	а	648	658	а	678	688	а	708	718	а	738	748	а	768
629	а	649	659	а	679	689	а	709	719	а	739	749	а	769
630	а	650	660	а	680	690	а	710	720	а	740	750	а	770

Figura 5f

						incis de	, uπ p	Ollilucie	ótido de co	Juliica	cion upo	OFR3 de	ıa	
		_	SE	Q ID N	IO. 1, 7,	9, 11, 13	, 15,	17, 19, 2	21, 23, 25,	27, 29	9, ó			
			una secu	iencia	de polini	ucleótido	s que	codifica	a un homól	ogo ti _l	oo OPR	3		
751	а	771	781	а	801	811	а	831	841	а	861	871	а	891
752	а	772	782	а	802	812	а	832	842	а	862	872	а	892
753	а	773	783	а	803	813	а	833	843	а	863	873	а	893
754	а	774	784	а	804	814	а	834	844	а	864	874	а	894
755	а	775	785	а	805	815	а	835	845	а	865	875	а	895
756	а	776	786	а	806	816	а	836	846	а	866	876	а	896
757	а	777	787	а	807	817	а	837	847	а	867	877	а	897
758	а	778	788	а	808	818	а	838	848	а	868	878	а	898
759	а	779	789	а	809	819	а	839	849	а	869	879	а	899
760	а	780	790	а	810	820	а	840	850	а	870	880	а	900
761	а	781	791	а	811	821	а	841	851	а	871	881	а	901
762	а	782	792	а	812	822	а	842	852	а	872	882	а	902
763	а	783	793	а	813	823	а	843	853	а	873	883	а	903
764	а	784	794	а	814	824	а	844	854	а	874	884	а	904
765	а	785	795	а	815	825	а	845	855	а	875	885	а	905
766	а	786	796	а	816	826	а	846	856	а	876	886	а	906
767	а	787	797	а	817	827	а	847	857	а	877	887	а	907
768	а	788	798	а	818	828	а	848	858	а	878	888	а	908
769	а	789	799	а	819	829	а	849	859	а	879	889	а	909
770	а	790	800	а	820	830	а	850	860	а	880	890	а	910
771	а	791	801	а	821	831	а	851	861	а	881	891	а	911
772	а	792	802	а	822	832	а	852	862	а	882	892	а	912
773	а	793	803	а	823	833	а	853	863	а	883	893	а	913
774	а	794	804	а	824	834	а	854	864	а	884	894	а	914
775	а	795	805	а	825	835	а	855	865	а	885	895	а	915
776	а	796	806	а	826	836	а	856	866	а	886	896	а	916
777	а	797	807	а	827	837	а	857	867	а	887	897	а	917
778	а	798	808	а	828	838	а	858	868	а	888	898	а	918
779	а	799	809	а	829	839	а	859	869	а	889	899	а	919
780	а	800	810	а	830	840	а	860	870	а	890	900	а	920

Figura 5g

	р	osicione	es de los					n polinucle				OPR3 d	e la	
								5, 17, 19, 2						
			una	secue	ncia de p	oolinucled	ótidos q	ue codifica	a un homo	ologo	tipo OPR	3		
901	а	921	931	а	951	961	а	981	991	а	1011	1021	а	1041
902	а	922	932	а	952	962	а	982	992	а	1012	1022	а	1042
903	а	923	933	а	953	963	а	983	993	а	1013	1023	а	1043
904	а	924	934	а	954	964	а	984	994	а	1014	1024	а	1044
905	а	925	935	а	955	965	а	985	995	а	1015	1025	а	1045
906	а	926	936	а	956	966	а	986	996	а	1016	1026	а	1046
907	а	927	937	а	957	967	а	987	997	а	1017	1027	а	1047
908	а	928	938	а	958	968	а	988	998	а	1018	1028	а	1048
909	а	929	939	а	959	969	а	989	999	а	1019	1029	а	1049
910	а	930	940	а	960	970	а	990	1000	а	1020	1030	а	1050
911	а	931	941	а	961	971	а	991	1001	а	1021	1031	а	1051
912	а	932	942	а	962	972	а	992	1002	а	1022	1032	а	1052
913	а	933	943	а	963	973	а	993	1003	а	1023	1033	а	1053
914	а	934	944	а	964	974	а	994	1004	а	1024	1034	а	1054
915	а	935	945	а	965	975	а	995	1005	а	1025	1035	а	1055
916	а	936	946	а	966	976	а	996	1006	а	1026	1036	а	1056
917	а	937	947	а	967	977	а	997	1007	а	1027	1037	а	1057
918	а	938	948	а	968	978	а	998	1008	а	1028	1038	а	1058
919	а	939	949	а	969	979	а	999	1009	а	1029	1039	а	1059
920	а	940	950	а	970	980	а	1000	1010	а	1030	1040	а	1060
921	а	941	951	а	971	981	а	1001	1011	а	1031	1041	а	1061
922	а	942	952	а	972	982	а	1002	1012	а	1032	1042	а	1062
923	а	943	953	а	973	983	а	1003	1013	а	1033	1043	а	1063
924	а	944	954	а	974	984	а	1004	1014	а	1034	1044	а	1064
925	а	945	955	а	975	985	а	1005	1015	а	1035	1045	а	1065
926	а	946	956	а	976	986	а	1006	1016	а	1036	1046	а	1066
927	а	947	957	а	977	987	а	1007	1017	а	1037	1047	а	1067
928	а	948	958	а	978	988	а	1008	1018	а	1038	1048	а	1068
929	а	949	959	а	979	989	а	1009	1019	а	1039	1049	а	1069
930	а	950	960	а	980	990	а	1010	1020	а	1040	1050	а	1070

Figura 5h

	ро	siciones	de los nu	cleóti	dos de 21	l mers de	un po	olinucleót	ido de co	difica	ción tipo	OPR3 de	la	
			SE	Q ID I	NO. 1, 7,	9, 11, 13	, 15, 1	17, 19, 21	, 23, 25,	27, 29	9, ó			
			una secu	iencia	de polin	ucleótido	s que	codifica ı	un homól	ogo tip	oo OPR3			
1051	а	1071	1081	а	1101	1111	а	1131	1141	а	1161	1171	а	1191
1052	а	1072	1082	а	1102	1112	а	1132	1142	а	1162	1172	а	1192
1053	а	1073	1083	а	1103	1113	а	1133	1143	а	1163	1173	а	1193
1054	а	1074	1084	а	1104	1114	а	1134	1144	а	1164	1174	а	1194
1055	а	1075	1085	а	1105	1115	а	1135	1145	а	1165	1175	а	1195
1056	а	1076	1086	а	1106	1116	а	1136	1146	а	1166	1176	а	1196
1057	а	1077	1087	а	1107	1117	а	1137	1147	а	1167	1177	а	1197
1058	а	1078	1088	а	1108	1118	а	1138	1148	а	1168	1178	а	1198
1059	а	1079	1089	а	1109	1119	а	1139	1149	а	1169	1179	а	1199
1060	а	1080	1090	а	1110	1120	а	1140	1150	а	1170	1180	а	1200
1061	а	1081	1091	а	1111	1121	а	1141	1151	а	1171	1181	а	1201
1062	а	1082	1092	а	1112	1122	а	1142	1152	а	1172	1182	а	1202
1063	а	1083	1093	а	1113	1123	а	1143	1153	а	1173	1183	а	1203
1064	а	1084	1094	а	1114	1124	а	1144	1154	а	1174	1184	а	1204
1065	а	1085	1095	а	1115	1125	а	1145	1155	а	1175	1185	а	1205
1066	а	1086	1096	а	1116	1126	а	1146	1156	а	1176	1186	а	1206
1067	а	1087	1097	а	1117	1127	а	1147	1157	а	1177	1187	а	1207
1068	а	1088	1098	а	1118	1128	а	1148	1158	а	1178	1188	а	1208
1069	а	1089	1099	а	1119	1129	а	1149	1159	а	1179	1189	а	1209
1070	а	1090	1100	а	1120	1130	а	1150	1160	а	1180	1190	а	1210
1071	а	1091	1101	а	1121	1131	а	1151	1161	а	1181	1191	а	1211
1072	а	1092	1102	а	1122	1132	а	1152	1162	а	1182	1192	а	1212
1073	а	1093	1103	а	1123	1133	а	1153	1163	а	1183	1193	а	1213
1074	а	1094	1104	а	1124	1134	а	1154	1164	а	1184	1194	а	1214
1075	а	1095	1105	а	1125	1135	а	1155	1165	а	1185	1195	а	1215
1076	а	1096	1106	а	1126	1136	а	1156	1166	а	1186	1196	а	1216
1077	а	1097	1107	а	1127	1137	а	1157	1167	а	1187	1197	а	1217
1078	а	1098	1108	а	1128	1138	а	1158	1168	а	1188	1198	а	1218
1079	а	1099	1109	а	1129	1139	а	1159	1169	а	1189	1199	а	1219
1080	а	1100	1110	а	1130	1140	а	1160	1170	а	1190	1200	а	1220

Figura 5i

	ŗ	osicione	s de los n	ucleót	idos de 2	1 mers d	e un p	olinucleó	tido de co	odifica	ción tipo (OPR3 de	la	
			SI	EQ ID	NO. 1, 7	, 9, 11, 13	3, 15,	17, 19, 2 ⁻	1, 23, 25,	27, 29	9, ó			
			una sec	uenci	a de polir	nucleótido	s que	codifica	un homól	ogo ti _l	oo OPR3			
1201	а	1221	1231	а	1251	1261	а	1281	1291	а	1311	1321	а	1341
1202	а	1222	1232	а	1252	1262	а	1282	1292	а	1312	1322	а	1342
1203	а	1223	1233	а	1253	1263	а	1283	1293	а	1313	1323	а	1343
1204	а	1224	1234	а	1254	1264	а	1284	1294	а	1314	1324	а	1344
1205	а	1225	1235	а	1255	1265	а	1285	1295	а	1315	1325	а	1345
1206	а	1226	1236	а	1256	1266	а	1286	1296	а	1316	1326	а	1346
1207	а	1227	1237	а	1257	1267	а	1287	1297	а	1317	1327	а	1347
1208	а	1228	1238	а	1258	1268	а	1288	1298	а	1318	1328	а	1348
1209	а	1229	1239	а	1259	1269	а	1289	1299	а	1319	1329	а	1349
1210	а	1230	1240	а	1260	1270	а	1290	1300	а	1320	1330	а	1350
1211	а	1231	1241	а	1261	1271	а	1291	1301	а	1321	1331	а	1351
1212	а	1232	1242	а	1262	1272	а	1292	1302	а	1322	1332	а	1352
1213	а	1233	1243	а	1263	1273	а	1293	1303	а	1323	1333	а	1353
1214	а	1234	1244	а	1264	1274	а	1294	1304	а	1324	1334	а	1354
1215	а	1235	1245	а	1265	1275	а	1295	1305	а	1325	1335	а	1355
1216	а	1236	1246	а	1266	1276	а	1296	1306	а	1326	1336	а	1356
1217	а	1237	1247	а	1267	1277	а	1297	1307	а	1327	1337	а	1357
1218	а	1238	1248	а	1268	1278	а	1298	1308	а	1328	1338	а	1358
1219	а	1239	1249	а	1269	1279	а	1299	1309	а	1329	1339	а	1359
1220	а	1240	1250	а	1270	1280	а	1300	1310	а	1330	1340	а	1360
1221	а	1241	1251	а	1271	1281	а	1301	1311	а	1331	1341	а	1361
1222	а	1242	1252	а	1272	1282	а	1302	1312	а	1332	1342	а	1362
1223	а	1243	1253	а	1273	1283	а	1303	1313	а	1333	1343	а	1363
1224	а	1244	1254	а	1274	1284	а	1304	1314	а	1334	1344	а	1364
1225	а	1245	1255	а	1275	1285	а	1305	1315	а	1335	1345	а	1365
1226	а	1246	1256	а	1276	1286	а	1306	1316	а	1336	1346	а	1366
1227	а	1247	1257	а	1277	1287	а	1307	1317	а	1337	1347	а	1367
1228	а	1248	1258	а	1278	1288	а	1308	1318	а	1338	1348	а	1368
1229	а	1249	1259	а	1279	1289	а	1309	1319	а	1339	1349	а	1369
1230	а	1250	1260	а	1280	1290	а	1310	1320	а	1340	1350	а	1370

Figura 5j

		SEQ ID NO. 1, 7, 9,	11, 13, 15, 17, 19, 21, 23, 25, 27,	29, o	
uı	na se	ecuencia de polinuc	leótidos que codifica un homólogo	tipo C	PR3
1351	а	1371	1381	а	1401
1352	а	1372	1382	а	1402
1353	а	1373	1383	а	1403
1354	а	1374	1384	а	1404
1355	а	1375	1385	а	1405
1356	а	1376	1386	а	1406
1357	а	1377	1387	а	1407
1358	а	1378	1388	а	1408
1359	а	1379	1389	а	1409
1360	а	1380	1390	а	1410
1361	а	1381	1391	а	1411
1362	а	1382	1392	а	1412
1363	а	1383	1393	а	1413
1364	а	1384	1394	а	1414
1365	а	1385			
1366	а	1386			
1367	а	1387	n-5	а	n+15
1368	а	1388	n-4	а	n+16
1369	а	1389	n-3	а	n+17
1370	а	1390	n-2	а	n+18
1371	а	1391	n-1	а	n+19
1372	а	1392	n	а	n+20
1373	а	1393			
1374	а	1394			
1375	а	1395			
1376	а	1396			
1377	а	1397			
1378	а	1398			
1379	а	1399			

n = número total de nucleótidos de la longitud completa de un polinucleótido de codificación del tipo OPR3 - 20 Por ejemplo:

```
n = 1390 \; (= 1410 - 20) \; para \; la \; SEQ \; ID \; NO: \; 1; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; (= 1191 - 20) \; para \; la \; SEQ \; ID \; NO: \; 7; \; n = 1171 \; para \; Pa
```

n = 1156 (= 1176 - 20) para la SEQ ID NO: 9; n = 1180 (= 1200 - 20) para las SEQ ID NOs: 11, 15, 17 y 27;

n = 1165 (= 1185 - 20) para la SEQ ID NO: 13; n = 742 (= 762 - 20) para la SEQ ID NO: 19;

n = 1183 (= 1203 - 20) para la SEQ ID NO: 21; n = 1171(= 1191 - 20) para la SEQ ID NO: 23;

n = 1189 (= 1209 - 20) para la SEQ ID NO: 25; n = 1394 (= 1414 - 20) para la SEQ ID NO: 29