

### OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



(1) Número de publicación: 2 384 134

| (51) Int. CI.: |           |
|----------------|-----------|
| C07K 14/705    | (2006.01) |
| A61K 38/17     | (2006.01) |
| A61K 38/55     | (2006.01) |
| A61K 38/43     | (2006.01) |
| G01N 33/50     | (2006.01) |
| A01K 67/027    | (2006.01) |
| A61P 1/18      | (2006.01) |
| A61P 3/04      | (2006.01) |
| Δ61P 3/10      | (2006.01) |

| $\widehat{}$ | ,                             |
|--------------|-------------------------------|
| 12 <b>)</b>  | TRADUCCIÓN DE PATENTE EUROPEA |

T3

- 96 Número de solicitud europea: 09163270 .3
- 96 Fecha de presentación: **18.02.2005**
- Número de publicación de la solicitud: 2096120

  (97) Fecha de publicación de la solicitud: 02.09.2009
- (54) Título: Uso de productos proteínicos secretados para prevención y tratamiento de enfermedades pancreáticas y/u obesidad y/o síndrome metabólico
- 30 Prioridad: 20.02.2004 EP 04003914

73) Titular/es:

DEVELOGEN AKTIENGESELLSCHAFT MARIE-CURIE-STRASSE 7 37079 GÖTTINGEN, DE

- Fecha de publicación de la mención BOPI: 29.06.2012
- 72 Inventor/es:

Onichtchouk, Daria

- Fecha de la publicación del folleto de la patente: 29.06.2012
- 74 Agente/Representante:

Lehmann Novo, Isabel

ES 2 384 134 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

### **DESCRIPCIÓN**

Uso de productos proteínicos secretados para prevención y tratamiento de enfermedades pancreáticas y/u obesidad y/o síndrome metabólico.

Esta invención se refiere al uso de proteínas SF06 secretadas, y al uso de polinucleótidos que codifican las mismas, en el diagnóstico y estudio de diabetes, obesidad y/o síndrome metabólico.

Muchas proteínas humanas sirven como compuestos farmacéuticamente activos. Varias clases de proteínas humanas que sirven como tales compuestos activos incluyen hormonas, citoquinas, factores de crecimiento celular, y factores de diferenciación celular. La mayoría de las proteínas que pueden utilizarse como compuestos farmacéuticamente activos caen dentro de la familia de las proteínas secretadas. Las proteínas secretadas se producen generalmente en el interior de las células del retículo endoplasmático rugoso, se exportan luego al complejo de Golgi, y se desplazan después a vesículas o gránulos secretores, donde aquéllas se secretan al exterior de la célula por exocitosis. Ejemplos de proteínas secretadas utilizadas comercialmente son insulina humana, agentes trombolíticos, interferones, interleuquinas, factores estimulantes de colonias, hormona del crecimiento humano, factor beta del crecimiento transformante, activador de plasminógeno tisular, eritropoyetina, y diversas otras proteínas. Los receptores de proteínas secretadas, que son proteínas fijadas a la membrana, tienen también potencial como agentes terapéuticos o diagnósticos. Por consiguiente, es importante para el desarrollo de nuevos compuestos farmacéuticos identificar proteínas secretadas que puedan ser testadas en cuanto a actividad en una diversidad de modelos animales. Así, teniendo en cuenta el papel dominante de las proteínas secretadas en la fisiología humana, existe necesidad de identificar y caracterizar nuevas funciones para las proteínas humanas secretadas y los genes que las codifican. Este conocimiento permitirá detectar, tratar, y prevenir enfermedades, trastornos, y/o afecciones médicas por utilización de proteínas secretadas o los genes que codifican las mismas.

10

15

20

30

35

45

50

55

60

El páncreas es un órgano esencial que posee a la vez una función exocrina implicada en el suministro de enzimas al tracto digestivo y una función endocrina por la cual diversas hormonas son secretadas al torrente sanguíneo. La función exocrina está asegurada por células acinares y centroacinares que producen diversas enzimas digestivas y conductos intercalados que transportan estas enzimas en solución alcalina al duodeno. La unidad funcional del páncreas endocrino es el islote de Langerhans. Los islotes están dispersos por toda la porción exocrina del páncreas y están compuestos de cuatro tipos de células: células alfa, beta, delta y PP, revisadas por ejemplo en Kim S.K. y Hebrok M., (2001) Genes Dev. 15:111-127. Las células beta producen insulina, representan la mayor parte de las células endocrinas y forman el núcleo de los islotes, mientras que las células alfa secretan glucagón y están localizadas en la periferia. Las células delta y las células PP son menos numerosas y secretan somatostatina y polipéptido pancreático, respectivamente.

El desarrollo pancreático inicial ha sido bien estudiado en diferentes especies, que incluyen pollos, pez cebra, y ratones (para una revisión detallada véase Kim & Hebrok, 2001, supra). El páncreas se desarrolla a partir de primordios distintos dorsales y ventrales. El desarrollo del páncreas requiere la especificación de los primordios pancreáticos a lo largo de ambos ejes anterior-posterior y dorsal-ventral. Diversos factores, que son críticos para el desarrollo pancreático apropiado han sido identificados (véase Kim & Hebrok, 2001, supra; Wilson M.E. et al., (2003) Mech Dev. 120:65-80).

En los humanos post-natales/adultos, las células acinares y ductales retienen una capacidad proliferativa importante que puede asegurar la renovación y el crecimiento de las células, mientras que las células de los islotes se vuelven en su mayoría mitóticamente inactivas. Esto está en contraste con los roedores, en los cuales la replicación de las células beta es un mecanismo importante en la generación de células beta nuevas. Se ha sugerido que, durante el desarrollo del embrión, los islotes pancreáticos de Langerhans se originan por la diferenciación de las células ductales u otras células con morfología epitelial (Bonner-Weir S. y Sharma A., (2002) J Pathol. 197: 519-526; Gu G. et al., (2003) Mech Dev. 120: 35-43). En los humanos adultos, células beta nuevas surgen en la vecindad de los conductos (Butler A.E. et al., (2003) Diabetes 52: 102-110; Bouwens L. y Pipeleers D.G., (1998) Diabetologia 41: 629-633). Sin embargo, se ha sugerido también una localización intra-islotes o un origen en la médula ósea para las células precursoras de las células beta adultas (Zulewski H. et al., (2001) Diabetes 50: 521-533; lanus A. et al., (2003) J Clin Invest. 111: 843-850). Zulewski H. et al. (2001) Diabetes 50: 521-533; lanus A. et al., (2003) J Clin Invest. 111: 843-850). El crecimiento de los islotes pancreáticos es dinámico y responde a cambios en la demanda de insulina, tal como ocurre durante el embarazo o durante el aumento de la masa corporal que tiene lugar durante la infancia. En los adultos, existe una buena correlación entre masa corporal y masa de los islotes (Yoon K.H. et al., (2003) J. Clin. Endocrinol Metab. 88:2300-2308).

Las células beta pancreáticas secretan insulina, que es estimulada por niveles elevados de glucosa en sangre. La insulina, entre otras hormonas, juega un papel fundamental en la regulación del metabolismo del combustible. La insulina conduce al almacenamiento de glucógeno y triglicéridos y a la síntesis de proteínas. La entrada de glucosa en los músculos y las células adiposas está estimulada por la insulina. En los pacientes que sufren diabetes mellitus, la cantidad de insulina producida por las células de los islotes pancreáticos es demasiado baja, dando como resultado niveles elevados de glucosa en sangre (hiperglucemia). En la diabetes tipo I, las células beta se pierden debido a destrucción autoinmune. En los pacientes diabéticos tipo II, las células del hígado y las musculares pierden su capacidad para responder a los niveles normales de insulina en sangre (resistencia a la insulina). Los niveles de glucosa

en sangre elevados (y también los niveles elevados de lípidos en sangre) conducen a un deterioro de la función de las células beta y a un aumento en la apoptosis de las células beta. Es interesante observar que la tasa de neogénesis de células beta no parece cambiar en los diabéticos tipo II (Butler et al., 2003 supra), causando así una reducción en la masa total de células beta a lo largo del tiempo. Finalmente, la aplicación de insulina exógena llega a hacerse necesaria en los diabéticos tipo II.

La mejora de los parámetros metabólicos tales como azúcar en sangre y niveles de lípidos en sangre (v.g. por cambios dietéticos, ejercicio, medicación o combinaciones de los mismos) antes que la masa de células beta haya caído por debajo de un umbral crítico conduce a un restablecimiento relativamente rápido de la función de las células beta. Sin embargo, después de dicho tratamiento la función pancreática endocrina se mantendría deteriorada debido a la sólo ligeramente incrementada tasa de regeneración.

10

15

20

25

30

35

40

45

50

55

En los diabéticos tipo I, la duración de vida de los islotes pancreáticos está espectacularmente acortada debido a destrucción autoinmune. Se han ideado tratamientos que modulan el sistema inmunitario y pueden ser capaces de detener o reducir acusadamente la destrucción de los islotes (Raz I. et al., (2001) Lancet 358: 1749-1753; Chatenoud L. et al., (2003) Nat Rey Immunol. 3: 123-132). Sin embargo, debido a la regeneración relativamente lenta de las células beta humanas, dichos tratamientos podrían ser completamente satisfactorios sólo para mejorar la afección diabética si se combinan con un agente que pueda estimular la regeneración de las células beta.

Así pues, tanto para la diabetes tipo I como para la del tipo II (fases temprana y tardía) hay necesidad de descubrir nuevos agentes que estimulen la regeneración de las células beta.

La diabetes es una enfermedad muy incapacitante, dado que las medicaciones no controlan los niveles de azúcar en sangre suficientemente bien para prevenir la fluctuación entre los niveles de azúcar en sangre altos y bajos. Los pacientes diabéticos corren el riesgo de complicaciones importantes, que incluyen cetoacidosis diabética, enfermedad renal de etapa final, retinopatía diabética y amputación. Existe también una multitud de afecciones afines, tales como el síndrome metabólico, obesidad, hipertensión, enfermedad cardiaca, enfermedad vascular periférica, e infecciones, para las cuales las personas con diabetes corren un riesgo sustancialmente incrementado. El tratamiento de estas complicaciones contribuye en un grado considerable al enorme coste que impone la diabetes sobre los sistemas de atención sanitaria en todo el mundo.

La obesidad es uno de los trastornos metabólicos más prevalecientes en el mundo. Es todavía una enfermedad humana deficientemente comprendida que se ha convertido en un problema de salud importante cada vez más relevante para la sociedad occidental. La obesidad se define como un peso corporal mayor que 20% en exceso sobre el peso corporal ideal, que da frecuentemente como resultado un deterioro importante de la salud. La obesidad puede medirse por el índice de masa corporal, un indicador de adiposidad y gordura. Parámetros adicionales para definir la obesidad son las circunferencias de cintura, el grosor de los pliegues de piel y la bioimpedancia. La misma está asociada con un riesgo incrementado de enfermedad cardiovascular, hipertensión, diabetes mellitus tipo II, hiperlipidemia y una tasa de mortalidad incrementada. La obesidad está influenciada por factores genéticos, metabólicos, bioquímicos, psicológicos, y conductuales y puede estar causada por diferentes razones tales como diabetes no dependiente de insulina, aumento de triglicéridos, aumento en la energía ligada a los carbohidratos y bajo consumo de energía (Kopelman, P.G., (2000) Nature 404: 635-643).

El concepto de 'síndrome metabólico' (síndrome x, síndrome de resistencia a la insulina, cuarteto mortal) fue descrito por primera vez en 1966 por Camus e reintroducido en 1988 por Reaven (Camus J.P., (1966) Rev Rhum Mal Osteoartic 33: 10-14; Reaven G.M., (1988), Diabetes 37: 1595-1607). Hoy en día, el síndrome metabólico se define comúnmente como aglomeración de factores de riesgo cardiovasculares tales como hipertensión, obesidad abdominal, niveles elevados de triglicéridos en sangre y glucosa en ayunas, así como niveles bajos de HDL colesterol en sangre. La resistencia a la insulina aumenta notablemente el riesgo de desarrollo del síndrome metabólico (Reaven G., (2002) Circulation 106:286-288). El síndrome metabólico precede a menudo al desarrollo de diabetes tipo II y enfermedad cardiovascular (Lakka H.M. et al., (2002) JAMA 288:2709-2716). El control de los niveles de lípidos en sangre y niveles de glucosa en sangre es esencial para el tratamiento del síndrome metabólico (véase, por ejemplo, Santomauro A.T. et al., (1999) Diabetes, 48:1836-1841).

Los factores moleculares que regulan la ingesta de alimentos y el balance de peso corporal están incompletamente comprendidos. Aun cuando se han descrito varios genes candidatos que se supone influyen en el o los sistemas homeostáticos que regulan la masa/peso corporal, como leptina o el co-activador del receptor gamma activado por el proliferador de peroxisomas, los distintos mecanismos moleculares y/o moléculas que influyen en la obesidad o las regulaciones peso corporal/masa corporal no se conocen.

Existe una necesidad en la técnica anterior de la identificación de genes candidato que se expresen específicamente en el desarrollo inicial en ciertos tejidos pancreáticos. Estos genes y las proteínas codificadas por ellos pueden proporcionar herramientas para el diagnóstico y tratamiento de trastornos pancreáticos graves y enfermedades afines. Por esta razón, esta memoria descriptiva describe proteínas secretadas que se expresan específicamente en los tejidos pancreáticos en las fases iniciales del desarrollo. Se describe adicionalmente el uso de estos genes y proteínas en el diagnóstico, la prevención y/o el tratamiento de disfunciones pancreáticas, tales como la diabetes, y otras

enfermedades afines tales como obesidad y/o síndrome metabólico. Estas proteínas y genes son especialmente útiles en procesos de regeneración, tales como la regeneración de las células del páncreas.

En esta memoria se describen factores secretados a los que se hace referencia como SF01-SF13, que están implicados en el desarrollo y la regeneración del páncreas, y en la regulación de la homeostasis de la energía. SF01-SF13 corresponden a proteínas de mamífero como se describe en la Tabla 1.

La invención se identifica en la reivindicación 1. Adicionalmente, la invención se refiere a la identificación de un (poli)péptido implicado en la regulación de la homeostasis de la energía y/o el metabolismo de un mamífero y al cribado de un agente, que modula/afecta a la actividad de un polipéptido SF06. Cualquier información acerca de otras proteínas SF01-05 y SF07-13 se proporciona para el propósito de comparación únicamente.

La función de SF01, una molécula afín al TNF, se desconocía con anterioridad. Homólogos de SF01 existen en humanos, ratones y Danio rerio (pez cebra). La SF01 humana se expresa en el cerebro, el hipocampo, y los islotes de Langerhans. En los peces, SF01 se expresa en el cerebro.

SF02 está conservada desde Drosophila a los humanos. SF02 es una proteína vital regulada por el desarrollo. Los mutantes de SF02 de Drosophila mueren por defectos del sistema neural. En el ratón, SF02 parece estar enriquecida en el endodermo y el embrión, y parece ser que está presente en el páncreas. En los humanos, SF02 está presente en páncreas, hígado, timo, y bazo.

15

20

30

Los glipicanos son una familia de proteoglicanos de sulfato de heparano (HSPGs) de la superficie de las células anclados a glicosilfosfatidilinositol (GPI). SF03 es un miembro de la familia glipicanos de proteoglicanos de sulfato de heparano, que se fija a la membrana celular por un anclaje GPI. SF03 está mutado en el síndrome de Simpson-Golabi-Behmel (SGBS). El SGBS se caracteriza por crecimiento excesivo pre- y post-natal y es una afección recesiva ligada al cromosoma X. SF03 se expresa en el pulmón mesodérmico embrionario, los tejidos de hígado y riñón y se cree que interacciona con diversos factores de crecimiento para regular el crecimiento de tejidos y órganos.

El gen SF04 es un precursor compartido para alfa-microglobulina y bikunina. La alfa-microglobulina es una lipocalina con propiedades inmunosupresoras, y la bikunina es un inhibidor de la proteinasa plasmática. El mRNA de SF04 está fuertemente transcrito en el parénquima hepático, el páncreas, y el epitelio intestinal. Ambas proteínas codificadas están presentes, de acuerdo con ello, en los hepatocitos, el páncreas, el riñón y el intestino en desarrollo. La bikunina funciona como supresor de tumores.

SF05 es un inhibidor de la serina-proteasa específica neural, que se expresa en el CNS en desarrollo completo en el ratón. SF05 inhibe el activador de plasminógeno de tipo tisular de la proteasa extracelular y la plasmina, pero no la trombina. Los ratones deficientes en SF05 son/eran viables y sanos, excepto por defectos de comportamiento. La proteína SF05 mutante se agrega y causa demencia familiar en los humanos.

SF06 es secretada por el cerebro, la corteza adrenal y los tumores adrenocorticales. SF06 está implicada en la regulación de la secreción de hormonas esteroidales y la proliferación de células adrenocorticales como factor autocrino y/o paracrino.

35 SF07 es un supuesto gen supresor de tumores, que está desactivado en los hepatocarcinomas, el cáncer colorrectal y cánceres de pulmón no microcíticos.

SF08 es una carboxipeptidasa que no tiene actividad enzimática conocida. SF08 se expresa en los huesos y cartílagos en desarrollo.

La proteína SF09 tiene una longitud de 145 aminoácidos y contiene motivos EF-Hand que fijan el ion calcio. De acuerdo con el ensamblaje expresado de etiquetas de secuencia (EST), SF09 se expresa en muchos tejidos con inclusión del páncreas.

El homólogo de ratón de la SF10 humana es una proteína de la matriz extracelular fijadora de integrina. Las mutaciones de SF10 son frecuentes en pacientes con el síndrome de Smith-Magenis (SMS), un síndrome de anomalía congénita/retardo mental múltiple clínicamente reconocible.

SF11 es un inhibidor de la cisteína-proteinasa para las catepsinas B y L, que está bien caracterizado. La expresión de SF11 está controlada por TGF-beta y EGF en cultivos deciduales y por TGF-beta en los precursores de astrocitos. Una forma glicosilada de SF11 es necesaria para una proliferación celular del tallo neural sensible a FGF-2. La aportación combinada de FGF-2 y SF11 al giro dentado adulto estimulaba la neurogénesis. Los ratones deficientes en SF11 exhibían crecimiento tumoral reducido.

50 SF12 es una glicoproteína de la matriz extracelular y del plasma. La expresión de SF12 en el islote pancreático adulto está confinada en su mayor parte a los vasos sanguíneos.

SF13 es una peptidil-prolil-cis-trans-isomerasa citosólica expresada ubicuamente, que es inhibida por el fármaco inmunosupresor ciclosporina. SF13 es un factor pro-inflamatorio para los linfocitos T. SF13 envía señales a través

del receptor CD147 (basigina) y se expresa en las células acinares pero no en las membranas de los islotes o las células MIN-6.

De acuerdo con ello, la presente memoria descriptiva describe proteínas secretadas con funciones en el metabolismo humano, la regeneración, y los procesos del desarrollo pancreático. Se describen genes específicos y proteínas codificadas por ellos así como efectores/moduladores de los mismos implicados en la regulación de la función y el metabolismo pancreáticos, especialmente en enfermedades del páncreas tales como diabetes mellitus, v.g., diabetes mellitus dependiente de insulina y/o diabetes mellitus no dependiente de insulina, y/o síndrome metabólico, obesidad, y/o trastornos afines tales como enfermedad cardiaca coronaria, trastornos de la comida, caquexia, hipertensión, hipercolesterolemia (dislipidemia), fibrosis hepática, y/o cálculos biliares. Adicionalmente, se describen genes específicos y proteínas codificadas por ellos así como efectores/moduladores de los mismos implicados en la regeneración de las células o tejidos pancreáticos, v.g. células que tienen funciones exocrinas tales como células acinares, células centroacinares y/o células ductales y/o células que tienen funciones endocrinas, particularmente las células de los islotes de Langerhans tales como las células alfa, beta, delta y/o PP, más particularmente las células beta.

- En esta memoria descriptiva, se utilizó una criba para factores secretados expresados en el páncreas de mamífero (ratón) en desarrollo, como se describe con mayor detalle en la sección de Ejemplos (véase el Ejemplo 1). Esta criba identificó SF01-SF13 como factores secretados expresados en el páncreas del ratón en desarrollo. Las proteínas SF01-SF13 de mamífero y los polinucleótidos que codifican éstas, en particular SF01-SF13 humanas, están implicados en las afecciones y procesos mencionados anteriormente.
- 20 Las proteínas homólogas a SF01-SF13 y moléculas de ácido nucleico que codifican las mismas pueden obtenerse a partir de especies de vertebrados. Para uso en la presente invención, se prefieren particularmente ácidos nucleicos que codifican la proteína SF06 humana, como se caracterizan por SEQ ID Nos: 30 ó 32, en donde dicha molécula de ácido nucleico es como se define en la reivindicación 4.
- La función de SF01-SF13 de mamífero en el metabolismo de los mamíferos se validó por análisis de la expresión de los transcritos en diferentes tejidos y por análisis del papel en la diferenciación de los adipocitos (véanse los Ejemplos 3 y 4 para mayor detalle).
  - Estudios de determinación del perfil de expresión (véanse los Ejemplos para mayor detalle) confirman la relevancia particular de SF02-SF04 como reguladores del metabolismo de la energía en los mamíferos.
- Las microrredes son instrumentos analíticos utilizados rutinariamente en bioanálisis. Una microrred tiene moléculas 30 distribuidas por toda la superficie de un soporte sólido, y asociadas de manera estable con dicha superficie. El término "microrred" hace referencia a una disposición de una pluralidad de polinucleótidos, polipéptidos, anticuerpos, u otros compuestos químicos en un sustrato. Se han desarrollado microrredes de polipéptidos, polinucleótidos, y/o anticuerpos y encuentran uso en una diversidad de aplicaciones, tales como monitorización de la expresión génica, descubrimiento de fármacos, secuenciación de genes, mapeado de genes, identificación de bacterias, y química 35 combinatoria. Un área en particular en la que encuentran aplicación las microrredes es el análisis de la expresión génica (véase el Ejemplo 4). La tecnología de redes puede utilizarse para explorar la expresión de un solo gen polimórfico o el perfil de expresión de un gran número de genes afines o no afines. Cuando se examina la expresión de un solo gen, se emplean redes para detectar la expresión de un gen específico o sus variantes. Cuando se examina un perfil de expresión, las redes proporcionan una plataforma para identificar genes que son específicos de tejido, se ven afectados por una sustancia que se somete a test en un ensavo de toxicología, forman parte de una cascada de señalización, llevan a cabo funciones internas, o están relacionadas específicamente con una predisposición, afección, enfermedad, o trastorno genético particular.

Las microrredes pueden prepararse, utilizarse, y analizarse utilizando métodos conocidos en la técnica (véase por ejemplo, Brennan T.M., (1995) Patente U.S. No. 5,474,796; Schena M. et al., (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschwieler J.D. et al., (1995) solicitud PCT WO 95/251116; Shalon T.D. y Brown P.O., (1995) solicitud PCT WO 95/35505; Heller R.A. et al., (1997) Proc. Natl. Acad. Sci. USA 94: 2150-2155; Heller, M.J. y Tu E., (1997) Patente U.S. No. 5,605,662). Diversos tipos de microrredes son bien conocidos y se describen detalladamente en Schena M., ed. (1999); DNA Microarrays, A Practical Approach, Oxford University Press, Londres).

45

50

Los oligonucleótidos o fragmentos más largos derivados de cualquiera de los polinucleótidos descritos en esta memoria pueden utilizarse como elementos en una microrred. La microrred puede utilizarse en técnicas de obtención de imágenes de transcritos, que monitorizan los niveles relativos de expresión de grandes números de genes simultáneamente como se describe más adelante. La microrred puede utilizarse también para identificar variantes genéticas, mutaciones, y polimorfismos. Esta información puede utilizarse para determinar la función de los genes, para comprender la base genética de un trastorno, para diagnosticar un trastorno, para monitorizar la progresión/regresión de una enfermedad en función de la expresión génica, y para desarrollar y monitorizar las actividades de agentes terapéuticos en el tratamiento de enfermedades. En particular, esta información puede utilizarse para desarrollar un perfil farmacogenómico de un paciente a fin de seleccionar el régimen de tratamiento más apropiado y eficaz para dicho paciente. Por ejemplo, pueden seleccionarse agentes terapéuticos que son sumamente eficaces y

exhiben el número mínimo de efectos secundarios para un paciente, basándose en el perfil farmacogenómico de él o de ella.

Como se ha determinado por análisis de microrredes, SF02, SF03 y SF13 exhiben expresión diferencial en los adipocitos primarios humanos. Se observa una fuerte regulación creciente concerniente a la expresión de SF02 y SF03 durante la diferenciación de los adipocitos humanos (véase Fig. 3 y 5) en tanto que se observa una regulación fuertemente decreciente concerniente a la expresión de SF13 durante la diferenciación de los adipocitos humanos (véase Fig. 9). Las proteínas SF02 y SF03 en los preadipocitos tienen el potencial de intensificar la diferenciación de los adipocitos, y la proteína SF13 en los preadipocitos tiene el potencial de intensificar la diferenciación de los adipocitos en una etapa muy temprana. Por esta razón, las proteínas SF02, SF03, y SF13 podrían jugar un papel esencial en la adipogénesis. Los resultados sugieren un papel de SF02, SF03, y SF13 en la regulación del metabolismo humano, por ejemplo, como efectores/moduladores (por ejemplo, intensificadores o inhibidores) de la adipogénesis. Así, SF02, SF03, y SF13 son candidatos fuertes para la fabricación de composiciones farmacéuticas y medicamentos para el tratamiento de afecciones relacionadas con el metabolismo humano, tales como diabetes, obesidad, y/o el síndrome metabólico.

Adicionalmente, se muestran hibridaciones in situ de montaje entero y seccionales (véanse los Ejemplos y las Figuras 1, 7, y 8). La secuencia de ácido nucleico que codifica la proteína SF01 del ratón se expresa en la región del páncreas ventral. La secuencia de ácido nucleico que codifica las proteínas de ratón SF05 y SF06 se expresan en el tejido pancreático (véase Fig. 7 y 8).

Las condiciones de hibridación están basadas en la temperatura de fusión (Tm) del complejo de fijación de ácido nucleico o sonda, como se describe en Wahl G.M. et al., (1987; Methods Enzymol, 152: 399-407) y Kimmel A.R. (1987; Methods Enzymol. 152: 507-511), y pueden utilizarse a una severidad definida. Preferiblemente, la hibridación en condiciones severas significa que después de lavado durante una hora con 1 x SSC y 0,1% SDS a 50°C, preferiblemente a 65°C, más preferiblemente a 65°C, particularmente durante una hora en 0,2 x SSC y 0,1% SDS a 50°C, preferiblemente a 55°C, más preferiblemente a 62°C y muy preferiblemente a 62°C y muy preferiblemente a 65°C, se observa una señal de hibridación positiva.

30

50

Con objeto de expresar una proteína biológicamente activa, las secuencias de nucleótidos que codifican las proteínas o equivalentes funcionales, pueden insertarse en vectores de expresión apropiados, es decir, un vector que contiene los elementos necesarios para la transcripción y traducción de la secuencia codificante insertada. Pueden utilizarse métodos que son bien conocidos por los expertos en la técnica, para construir vectores de expresión que contienen secuencias que codifican las proteínas y los elementos de control de transcripción y traducción apropiados. Los elementos reguladores incluyen por ejemplo un promotor, un codón de iniciación, un codón de parada, un elemento regulador de la estabilidad del mRNA, y una señal de poliadenilación. La expresión de un polinucleótido puede asegurarse por (i) promotores constitutivos tales como la región promotora/intensificadora del Citomegalovirus (CMV), (ii) promotores específicos de tejidos tales como el promotor de insulina (véase, Soria B. et al., (2000), Diabetes 49:157-162), el promotor del gen SOX2 (véase Li M. et al., (1998) Curr. Biol. 8:971-974). El promotor Msi-1 (véase Sakaklbara S. and Okano H., (1997) J. Neuroscience 17: 8300-8312), promotor de la cadena pesada de la alfa-cardia-miosina o el promotor del factor natriurético atrial humano (Klug M.G. et al., (1996) J. Clin. Invest 98: 216-224; Wu J. et al., (1989) J. Biol. Chem. 264: 6472-8479) o (iii) promotores inducibles tales como el sistema inducible por tetraciclina. Vectores de expresión pueden contener también un agente de selección o gen marcador que confiere resistencia a antibióticos tales como los genes de resistencia a neomicina, higromicina, o puromicina. Estos métodos incluyen técnicas in vitro de DNA recombinante, técnicas de síntesis, y recombinación genética in vivo. Dichas técnicas se describen en Sambrook J. et al., (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. y Ausubel F.M. et al., (1989) Current Protocols In Molecular Biology, John Wiley & Sons, Nueva York, N.Y.

45 En una realización adicional de la invención, secuencias de ácido nucleico naturales, modificadas o recombinantes que codifican las proteínas SF06 pueden ligarse a una secuencia heteróloga para codificar una proteína de fusión.

Pueden utilizarse una diversidad de vectores de expresión/sistemas hospedadores conocidos en la técnica que contienen y expresan secuencias que codifican las proteínas o proteínas de fusión. Estos incluyen, pero sin carácter limitante, micro-organismos tales como bacterias transformadas con bacteriófago recombinante, vectores de expresión de DNA de plásmidos o cósmidos; levadura transformada con vectores de expresión de levadura; sistemas de células de insecto infectados con vectores de expresión de virus (v.g., baculovirus, adenovirus, virus adenoasociados, lentivirus, retrovirus); sistemas de células vegetales transformados con vectores de expresión de virus (v.g., el virus del mosaico de la coliflor, CaMV; el virus del mosaico del tabaco, TMV) o con vectores de expresión bacterianos (v.g., los plásmidos Ti o PBR322); o sistemas de células animales.

La presencia de secuencias de polinucleótidos en una muestra puede detectarse por hibridación y/o amplificación de DNA-DNA o DNA-RNA utilizando sondas o porciones o fragmentos de dichos polinucleótidos. Los ensayos basados en amplificación de ácido nucleico implican el uso de oligonucleótidos u oligómeros basados en las secuencias específicas para el gen a fin de detectar transformantes que contengan DNA o RNA codificante de la proteína correspondiente. Como se utiliza en esta memoria, los términos 'oligonucleótidos' u 'oligómeros' se refieren a una secuencia de ácido nucleico de al menos aproximadamente 10 nucleótidos y que puede contener tantos como

aproximadamente 60 nucleótidos, con preferencia aproximadamente 15 a 30 nucleótidos, y de modo más preferible aproximadamente 20-25 nucleótidos, que pueden utilizarse como una sonda o amplímero.

Una diversidad de etiquetas y técnicas de conjugación son conocidas por los expertos en la técnica y pueden utilizarse en diversos ensayos de ácidos nucleicos y aminoácidos. Medios para producir hibridación etiquetada o sondas PCR para detección de secuencias de polinucleótidos incluyen oligo-marcación, traslación de la mella, marcación en los extremos de sondas de RNA, amplificación por PCR utilizando un nucleótido marcado, o síntesis enzimática. Estos procedimientos pueden conducirse utilizando una diversidad de kits disponibles comercialmente (Pharmacia & Upjohn, (Kalamazoo, Mich.); Promega (Madison Wis.); y U.S.Biochemical Corp., (Cleveland, Ohio).

La presencia de SF01-SF13 en una muestra puede determinarse por métodos inmunológicos o medida de actividad.

Una diversidad de protocolos para detección y medida de la expresión de proteínas, utilizando anticuerpos policlonales o monoclonales específicos para la proteína o reactivos para determinar la actividad de las proteínas se conocen en la técnica. Ejemplos incluyen el ensayo de inmunosorbente unido a enzima (ELISA), radioinmunoensayo (RIA), y clasificación de células activada por fluorescencia (FACS). Se prefiere un inmunoensayo de dos sitios basado en anticuerpos monoclonales que utiliza anticuerpos monoclonales reactivos para dos epítopes no interferentes en la proteína, pero puede emplearse un ensayo de fijación competitivo. Estos y otros ensayos se describen, entre otros lugares, en Hampton R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul, Minn.) y Maddox D.E. et al. (1983; J. Exp. Med, 158: 1211-1226).

Moléculas o etiquetas informadoras adecuadas que pueden utilizarse, incluyen radionucleidos, enzimas, agentes fluorescentes, quimioluminiscentes o cromógenos así como sustratos, co-factores, inhibidores, partículas magnéticas, y análogos. Los ácidos nucleicos que codifican las proteínas SF06 pueden utilizarse para generar modificaciones en animales transgénicos no humanos o genes específicos del sitio en líneas de células. Pueden producirse animales transgénicos no humanos por recombinación homóloga, en la cual se altera el locus normal de los genes que codifican las proteínas de la invención. Alternativamente, un constructo de ácido nucleico se integra aleatoriamente en el genoma. Vectores para integración estable incluyen plásmidos, retrovirus y otros virus animales, YACs, y análogos. Las células o animales modificados son útiles en el estudio de la función y regulación de las proteínas SF06. Por ejemplo, puede hacerse una serie de pequeñas deleciones y/o sustituciones en los genes que codifican las proteínas a fin de determinar el papel de dominios particulares de la proteína, funciones en la diferenciación pancreática, etc.

20

35

Constructos específicos de interés incluyen moléculas antisentido, que bloquearán la expresión de las proteínas SF06, o la expresión de mutaciones dominantes negativas. Un marcador detectable, tal como por ejemplo lac-Z, pueden introducirse en el locus de los genes, donde la regulación creciente de la expresión de los genes dará como resultado un cambio fácilmente detectado en el fenotipo.

Puede proporcionarse también la expresión de los genes en células o tejidos en los que no se expresan normalmente o en momentos anormales del desarrollo. Adicionalmente, por proporcionar la expresión de las proteínas SF06 en células en las cuales las mismas no se producen normalmente, es posible inducir cambios en el comportamiento celular

Los constructos de DNA para recombinación homóloga comprenderán al menos porciones de los genes con la modificación genética deseada, e incluirán regiones de homología en el locus diana. Los constructos de DNA para integración aleatoria no precisan incluir regiones de homología para mediar la recombinación. Convenientemente, se inducen marcadores para selección positiva y/o negativa. Métodos para generación de células que tienen modificaciones direccionadas en genes por recombinación homóloga se conocen en la técnica. Para las células del tallo embrionario (ES) no humanas, puede emplearse una línea de células ES, o pueden obtenerse células embrionarias recientemente de un hospedador, v.g., ratón, rata, cobayo, etc. Dichas células se dejan crecer en una capa apropiada de fibroblastos-alimentadores o se cultivan en presencia del factor inhibidor de la leucemia (LIF).

Los datos descritos en esta memoria demuestran que los ácidos nucleicos y proteínas SF06 son útiles en aplicaciones de diagnóstico concernientes a diabetes (tales como diabetes mellitus dependiente de insulina y/o diabetes mellitus no dependiente de insulina), obesidad, y/o síndrome metabólico. Por tanto, los usos diagnósticos para los ácidos nucleicos y proteínas son, por ejemplo pero sin carácter limitante, los siguientes: (i) diagnóstico de dianas de anticuerpos, (ii) marcador de diagnóstico y/o pronóstico, y/o (iii) herramientas de investigación.

50 Los ácidos nucleicos y proteínas SF06 son útiles en aplicaciones de diagnóstico implicadas en diversas realizaciones como se describe más adelante.

Los ácidos nucleicos pueden ser útiles adicionalmente en aplicaciones de diagnóstico, en donde debe evaluarse la presencia o cantidad de los ácidos nucleicos o las proteínas, seleccionados de diabetes, obesidad y síndrome metabólico.

Una diversidad de protocolos que incluyen ELISA, RIA, y FACS para determinación de proteínas se conocen en la técnica y proporcionan una base para el diagnóstico de niveles alterados o anormales de expresión génica. Los valores normales o estándar para la expresión génica se establecen por combinación de fluidos corporales o extrac-

tos de células tomados de individuos mamíferos normales, preferiblemente humanos, con anticuerpos para la proteína en condiciones adecuadas para la formación de complejos. La cantidad de formación de complejo estándar puede cuantificarse por diversos métodos, pero preferiblemente por medios fotométricos. Las cantidades de proteína expresadas en las muestras de control y de la enfermedad, v.g. de tejidos sometidos a biopsia se comparan con los valores estándar. La desviación entre los valores estándar y los correspondientes a los individuos establece los parámetros para diagnóstico de la enfermedad.

En otra realización de la invención, los polinucleótidos específicos para las proteínas SF06 pueden utilizarse para propósitos de diagnóstico. Los polinucleótidos que pueden utilizarse, incluyen secuencias oligonucleotídicas, moléculas de RNA y DNA antisentido, y PNAs. Los polinucleótidos pueden utilizarse para detectar y cuantificar la expresión génica en tejidos sometidos a biopsia en los cuales la expresión de los genes puede correlacionarse con la enfermedad. El ensayo de diagnóstico puede utilizarse para distinguir entre ausencia, presencia, y exceso de expresión génica, y para monitorizar la regulación de los niveles de proteínas durante una intervención terapéutica.

En un aspecto, la hibridación con sondas que son capaces de detectar secuencias de polinucleótidos, con inclusión de secuencias genómicas, que codifican las proteínas SF06, puede utilizarse para identificar secuencias de ácido nucleico que codifican la proteína respectiva. Las sondas de hibridación pueden ser DNA o RNA y se derivan preferiblemente de la secuencia de nucleótidos del polinucleótido codificante de las proteínas SF06 o de una secuencia genómica que incluye promotor, elementos intensificadores, e intrones del gen existente naturalmente. Las sondas de hibridación pueden estar marcadas por una densidad de grupos informadores, por ejemplo, radionucleidos tales como <sup>32</sup>P o <sup>35</sup>S o marcadores enzimáticos, tales como fosfatasa alcalina acoplada a la sonda por sistemas de acoplamiento avidina/biotina, y análogos.

15

20

25

40

45

50

55

60

Secuencias de polinucleótidos específicas para las proteínas SF06 pueden utilizarse para el diagnóstico de afecciones o enfermedades, que están asociadas con la expresión de las proteínas, seleccionadas de diabetes, obesidad y síndrome metabólico. También pueden utilizarse secuencias polinucleotídicas específicas para proteínas SF06 para monitorizar el progreso de pacientes que reciben tratamiento por diabetes, obesidad, y/o síndrome metabólico. Las secuencias de polinucleótidos pueden utilizarse en ensayos cualitativos o cuantitativos, v.g. en análisis Southern o Northern, transferencia de mancha u otras tecnologías basadas en membranas; en tecnologías PCR; o en ensayos con varillas de inmersión, husillos, ELISA o chips que utilizan fluidos o tejidos de biopsias de pacientes para detectar la expresión génica alterada.

En un aspecto particular, las secuencias de nucleótidos SF06 pueden ser útiles en ensayos que detectan la activación o inducción de las enfermedades o disfunciones metabólicas anteriores. Las secuencias de nucleótidos pueden marcarse por métodos estándar, y añadirse a un fluido o muestra de tejido de un paciente en condiciones adecuadas para la formación de complejos de hibridación. Después de un periodo de incubación adecuado, la muestra se lava y la señal se cuantifica y se compara con un valor estándar. La presencia de niveles alterados de secuencias nucleotídicas que codifican las proteínas SF06 en la muestra indica la presencia de una enfermedad asociada. Tales ensayos pueden utilizarse también para evaluar la eficacia de un régimen de tratamiento terapéutico particular en estudios con animales, en pruebas clínicas o en monitorización del tratamiento de un paciente individual.

Con objeto de proporcionar una base para el diagnóstico de una enfermedad asociada con la expresión de las proteínas SF06, se establece un perfil normal o estándar para la expresión. Esto puede realizarse por combinación de fluidos corporales o extractos celulares tomados de individuos normales, sean animales o humanos, con una secuencia o un fragmento de la misma, que es específico(a) para los ácidos nucleicos que codifican las proteínas SF06, en condiciones adecuadas para hibridación o amplificación. La hibridación estándar puede cuantificarse por comparación de los valores obtenidos de individuos normales con los procedentes de un experimento en el que se utiliza una cantidad conocida de un polinucleótido sustancialmente purificado. Los valores estándar obtenidos de muestras normales pueden compararse con los valores obtenidos de muestras de pacientes que presentan síntomas de enfermedad. La desviación entre los valores estándar y los del individuo de que se trata se utiliza para establecer la presencia de enfermedad. Una vez establecida la enfermedad e iniciado un protocolo de tratamiento, pueden repetirse ensayos de hibridación sobre una base regular para evaluar si el nivel de expresión en el paciente comienza a aproximarse al que se observa en el paciente normal. Los resultados obtenidos de ensayos sucesivos pueden utilizarse para demostrar la eficacia del tratamiento a lo largo de un periodo comprendido entre varios días y meses.

Con respecto a diabetes, obesidad, y/o síndrome metabólico, la presencia de una cantidad inusual de transcrito en el tejido procedente de biopsia de un individuo puede indicar una predisposición para el desarrollo de la enfermedad, o puede proporcionar un medio para detectar la enfermedad antes de la aparición de síntomas clínicos reales. Un diagnóstico más definitivo de este tipo puede permitir a los profesionales sanitarios emplear medidas preventivas o tratamiento agresivo más pronto, previniendo con ello el desarrollo o la progresión ulterior de las enfermedades y trastornos metabólicos.

Usos diagnósticos adicionales para oligonucleótidos diseñados a partir de las secuencias que codifican las proteínas SF06 pueden implicar el uso de PCR. Tales oligómeros pueden sintetizarse químicamente, generarse por medios enzimáticos o producirse a partir de una fuente recombinante. Los oligómeros estarán constituidos preferiblemente por dos secuencias nucleotídicas, una con orientación sentido (5prima.fwdarw.3prima) y otra con orientación anti-

sentido (3prima,rarw.5prima), empleadas en condiciones optimizadas para identificación de un gen o condición específico. Los dos mismos oligómeros, conjuntos de oligómeros anidados o incluso una agrupación degenerada de oligómeros pueden emplearse en condiciones menos severas para detección y/o cuantificación de secuencias estrechamente afines de DNA o RNA.

Las secuencias de ácido nucleico pueden utilizarse también para generar sondas de hibridación, que son útiles para mapeado de la secuencia genómica existente naturalmente. Las secuencias pueden mapearse a un cromosoma particular o a una región específica del cromosoma utilizando técnicas bien conocidas. Dichas técnicas incluyen FISH, FACS o construcciones de cromosomas artificiales, tales como cromosomas artificiales de levadura, cromosomas artificiales bacterianos, construcciones bacterianas P1 o genotecas de cDNA de cromosomas simples como ha sido revisado en Price C.M., (1993) Blood Rev. 7: 127-134, y Trask B.J., (1991) Trends Genet. 7: 149-154. FISH (como se describe en Verma R.S. y Babu A., (1989) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, Nueva York, N.Y.). Los resultados pueden correlacionarse con otras técnicas físicas de mapeado de cromosomas y datos de mapas genéticos. Ejemplos de datos de mapas genéticos pueden encontrarse en el 1994 Genome Issue of Science (265:1981f). La correlación entre la localización del gen que codifica las proteínas SF06 en un mapa cromosómico físico y una enfermedad o predisposición específica para una enfermedad específica, puede ayudar a delimitar la región del DNA asociada con dicha enfermedad genética.

Las secuencias de nucleótidos pueden utilizarse para detectar diferencias en secuencias de genes entre individuos normales, portadores o afectados. Puede realizarse un análisis de polimorfismos, v.g. polimorfismos de nucleótidos simples. Adicionalmente, pueden utilizarse la hibridación in situ de preparaciones cromosómicas y técnicas físicas de mapeado tales como el análisis de enlaces utilizando marcadores cromosómicos establecidos para extensión de mapas genéticos. A menudo, la ubicación de un gen en el cromosoma de otra especie de mamífero, tal como un ratón, puede revelar marcadores asociados incluso si el número o la rama de un cromosoma humano particular no se conocen. Pueden asignarse nuevas secuencias a ramas cromosómicas o parte de las mismas, por mapeado físico. Esto proporciona información valiosa para los investigadores que buscan genes de enfermedades utilizando clonación posicional u otras técnicas de descubrimiento de genes. Una vez que la enfermedad o el síndrome ha sido localizado aproximadamente por enlaces genéticos a una región genómica particular, por ejemplo AT a 11q22-23 (Gatti R.A. et al., (1988) Nature 336:577-580), cualesquiera secuencias que mapeen a dicha área pueden representar genes asociados o reguladores para investigación ulterior. Las secuencias de nucleótidos pueden utilizarse también para detectar diferencias en la localización cromosómica debidas a translocación, inversión, etc. entre individuos normales, portadores o afectados.

20

25

30

35

40

45

50

55

60

En otra realización de la invención, las proteínas SF06 pueden utilizarse para cribado de bibliotecas de compuestos en cualquiera de una diversidad de técnicas de cribado de fármacos. Es posible identificar efectores, v.g. receptores, enzimas, proteínas, ligandos, o sustratos que se fijan a, modulan o mimetizan la acción de una o más de las proteínas SF06. La proteína o fragmento de la misma empleada(o) en dicho cribado puede estar libre en solución, fijada a un soporte sólido, soportada sobre una superficie celular, o localizada intracelularmente. Puede medirse la formación de complejos de fijación, entre las proteínas SF06 y el agente testado. Los agentes podrían influir también, directa o indirectamente, en la actividad de las proteínas SF06.

Adicionalmente, la actividad de las proteínas SF06 contra su o sus sustratos fisiológicos o derivados de los mismos podría medirse en ensayos basados en células o exentos de células. Los agentes pueden interferir también con las modificaciones posteriores a la traducción de la proteína, tales como fosforilación y desfosforilación, farnesilación, palmitoilación, acetilación, alquilación, ubiquitinación, procesamiento proteolítico, localización subcelular y degradación. Además, los agentes podrían influir en la dimerización u oligomerización de las proteínas SF06 o bien, de una manera heteróloga, de las proteínas SF06 con otras proteínas, por ejemplo, pero no exclusivamente, proteínas de acoplamiento, enzimas, receptores, o factores de traducción. Los agentes podrían actuar también sobre la interacción física de las proteínas SF06 con otras proteínas, que se requieren para la función proteínica, por ejemplo, pero no exclusivamente, su señalización aguas abajo.

Los métodos para determinación de la interacción proteína-proteína son bien conocidos en la técnica. Por ejemplo, la fijación de un péptido marcado fluorescentemente derivado de la proteína de interacción a la proteína SF06, o viceversa, podría detectarse por un cambio de polarización. En el caso de que ambos miembros de la pareja de fijación, que pueden ser las proteínas de longitud total así como un miembro de la pareja de fijación como la proteína de longitud total y el otro representado justamente como un péptido estén marcados fluorescentemente, la fijación podría detectarse por transferencia de energía de fluorescencia (FRET) de un fluoróforo al otro. Adicionalmente, una diversidad de principios de ensayo disponibles comercialmente, adecuados para detección de la interacción proteína-proteína son bien conocidos en la técnica, por ejemplo, pero no exclusivamente, los Ensayos Alpha Screen (Perkin Elmer) o de centelleo por proximidad (SPA) por Amersham. Alternativamente, la interacción de las proteínas SF06 con proteínas celulares podría ser la base para un ensayo de cribado basado en células, en el cual ambas proteínas están marcadas fluorescentemente y la interacción de ambas proteínas se detecta por análisis de la cotranslocación de ambas proteínas con un lector de formación de imágenes celulares, como ha sido desarrollado por ejemplo, pero no exclusivamente, por Cellomics o EvotecOAI. En todos los casos, los dos o más miembros de la pareja de fijación pueden ser proteínas diferentes, siendo una la proteína SF06, o en el caso de dimerización y/u oligomerización la proteína SF06 propiamente dicha.

De interés particular son ensayos de cribado para agentes que tienen una baja toxicidad para las células de mamífero. El término "agente", tal como se utiliza en esta memoria, describe cualquier molécula, v.g. proteína o compuesto farmacéutico, con la capacidad de alterar o mimetizar la función fisiológica de una o más de las proteínas SF06. Agentes candidato abarcan numerosas clases de productos químicos, aunque típicamente los mismos son moléculas orgánicas, preferiblemente compuestos orgánicos pequeños que tienen un peso molecular mayor que 50 y menor que aproximadamente 2500 Daltons. Los agentes candidato comprenden grupos funcionales necesarios para la interacción estructural con proteínas, particularmente enlaces de hidrógeno, e incluyen típicamente al menos un grupo amina, carbonilo, hidroxilo o carboxilo, preferiblemente al menos dos de los grupos químicos funcionales. Los agentes candidato comprenden a menudo estructuras carbocíclicas o heterocíclicas y/o estructuras aromáticas o poliaromáticas constituidas con uno o más de los grupos funcionales anteriores.

10

15

25

30

40

50

55

Agentes candidato se encuentran también entre biomoléculas que incluyen péptidos, sacáridos, ácidos grasos, esteroides, purinas, pirimidinas, ácidos nucleicos y derivados, análogos estructurales o combinaciones de los mismos. Los agentes candidato se obtienen de una gran diversidad de fuentes que incluyen bibliotecas de compuestos sintéticos o naturales. Por ejemplo, están disponibles numerosos medios para síntesis aleatoria y dirigida de una gran diversidad de compuestos orgánicos y biomoléculas, con inclusión de la expresión de oligonucleótidos y oligopéptidos aleatorizados. Alternativamente, están disponibles bibliotecas de compuestos naturales en la forma de extractos bacterianos, fúngicos, vegetales y animales, o se producen fácilmente. Adicionalmente, las bibliotecas y compuestos naturales o producidos por síntesis se modifican fácilmente por medios convencionales químicos, físicos y bioquímicos, y pueden utilizarse para producir bibliotecas combinatorias. Los agentes farmacológicos conocidos pueden someterse a modificaciones químicas dirigidas o aleatorias, tales como acilación, alquilación, esterificación, una o más de las moléculas pueden unirse a un marcador, donde el marcador puede proporcionar directa o indirectamente una señal detectable.

Otra técnica que puede utilizarse para cribado de fármacos proporciona cribado de alta capacidad de compuestos que tienen afinidad de fijación adecuada para la proteína de interés, como se describe en la solicitud PCT publicada WO 84/03564. En este método, como se aplica a las proteínas SF06, grandes números de compuestos de test pequeños diferentes, v.g., aptámeros, péptidos, compuestos de peso molecular bajo etc., se proporcionan o sintetizan sobre un sustrato sólido, tal como husillos de plástico o alguna otra superficie. Los compuestos de test se hacen reaccionar con las proteínas o fragmentos de las mismas, y se lavan. Las proteínas fijadas se detectan luego por métodos bien conocidos en la técnica. Las proteínas purificadas pueden aplicarse también directamente como recubrimiento sobre placas para uso en las técnicas de cribado de fármacos mencionadas anteriormente. Como alternativa, pueden utilizarse anticuerpos no neutralizantes para capturar el péptido e inmovilizarlo sobre un soporte sólido. Pueden utilizarse ensayos de cribado competitivo de fármacos en los cuales anticuerpos neutralizantes capaces de fijar la proteína compiten específicamente con un compuesto de test para fijación de la proteína. De esta manera, los anticuerpos pueden utilizarse para detectar la presencia de cualquier péptido, que comparta uno o más determinantes antigénicos con la proteína. Compuestos que fijan proteínas SF06, v.g. anticuerpos, son útiles para la identificación o enriquecimiento de células, que son positivas para la expresión de las proteínas SF06, a partir de mixturas complejas de células. Tales poblaciones de células son útiles en trasplante, para evaluación experimental, y como fuente de productos específicos de linajes y células, con inclusión de especies de mRNA útiles en la identificación de genes expresados específicamente en estas células, y como diana para la identificación de factores de moléculas que pueden afectarlos. Las células que expresan la proteína SF06 o que han sido tratadas con la proteína SF06 son útiles en trasplante para proporcionar un receptor con células de los islotes pancreáticos, con inclusión de las células beta productoras de insulina; para cribado de fármacos; modelos experimentales de diferenciación e interacción de los islotes con otros tipos de células; ensayos de cribado in vitro que definen factores de crecimiento y diferenciación, y para caracterizar adicionalmente genes implicados en el desarrollo y la regulación de los islotes; y análogos. Para estos propósitos pueden utilizarse las células nativas, o bien pueden modificarse genéticamente las mismas para proporcionar capacidades alteradas. Pueden utilizarse como población de partida células procedentes de un páncreas en regeneración, del intestino anterior, estómago y duodeno embrionarios, o de otras fuentes de células pancreáticas progenitoras. Las células progenitoras pueden obtenerse de cualquier especie de mamífero, v.g. equinos, bovinos, porcinos, caninos, felinos, roedores, v.g. ratones, ratas, hámster, primates, etc., en particular de la especie humana.

En otra realización, en un método de cribado de alta potencia, las células se transfectan con un constructo de DNA, v.g. un vector viral o no viral que contiene un gen informador, v.g. el gen lacZ o el gen GFP, bajo control regulador de un promotor de un gen implicado en, por ejemplo, la diferenciación de las células beta, v.g. un promotor de un gen que estimula la diferenciación de las células beta, preferiblemente un promotor Pax4. Las células transfectadas se dividen en partes alícuotas y cada parte alícuota se pone en contacto con una sustancia de test, v.g., candidato 1, candidato 2 y candidato 3. La actividad del gen informador corresponde a la capacidad del compuesto de test para inducir la diferenciación de las células beta.

En una realización adicional, que puede combinarse con el cribado de alta potencia que se ha descrito arriba, se realiza una validación de potencia del medio. En ella, el compuesto de test se añade a las células madre que se cultivan y se determina la producción de insulina. Después de un ensayo inicial de alta potencia, tal como el ensayo basado en células reseñado anteriormente en el que por ejemplo se utiliza un promotor Pax4 como marcador para la

regeneración de las células beta, se testa la actividad de las moléculas candidato para inducir la diferenciación de las células beta en un ensayo de validación que comprende añadir dichos compuestos al medio de cultivo de los cuerpos embrioides. La diferenciación en células productoras de insulina se evalúa luego, v.g. por comparación con células de tipo salvaje y/o células ES que expresan Pax4 para evaluar la eficacia de un compuesto.

Los ácidos nucleicos que codifican las proteínas SF06 pueden utilizarse para generar líneas de células y animales no humanos transgénicos. Estos animales transgénicos no humanos son útiles en el estudio de la función y regulación de las proteínas SF06 in vivo. Animales transgénicos no humanos, particularmente animales mamíferos transgénicos, pueden servir como sistema modelo para la investigación de muchos procesos del desarrollo y procesos celulares comunes a los humanos. Una diversidad de modelos no humanos de trastornos metabólicos pueden utilizarse para testar moduladores de la proteína SF06. La expresión incorrecta (por ejemplo, sobre-expresión o falta de expresión) de la proteína SF06, particularmente las condiciones de alimentación, y/o la administración de compuestos biológicamente activos pueden crear modelos de trastornos metabólicos.

En una realización de la invención, tales ensayos utilizan modelos de ratón de resistencia a la insulina y/o diabetes, tales como ratones portadores de silenciaciones de genes en el camino de la leptina (por ejemplo, ratones ob (leptina) o db (receptor de leptina)), como se ha descrito arriba. Además de testar la expresión de las proteínas SF06 en tales variedades de ratón (véanse los Ejemplos), estos ratones podrían utilizarse para testar si la administración de un modulador candidato altera por ejemplo la acumulación de lípidos en el hígado, en plasma o en los tejidos adiposos utilizando ensayos estándar bien conocidos en la técnica, tales como FPLC, ensayos colorimétricos, tests del nivel de glucosa en sangre, test de tolerancia a la insulina, y otros.

Pueden producirse animales transgénicos no humanos por recombinación homóloga en células madre embrionarias, 20 donde el locus normal del gen que codifica la proteína SF06 está mutado. Alternativamente, un constructo de ácido nucleico que codifica la proteína se invecta en oocitos y se integra aleatoriamente en el genoma. Es posible expresar también los genes en tejidos en los que los mismos no se expresan normalmente o en momentos anormales del desarrollo. Adicionalmente, variantes de los genes como constructos específicos que expresan moléculas antisentido o expresión de mutaciones negativas dominantes, que bloquearán o alterarán la expresión de las proteínas SF06 25 pueden integrarse aleatoriamente en el genoma. Un marcador detectable, tal como lacZ o luciferasa puede introducirse en el locus de los genes, donde la regulación creciente de expresión de los genes dará como resultado un cambio fácilmente detectable en el fenotipo. Vectores para integración estable incluyen plásmidos, retrovirus y otros virus animales, cromosomas artificiales de levadura (YACs) y análogos. Los constructos de DNA para recombinación 30 homóloga contendrán al menos porciones de los genes con la modificación genética deseada, e incluirán regiones de homología para el locus diana. Convenientemente, se incluyen marcadores para selección positiva y negativa. Los constructos de DNA para integración aleatoria no precisan contener regiones de homología para mediar la recombinación. Los constructos de DNA para integración aleatoria estarán constituidos por los ácidos nucleicos que codifican las proteínas, un elemento regulador (promotor), un intrón y una señal de poli-adenilación. Los métodos para generación de células que tienen modificaciones génicas direccionadas por recombinación homóloga se conocen en el campo. Para células madre embrionarias (ES), puede emplearse una línea de células ES, o pueden obtenerse células embrionarias recientemente de un hospedador, v.g., ratón, rata, cobayo, etc. Dichas células se cultivan sobre una capa apropiada fibroblastos-alimentador y se dejan crecer en presencia de factor inhibidor de la leucemia (LIF). Las células ES o embrionarias pueden transfectarse y utilizarse luego para producir animales transgénicos. Después de la transfección, las células ES se extienden en placas sobre una capa alimentadora en un medio apropiado. Las células que contienen el constructo pueden seleccionarse empleando un medio de selección. Después de un tiempo suficiente para que crezcan las colonias, las mismas se seleccionan y se analizan respecto a la existencia de recombinación homóloga. Las colonias que son positivas pueden utilizarse luego para manipulación de embriones y agregación de la mórula. Resumidamente, se obtienen mórulas de hembras superovuladas de 4 a 6 semanas 45 de edad, se separa la Zona Pelúcida y se colocan las mórulas en pequeñas depresiones de una cápsula de cultivo de tejidos. Las células ES se tripsinizan, y las células modificadas se colocan en la depresión muy cerca de la mórula. Al día siguiente, los agregados se transfieren a las trompas uterinas de hembras pseudopreñadas. Las hembras se dejan llegar luego a término. Los descendientes guiméricos pueden detectarse fácilmente por un cambio en el color de la capa y se someten posteriormente a cribado respecto a la transmisión de la mutación a la generación siguiente (generación F1). La descendencia de la generación F1 se somete a cribado en cuanto a la presencia del gen modificado y los machos y hembras que presentan la modificación se aparean para producir progenie homocigótica. Si las alteraciones génicas causan letalidad en algún momento del desarrollo, los tejidos u órganos pueden mantenerse como injertos o trasplantes halogénicos o congénicos, o como cultivo in vitro. Los animales transgénicos pueden ser cualquier mamífero no humano, tal como un animal de laboratorio, animales domésticos, etc., por ejem-55 plo, ratón, rata, cobayo, oveja, vaca, cerdo, y otros. Los animales transgénicos pueden utilizarse en estudios funcionales, cribado de fármacos, y otras aplicaciones y son útiles en el estudio de la función y regulación de las proteínas SF06 in vivo.

Las figuras muestran:

15

- Fig. 1 muestra los resultados de hibridación in situ para la proteína FS01.
- 60 **Fig. 1A** muestra una hibridación in situ de montaje entero de páncreas embrionarios de ratón el día E11.5 (vista lateral).

- Fig. 1B muestra un montaje completo de hibridación in situ de páncreas embrionario de ratón el día E11.5 (vista ventral; después de extirpación del hígado; aumento mayor de la región teñida).
- Fig. 2 muestra la expresión de SF02 en tejidos de mamífero (ratón).
- **Fig. 2A** muestra el análisis PCR en tiempo real de la expresión de SF02 en tejidos de ratón de tipo salvaje (a los que se hace referencia como ratones wt) y con dieta de control (a la que se hace referencia como controldiet) tejidos.
  - **Fig. 2B** muestra el análisis PCR en tiempo real de la expresión de SF02 en ratones genéticamente obesos (a los que se hace referencia como ratones ob/ob) comparados con ratones de tipo salvaje y en ratones alimentados con una dieta rica en grasa (a los que se hace referencia como ratones HFD) comparados con ratones alimentados con la dieta de control.
- 10 Fig. 3 muestra el análisis de microrredes de la expresión de SF02 en células adipocitos abdominales humanas, durante la diferenciación de preadipocitos en adipocitos maduros.
  - Fig. 4 muestra la expresión de SF03 en tejidos de mamífero (ratón).
  - **Fig. 4A** muestra el análisis PCR en tiempo real de la expresión de SF03 en tejidos de tipo salvaje de ratón (a los que se hace referencia como ratones wt) y con dieta de control (a la que se hace referencia como controldiet).
- 15 **Fig. 4B** muestra el análisis PCR en tiempo real de la expresión de SF03 en ratones genéticamente obesos (a los que se hace referencia como ratones ob/ob) comparados con ratones de tipo salvaje y ratones alimentados con una dieta rica en grasa (a los que se hace referencia como ratones HFD) comparados con ratones alimentados con una dieta de control.
- **Fig. 5** muestra el análisis de microrredes de la expresión de SF03 en células adipocito abdominales humanas durante la diferenciación de preadipocitos a adipocitos maduros.
  - Fig. 6 muestra la expresión de SF04 en tejidos de mamífero (ratón).
  - **Fig. 6A** muestra el análisis PCR en tiempo real de la expresión de SF04 en tejidos de ratones de tipo salvaje (a los que se hace referencia como ratones wt) y con dieta de control (a los que se hace referencia como controldiet) (con inclusión del hígado).
- 25 **Fig. 6B** muestra el análisis PCR en tiempo real de la expresión de SF04 en tejidos de ratón de tipo salvaje y tejidos con dieta de control (sin hígado).
  - **Fig. 6C** muestra el análisis PCR en tiempo real de la expresión de SF04 en ratones genéticamente obesos (a los que se hace referencia como ratones ob/ob) comparados con ratones de tipo salvaje y con ratones alimentados con una dieta rica en grasa (a los que se hace referencia como ratones HFD) comparados con ratones alimentados con una dieta de control.
  - Fig. 7 muestra los resultados de hibridación in situ para la proteína SF05.
  - Fig. 7A muestra una criosección de páncreas embrionario de ratón el día E17.5.
  - Fig. 7B muestra la criosección de páncreas embrionario de ratón el día E17.5 con un aumento mayor.
- **Fig. 8** muestra los resultados de hibridación in situ para la proteína SF06. Se muestra la criosección de páncreas embrionario de ratón el día E17.5.
  - **Fig. 9** muestra el análisis de microrredes de la expresión de SF13 en adipocitos humanos durante la diferenciación de preadipocitos a adipocitos maduros.
  - **Fig. 9A** muestra el análisis de microrredes de la expresión de SF13 en adipocitos abdominales primarios humanos durante la diferenciación de preadipocitos en adipocitos maduros.
- 40 Fig. 9B muestra el análisis de microrredes de la expresión de SF13 en células humanas SGBS durante la diferenciación de preadipocitos en adipocitos maduros.

#### **EJEMPLOS**

#### Ejemplo 1: Identificación de factores secretados expresados en páncreas

Se llevó a cabo un cribado para factores secretados expresados en páncreas de ratón en desarrollo de acuerdo con métodos conocidos por los expertos en la técnica (véase, por ejemplo, Pera E.M. y De Robertis E.M., (2000) Mech Dev 96(2): 183-195) con varias modificaciones.

Biblioteca de expresión de cDNA:

30

Durante la organogénesis, el primordio pancreático está rodeado e influenciado por el mesénquima asociado (véase, por ejemplo, Madsen O.D. et al., (1996) Eur. J. Biochem. 242: 435-445 y Slack, J.M., (1995) Development 121: 1569-1580). Recientemente, se ha sugerido que los adipocitos blancos se originan directamente de células mesenquimáticas (Atanossova P.K., (2003) Folia Med. 45:41-45). Durante la embriogénesis, pueden observarse la inervación y vascularización del páncreas. Por tanto, el tejido utilizado en el cribado podría haber contenido además de células pancreáticas algunos precursores de adipocitos, vasos sanguíneos, así como células neuronales.

Se preparó una biblioteca de primordios pancreáticos de ratón en la fase embrionaria 9.5-15 en un vector pCMVSPORT-6 utilizando el Sistema de Plásmido SUPERSCRIPT de Invitrogen de acuerdo con las instrucciones del fabricante. La biblioteca no amplificada se sometió a electroporación en células MaxEff DH10B (Invitrogen).

#### 10 Clonación de la secreción

15

20

25

Se seleccionaron clones bacterianos con mondadientes estériles a partir de placas de agar y se cultivaron en placas de microtitulación de 96 pocillos profundos en ampicilina LB (véase Sambrook et al., supra). Se agruparon partes alícuotas de 8 cultivos, y se aisló el DNA plasmídico utilizando el aparato BioRobot 9600 de acuerdo con las instrucciones del fabricante (Qiagen; Kit BioRobot Turbo QIAprep(r)). Se cultivaron células de cultivo 293 humanas en matraces de cultivo de tejidos de 75 ml en DMEM y suero de ternero fetal al 10%. Cuando se alcanzó el 90-99% de la confluencia, las células se dividieron en una ratio 1:3 y se extendieron sobre placas de 96 pocillos recubiertas con poli-D-lisina (Sigma). Las células se transfectaron con 100-500 ng de plásmido utilizando lipofectamina 2000 (Invitrogen). Después de 6 horas, se cambio el medio por medio completo de crecimiento reciente. 24 horas después de la transfección, se lavaron dos veces las células con DMEM sin cisteína y metionina (Invitrogen), suplementado con suero bovino dializado al 1% (Sigma) con 50 microgramos por ml de heparina (Sigma) y glutamina. Las células se marcaron radiactivamente ('S35 Met-Label', de Hartman Analytic GmbH). Después de 12 horas, se cosecharon partes alícuotas de los sobrenadantes en placas PCR de 96 pocillos y se sometieron a electroforesis en gel de SDS en geles Criterion prefundidos en gradiente de poliacrilamida 4020% (Biorad) en condiciones reductoras, utilizando una cámara de ejecución en gel Criterion Dodeca Cell (Biorad). Los geles se fijaron en 10% de ácido acético, 25% isopropanol durante 30 min, se impregnaron durante 15-30 min en reactivo AMPLIFY (Amersham), se secaron y se expusieron a film X-OMAT (AR) (Kodak). Los clones positivos se identificaron y dejaron crecer nuevamente en placas de 96 pocillos. El DNA de clones individuales se preparó y se utilizó para transfección como se ha descrito arriba. Si uno de los clones producía proteínas del mismo tamaño que el de la agrupación original, se identificó un clon positivo. Los clones positivos se secuenciaron parcialmente desde el extremo 5' (SEQLAB, Goettingen).

### 30 Ejemplo 2: Identificación de las secuencias humanas homólogas de ácido nucleico y proteínas

La expresión "polinucleótido que comprende la secuencia de nucleótidos que se muestra en el número de Acceso a GenBank" se refiere al gen expresable de las secuencias de nucleótidos depositadas bajo el número de Acceso a GenBank correspondiente. La expresión "número de Acceso a GenBank" se refiere a las entradas en la base de datos NCBI GenBank (ref.: Benson D.A. et al., (2000) Nucleic Acids Res. 28:15-18).

Se identificaron secuencias homólogas a las secuencias de ratón utilizando el programa disponible públicamente BLASTP 2.2.3 de la base de datos de proteínas no redundante del National Center por Biotechnology Information (NCBI) (véase, Altschul S.F. et al., (1997) Nucleic Acids Res. 25:3389-3402).

Las proteínas SF01-SF13 y moléculas de ácido nucleico que codifican las mismas pueden obtenerse de especies de insecto o de vertebrado, v.g. mamíferos o peces. Se prefieren particularmente moléculas de ácido nucleico y proteínas codificadas por ellas que comprenden secuencias SF01-SF13 humanas y SF01-SF13 de ratón identificadas en el "cribado de factores secretados", como se describe en la Tabla 2.

Tabla 2: Genes y proteínas de mamífero de la invención (SF01-SF13)

|    |        |                  | Números de A       | Acceso a Genbank |                    |
|----|--------|------------------|--------------------|------------------|--------------------|
|    | Nombre | Genes y proteína | as de Mus musculus | Genes y proteína | as de Homo sapiens |
|    |        | cDNA             | Proteína           | cDNA             | Proteína<br>5      |
|    | SF01   | NM_026161        | NP_080437          | NM_031909        | NP_114115          |
|    | SF02   | NM_178644        | NP_848759          | NM_178507        | NP_848602          |
|    | SF03   | NM_016697        | NP_057906          | NM_004484        | NP_004475          |
|    | SF04   | NM_007443        | NP_031469          | NM_001633        | NP_001624          |
| 10 | SF05   | NM_009250        | NP_033276          | NM_005025        | NP_005016          |
|    | SF06   | NM_172633        | NP_766221          | NM_182511        | NP_872317          |
|    | SF07   | NM_026840        | NP_081116          | NM_006207        | NP_006198          |
|    | SF08   | NM_019696        | NP_062670          | NM_019609        | NP_062555          |
| 15 | SF09   | NM_139295        | NP_647456          | NM_139279        | NP_644808          |
| 15 | SF10   | NM_029568        | NP_083844 .        | NM_002404        | NP_002395          |
|    | SF11   | NM_009976        | NP_034106          | NM_000099        | NP_000090          |
|    | SF12   | NM_010180        | NP_034310          | NM_006486        | NP_006477          |
|    | SF13   | NM_011149        | NP_035279          | NM_000942        | NP_000933          |

20 Ejemplo 3: Análisis de la expresión de los ácidos nucleicos descritos en tejidos de mamífero (ratón)

25

30

35

40

45

Para analizar la expresión de los mRNAs descritos en esta memoria descriptiva en tejidos de mamífero, varias variedades de ratón (preferiblemente las variedades de ratón C57Bl/6J, C57Bl/6 ob/ob, C57Bl/KS db/db, y los ratones No-Obesos-Diabéticos (NOD), que son sistemas modelo estándar en investigación de obesidad y diabetes) se adquirieron de Harlan Winkelmann (33178 Borchen, Alemania) y Taconic M&B (Germantown, NY 12526, EE.UU.), respectivamente, y se mantuvieron a temperatura constante (preferiblemente 22°C), 40% de humedad y un ciclo luz/oscuridad de, preferiblemente, 14/10 horas. Los ratones se alimentaron con una comida estándar (por ejemplo, de Ssniff Spezialitäten GmbH, número de pedido Ssniff M-Z V1126-000). En un experimento ulterior, se alimentaron ratones de tipo salvaje (wt) con una dieta de control (preferiblemente Altromin C1057 mod control, 4,5% de grasa bruta) o dieta rica en grasa (preferiblemente Altromin C1057 mod. rica en grasa, 23,5% grasa bruta). Los animales se sacrificaron a la edad de 6 a 8 semanas. Los tejidos animales se aislaron de acuerdo con procedimientos estándar conocidos por los expertos en la técnica, se congelaron bruscamente en nitrógeno líquido y guardaron a -80°C hasta que fueron necesarios.

Para analizar el papel de las proteínas descritas en la diferenciación in vitro de células de cultivo de células de mamífero para la conversión de preadipocitos en adipocitos, se obtuvieron células fibroblastos de mamífero (3T3-L1) (v.g., Green H. y Kehinde O., (1974) Cell 1:113-116) de la Colección Americana de Cultivo de Tejidos (ATCC), Hanassas, VA, EE.UU.; ATCC-CL 173). Las células 3T3-L1 se mantuvieron como fibroblastos y se diferenciaron en adipocitos como se describe en la técnica anterior (v.g. Qlu Z. et al., (2001) J. Biol. Chem. 276: 11988-11995; Slleker L.J. et al., (1998) BBRC 251: 225-229). Resumidamente, las células se extendieron en DMEM/10% FCS (Invitrogen, Karlsruhe, Alemania) a 50.000 células/pocillo por duplicado en cápsulas de plástico de 6 pocillos y se cultivaron en una atmósfera humidificada de 5% CO<sub>2</sub> a 37°C. En la confluencia (definida como día 0: d0) se transfirieron las células a medio exento de suero (SF), que contenía DMEM/Ham F12 (3:1; Invitrogen), fetuina (300 µg/ml; Sigma, Múnich, Alemania), transferrina (2 μg/ml; Sigma), pantotenato (17 μM; Sigma), biotina (1 μM; Sigma), y EGF (0,8 nM; Hoffmann-La Roche, Basilea, Suiza). La diferenciación se indujo por adición de dexametasona (DEX: 1 µM: Sigma), 3-metil-isobutil-1-metilxantina (MIX; 0,5 mM, Sigma), e insulina de bovino (5 µg/ml; Invitrogen). Cuatro días después de la confluencia (d4), se mantuvieron las células en medio SF, que contenía insulina de bovino (5 µg/ml) hasta que se completó la diferenciación. En diversos momentos del procedimiento de diferenciación, comenzando el día 0 (día de la confluencia) y el día 2 (adición de hormonas; por ejemplo, dexametasona y 3-isobutil-1-metilxantina), hasta 10 días de la diferenciación, se tomaron partes alícuotas de las células cada 2 días.

Se aisló el RNA de tejidos de ratón o células de cultivo de células utilizando el Reactivo Trizol (por ejemplo, de Invitrogen, Karlsruhe, Alemania) y se purificaron ulteriormente con el Kit RNAeasy (por ejemplo, de Qiagen, Alemania) en combinación con un tratamiento de DNasa de acuerdo con las instrucciones de los fabricantes y como es conocido por los expertos en la técnica. El RNA total se sometió a transcripción inversa (utilizando preferiblemente Transcriptasa Inversa RNasa H<sup>-</sup> SuperScript II, de Invitrogen, Karlsruhe, Alemania) y se sometieron a análisis Taqman, utilizando preferiblemente la Mixtura Master Taqman 2 x PCR (de Applied Biosystems, Weiterstadt, Alemania; la Mixtura contiene de acuerdo con el fabricante, por ejemplo DNA-polimerasa Gold AmpliTaq, AmpErase UNG, dNTPs con dUTP, la referencia pasiva Rox y componentes tampón optimizados) en un Sistema de Detección de Secuencias GeneAmp 5700 (de Applied Biosystems, Weiterstadt, Alemania).

- 10 Se utilizaron las parejas iniciador/sonda siguientes para el análisis Taqman (Número de Acceso a GenBank NM 178644 (ratón) para la secuencia SF02 de ratón):
  - Cebador directo SF02 de ratón (Seq ID NO:1): 5'- CGG ACA GCA TCA GCC TTG A -3'; cebador inverso SF02 de ratón (Seq ID NO:2): 5'- CCG CGA TGA AGG AGA TGA GA -3'; sonda Taqman SF02 de ratón (Seq ID NO:3): (5/6-FAM)- CTG CGC AAA CCC GAC GGC A -(5/6-TAMRA).
- 15 Se utilizaron las parejas iniciador/sonda siguientes para el análisis Taqman (Número de Acceso a GenBank NM 016697 (ratón) para la secuencia SF03 de ratón):
  - Cebador directo SF03 de ratón (Seq ID NO:4): 5'- GTT GTT CGC CAT GCC AAG A -3'; cebador inverso SF03 de ratón (Seq ID NO:5): 5'- CAA AAG CTT GTG GAG TCA GGC T -3'; sonda Taqman SF03 de ratón (Seq ID NO:6): (5/6-FAM)- ACA CCA ACG CCA TGT TCA AGA ATA ACT ACC C -(5/6-TAMRA).
- 20 Se utilizaron las parejas iniciador/sonda siguientes para el análisis Taqman (Número de Acceso a GenBank NM 007443 (ratón) para la secuencia SF04 de ratón):
  - Cebador directo SF04 de ratón (Seq ID NO:7): 5'- GGT ACA ACC TGG CGG TGG -3'; cebador inverso SF04 de ratón (Seq ID NO:8): 5'- GCT CAC GCT CAT CTT GTC CTT AA -3'; sonda Taqman SF04 de ratón (Seq ID NO:9): (5/6-FAM)- TGC CCG TGG CTG AGC CGC -(5/6-TAMRA).
- La función de las SF02, SF03, y SF04 de mamífero en el metabolismo se validó ulteriormente por análisis de la expresión de los transcritos en diferentes tejidos.

30

35

40

- En Fig. 2, 4, y 6, se muestra la expresión relativa de RNA en el eje Y. En Fig. 2, 4, y 6, los tejidos testados se indican en el eje X. "WAT" hace referencia a tejido adiposo blanco. En Fig. 2, 4, y 6, el panel de los tejidos de ratón de tipo salvaje comprende hígado, páncreas, músculo, intestino delgado, WAT, hipotálamo, y corazón, y el panel de los tejidos de ratón con dieta de control comprende hígado, músculo, intestino delgado, Wat, cerebro, y corazón.
- La función de las proteínas SF02, SF03, y SF04 en el metabolismo se validó ulteriormente por análisis de la expresión de los transcritos en tejidos diferentes. Se utilizaron modelos de ratón de resistencia a la insulina y/o diabetes, tales como ratones portadores de genes silenciados en el camino de la leptina (por ejemplo, ratones ob/ob (leptina) o ratones db/db (receptor de leptina/ligando)) para estudiar la expresión de las proteínas. Tales ratones desarrollan síntomas típicos de diabetes, exhiben acumulación de lípidos en el hígado y tienen frecuentemente niveles elevados de lípidos en plasma (véase Bruning J.C. et al. (1998) Mol. Cell. 2:559-569).
- La expresión de los mRNAs que codifican las proteínas descritas se examinó también en ratones susceptibles de tipo salvaje (por ejemplo, C57Bl/6) que presentan síntomas de diabetes, acumulación de lípidos, y niveles elevados de lípidos en plasma, si se alimentan con una dieta rica en grasa. Los estudios de determinación del perfil de expresión confirman la relevancia particular de las proteínas como reguladores del metabolismo de la energía en los mamíferos.
- Estudios de determinación del perfil de expresión confirman la relevancia particular de SF02, SF03, y SF04 como reguladores del metabolismo de la energía en los mamíferos.
- El análisis Taqman reveló que SF02 se expresa en varios tejidos de mamífero, exhibiendo un nivel máximo de expresión en el hígado, y niveles relativamente altos en otros tejidos, v.g. WAT, intestino delgado, corazón, cerebro, y músculo. Adicionalmente, SF02 se expresa a niveles menores pero todavía importantes en el hipotálamo y el páncreas como se representa en Fig. 2A. Los autores de la presente invención encontraron, por ejemplo, que la expresión de SF02 está regulada en sentido creciente en el músculo de los ratones ob/ob comparados con ratones de tipo salvaje (véase Fig. 2B). En ratones de tipo salvaje alimentados con una dieta rica en grasa, la expresión de SF02 está regulada en sentido creciente en el músculo y regulada en sentido decreciente en WAT comparada con los ratones alimentados con una dieta de control. La expresión elevada de SF02 en tejidos metabólicos activos (v.g. hígado y WAT) y la regulación de la expresión génica en diferentes modelos de ratón utilizados para estudiar los trastornos metabólicos como se ha descrito arriba, sugiere que la misma juega un papel en la regulación de la homeostasis de la energía.

El análisis Taqman reveló que SF03 se expresa en varios tejidos de mamífero, exhibiendo el nivel máximo de expresión en WAT e hipotálamo, y niveles relativamente altos en tejidos adicionales, v.g. cerebro y corazón. Adicionalmente, SF03 expresa a niveles menores pero todavía importantes en páncreas, músculo, intestino delgado, e hígado como se representa en Fig. 4A. Los autores de la presente invención encontraron, por ejemplo, que la expresión de SF03 está regulada en sentido creciente en músculo, hígado, e intestino delgado y regulada en sentido decrecimiento en el páncreas de los ratones ob/ob comparados con ratones de tipo salvaje (véase Fig. 4B). En ratones de tipo salvaje alimentados con una dieta rica en grasa, la expresión de SF03 no está regulada. La alta expresión de SF03 en WAT y en el hipotálamo, que se sabe está implicado en el control del apetito, así como la regulación de la expresión génica en el modelo de ratón para el síndrome metabólico como se ha descrito arriba, sugiere que la misma juega un papel en la regulación de la homeostasis de la energía.

El análisis Taqman reveló que SF04 se expresa en varios tejidos de mamífero, mostrando el nivel de expresión máximo en el hígado (Fig. 6A), y niveles menores pero todavía importantes en otros tejidos, v.g., intestino delgado, corazón, músculo, páncreas, WAT, cerebro, pero no en el hipotálamo, como se muestra en Fig. 6B. Los inventores encontraron, por ejemplo, que la expresión de SF04 está fuertemente regulada en sentido creciente en el hipotálamo y regulada en sentido decreciente en el corazón, músculo, y WAT de ratones ob/ob comparados con ratones de tipo salvaje (véase Fig. 6C). En ratones de tipo salvaje alimentados con una dieta rica en grasa, la expresión de SF04 está regulada en sentido creciente en el WAT y regulada en sentido decreciente en músculo, corazón, y cerebro cuando se compara con ratones sometidos a una dieta de control. Los altos niveles de expresión de SF04 en el hígado sugieren que la misma juega un papel esencial en el metabolismo. La regulación de la expresión génica en diferentes modelos de ratón utilizados para estudiar trastornos metabólicos como se han descrito arriba, sugiere que la misma juega también un papel en la regulación de la homeostasis de la energía.

#### Ejemplo 4: Análisis de la expresión diferencial de transcritos de las proteínas descritas en tejidos humanos

La preparación de RNA a partir de tejidos adiposos primarios humanos se realizó como se ha descrito en el Ejemplo 3. La preparación, hibridación, y escaneo de la diana se realizaron como se describe en el manual de los fabricantes (véase Affymetrix Technical Manual, 2002, obtenido de Affymetrix, Santa Clara, EE.UU.).

En Fig. 3, 5, y 9, el eje Y representa intensidad de fluorescencia y el eje X representa el eje de los tiempos. "d0" hace referencia al día 0 (comienzo del experimento), "d12" hace referencia al día 12 de diferenciación de los adipocitos

El análisis de expresión (utilizando Affymetrix GeneChips) de los genes que utilizan diferenciación de adipocitos abdominales humanos primarios demuestra claramente la expresión diferencial de los genes humanos SF02, SF03 y SF13 en los adipocitos. Se realizaron varios experimentos independientes. Los experimentos demuestran que los transcritos SF02 y SF03 son más abundantes el día 12 comparado con el día 0 durante la diferenciación (véase Fig. 3 y 5) y que el transcrito SF13 es muy abundante el día 0 comparado con el día 12 durante la diferenciación (véase Fig. 9). Así pues, las proteínas SF02 y SF03 tienen que incrementarse, y las proteínas SF13 tienen que reducirse a fin de que los preadipocitos se diferenciación adiposa, y la proteína SF13 en los preadipocitos tienen el potencial de inhibir la diferenciación adiposa. Por consiguiente, las proteínas SF02, SF03, y SF13 jugaban un papel esencial en la regulación del metabolismo humano, en particular en la regulación de la adipogénesis y por consiguiente ello podría ser un papel esencial en enfermedades pancreáticas (v.g. diabetes), obesidad, y/o síndrome metabólico.

#### 40 Ejemplo 5: Hibridaciones in situ

10

15

25

50

Se analizaron hibridaciones de montaje entero y seccional in situ de acuerdo con protocolos estándar que son conocidos por los expertos en la técnica y como se ha descrito previamente (por ejemplo, Pelton, R.W. et al., (1990) Development 110, 609-620, Belo, J.A. et al., (1997) Mech. Dev. 68, 45-57).

La secuencia de ácido nucleico que codifica la proteína SF01 de ratón se expresa en el páncreas ventral (véase Fig. 45 1). Las secuencias de ácido nucleico que codifican las proteínas SF05 de ratón (véase Fig. 7) y SF06 de ratón (véase Fig. 8) se expresan en el páncreas.

Aunque la invención se ha descrito en conexión con realizaciones específicas preferidas, debe entenderse que la invención tal como se reivindica no debe considerarse indebidamente limitada a tales realizaciones específicas. De hecho, diversas modificaciones de los modos descritos para realización de la invención que son obvias para los expertos en biología molecular o campos afines, debe considerarse que están dentro del alcance de las reivindicaciones siguientes.

#### LISTADO DE SECUENCIAS

<110> DeveloGen Aktiengesellschaft für entwicklungsbiologische Forschung

<120> Uso de productos proteínicos secretados para prevención y tratamiento de enfermedades pancreáticas y/u obesidad y/o síndrome metabólico.

```
<130> 32600PWO
<140> PCT/EP2005/001711
<141> 2005-02-18
<150> EP04003914.1
<151> 2004-02-20
<160> 61
<170> PatentIn version 3.3
<210> 1
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica mixta
<223> Cebador: Cebador directo SF02 de ratón
<400> 1
cggacagcat cagccttga
                          19
<210> 2
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica_mixta
<223> Cebador: Cebador inverso SF02 de ratón
<400> 2
```

20

ccgcgatgaa ggagatgaga

5

```
<210>3
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica mixta
<223> Sonda Taqman: Sonda Taqman SF02 de ratón
ctgcgcaaac ccgacggca
                          19
<210> 4
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica_mixta
<223> Cebador: Cebador directo SF03 de ratón
<400> 4
gttgttcgcc atgccaaga
                        19
<210> 5
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica_mixta
<223> Cebador: Cebador inverso SF03 de ratón
<400> 5
caaaagcttg tggagtcagg ct
                            22
<210> 6
<211> 31
<212> DNA
<213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica_mixta
<223> Sonda Taqman: Sonda Taqman SF03 de ratón
```

<400> 6

```
acaccaacge catgttcaag aataactace c
                                       31
 <210> 7
 <211> 18
 <212> DNA
 <213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica mixta
<223> Cebador: Cebador directo SF04 de ratón
                          18
 ggtacaacct ggcggtgg
 <210> 8
 <211> 23
 <212> DNA
 <213> Artificial
<220>
<223> Secuencia Artificial
<220>
<221> característica_mixta
<223> Cebador: Cebador inverso SF04 de ratón
 <400> 8
 geteaegete atettgteet taa
                            23
 <210> 9
 <211> 18
 <212> DNA
 <213> Artificial
 <220>
 <223> Secuencia Artificial
 <220>
 <221> característica_mixta
 <223>Sonda Taqman: Sonda Taqman SF04 de ratón
 <400> 9
 tgcccgtggc tgagccgc
                         18
 <210> 10
 <211> 1285
 <212> DNA
 <213> Mus musculus
 <220>
 <221> CDS
 <222> (514)..(1131)
 <223> SF01, cDNA: NM_026161, Proteína: NP_080437
 <400> 10
```

| ggtggtcccc | actcgtcgcc | ggctaaaccc | ccgccacccc             | tggaggcccg                 | gtcaagccgc             | 60  |
|------------|------------|------------|------------------------|----------------------------|------------------------|-----|
| agcgcgggcg | accagtgtgt | agcccggcgt | cctcaccgag             | caggatagcc                 | ggctgggacc             | 120 |
| gaagccgacc | cgcccgccac | cagccaggtg | ccatgctgct             | gctcttgctg                 | ggcttcctag             | 180 |
| gcccggcggc | ctgctgggca | ctgggcccgg | ctggccctgg             | ctcctcggag                 | ctgcggtcag             | 240 |
| ccttctcggc | ggctcgcacc | accccgctgg | agggcacgtc             | ggagatggcg                 | gtgaccttcg             | 300 |
| acaaggtgta | cgtgaacatc | gggggtgact | tcgacgcagc             | caccgggcgg                 | ttccgctgtc             | 360 |
| gcgtgccggg | cgcctacttc | ttctccttca | cggccggcaa             | ggcccgcaca                 | agagcctgtc             | 420 |
| ggtgatgctg | gtgcgcaacc | gcgacgaggt | gcaggcgctg             | gctttcgacg                 | agcagcgacg             | 480 |
| gccaggcgcg | cggcgcgcgc | cagccagagc | gcc atg ctg<br>Met Leu | g cag ctc ga<br>Gln Leu As | c tac ggc<br>p Tyr Gly | 534 |

| gac<br>Asp        | acg<br>Thr        | gtg<br>Val<br>10  | tgg<br>Trp        | ctg<br>Leu        | cgg<br>Arg        | ctg<br>Leu        | cac<br>His<br>15  | ggc               | gct<br>Ala        | ccg<br>Pro        | cag<br>Gln        | tac<br>Tyr<br>20  | gcg<br>Ala        | ctc<br>Leu        | ggc<br>Gly        | 582  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gcg<br>Ala        | ccg<br>Pro<br>25  | ggc<br>Gly        | gcc<br>Ala        | acc<br>Thr        | ttc<br>Phe        | agc<br>Ser<br>30  | ggc               | tac<br>Tyr        | ctg<br>Leu        | gtg<br>Val        | tac<br>Tyr<br>35  | gcg<br>Ala        | gac<br>Asp        | gcc<br>Ala        | gac<br>Asp        | 630  |
| gcc<br>Ala<br>40  | gac<br>Asp        | gcg<br>Ala        | cct<br>Pro        | gcg<br>Ala        | cgc<br>Arg<br>45  | ggc<br>Gly        | ccc<br>Pro        | gcg<br>Ala        | gcc<br>Ala        | ccg<br>Pro<br>50  | gag<br>Glu        | ccg<br>Pro        | cgc<br>Arg        | tcg<br>Ser        | gcc<br>Ala<br>55  | 678  |
| ttc<br>Phe        | tcc<br>Ser        | gcg<br>Ala        | gcg<br>Ala        | cgc<br>Arg<br>60  | acg<br>Thr        | cgc<br>Arg        | agc<br>Ser        | ctg<br>Leu        | gtg<br>Val<br>65  | ggc               | tcg<br>Ser        | gac<br>Asp        | gcc<br>Ala        | gcc<br>Ala<br>70  | ccc<br>Pro        | 726  |
| Gly               | ccg<br>Pro        | cgc<br>Arg        | cac<br>His<br>75  | cgg<br>Arg        | ccg<br>Pro        | ttg<br>Leu        | gcc<br>Ala        | ttc<br>Phe<br>80  | gac<br>Asp        | acc<br>Thr        | gag<br>Glu        | ctg<br>Leu        | gta<br>Val<br>85  | aac<br>Asn        | ata<br>Ile        | 774  |
| ggt<br>Gly        | ggc<br>Gly        | gac<br>Asp<br>90  | ttc<br>Phe        | gac<br>Asp        | gcg<br>Ala        | gcg<br>Ala        | gcc<br>Ala<br>95  | ggc<br>Gly        | gtg<br>Val        | ttc<br>Phe        | Arg               | tgc<br>Cys<br>100 | cgc<br>Arg        | ctg<br>Leu        | ccg<br>Pro        | 822  |
| gga<br>Gly        | gcc<br>Ala<br>105 | tat<br>Tyr        | ttc<br>Phe        | ttc<br>Phe        | tcc<br>Ser        | ttc<br>Phe<br>110 | acg<br>Thr        | ctg<br>Leu        | ggc<br>Gly        | aag<br>Lys        | ctg<br>Leu<br>115 | ccg<br>Pro        | cgc<br>Arg        | aag<br>Lys        | acg<br>Thr        | 870  |
| ctg<br>Leu<br>120 | tcg<br>Ser        | gtg<br>Val        | aag<br>Lys        | ctg<br>Leu        | atg<br>Met<br>125 | aag<br>Lys        | aac<br>Asn        | cgc<br>Arg        | gac<br>Asp        | gag<br>Glu<br>130 | gtg<br>Val        | cag<br>Gln        | gcc<br>Ala        | atg<br>Met        | att<br>Ile<br>135 | 918  |
| tac<br>Tyr        | gac<br>Asp        | gac<br>Asp        | ggc<br>Gly        | gct<br>Ala<br>140 | tcg<br>Ser        | agg<br>Arg        | cgc<br>Arg        | cgt<br>Arg        | gag<br>Glu<br>145 | atg<br>Met        | cag<br>Gln        | agt<br>Ser        | cag<br>Gln        | agc<br>Ser<br>150 | gtg<br>Val        | 966  |
| agg<br>Arg        | ctg<br>Leu        | ccg<br>Pro        | ctg<br>Leu<br>155 | cgg<br>Arg        | cgc<br>Arg        | ggc<br>Gly        | gac<br>Asp        | gcc<br>Ala<br>160 | gtc<br>Val        | tgg<br>Trp        | cta<br>Leu        | ctt<br>Leu        | agc<br>Ser<br>165 | cac<br>His        | gat<br>Asp        | 1014 |
| cac<br>His        | gat<br>Asp        | ggc<br>Gly<br>170 | tat<br>Tyr        | ggc<br>Gly        | gcc<br>Ala        | tac<br>Tyr        | agc<br>Ser<br>175 | aac<br>Asn        | cac<br>His        | ggc<br>Gly        | aag<br>Lys        | tac<br>Tyr<br>180 | atc<br>Ile        | act<br>Thr        | ttc<br>Phe        | 1062 |
| tca<br>Ser        | ggc<br>Gly<br>185 | ttc<br>Phe        | ctg<br>Leu        | gtg<br>Val        | tac<br>Tyr        | cct<br>Pro<br>190 | gac<br>Asp        | ctc<br>Leu        | gcc<br>Ala        | gcc<br>Ala        | gcc<br>Ala<br>195 | ggc<br>Gly        | ccg<br>Pro        | ccg<br>Pro        | gcc<br>Ala        | 1110 |
|                   |                   |                   | cca<br>Pro        |                   |                   | tga               | geet              | ctgc              | tt g              | gagg              | agco              | c gg              | ıgaga             | gccg              | ı                 | 1161 |
| tggg              | gcat              | gc a              | tgcc              | gago              | c gg              | gacc              | gcgg              | ccc               | gaac              | gcc               | ccac              | cggt              | cc g              | agca              | tgact             | 1221 |
| gcct              | gcto              | ag c              | acgo              | ctgg              | a ct              | ctgc              | caat              | aaa               | gtgg              | ggc               | tgcc              | tgto              | ag c              | ctta              | tggtc             | 1281 |
| ctgc              | :                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1285 |

<sup>&</sup>lt;210> 11

Met Leu Gln Leu Asp Tyr Gly Asp Thr Val Trp Leu Arg Leu His Gly

<sup>&</sup>lt;211> 205

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Mus musculus

<sup>&</sup>lt;400> 11

| 1          |            |            |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala        | Pro        | Gln        | Tyr<br>20  | Ala        | Leu        | Gly        | Ala        | Pro<br>25  | Gly        | Ala        | Thr        | Phe        | Ser<br>30  | Gly        | Туг        |
| Leu        | Val        | Tyr<br>35  | Ala        | Asp        | Ala        | Asp        | Ala<br>40  | Asp        | Ala        | Pro        | Ala        | Arg<br>45  | Gly        | Pro        | Ala        |
| Ala        | Pro<br>50  | Glu        | Pro        | ' Arg      | Ser        | Ala<br>55  | Phe        | Ser        | Ala        | Ala        | Arg<br>60  | Thr        | Arg        | Ser        | Leu        |
| Val<br>65  | Gly        | Ser        | Asp        | Ala        | Ala<br>70  | Pro        | Gly        | Pro        | Arg        | His<br>75  | Arg        | Pro        | Leu        | Ala        | Phe<br>80  |
| Asp        | Thr        | Glu        | Leu        | Val<br>85  | Asn        | Ile        | Gly        | Gly        | Asp<br>90  | Phe        | Asp        | Ala        | Ala        | Ala<br>95  | Gly        |
| Val        | Phe        | Arg        | Cys<br>100 | Arg        | Leu        | Pro        | Gly        | Ala<br>105 | Tyr        | Phe        | Phe        | Ser        | Phe<br>110 | Thr        | Leu        |
| Gly        | Lys        | Leu<br>115 | Pro        | Arg        | Lys        | Thr        | Leu<br>120 | Ser        | Val        | Lys        | Leu        | Met<br>125 | Lys        | Asn        | Arg        |
| Asp        | Glu<br>130 | Val        | Gln        | Ala        | Met        | Ile<br>135 | Tyr        | Asp        | Asp        | Gly        | Ala<br>140 | Ser        | Arg        | Arg        | Arg        |
| Glu<br>145 | Met        | Gln        | Ser        | Gln        | Ser<br>150 | Val        | Arg        | Leu        | Pro        | Leu<br>155 | Arg        | Arg        | Gly        | Asp        | Ala<br>160 |
| Val        | Trp        | Leu        | Leu        | Ser<br>165 | His        | Asp        | His        | Asp        | Gly<br>170 | Tyr        | Gly        | Ala        | Tyr        | Ser<br>175 | Asn        |
| His        | Gly        | Lys        | Туг<br>180 | Ile        | Thr        | Phe        | Ser        | Gly<br>185 | Phe        | Leu        | Val        | Tyr        | Pro<br>190 | Asp        | Leu        |
| Ala        | Ala        | Ala<br>195 | Gly        | Pro        | Pro        | Ala        | Leu<br>200 | Lys        | Pro        | Pro        | Glu        | Leu<br>205 |            |            |            |

```
<210> 12
```

<211> 1393

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (225)..(1214)

<223> SF01, cDNA: NM\_031909, Proteína: NP\_114115

<400> 12

| gaattcggca | cgaggcgccc | ggcccctggc | cccagcaccc | tgtccgctgc | cgcctcagag | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| cgggaaaag  | cagccggagc | ccccgccgcc | cctgccgcag | cgcgggcggt | cagcgcgcag | 120 |
| ccggcaccc  | gcagcctgca | gcctgcagcc | cgcagcccgc | agcccggagc | cagategegg | 180 |

| gct               | caga              | .ccg              | aacc              | cgac              | tc g              | accg              | ccgc              | e co              | cago               | cagg                   | cgc               | c at<br>Me        | g ct<br>t Le      | g cc<br>u Pr      | g ctt<br>o Leu    | 236  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ctg<br>Leu<br>5   | ctg<br>Leu        | ggc               | ctg<br>Leu        | ctg               | ggc<br>Gly<br>10  | cca               | gcg<br>Ala        | gcc               | tgc<br>Cys         | tgg<br>Trp<br>15       | gcc<br>Ala        | ctg<br>Leu        | ggc               | ccg               | acc<br>Thr<br>20  | 284  |
| ccc<br>Pro        | ggc<br>Gly        | ccg               | gga<br>Gly        | ser<br>25         | tct<br>Ser        | gag<br>Glu        | ctg<br>Leu        | cgc               | s tcg<br>Ser<br>30 | gcc<br>Ala             | ttc<br>Phe        | tcg<br>Ser        | gcg<br>Ala        | gca<br>Ala<br>35  | cgc               | 332  |
| acc<br>Thr        | acc<br>Thr        | ccc<br>Pro        | ctg<br>Leu<br>40  | gag<br>Glu        | ggc<br>Gly        | acg<br>Thr        | tcg<br>Ser        | gag<br>Glu<br>45  | atg<br>Met         | gcg<br>Ala             | gtg<br>Val        | acc<br>Thr        | ttc<br>Phe<br>50  | gac<br>Asp        | aag<br>Lys        | 380  |
| gtg<br>Val        | tac<br>Tyr        | gtg<br>Val<br>55  | aac<br>Asn        | atc<br>Ile        | ggg               | ggc               | gac<br>Asp<br>60  | ttc<br>Phe        | gat<br>Asp         | gtg<br>Val             | gcc<br>Ala        | acc<br>Thr<br>65  | ggc<br>Gly        | cag<br>Gln        | ttt<br>Phe        | 428  |
| cgc<br>Arg        | tgc<br>Cys<br>70  | cgc<br>Arg        | gtg<br>Val        | ccc<br>Pro        | ggc<br>Gly        | gcc<br>Ala<br>75  | tac<br>Tyr        | ttc<br>Phe        | ttc<br>Phe         | tcc<br>Ser             | ttc<br>Phe<br>80  | acg<br>Thr        | gct<br>Ala        | ggc<br>Gly        | aag<br>Lys        | 476  |
| gcc<br>Ala<br>85  | Pro               | cac<br>His        | aag<br>Lys        | agc<br>Ser        | ctg<br>Leu<br>90  | tcg<br>Ser        | gtg<br>Val        | atg<br>Met        | ctg<br>Leu         | gtg<br>Val<br>95       | cga<br>Arg        | aac<br>Asn        | cgc<br>Arg        | gac<br>Asp        | gag<br>Glu<br>100 | 524  |
| gtg<br>Val        | cag<br>Gln        | gcg<br>Ala        | ctg<br>Leu        | gcc<br>Ala<br>105 | ttc<br>Phe        | gac<br>Asp        | gag<br>Glu        | cag<br>Gln        | cgg<br>Arg<br>110  | cgg<br>Arg             | cca<br>Pro        | ggc<br>Gly        | gcg<br>Ala        | cgg<br>Arg<br>115 | cgc<br>Arg        | 572  |
| gca<br>Ala        | gcc<br>Ala        | agc<br>Ser        | cag<br>Gln<br>120 | agc<br>Ser        | gcc<br>Ala        | atg<br>Met        | ctg<br>Leu        | cag<br>Gln<br>125 | ctc<br>Leu         | gac<br>Asp             | tac<br>Tyr        | ggc<br>Gly        | gac<br>Asp<br>130 | aca<br>Thr        | gtg<br>Val        | 620  |
| tgg<br>Trp        | ctg<br>Leu        | cgg<br>Arg<br>135 | ctg<br>Leu        | cat<br>His        | ggc<br>Gly        | gcc<br>Ala        | ccg<br>Pro<br>140 | cac<br>His        | tac<br>Tyr         | gcg<br>Ala             | cta<br>Leu        | ggc<br>Gly<br>145 | gcg<br>Ala        | ccc<br>Pro        | ggc<br>Gly        | 668  |
| gcc<br>Ala        | acc<br>Thr<br>150 | ttc<br>Phe        | agc<br>Ser        | ggc<br>Gly        | tac<br>Tyr        | cta<br>Leu<br>155 | gtc<br>Val        | tac<br>Tyr        | gcc<br>Ala         | gac<br>Asp             | gcc<br>Ala<br>160 | gac<br>Asp        | gct<br>Ala        | gac<br>Asp        | gcg<br>Ala        | 716  |
| cct<br>Pro<br>165 | gcg<br>Ala        | cgc<br>Arg        | Gly<br>ggg        | ccg<br>Pro        | ccc<br>Pro<br>170 | gcg<br>Ala        | ccc<br>Pro        | ccc<br>Pro        | gag<br>Glu         | ccg<br>Pro<br>175      | cgc<br>Arg        | tcg<br>Ser        | gcc<br>Ala        | ttc<br>Phe        | tcg<br>Ser<br>180 | 764  |
| gcg<br>Ala        | gcg<br>Ala        | cgc<br>Arg        | acg<br>Thr        | cgc<br>Arg<br>185 | agc<br>Ser        | ttg<br>Leu        | gtg<br>Val        | ggc<br>Gly        | tcg<br>Ser<br>190  | gac<br>Asp             | gct<br>Ala        | ggc<br>Gly        | ccc<br>Pro        | ggg<br>Gly<br>195 | ccg<br>Pro        | 812  |
| cgg<br>Arg        | cac<br>His        | caa<br>Gln        | cca<br>Pro<br>200 | ctc<br>Leu        | gcc<br>Ala        | ttc<br>Phe        | gac<br>Asp        | acc<br>Thr<br>205 | gag<br>Glu         | ttc<br>Phe             | gtc<br>Val        | aac<br>Asn        | att<br>Ile<br>210 | ggc<br>Gly        | ggc<br>Gly        | 860  |
| gac<br>Asp        | ttc<br>Phe        | gac<br>Asp<br>215 | gcg<br>Ala        | gcg<br>Ala        | gcc<br>Ala        | ggc<br>Gly        | gtg<br>Val<br>220 | ttc<br>Phe        | cgc<br>Arg         | tgc<br>Cys             | cgt<br>Arg        | ctg<br>Leu<br>225 | ccc<br>Pro        | ggc<br>Gly        | gcc<br>Ala        | 908  |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                    | ccg<br>Pro             |                   |                   |                   |                   |                   | 956  |
|                   |                   |                   |                   | Lys               |                   |                   |                   |                   | Val                | cag<br>Gln<br>255<br>6 |                   |                   |                   |                   |                   | 1004 |

| gac<br>Asp | ggc<br>Gly | gcg<br>Ala        | tcg<br>Ser | cgg<br>Arg<br>265 | cgc<br>Arg | cgc<br>Arg | gag<br>Glu | atg<br>Met | cag<br>Gln<br>270 | agc<br>Ser | cag<br>Gln | agc<br>Ser | gtg<br>Val | atg<br>Met<br>275 | ctg<br>Leu | 1052 |
|------------|------------|-------------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------|
|            |            | cgg<br>Arg        |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | i100 |
|            |            | ggc<br>Gly<br>295 |            |                   |            |            |            |            |                   |            |            |            |            |                   | ggc<br>Gly | 1148 |
|            |            | gtg<br>Val        |            |                   | Asp        |            |            |            |                   |            |            |            |            |                   |            | 1196 |
|            |            | gag<br>Glu        |            |                   | tga        | gccc       | cggg       | cc a       | gaga              | agag       | c cc       | ggga       | gggc       | :                 |            | 1244 |
| cagg       | ggcg       | tg c              | atgc       | cagg              | с сд       | ggcc       | cgag       | gct        | cgaa              | agt        | cccg       | cgcg       | ag c       | gcca              | cggcc      | 1304 |
| tccg       | ggcg       | cg c              | ctgg       | actc              | t gc       | caat       | aaag       | cgg        | aaag              | cgg        | gcac       | gcgc       | ag c       | gccc              | ggcag      | 1364 |
| ccca       | ggca       | aa a              | aaaa       | aaaa              | a aa       | aaaa       | aaa        |            |                   |            |            |            |            |                   |            | 1393 |

<210> 13

<211> 329

<212> PRT

<213> Homo sapiens

<400> 13

- Met Leu Pro Leu Leu Gly Leu Leu Gly Pro Ala Ala Cys Trp Ala 1 5 10 15
- Leu Gly Pro Thr Pro Gly Pro Gly Ser Ser Glu Leu Arg Ser Ala Phe 20 25 30
- Ser Ala Ala Arg Thr Thr Pro Leu Glu Gly Thr Ser Glu Met Ala Val 35 40 45
- Thr Phe Asp Lys Val Tyr Val Asn Ile Gly Gly Asp Phe Asp Val Ala 50 55
- Thr Gly Gln Phe Arg Cys Arg Val Pro Gly Ala Tyr Phe Phe Ser Phe 65 70 75 80
- Thr Ala Gly Lys Ala Pro His Lys Ser Leu Ser Val Met Leu Val Arg 85 90 95
- Asn Arg Asp Glu Val Gln Ala Leu Ala Phe Asp Glu Gln Arg Arg Pro 100 105 110
- Gly Ala Arg Arg Ala Ala Ser Gln Ser Ala Met Leu Gln Leu Asp Tyr 115 120 125
- Gly Asp Thr Val Trp Leu Arg Leu His Gly Ala Pro His Tyr Ala Leu

|            | 130        |            |            |            |            | 135        |            |            |            |            | 140        |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly<br>145 |            | Pro        | Gly        | Ala        | Thr<br>150 |            | Ser        | Gly        | Tyr        | Leu<br>155 | Val        | Tyr        | Ala        | Asp        | Ala<br>160 |
| Asp        | Ala        | Asp        | Ala        | Pro<br>165 | Ala        | Arg        | Gly        | Pro        | Pro<br>170 | Ala        | Pro        | Pro        | Glu        | Pro<br>175 | Arg        |
| Ser        | Ala        | Phe        | Ser<br>180 |            | Ala        | Arg        | Thr        | Arg<br>185 | Ser        | Leu        | Val        | Gly        | Ser<br>190 | Asp        | Ala        |
| Gly        | Pro        | Gly<br>195 | Pro        | Arg        | His        | Gln        | Pro<br>200 | Leu        | Ala        | Phe        | Asp        | Thr<br>205 | Glu        | Phe        | Val        |
| Asn        | Ile<br>210 | Gly        | Gly        | Asp        | Phe        | Asp<br>215 | Ala        | Ala        | Ala        | Gly        | Val<br>220 | Phe        | Arg        | Cys        | Arg        |
| Leu<br>225 | Pro        | Gly        | Ala        | Tyr        | Phe<br>230 | Phe        | Ser        | Phe        | Thr        | Leu<br>235 | Gly        | Lys        | Leu        | Pro        | Arg<br>240 |
| Lys        | Thr        | Leu        | Ser        | Val<br>245 | Lys        | Leu        | Met        | Lys        | Asn<br>250 | Arg        | Asp        | Glu        | Val        | Gln<br>255 | Ala        |
| Met        | Ile        | туг        | Asp<br>260 | Asp        | Gly        | Ala        | Ser        | Arg<br>265 | Arg        | Arg        | Glu        | Met        | Gln<br>270 | Ser        | Gln        |
| Ser        | Val        | Met<br>275 | Leu        | Ala        | Leu        | Arg        | Arg<br>280 | Gly        | Asp        | Ala        | Val        | Тгр<br>285 | Leu        | Leu        | Ser        |
| His        | Asp<br>290 | His        | Asp        | Gly        | туг        | Gly<br>295 | Ala        | Tyr        | Ser        | Asn        | His<br>300 | Gly        | Lys        | Tyr        | Ile        |
| Thr<br>305 | Phe        | Ser        | Gly        | Phe        | Leu<br>310 | Val        | Tyr        | Pro        | Asp        | Leu<br>315 | Ala        | Pro        | Ala        | Ala        | Pro<br>320 |
| Pro        | Gly        | Leu        | Gly        | Ala<br>325 | Ser        | Glu        | Leu        | Leu        |            |            |            |            |            |            |            |
| > 1/       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

<210> 14

<211> 2388

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (244)..(1092)

<223> SF02, cDNA: NM\_178644, Proteína: NP\_848759

<400> 14

| 60  | gccgtccggg | cacggggggc | aggggacacg | cggggcggct | gctcaggaat | gagteegga  |
|-----|------------|------------|------------|------------|------------|------------|
| 120 | ggggaacctc | tgcacgtcgt | gtgaattcgc | cgcggcccac | cgtggctgta | actcggggtg |
| 180 | cggaccccca | atccccgaac | actgccggga | gaagtagggg | ctcccctcta | gggttgagt  |

| act               | tcga              | gca               | aact              | ttgt              | ag g              | cgcg              | tctc              | c co              | tccc              | ccac               | gcg               | gcgc              | gcc               | agag              | gcccc             | g   | 240 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|-----|
| ggg               | atg<br>Met<br>1   | cgg<br>Arg        | Pro               | Pro               | ggc<br>Gly<br>5   | tgc<br>Cys        | cgc               | gac<br>Asp        | gto<br>Val        | Pro                | tcg<br>Ser        | gcg<br>Ala        | Arg               | Pro               | gcg<br>Ala<br>15  | ;   | 288 |
| ctg<br>Leu        | ccg               | ctg<br>Leu        | ctg<br>Leu        | ctg<br>Leu<br>20  | ctg<br>Leu        | ctg<br>Leu        | ctg<br>Leu        | tcg<br>Ser        | Pro<br>25         | ctg<br>Leu         | ctg<br>Leu        | ctt<br>Leu        | ggg               | gcg<br>Ala<br>30  | ctg<br>Leu        |     | 336 |
| cac<br>His        | ggc<br>Gly        | gtg<br>Val        | ggc<br>Gly<br>35  | gcg               | ggc               | agc<br>Ser        | ggc               | gct<br>Ala<br>40  | ccg<br>Pro        | gcc<br>Ala         | gag<br>Glu        | ctg<br>Leu        | cgg<br>Arg<br>45  | gto<br>Val        | cga<br>Arg        | 3   | 384 |
| gtg<br>Val        | aga<br>Arg        | ctg<br>Leu<br>50  | ccc               | gac<br>Asp        | agc<br>Ser        | cag<br>Gln        | gtg<br>Val<br>55  | atc<br>Ile        | gag<br>Glu        | gag<br>Glu         | agt<br>Ser        | cta<br>Leu<br>60  | cag<br>Gln        | gcg               | gac<br>Asp        | 4   | 432 |
| agc<br>Ser        | gac<br>Asp<br>65  | gcg<br>Ala        | gac<br>Asp        | agc<br>Ser        | atc<br>Ile        | agc<br>Ser<br>70  | ctt<br>Leu        | gat<br>Asp        | ctg<br>Leu        | cgc<br>Arg         | aaa<br>Lys<br>75  | Pro               | gac<br>Asp        | ggc<br>Gly        | act<br>Thr        | 4   | 180 |
| ctc<br>Leu<br>80  | atc<br>Ile        | tcc<br>Ser        | ttc<br>Phe        | atc<br>Ile        | gcg<br>Ala<br>85  | gat<br>Asp        | ttc<br>Phe        | aag<br>Lys        | aag<br>Lys        | gac<br>Asp<br>90   | gtg<br>Val        | aag<br>Lys        | atc<br>Ile        | ttc<br>Phe        | cga<br>Arg<br>95  | 5   | 528 |
| gcc<br>Ala        | ctg<br>Leu        | atc<br>Ile        | ctc<br>Leu        | Gly<br>Ggg        | gag<br>Glu        | ctg<br>Leu        | gag<br>Glu        | aag<br>Lys        | ggg<br>Gly<br>105 | cag<br>Gln         | agt<br>Ser        | cag<br>Gln        | ttc<br>Phe        | cag<br>Gln<br>110 | gca<br>Ala        | . 5 | 576 |
| ctt<br>Leu        | tgc<br>Cys        | ttt<br>Phe        | gtc<br>Val<br>115 | aca<br>Thr        | agg<br>Arg        | ctg<br>Leu        | cac               | cac<br>His<br>120 | aat<br>Asn        | gac<br>Asp         | atc<br>Ile        | atc<br>Ile        | ccc<br>Pro<br>125 | agt<br>Ser        | gag<br>Glu        | 6   |     |
| gcc<br>Ala        | atg<br>Met        | gcc<br>Ala<br>130 | aag<br>Lys        | ctc<br>Leu        | cgg<br>Arg        | cag<br>Gln        | aaa<br>Lys<br>135 | aac<br>Asn        | ccc<br>Pro        | cgc<br><b>A</b> rg | gca<br>Ala        | gtg<br>Val<br>140 | cgg<br>Arg        | cag<br>Gln        | gct<br>Ala        | 6   | 72  |
| gag<br>Glu        | gaa<br>Glu<br>145 | gtg<br>Val        | agg<br>Arg        | ggt<br>Gly        | ctg<br>Leu        | gaa<br>Glu<br>150 | cag<br>Gln        | tta<br>Leu        | cat<br>His        | atg<br>Met         | gat<br>Asp<br>155 | atc<br>Ile        | gct<br>Ala        | gtt<br>Val        | aac<br>Asn        | 7   | 20  |
| ttc<br>Phe<br>160 | agc<br>Ser        | cag<br>Gln        | Gly               | ggc<br>Gly        | ctg<br>Leu<br>165 | ctg<br>Leu        | agt<br>Ser        | ccc<br>Pro        | cat<br>His        | ctc<br>Leu<br>170  | cac<br>His        | aac<br>Asn        | gta<br>Val        | tgt<br>Cys        | gct<br>Ala<br>175 | 7   | 68  |
| gag<br>Glu        | gcc<br>Ala        | aca<br>Thr        | gat<br>Asp        | gcc<br>Ala<br>180 | atc<br>Ile        | tac<br>Tyr        | acc<br>Thr        | cgc<br>Arg        | cag<br>Gln<br>185 | gag<br>Glu         | gat<br>Asp        | gtc<br>Val        | cag<br>Gln        | ttc<br>Phe<br>190 | tgg<br>Trp        | 8   | 16  |
| aca<br>Thr        | gag<br>Glu        | cga<br>Arg        | ggt<br>Gly<br>195 | gtg<br>Val        | gac<br>Asp        | agt<br>Ser        | tct<br>Ser        | gtt<br>Val<br>200 | ttc<br>Phe        | gag<br>Glu         | gct<br>Ala        | ctg<br>Leu        | ccc<br>Pro<br>205 | aag<br>Lys        | gca<br>Ala        | 8   | 64  |
| tta<br>Leu        | gaa<br>Glu        | cag<br>Gln<br>210 | gcg<br>Ala        | gaa<br>Glu        | tta<br>Leu        | cct<br>Pro        | cgt<br>Arg<br>215 | tgt<br>Cys        | gga<br>Gly        | cga<br>Arg         | gtt<br>Val        | ggg<br>Gly<br>220 | gat<br>Asp        | cga<br>Arg        | gga<br>Gly        | 9   | 12  |
| aag<br>Lys        | ccc<br>Pro<br>225 | tgt<br>Cys        | act<br>Thr        | tgc<br>Cys        | cac<br>His        | tac<br>Tyr<br>230 | agt<br>Ser        | ctg<br>Leu        | agc<br>Ser        | ctg<br>Leu         | gcc<br>Ala<br>235 | tgg<br>Trp        | tac<br>Tyr        | cca<br>Pro        | tgc<br>Cys        | 9   | 60  |
|                   | ctc<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   | 10  | 8 0 |
| ggc               | atc               | cga               | agc               | tgc               | agg               | aaa               | agc               | tac               | acc               | ttt                | gac               | ttc               | tat               | gta               | cct               | 105 | 56  |

| Gly Ile Arg Ser Cys Arg Lys Ser Tyr Thr Phe Asp Phe Tyr Val Pro<br>260 265 270                                       |      |
|----------------------------------------------------------------------------------------------------------------------|------|
| cag aag caa ctg tgc ctc tgg gat gag gac ccc taa caacaggaga<br>Gln Lys Gln Leu Cys Leu Trp Asp Glu Asp Pro<br>275 280 | 1102 |
| cagaggacca agaacggata cttgggcctg caaattcttc gctgaccacc agagagcgtg                                                    | 1162 |
| gcaacccaat caggictiag gictciicci gagccgcigg cccigaagcc acaaccicat                                                    | 1222 |
| ctgcatgact gtgaaagggt gtcaccgcaa ccttgaggca gccctgatgc ccacctgtgc                                                    | 1282 |
| ccatcttgag gcattggggg gtgggggggg gaggcagttc tccagacgga taccetcece                                                    | 1342 |
| tetteettte acctgaaatg teeegegaag gtggaatcaa aatgcacegg ectaggeett                                                    | 1402 |
| tatggaactt gttccggagg catggccctg tagcacacta tctcaccagc aagggaacca                                                    | 1462 |
| gagagggaca gctggggact cgtgccccag ctcctgtgtc tggttacagt gccttctctc                                                    | 1522 |
| taccctgggg gcaatgggga gtagggatgc tgcctccaag accaccgcgt gtgcctttcc                                                    | 1582 |
| tgagacccaa tttggatact tcagcgggca ccgattcttc ctgcccctgg actgatgtac                                                    | 1642 |
| tttggtcagg ttctggggca gggagggagc atgaagtaca aggaaaactt gaattccaga                                                    | 1702 |
| tttttaatgc aaaatattta tcatttgtac cagaaataaa agtcttttaa gttttcactc                                                    | 1762 |
| accetatgge gecagettag gettteggag agaaetttgt eeegtgetge cacetagtgt                                                    | 1822 |
| cagaaatgtg ccttacatgg ttagtgccag tctgggcaaa gcaacttcta aaggtcctat                                                    | 1882 |
| tgtgtgatct gtgagaggct ctgtgcttaa gatgatggaa caagggagct gggaaggact                                                    | 1942 |
| cagtagttaa gagcacgtgc tgcttttta cagaggaccc aagttcgatt ccttacatcc                                                     | 2002 |
| gcttccagtg tggggagtgt cacggacacc tgtaacatca acataatgga gatcggccac                                                    | 2062 |
| cttttatggc ctccaagtgc tctaacacat ataataaaat taaattaatt taaaattaaa                                                    | 2122 |
| aactagggac ttcaggatgg ctcagtgatt aagaacactg gctgctcttc cagagatccc                                                    | 2182 |
| atgttccatg ctcaagaccc acatggtaaa tctgatgccc tcttctggct tgcaagaggc                                                    | 2242 |
| cttgtacgtg gagctcatac atgcaagcaa aacaccagtg gaaacacaag taagttatat                                                    | 2302 |
| aaatgatgag gcaaggaccg aagacatagc tcatttatag cgaatttgct caggatgggc                                                    | 2362 |
| aaggecatgg tectaatgte etgeee                                                                                         | 2388 |

<sup>&</sup>lt;210> 15

<sup>&</sup>lt;211> 282

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Mus musculus

<sup>&</sup>lt;400> 15

Met Arg Pro Pro Gly Cys Arg Asp Val Pro Ser Ala Arg Pro Ala Leu 1 10 15

Pro Leu Leu Leu Leu Leu Ser Pro Leu Leu Gly Ala Leu His 20 25 30

Gly Val Gly Ala Gly Ser Gly Ala Pro Ala Glu Leu Arg Val Arg Val

35 40 . 45

Arg Leu Pro Asp Ser Gln Val Ile Glu Glu Ser Leu Gln Ala Asp Ser 50 55 60

Asp Ala Asp Ser Ile Ser Leu Asp Leu Arg Lys Pro Asp Gly Thr Leu 65 70 75 80

Ile Ser Phe Ile Ala Asp Phe Lys Lys Asp Val Lys Ile Phe Arg Ala 85 90 95

Leu Ile Leu Gly Glu Leu Glu Lys Gly Gln Ser Gln Phe Gln Ala Leu 100 105 110

Cys Phe Val Thr Arg Leu His His Asn Asp Ile Ile Pro Ser Glu Ala 115 120 125

Met Ala Lys Leu Arg Gln Lys Asn Pro Arg Ala Val Arg Gln Ala Glu 130 135 140

Glu Val Arg Gly Leu Glu Gln Leu His Met Asp Ile Ala Val Asn Phe 145 150 155 160

Ser Gln Gly Gly Leu Leu Ser Pro His Leu His Asn Val Cys Ala Glu 165 170 175

Ala Thr Asp Ala Ile Tyr Thr Arg Gln Glu Asp Val Gln Phe Trp Thr 180 185 190

Glu Arg Gly Val Asp Ser Ser Val Phe Glu Ala Leu Pro Lys Ala Leu 195 200 205

Glu Gln Ala Glu Leu Pro Arg Cys Gly Arg Val Gly Asp Arg Gly Lys 210 215 220

Pro Cys Thr Cys His Tyr Ser Leu Ser Leu Ala Trp Tyr Pro Cys Met 225 230 235 240

Leu Lys Tyr Cys His Ser Arg Asp Arg Pro Ala Pro Tyr Lys Cys Gly 245 250 255

Ile Arg Ser Cys Arg Lys Ser Tyr Thr Phe Asp Phe Tyr Val Pro Gln 260 265 270

Lys Gln Leu Cys Leu Trp Asp Glu Asp Pro 275 280

<210> 16

<211> 1957

<212> DNA

<213> Homo sapiens

<220> <221> CDS

<222> (242)..(1063) <223> SF02, cDNA: NM\_178507, Proteína: NP\_848602 <400> 16 cccggggccg cggagccggg ccggggcagc gccgtctccg cctcggggcc gccgggggcg 120 ccctgctgaq cqctacccac gtgcgtccgc gccacctcgc gggcgacccc gcggccaagg ccccggcgg agcggctccc gggcgccccg aactagcccc caactttggg cgaagtttgc 180 ctgcgcctct ccccgcccc acgcggcgcg ccggggccgc ggacggcage ggcccccggg 289 ctg ccg ctg ctc gcg ccg ctg ctg gga acg ggt gcg ccg gcc gag ctg Leu Pro Leu Leu Ala Pro Leu Leu Gly Thr Gly Ala Pro Ala Glu Leu 337 cgg gtc cgc gtg cgg ctg ccg gac ggc cag gtg acc gag gag agc ctg Arg Val Arg Val Arg Leu Pro Asp Gly Gln Val Thr Glu Glu Ser Leu 385 cag gcg gac agc gcg gac agc atc agc ctc gag ctg cgc aag ccc
Gln Ala Asp Ser Asp Ala Asp Ser Ile Ser Leu Glu Leu Arg Lys Pro
50 60 433 gac ggc acc ctc gtc tcc ttc acc gcc gac ttc aag aag gat gtg aag Asp Gly Thr Leu Val Ser Phe Thr Ala Asp Phe Lys Lys Asp Val Lys 481 gtc ttc cgg gcc ctg atc ctg ggg gag ctg gag aag ggg cag agt cag Val Phe Arg Ala Leu Ile Leu Gly Glu Leu Glu Lys Gly Gln Ser Gln 529 ttc cag gcc ctc tgc ttt gtc acc cag ctg cag cac aat gag atc atc Phe Gln Ala Leu Cys Phe Val Thr Gln Leu Gln His Asn Glu Ile Ile 577 ccc agt gag gcc atg gcc aag ctc cgg cag aaa aat ccc cgg gca gtg Pro Ser Glu Ala Met Ala Lys Leu Arg Gln Lys Asn Pro Arg Ala Val 625 cgg cag gcg gag gat cgg ggt ctg gag cat ctg cac atg gat gtc Arg Gln Ala Glu Glu Val Arg Gly Leu Glu His Leu His Met Asp Val 673 gct gtc aac ttc agc cag ggg gcc ctg ctg agc ccc cat ctc cac aac Ala Val Asn Phe Ser Gln Gly Ala Leu Leu Ser Pro His Leu His Asn 721 gtg tgt gcc gag gcc gtg gat gcc atc tac acc cgc cag gag gat gtc Val Cys Ala Glu Ala Val Asp Ala Ile Tyr Thr Arg Gln Glu Asp Val 165 170 175 769 cgg ttc tgg ctg gag caa ggt gtg gac agt tct gtg ttc gag gct ctg Arg Phe Trp Leu Glu Gln Gly Val Asp Ser Ser Val Phe Glu Ala Leu 817 ccc aag gcc tca gag cag gcg gag ctg cct cgc tgc agg cag gtg ggg Pro Lys Ala Ser Glu Gln Ala Glu Leu Pro Arg Cys  $\mathop{\rm Arg}\limits_{}$  Gl $\mathop{\rm n}\limits_{}$  Val Gly 865 gac cac ggg aag ccc tgc gtc tgc cgc tat ggc ctg agc ctg gcc tgg 913

| Asp His Gly Lys Pro Cys Val Cys Arg Tyr Gly Leu Ser Leu Ala Trp 210 215 220                                                                       |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| tac ccc tgc atg ctc aag tac tgc cac agc cgc gac cgg ccc acg ccc Tyr Pro Cys Met Leu Lys Tyr Cys His Ser Arg Asp Arg Pro Thr Pro 225 230 240       | 961  |
| tac aag tgt ggc atc cgc agc tgc cag aag agc tac agc ttc gac ttc<br>Tyr Lys Cys Gly Ile Arg Ser Cys Gln Lys Ser Tyr Ser Phe Asp Phe<br>245 250 255 | 1009 |
| tac gtg ccc cag agg cag ctg tgt ctc tgg gat gag gat ccc tac cca<br>Tyr Val Pro Gln Arg Gln Leu Cys Leu Trp Asp Glu Asp Pro Tyr Pro<br>260 265 270 | 1057 |
| ggc tag ggtgggagca acctggcggg tggctgctct gggcccactg ctcttcacca<br>Gly                                                                             | 1113 |
| gccactagag ggggtggcaa cccccacctg aggccttatt tccctccctc cccactcccc                                                                                 | 1173 |
| tggccctaga gcctgggccc ctctggcccc atctcacatg actgtgaagg gggtgtggca                                                                                 | 1233 |
| tggcaggggg tctcatgaag gcacccccat tcccaccctg tgccttcctt gcgggcagag                                                                                 | 1293 |
| agggagagaa gggctcccca gatctacacc cctccctcct gcatctcccc tggagtgttc                                                                                 | 1353 |
| acttgcaage tgccaaaaca tgatggccte tggttgttet gttgaactee ttgaacgttt                                                                                 | 1413 |
| agaccctaaa aggagtctat acctggacac ccacctcccc agacacaact cccttcccca                                                                                 | 1473 |
| tgcacacatc tggaaggagc tggcccctca gtcccttcct actccccaac aaggggctca                                                                                 | 1533 |
| ctatececaa agaaggaget gttggggaee caegaegeag eeeetgtaet ggattaeage                                                                                 | 1593 |
| atatteteat etetggeece gaggetgeet gtggggegag tggagaeete ecateaetga                                                                                 | 1653 |
| gacagatcac agaccacgag tgcctttccc ggacctggac gttgcctcca gagcaggcac                                                                                 | 1713 |
| cagetettte eetetetaca cagaaatatt tttgtaaggt tetggggeag ggagggagea                                                                                 | 1773 |
| tgaagtacga ggaaaacttg aattccagat ttttagtgca aagtatttat catttctacc                                                                                 | 1833 |
| agaaataaac gttttaagtt tttacttgaa aaaaaaaaa aaaaaaaaaa                                                                                             | 1893 |
| acaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaa                                                                                                           | 1953 |
| 222                                                                                                                                               | 1957 |

<sup>&</sup>lt;210> 17

<sup>&</sup>lt;211> 273

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 17

Met Arg Leu Pro Gly Val Pro Leu Ala Arg Pro Ala Leu Leu Leu 1 15 15

Leu Pro Leu Leu Ala Pro Leu Leu Gly Thr Gly Ala Pro Ala Glu Leu 20 25 30

Arg Val Arg Val Arg Leu Pro Asp Gly Gln Val Thr Glu Glu Ser Leu 35 40 45

Gln Ala Asp Ser Asp Ala Asp Ser Ile Ser Leu Glu Leu Arg Lys Pro Asp Gly Thr Leu Val Ser Phe Thr Ala Asp Phe Lys Lys Asp Val Lys 65 70 80 Val Phe Arg Ala Leu Ile Leu Gly Glu Leu Glu Lys Gly Gln Ser Gln 85 90 95 Phe Gln Ala Leu Cys Phe Val Thr Gln Leu Gln His Asn Glu Ile Ile Pro Ser Glu Ala Met Ala Lys Leu Arg Gln Lys Asn Pro Arg Ala Val Arg Gln Ala Glu Glu Val Arg Gly Leu Glu His Leu His Met Asp Val Ala Val Asn Phe Ser Gln Gly Ala Leu Leu Ser Pro His Leu His Asn Val Cys Ala Glu Ala Val Asp Ala Ile Tyr Thr Arg Gln Glu Asp Val 165 170 175 Arg Phe Trp Leu Glu Gln Gly Val Asp Ser Ser Val Phe Glu Ala Leu 180 185 190 Pro Lys Ala Ser Glu Gln Ala Glu Leu Pro Arg Cys Arg Gln Val Gly
195 200 205 Asp His Gly Lys Pro Cys Val Cys Arg Tyr Gly Leu Ser Leu Ala Trp 210 215 220 Tyr Pro Cys Met Leu Lys Tyr Cys His Ser Arg Asp Arg Pro Thr Pro 225 230 235 Tyr Lys Cys Gly Ile Arg Ser Cys Gln Lys Ser Tyr Ser Phe Asp Phe 245 250 255 Tyr Val Pro Gln Arg Gln Leu Cys Leu Trp Asp Glu Asp Pro Tyr Pro 260 265 270 Gly

<210> 18

<211> 2312

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (118)..(1857)

<223> SF03, cDNA: NM\_016697, Proteína: NP\_057906

|   | ctg               | ggta              | agcg              | gcto              | ctct              | ct t              | gcto              | tgto              | g g                | gctad             | ctgco             | aga               | actt              | gctg              | agt               | ctcggga           | ı 60 |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|   | CCG               | ctc               | ggc               | tctt              | atto              | jcc a             | actct             | ctc               | gt go              | ctct              | cctcg             | cto               | ccc               | caag              | aago              | cagg              | 117  |
|   | atg<br>Met<br>1   | gco               | Gly               | aco<br>Thr        | gtg<br>Val        | cgc<br>Arg        | acc<br>Thr        | gcg               | g tgo<br>a Cys     | ttg<br>Lev<br>10  | g ctg<br>ı Lev    | g gtg<br>n Val    | g gcg<br>L Ala    | g atg<br>a Met    | cto<br>Lev<br>15  | g cta<br>1 Leu    | 165  |
|   | ggc               | ttg<br>Lev        | ggo<br>Gly        | tgc<br>Cys<br>20  | ctg<br>Leu        | gga<br>Gly        | cag<br>Gln        | gcg<br>Ala        | g cag<br>Glr<br>25 | g ccc             | ccg<br>Pro        | Pro               | p cct             | Pro<br>30         | a gad<br>o Asp    | gcc<br>Ala        | 213  |
|   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   | ctc<br>Leu        | 261  |
| } |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   | tgt<br>Cys        | 309  |
|   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   | tac<br>Tyr<br>80  | 357  |
|   | caa<br>Gln        | cta<br>Leu        | aca<br>Thr        | gca<br>Ala        | cgg<br>Arg<br>85  | ctg<br>Leu        | aac<br>Asn        | atg<br>Met        | gaa<br>Glu         | caa<br>Gln<br>90  | ctg<br>Leu        | ctc<br>Leu        | cag<br>Gln        | tct<br>Ser        | gcg<br>Ala<br>95  | agt<br>Ser        | 405  |
|   |                   |                   |                   |                   |                   |                   |                   |                   |                    | Asn               |                   |                   |                   |                   | Gln               | gag<br>Glu        | 453  |
|   | gcc<br>Ala        | ttt<br>Phe        | gaa<br>Glu<br>115 | att<br>Ile        | gtt<br>Val        | gtt<br>Val        | cgc<br>Arg        | cat<br>His<br>120 | gcc                | aag<br>Lys        | aac<br>Asn        | tac<br>Tyr        | acc<br>Thr<br>125 | Asn               | gcc<br>Ala        | atg<br>Met        | 501  |
|   | ttc<br>Phe        | aag<br>Lys<br>130 | aat<br>Asn        | aac<br>Asn        | tac<br>Tyr        | ccc<br>Pro        | agc<br>Ser<br>135 | ctg<br>Leu        | act<br>Thr         | cca<br>Pro        | caa<br>Gln        | gct<br>Ala<br>140 | ttt<br>Phe        | gag<br>Glu        | ttt<br>Phe        | gtc<br>Val        | 549  |
| , |                   |                   |                   |                   |                   |                   |                   |                   |                    | tac<br>Tyr        |                   |                   |                   |                   |                   |                   | 597  |
|   | aac<br>Asn        | gtg<br>Val        | gat<br>Asp        | gat<br>Asp        | atg<br>Met<br>165 | gtc<br>Val        | aat<br>Asn        | gaa<br>Glu        | ttg<br>Leu         | ttc<br>Phe<br>170 | gac<br>Asp        | agc<br>Ser        | ctc<br>Leu        | ttt<br>Phe        | cca<br>Pro<br>175 | gtc<br>Val        | 645  |
|   | atc<br>Ile        | tac<br>Tyr        | acc<br>Thr        | cag<br>Gln<br>180 | atg<br>Met        | atg<br>Met        | aac<br>Asn        | cca<br>Pro        | ggc<br>Gly<br>185  | ctg<br>Leu        | cct<br>Pro        | gag<br>Glu        | tca<br>Ser        | gtc<br>Val<br>190 | tta<br>Leu        | gac<br>Asp        | 693  |
|   | atc<br>Ile        | Asn               | gag<br>Glu<br>195 | tgc<br>Cys        | ctc<br>Leu        | cga<br>Arg        | gga<br>Gly        | gca<br>Ala<br>200 | aga<br>Arg         | cgt<br>Arg        | gac<br>Asp        | ctg<br>Leu        | aaa<br>Lys<br>205 | gta<br>Val        | ttt<br>Phe        | Gly               | 741  |
|   | Ser               |                   |                   |                   |                   |                   |                   |                   |                    | gtt<br>Val        |                   |                   |                   |                   |                   |                   | 789  |
|   | act<br>Thr<br>225 | cga<br>Arg        | atc<br>Ile        | ttc<br>Phe        | Leu               | caa<br>Gln<br>230 | gcc<br>Ala        | ctg<br>Leu        | aat<br>Asn         | ctc<br>Leu        | gga<br>Gly<br>235 | att<br>Ile        | gaa<br>Glu        | gtc<br>Val        | atc<br>Ile        | aac<br>Asn<br>240 | 837  |

|                   |            |            |                   |                   | Lys               |                   |                   |                   |                   | Cys               |            |                   |                   |                   | c acc<br>u Thr<br>5 | 885  |
|-------------------|------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|---------------------|------|
|                   |            |            |                   | Cys               |                   |                   |                   |                   | ĞĨy               |                   |            |                   |                   | Ly                | g cct<br>s Pro      | 933  |
| tg:<br>Cys        | ggt<br>Gly | gg(<br>Gl) | у Тух             | tgc<br>Cys        | aat<br>Asr        | gtg<br>Val        | gtc<br>Val<br>280 | Met               | caa<br>Gln        | ggc<br>Gly        | tgt<br>Cys | ato<br>Met<br>285 | Ala               | ggi<br>a Gly      | t gtg<br>Val        | 981  |
|                   |            | Ile        |                   |                   |                   |                   | Arg               |                   |                   |                   |            | Ser               |                   |                   | a gag<br>ı Glu      | 1029 |
|                   | Val        |            |                   |                   |                   | Arg               |                   |                   |                   |                   | Glu        |                   |                   |                   | ctc<br>Leu<br>320   | 1077 |
|                   |            |            |                   |                   | Ile               |                   |                   |                   |                   | Gln               |            |                   |                   |                   | aac<br>Asn          | 1125 |
|                   |            |            |                   |                   |                   |                   |                   |                   | Lys               |                   |            |                   |                   | Ser               | cag<br>Gln          | 1173 |
|                   |            |            | Tyr               |                   |                   | gct<br>Ala        |                   | Tyr               |                   |                   |            |                   |                   |                   |                     | 1221 |
|                   |            |            |                   |                   |                   | gct<br>Ala<br>375 |                   |                   |                   |                   |            |                   |                   |                   |                     | 1269 |
|                   | Arg        |            |                   |                   |                   | att<br>Ile        |                   |                   |                   |                   |            |                   |                   |                   |                     | 1317 |
|                   |            |            |                   |                   |                   | tac<br>Tyr        |                   |                   |                   |                   |            |                   |                   |                   |                     | 1365 |
|                   |            |            |                   |                   |                   | aac<br>Asn        |                   |                   |                   |                   |            |                   |                   |                   |                     | 1413 |
|                   |            |            |                   |                   |                   | ggg<br>Gly        | Met               | Lys               |                   | Gln               | Phe        |                   |                   |                   |                     | 1461 |
|                   |            |            |                   |                   | Pro               | gag<br>Glu<br>455 |                   |                   |                   |                   |            |                   |                   |                   |                     | 1509 |
| ctg<br>Leu<br>465 | aag<br>Lys | cac<br>His | att<br>Ile        | aac<br>Asn        | cag<br>Gln<br>470 | ctc<br>Leu        | ctg<br>Leu        | aga<br>Arg        | acc<br>Thr        | atg<br>Met<br>475 | tct<br>Ser | gtg<br>Val        | ccc<br>Pro        | aag<br>Lys        | ggt<br>Gly<br>480   | 1557 |
| aaa<br>Lys        | gtt<br>Val | ctg<br>Leu | Asp               | aaa<br>Lys<br>485 | agc<br>Ser        | ctg<br>Leu        | gat<br>Asp        | gaa<br>Glu        | gaa<br>Glu<br>490 | gga<br>Gly        | ctt<br>Leu | gaa<br>Glu        | agt<br>Ser        | gga<br>Gly<br>495 | gac<br>Asp          | 1605 |
| tgc<br>Cys        | ggt<br>Gly | gat<br>Asp | gat<br>Asp<br>500 | gaa<br>Glu        | gat<br>Asp        | gaa<br>Glu        | Cys               | att<br>Ile<br>505 | gga<br>Gly        | agc<br>Ser        | tct<br>Ser | ggt<br>Gly        | gac<br>Asp<br>510 | ggg<br>Gly        | atg<br>Met          | 1653 |

| gtg<br>Val        | aaa<br>Lys        | gtg<br>Val<br>515 | aag<br>Lys | aat<br>Asn        | caa<br>Gln        | ctg<br>Leu        | cgc<br>Arg<br>520 | ttc<br>Phe | ctt<br>Leu        | gca<br>Ala        | gaa<br>Glu        | ctg<br>Leu<br>525 | gcc<br>Ala | tat<br>Tyr        | gat<br>Asp        | 1701 |
|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|------|
| ctg<br>Leu        | gat<br>Asp<br>530 | gtg<br>Val        | gac<br>Asp | gat<br>Asp        | gct<br>Ala        | ccg<br>Pro<br>535 | Gly<br>ggg        | aac<br>Asn | aag<br>Lys        | cag<br>Gln        | cat<br>His<br>540 | Gly               | aat<br>Asn | cag<br>Gln        | aag<br>Lys        | 1749 |
| gac<br>Asp<br>545 | aac<br>Asn        | gag<br>Glu        | atc<br>Ile | acc<br>Thr        | acc<br>Thr<br>550 | tct<br>Ser        | cac<br>His        | agc<br>Ser | gtg<br>Val        | ggg<br>Gly<br>555 | aac<br>Asn        | atg<br>Met        | ccg<br>Pro | tcc<br>Ser        | cca<br>Pro<br>560 | 1797 |
| ctg<br>Leu        | aag<br>Lys        | atc<br>Ile        | ctc<br>Leu | atc<br>Ile<br>565 | agt<br>Ser        | gtg<br>Val        | gcc<br>Ala        | atc<br>Ile | tat<br>Tyr<br>570 | gtg<br>Val        | gcg<br>Ala        | tgc<br>Cys        | ttt<br>Phe | ttt<br>Phe<br>575 | ttc<br>Phe        | 1845 |
|                   | gtg<br>Val        |                   | tga        | cttg              | rccag             | rcg t             | ccag              | tgco       | t gt              | gctg              | ccct              | gca               | gcad       | ctg               |                   | 1897 |
| tggt              | ccct              | ac a              | ıgaaa      | ggga              | g co              | acct              | tctt              | ttt        | tttt              | tct               | tttt              | ttt               | tt t       | tttt              | tatct             | 1957 |
| ttta              | tgcc              | tc c              | tccc       | acca              | с са              | ttaa              | gtag              | gag        | acta              | acc               | gcgt              | gtta              | tg t       | tttc              | gaaaa             | 2017 |
| tcaa              | atgg              | ta t              | cttt       | atga              | g ga              | tggt              | aaat              | ttt        | agtg              | gta               | ggat              | agat              | tg t       | cttt              | ttgca             | 2077 |
| aaga              | aaaa              | aa a              | aacc       | ttca              | a gt              | tgtg              | ccaa              | att        | attt              | tct               | taca              | tttg              | ac t       | gttg              | gaaca             | 2137 |
| tggt              | tgto              | at g              | tttc       | cctc              | t tt              | tctc              | tttc              | tct        | gcat              | gga               | tttc              | tttg              | ac a       | aaaa              | aaaaa             | 2197 |
| taaa              | taaa              | ca t              | tcaa       | ataa              | a aa              | aaaa              | aaaa              | aaa        | aaaa              | aaa               | aaaa              | aaaa              | aa a       | aaaa              | aaaaa             | 2257 |
| aaaa              | aaaa              | aa a              | aaaa       | aaaa              | a aa              | aaaa              | aaaa              | aaa        | aaaa              | aaa               | aaaa              | aaaa              | aa a       | aaaa              |                   | 2312 |

<210> 19

<211> 579

<212> PRT

<213> Mus musculus

| Met | Ala | Gly | Thr | Val | Arg | Thr | Ala | Cys | Leu | Leu | Val | Ala | Met | Leu | Leu |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |

Gly Leu Gly Cys Leu Gly Gln Ala Gln Pro Pro Pro Pro Pro Asp Ala 20 25 30

Thr Cys His Gln Val Arg Ser Phe Phe Gln Arg Leu Gln Pro Gly Leu 35 40 45

Lys Trp Val Pro Glu Thr Pro Val Pro Gly Ser Asp Leu Gln Val Cys 50 55 60

Leu Pro Lys Gly Pro Thr Cys Cys Ser Arg Lys Met Glu Glu Lys Tyr 65 70 75 80

Gln Leu Thr Ala Arg Leu Asn Met Glu Gln Leu Leu Gln Ser Ala Ser 85 90 95

Met Glu Leu Lys Phe Leu Ile Ile Gln Asn Ala Ala Val Phe Gln Glu

|            |            |            | 10           | 0          |              |            |            | 105        | 5          |            |            |            | 110        | 0            |             |
|------------|------------|------------|--------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|-------------|
| Ala        | a Ph       | e Gl<br>11 |              | e Va       | l Val        | l Arg      | His<br>120 |            | Ly:        | s Ası      | ту:        | Thi<br>125 |            | n Ala        | a Me        |
| Phe        | 130        |            | n As         | n Ty       | r Pro        | Ser<br>135 |            | Thr        | Pro        | Glr        | 140        |            | e Glu      | u Phe        | e Vai       |
| Gly<br>145 |            | ı Ph       | e Ph         | e Thi      | r Asp<br>150 |            | . Ser      | Leu        | туг        | 11e        |            | Gly        | se:        | c Ası        | 160         |
| Asn        | Va]        | l As       | p Ası        | 165        | Val          | . Asn      | Glu        | Leu        | Phe<br>170 |            | Ser        | Leu        | Phe        | 2 Pro<br>175 |             |
| Ile        | туг        | Th         | r Glr<br>180 |            | : Met        | Asn        | Pro        | Gly<br>185 |            | Pro        | Glu        | Ser        | Val<br>190 |              | As <u>r</u> |
| Ile        | Asn        | 195        |              | . Leu      | Arg          | Gly        | Ala<br>200 |            | Arg        | Asp        | Leu        | Lys<br>205 |            | Phe          | Gly         |
| Ser        | Phe<br>210 |            | Lys          | Leu        | Ile          | Met<br>215 |            | Gln        | Val        | Ser        | Lys<br>220 |            | Leu        | Gln          | Val         |
| Thr<br>225 |            | Ile        | Phe          | . Leu      | Gln<br>230   |            | Leu        | Asn        | Leu        | Gly<br>235 |            | Glu        | Val        | Ile          | Asn<br>240  |
| Thr        | Thr        | Asp        | His          | Leu<br>245 | Lys          | Phe        | Ser        | Lys        | Asp<br>250 |            | Gly        | Arg        | Met        | Leu<br>255   |             |
| Arg        | Met        | Trp        | Tyr<br>260   |            | Ser          | Tyr        | Cys        | Gln<br>265 | Gly        | Leu        | Met        | Met        | Val<br>270 | Lys          | Pro         |
| Суз        | Gly        | Gly<br>275 |              | Cys        | Asn          | Val        | Val<br>280 | Met        | Gln        | Gly        | Cys        | Met<br>285 | Ala        | Gly          | Val         |
| Val        | Glu<br>290 |            | Asp          | Lys        | Tyr          | Trp<br>295 | Arg        | Glu        | Tyr        | Ile        | Leu<br>300 | Ser        | Leu        | Glu          | Glu         |
| Leu<br>305 | Val        | Asn        | Gly          | Met        | Tyr<br>310   | Arg        | Ile        | Tyr        | Asp        | Met<br>315 | Glu        | Asn        | Val        | Leu          | Leu<br>320  |
| Gly        | Leu        | Phe        | Ser          | Thr<br>325 | Ile          | His        | Asp        |            | Ile<br>330 | Gln        | Tyr        | Val        | Gln        | Lys<br>335   | Asn         |
| Gly        | Gly        | Lys        | Leu<br>340   | Thr        | Thr          | Thr        | Ile        | Gly<br>345 | Lys        | Leu        | Cys        | Ala        | His<br>350 | Ser          | Gln         |
| Gln        | Arg        | Gln<br>355 | Tyr          | Arg        | Ser          |            | Tyr<br>360 | Tyr        | Pro        | Glu        |            | Leu<br>365 | Phe        | Ile          | Asp         |
| Lys        | Lys        | Ile        | Leu          | Lys        | Val          | Ala        | His        | Val        | Glu        | His        | Glu        | G1u        | Thr        | Leu          | Ser         |

|            | 370        | )          |            |            |            | 375        | •          |            |            |            | 380        | 1                 |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|
| Ser<br>385 |            | Arg        | Arg        | Glu        | Leu<br>390 |            | Gln        | Lys        | Leu        | Lys<br>395 | Ser        | Phe               | Ile        | Asn        | Phe<br>400 |
| Tyr        | Ser        | Ala        | Leu        | Pro<br>405 |            | Tyr        | Ile        | Cys        | Ser<br>410 | His        | Ser        | Pro               | Val        | Ala<br>415 | Glu        |
| Asn        | Asp        | Thr        | Leu<br>420 |            | Trp        | Asn        | Gly        | Gln<br>425 |            | Leu        | Val        | Glu               | Arg<br>430 | Tyr        | Ser        |
| Gln        | Lys        | Ala<br>435 |            | Arg        | Asn        | Gly        | Met<br>440 |            | Asn        | Gln        | Phe        | Asn<br>445        | Leu        | His        | Glu        |
| Leu        | Lys<br>450 |            | Lys        | Gly        | Pro        | Glu<br>455 | Pro        | Val        | Val        | Ser        | Gln<br>460 | Ile               | Ile        | Asp        | Гуз        |
| Leu<br>465 |            | His        | Ile        | Asn        | Gln<br>470 | Leu        | Leu        | Arg        | Thr        | Met<br>475 | Ser        | Val               | Pro        | Lys        | Gly<br>480 |
| Lys        | Val        | Lėu        | Asp        | Lys<br>485 | Ser        | Leu        | Asp        | Glu        | Glu<br>490 | Gly        | Leu        | Glu               | Ser        | Gly<br>495 | Asp        |
| Суз        | Gly        | Asp        | Asp<br>500 | Glu        | Asp        | Glu        | Cys        | Ile<br>505 | Gly        | Ser        | Ser        | Gly               | Asp<br>510 | Gly        | Met        |
| Val        | Lys        | Val<br>515 | Lys        | Asn        | Gln        | Leu        | Arg<br>520 | Phe        | Leu        | Ala        | Glu        | <u>Leu</u><br>525 | Ala        | Tyr        | Asp        |
| Leu        | Asp<br>530 | Val        | Asp        | Asp        | Ala        | Pro<br>535 | Gly        | Asn        | Lys        | Gln        | His<br>540 | Gly               | Asn        | Gln        | Lys        |
| Asp<br>545 | Asn        | Glu        | Ile        | Thr        | Thr<br>550 | Ser        | His        | Ser        | Val        | Gly<br>555 | Asn        | Met               | Pro        | Ser        | Pro<br>560 |
| Leu        | Lys        | Ile        | Leu        | Ile<br>565 | Ser        | Val        | Ala        | Ile        | туг<br>570 | Val        | Ala        | Cys               | Phe        | Phe<br>575 | Phe        |
| Leu        | Val        | His        |            |            |            |            |            |            |            |            |            |                   |            |            |            |

<210> 20

<211> 2382

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (191)..(1933) <223> SF03, cDNA: NM\_004484, Proteína: NP\_004475

ccctgccccg cgccgccaag cggttcccgc cctcgcccag cgcccaggta gctgcgagga

60

| aac               | ttt               | gca               | gcgg              | ctgg              | ıgt a             | gcag              | cac               | jt ct             | cttg              | jctcc             | tca               | agggo             | cac               | tgcc              | aggctt            | 120 | 3 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|---|
| gco               | gagt              | cct               | ggga              | ctgo              | tc t              | cgct              | ccgg              | gc tg             | ccac              | tctc              | ccg               | geget             | ctc               | ctag              | ctccct            | 180 | ) |
| gcg               | raago             | agg               | atg<br>Met<br>1   | gcc<br>Ala        | gly<br>ggg        | acc<br>Thr        | gtg<br>Val<br>5   | cgc<br>Arg        | acc<br>Thr        | gcg<br>Ala        | tgc<br>Cys        | ttg<br>Leu<br>10  | gtg<br>Val        | gtg<br>Val        | gcg<br>Ala        | 229 | ) |
| atg<br>Met        | ctg<br>Leu<br>15  | Leu               | agc<br>Ser        | Leu               | gac<br>Asp        | ttc<br>Phe<br>20  | Pro               | gga<br>Gly        | cag<br>Gln        | gcg<br>Ala        | Gln<br>25         | Pro               | ccg<br>Pro        | p ccg             | ccg<br>Pro        | 277 | 7 |
| ccg<br>Pro<br>30  | ccg<br>Pro        | gac<br>Asp        | gcc<br>Ala        | acc               | tgt<br>Cys<br>35  | cac               | caa<br>Gln        | gtc<br>Val        | cgc<br>Arg        | Ser<br>40         | t to<br>Phe       | tto<br>Phe        | cag<br>Gln        | aga<br>Arg        | ctg<br>Leu<br>45  | 325 | , |
| cag<br>Gln        | ccc               | gga<br>Gly        | ctc<br>Leu        | aag<br>Lys<br>50  | tgg<br>Trp        | gtg<br>Val        | cca<br>Pro        | gaa<br>Glu        | act<br>Thr<br>55  | Pro               | gtg<br>Val        | cca<br>Pro        | gga<br>Gly        | tca<br>Ser<br>60  | gat<br>Asp        | 373 | 1 |
| ttg<br>Leu        | caa<br>Gln        | gta<br>Val        | tgt<br>Cys<br>65  | ctc<br>Leu        | cct<br>Pro        | aag<br>Lys        | ggc<br>Gly        | cca<br>Pro<br>70  | aca<br>Thr        | tgc<br>Cys        | tgc<br>Cys        | tca<br>Ser        | aga<br>Arg<br>75  | aag<br>Lys        | atg<br>Met        | 421 | , |
| gaa<br>Glu        | gaa<br>Glu        | aaa<br>Lys<br>80  | tac<br>Tyr        | caa<br>Gln        | cta<br>Leu        | aca<br>Thr        | gca<br>Ala<br>85  | cga<br>Arg        | ttg<br>Leu        | aac<br>Asn        | atg<br>Met        | gaa<br>Glu<br>90  | cag<br>Gln        | ctg<br>Leu        | ctt<br>Leu        | 469 | ) |
| cag<br>Gln        | tct<br>Ser<br>95  | gca<br>Ala        | agt<br>Ser        | atg<br>Met        | gag<br>Glu        | ctc<br>Leu<br>100 | aag<br>Lys        | ttc<br>Phe        | tta<br>Leu        | att<br>Ile        | att<br>Ile<br>105 | Gln               | aat<br>Asn        | gct<br>Ala        | gcg<br>Ala        | 517 | , |
| gtt<br>Val<br>110 | ttc<br>Phe        | caa<br>Gln        | gag<br>Glu        | gcc<br>Ala        | ttt<br>Phe<br>115 | gaa<br>Glu        | att<br>Ile        | gtt<br>Val        | gtt<br>Val        | cgc<br>Arg<br>120 | cat<br>His        | gcc<br>Ala        | aag<br>Lys        | aac<br>Asn        | tac<br>Tyr<br>125 | 565 | , |
| acc<br>Thr        | aat<br>Asn        | gcc<br>Ala        | atg<br>Met        | ttc<br>Phe<br>130 | aag<br>Lys        | aac<br>Asn        | aac<br>Asn        | tac<br>Tyr        | cca<br>Pro<br>135 | agc<br>Ser        | ctg<br>Leu        | act               | cca<br>Pro        | caa<br>Gln<br>140 | gct<br>Ala        | 613 |   |
| ttt<br>Phe        | gag<br>Glu        | ttt<br>Phe        | gtg<br>Val<br>145 | ggt<br>Gly        | gaa<br>Glu        | ttt<br>Phe        | ttc<br>Phe        | aca<br>Thr<br>150 | gat<br>Asp        | gtg<br>Val        | tct<br>Ser        | ctc<br>Leu        | tac<br>Tyr<br>155 | atc<br>Ile        | ttg<br>Leu        | 661 |   |
| ggt<br>Gly        | tct<br>Ser        | gac<br>Asp<br>160 | atc<br>Ile        | aat<br>Asn        | gta<br>Val        | gat<br>Asp        | gac<br>Asp<br>165 | atg<br>Met        | gtc<br>Val        | aat<br>Asn        | gaa<br>Glu        | ttg<br>Leu<br>170 | ttt<br>Phe        | gac<br>Asp        | agc<br>Ser        | 709 |   |
| ctg<br>Leu        | ttt<br>Phe<br>175 | cca<br>Pro        | gtc<br>Val        | atc<br>Ile        | tat<br>Tyr        | acc<br>Thr<br>180 | cag<br>Gln        | cta<br>Leu        | atg<br>Met        | aac<br>Asn        | cca<br>Pro<br>185 | ggc<br>Gly        | ctg<br>Leu        | cct<br>Pro        | gat<br>Asp        | 757 |   |
| tca<br>Ser<br>190 | gcc<br>Ala        | ttg<br>Leu        | gac<br>Asp        | atc<br>Ile        | aat<br>Asn<br>195 | gag<br>Glu        | tgc<br>Cys        | ctc<br>Leu        | cga<br>Arg        | gga<br>Gly<br>200 | gca<br>Ala        | aga<br>Arg        | cgt<br>Arg        | gac<br>Asp        | ctg<br>Leu<br>205 | 805 |   |
| aaa<br>Lys        | gta<br>Val        | ttt<br>Phe        | ggg<br>Gly        | aat<br>Asn<br>210 | ttc<br>Phe        | ccc<br>Pro        | aag<br>Lys        | ctt<br>Leu        | att<br>Ile<br>215 | atg<br>Met        | acc<br>Thr        | cag<br>Gln        | gtt<br>Val        | tcc<br>Ser<br>220 | aag<br>Lys        | 853 |   |
| tca<br>Ser        | ctg<br>Leu        | caa<br>Gln        | gtc<br>Val<br>225 | act<br>Thr        | agg<br>Arg        | atc<br>Ile        | ttc<br>Phe        | ctt<br>Leu<br>230 | cag<br>Gln        | gct<br>Ala        | ctg<br>Leu        | aat<br>Asn        | ctt<br>Leu<br>235 | gga<br>Gly        | att<br>Ile        | 901 |   |
| gaa<br>Glu        | gtg<br>Val        | atc<br>Ile<br>240 | aac<br>Asn        | aca<br>Thr        | act<br>Thr        | gat<br>Asp        | cac<br>His<br>245 | ctg<br>Leu        | aag<br>Lys        | ttc<br>Phe        | agt<br>Ser        | aag<br>Lys<br>250 | gac<br>Asp        | tgt<br>Cys        | ggc<br>Gly        | 949 |   |

|                   |              | t Le       |               |                    |                   |            | рТу          |                |                       |                   |            | s Gl          |            |                    | g atg<br>u Met        |      |
|-------------------|--------------|------------|---------------|--------------------|-------------------|------------|--------------|----------------|-----------------------|-------------------|------------|---------------|------------|--------------------|-----------------------|------|
|                   | va:          |            |               |                    |                   | y G1       |              |                |                       |                   | l Va       |               |            |                    | c tgt<br>y Cys<br>285 | 1045 |
| atç<br>Met        | g gca<br>Ala | a gg       | t gte<br>y Va | g gt<br>l Va<br>29 | l Glu             | g ati      | t gad<br>Asp | c aaq<br>p Lys | g tac<br>s Ty:<br>295 | Tr                | g aga      | a gaa<br>g Gl | a tad      | c at<br>r Il<br>30 | t ctg<br>e Leu<br>0   | 1093 |
|                   |              |            |               | ı Leı              |                   |            |              |                | Туз                   |                   |            |               |            | o Me               | g gag<br>t Glu        | 1141 |
|                   |              |            | Leu           |                    |                   |            |              | Thr            |                       |                   |            |               | · Ile      |                    | g tat<br>1 Tyr        | 1189 |
|                   |              | Lys        |               |                    |                   |            | Let          |                |                       |                   |            | : Gly         |            |                    | tgt<br>Cys            | 1237 |
|                   | His          |            |               |                    |                   | Gln        |              |                |                       |                   | Туг        |               |            |                    | gat<br>Asp<br>365     | 1285 |
|                   |              |            |               |                    | Lys               |            |              |                |                       | Ala               |            |               |            |                    | gaa<br>Glu            | 1333 |
|                   |              |            |               | Ser                | cga<br>Arg        |            |              |                |                       |                   |            |               |            | Lys                |                       | 1381 |
|                   |              |            | Phe           |                    | agt<br>Ser        |            |              | Pro            |                       |                   |            |               | Ser        |                    |                       | 1429 |
|                   |              |            |               |                    | gac<br>Asp        |            |              |                |                       |                   |            |               |            |                    |                       | 1477 |
|                   |              |            |               |                    | aag<br>Lys<br>435 |            |              |                |                       |                   |            |               |            |                    |                       | 1525 |
| aat<br>Asn        | ctc<br>Leu   | cat<br>His | gag<br>Glu    | ctg<br>Leu<br>450  | aaa<br>Lys        | atg<br>Met | aag<br>Lys   | ggc<br>Gly     | cct<br>Pro<br>455     | gag<br>Glu        | cca<br>Pro | gtg<br>Val    | gtc<br>Val | agt<br>Ser<br>460  | caa<br>Gln            | 1573 |
|                   |              |            |               | Leu                | aag<br>Lys        |            |              |                |                       |                   |            |               |            |                    |                       | 1621 |
|                   |              |            |               |                    | gtt<br>Val        |            |              |                |                       |                   |            |               |            |                    |                       | 1669 |
|                   |              |            |               |                    | ggt<br>Gly        |            |              |                |                       |                   |            |               |            |                    |                       | 1717 |
| ggt<br>Gly<br>510 | gat<br>Asp   | gga<br>Gly | atg<br>Met    | ata<br>Ile         | aaa<br>Lys<br>515 | gtg<br>Val | aag<br>Lys   | aat<br>Asn     | Gln                   | ctc<br>Leu<br>520 | cgc<br>Arg | ttc<br>Phe    | ctt<br>Leu | gca<br>Ala         | gaa<br>Glu<br>525     | 1765 |

| ctg gcc tat gat ctg gat gtg gat gat gcg cct gga aac agt cag cag<br>Leu Ala Tyr Asp Leu Asp Val Asp Asp Ala Pro Gly Asn Ser Gln Gln<br>530 535 540 | 1813 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gca act ccg aag gac aac gag ata agc acc ttt cac aac ctc ggg aac<br>Ala Thr Pro Lys Asp Asn Glu Ile Ser Thr Phe His Asn Leu Gly Asn<br>545 550 555 | 1861 |
| gtt cat tcc ccg ctg aag ctt ctc acc agc atg gcc atc tcg gtg gtg<br>Val His Ser Pro Leu Lys Leu Thr Ser Met Ala Ile Ser Val Val<br>560 565 570     | 1909 |
| tgc ttc ttc ttc ctg gtg cac tga ctgcctggtg cccagcacat gtgctgccct<br>Cys Phe Phe Phe Leu Val His<br>575 580                                        | 1963 |
| acagcaccct gtggtcttcc tcgataaagg gaaccacttt cttatttttt tctatttttt                                                                                 | 2023 |
| tttttttgtt atcctgtata cctcctccag ccatgaagta gaggactaac catgtgttat                                                                                 | 2083 |
| gttttcgaaa atcaaatggt atcttttgga ggaagataca ttttagtggt agcatataga                                                                                 | 2143 |
| ttgtcctttt gcaaagaaag aaaaaaaacc atcaagttgt gccaaattat tctcctatgt                                                                                 | 2203 |
| ttggctgcta gaacatggtt accatgtctt tctctctcac tccctccctt tctatcgttc                                                                                 | 2263 |
| tctctttgca tggatttctt tgaaaaaaaa taaattgctc aaataaaaaa aaaaaaaaaa                                                                                 | 2323 |
| aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa                                                                                                           | 2382 |

<210> 21

<211> 580

<212> PRT

<213> Homo sapiens

| Met | Ala | Gly | Thr | Val | Arg | Thr | Ala | Cys | Leu | Val | Val | Ala | Met | Leu | Leu |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |

Ser Leu Asp Phe Pro Gly Gln Ala Gln Pro Pro Pro Pro Pro Pro Asp 20 25 30

Ala Thr Cys His Gln Val Arg Ser Phe Phe Gln Arg Leu Gln Pro Gly 35 40 45

Leu Lys Trp Val Pro Glu Thr Pro Val Pro Gly Ser Asp Leu Gln Val 50 55 60

Cys Leu Pro Lys Gly Pro Thr Cys Cys Ser Arg Lys Met Glu Glu Lys 65 70 75 80

Tyr Gln Leu Thr Ala Arg Leu Asn Met Glu Gln Leu Leu Gln Ser Ala 85 90 95

Ser Met Glu Leu Lys Phe Leu Ile Ile Gln Asn Ala Ala Val Phe Gln 100 105 110

Glu Ala Phe Glu Ile Val Val Arg His Ala Lys Asn Tyr Thr Asn Ala

|            |            | 115        | 5          |            |            |            | 120        | )          |            |            |            | 125        | 5          |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Me         | 130        |            | s Asr      | a Ası      | туг        | 135        |            | Lev        | Thi        | r Pro      | Glr<br>140 |            | a Phe      | e Glu      | Phe        |
| Va.<br>14: | l Gly      | Glu        | ı Phe      | Phe        | Thr<br>150 |            | va]        | . Ser      | Lev        | 155        |            | Lev        | Gly        | Ser        | Ası<br>160 |
| Ile        | e Asn      | Val        | l Asp      | Asp<br>165 |            | Val        | Asn        | Glu        | 170        |            | Asp        | Ser        | Lev        | Phe<br>175 |            |
| Va]        | llle       | Туг        | Thr<br>180 |            | Leu        | Met        | Asn        | Pro<br>185 |            | Leu        | Pro        | Asp        | Ser<br>190 |            | Lev        |
| Asp        | lle        | Asn<br>195 |            | Cys        | Leu        | Arg        | Gly<br>200 |            | Arg        | Arg        | Asp        | Leu<br>205 | Lys        | Val        | Phe        |
| Gly        | Asn<br>210 |            | Pro        | Lys        | Leu        | 11e<br>215 |            | Thr        | Gln        | Val        | Ser<br>220 |            | Ser        | Leu        | Gln        |
| Val<br>225 | Thr        | Arg        | Ile        | Phe        | Leu<br>230 |            | Ala        | Leu        | Asn        | Leu<br>235 |            | Ile        | Glu        | Val        | I1e<br>240 |
| Asn        | Thr        | Thr        | Asp        | Нis<br>245 |            | Lys        | Phe        | Ser        | Lys<br>250 |            | Cys        | Gly        | Arg        | Met<br>255 | Leu        |
| Thr        | Arg        | Met        | Trp<br>260 | Tyr        | Cys        | Ser        | Tyr        | Cys<br>265 | Gln        | Gly        | Leu        | Met        | Met<br>270 | Val        | Lys        |
| Pro        | Cys        | Gly<br>275 |            | Tyr        | Cys        | Asn        | Val<br>280 |            | Met        | Gln        | Gly        | Cys<br>285 | Met        | Ala        | Gly        |
| Val        | Val<br>290 | Glu        | Ile        | Asp        | Lys        | Туг<br>295 | Trp        | Arg        | Glu        | Туг        | 11e<br>300 | Leu        | Ser        | Leu        | Glu        |
| G1u<br>305 | Leu        | Val        | Asn        | Gly        | Met<br>310 | Tyr        | Arg        | Ile        | Tyr        | Asp<br>315 | Met        | Glu        | Asn        | Val        | Leu<br>320 |
| Leu        | Gly        | Leu        | Phe        | Ser<br>325 | Thr        | Ile        | His        | Asp        | Ser<br>330 | Ile        | Gln        | Tyr        | Val        | Gln<br>335 | Lys        |
| Asn        | Ala        | Gly        | Lys<br>340 | Leu        | Thr        | Thr        | Thr        | Ile<br>345 | Gly        | Lys        | Leu        | Cys        | Ala<br>350 | His        | Ser        |
| Gln        | Gln        | Arg<br>355 | Gln        | Tyr        | Arg        | Ser        | Ala<br>360 | Tyr        | Tyr        | Pro        | Glu        | Asp<br>365 | Leu        | Phe        | Ile        |
| Asp        | Lys<br>370 | Lys        | Val        | Leu        | Lys        | Val<br>375 | Ala        | His        | Val        | Glu        | His<br>380 | Glu        | Glu        | Thr        | Leu        |
| Ser        | Ser        | Arg        | Arg        | Arg        | Glu        | Leu        | Ile        | Gln        | Lys        | Leu        | Lys        | Ser        | Phe        | Ile        | Ser        |

| 385        | i          |            |            |            | 390        |            |            |            |            | 395        | i          |            |            |            | 400        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Phe        | туг        | Ser        | Ala        | Leu<br>405 |            | Gly        | туг        | Ile        | Cys<br>410 |            | His        | Ser        | Pro        | Val<br>415 |            |
| Glu        | Asn        | Asp        | Thr<br>420 | Leu        | Cys        | Trp        | Asn        | Gly<br>425 |            | Glu        | Leu        | Val        | Glu<br>430 |            | Туr        |
| Ser        | Gln        | Lys<br>435 |            | Ala        | Arg        | Asn        | Gly<br>440 |            | Lys        | Asn<br>·   | Gln        | Phe<br>445 |            | Leu        | His        |
| Glu        | Leu<br>450 |            | Met        | Lys        | Gly        | Pro<br>455 |            | Pro        | Val        | Val        | Ser<br>460 | Gln        | Ile        | Ile        | Asp        |
| Lys<br>465 |            | Lys        | His        | Ile        | Asn<br>470 | Gln        | Leu        | Leu        | Arg        | Thr<br>475 | Met        | Ser        | Met        | Pro        | Lys<br>480 |
| Gly        | Arg        | Val        | Leu        | Asp<br>485 | Lys        | Asn        | Leu        | Asp        | Glu<br>490 | Glu        | Gly        | Phe        | Glu        | Ser<br>495 | Gly        |
| Asp        | Cys        | Gly        | Asp<br>500 | Asp        | Glu        | Asp        | Glu        | Cys<br>505 | Ile        | Gly        | Gly        | Ser        | Gly<br>510 | Asp        | Gly        |
| Met        | Ile        | Lys<br>515 | Val        | Lys        | Asn        | Gln        | Leu<br>520 | Arg        | Phe        | Leu        | Ala        | Glu<br>525 | Leu        | Ala        | Tyr        |
| Asp        | Leu<br>530 | Asp        | Val        | Asp        | Asp        | Ala<br>535 | Pro        | Gly        | Asn        | Ser        | Gln<br>540 | Gln        | Ala        | Thr        | Pro        |
| Lys<br>545 | Asp        | Asn        | Glu        | Ile        | Ser<br>550 | Thr        | Phe        | His        | Asn        | Leu<br>555 | Gly        | Asn        | Val        | His        | ser<br>560 |
| Pro        | Leu        | Lys        | Leu        | Leu<br>565 | Thr        | Ser        | Met        | Ala        | Ile<br>570 | Ser        | Val        | Val        | Cys        | Phe<br>575 | Phe        |
| Phe        | Leu        | Val        | His<br>580 |            |            |            |            |            |            |            |            |            |            |            |            |
| > 22       | ı          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

<210> 22

<211> 1234

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (89)..(1138)

<223> SF04, cDNA: NM\_007443, Proteína: NP\_031469

| gagtttgtag | ctgccactgc | cggggaagt | ta at | ccct | tgcto | CC | acact | tgaa | ctgt       | tgagaga | 60  |
|------------|------------|-----------|-------|------|-------|----|-------|------|------------|---------|-----|
| gacatcaaag | accaaagacc |           |       |      |       |    |       |      | ctg<br>Leu |         | 112 |

| ctg<br>Leu        | ctg<br>Leu<br>10  | ctg<br>Leu        | act<br>Thr        | gcc<br>Ala        | tgc<br>Cys        | ctc<br>Leu<br>15  | gct<br>Ala        | tcg<br>Ser        | agg<br>Arg        | gct<br>Ala        | gac<br>Asp<br>20  | cct<br>Pro        | gcg<br>Ala        | tca<br>Ser        | aca<br>Thr        | 160 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| ctg<br>Leu<br>25  | cca<br>Pro        | gat<br>Asp        | atc<br>Ile        | cag<br>Gln        | gtt<br>Val<br>30  | cag<br>Gln        | gag<br>Glu        | aac<br>Asn        | ttc<br>Phe        | agt<br>Ser<br>35  | gag<br>Glu        | tcc<br>Ser        | cgg<br>Arg        | atc<br>Ile        | tat<br>Tyr<br>40  | 208 |
| gga<br>Gly        | aaa<br>Lys        | tgg<br>Trp        | tac<br>Tyr        | aac<br>Asn<br>45  | ctg<br>Leu        | gcg<br>Ala        | gtg<br>Val        | gga<br>Gly        | tcc<br>Ser<br>50  | acc<br>Thr        | tgc<br>Cys        | ccg<br>Pro        | tgg<br>Trp        | ctg<br>Leu<br>55  | agc<br>Ser        | 256 |
| cgc<br>Arg        | att<br>Ile        | aag<br>Lys        | gac<br>Asp<br>60  | aag<br>Lys        | atg<br>Met        | agc<br>Ser        | gtg<br>Val        | agc<br>Ser<br>65  | acg<br>Thr        | ctg<br>Leu        | gtg<br>Val        | ctg<br>Leu        | cag<br>Gln<br>70  | gag<br>Glu        | Gly<br>ggg        | 304 |
| gcg<br>Ala        | aca<br>Thr        | gaa<br>Glu<br>75  | aca<br>Thr        | gag<br>Glu        | atc<br>Ile        | agc<br>Ser        | atg<br>Met<br>80  | acc<br>Thr        | agt<br>Ser        | act<br>Thr        | cga<br>Arg        | tgg<br>Trp<br>85  | cgg<br>Arg        | aga<br>Arg        | ggt<br>Gly        | 352 |
| gtc<br>Val        | tgt<br>Cys<br>90  | gag<br>Glu        | gag<br>Glu        | atc<br>Iļe        | act<br>Thr        | ggg<br>Gly<br>95  | gcg<br>Ala        | tac<br>Tyr        | cag<br>Gln        | aag<br>Lys        | acg<br>Thr<br>100 | gac<br>Asp        | atc<br>Ile        | gat<br>Asp        | gga<br>Gly        | 400 |
| aag<br>Lys<br>105 | ttc<br>Phe        | ctc<br>Leu        | tac<br>Tyr        | cac<br>His        | aaa<br>Lys<br>110 | tcc<br>Ser        | aaa<br>Lys        | tgg<br>Trp        | aac<br>Asn        | ata<br>Ile<br>115 | acc<br>Thr        | ttg<br>Leu        | gaa<br>Glu        | tcc<br>Ser        | tat<br>Tyr<br>120 | 448 |
| gtg<br>Val        | gtc<br>Val        | cac<br>His        | acc<br>Thr        | aac<br>Asn<br>125 | tat<br>Tyr        | gac<br>Asp        | gaa<br>Glu        | tat<br>Tyr        | gcc<br>Ala<br>130 | att<br>Ile        | ttc<br>Phe        | ctt<br>Leu        | acc<br>Thr        | aag<br>Lys<br>135 | aag<br>Lys        | 496 |
| tcc<br>Ser        | agc<br>Ser        | cac<br>His        | cac<br>His<br>140 | cac<br>His        | Gly<br>ggg        | ctc<br>Leu        | acc<br>Thr        | atc<br>Ile<br>145 | act<br>Thr        | gcc<br>Ala        | aag<br>Lys        | ctc<br>Leu        | tat<br>Tyr<br>150 | ggt<br>Gly        | cgg<br>Arg        | 544 |
| gag<br>Glu        | cca<br>Pro        | cag<br>Gln<br>155 | ctg<br>Leu        | agg<br>Arg        | gac<br>Asp        | agc<br>Ser        | ctt<br>Leu<br>160 | ctg<br>Leu        | cag<br>Gln        | gag<br>Glu        | Pne               | aag<br>Lys<br>165 | gat<br>Asp        | gtg<br>Val        | gcc<br>Ala        | 592 |
| ctg<br>Leu        | aat<br>Asn<br>170 | gtg<br>Val        | ggc<br>Gly        | atc<br>Ile        | tct<br>Ser        | gag<br>Glu<br>175 | aac<br>Asn        | tcc<br>Ser        | atc<br>Ile        | att<br>Ile        | ttt<br>Phe<br>180 | atg<br>Met        | cct<br>Pro        | gac<br>Asp        | aga<br>Arg        | 640 |
| ggg<br>Gly<br>185 | gaa<br>Glu        | tgt<br>Cys        | gtc<br>Val        | cct<br>Pro        | ggg<br>Gly<br>190 | gat<br>Asp        | cgg<br>Arg        | gag<br>Glu        | gtg<br>Val        | gag<br>Glu<br>195 | ccc<br>Pro        | aca<br>Thr        | tca<br>Ser        | att<br>Ile        | gcc<br>Ala<br>200 | 688 |
| aga<br>Arg        | gcc<br>Ala        | cgg<br>Arg        | cgg<br>Arg        | gca<br>Ala<br>205 | gtg<br>Val        | ctg<br>Leu        | ccc<br>Pro        | caa<br>Gln        | gag<br>Glu<br>210 | agt<br>Ser        | gag<br>Glu        | ggg<br>Gly        | tca<br>Ser        | ggg<br>Gly<br>215 | act<br>Thr        | 736 |
| gag<br>Glu        | cca<br>Pro        | cta<br>Leu        | ata<br>Ile<br>220 | act<br>Thr        | G1A<br>aaa        | acc<br>Thr        | ctc<br>Leu        | aag<br>Lys<br>225 | aaa<br>Lys        | gaa<br>Glu        | gac<br>Asp        | tcc<br>Ser        | tgc<br>Cys<br>230 | cag<br>Gln        | ctc<br>Leu        | 784 |
| aat<br>Asn        | tac<br>Tyr        | tca<br>Ser<br>235 | gaa<br>Glu        | ggc<br>Gly        | ccc<br>Pro        | tgc<br>Cys        | cta<br>Leu<br>240 | Gly<br>ggg        | atg<br>Met        | caa<br>Gln        | gag<br>Glu        | agg<br>Arg<br>245 | tat<br>Tyr        | tac<br>Tyr        | tac<br>Tyr        | 832 |
| aac<br>Asn        | ggc<br>Gly<br>250 | gct<br>Ala        | tcc<br>Ser        | atg<br>Met        | gcc<br>Ala        | tgc<br>Cys<br>255 | gag<br>Glu        | acc<br>Thr        | ttt<br>Phe        | caa<br>Gln        | tat<br>Tyr<br>260 | ggg<br>Gly        | ggt<br>Gly        | tgc<br>Cys        | cta<br>Leu        | 880 |
| ggc<br>Gly<br>265 | aac<br>Asn        | ggc<br>Gly        | aac<br>Asn        | aac<br>Asn        | ttc<br>Phe<br>270 | atc<br>Ile        | tct<br>Ser        | gag<br>Glu        | ьуs               | gac<br>Asp<br>275 | tgt<br>Cys        | ctg<br>Leu        | cag<br>Gln        | aca<br>Thr        | tgt<br>Cys<br>280 | 928 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   | •                 | _                 |                   |                   |                   |                   |                   |     |

| cgg<br>Arg        | acc<br>Thr        | ata<br>Ile        | gcg<br>Ala        | gcc<br>Ala<br>285 | tgc<br>Cys | aat<br>Asn        | ctc<br>Leu        | ccc<br>Pro        | ata<br>Ile<br>290 | gtc<br>Val | caa<br>Gln        | ggc<br>Gly        | ccc<br>Pro        | tgc<br>Cys<br>295 | cga<br>Arg | 976  |
|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|------|
| gcc<br>Ala        | ttc<br>Phe        | ata<br>Ile        | aag<br>Lys<br>300 | ctc<br>Leu        | tgg<br>Trp | gca<br>Ala        | ttt<br>Phe        | gat<br>Asp<br>305 | gca<br>Ala        | gca<br>Ala | caa<br>Gln        | Gly               | aag<br>Lys<br>310 | tgc<br>Cys        | atc<br>Ile | 1024 |
| caa<br>Gln        | ttc<br>Phe        | cac<br>Kis<br>315 | tac<br>Tyr        | Gly<br>ggg        | ggc<br>Gly | tgc<br>Cys        | aaa<br>Lys<br>320 | ggc<br>Gly        | aac<br>Asn        | ggc<br>Gly | aac<br>Asn        | aaa<br>Lys<br>325 | ttc<br>Phe        | tac<br>Tyr        | tct<br>Ser | 1072 |
| gag<br>Glu        | aag<br>Lys<br>330 | gaa<br>Glu        | tgc<br>Cys        | aaa<br>Lys        | gag<br>Glu | tac<br>Tyr<br>335 | tgt<br>Cys        | gga<br>Gly        | gtc<br>Val        | cct<br>Pro | ggt<br>Gly<br>340 | gat<br>Asp        | ggg               | tac<br>Tyr        | gag<br>Glu | 1120 |
| gaa<br>Glu<br>345 | cta<br>Leu        | ata<br>Ile        | cgc<br>Arg        | agt<br>Ser        | tga        | aggt              | geca              | agt o             | tgca              | agco       | a ga              | agggt             | tage              | 2                 |            | 1168 |
| actg              | tttç              | gtc a             | acago             | gcag              | gt co      | agct              | taga              | a tga             | atcto             | ggac       | ccaa              | ataa              | aaa (             | aagt              | tgtca      | 1228 |
| cttc              | ct                |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 1234 |

<210> 23

<211> 349

<212> PRT

<213> Mus musculus

<400> 23

Met Gln Gly Leu Arg Thr Leu Phe Leu Leu Leu Thr Ala Cys Leu Ala 1 5 10

Ser Arg Ala Asp Pro Ala Ser Thr Leu Pro Asp Ile Gln Val Gln Glu 20 25 30

Asn Phe Ser Glu Ser Arg Ile Tyr Gly Lys Trp Tyr Asn Leu Ala Val 35 40 45

Gly Ser Thr Cys Pro Trp Leu Ser Arg Ile Lys Asp Lys Met Ser Val 50 60

Ser Thr Leu Val Leu Gln Glu Gly Ala Thr Glu Thr Glu Ile Ser Met 65 70 75 80

Thr Ser Thr Arg Trp Arg Arg Gly Val Cys Glu Glu Ile Thr Gly Ala 85 90 95

Tyr Gln Lys Thr Asp Ile Asp Gly Lys Phe Leu Tyr His Lys Ser Lys

Trp Asn Ile Thr Leu Glu Ser Tyr Val Val His Thr Asn Tyr Asp Glu

Tyr Ala Ile Phe Leu Thr Lys Lys Ser Ser His His His Gly Leu Thr 130 135 140

Ile Thr Ala Lys Leu Tyr Gly Arg Glu Pro Gln Leu Arg Asp Ser Leu 145 150 155 160 Leu Gln Glu Phe Lys Asp Val Ala Leu Asn Val Gly Ile Ser Glu Asn 165 170 175 Ser Ile Ile Phe Met Pro Asp Arg Gly Glu Cys Val Pro Gly Asp Arg 180 185 190 Glu Val Glu Pro Thr Ser Ile Ala Arg Ala Arg Arg Ala Val Leu Pro 195 200 205 Gln Glu Ser Glu Gly Ser Gly Thr Glu Pro Leu Ile Thr Gly Thr Leu 210 215 220 Lys Lys Glu Asp Ser Cys Gln Leu Asn Tyr Ser Glu Gly Pro Cys Leu 225 230 235 240 Gly Met Gln Glu Arg Tyr Tyr Asn Gly Ala Ser Met Ala Cys Glu 245 250 255 Thr Phe Gln Tyr Gly Gly Cys Leu Gly Asn Gly Asn Asn Phe Ile Ser 260 265 270 Glu Lys Asp Cys Leu Gln Thr Cys Arg Thr Ile Ala Ala Cys Asn Leu 275 280 285 Pro Ile Val Gln Gly Pro Cys Arg Ala Phe Ile Lys Leu Trp Ala Phe 290 295 300 Asp Ala Ala Gln Gly Lys Cys Ile Gln Phe His Tyr Gly Gly Cys Lys 305 310 315 Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu Cys Lys Glu Tyr Cys 325 330 335 Gly Val Pro Gly Asp Gly Tyr Glu Glu Leu Ile Arg Ser 340

<210> 24

<211> 1413

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (227)..(1285)

<223> SF04, cDNA: NM\_001633, Proteína: NP\_001624

| ccggcctctt | ggtactgctg | accccagcca | ggctacaggg | atcgattgga | gctgtccttg | 6   |
|------------|------------|------------|------------|------------|------------|-----|
| ggctgtaat  | tggccccagc | tgagcagggc | aaacactgag | gtcaactaca | agccacaggc | 120 |

| cccttcccca gcctc                          | agttc acagct                      | gccc tgttgcaggg                           | aggcggtggc c                      | cttctgttg 180                 |
|-------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------|-------------------------------|
| ctagacegag cetgt                          |                                   |                                           | atagec atg a                      |                               |
| ctc ggg gcc ctg<br>Leu Gly Ala Leu<br>5   | ctc ttg ctg<br>Leu Leu Leu 10     | ctg agc gcc tgc<br>Leu Ser Ala Cys        | ctg gcg gtg<br>Leu Ala Val<br>15  | agc gct 283<br>Ser Ala        |
| ggc cct gtg cca<br>Gly Pro Val Pro<br>20  | acg ccg ccc<br>Thr Pro Pro        | gac aac atc caa<br>Asp Asn Ile Gln<br>30  | gtg cag gaa<br>Val Gln Glu        | aac ttc 331<br>Asn Phe<br>35  |
| aat atc tct cgg<br>Asn Ile Ser Arg        | atc tat ggg<br>Ile Tyr Gly        | aag tgg tac aac<br>Lys Trp Tyr Asn<br>45  | Ten via tie                       | ggt tcc 379<br>Gly Ser<br>50  |
| acc tgc ccc tgg<br>Thr Cys Pro Trp<br>55  | ctg aag aag<br>Leu Lys Lys        | atc atg gac agg<br>Ile Met Asp Arg<br>60  | atg aca gtg<br>Met Thr Val<br>65  | agc acg 427<br>Ser Thr        |
| ctg gtg ctg gga<br>Leu Val Leu Gly<br>70  | Glu Gly Ala                       | aca gag gcg gag<br>Thr Glu Ala Glu<br>75  | atc agc atg<br>Ile Ser Met<br>80  | acc agc 475<br>Thr Ser        |
| act cgt tgg cgg<br>Thr Arg Trp Arg<br>85  | aaa ggt gtc<br>Lys Gly Val<br>90  | tgt gag gag acg<br>Cys Glu Glu Thr        | tct gga gct<br>Ser Gly Ala<br>95  | tat gag 523<br>Tyr Glu        |
| aaa aca gat act<br>Lys Thr Asp Thr<br>100 | gat ggg aag<br>Asp Gly Lys<br>105 | ttt ctc tat cac<br>Phe Leu Tyr His<br>110 | aaa too aaa<br>Lys Ser Lys        | tgg aac 571<br>Trp Asn<br>115 |
| ata acc atg gag<br>Ile Thr Met Glu        | tcc tat gtg<br>Ser Tyr Val<br>120 | gtc cac acc aac<br>Val His Thr Asn<br>125 | tat gat gag<br>Tyr Asp Glu        | tat gcc 619<br>Tyr Ala<br>130 |
| att ttc ctg acc<br>Ile Phe Leu Thr<br>135 | aag aaa ttc<br>Lys Lys Phe        | agc cgc cat cat<br>Ser Arg His His<br>140 | gga ccc acc<br>Gly Pro Thr<br>145 | att act 667<br>Ile Thr        |
| gcc aag ctc tac<br>Ala Lys Leu Tyr<br>150 | Gly Arg Ala                       | ccg cag ctg agg<br>Pro Gln Leu Arg<br>155 | gaa act ctc<br>Glu Thr Leu<br>160 | ctg cag 715<br>Leu Gln        |
| gac ttc aga gtg<br>Asp Phe Arg Val<br>165 | gtt gcc cag<br>Val Ala Gln<br>170 | ggt gtg ggc atc<br>Gly Val Gly Ile        | cct gag gac<br>Pro Glu Asp<br>175 | tcc atc 763<br>Ser Ile        |
| ttc acc atg gct<br>Phe Thr Met Ala<br>180 | gac cga ggt<br>Asp Arg Gly<br>185 | gaa tgt gtc cct<br>Glu Cys Val Pro<br>190 | Gry Gra Gri                       | gaa cca 811<br>Glu Pro<br>195 |
| gag ccc atc tta<br>Glu Pro Ile Leu        | atc ccg aga<br>Ile Pro Arg<br>200 | gtc cgg agg gct<br>Val Arg Arg Ala<br>205 | gtg cta ccc<br>Val Leu Pro        | caa gaa 859<br>Gln Glu<br>210 |
| gag gaa gga tca<br>Glu Glu Gly Ser<br>215 | Gly Gly Gly                       | caa ctg gta act<br>Gln Leu Val Thr<br>220 | gaa gtc acc<br>Glu Val Thr<br>225 | aag aaa 907<br>Lys Lys        |
| gaa gat tcc tgc<br>Glu Asp Ser Cys<br>230 | cag ctg ggc<br>Gln Leu Gly        | tac tcg gcc ggt<br>Tyr Ser Ala Gly<br>235 | ecc tgc atg<br>Pro Cys Met<br>240 | gga atg 955<br>Gly Met        |
| acc agc agg tat                           | ttc tat aat                       | ggt aca tcc atg<br>28                     | gcc tgt gag                       | act ttc 1003                  |

)

| Thr               | Ser<br>245        | Arg               | Tyr               | Phe               | Tyr               | Asn<br>250        | Gly               | Thr               | Ser               | Met               | Ala<br>255        | Cys               | Glu               | Thr               | Phe               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| cag<br>Gln<br>260 | tac<br>Tyr        | ggc<br>Gly        | ggc<br>Gly        | tgc<br>Cys        | atg<br>Met<br>265 | ggc<br>Gly        | aac<br>Asn        | ggt<br>Gly        | aac<br>Asn        | aac<br>Asn<br>270 | ttc<br>Phe        | gtc<br>Val        | aca<br>Thr        | gaa<br>Glu        | aag<br>Lys<br>275 | 1051 |
| gag<br>Glu        | tgt<br>Cys        | ctg<br>Leu        | cag<br>Gln        | acc<br>Thr<br>280 | tgc<br>Cys        | cga<br>Arg        | act<br>Thr        | gtg<br>Val        | gcg<br>Ala<br>285 | gcc<br>Ala        | tgc<br>Cys        | aat<br>Asn        | ctc<br>Leu        | ccc<br>Pro<br>290 | ata<br>Ile        | 1099 |
| gtc<br>Val        | cgg<br>Arg        | ggc<br>Gly        | ccc<br>Pro<br>295 | Cys               | cga<br>Arg        | gcc<br>Ala        | ttc<br>Phe        | atc<br>Ile<br>300 | cag<br>Gln        | ctc<br>Leu        | tgg<br>Trp        | gca<br>Ala        | ttt<br>Phe<br>305 | gat<br>Asp        | gct<br>Ala        | 1147 |
| gtc<br>Val        | aag<br>Lys        | ggg<br>Gly<br>310 | aag<br>Lys        | tgc<br>Cys        | gtc<br>Val        | ctc<br>Leu        | ttc<br>Phe<br>315 | ccc<br>Pro        | tac<br>Tyr        | ggg<br>ggg        | ggc<br>Gly        | tgc<br>Cys<br>320 | cag<br>Gln        | ggc<br>Gly        | aac<br>Asn        | 1195 |
| ggg               | aac<br>Asn<br>325 | aag<br>Lys        | ttc<br>Phe        | tac<br>Tyr        | tca<br>Ser        | gag<br>Glu<br>330 | aag<br>Lys        | gag<br>Glu        | tgc<br>Cys        | aga<br>Arg        | gag<br>Glu<br>335 | tac<br>Tyr        | tgc<br>Cys        | ggt<br>Gly        | gtc<br>Val        | 1243 |
| cct<br>Pro<br>340 | ggt<br>Gly        | gat<br>Asp        | ggt<br>Gly        | gat<br>Asp        | gag<br>Glu<br>345 | gag<br>Glu        | ctg<br>Leu        | ctg<br>Leu        | cgc<br>Arg        | ttc<br>Phe<br>350 | tcc<br>Ser        | aac<br>Asn        | tga               |                   |                   | 1285 |
| caac              | tggc              | cg g              | tctg              | caag              | t ca              | gagg              | atgg              | cca               | gtgt              | ctg               | tccc              | gggg              | tc c              | tgtg              | gcagg             | 1345 |
| cago              | gcca              | ag c              | aacc              | tggg              | t cc              | aaat              | aaaa              | act               | aaat              | tgt               | aaac              | tcct              | ga a              | aaaa              | aaaaa             | 1405 |
| aaaa              | aaaa              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1413 |

<sup>&</sup>lt;210> 25

<sup>&</sup>lt;211> 352

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

- Met Arg Ser Leu Gly Ala Leu Leu Leu Leu Leu Ser Ala Cys Leu Ala 1 5 10 15
- Val Ser Ala Gly Pro Val Pro Thr Pro Pro Asp Asn Ile Gln Val Gln 20 25 30
- Glu Asn Phe Asn Ile Ser Arg Ile Tyr Gly Lys Trp Tyr Asn Leu Ala 35 40 45
- Ile Gly Ser Thr Cys Pro Trp Leu Lys Lys Ile Met Asp Arg Met Thr 50 55 60
- Val Ser Thr Leu Val Leu Gly Glu Gly Ala Thr Glu Ala Glu Ile Ser 65 70 75 80
- Met Thr Ser Thr Arg Trp Arg Lys Gly Val Cys Glu Glu Thr Ser Gly 85 90 95
- Ala Tyr Glu Lys Thr Asp Thr Asp Gly Lys Phe Leu Tyr His Lys Ser 100 105 110

Lys Trp Asn Ile Thr Met Glu Ser Tyr Val Val His Thr Asn Tyr Asp

Glu Tyr Ala Ile Phe Leu Thr Lys Lys Phe Ser Arg His His Gly Pro 130 Thr Ile Thr Ala Lys Leu Tyr Gly Arg Ala Pro Gln Leu Arg Glu Thr 145 Leu Gln Asp Phe Arg Val Val Ala Gln Gly Val Gly Ile Pro Glu Leu Leu Gln Asp Phe Arg Val Val Ala Gln Gly Val Gly Ile Pro Glu 170 Gln Glu Pro Glu 180 Thr 180 Thr Met Ala Asp Arg Gly Glu Cys Val Pro Gly Glu Gln Glu Pro Glu Pro Ile Leu Ile Pro Arg Val Arg Arg Ala Val Leu 200 Pro Gln Glu Glu Glu Gly Ser Gly Gly Gln Leu Val Thr Glu Val 210 Gly Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys 225 Met Gly Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys 255 Glu Thr Glu Lys Glu Cys Leu Gln Thr Cys Arg Thr Val Ala Ala Cys Asn 275 Glu Lys Glu Cys Leu Gln Thr Cys Arg Thr Val Ala Ala Cys Asn 270 Pro Ile Val Arg Gly Pro Cys Arg Arg Thr Val Ala Ala Cys Asn 270 Pro Ile Val Arg Gly Pro Cys Arg Ala Phe Ile Gln Leu Trp Ala

Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro Tyr Gly Gly Cys 305 310 315

Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu Cys Arg Glu Tyr 325 330 335

Cys Gly Val Pro Gly Asp Gly Asp Glu Glu Leu Leu Arg Phe Ser Asn 340 345

<210> 26

<211> 2944

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (98)..(1330) <223> SF05, cDNA: NM\_009250, Proteína: NP\_033276

| cgg               | cacg              | aga               | tccg              | gagç              | ag t              | ctca              | gcct              | g cc              | cagc              | atcc              | tct               | ccag              | cat               | cccg              | agcggg            | 60  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| gat               | tgca              | ggt               | gtga              | agga              | ga c              | ttga              | aacc              | a tc              | ccat              | c at<br>Me<br>1   | g ac<br>t Th      | t ta<br>r Ty      | c ct<br>r Le      | t ga<br>u Gl<br>5 | a ctg<br>u Leu    | 115 |
| ctt<br>Leu        | gct<br>Ala        | ttg<br>Leu        | ctg<br>Leu<br>10  | gcc<br>Ala        | ttg<br>Leu        | caa<br>Gln        | agt<br>Ser        | gtg<br>Val<br>15  | gtg<br>Val        | aca<br>Thr        | Gly               | gca<br>Ala        | acg<br>Thr<br>20  | ttc<br>Phe        | cca<br>Pro        | 163 |
| gat<br>Asp        | gaa<br>Glu        | acc<br>Thr<br>25  | ata<br>Ile        | act<br>Thr        | gag<br>Glu        | tgg<br>Trp        | tca<br>Ser<br>30  | gtg<br>Val        | aac<br>Asn        | atg<br>Met        | tat<br>Tyr        | aac<br>Asn<br>35  | cac<br>His        | ctt<br>Leu        | cga<br>Arg        | 211 |
| ggc<br>Gly        | acc<br>Thr<br>40  | ggg               | gaa<br>Glu        | gat<br>Asp        | gaa<br>Glu        | aac<br>Asn<br>45  | att<br>Ile        | ctc<br>Leu        | ttc<br>Phe        | tct<br>Ser        | cca<br>Pro<br>50  | cta<br>Leu        | agc<br>Ser        | att<br>Ile        | gcc<br>Ala        | 259 |
| ctt<br>Leu<br>55  | gcg<br>Ala        | atg<br>Met        | gga<br>Gly        | atg<br>Met        | atg<br>Met<br>60  | gag<br>Glu        | ctt<br>Leu        | ggg<br>Gly        | gct<br>Ala        | caa<br>Gln<br>65  | gga<br>Gly        | tct<br>Ser        | act<br>Thr        | agg<br>Arg        | aaa<br>Lys<br>70  | 307 |
| gaa<br>Glu        | atc<br>Ile        | cgc.<br>Arg       | cat<br>His        | tca<br>Ser<br>75  | atg<br>Met        | gga<br>Gly        | tat<br>Tyr        | gag<br>Glu        | ggt<br>Gly<br>80  | ctg<br>Leu        | aaa<br>Lys        | ggt<br>Gly        | ggt<br>Gly        | gaa<br>Glu<br>85  | gaa<br>Glu        | 355 |
| ttt<br>Phe        | tct<br>Ser        | ttc<br>Phe        | ctg<br>Leu<br>90  | agg<br>Arg        | gat<br>Asp        | ttt<br>Phe        | tct<br>Ser        | aat<br>Asn<br>95  | atg<br>Met        | gcc<br>Ala        | tct<br>Ser        | gcc<br>Ala        | gaa<br>Glu<br>100 | gaa<br>Glu        | aac<br>Asn        | 403 |
| caa<br>Gln        | tat<br>Tyr        | gtg<br>Val<br>105 | atg<br>Met        | aaa<br>Lys        | ctt<br>Leu        | gcc<br>Ala        | aat<br>Asn<br>110 | tcg<br>Ser        | ctc<br>Leu        | ttt<br>Phe        | gta<br>Val        | caa<br>Gln<br>115 | aat<br>Asn        | gga<br>Gly        | ttt<br>Phe        | 451 |
| cat<br>His        | gtc<br>Val<br>120 | aat<br>Asn        | gag<br>Glu        | gaa<br>Glu        | ttc<br>Phe        | ttg<br>Leu<br>125 | caa<br>Gln        | atg<br>Met        | ctg<br>Leu        | aaa<br>Lys        | atg<br>Met<br>130 | tac<br>Tyr        | ttt<br>Phe        | aat<br>Asn        | gca<br>Ala        | 499 |
| gaa<br>Glu<br>135 | gtc<br>Val        | aac<br>Asn        | cat<br>His        | gtg<br>Val        | gac<br>Asp<br>140 | ttc<br>Phe        | agt<br>Ser        | caa<br>Gln        | aat<br>Asn        | gtg<br>Val<br>145 | gct<br>Ala        | gtg<br>Val        | gct<br>Ala        | aac<br>Asn        | tcc<br>Ser<br>150 | 547 |
| atc<br>Ile        | aat<br>Asn        | aaa<br>Lys        | tgg<br>Trp        | gtg<br>Val<br>155 | gag<br>Glu        | aat<br>Asn        | tat<br>Tyr        | aca<br>Thr        | aac<br>Asn<br>160 | agt<br>Ser        | ctg<br>Leu        | ttg<br>Leu        | aaa<br>Lys        | gat<br>Asp<br>165 | ctg<br>Leu        | 595 |
| gtg<br>Val        | tct<br>Ser        | ccg<br>Pro        | gag<br>Glu<br>170 | gac<br>Asp        | ttt<br>Phe        | gat<br>Asp        | ggt<br>Gly        | gtc<br>Val<br>175 | act<br>Thr        | aat<br>Asn        | ttg<br>Leu        | gcc<br>Ala        | ctc<br>Leu<br>180 | atc<br>Ile        | aat<br>Asn        | 643 |
| gct<br>Ala        | gta<br>Val        | tat<br>Tyr<br>185 | ttc<br>Phe        | aaa<br>Lys        | gga<br>Gly        | aac<br>Asn        | tgg<br>Trp<br>190 | aag<br>Lys        | tct<br>Ser        | cag<br>Gln        | ttt<br>Phe        | aga<br>Arg<br>195 | cct<br>Pro        | gaa<br>Glu        | aat<br>Asn        | 691 |
| acc<br>Thr        | aga<br>Arg<br>200 | act<br>Thr        | ttc<br>Phe        | tcc<br>Ser        | ttc<br>Phe        | acg<br>Thr<br>205 | aaa<br>Lys        | gat<br>Asp        | gat<br>Asp        | gaa<br>Glu        | agt<br>Ser<br>210 | gaa<br>Glu        | gtg<br>Val        | cag<br>Gln        | att<br>Ile        | 739 |
| cca<br>Pro<br>215 | atg<br>Met        | atg<br>Met        | tat<br>Tyr        | caa<br>Gln        | caa<br>Gln<br>220 | gga<br>Gly        | gaa<br>Glu        | ttt<br>Phe        | Tyr               | tat<br>Tyr<br>225 | ggt<br>Gly        | gaa<br>Glu        | ttt<br>Phe        | agt<br>Ser        | gat<br>Asp<br>230 | 787 |
| gga               | tcc               | aat               | gag               | gct               | ggt               | ggt               | atc               | tac               | caa_              | gtc               | ctt               | gag               | ata               | ccc               | tat               | 835 |

| Gly               | Ser               | Asn               | Glu               | Ala<br>235        | Gly               | Gly               | Ile               | Tyr               | Gln<br>240              | Val               | Leu               | Glu                | Ile               | Pro<br>245        | Tyr               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|------|
| gag<br>Glu        | gga<br>Gly        | gat<br>Asp        | gag<br>Glu<br>250 | atc<br>Ile        | agc<br>Ser        | atg<br>Met        | atg<br>Met        | ctg<br>Leu<br>255 | gca<br>Ala              | ctg<br>Leu        | tcc<br>Ser        | aga<br>Arg         | cag<br>Gln<br>260 | gaa<br>Glu        | gtc<br>Val        | 883  |
| cca<br>Pro        | ctg<br>Leu        | gcc<br>Ala<br>265 | aca<br>Thr        | ctg<br>Leu        | gag<br>Glu        | cct<br>Pro        | ctg<br>Leu<br>270 | ctc<br>Leu        | aaa<br>Lys              | gca<br>Ala        | cag<br>Gln        | ctg<br>Leu<br>275  | atc<br>Ile        | gaa<br>Glu        | gaa<br>Glu        | 931  |
| tgg<br>Trp        | gca<br>Ala<br>280 | aac<br>Asn        | tct<br>Ser        | gtg<br>Val        | aag<br>Lys        | aaa<br>Lys<br>285 | caa<br>Gln        | aag<br>Lys        | gtg<br>Val              | gaa<br>Glu        | gtg<br>Val<br>290 | tac<br>Tyr         | ttg<br>Leu        | CCC<br>Pro        | agg<br>Arg        | 979  |
| ttc<br>Phe<br>295 | act<br>Thr        | gtg<br>Val        | gaa<br>Glu        | cag<br>Gln        | gaa<br>Glu<br>300 | att<br>Ile        | gat<br>Asp        | tta<br>Leu        | aaa<br>Lys              | gac<br>Asp<br>305 | atc<br>Ile        | ttg<br><b>Le</b> u | aaa<br>Lys        | gcc<br>Ala        | ctt<br>Leu<br>310 | 1027 |
| ggg<br>Gly        | gtc<br>Val        | act<br>Thr        | gaa<br>Glu        | att<br>Ile<br>315 | ttc<br>Phe        | atc<br>Ile        | aaa<br>Lys        | gat<br>Asp        | gca<br>Ala<br>320       | aat<br>Asn        | ttg<br>Leu        | act<br>Thr         | gcc<br>Ala        | atg<br>Met<br>325 | tca<br>Ser        | 1075 |
| gat<br>Asp        | aag<br>Lys        | aaa<br>Lys        | gag<br>Glu<br>330 | ctg<br>Leu        | ttc<br>Phe        | ctc<br>Leu        | tcc<br>Ser        | aaa<br>Lys<br>335 | gct<br>Ala              | gtt<br>Val        | cac<br>His        | aag<br>Lys         | tcc<br>Ser<br>340 | tgc<br>Cys        | att<br>Ile        | 1123 |
| gag<br>Glu        | gtt<br>Val        | aat<br>Asn<br>345 | gaa<br>Glu        | gaa<br>Glu        | Gly               | tca<br>Ser        | gaa<br>Glu<br>350 | gcc<br>Ala        | gct <sup>.</sup><br>Ala | gca<br>Ala        | gcc<br>Ala        | tcc<br>Ser<br>355  | gga<br>Gly        | atg<br>Met        | att<br>Ile        | 1171 |
| gcg<br>Ala        | att<br>Ile<br>360 | agt<br>Ser        | agg<br>Arg        | atg<br>Met        | gct<br>Ala        | gtg<br>Val<br>365 | ctg<br>Leu        | tac<br>Tyr        | cct<br>Pro              | cag<br>Gln        | gtt<br>Val<br>370 | att<br>Ile         | gtc<br>Val        | gac<br>Asp        | cat<br>His        | 1219 |
| cca<br>Pro<br>375 | ttt<br>Phe        | ctc<br>Leu        | tat<br>Tyr        | ctt<br>Leu        | atc<br>Ile<br>380 | agg<br>Arg        | aac<br>Asn        | agg<br>Arg        | aaa<br>Lys              | tct<br>Ser<br>385 | ggc<br>Gly        | ata<br>Ile         | atc<br>Ile        | tta<br>Leu        | ttc<br>Phe<br>390 | 1267 |
| atg<br>Met        | gga<br>Gly        | cga<br>Arg        | gtc<br>Val        | atg<br>Met<br>395 | aac<br>Asn        | cct<br>Pro        | gaa<br>Glu        | aca<br>Thr        | atg<br>Met<br>400       | aat<br>Asn        | aca<br>Thr        | agt<br>Ser         | ggc<br>Gly        | cat<br>His<br>405 | gac<br>Asp        | 1315 |
|                   | gag<br>Glu        |                   | ctt<br>Leu<br>410 | taa               | atga              | cgac              | gt t              | tgag              | taca                    | a ag              | aaag              | cagg               | aac               | aaag              | cac               | 1370 |
| atta              | tgtt              | tg c              | aagt              | ggta              | t at              | attt              | agga              | ttt               | ctgt                    | ttt               | atag              | tgtt               | ac t              | tagg              | gaaat             | 1430 |
| attt              | aaat              | ag t              | tctg              | gata              | g ta              | gtaa              | tcca              | tgt               | gacc                    | tat               | aagt              | tagc               | ct g              | tcaa              | aagct             | 1490 |
| gtta              | tcag              | ta t              | aaag              | agta              | t gg              | tccc              | attg              | tgt               | catt                    | gtg               | tctg              | gtgt               | gc t              | gctg              | tttaa             | 1550 |
| aata              | aaag              | ta c              | atat              | tgaa              | a ct              | gtga              | acca              | ctt               | tttt                    | tca               | tttt              | gaaa               | gt a              | gttg              | tagtc             | 1610 |
| tata              | caat              | ac t              | atgt              | ctga              | g at              | ttga              | aacc              | tat               | gctg                    | ttt               | cttt              | agga               | at t              | gtag              | taaaa             | 1670 |
| tgat              | ccta              | ca a              | ggca              | aaat              | g ta              | gaaa              | ctgt              | tgt               | ttct                    | gag               | tttc              | ttca               | ta a              | tcat              | gcaga             | 1730 |
| atca              | aaca              | cc a              | aagt              | aagc              | a ac              | ataca             | atat              | ata               | tata                    | taa               | taag              | caat               | ac t              | gtga              | agggg             | 1790 |
| aggc              | caaa              | ag g              | caga              | gaaa              | t tga             | agati             | tgtt              | att               | tagt                    | gtg               | gcat              | tcca               | tg a              | caaa              | agatt             | 1850 |
| tagg              | agga              | aa t              | gtgg              | gata              | t gta             | aagad             | cca               | taga              | atgta                   | ata               | tttt              | gtata              | at c              | tgta              | gtatt             | 1910 |
| atac              | tttt              | aa t              | ttati             | taaag             | g tat             | taact             | ctt               | tta               | ttta                    | ttt               | ttaaa             | aagti              | ct c              | ctgt              | gaacc             | 1970 |
| aata              | tgcc              | ac a              | tgact             | ctac              | tag               | gcaaç             | gttc              | agat              | tatc                    | tca               | ttago             | tatt               | c to              | ggat              | gacat             | 2030 |

|            |            |            |            |            |            | 2090   |
|------------|------------|------------|------------|------------|------------|--------|
|            |            |            |            | tttagtgatt |            |        |
| ttcacacaaa | gatgaaatca | cattgttgca | cactctctag | actatatcca | agaaaggcat | 2150   |
|            |            |            |            | ctttattaaa |            | . 5510 |
| gtattgtgca | tcatatggaa | tcagtgctgc | ttaaacttag | tacgtcctgc | tgacacctgg | 2270   |
| tcacttatta | caaatatagg | ttcttatcca | ggatgtctaa | ggtagagtgg | gaaccacagc | 2330   |
| tttctatcat | tactgacatc | caaatgatgc | cgcagatatc | tgaccatagc | ctttgctgag | 2390   |
| agtcccttgg | gttgcaatgt | cgtacttgaa | gtcagcctca | cattttcaca | gactgagatt | 2450   |
| ggagagatga | gggtgcaggg | aggagataat | ctacactagt | gatacgatgc | ctttgtcaag | 2510   |
| cactggtgtg | atctcgaagt | attctagtac | acactctaga | taaattette | tgtacattac | 2570   |
| aacacttgaa | atgcagtcgt | taaaaatatg | gagacattta | taggcaatac | ccatgaaaga | 2630   |
| atttatgact | atccgaggac | acagtactta | acaatgaatc | ttttacagct | tatattttca | 2690   |
| gaggacttgt | agittattca | taaatcttca | tgttattgta | caatagtgct | cttgttttca | 2750   |
| tttataattt | atgaagctga | gatgctggtg | ttaattcagt | gttcacattc | tctgctaaga | 2810   |
|            |            |            |            | tatagctata |            | 2870   |
| cattagttaa | acaaatgtat | ggcctgtaag | gaagaataaa | cattattatg | caatcatgta | 2930   |
| aaaaaaaaa  |            |            |            |            |            | 2944   |

<210> 27

<211> 410

<212> PRT

<213> Mus musculus

<400> 27

Met Thr Tyr Leu Glu Leu Leu Ala Leu Leu Ala Leu Gln Ser Val Val 1 5 10

Thr Gly Ala Thr Phe Pro Asp Glu Thr Ile Thr Glu Trp Ser Val Asn 20 25 30

Met Tyr Asn His Leu Arg Gly Thr Gly Glu Asp Glu Asn Ile Leu Phe 35

Ser Pro Leu Ser Ile Ala Leu Ala Met Gly Met Met Glu Leu Gly Ala 50 60

Gln Gly Ser Thr Arg Lys Glu Ile Arg His Ser Met Gly Tyr Glu Gly 65 70 75

Leu Lys Gly Glu Glu Phe Ser Phe Leu Arg Asp Phe Ser Asn Met 85 90 95

Ala Ser Ala Glu Glu Asn Gln Tyr Val Met Lys Leu Ala Asn Ser Leu 100 105 110

Phe Val Gln Asn Gly Phe His Val Asn Glu Glu Phe Leu Gln Met Leu Lys Met Tyr Phe Asn Ala Glu Val Asn His Val Asp Phe Ser Gln Asn Val Ala Val Ala Asn Ser Ile Asn Lys Trp Val Glu Asn Tyr Thr Asn Ser Leu Leu Lys Asp Leu Val Ser Pro Glu Asp Phe Asp Gly Val Thr Asn Leu Ala Leu Ile Asn Ala Val Tyr Phe Lys Gly Asn Trp Lys Ser 180 185 190 Gln Phe Arg Pro Glu Asn Thr Arg Thr Phe Ser Phe Thr Lys Asp Asp Glu Ser Glu Val Gln Ile Pro Met Met Tyr Gln Gln Gly Glu Phe Tyr Tyr Gly Glu Phe Ser Asp Gly Ser Asn Glu Ala Gly Gly Ile Tyr Gln 225 230 235 240 Val Leu Glu Ile Pro Tyr Glu Gly Asp Glu Ile Ser Met Met Leu Ala Leu Ser Arg Gln Glu Val Pro Leu Ala Thr Leu Glu Pro Leu Leu Lys Ala Gln Leu Ile Glu Glu Trp Ala Asn Ser Val Lys Lys Gln Lys Val Glu Val Tyr Leu Pro Arg Phe Thr Val Glu Gln Glu Ile Asp Leu Lys Asp Ile Leu Lys Ala Leu Gly Val Thr Glu Ile Phe Ile Lys Asp Ala Asn Leu Thr Ala Met Ser Asp Lys Lys Glu Leu Phe Leu Ser Lys Ala Val His Lys Ser Cys Ile Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ala Ala Ser Gly Met Ile Ala Ile Ser Arg Met Ala Val Leu Tyr Pro Gln Val Ile Val Asp His Pro Phe Leu Tyr Leu Ile Arg Asn Arg Lys

Ser Gly Ile Ile Leu Phe Met Gly Arg Val Met Asn Pro Glu Thr Met 385 390 395 400

Asn Thr Ser Gly His Asp Phe Glu Glu Leu 405 410

<210> 28

<211> 1910

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (421)..(1653)

<223> SF05, cDNA: NM\_005025, Proteína: NP\_005016

| gga        | gaco       | jaaa             | gcag              | ggaac      | ga         | gageg            | gago             | gg                | agcad      | agto       | cgo        | ccgag            | gcac              | aago       | tccago     | 60    |
|------------|------------|------------------|-------------------|------------|------------|------------------|------------------|-------------------|------------|------------|------------|------------------|-------------------|------------|------------|-------|
| ato        | ccgt       | cag              | gggt              | tgca       | ıgg t      | gtgt             | ggga             | g gt              | aago       | gtgg       | gto        | ctto             | ttc               | gggg       | gegtetg    | g 120 |
| cac        | tgcc       | ctg              | gaga              | aaaa       | gt o       | ttcc             | aata             | ıg ga             | atta       | cato       | aaç        | gacad            | cagc              | taaa       | agagto     | 180   |
| cgc        | gttg       | ggt              | tago              | gaaac      | cg ç       | gtgca            | aaac             | cto               | tegg       | gtga       | aaç        | gattt            | aca               | tttt       | tcgact     | 240   |
| tta        | aggg       | caa              | aaaa              | igcaa      | aa g       | gaag             | cttg             | a ct              | ctgg       | gtat       | aaa        | gggc             | gtg               | gtta       | gtgttt     | 300   |
| ttg        | gttt       | gág              | ttgc              | acca       | gt a       | aaac             | tgtt             | c to              | ggag       | atct       | gaa        | gatt             | gag               | aaaa       | atcctg     | 360   |
| cta        | attg       | agg              | acga              | ggtg       | ga t       | gtta             | tctg             | g tg              | gatg       | ttat       | agg        | cttg             | raaa              | ctgt       | tacaat     | 420   |
|            |            |                  |                   |            |            |                  |                  |                   |            |            |            |                  |                   |            | gct<br>Ala | 468   |
|            |            |                  |                   | Phe        |            |                  |                  |                   |            |            |            |                  |                   |            | aat<br>Asn | 516   |
| atg<br>Met | tac<br>Tyr | aat<br>Asn<br>35 | cgt<br>Arg        | ctt<br>Leu | aga<br>Arg | gcc<br>Ala       | act<br>Thr<br>40 | ggt<br>Gly        | gaa<br>Glu | gat<br>Asp | gaa<br>Glu | aat<br>Asn<br>45 | att               | ctc<br>Leu | ttc<br>Phe | 564   |
|            |            |                  |                   |            |            | ctt<br>Leu<br>55 |                  |                   |            |            |            |                  |                   |            | gcc<br>Ala | 612   |
|            |            |                  |                   |            |            | gaa<br>Glu       |                  |                   |            |            |            |                  |                   |            |            | 660   |
|            |            |                  |                   |            |            | ttt<br>Phe       |                  |                   |            |            |            |                  |                   |            |            | 708   |
| gta<br>Val | act<br>Thr | gct<br>Ala       | aaa<br>Lys<br>100 | gag<br>Glu | agc<br>Ser | caa<br>Gln       | tat<br>Tyr       | gtg<br>Val<br>105 | atg<br>Met | aaa<br>Lys | att<br>Ile | gcc<br>Ala       | aat<br>Asn<br>110 | tcc<br>Ser | ttg<br>Leu | 756   |
|            |            |                  |                   |            |            | cat<br>His       |                  |                   |            |            |            |                  |                   |            |            | 804   |
| aaa        | aaa        | tat              | ttt               | aat        | gca        | gca              | gta              | aat               | cat        | gta        | gac        | ttc              | agt               | caa        | aat        | 852   |

| Lys               | Lys<br>130        | Tyr               | Phe               | Asn               | Ala               | Ala<br>135        | Val               | Asn               | His               | Val               | Asp<br>140        | Phe               | Ser               | Gln               | Asn               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gta<br>Val<br>145 | gcc<br>Ala        | gtg<br>Val        | gcc<br>Ala        | aac<br>Asn        | tac<br>Tyr<br>150 | atc<br>Ile        | aat<br>Asn        | aag<br>Lys        | tgg<br>Trp        | gtg<br>Val<br>155 | gag<br>Glu        | aat<br>Asn        | aac<br>Asn        | aca<br>Thr        | aac<br>Asn<br>160 | 900  |
| aat<br>Asn        | ctg<br>Leu        | gtg<br>Val        | aaa<br>Lys        | gat<br>Asp<br>165 | ttg<br>Leu        | gta<br>Val        | tcc<br>Ser        | cca<br>Pro        | agg<br>Arg<br>170 | gat<br>Asp        | ttt<br>Phe        | gat<br>Asp        | gct<br>Ala        | gcc<br>Ala<br>175 | act<br>Thr        | 948  |
| tat<br>Tyr        | ctg<br>Leu        | gcc<br>Ala        | ctc<br>Leu<br>180 | att<br>Ile        | aat<br>Asn        | gct<br>Ala        | gtc<br>Val        | tat<br>Tyr<br>185 | ttc<br>Phe        | aag<br>Lys        | Gly<br>Ggg        | aac<br>Asn        | tgg<br>Trp<br>190 | aag<br>Lys        | tcg<br>Ser        | 996  |
| cag<br>Gln        | ttt<br>Phe        | agg<br>Arg<br>195 | cct<br>Pro        | gaa<br>Glu        | aat<br>Asn        | act<br>Thr        | aga<br>Arg<br>200 | acc<br>Thr        | ttt<br>Phe        | tct<br>Ser        | ttc<br>Phe        | act<br>Thr<br>205 | aaa<br>Lys        | gat<br>Asp        | gat<br>Asp        | 1044 |
| gaa<br>Glu        | agt<br>Ser<br>210 | gaa<br>Glu        | gtc<br>Val        | caa<br>Gln        | att<br>Ile        | cca<br>Pro<br>215 | atg<br>Met        | atg<br>Met        | tat<br>Tyr        | cag<br>Gln        | caa<br>Gln<br>220 | gga<br>Gly        | gaa<br>Glu        | ttt<br>Phe        | tat<br>Tyr        | 1092 |
| tat<br>Tyr<br>225 | ggg<br>Gly        | gaa<br>Glu        | ttt<br>Phe        | agt<br>Ser        | gat<br>Asp<br>230 | Gly               | tcc<br>Ser        | aat<br>Asn        | gaa<br>Glu        | gct<br>Ala<br>235 | ggt<br>Gly        | ggt<br>Gly        | atc<br>Ile        | tac<br>Tyr        | caa<br>Gln<br>240 | 1140 |
| gtc<br>Val        | cta<br>Leu        | gaa<br>Glu        | ata<br>Ile        | cca<br>Pro<br>245 | tat<br>Tyr        | gaa<br>Glu        | gga<br>Gly        | gat<br>Asp        | gaa<br>Glu<br>250 | ata<br>Ile        | agc<br>Ser        | atg<br>Met        | atg<br>Met        | ctg<br>Leu<br>255 | gtg<br>Val        | 1188 |
| ctg<br>Leu        | tcc<br>Ser        | aga<br>Arg        | cag<br>Gln<br>260 | gaa<br>Glu        | gtt<br>Val        | cct<br>Pro        | ctt<br>Leu        | gct<br>Ala<br>265 | act<br>Thr        | ctg<br>Leu        | gag<br>Glu        | cca<br>Pro        | tta<br>Leu<br>270 | gtc<br>Val        | aaa<br>Lys        | 1236 |
| gca<br>Ala        | cag<br>Gln        | ctg<br>Leu<br>275 | gtt<br>Val        | gaa<br>Glu        | gaa<br>Glu        | tgg<br>Trp        | gca<br>Ala<br>280 | aac<br>Asn        | tct<br>Ser        | gtg<br>Val        | aag<br>Lys        | aag<br>Lys<br>285 | caa<br>Gln        | aaa<br>Lys        | gta<br>Val        | 1284 |
| gaa<br>Glu        | gta<br>Val<br>290 | tac<br>Tyr        | ctg<br>Leu        | ccc<br>Pro        | agg<br>Arg        | ttc<br>Phe<br>295 | aca<br>Thr        | gtg<br>Val        | gaa<br>Glu        | cag<br>Gln        | gaa<br>Glu<br>300 | att<br>Ile        | gat<br>Asp        | tta<br>Leu        | aaa<br>Lys        | 1332 |
| gat<br>Asp<br>305 | gtt<br>Val        | ttg<br>Leu        | aag<br>Lys        | gct<br>Ala        | ctt<br>Leu<br>310 | gga<br>Gly        | ata<br>Ile        | act<br>Thr        | gaa<br>Glu        | att<br>Ile<br>315 | ttc<br>Phe        | atc<br>Ile        | aaa<br>Lys        | gat<br>Asp        | gca<br>Ala<br>320 | 1380 |
| aat<br>Asn        | ttg<br>Leu        | aca<br>Thr        | ggc<br>Gly        | ctc<br>Leu<br>325 | tct<br>Ser        | gat<br>Asp        | aat<br>Asn        | aag<br>Lys        | gag<br>Glu<br>330 | att<br>Ile        | ttt<br>Phe        | ctt<br>Leu        | tcc<br>Ser        | aaa<br>Lys<br>335 | gca<br>Ala        | 1428 |
| att<br>Ile        | cac<br>His        | aag<br>Lys        | tcc<br>Ser<br>340 | ttc<br>Phe        | cta<br>Leu        | gag<br>Glu        | gtt<br>Val        | aat<br>Asn<br>345 | gaa<br>Glu        | gaa<br>Glu        | ggc<br>Gly        | tca<br>Ser        | gaa<br>Glu<br>350 | gct<br>Ala        | gct<br>Ala        | 1476 |
| gct<br>Ala        | gtc<br>Val        | tca<br>Ser<br>355 | gga<br>Gly        | atg<br>Met        | att<br>Ile        | gca<br>Ala        | att<br>Ile<br>360 | agt<br>Ser        | agg<br>Arg        | atg<br>Met        | gct<br>Ala        | gtg<br>Val<br>365 | ctg<br>Leu        | tat<br>Tyr        | ect<br>Pro        | 1524 |
| caa<br>Gln        | gtt<br>Val<br>370 | att<br>Ile        | gtc<br>Val        | gac<br>Asp        | cat<br>His        | cca<br>Pro<br>375 | ttt<br>Phe        | ttc<br>Phe        | ttt<br>Phe        | ctt<br>Leu        | atc<br>Ile<br>380 | aga<br>Arg        | aac<br>Asn        | agg<br>Arg        | aga<br>Arg        | 1572 |
| act<br>Thr<br>385 | ggt<br>Gly        | aca<br>Thr        | att<br>Ile        | cta<br>Leu        | ttc<br>Phe<br>390 | atg<br>Met        | gga<br>Gly        | cga<br>Arg        | gtc<br>Val        | atg<br>Met<br>395 | cat<br>His        | cct<br>Pro        | gaa<br>Glu        | aca<br>Thr        | atg<br>Met<br>400 | 1620 |
| aac               | aca               | agt               | gga               | cat               | gat               | ttc               | gaa               | gaa               | ctt               | taa               | gtta              | cttt              | at t              | tgaa              | taaca             | 1673 |

#### Asn Thr Ser Gly His Asp Phe Glu Glu Leu 405 410

| aggaaaacag taactaagca cattatgttt gcaactggta tatatttagg atttg | gtgttt 1733 |
|--------------------------------------------------------------|-------------|
| tacagtatat cttaagataa tatttaaaat agttccagat aaaaacaata tatgt | taaatt 1793 |
| ataagtaact tgtcaaggaa tgttatcagt attaagctaa tggtcctgtt atgtc | cattgt 1853 |
| gtttgtgtgc tgttgtttaa aataaaagta cctattgaac atgaaaaaaa aaaaa | aaa 1910    |

<210> 29

<211> 410

<212> PRT

<213> Homo sapiens

Met Ala Phe Leu Gly Leu Phe Ser Leu Leu Val Leu Gln Ser Met Ala

- Lys Lys Tyr Phe Asn Ala Ala Val Asn His Val Asp Phe Ser Gln Asn 130 135 140
- Val Ala Val Ala Asn Tyr Ile Asn Lys Trp Val Glu Asn Asn Thr Asn 145 150 155 160
- Asn Leu Val Lys Asp Leu Val Ser Pro Arg Asp Phe Asp Ala Ala Thr 165 170 175
- Tyr Leu Ala Leu Ile Asn Ala Val Tyr Phe Lys Gly Asn Trp Lys Ser 180 185 190
- Gln Phe Arg Pro Glu Asn Thr Arg Thr Phe Ser Phe Thr Lys Asp Asp

|   |               |            | 195        |            |            |            |            | 200        |            |            |            |            | 205        |            |            |            |
|---|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| ( | Glu           | Ser<br>210 | Glu        | Val        | Gln        | Ile        | Pro<br>215 | Met        | Met        | Tyr        | Gln        | Gln<br>220 | Gly        | Glu        | Phe        | Туг        |
|   | Tyr<br>225    | Gly        | Glu        | Phe        | Ser        | Asp<br>230 | Gly        | Ser        | Asn        | Glu        | Ala<br>235 | Gly        | Gly        | Ile        | Tyr        | Gln<br>240 |
| , | Val           | Leu        | Glu        | Ile        | Pro<br>245 | туг        | Glu        | Gly        | Asp        | Glu<br>250 | Ile        | Ser        | Met        | Met        | Leu<br>255 | Val        |
| 1 | Leu           | Ser        | Arg        | Gln<br>260 | Glu        | Val        | Pro        | Leu        | Ala<br>265 | Thr        | Leu        | Glu        | Pro        | Leu<br>270 | Val        | Lys        |
| 1 | Ala           | Gln        | Leu<br>275 | Val        | Glu        | Glu        | Trp        | Ala<br>280 | Asn        | Ser        | Val        | Ьуs        | Lys<br>285 | Gln        | Lys        | Va1        |
| • | Glu           | Val<br>290 | Tyr        | Leu        | Pro        | Arg        | Phe<br>295 | Thr        | Val        | Glu        | Gln        | Glu<br>300 | Ile        | Asp        | Leu        | Lys        |
|   | Asp<br>305    | Val        | Leu        | Lys        | Ala        | Leu<br>310 | Gly        | Ile        | Thr        | Glu        | 11e<br>315 | Phe        | Ile        | Lys        | Asp        | Ala<br>320 |
| 1 | Asn           | Leu        | Thr        | Gly        | Leu<br>325 | Ser        | Asp        | Asn        | Lys        | Glu<br>330 | Ile        | Phe        | Leu        | Ser        | Lys<br>335 | Ala        |
| : | Ile           | His        | Lys        | Ser<br>340 | Phe        | Leu        | Glu        | Val        | Asn<br>345 | Glu        | Glu        | Gly        | Ser        | Glu<br>350 | Ala        | Ala        |
| 1 | Ala           | Val        | Ser<br>355 | Gly        | Met        | Ile        | Ala        | Ile<br>360 | Ser        | Arg        | Met        | Ala        | Val<br>365 | Leu        | Tyr        | Pro        |
| • | Gln           | Val<br>370 | Ile        | Val        | Asp        | His        | Pro<br>375 | Phe        | Phe        | Phe        | Leu        | 11e<br>380 | Arg        | Asn        | Arg        | Arg        |
|   | Thr<br>385    | Gly        | Thr        | Ile        | Leu        | Phe<br>390 | Met        | Gly        | Arg        | Val        | Met<br>395 | His        | Pro        | Glu        | Thr        | Met<br>400 |
|   | Asn           | Thr        | Ser        | Gly        | His<br>405 | Asp        | Phe        | Glu        | Glu        | Leu<br>410 |            |            |            |            |            |            |
|   | > 30<br>> 220 | 12         |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

```
<210
```

<sup>&</sup>lt;211> 2202

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Mus musculus

<sup>&</sup>lt;220>

<sup>&</sup>lt;221> CDS

<sup>&</sup>lt;222> (23)..(697)

<sup>&</sup>lt;223> SF06, cDNA: NM\_172633, Proteína: NP\_766221

<sup>&</sup>lt;400> 30

| gacagggcgc cccccagccc ag atg ccc gcg cct ggc cag ggc ccc aga ggg 52 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 52<br>·           |                   |                   |                   |                   |                   |       |   |
|---------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|---|
| Met Pro Ala Pro Gly Gln Gly Pro Arg Gly 1 5 10                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |   |
| ccg<br>Pro                                                          | ctg<br>Leu        | ctg<br>Leu        | agc<br>Ser        | atg<br>Met<br>15  | ccc<br>Pro        | ggg<br>Gly        | cgc<br>Arg        | cgg<br>Arg        | ggg<br>Gly<br>20  | gcg<br>Ala        | ctg<br>Leu        | cgt<br>Arg        | gag<br>Glu        | cca<br>Pro<br>25  | gcc<br>Ala        | 100   | ı |
| gac<br>Asp                                                          | ttt<br>Phe        | ggc               | tcc<br>Ser<br>30  | agc<br>Ser        | ctg<br>Leu        | Gly               | gcg<br>Ala        | gtg<br>Val<br>35  | ctg<br>Leu        | gcc<br>Ala        | ctg<br>Leu        | ctg<br>Leu        | ttg<br>Leu<br>40  | ctg<br>Leu        | ctg<br>Leu        | 148   | 6 |
| ctg<br>Leu                                                          | ccc<br>Pro        | gcc<br>Ala<br>45  | tgc<br>Cys        | tgc<br>Cys        | ccc<br>Pro        | gta<br>Val        | agg<br>Arg<br>50  | gct<br>Ala        | cag<br>Gln        | aac<br>Asn        | gac<br>Asp        | acg<br>Thr<br>55  | gag<br>Glu        | ccc<br>Pro        | atc<br>Ile        | 196   | i |
| gtg<br>Val                                                          | cta<br>Leu<br>60  | gag<br>Glu        | ggc<br>Gly        | aag<br>Lys        | tgc<br>Cys        | ctg<br>Leu<br>65  | gta<br>Val        | gtg<br>Val        | tgc<br>Cys        | gat<br>Asp        | tcc<br>Ser<br>70  | agc<br>Ser        | cca<br>Pro        | tcg<br>Ser        | GJA<br>āāā        | 244   | : |
| gat<br>Asp<br>75                                                    | ggc<br>Gly        | gcc<br>Ala        | gtc<br>Val        | act<br>Thr        | tct<br>Ser<br>80  | tcc<br>Ser        | ctg<br>Leu        | ggc<br>Gly        | att<br>Ile        | tct<br>Ser<br>85  | gtg<br>Val        | cgc<br>Arg        | tca<br>Ser        | ggc<br>Gly        | agt<br>Ser<br>90  | 292   |   |
| gcc<br>Ala                                                          | aag<br>Lys        | gtg<br>Val        | gcc<br>Ala        | ttc<br>Phe<br>95  | tcc<br>Ser        | gct<br>Ala        | act<br>Thr        | cgg<br>Arg        | agc<br>Ser<br>100 | acc<br>Thr        | aac<br>Asn        | cac<br>His        | gag<br>Glu        | ccg<br>Pro<br>105 | tca<br>Ser        | 340   | 1 |
| gag<br>Glu                                                          | atg<br>Met        | agc<br>Ser        | aac<br>Asn<br>110 | cgt<br>Arg        | acc<br>Thr        | atg<br>Met        | acc<br>Thr        | atc<br>Ile<br>115 | tac<br>Tyr        | ttc<br>Phe        | gac<br>Asp        | cag<br>Gln        | gtc<br>Val<br>120 | tta<br>Leu        | gta<br>Val        | 388   | İ |
| aac<br>Asn                                                          | att<br>Ile        | ggc<br>Gly<br>125 | aac<br>Asn        | cac<br>His        | ttt<br>Phe        | gac<br>Asp        | ctt<br>Leu<br>130 | gcc<br>Ala        | tcc<br>Ser        | agt<br>Ser        | ata<br>Ile        | ttt<br>Phe<br>135 | gta<br>Val        | gca<br>Ala        | cca<br>Pro        | 436   | í |
| aga<br>Arg                                                          | aag<br>Lys<br>140 | gga<br>Gly        | att<br>Ile        | tat<br>Tyr        | agc<br>Ser        | ttc<br>Phe<br>145 | agc<br>Ser        | ttc<br>Phe        | cac<br>His        | gtg<br>Val        | gtc<br>Val<br>150 | aaa<br>Lys        | gtg<br>Val        | tac<br>Tyr        | aac<br>Asn        | 484   | i |
| aga<br>Arg<br>155                                                   | caa<br>Gln        | act<br>Thr        | atc<br>Ile        | cag<br>Gln        | gtc<br>Val<br>160 | agc<br>Ser        | tta<br>Leu        | atg<br>Met        | cag<br>Gln        | aat<br>Asn<br>165 | Gly<br>ggc        | tac<br>Tyr        | ccg<br>Pro        | gtg<br>Val        | atc<br>Ile<br>170 | 532   | 1 |
| tct<br>Ser                                                          | gca<br>Ala        | ttt<br>Phe        | gcc<br>Ala        | gga<br>Gly<br>175 | gac<br>Asp        | cag<br>Gln        | gat<br>Asp        | gtt<br>Val        | acc<br>Thr<br>180 | agg<br>Arg        | gaa<br>Glu        | gca<br>Ala        | gcc<br>Ala        | agc<br>Ser<br>185 | aat<br>Asn        | 580   |   |
| ggt<br>Gly                                                          | gtt<br>Val        | ctg<br>Leu        | ctg<br>Leu<br>190 | ctc<br>Leu        | atg<br>Met        | gaa<br>Glu        | aga<br>Arg        | gaa<br>Glu<br>195 | gac<br>Asp        | aaa<br>Lys        | gtt<br>Val        | cat<br>His        | ctc<br>Leu<br>200 | aaa<br>Lys        | cta<br>Leu        | 628   |   |
| gag<br>Glu                                                          | Arg               | ggc<br>Gly<br>205 | aac<br>Asn        | ctc<br>Leu        | atg<br>Met        | gga<br>Gly        | ggc<br>Gly<br>210 | tgg<br>Trp        | aaa<br>Lys        | tac<br>Tyr        | tcc<br>Ser        | aca<br>Thr<br>215 | ttc<br>Phe        | tcg<br>Ser        | ggc<br>Gly        | 676   | ı |
| ttc<br>Phe                                                          | ttg<br>Leu<br>220 | gtt<br>Val        | ttt<br>Phe        | cct<br>Pro        | cta<br>Leu        | tag               | acto              | agaç              | acc e             | accag             | ggato             | ga tç             | ggaa              | aggtt             | :                 | 727   |   |
| ttga                                                                | tcag              | ga c              | ccaç              | ggat              | c to              | recec             | ctgt              | aac               | acct              | tga               | actt              | gtct              | gg a              | tagg              | gatggc            | 787   |   |
| ttgg                                                                | gccc              | ac c              | tcca              | tcaç              | ja tt             | attg              | ctgt              | aga               | agaa              | tga               | cttt              | ctto              | ta a              | agct              | ccagt             | 847   |   |
| attt                                                                | tctt              | tg a              | ctat              | tgac              | a at              | tcct              | cggg              | aac               | ctgg              | cct               | ctaa              | attag             | jtt t             | aaga              | agaca             | 907   |   |
| aggt                                                                | ctta              | ag g              | jagaa             | atga              | ıa at             | tato              | gatt              | tga               | gcaa              | ttt               | gtac              | ccgt              | ga t              | tgta              | aagtc             | . 967 |   |
| gata                                                                | tcas              | at t              | ttat              | tgtt              | g ga              | acca              | ttgg              | ctt               | aact              | tct               | catg              | tttg              | ta c              | ggtg              | tatct             | 1027  |   |

| tgtcctgatg | acatagatgc | tgctgaccct | cagatggatt | gcacgcttca | gtcagggctt | 1087 |
|------------|------------|------------|------------|------------|------------|------|
| aaagcaagag | cccagcagag | gaccacctaa | ccagacagtc | tttgacctgt | gttctgtgtg | 1147 |
| tgtgtagcct | taagaaaaag | aatggcatca | ttttcattcc | gtagcttttc | cctagggtct | 1207 |
| tgggggtctt | gggagggagc | tgggcattgg | taacctgtcg | aaaagtgctt | tatcctgaga | 1267 |
| agcaaatttt | gcacgattgg | actgcagttt | ctgttttgta | ccgtctgtga | ttttctttt  | 1327 |
| tcctcgggaa | gctttccttt | tcttcctcag | gtttcactcc | tcaaacctac | ttagttttca | 1387 |
| tgctgggggc | tcggagagaa | aaacaaaaca | aaacaaaaca | acaaaactta | tgttcagtcc | 1447 |
| ttgtatgaga | ccaaacaaaa | cagaacaaaa | tctgcatact | ttgttttgga | taaaggaaac | 1507 |
| caggaaaaaa | aaaaaaagaa | agcctatatt | tcaaagtaag | gacagcaaat | agaacatcct | 1567 |
| gcataacctg | cataaccttc | cctggagttc | tctctcagtg | cagcttcaaa | cttgcaacgt | 1627 |
| ggatttcatt | tttttttt   | tttaatttat | tctctgggat | cccttagtaa | cctggcattg | 1687 |
| ctcattgctc | atgaatccct | taacaatggc | ggagctgacg | cggcctaatc | ctctctttgc | 1747 |
| ttttcctctg | gatatgtctc | agtagtgagt | tagatetgee | tctgagtggc | cacacaatta | 1807 |
| caagatgctt | caaagaaaca | ggaccagtgc | ctcttcctcg | agatetteet | ttgatctgtc | 1867 |
| aaggagaggg | ttgtgttgac | tgatgctctg | tggatgaaca | tctggccaga | agccacctgg | 1927 |
| actggaaatc | tcagcagtta | aaggtactgg | ctgctgtacc | ccatgggtgg | ttttttcaaa | 1987 |
| ccctgcttct | tttggcatct | tgtgcaacag | cactattaag | tagcaactga | gagacctggt | 2047 |
| gcagtatttg | tgtgccaagg | aaacgtcact | aatcccaaag | caatcaaaga | tgtgacctca | 2107 |
| aactggaagt | taatttgtcc | tttgtgtaac | aatgtaacca | aaatattgat | gataaaactc | 2167 |
| ataatttaag | attcagaata | aatggatttg | atgtc      |            |            | 2202 |
|            |            |            |            |            |            |      |

<sup>&</sup>lt;210> 31

<sup>&</sup>lt;211> 224

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Mus musculus

<sup>&</sup>lt;400> 31

Met Pro Ala Pro Gly Gln Gly Pro Arg Gly Pro Leu Leu Ser Met Pro Gly Arg Arg Gly Ala Leu Arg Glu Pro Ala Asp Phe Gly Ser Ser Leu 20 25 30 Gly Ala Val Leu Ala Leu Leu Leu Leu Leu Pro Ala Cys Cys Pro Val Arg Ala Gln Asn Asp Thr Glu Pro Ile Val Leu Glu Gly Lys Cys
50 55 60 Leu Val Val Cys Asp Ser Ser Pro Ser Gly Asp Gly Ala Val Thr Ser 65 70 75 80 Ser Leu Gly Ile Ser Val Arg Ser Gly Ser Ala Lys Val Ala Phe Ser Ala Thr Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Arg Thr Met Thr Ile Tyr Phe Asp Gln Val Leu Val Asn Ile Gly Asn His Phe Asp Leu Ala Ser Ser Ile Phe Val Ala Pro Arg Lys Gly Ile Tyr Ser Phe Ser Phe His Val Val Lys Val Tyr Asn Arg Gln Thr Ile Gln Val Ser Leu Met Gln Asn Gly Tyr Pro Val Ile Ser Ala Phe Ala Gly Asp 165 170 175 Gln Asp Val Thr Arg Glu Ala Ala Ser Asn Gly Val Leu Leu Met Glu Arg Glu Asp Lys Val His Leu Lys Leu Glu Arg Gly Asn Leu Met

```
<210> 32
```

Gly Gly Trp Lys Tyr Ser Thr Phe Ser Gly Phe Leu Val Phe Pro Leu 210 215 220

<sup>&</sup>lt;211> 2750

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;220>

<sup>&</sup>lt;221> CDS

<sup>&</sup>lt;222> (564)..(1238)

<sup>&</sup>lt;223> SF06, cDNA: NM\_182511, Proteína: NP\_872317

| ggagcagaca | cacagacccg | ggccggaggc  | ccctcttcta | gccctgcggg  | aaccggacag | 6   |
|------------|------------|-------------|------------|-------------|------------|-----|
| ttccccaact | ggggactctg | gaaccacagc  | tcctaaatca | tcaaattctc  | aagcttttt  | 120 |
| tttccctctc | ttcgtcccag | ccatcccagt  | cttcttcttc | tttttttt    | ttttaactta | 180 |
| ttgtttttt  | cgctcctgtc | attatgaaag  | tggtcacgcc | attcaatatt  | aagacttgga | 240 |
| gggaattggg | gaaagaaaag | aaagaatcta  | aaagaagaga | agcgaccggt  | gcttttaagg | 300 |
| gtgtctaatt | ttcaaaagag | acgtctggga  | gtattttgct | ctgggcgttt  | ggagcaactt | 360 |
| cgcggacagc | ggagctcgcc | cagcatggat  | gttccaggtt | cacaggcgcc  | tttcttctga | 420 |
| gaacgaccct | ggccttgaac | gtcagagccg  | gggacgaagg | ccccggagg   | ctgctgcgag | 480 |
| ctccgcgcgt | tccttcgcgc | ccttccgcgc  | cgctcgcgcc | ggcgccggcc  | tccacccccg | 540 |
| cacaccacct | cccaccagtc | ccg atg cag | geg eee gg | c cgg ggg c | ca ctc ggg | 593 |

|                   |                   |                   |                   |                   |                   | M<br>1            | et G              | ln A              | la P              | ro G<br>5         | ly A              | rg G              | ly P              | ro L              | eu G              |        |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------|
| ctg<br>Leu        | cgg<br>Arg        | ctg<br>Leu        | atg<br>Met        | atg<br>Met<br>15  | ccc<br>Pro        | ggg               | cgc<br>Arg        | cgg               | ggg<br>Gly<br>20  | gcg<br>Ala        | ctg<br>Leu        | cgc<br>Arg        | gag<br>Glu        | cct<br>Pro<br>25  | ggc               | 641    |
| ggc<br>Gly        | tgc<br>Cys        | gga<br>Gly        | tcc<br>Ser<br>30  | tgc<br>Cys        | ctg<br>Leu        | ggg               | gtg<br>Val        | gcg<br>Ala<br>35  | ctg<br>Leu        | gcc<br>Ala        | ctg<br>Leu        | ctg<br>Leu        | ttg<br>Leu<br>40  | ctg<br>Leu        | cta<br>Leu        | 689    |
| ctg<br>Leu        | ccc<br>Pro        | gcc<br>Ala<br>45  | tgc<br>Cys        | tgc<br>Cys        | ccc<br>Pro        | gtg<br>Val        | cgg<br>Arg<br>50  | gcg<br>Ala        | cag<br>Gln        | aac<br>Asn        | gac<br>Asp        | acg<br>Thr<br>55  | gag<br>Glu        | ccc<br>Pro        | atc<br>Ile        | 737    |
| gtg<br>Val        | ctg<br>Leu<br>60  | gag<br>Glu        | ggc<br>Gly        | aag<br>Lys        | tgc<br>Cys        | ctg<br>Leu<br>65  | gtg<br>Val        | gtg<br>Val        | tgc<br>Cys        | gac<br>Asp        | tcc<br>Ser<br>70  | agc<br>Ser        | ccg<br>Pro        | tcg<br>Ser        | gcg<br>Ala        | 785    |
| gac<br>Asp<br>75  | ggc<br>Gly        | gcc<br>Ala        | gtc<br>Val        | acc<br>Thr        | tcc<br>Ser<br>80  | tcc<br>Ser        | cta<br>Leu        | ggc<br>Gly        | atc<br>Ile        | tcc<br>Ser<br>85  | gtg<br>Val        | cgc<br>Arg        | tcc<br>Ser        | ggc<br>Gly        | agc<br>Ser<br>90  | 833    |
| gcc<br>Ala        | aag<br>Lys        | gtg<br>Val        | gcc<br>Ala        | ttc<br>Phe<br>95  | tcc<br>Ser        | gcc<br>Ala        | acg<br>Thr        | cgg<br>Arg        | agc<br>Ser<br>100 | acc<br>Thr        | aac<br>Asn        | cac<br>His        | gag<br>Glu        | ccg<br>Pro<br>105 | tcc<br>Ser        | 881    |
| gag<br>Glu        | atg<br>Met        | agc<br>Ser        | aac<br>Asn<br>110 | cgc<br>Arg        | acc<br>Thr        | atg<br>Met        | acc<br>Thr        | atc<br>Ile<br>115 | tat<br>Tyr        | ttc<br>Phe        | gac<br>Asp        | cag<br>Gln        | gta<br>Val<br>120 | tta<br>Leu        | gta<br>Val        | 929    |
| aat<br>Asn        | att<br>Ile        | ggc<br>Gly<br>125 | aac<br>Asn        | cac<br>His        | ttt<br>Phe        | gat<br>Asp        | ctt<br>Leu<br>130 | gct<br>Ala        | tcc<br>Ser        | agt<br>Ser        | ata<br>Ile        | ttt<br>Phe<br>135 | gta<br>Val        | gca<br>Ala        | ccg<br>Pro        | 977    |
| aga<br>Arg        | aaa<br>Lys<br>140 | ggg<br>Gly        | att<br>Ile        | tat<br>Tyr        | agc<br>Ser        | ttc<br>Phe<br>145 | agc<br>Ser        | ttc<br>Phe        | cac<br>His        | gtg<br>Val        | gtc<br>Val<br>150 | aaa<br>Lys        | gtg<br>Val        | tat<br>Tyr        | aac<br>Asn        | 1025   |
| aga<br>Arg<br>155 | caa<br>Gln        | acc<br>Thr        | atc<br>Ile        | cag<br>Gln        | gtc<br>Val<br>160 | agt<br>Ser        | tta<br>Leu        | atg<br>Met        | cag<br>Gln        | aat<br>Asn<br>165 | ggc<br>Gly        | tac<br>Tyr        | cca<br>Pro        | gtg<br>Val        | atc<br>Ile<br>170 | 1073   |
| tcg<br>Ser        | gcc<br>Ala        | ttt<br>Phe        | gca<br>Ala        | gga<br>Gly<br>175 | gac<br>Asp        | cag<br>Gln        | gat<br>Asp        | gtc<br>Val        | acc<br>Thr<br>180 | aga<br>Arg        | gaa<br>Glu        | gct<br>Ala        | gct<br>Ala        | agc<br>Ser<br>185 | aat<br>Asn        | 1121   |
| ggc<br>Gly        | gtg<br>Val        | ctg<br>Leu        | ctg<br>Leu<br>190 | ctc<br>Leu        | atg<br>Met        | gaa<br>Glu        | agg<br>Arg        | gaa<br>Glu<br>195 | gac<br>Asp        | aaa<br>Lys        | gtg<br>Val        | cat<br>His        | ctc<br>Leu<br>200 | aaa<br>Lys        | ctt<br>Leu        | 1169   |
| gag<br>Glu        | aga<br>Arg        | ggc<br>Gly<br>205 | aac<br>Asn        | ctc<br>Leu        | atg<br>Met        | Gly               | ggc<br>Gly<br>210 | tgg<br>Trp        | aaa<br>Lys        | tac<br>Tyr        | tcc<br>Ser        | aca<br>Thr<br>215 | ttc<br>Phe        | tcg<br>Ser        | ggc<br>Gly        | 1217   |
|                   | ttg<br>Leu<br>220 |                   |                   |                   | cta<br>Leu        | taa               | acac              | agag              | cc c              | ccta              | gatg              | g tg              | gggg              | aatg              | 1                 | 1268   |
| gcaa              | actg              | ga c              | ccag              | gact              | c cg              | ccct              | ttaa              | aac               | accc              | tga               | actt              | actg              | ga a              | ttgg              | acac              | c 1328 |
| ttgt              | ttcc              | aa c              | ctcc              | gtca              | g ac              | tgtt              | gcag              | tag               | aaga              | atg               | attt              | cctt              | tg a              | aacc              | tcca              | g 1388 |
| tact              | tttg              | tt t              | ttgt              | tttt              | t gg              | aata              | ctga              | caa               | ttcc              | tcg               | ggaa              | cctg              | gc c              | tcta              | atta              | g 1448 |
| tttt              | agat              | ga c              | aagg              | tctt              | a ag              | gaga              | aatg              | aaa               | ttat              | cga               | tttg              | agca              | at t              | tgta              | cctg              | 1508   |
| gatt              | gtaa              | ag t              | caat              | atcg              | g at              | ttta              | ttgt              | tgg               | gacc              | atg               | gacc              | tctt              | tt g              | tttg              | tatg              | 1568   |

| tgtattgtcg | tcccaacgga | aggagagctc | ctgactccag | gatgggctgc | aggttgcagt | 1628 |
|------------|------------|------------|------------|------------|------------|------|
| cagggcttga | agtaggagcc | cagcaaagaa | ccacctgctg | gacagtcctt | gacatgtgtt | 1688 |
| ctgtgtgtgt | ctgtatagcc | ttaagaaaaa | gaatggcttc | actttcattc | tgtattcttc | 1748 |
| ccccaccat  | gtggctggga | ggacttggga | gggggatggg | gacattggga | acctgtcaag | 1808 |
| aagtgcttta | tccagagaag | caaattttgc | acgattggac | tgcaattttt | gttttgtatt | 1868 |
| gtttgtgttt | tttcttgaaa | agctttactt | ttctttccac | actcagctct | ccctcctcaa | 1928 |
| ccccactttt | atttttcttg | ctggggttga | ggagagaaaa | tatagaattc | ctggataaga | 1988 |
| ccaaacaaaa | caaaacatta | aaatacctgt | atgttttgtt | ttagacgaga | ccaaactaaa | 2048 |
| caaaaagtat | ctgtttatca | aagtaaaagt | aacacaatgg | acaattctgc | ttattctctc | 2108 |
| aaagagattc | taagatgcac | ctttagaact | attaatagca | acctgcattt | ttttttaatt | 2168 |
| tatacttcag | aatcctttaa | gaacctggtg | ttcctgagtg | gtcctgaatc | atataagttg | 2228 |
| gtaatggaag | ctgtaatgac | caagtcccct | aaacatacta | tgtctttgcc | acgtgtgctg | 2288 |
| tgacttctct | gtgggtgatt | taatttattt | ggatccacct | ctgagtgagc | gcacagtgat | 2348 |
| caggtgcttc | aaagccaaca | gaccagctcc | tcttcctccg | gatcctcttt | tgatctgccc | 2408 |
| aggaaaggga | tgcattgaca | ctctcctgca | tgcacctggc | gagaagccac | ctgaaagtca | 2468 |
| ctgtggttaa | agatattggt | ggaggtaccc | caggagcact | gttacaaatc | cttcttgttt | 2528 |
| tggcatctcg | tacaacatta | ttaagacaca | gctgagagtt | gatgggtgtg | taatgcatat | 2588 |
| gccaaggaaa | tgtcactaat | cccaaagcaa | tcaaaaagga | gacctcaaac | cagatgttaa | 2648 |
| tttgttcttt | gtgtaacaat | gtaaccaaaa | tattgatgat | aaaagtcata | atttaagatt | 2708 |
| cagaataaat | gggtttgatg | tctggcaaaa | aaaaaaaaa  | aa         |            | 2750 |
|            |            |            |            |            |            |      |

<sup>&</sup>lt;210> 33

<sup>&</sup>lt;211> 224

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 33

Met Gln Ala Pro Gly Arg Gly Pro Leu Gly Leu Arg Leu Met Met Pro 1 5 10 15 Gly Arg Arg Gly Ala Leu Arg Glu Pro Gly Gly Cys Gly Ser Cys Leu 20 25 30 Gly Val Ala Leu Ala Leu Leu Leu Leu Leu Leu Pro Ala Cys Cys Pro 35 40 45 Val Arg Ala Gln Asn Asp Thr Glu Pro Ile Val Leu Glu Gly Lys Cys
50 55 60 Leu Val Val Cys Asp Ser Ser Pro Ser Ala Asp Gly Ala Val Thr Ser 65 70 75 80 Ser Leu Gly Ile Ser Val Arg Ser Gly Ser Ala Lys Val Ala Phe Ser Ala Thr Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Arg Thr 100 105 110 Met Thr Ile Tyr Phe Asp Gln Val Leu Val Asn Ile Gly Asn His Phe 115 125 Asp Leu Ala Ser Ser Ile Phe Val Ala Pro Arg Lys Gly Ile Tyr Ser 130 135 140 Phe Ser Phe His Val Val Lys Val Tyr Asn Arg Gln Thr Ile Gln Val 145 150 155 160 Ser Leu Met Gln Asn Gly Tyr Pro Val Ile Ser Ala Phe Ala Gly Asp 165 170 175 Gln Asp Val Thr Arg Glu Ala Ala Ser Asn Gly Val Leu Leu Met 180 185 190 Glu Arg Glu Asp Lys Val His Leu Lys Leu Glu Arg Gly Asn Leu Met 195 200 205 Gly Gly Trp Lys Tyr Ser Thr Phe Ser Gly Phe Leu Val Phe Pro Leu 210 215 220

```
<210> 34
```

<sup>&</sup>lt;211> 1542

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Mus musculus

<sup>&</sup>lt;220>

<sup>&</sup>lt;221> CDS

<sup>&</sup>lt;222> (131)..(1258)

<sup>&</sup>lt;223> SF07, cDNA: NM\_026840, Proteína: NP\_081116

#### <400> 34

| cccagtgaaa                       | ccgaatcc                | tc cagctctg                     | gt gtccca              | ggcg ccgcct                      | ccc tctg               | cgcccc 6       |
|----------------------------------|-------------------------|---------------------------------|------------------------|----------------------------------|------------------------|----------------|
| tgccctgccc                       | tggacagc                | ct gtcgcgcc                     | gt ctgcag              | tcct gaactat                     | tct gcag               | gtcacc 12      |
| agccctgaag                       | atg aag<br>Met Lys<br>1 | ttt tgg ctg<br>Phe Trp Leu<br>5 | ctg ctc<br>Leu Leu     | gga ctt ctg<br>Gly Leu Leu<br>10 | ttg cta (<br>Leu Leu ) | cac 169        |
| gaa gcg ctg<br>Glu Ala Lei<br>15 | gaa gat<br>1 Glu Asp    | gtt gct gg<br>Val Ala Gl<br>20  | c cag cat<br>y Gln His | tct cct aag<br>Ser Pro Lys<br>25 | g aac aag<br>s Asn Lys | cgt 217<br>Arg |
|                                  |                         |                                 |                        | cca acc aac<br>Pro Thr Asn<br>40 |                        |                |
|                                  |                         |                                 |                        | gac tcc act<br>Asp Ser Thr       |                        |                |

| gca<br>Ala        | aag<br>Lys        | ago<br>Ser         | Gln<br>65         | tco<br>Ser        | ato               | atg<br>Met        | ato<br>Met        | g caa<br>Gln<br>70 | gcg<br>Ala        | ato<br>Met        | g ggc<br>: Gly    | aac<br>Asr         | ggt<br>Gly<br>75  | cgc<br>Arg        | ttc<br>Phe        | . 361 |
|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------|
| cag<br>Gln        | agg<br>Arg        | r cct<br>Pro<br>80 | gct<br>Ala        | gco               | aca<br>Thr        | gtg<br>Val        | agt<br>Ser<br>85  | ctc<br>Leu         | ctg<br>Leu        | gca<br>Ala        | ggg<br>Gly        | g caa<br>Glr<br>90 | act<br>Thr        | cta<br>Lev        | gag<br>Glu        | 409   |
| cta<br>Leu        | cga<br>Arg<br>95  | tgt<br>Cys         | aag<br>Lys        | gga<br>Gly        | agc<br>Ser        | aaa<br>Lys<br>100 | Val               | gag<br>Glu         | tgg<br>Trp        | agt<br>Ser        | tac<br>Tyr<br>105 | Pro                | gco<br>Ala        | tac<br>Tyr        | ttg<br>Leu        | 457   |
| gac<br>Asp<br>110 | Thr               | ttc<br>Phe         | aag<br>Lys        | gac               | Ser<br>115        | Arg               | ctc<br>Leu        | act                | gtg<br>Val        | aag<br>Lys<br>120 | Gln               | agt<br>Ser         | gaa<br>Glu        | cgc<br>Arg        | tat<br>Tyr<br>125 | 505   |
|                   |                   |                    |                   |                   | gtc<br>Val        |                   |                   |                    |                   | Ala               |                   |                    |                   |                   | Phe               | 553   |
|                   |                   |                    |                   |                   | ctg<br>Leu        |                   |                   |                    |                   |                   |                   |                    |                   | Asp               |                   | 601   |
| gcc<br>Ala        | aaa<br>Lys        | aca<br>Thr<br>160  | ggc<br>Gly        | tcc<br>Ser        | acc<br>Thr        | tat<br>Tyr        | atc<br>Ile<br>165 | Phe                | ttc<br>Phe        | aca<br>Thr        | gag<br>Glu        | aaa<br>Lys<br>170  | gga<br>Gly        | gag<br>Glu        | ctg<br>Leu        | 649   |
|                   |                   |                    |                   |                   | agt<br>Ser        |                   |                   |                    |                   |                   |                   |                    |                   |                   |                   | 697   |
|                   |                   |                    |                   |                   | cct<br>Pro<br>195 |                   |                   |                    |                   |                   |                   |                    |                   |                   |                   | 745   |
|                   |                   |                    |                   |                   | ttt<br>Phe        |                   |                   |                    |                   |                   |                   |                    |                   |                   |                   | 793   |
| gac<br>Asp        | att<br>Ile        | gtg<br>Val         | tac<br>Tyr<br>225 | gac<br>Asp        | atg<br>Met        | aag<br>Lys        | aga<br>Arg        | ggt<br>Gly<br>230  | ttc<br>Phe        | gtg<br>Val        | tac<br>Tyr        | ctt<br>Leu         | cag<br>Gln<br>235 | cct<br>Pro        | cat<br>His        | 841   |
| tcc<br>Ser        | gat<br>Asp        | cac<br>His<br>240  | cag<br>Gln        | ggt<br>Gly        | gtg<br>Val        | gtc<br>Val        | tac<br>Tyr<br>245 | tgc<br>Cys         | aaa<br>Lys        | gcg<br>Ala        | gaa<br>Glu        | gcc<br>Ala<br>250  | GJA<br>aaa        | ggc<br>Gly        | aag<br>Lys        | . 889 |
| Ser               | cag<br>Gln<br>255 | Ile                | Ser               | Val               | aag<br>Lys        | Tyr               | Gln               | Leu                | Leu               | Tyr               | gta<br>Val<br>265 | gag<br>Glu         | gtt<br>Val        | cct<br>Pro        | agt<br>Ser        | 937   |
|                   |                   |                    |                   |                   | acc<br>Thr<br>275 |                   |                   |                    |                   |                   |                   |                    |                   |                   |                   | 985   |
| ggt<br>Gly        | gat<br>Asp        | gac<br>Asp         | Ile               | agc<br>Ser<br>290 | gtg<br>Val        | ctc<br>Leu        | tgc<br>Cys        | Thr                | gtc<br>Val<br>295 | ctc<br>Leu        | Gly<br>ggg        | gag<br>Glu         | cct<br>Pro        | gat<br>Asp<br>300 | gtg<br>Val        | 1033  |
|                   |                   |                    |                   |                   | tgg<br>Trp        |                   | Phe               |                    |                   |                   |                   |                    |                   |                   | cct<br>Pro        | 1081  |
|                   |                   |                    |                   |                   | acc<br>Thr        | Trp               |                   |                    |                   |                   | Arg               |                    |                   |                   |                   | 1129  |

| acc aca aga atc tcc cag agt gtc att atc gtg gaa gac ttt gag acc<br>Thr Thr Arg Ile Ser Gln Ser Val Ile Ile Val Glu Asp Phe Glu Thr<br>335 340 345 | 1177 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| att gat gcg ggc tac tac ata tgc aca gct cag aat ctc cga gga cag<br>Ile Asp Ala Gly Tyr Tyr Ile Cys Thr Ala Gln Asn Leu Arg Gly Gln<br>350 365     | 1225 |
| acc aca gta gcg acc act gtt gag ttt tcc tga ttggaaagtg aagagtagtg<br>Thr Thr Val Ala Thr Thr Val Glu Phe Ser<br>370 375                           | 1278 |
| gaccaatggg atgcccatct gcacacacag cttccaggtg ctttatagga ggccaagggc                                                                                 | 1338 |
| caacccctgc cagtgggtca gacagacatc cgaattaaaa ggaagtcact agtctattaa                                                                                 | 1398 |
| tagaagtata aactttoota actaaagtat gtattttgac tcagecatgt ttotactttt                                                                                 | 1458 |
| tatactgaga aaacatgtca acaactttgt atcaatcgtt tctattaaat gagcaagatt.                                                                                | 1518 |
| ttatasaaaa aaaaaaaaaa aaaa                                                                                                                        | 1542 |

<210> 35

<211> 375

<212> PRT

<213> Mus musculus

<400> 35

- Met Lys Phe Trp Leu Leu Leu Gly Leu Leu Leu Leu His Glu Ala Leu 1 5 10 15
- Glu Asp Val Ala Gly Gln His Ser Pro Lys Asn Lys Arg Pro Lys Glu 20 25 30
- Gln Gly Glu Asn Arg Ile Lys Pro Thr Asn Lys Lys Ala Lys Pro Lys 35 40 45
- Ile Pro Lys Val Lys Asp Arg Asp Ser Thr Asp Ser Thr Ala Lys Ser 50 55 60
- Gln Ser Ile Met Met Gln Ala Met Gly Asn Gly Arg Phe Gln Arg Pro 65 70 75 80
- Ala Ala Thr Val Ser Leu Leu Ala Gly Gln Thr Leu Glu Leu Arg Cys 85 90 95
- Lys Gly Ser Lys Val Glu Trp Ser Tyr Pro Ala Tyr Leu Asp Thr Phe 100 105 110
- Lys Asp Ser Arg Leu Thr Val Lys Gln Ser Glu Arg Tyr Gly Gln Leu 115 120 125
- Thr Leu Val Asn Ser Thr Ala Ala Asp Thr Gly Glu Phe Ser Cys Trp
- Glu Gln Leu Cys Asn Gly Tyr Ile Cys Arg Arg Asp Glu Ala Lys Thr

150 155 145 Gly Ser Thr Tyr Ile Phe Phe Thr Glu Lys Gly Glu Leu Phe Val Pro 165 170 175 Ser Pro Ser Tyr Phe Asp Val Val Tyr Leu Asn Pro Asp Arg Gln Ala 180 185 190 Val Val Pro Cys Arg Val Thr Ala Pro Ser Ala Lys Val Thr Leu His 195 200 205 Arg Glu Phe Pro Ala Lys Glu Ile Pro Ala Asn Gly Thr Asp Ile Val 210 220 Tyr Asp Met Lys Arg Gly Phe Val Tyr Leu Gln Pro His Ser Asp His 225 230 235 Gln Gly Val Val Tyr Cys Lys Ala Glu Ala Gly Gly Lys Ser Gln Ile 245 250 255 Ser Val Lys Tyr Gln Leu Leu Tyr Val Glu Val Pro Ser Gly Pro Pro 260 265 270 Ser Thr Thr Ile Leu Ala Ser Ser Asn Lys Val Arg Gly Gly Asp Asp 275 280 285 Ile Ser Val Leu Cys Thr Val Leu Gly Glu Pro Asp Val Glu Val Glu Phe Arg Trp Leu Phe Pro Gly Gln Lys Asp Glu Arg Pro Val Thr Ile 305 310 315 Gln Asp Thr Trp Arg Leu Ile His Arg Gly Leu Gly His Thr Thr Arg 325 330 335 Ile Ser Gln Ser Val Ile Ile Val Glu Asp Phe Glu Thr Ile Asp Ala 340 345 350 Gly Tyr Tyr Ile Cys Thr Ala Gln Asn Leu Arg Gly Gln Thr Thr Val 355 360 365Ala Thr Thr Val Glu Phe Ser 370 375 <210> 36

<211> 1502

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (62)..(1189)

<223> SF07, cDNA: NM\_006207, Proteína: NP 006198

<400> 36

| cct               | gcgt              | ccc               | cgcc              | ccgc              | gc a              | gccg              | gccgc             | g ct              | cctg              | geget              | cc                | gaggt              | ccg               | aggt              | tcccga                 | 60  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|--------------------|-------------------|-------------------|------------------------|-----|
| g a<br>M<br>1     | et L              | ag g<br>ys V      | tc t<br>al 1      | gg c<br>rp L      | tg c<br>eu L      | tg o              | ett g<br>eu G     | gt o              | Jeu I             | tg c<br>eu I<br>.0 | tg (              | gtg c<br>Val H     | ac g              | lu A              | cg ctg<br>la Leu<br>.5 | 109 |
| gag<br>Glu        | gat<br>Asp        | gtt<br>Val        | act<br>Thr<br>20  | ggc               | caa<br>Gln        | cac               | ctt<br>Leu        | Pro<br>25         | aag<br>Lys        | aac<br>Asn         | aaq<br>Lys        | g cgt<br>s Arg     | CCa<br>Pro<br>30  | aaa<br>Lys        | gaa<br>Glu             | 157 |
| cca<br>Pro        | gga<br>Gly        | gag<br>Glu<br>35  | aat<br>Asn        | aga<br>Arg        | ato               | aaa<br>Lys        | cct<br>Pro        | acc<br>Thr        | aac<br>Asn        | aag<br>Lys         | Lys               | g gtg<br>Val<br>45 | aag<br>Lys        | Pro               | aaa<br>Lys             | 205 |
| att<br>Ile        | cct<br>Pro<br>50  | aaa<br>Lys        | atg<br>Met        | aag<br>Lys        | gac<br>Asp        | agg<br>Arg<br>55  | gac<br>Asp        | tca<br>Ser        | gcc<br>Ala        | aat<br>Asn         | tca<br>Ser<br>60  | gca<br>Ala         | cca<br>Pro        | aag<br>Lys        | acg<br>Thr             | 253 |
| cag<br>Gln<br>65  | tct<br>Ser        | atc<br>Ile        | atg<br>Met        | atg<br>Met        | caa<br>Gln<br>70  | gtg<br>Val        | ctg<br>Leu        | gat<br>Asp        | aaa<br>Lys        | ggt<br>Gly<br>75   | Arg               | ttc<br>Phe         | cag<br>Gln        | aaa<br>Lys        | Pro<br>80              | 301 |
| gcc<br>Ala        | gct<br>Ala        | acc<br>Thr        | ctg<br>Leu        | agt<br>Ser<br>85  | ctg<br>Leu        | ctg<br>Leu        | gcg<br>Ala        | ggg               | caa<br>Gln<br>90  | act<br>Thr         | gta<br>Val        | gag<br>Glu         | ctt<br>Leu        | cga<br>Arg<br>95  | tgt<br>Cys             | 349 |
| aaa<br>Lys        | ggg<br>Gly        | agt<br>Ser        | aga<br>Arg<br>100 | Ile               | ggg<br>Gly        | tgg<br>Trp        | agc<br>Ser        | tac<br>Tyr<br>105 | cct<br>Pro        | gcg<br>Ala         | tat<br>Tyr        | ctg<br>Leu         | gac<br>Asp<br>110 | Thr               | ttt<br>Phe             | 397 |
| aag<br>Lys        | gat<br>Asp        | tct<br>Ser<br>115 | Arg               | ctc<br>Leu        | agc<br>Ser        | gtc<br>Val        | aag<br>Lys<br>120 | cag<br>Gln        | aat<br>Asn        | gag<br>Glu         | cgc<br>Arg        | tac<br>Tyr<br>125  | ggc<br>Gly        | cag<br>Gln        | ttg<br>Leu             | 445 |
| act<br>Thr        | ctg<br>Leu<br>130 | gtc<br>Val        | aac<br>Asn        | tcc<br>Ser        | acc<br>Thr        | tcg<br>Ser<br>135 | gca<br>Ala        | gac<br>Asp        | aca<br>Thr        | ggt<br>Gly         | gaa<br>Glu<br>140 | ttc<br>Phe         | agc<br>Ser        | tgc<br>Cys        | tgg<br>Trp             | 493 |
| gtg<br>Val<br>145 | cag<br>Gln        | ctc<br>Leu        | tgc<br>Cys        | agc<br>Ser        | ggc<br>Gly<br>150 | tac<br>Tyr        | atc<br>Ile        | tgc<br>Cys        | agg<br>Arg        | aag<br>Lys<br>155  | gac<br>Asp        | gag<br>Glu         | gcc<br>Ala        | aaa<br>Lys        | acg<br>Thr<br>160      | 541 |
| ggc<br>Gly        | tcc<br>Ser        | acc<br>Thr        | tac<br>Tyr        | atc<br>Ile<br>165 | ttt<br>Phe        | ttt<br>Phe        | aca<br>Thr        | gag<br>Glu        | aaa<br>Lys<br>170 | gga<br>Gly         | gaa<br>Glu        | ctc<br>Leu         | ttt<br>Phe        | gta<br>Val<br>175 | cct<br>Pro             | 589 |
| tct<br>Ser        | ccc<br>Pro        | Ser               | Tyr               | Phe               | Asp               | Val               | Val               | Tyr               | Leu               | Asn                | Pro               | gac<br>Asp         | Arg               | Gln               | gct<br>Ala             | 637 |
| gtg<br>Val        | gtt<br>Val        | cct<br>Pro<br>195 | tgt<br>Cys        | cgg<br>Arg        | gtg<br>Val        | acc<br>Thr        | gtg<br>Val<br>200 | ctg<br>Leu        | tcg<br>Ser        | gcc<br>Ala         | aaa<br>Lys        | gtc<br>Val<br>205  | acg<br>Thr        | ctc<br>Leu        | cac<br>His             | 685 |
| agg<br>Arg        | gaa<br>Glu<br>210 | ttc<br>Phe        | cca<br>Pro        | gcc<br>Ala        | aag<br>Lys        | gag<br>Glu<br>215 | atc<br>Ile        | cca<br>Pro        | gcc<br>Ala        | aat<br>Asn         | gga<br>Gly<br>220 | acg<br>Thr         | gac<br>Asp        | att<br>Ile        | gtt<br>Val             | 733 |
| tat<br>Tyr<br>225 | gac<br>Asp        | atg<br>Met        | aag<br>Lys        | cgg<br>Arg        | ggc<br>Gly<br>230 | ttt<br>Phe        | gtg<br>Val        | tat<br>Tyr        | ctg<br>Leu        | caa<br>Gln<br>235  | cct<br>Pro        | cat<br>His         | tcc<br>Ser        | gag<br>Glu        | cac<br>His<br>240      | 781 |
| cag<br>Gln        | ggt<br>Gly        | gtg<br>Val        | gtt<br>Val        | tac<br>Tyr<br>245 | tgc<br>Cys        | agg<br>Arg        | gcg<br>Ala        | gag<br>Glu        | gcc<br>Ala<br>250 | Gly                | ggc<br>Gly        | aga<br>Arg         | tct<br>Ser        | cag<br>Gln<br>255 | atc<br>Ile             | 829 |

|      |      |                   |      |      |      |       |      |      |       |       |      |      |      |      | CCC<br>Pro | 877  |
|------|------|-------------------|------|------|------|-------|------|------|-------|-------|------|------|------|------|------------|------|
|      |      | acc<br>Thr<br>275 |      |      |      |       |      |      |       |       |      |      |      |      | gac<br>Asp | 925  |
|      |      | gtg<br>Val        |      |      |      |       |      |      |       |       |      |      |      |      |            | 973  |
|      |      | tgg<br>Trp        |      |      |      |       |      |      |       |       |      |      |      |      |            | 1021 |
|      |      | act<br>Thr        |      |      |      |       |      |      |       |       |      |      |      |      |            | 1069 |
|      |      | cag<br>Gln        |      |      |      |       |      |      |       |       |      |      |      |      |            | 1117 |
|      |      | tac<br>Tyr<br>355 |      |      |      | Ala   |      |      |       |       | Ğİy  |      |      |      |            | 1165 |
| Ala  |      | act<br>Thr        |      |      | Phe  |       | tga  | cttg | gaaa  | ag g  | aaat | gtaa | t ga | actt | atgg       | 1219 |
| aaag | ccca | tt t              | gtgt | acac | a gt | cagc  | tttg | ggg  | ttcc  | ttt   | tatt | agtg | ct t | tgcc | agagg      | 1279 |
| ctga | tgtc | aa g              | cacc | acac | c cc | aacc  | ccag | cgt  | ctcg  | tga   | gtcc | gacc | ca g | acat | ccaaa      | 1339 |
| ctaa | aagg | aa g              | tcat | ccag | t ct | attc  | acag | aag  | tgtt  | aac   | tttt | ctaa | ca g | aaag | catga      | 1399 |
| tttt | gatt | gc t              | tacc | taca | t ac | gtgt  | tcct | agt  | tttt  | ata   | catg | tgta | aa c | aatt | ttata      | 1459 |
| taat | caat | ca t              | ttct | atta | a at | gagca | acgt | ttt  | tgtaa | aaa a | aat  |      |      |      |            | 1502 |

<210> 37

<211> 375

<212> PRT

<213> Homo sapiens

<400> 37

Met Lys Val Trp Leu Leu Cly Leu Leu Leu Val His Glu Ala Leu 1 5 10 15

Glu Asp Val Thr Gly Gln His Leu Pro Lys Asn Lys Arg Pro Lys Glu 20 25 30

Pro Gly Glu Asn Arg Ile Lys Pro Thr Asn Lys Lys Val Lys Pro Lys 35 40 45

Ile Pro Lys Met Lys Asp Arg Asp Ser Ala Asn Ser Ala Pro Lys Thr 50 55 60

Gln Ser Ile Met Met Gln Val Leu Asp Lys Gly Arg Phe Gln Lys Pro

| 65         |                 |            |            |             | 70         |            |            |              |            | 75         |            |            |             |            | 80           |
|------------|-----------------|------------|------------|-------------|------------|------------|------------|--------------|------------|------------|------------|------------|-------------|------------|--------------|
| Ala        | a Ala           | a Th       | r Le       | u Se:<br>85 | r Le       | u Le       | u Al       | a Gl         | y Gl<br>90 |            | r Va       | 1 G1       | u Le        | u Ar<br>95 | g Cy         |
| Lys        | Gl <sub>y</sub> | , Se       | r Ar       |             | e Gly      | / Tr       | p Se       | r Ty         |            | o Al       | а Ту       | r Le       | u As;<br>11 |            | r Pho        |
| Lys        | Ası             | Ser<br>115 |            | g Lei       | ı Sei      | va:        | l Ly:      |              | n Ası      | n Gl       | u Ar       | g Ty       |             | y Gl       | n Lei        |
| Thr        | Leu<br>130      |            | Ası        | n Ser       | Thr        | Ser<br>135 |            | a Ası        | p Thi      | r Gly      | y Gl       |            | e Sei       | r Cy:      | s Tr         |
| Val<br>145 |                 | Leu        | Суя        | Ser         | Gly<br>150 |            | 116        | e Cys        | arç        | 155        |            | Gl:        | ı Ala       | a Ly:      | s Thr<br>160 |
| Gly        | Ser             | Thr        | Туг        | 11e         |            | Phe        | : Thr      | Glu          | 170        |            | / Glu      | ı Leı      | ı Phe       | 2 Val      | l Pro        |
| Ser        | Pro             | Ser        | Туг<br>180 |             | Asp        | Val        | . Val      | . Tyr<br>185 |            | ı Asn      | Pro        | ) Asr      | Arg<br>190  |            | n Ala        |
| Val        | Val             | Pro<br>195 |            | Arg         | Val        | Thr        | Val<br>200 |              | Ser        | Ala        | Lys        | Val<br>205 |             | Lev        | His          |
| Arg        | Glu<br>210      | Phe        | Pro        | Ala         | Lys        | Glu<br>215 |            | Pro          | Ala        | Asn        | Gly<br>220 |            | Asp         | Ile        | val          |
| Tyr<br>225 | Asp             | Met        | Lys        | Arg         | Gly<br>230 | Phe        | Val        | Tyr          | Leu        | Gln<br>235 |            | His        | Ser         | Glu        | His<br>240   |
| Gln        | Gly             | Val        | Val        | Tyr<br>245  | Суз        | Arg        | Ala        | Glu          | Ala<br>250 | Gly        | Gly        | Arg        | Ser         | Gln<br>255 | Ile          |
| Ser        | Val             | Lys        | Туг<br>260 | Gln         | Leu        | Leu        | Туг        | Val<br>265   | Ala        | Val        | Pro        | Ser        | Gly<br>270  | Pro        | Pro          |
| Ser.       | Thr             | Thr<br>275 | Ile        | Leu         | Ala        | Ser        | Ser<br>280 | Asn          | Lys        | Val        | Lys        | Ser<br>285 | Gly         | Asp        | Asp          |
| Ile        | Ser<br>290      | Val        | Leu        | Cys         | Thr        | Val<br>295 | Leu        | Gly          | Glu        | Pro        | Asp<br>300 | Val        | Glů         | Val        | Glu          |
| Phe<br>305 | Thr             | Trp        | Ile        | Phe         | Pro<br>310 | Gly        | Gln        | Lys          | Asp        | Glu<br>315 | Arg        | Pro        | Val         | Thr        | Ile<br>320   |
| Gln .      | Asp             | Thr        | Trp        | Arg<br>325  | Leu        | Ile        | His        | Arg          | Gly<br>330 | Leu        | Gly        | His        | Thr         | Thr<br>335 | Arg          |
| lle :      | Ser             | Gln        | Ser        | Val         | Ile        | Thr        | Val        | Glu          | Asp        | Phe        | Glu        | Thr        | Ile         | Asp        | Ala          |

345 340 350

Gly Tyr Tyr Ile Cys Thr Ala Gln Asn Leu Gln Gly Gln Thr Thr Val

Ala Thr Thr Val Glu Phe Ser

<210> 38

<211> 2379

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (69)..(2237)

<223> SF08, cDNA: NM\_019696, Proteína: NP\_062670

<400> 38

| aga              | cgcc             | cgc        | agga              | agaa              | ga g             | aacc             | cacc       | a ag              | aacc             | tcgg             | cac              | agcg       | cgc               | tcgt       | cgaccc           |   | 60  |
|------------------|------------------|------------|-------------------|-------------------|------------------|------------------|------------|-------------------|------------------|------------------|------------------|------------|-------------------|------------|------------------|---|-----|
| tto              | ccgc             |            |                   |                   |                  |                  |            |                   |                  |                  |                  | a Ph       |                   |            | t tcc<br>o Ser   |   | 110 |
| gtc<br>Val<br>15 | ggt<br>Gly       | ctg<br>Leu | Gly               | ctg<br>Leu        | ggg<br>Gly<br>20 | gct<br>Ala       | ccc<br>Pro | agc<br>Ser        | gcc              | tca<br>Ser<br>25 | gtg<br>Val       | ccg<br>Pro | ggc               | ctg        | gcg<br>Ala<br>30 |   | 158 |
| ccg<br>Pro       | ggc<br>Gly       | tca<br>Ser | acc<br>Thr        | ctg<br>Leu<br>35  | gct<br>Ala       | cca<br>Pro       | cac<br>His | agc<br>Ser        | agc<br>Ser<br>40 | gtt<br>Val       | gca<br>Ala       | cag<br>Gln | ccg<br>Pro        | Ser<br>45  | aca<br>Thr       |   | 206 |
| aag<br>Lys       | gca<br>Ala       | aat<br>Asn | gag<br>Glu<br>50  | acc<br>Thr        | tca<br>Ser       | gaa<br>Glu       | cgg<br>Arg | cat<br>His<br>55  | gtc<br>Val       | cgg<br>Arg       | ctt<br>Leu       | cga<br>Arg | gtc<br>Val<br>60  | atc<br>Ile | aag<br>Lys       |   | 254 |
|                  |                  |            |                   | gtt<br>Val        |                  |                  |            |                   |                  |                  |                  |            |                   |            |                  |   | 302 |
| ccc<br>Pro       | ttg<br>Leu<br>80 | Gly        | act<br>Thr        | gct<br>Ala        | agg<br>Arg       | cct<br>Pro<br>85 | gtg<br>Val | gtg<br>Val        | ccc<br>Pro       | act<br>Thr       | cac<br>His<br>90 | cca<br>Pro | gca<br>Ala        | aag<br>Lys | acc<br>Thr       |   | 350 |
|                  |                  |            |                   | gag<br>Glu        |                  |                  |            |                   |                  |                  |                  |            |                   |            |                  |   | 398 |
|                  |                  |            |                   | gtt<br>Val<br>115 |                  |                  |            |                   |                  |                  |                  |            |                   |            |                  |   | 446 |
| tcc<br>Ser       | ttt<br>Phe       | ggt<br>Gly | ctt<br>Leu<br>130 | gga<br>Gly        | gca<br>Ala       | cac<br>His       | cga<br>Arg | gga<br>Gly<br>135 | cgg<br>Arg       | ctc<br>Leu       | aat<br>Asn       | atc<br>Ile | cag<br>Gln<br>140 | tca<br>Ser | ggt<br>Gly       |   | 494 |
|                  |                  |            |                   | gac<br>Asp        |                  |                  |            |                   |                  |                  |                  |            |                   |            |                  |   | 542 |
|                  |                  |            |                   | tgg<br>Trp        |                  |                  |            |                   |                  |                  |                  |            |                   |            |                  | ! | 590 |

| gca<br>Ala<br>175 | gga<br>Gly        | att<br>Ile        | gtt<br>Val        | aca<br>Thr        | cag<br>Gln<br>180 | ggc<br>Gly        | aga<br>Arg        | aac<br>Asn        | tct<br>Ser        | gtg<br>Val<br>185 | tgg<br>Trp        | agg<br>Arg        | tat<br>Tyr        | gac<br>Asp         | tgg<br>Trp<br>190 | 638   |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------|
| gtc<br>Val        | aca<br>Thr        | tca<br>Ser        | ttc<br>Phe        | aag<br>Lys<br>195 | gtc<br>Val        | cag<br>Gln        | ttc<br>Phe        | agc<br>Ser        | aat<br>Asn<br>200 | gac<br>Asp        | agc<br>Ser        | cag<br>Gln        | acc<br>Thr        | tgg<br>Trp<br>205  | tgg<br>Trp        | . 686 |
| aag<br>Lys        | agt<br>Ser        | agg<br>Arg        | aac<br>Asn<br>210 | agt<br>Ser        | act<br>Thr        | gga<br>Gly        | atg<br>Met        | gac<br>Asp<br>215 | ata<br>Ile        | gta<br>Val        | ttt<br>Phe        | cct<br>Pro        | gcc<br>Ala<br>220 | aat<br>Asn         | tca<br>Ser        | 734   |
| gac<br>Asp        | gca<br>Ala        | gag<br>Glu<br>225 | Thr               | cca<br>Pro        | gtg<br>Val        | ttg<br>Leu        | aac<br>Asn<br>230 | ctt<br>Leu        | ctg<br>Leu        | cca<br>Pro        | gag<br>Glu        | cct<br>Pro<br>235 | cag<br>Gln        | gtg<br>Val         | gct<br>Ala        | 782   |
| cga<br>Arg        | ttc<br>Phe<br>240 | att<br>Ile        | cgc<br>Arg        | ctg<br>Leu        | ctg<br>Leu        | cct<br>Pro<br>245 | cag<br>Gln        | acc<br>Thr        | tgg<br>Trp        | ttt<br>Phe        | cag<br>Gln<br>250 | gga<br>Gly        | ggt<br>Gly        | gta<br>V <b>al</b> | cct<br>Pro        | 830   |
| tgc<br>Cys<br>255 | ctc<br>Leu        | cgg<br>Arg        | gca<br>Ala        | gag<br>Glu        | atc<br>Ile<br>260 | ctg<br>Leu        | gcc<br>Ala        | tgc<br>Cys        | cca<br>Pro        | gtc<br>Val<br>265 | tca<br>Ser        | gat<br>Asp        | cct<br>Pro        | aat<br>Asn         | gac<br>Asp<br>270 | 878   |
| ctg<br>Leu        | ttc<br>Phe        | cct<br>Pro        | gag<br>Glu        | gcc<br>Ala<br>275 | cac<br>His        | aca<br>Thr        | ctg<br>Leu        | gga<br>Gly        | tct<br>Ser<br>280 | tcg<br>Ser        | aac<br>Asn        | tct<br>Ser        | ttg<br>Leu        | gac<br>Asp<br>285  | ttc<br>Phe        | 926   |
| cgg<br>Arg        | cat<br>His        | cac<br>His        | aat<br>Asn<br>290 | tat<br>Tyr        | aaa<br>Lys        | gct<br>Ala        | atg<br>Met        | aga<br>Arg<br>295 | aag<br>Lys        | ctg<br>Leu        | atg<br>Met        | aaa<br>Lys        | cag<br>Gln<br>300 | gtg<br>Val         | aat<br>Asn        | 974   |
| gag<br>Glu        | cag<br>Gln        | tgc<br>Cys<br>305 | ccc<br>Pro        | aac<br>Asn        | atc<br>Ile        | acg<br>Thr        | cgc<br>Arg<br>310 | atc<br>Ile        | tac<br>Tyr        | agc<br>Ser        | atc<br>Ile        | ggg<br>Gly<br>315 | aag<br>Lys        | agc<br>Ser         | cac<br>His        | 1022  |
| cag<br>Gln        | ggt<br>Gly<br>320 | ttg<br>Leu        | aag<br>Lys        | ctg<br>Leu        | tat<br>Tyr        | gtg<br>Val<br>325 | atg<br>Met        | gaa<br>Glu        | atg<br>Met        | tca<br>Ser        | gac<br>Asp<br>330 | cat<br>His        | cct<br>Pro        | Gly                | gag<br>Glu        | 1070  |
| cat<br>His<br>335 | gag<br>Glu        | ctg<br>Leu        | ggc<br>Gly        | gag<br>Glu        | ccc<br>Pro<br>340 | gag<br>Glu        | gtc<br>Val        | cgc<br>Arg        | tac<br>Tyr        | gtg<br>Val<br>345 | gct<br>Ala        | gga<br>Gly        | atg<br>Met        | cat<br>His         | ggg<br>Gly<br>350 | 1118  |
| aat<br>Asn        | gag<br>Glu        | gcc<br>Ala        | ctg<br>Leu        | ggg<br>Gly<br>355 | cgg<br>Arg        | gag<br>Glu        | ttg<br>Leu        | ctt<br>Leu        | ctg<br>Leu<br>360 | ctt<br>Leu        | ttg<br>Leu        | atg<br>Met        | cag<br>Gln        | ttc<br>Phe<br>365  | tta<br>Leu        | 1166  |
| tgc<br>Cys        | cat<br>His        | gag<br>Glu        | ttc<br>Phe<br>370 | Leu               | cga<br>Arg        | GJA<br>āāā        | gac<br>Asp        | ccg<br>Pro<br>375 | cga<br>Arg        | gtg<br>Val        | act<br>Thr        | cgg<br>Arg        | ctg<br>Leu<br>380 | ctc<br>Leu         | act<br>Thr        | 1214  |
| gag<br>Glu        | aca<br>Thr        | cga<br>Arg<br>385 | atc<br>Ile        | cat<br>His        | cta<br>Leu        | ttg<br>Leu        | ccc<br>Pro<br>390 | tcc<br>Ser        | atg<br>Met        | aat<br>Asn        | cct<br>Pro        | gat<br>Asp<br>395 | Gly<br>Ggc        | tat<br>Tyr         | gag<br>Glu        | 1262  |
| act<br>Thr        | gcc<br>Ala<br>400 | Tyr               | cac<br>His        | agg<br>Arg        | ggc<br>Gly        | tca<br>Ser<br>405 | gag<br>Glu        | ctg<br>Leu        | gtg<br>Val        | ggc<br>Gly        | tgg<br>Trp<br>410 | gca<br>Ala        | gag<br>Glu        | ggc<br>Gly         | cgc<br>Arg        | 1310  |
| tgg<br>Trp<br>415 | Thr               | cac<br>His        | cag<br>Gln        | ggc<br>Gly        | att<br>Ile<br>420 | gac<br>Asp        | ctt<br>Leu        | aac<br>Asn        | cac<br>His        | aat<br>Asn<br>425 | ttt<br>Phe        | gct<br>Ala        | gac<br>Asp        | ctc<br>Leu         | aac<br>Asn<br>430 | 1358  |
| aca<br>Thr        | caa<br>Gln        | ctg<br>Leu        | tgg<br>Trp        | tat<br>Tyr<br>435 | gca<br>Ala        | gag<br>Glu        | gat<br>Asp        | gat<br>Asp        | gga<br>Gly<br>440 | ctg<br>Leu        | gta<br>Val        | ccc<br>Pro        | gac<br>Asp        | act<br>Thr<br>445  | gtc<br>Val        | 1406  |

| ccc<br>Pro        | aac<br>Asn        | cat<br>His        | cac<br>His<br>450 | ctg<br>Leu        | cca<br>Pro        | ctg<br>Leu        | cct<br>Pro        | acc<br>Thr<br>455 | Tyr               | tat<br>Tyr        | aca<br>Thr        | ttg<br>Leu        | Pro<br>460        | Asn               | gcc<br>Ala        | 1454 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| acc<br>Thr        | gtg<br>Val        | gct<br>Ala<br>465 | Pro               | gaa<br>Glu        | acg<br>Thr        | tgg<br>Trp        | gca<br>Ala<br>470 | gtg<br>Val        | atc<br>Ile        | aaa<br>Lys        | tgg<br>Trp        | atg<br>Met<br>475 | Lys               | cgc               | atc<br>Ile        | 1502 |
| ccg<br>Pro        | ttt<br>Phe<br>480 | gtg<br>Val        | ctg<br>Leu        | agt<br>Ser        | gcc<br>Ala        | aac<br>Asn<br>485 | ctc<br>Leu        | cat<br>His        | ggg<br>Gly        | ggc<br>Gly        | gag<br>Glu<br>490 | Leu               | gtg<br>Val        | gtg<br>Val        | tcc<br>Ser        | 1550 |
| tat<br>Tyr<br>495 | Pro               | ttc<br>Phe        | gac<br>Asp        | atg<br>Met        | act<br>Thr<br>500 | cgg<br>Arg        | act<br>Thr        | ccg<br>Pro        | tgg<br>Trp        | gct<br>Ala<br>505 | Ala               | cgt<br>Arg        | gaa<br>Glu        | ctc<br>Leu        | act<br>Thr<br>510 | 1598 |
| ccc<br>Pro        | aca<br>Thr        | cca<br>Pro        | gat<br>Asp        | gat<br>Asp<br>515 | gct<br>Ala        | gtc<br>Val        | ttc<br>Phe        | cgc<br>Arg        | tgg<br>Trp<br>520 | ctc<br>Leu        | agc<br>Ser        | act<br>Thr        | gtc<br>Val        | tat<br>Tyr<br>525 | gct<br>Ala        | 1646 |
| ggc<br>Gly        | acg<br>Thr        | aat<br>Asn        | agg<br>Arg<br>530 | gcc<br>Ala        | atg<br>Met        | cag<br>Gln        | gat<br>Asp        | acc<br>Thr<br>535 | gac<br>Asp        | cgc<br>Arg        | cga<br>Arg        | cct<br>Pro        | tgt<br>Cys<br>540 | cat<br>His        | agc<br>Ser        | 1694 |
| cag<br>Gln        | gac<br>Asp        | ttc<br>Phe<br>545 | tcc<br>Ser        | ttg<br>Leu        | cat<br>His        | ggc<br>Gly        | aac<br>Asn<br>550 | gtc<br>Val        | atc<br>Ile        | aat<br>Asn        | gga<br>Gly        | gcc<br>Ala<br>555 | gac<br>Asp        | tgg<br>Trp        | cac<br>His        | 1742 |
| aca<br>Thr        | gtt<br>Val<br>560 | cct<br>Pro        | ggg<br>Gly        | agc<br>Ser        | atg<br>Met        | aac<br>Asn<br>565 | gac<br>Asp        | ttc<br>Phe        | agc<br>Ser        | tac<br>Tyr        | cta<br>Leu<br>570 | cac<br>His        | acc<br>Thr        | aat<br>Asn        | tgc<br>Cys        | 1790 |
| ttt<br>Phe<br>575 | gag<br>Glu        | gtc<br>Val        | aca<br>Thr        | gtg<br>Val        | gag<br>Glu<br>580 | ctg<br>Leu        | tcc<br>Ser        | tgt<br>Cys        | gac<br>Asp        | aag<br>Lys<br>585 | ttc<br>Phe        | cct<br>Pro        | cat<br>Kis        | gag<br>Glu        | aag<br>Lys<br>590 | 1838 |
| gag<br>Glu        | ctg<br>Leu        | cct<br>Pro        | cag<br>Gln        | gag<br>Glu<br>595 | tgg<br>Trp        | gaa<br>Glu        | aac<br>Asn        | aac<br>Asn        | aaa<br>Lys<br>600 | gat<br>Asp        | gct<br>Ala        | ctt<br>Leu        | ctc<br>Leu        | acc<br>Thr<br>605 | tac<br>Tyr        | 1886 |
| ctg<br>Leu        | gag<br>Glu        | cag<br>Gln        | gtg<br>Val<br>610 | cgc<br>Arg        | atg<br>Met        | ggc<br>Gly        | att<br>Ile        | act<br>Thr<br>615 | gga<br>Gly        | gtt<br>Val        | gtc<br>Val        | cgg<br>Arg        | gat<br>Asp<br>620 | aaa<br>Lys        | gac<br>Asp        | 1934 |
| aca<br>Thr        | gag<br>Glu        | ctc<br>Leu<br>625 | ggc<br>Gly        | att<br>Ile        | gcg<br>Ala        | gat<br>Asp        | gct<br>Ala<br>630 | gtc<br>Val        | att<br>Ile        | gcc<br>Ala        | gtg<br>Val        | gag<br>Glu<br>635 | ggc<br>Gly        | att<br>Ile        | aac<br>Asn        | 1982 |
| cac<br>His        | gat<br>Asp<br>640 | gtt<br>Val        | aca<br>Thr        | aca<br>Thr        | gct<br>Ala        | tgg<br>Trp<br>645 | ggc<br>Gly        | gga<br>Gly        | gat<br>Asp        | Tyr               | tgg<br>Trp<br>650 | cgg<br>Arg        | ctg<br>Leu        | ctg<br>Leu        | aca<br>Thr        | 2030 |
| cct<br>Pro<br>655 | ggg<br>Gly        | gac<br>Asp        | tat<br>Tyr        | gtg<br>Val        | gtg<br>Val<br>660 | aca<br>Thr        | gcc<br>Ala        | agt<br>Ser        | gct<br>Ala        | gag<br>Glu<br>665 | ggt<br>Gly        | tac<br>Tyr        | cat<br>His        | aca<br>Thr        | gtc<br>Val<br>670 | 2078 |
| aga<br>Arg        | caa<br>Gln        | cac<br>His        | tgt<br>Cys        | cag<br>Gln<br>675 | gtc<br>Val        | acc<br>Thr        | ttt<br>Phe        | gaa<br>Glu        | gag<br>Glu<br>680 | ggc<br>Gly        | cct<br>Pro        | gtt<br>Val        | ccc<br>Pro        | tgc<br>Cys<br>685 | aat<br>Asn        | 2126 |
| ttc<br>Phe        | cta<br>Leu        | ctc<br>Leu        | acc<br>Thr<br>690 | aag<br>Lys        | act<br>Thr        | ccc<br>Pro        | aaa<br>Lys        | gag<br>Glu<br>695 | agg<br>Arg        | ctt<br>Leu        | cga<br>Arg        | gaa<br>Glu        | ctg<br>Leu<br>700 | ttg<br>Leu        | gca<br>Ala        | 2174 |
| aca<br>Thr        | cga<br>Arg        | ggg<br>Gly<br>705 | aag<br>Lys        | ttg<br>Leu        | ccc<br>Pro        | cca<br>Pro        | gac<br>Asp<br>710 | ctt<br>Leu        | cgg<br>Arg        | agg<br>Arg        | aag<br>Lys        | ctg<br>Leu<br>715 | gag<br>Glu        | cgg<br>Arg        | ctg<br>Leu        | 2222 |

| agg gga cag aag taa cgtcttcagc tgaagagagc cacatccttg gacaggctgg<br>Arg Gly Gln Lys<br>720 | 2277 |
|-------------------------------------------------------------------------------------------|------|
| acctgtccag aactgaagga ggagggggaa gagagaggga cggggtagaa gaggtgctct                         | 2337 |
| ggctcattaa agcttcgtgg tgcctgataa aaaaaaaaaa                                               | 2379 |
|                                                                                           |      |

<210> 39

<211> 722 <212> PRT

<213> Mus musculus

<400> 39

- Met Trp Gly Leu Leu Leu Ala Val Thr Ala Phe Ala Pro Ser Val Gly
  1 5 . 10 15
- Leu Gly Leu Gly Ala Pro Ser Ala Ser Val Pro Gly Leu Ala Pro Gly 20 25 30
- Ser Thr Leu Ala Pro His Ser Ser Val Ala Gln Pro Ser Thr Lys Ala 35 40 45
- Asn Glu Thr Ser Glu Arg His Val Arg Leu Arg Val Ile Lys Lys 50 55 60
- Lys Ile Val Val Lys Lys Arg Lys Lys Leu Arg His Pro Gly Pro Leu 65 70 75 80
- Gly Thr Ala Arg Pro Val Val Pro Thr His Pro Ala Lys Thr Leu Thr 85 90 95
- Leu Pro Glu Lys Gln Glu Pro Gly Cys Pro Pro Leu Gly Leu Glu Ser 100 105 110
- Leu Arg Val Ser Asp Ser Gln Leu Glu Ala Ser Ser Ser Gln Ser Phe
  115 120 125
- Gly Leu Gly Ala His Arg Gly Arg Leu Asn Ile Gln Ser Gly Leu Glu 130 140
- Asp Gly Asp Leu Tyr Asp Gly Ala Trp Cys Ala Glu Gln Gln Asp Thr 145 150 155 160
- Glu Pro Trp Leu Gln Val Asp Ala Lys Asn Pro Val Arg Phe Ala Gly
  165 170 175
- Ile Val Thr Gln Gly Arg Asn Ser Val Trp Arg Tyr Asp Trp Val Thr 180 185 190
- Ser Phe Lys Val Gln Phe Ser Asn Asp Ser Gln Thr Trp Trp Lys Ser 195 200 205

| Arg        | 210        |            | Thi        | c Gly      | / Met      | 215        |            | e Va       | l Ph       | e Pro      | 220        |            | n Sei      | r As       | p Ala      |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu<br>225 |            | Pro        | Val        | Lev        | Asr<br>230 |            | ı Lev      | ı Pro      | Gl:        | 235        |            | n Val      | l Ala      | a Ar       | 240        |
| Ile        | Arg        | Leu        | Lev        | 245        |            | Thr        | Tr         | Phe        | 250        | n Gly      | / Gly      | y Val      | l Pro      | 255        |            |
| Arg        | Ala        | Glu        | 11e<br>260 |            | Ala        | Суѕ        | Pro        | Val<br>265 |            | c Asp      | Pro        | ) Asr      | Asr<br>270 |            | ı Phe      |
| Pro        | Glu        | Ala<br>275 |            | Thr        | Leu        | Gly        | Ser<br>280 |            | Asr        | ser        | Leu        | Asp<br>285 |            | e Arg      | , His      |
| His        | Asn<br>290 |            | Lys        | Ala        | Met        | Arg<br>295 |            | Leu        | Met        | Lys        | Gln<br>300 |            | . Asn      | Glu        | Gln        |
| Cys<br>305 | Pro        | Asn        | Ile        | Thr        | Arg<br>310 |            | Tyr        | Ser        | Ile        | Gly<br>315 |            | Ser        | His        | Gln        | Gly<br>320 |
| Leu        | Lys        | Leu        | Tyr        | Val<br>325 | Met        | Glu        | Met        | Ser        | Asp<br>330 | His        | Pro        | Gly        | Glu        | Нis<br>335 |            |
| Leu        | Gly        | Glu        | Pro<br>340 | Glu        | Val        | Arg        | Tyr        | Val<br>345 | Ala        | Gly        | Met        | His        | Gly<br>350 |            | Glu        |
| Ala        | Leu        | Gly<br>355 | Arg        | Glu        | Leu        | Leu        | Leu<br>360 | Leu        | Leu        | Met        | Gln        | Phe<br>365 | Leu        | Cys        | His        |
| Glu        | Phe<br>370 | Leu        | Arg        | Gly        | Asp        | Pro<br>375 | Arg        | Val        | Thr        | Arg        | Leu<br>380 | Leu        | Thr        | Glu        | Thr        |
| Arg<br>385 | Ile        | His        | Leu        | Leu        | Pro<br>390 | Ser        | Met        | Asn        | Pro        | Asp<br>395 | Gly        | Tyr        | Glu        | Thr        | Ala<br>400 |
| Tyr        | His        | Arg        | Gly        | Ser<br>405 | Glu        | Leu        | Val        | Gly        | Trp<br>410 | Ala        | Glu        | Gly        | Arg        | Trp<br>415 | Thr        |
| His        | Gln        | Gly        | Ile<br>420 | Asp        | Leu        | Asn        | His        | Asn<br>425 | Phe        | Ala        | Asp        | Leu        | Asn<br>430 | Thr        | Gln        |
| Leu        | Trp        | Tyr<br>435 | Ala        | Glu        | Asp        | Asp        | Gly<br>440 | Leu        | Val        | Pro        | Asp        | Thr<br>445 | Val        | Pro        | Asn        |
|            | His<br>450 | Leu        | Pro        | Leu        | Pro        | Thr<br>455 | Tyr        | Tyr        | Thr        | Leu        | Pro<br>460 | Asn        | Ala        | Thr        | Val        |
| la<br>165  | Pro        | Glu        | Thr        | Trp        | Ala<br>470 | Val        | Ile        | Lys        | Trp        | Met<br>475 | Lys        | Arg        | Ile        | Pro        | Phe<br>480 |

Val Leu Ser Ala Asn Leu His Gly Gly Glu Leu Val Val Ser Tyr Pro Phe Asp Met Thr Arg Thr Pro Trp Ala Ala Arg Glu Leu Thr Pro Thr Pro Asp Asp Ala Val Phe Arg Trp Leu Ser Thr Val Tyr Ala Gly Thr 515 520 525 Asn Arg Ala Met Gln Asp Thr Asp Arg Arg Pro Cys His Ser Gln Asp 530 535 Phe Ser Leu His Gly Asn Val Ile Asn Gly Ala Asp Trp His Thr Val Pro Gly Ser Met Asn Asp Phe Ser Tyr Leu His Thr Asn Cys Phe Glu Val Thr Val Glu Leu Ser Cys Asp Lys Phe Pro His Glu Lys Glu Leu Pro Gln Glu Trp Glu Asn Asn Lys Asp Ala Leu Leu Thr Tyr Leu Glu
595 600 605 Gln Val Arg Met Gly Ile Thr Gly Val Val Arg Asp Lys Asp Thr Glu 610 615 620 Leu Gly Ile Ala Asp Ala Val Ile Ala Val Glu Gly Ile Asn His Asp 625 630 635 Val Thr Thr Ala Trp Gly Gly Asp Tyr Trp Arg Leu Leu Thr Pro Gly 645 655 Asp Tyr Val Val Thr Ala Ser Ala Glu Gly Tyr His Thr Val Arg Gln His Cys Gln Val Thr Phe Glu Glu Gly Pro Val Pro Cys Asn Phe Leu Leu Thr Lys Thr Pro Lys Glu Arg Leu Arg Glu Leu Leu Ala Thr Arg Gly Lys Leu Pro Pro Asp Leu Arg Arg Lys Leu Glu Arg Leu Arg Gly
705 710 715

Gln Lys

<sup>&</sup>lt;210> 40

<sup>&</sup>lt;211> 2390

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<220>
<221> CDS
<222> (65)..(2269)
<223> SF08, cDNA: NM\_019609, Proteína: NP\_062555
<400> 40

| cgg               | cagg              | aag               | agac              | cgac              | cc g              | ccac              | ccgc               | c gt              | agco              | cgcg               | cgc               | ccct              | .ggc              | acto              | aatccc               | 60  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-----|
| cgc               | c at<br>Me<br>1   | g tg<br>t Tr      | b CJ              | g ct<br>y Le      | c ct<br>u Le<br>5 | g ct<br>u Le      | c gc<br>u Al       | c ct<br>a Le      | g go<br>u Al      | c gc<br>a Al<br>10 | a Ph              | c go<br>e Al      | g co<br>a Pr      | g gc              | c gtc<br>a Val<br>15 | 109 |
| ggc<br>Gly        | ccg<br>Pro        | gct<br>Ala        | ctg<br>Leu        | ggg<br>Gly<br>20  | gcg<br>Ala        | ccc               | agg<br>Arg         | aac<br>Asn        | tcg<br>Ser<br>25  | gtg<br>Val         | ctg<br>Leu        | ggc               | Leu               | gcg<br>Ala<br>30  | cag<br>Gln           | 157 |
| ccc<br>Pro        | Gly               | acc<br>Thr        | acc<br>Thr<br>35  | aag<br>Lys        | gtc<br>Val        | cca<br>Pro        | ggc<br>Gly         | tcg<br>Ser<br>40  | acc<br>Thr        | ccg<br>Pro         | gcc               | ctg<br>Leu        | cat<br>His<br>45  | agc<br>Ser        | agc<br>Ser           | 205 |
| ccg<br>Pro        | gca<br>Ala        | cag<br>Gln<br>50  | ccg<br>Pro        | ccg<br>Pro        | gcg<br>Ala        | gag<br>Glu        | aca<br>Thr<br>55   | gct<br>Ala        | aac<br>Asn        | GJ À<br>aaa        | acc               | tca<br>Ser<br>60  | gaa<br>Glu        | cag<br>Gln        | cat<br>His           | 253 |
| gtc<br>Val        | cgg<br>Arg<br>65  | att<br>Ile        | cga<br>Arg        | gtc<br>Val        | atc<br>Ile        | aag<br>Lys<br>70  | aag<br>Lys         | aaa<br>Lys        | aag<br>Lys        | gtc<br>Val         | att<br>Ile<br>75  | atg<br>Met        | aag<br>Lys        | aag<br>Lys        | cgg<br>Arg           | 301 |
| aag<br>Lys<br>80  | aag<br>Lys        | cta<br>Leu        | act<br>Thr        | cta<br>Leu        | act<br>Thr<br>85  | cgc<br>Arg        | ccc<br>Pro         | acc<br>Thr        | cca<br>Pro        | ctg<br>Leu<br>90   | gtg<br>Val        | act<br>Thr        | gcc<br>Ala        | GJÀ<br>ââa        | ccc<br>Pro<br>95     | 349 |
| ctt<br>Leu        | gtg<br>Val        | acc<br>Thr        | ccc<br>Pro        | act<br>Thr<br>100 | cca<br>Pro        | gca<br>Ala        | gg <b>g</b><br>Gly | acc<br>Thr        | ctc<br>Leu<br>105 | gac<br>Asp         | Pro               | gct<br>Ala        | gag<br>Glu        | aaa<br>Lys<br>110 | caa<br>Gln           | 397 |
| gaa<br>Glu        | aca<br>Thr        | ggc<br>Gly        | tgt<br>Cys<br>115 | cct<br>Pro        | cct<br>Pro        | ttg<br>Leu        | ggt<br>Gly         | ctg<br>Leu<br>120 | gag<br>Glu        | tcc<br>Ser         | ctg<br>Leu        | cga<br>Arg        | gtt<br>Val<br>125 | tca<br>Ser        | gat<br>Asp           | 445 |
| agc<br>Ser        | cgg<br>Arg        | ctt<br>Leu<br>130 | gag<br>Glu        | gca<br>Ala        | tcc<br>Ser        | agc<br>Ser        | agc<br>Ser<br>135  | cag<br>Gln        | tcc<br>Ser        | ttt<br>Phe         | ggt<br>Gly        | ctt<br>Leu<br>140 | gga<br>Gly        | cca<br>Pro        | cac<br>His           | 493 |
| cga<br>Arg        | gga<br>Gly<br>145 | cgg<br><b>Arg</b> | ctc<br>Leu        | aac<br>Asn        | att<br>Ile        | cag<br>Gln<br>150 | tca<br>Ser         | ggc<br>Gly        | ctg<br>Leu        | gag<br>Glu         | gac<br>Asp<br>155 | ggc               | gat<br>Asp        | cta<br>Leu        | tat<br>Tyr           | 541 |
| gat<br>Asp<br>160 | gga<br>Gly        | gcc<br>Ala        | tgg<br>Trp        | tgt<br>Cys        | gct<br>Ala<br>165 | gag<br>Glu        | gag<br>Glu         | cag<br>Gln        | gac<br>Asp        | gcc<br>Ala<br>170  | gat<br>Asp        | cca<br>Pro        | tgg<br>Trp        | ttt<br>Phe        | cag<br>Gln<br>175    | 589 |
| gtg<br>Val        | gac<br>Asp        | gct<br>Ala        | Gly<br>ggg        | cac<br>His<br>180 | ccc<br>Pro        | acc<br>Thr        | cgc<br>Arg         | ttc<br>Phe        | tcg<br>Ser<br>185 | ggt<br>Gly         | gtt<br>Val        | atc<br>Ile        | aca<br>Thr        | cag<br>Gln<br>190 | ggc                  | 637 |
| agg<br>Arg        | aac<br>Asn        | tct<br>Ser        | gtc<br>Val<br>195 | tgg<br>Trp        | agg<br>Arg        | tat<br>Tyr        | gac<br>Asp         | tgg<br>Trp<br>200 | gtc<br>Val        | aca<br>Thr         | tca<br>Ser        | tac<br>Tyr        | aag<br>Lys<br>205 | gtc<br>Val        | cag<br>Gln           | 685 |
| ttc<br>Phe        | agc<br>Ser        | aat<br>Asn<br>210 | gac<br>Asp        | agt<br>Ser        | cgg<br>Arg        | acc<br>Thr        | tgg<br>Trp<br>215  | tgg<br>Trp        | gga<br>Gly        | agt<br>Ser         | agg<br>Arg        | aac<br>Asn<br>220 | cac<br>His        | agc<br>Ser        | agt<br>Ser           | 733 |
| ggg               | atg               | gac               | gca               | gta               | ttt               | cct               | gcc                | aat               | tca               | gac                | cca               | gaa               | act               | cca               | gtg                  | 781 |

| Gly               | Met<br>225        |                   | Ala               | Val               | Phe               | 230               |                   | a Asn             | Ser               | Ası               | 235               |                   | u Thi              | r Pro             | Val               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|------|
| ctg<br>Leu<br>240 | Asn               | cto<br>Lev        | ctg<br>Leu        | Pro               | gag<br>Glu<br>245 | Pro               | cag<br>Glr        | g gtg<br>Val      | gcc<br>Ala        | cgo<br>Arg<br>250 | Phe               | att               | t cgc              | ctç<br>Lev        | ctg<br>Leu<br>255 | 829  |
| Pro               | cag<br>Gln        | acc<br>Thr        | tgg<br>Trp        | Leu<br>260        | Gln               | gga<br>Gly        | ggc               | gcg<br>Ala        | Pro<br>265        | Cys               | cto<br>Lev        | cgg<br>Arg        | g gca<br>g Ala     | gag<br>Glu<br>270 | atc<br>lle        | 877  |
|                   |                   |                   |                   | Val               |                   |                   |                   |                   | Asp               |                   |                   |                   |                    | Ala               | cct<br>Pro        | 925  |
| gcg<br>Ala        | tcg<br>Ser        | gga<br>Gly<br>290 | Ser               | tct<br>Ser        | gac<br>Asp        | cct<br>Pro        | cta<br>Leu<br>295 | Asp               | ttt<br>Phe        | cag<br>Gln        | cat<br>His        | Cac<br>His        | Asn                | tac<br>Tyr        | aag<br>Lys        | 973  |
| gcc<br>Ala        | atg<br>Met<br>305 | Arg               | aag<br>Lys        | ctg<br>Leu        | atg<br>Met        | aag<br>Lys<br>310 | cag<br>Gln        | gta<br>Val        | caa<br>Gln        | gag<br>Glu        | caa<br>Gln<br>315 | Cys               | ccc<br>Pro         | aac<br>Asn        | atc<br>Ile        | 1021 |
| acc<br>Thr<br>320 | Arg               | atc<br>Ile        | tac<br>Tyr        | agc<br>Ser        | att<br>Ile<br>325 | ggg<br>Gly        | aag<br>Lys        | agc<br>Ser        | tac<br>Tyr        | cag<br>Gln<br>330 | Gly               | ctg<br>Leu        | aag<br>Lys         | ctg<br>Leu        | tat<br>Tyr<br>335 | 1069 |
| gtg<br>Val        | atg<br>Met        | gaa<br>Glu        | atg<br>Met        | tcg<br>Ser<br>340 | gac<br>Asp        | aag<br>Lys        | cct<br>Pro        | ggg<br>Gly        | gag<br>Glu<br>345 | cat<br>His        | gag<br>Glu        | ctg<br>Leu        | Gly                | gag<br>Glu<br>350 | Pro               | 1117 |
| gag<br>Glu        | gtg<br>Val        | cgc<br>Arg        | tac<br>Tyr<br>355 | gtg<br>Val        | gct<br>Ala        | ggc<br>Gly        | atg<br>Met        | cat<br>His<br>360 | Gly<br>aga        | aac<br>Asn        | gag<br>Glu        | gcc<br>Ala        | ctg<br>Leu<br>365  | ggg<br>Gly        | cgg<br>Arg        | 1165 |
| gag<br>Glu        | ttg<br>Leu        | ctt<br>Leu<br>370 | ctg<br>Leu        | ctc<br>Leu        | ctg<br>Leu        | atg<br>Met        | cag<br>Gln<br>375 | ttc<br>Phe        | ctg<br>Leu        | tgc<br>Cys        | cat<br>His        | gag<br>Glu<br>380 | Phe                | ctg<br>Leu        | cga<br>Arg        | 1213 |
| Gly               | aac<br>Asn<br>385 | cca<br>Pro        | cgg<br>Arg        | gtg<br>Val        | acc<br>Thr        | cgg<br>Arg<br>390 | ctg<br>Leu        | ctc<br>Leu        | tct<br>Ser        | gag<br>Glu        | atg<br>Met<br>395 | cgc<br>Arg        | att<br>Ile         | cac<br>His        | ctg<br>Leu        | 1261 |
| ctg<br>Leu<br>400 | ccc<br>Pro        | tcc<br>Ser        | atg<br>Met        | aac<br>Asn        | cct<br>Pro<br>405 | gat<br>Asp        | ggc<br>Gly        | tat<br>Tyr        | gag<br>Glu        | atc<br>Ile<br>410 | gcc<br>Ala        | tac<br>Tyr        | cac<br>His         | cgg<br>Arg        | ggt<br>Gly<br>415 | 1309 |
| tca<br>Ser        | gag<br>Glu        | ctg<br>Leu        | gtg<br>Val        | ggc<br>Gly<br>420 | tgg<br>Trp        | gcc<br>Ala        | gag<br>Glu        | ggc<br>Gly        | cgc<br>Arg<br>425 | tgg<br>Trp        | aac<br>Asn        | aac<br>Asn        | cag<br>Gln         | agc<br>Ser<br>430 | atc<br>Ile        | 1357 |
| gat<br>Asp        | ctt<br>Leu        | aac<br>Asn        | cat<br>His<br>435 | aat<br>Asn        | ttt<br>Phe        | gct<br>Ala        | gac<br>Asp        | ctc<br>Leu<br>440 | aac<br>Asn        | aca<br>Thr        | cca<br>Pro        | ctg<br>Leu        | tgg<br>Trp<br>445  | gaa<br>Glu        | gca<br>Ala        | 1405 |
| cag<br>Gln        | gac<br>Asp        | gat<br>Asp<br>450 | GJÀ<br>aaa        | aag<br>Lys        | gtg<br>Val        | ccc<br>Pro        | cac<br>His<br>455 | atc<br>Ile        | gtc<br>Val        | ccc<br>Pro        | aac<br>Asn        | cat<br>His<br>460 | cac<br>His         | ctg<br>Leu        | cca<br>Pro        | 1453 |
| ttg<br>Leu        | ccc<br>Pro<br>465 | act<br>Thr        | tac<br>Tyr        | tac<br>Tyr        | acc<br>Thr        | ctg<br>Leu<br>470 | ccc<br>Pro        | aat<br>Asn        | gcc<br>Ala        | acc<br>Thr        | gtg<br>Val<br>475 | gct<br>Ala        | cct<br>Pro         | gaa<br>Glu        | acg<br>Thr        | 1501 |
| cgg<br>Arg<br>480 | gca<br>Ala        | gta<br>Val        | atc<br>Ile        | aag<br>Lys        | tgg<br>Trp<br>485 | atg<br>Met        | aag<br>Lys        | cgg<br>Arg        | Ile               | ccc<br>Pro<br>490 | ttt<br>Phe        | gtg<br>Val        | cta<br><b>Le</b> u | agt<br>Ser        | gcc<br>Ala<br>495 | 1549 |
| aac               | ctc               | cac               | ggg               | ggt               | gag               | ctc               | gtg               | gtg               | tcc               | tac               | cça               | ttc               | gac                | atg               | act               | 1597 |

| Asn               | Leu               | His               | Gly               | Gly<br>500        |                   | Leu                | Val               | Val               | Ser<br>505        |                   | Pro               | Phe               | Asp               | Met<br>510        | Thr               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| cgc<br>Arg        | acc               | ccg               | tgg<br>Trp<br>515 | Ala               | gcc               | cgc<br><b>Ar</b> g | gag<br>Glu        | Cto<br>Leu<br>520 | Thr               | Pro               | aca<br>Thr        | cca<br>Pro        | gat<br>Asp<br>525 | Asp               | gct<br>Ala        | 1645 |
|                   |                   |                   | Trp               |                   |                   |                    |                   | Tyr               |                   |                   |                   | aat<br>Asn<br>540 |                   |                   | atg<br>Met        | 1693 |
| cag<br>Gln        | gac<br>Asp<br>545 | Thr               | agc<br>Ser        | cgc<br>Arg        | cga<br>Arg        | ccc<br>Pro<br>550  | tgc<br>Cys        | cac               | agc<br>Ser        | cag<br>Gln        | gac<br>Asp<br>555 | ttc<br>Phe        | tcc<br>Ser        | gtg<br>Val        | cac<br>His        | 1741 |
| ggc<br>Gly<br>560 | Asn               | atc<br>Ile        | atc<br>Ile        | aac<br>Asn        | ggg<br>Gly<br>565 | gct<br>Ala         | gac<br>Asp        | tgg<br>Trp        | cac<br>His        | acg<br>Thr<br>570 | gtc<br>Val        | ccc<br>Pro        | Gly               | agc<br>Ser        | atg<br>Met<br>575 | 1789 |
| aat<br>Asn        | gac<br>Asp        | ttc<br>Phe        | agc<br>Ser        | tac<br>Tyr<br>580 | cta<br>Leu        | cac<br>His         | acc<br>Thr        | aac<br>Asn        | tgc<br>Cys<br>585 | ttt<br>Phe        | gag<br>Glu        | gtc<br>Val        | act<br>Thr        | gtg<br>Val<br>590 | gag<br>Glu        | 1837 |
|                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   | ccc<br>Pro        |                   |                   |                   | 1885 |
| gag<br>Glu        | aac<br>Asn        | aac<br>Asn<br>610 | aaa<br>Lys        | gac<br>Asp        | gcc<br>Ala        | ctc<br>Leu         | ctc<br>Leu<br>615 | acc<br>Thr        | tac<br>Tyr        | ctg<br>Leu        | gag<br>Glu        | cag<br>Gln<br>620 | gtg<br>Val        | cgc<br>Arg        | atg<br>Met        | 1933 |
| ggc<br>Gly        | att<br>Ile<br>625 | gca<br>Ala        | gga<br>Gly        | gtg<br>Val        | gtg<br>Val        | agg<br>Arg<br>630  | gac<br>Asp        | aag<br>Lys        | gac<br>Asp        | acg<br>Thr        | gag<br>Glu<br>635 | ctt<br>Leu        | ggg<br>ggg        | att<br>Ile        | gct<br>Ala        | 1981 |
| gac<br>Asp<br>640 | gct<br>Ala        | gtc<br>Val        | att<br>Ile        | gcc<br>Ala        | gtg<br>Val<br>645 | gat<br>Asp         | ggg<br>Gly        | att<br>Ile        | aac<br>Asn        | cat<br>His<br>650 | gac<br>Asp        | gtg<br>Val        | acc<br>Thr        | acg<br>Thr        | gcg<br>Ala<br>655 | 2029 |
| tgg<br>Trp        | ggc<br>Gly        | ggg<br>Gly        | gat<br>Asp        | tat<br>Tyr<br>660 | tgg<br>Trp        | cgt<br>Arg         | ctg<br>Leu        | ctg<br>Leu        | acc<br>Thr<br>665 | cca<br>Pro        | ggg<br>Gly        | gac<br>Asp        | tac<br>Tyr        | atg<br>Met<br>670 | gtg<br>Val        | 2077 |
| act<br>Thr        | gcc<br>Ala        | agt<br>Ser        | gcc<br>Ala<br>675 | gag<br>Glu        | ggc<br>Gly        | tac<br>Tyr         | cat<br>His        | tca<br>Ser<br>680 | gtg<br>Val        | aca<br>Thr        | cgg<br>Arg        | aac<br>Asn        | tgt<br>Cys<br>685 | cgg<br>Arg        | gtc<br>Val        | 2125 |
|                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   | ctc<br>Leu<br>700 |                   |                   |                   | 2173 |
|                   |                   |                   |                   |                   | Arg               |                    |                   |                   |                   | Ala               |                   | gcc<br>Ala        |                   |                   |                   | 2221 |
|                   |                   |                   |                   | Arg               |                   |                    |                   |                   | Leu               |                   |                   | cag (<br>Gln )    |                   |                   | tga               | 2269 |
| tacc              | tgcg              | gt t              | taag              | agcc              | c ta              | gggc               | aggc              | tgg               | acct              | gtc               | aaga              | cggga             | aa g              | ggga              | agagt             | 2329 |
| agag              | aggg              | ag g              | gaca              | aagt              | g ag              | gaaa               | aggt              | gct               | catt              | aaa               | gcta              | ccgg              | gc a              | cctt              | agctc             | 2389 |
| a                 |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2390 |

<210> 41 <211> 734 <212> PRT <213> Homo sapiens

<400> 41

Met Trp Gly Leu Leu Ala Leu Ala Ala Phe Ala Pro Ala Val Gly
1 5 10 15 Pro Ala Leu Gly Ala Pro Arg Asn Ser Val Leu Gly Leu Ala Gln Pro 20 25 30Gly Thr Thr Lys Val Pro Gly Ser Thr Pro Ala Leu His Ser Ser Pro
35 40 45 Ala Gln Pro Pro Ala Glu Thr Ala Asn-Gly Thr Ser Glu Gln His Val 50 60 Arg Ile Arg Val Ile Lys Lys Lys Val Ile Met Lys Lys Arg Lys 65 70 75 80 Lys Leu Thr Leu Thr Arg Pro Thr Pro Leu Val Thr Ala Gly Pro Leu Val Thr Pro Thr Pro Ala Gly Thr Leu Asp Pro Ala Glu Lys Gln Glu 100 105 Thr Gly Cys Pro Pro Leu Gly Leu Glu Ser Leu Arg Val Ser Asp Ser 115 120 125 Arg Leu Glu Ala Ser Ser Ser Gln Ser Phe Gly Leu Gly Pro His Arg 130 135 140 Gly Arg Leu Asn Ile Gln Ser Gly Leu Glu Asp Gly Asp Leu Tyr Asp 145 150 155 160 Gly Ala Trp Cys Ala Glu Glu Gln Asp Ala Asp Pro Trp Phe Gln Val 165 170 175 Asp Ala Gly His Pro Thr Arg Phe Ser Gly Val Ile Thr Gln Gly Arg 180 185 190 Asn Ser Val Trp Arg Tyr Asp Trp Val Thr Ser Tyr Lys Val Gln Phe 195 200 205 Ser Asn Asp Ser Arg Thr Trp Trp Gly Ser Arg Asn His Ser Ser Gly 210 215 220 Met Asp Ala Val Phe Pro Ala Asn Ser Asp Pro Glu Thr Pro Val Leu 225 230 235 240

Asn Leu Pro Glu Pro Gln Val Ala Arg Phe Ile Arg Leu Pro 245 250 255

| Gln        | Thr        | Trp        | 260        |            | Gly        | Gly        | r Ala      | 265        |            | s Lev      | a Arg      | Ala        | a Gli<br>270 |            | e Le       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|
| Ala        | Суз        | Pro<br>275 |            | Ser        | Asp        | Pro        | 280        |            | Leu        | ı Phe      | e Leu      | 285        |              | a Pro      | o Ala      |
| Ser        | Gly<br>290 |            | Ser        | Asp        | Pro        | Leu<br>295 |            | Phe        | Glr        | n His      | His<br>300 |            | тут          | Lys        | s Ala      |
| Met<br>305 |            | Lys        | Leu        | Met        | Lys<br>310 |            | Va1        | Gln        | Glu        | Gln<br>315 |            | Pro        | ) Asn        | Ile        | 320        |
| Arg        | Ile        | туг        | Ser        | Ile<br>325 | Gly        | Lys        | Ser        | Tyr        | Gln<br>330 |            | Leu        | Lys        | Leu          | Тут<br>335 |            |
| Met        | Glu        | Met        | Ser<br>340 | Asp        | Lys        | Pro        | Gly        | Glu<br>345 | His        | Glu        | Leu        | Gly        | Glu<br>350   | Pro        | Glu        |
| Val        | Arg        | Tyr<br>355 | Val        | Ala        | Gly        | Met        | His<br>360 | Gly        | Asn        | Glu        | Ala        | Leu<br>365 |              | Arg        | g Glu      |
| Leu        | Leu<br>370 | Leu        | Leu        | Leu        | Met        | Gln<br>375 | Phe        | Leu        | Cys        | His        | Glu<br>380 |            | Leu          | Arg        | Gly        |
| Asn<br>385 | Pro        | Arg        | Val        | Thr        | Arg<br>390 | Leu        | Leu        | Ser        | Glu        | Met<br>395 | Arg        | Ile        | His          | Leu        | Leu<br>400 |
| Pro        | Ser        | Met        | Asn        | Pro<br>405 | Asp        | Gly        | Tyr        | Glu        | Ile<br>410 | Ala        | Tyr        | His        | Arg          | Gly<br>415 |            |
| Glu        | Leu        | Val        | Gly<br>420 | Trp        | Ala        | Glu        | Gly        | Arg<br>425 | Trp        | Asn        | Asn        | Gln        | Ser<br>430   | Ile        | Asp        |
| Leu        | Asn        | His<br>435 | Asn        | Phe        | Ala        | Asp        | Leu<br>440 | Asn        | Thr        | Pro        | Leu        | Trp<br>445 | Glu          | Ala        | Gln        |
| Asp        | Asp<br>450 | Gly        | Lys        | Val        | Pro        | His<br>455 | Ile        | Val        | Pro        | Asn        | His<br>460 | His        | Leu          | Pro        | Leu        |
| Pro<br>465 | Thr        | Tyr        | Tyr        | Thr        | Leu<br>470 | Pro        | Asn        | Ala        | Thr        | Val<br>475 | Ala        | Pro        | Glu          | Thr        | Arg<br>480 |
| Ala        | Val        | Ile        | Lys        | Trp<br>485 | Met        | Lys        | Arg        | Ile        | Pro<br>490 | Phe        | Val        | Leu        | Ser          | Ala<br>495 | Asn        |
| Leu        | His        | Gly        | Gly<br>500 | Glu        | Leu        | Val        |            | Ser<br>505 | Tyr        | Pro        | Phe        | Asp        | Met<br>510   | Thr        | Arg        |
| hr         | Pro        | Trp<br>515 | Ala        | Ala        | Arg        |            | Leu<br>520 | Thr        | Pro        | Thr        | Pro        | Asp<br>525 | Asp          | Ala        | Val        |

Phe Arg Trp Leu Ser Thr Val Tyr Ala Gly Ser Asn Leu Ala Met Gln Asp Thr Ser Arg Arg Pro Cys His Ser Gln Asp Phe Ser Val His Gly Asn Ile Ile Asn Gly Ala Asp Trp His Thr Val Pro Gly Ser Met Asn Asp Phe Ser Tyr Leu His Thr Asn Cys Phe Glu Val Thr Val Glu Leu Ser Cys Asp Lys Phe Pro His Glu Asn Glu Leu Pro Gln Glu Trp Glu Asn Asn Lys Asp Ala Leu Leu Thr Tyr Leu Glu Gln Val Arg Met Gly Ile Ala Gly Val Val Arg Asp Lys Asp Thr Glu Leu Gly Ile Ala Asp Ala Val Ile Ala Val Asp Gly Ile Asn His Asp Val Thr Thr Ala Trp Gly Gly Asp Tyr Trp Arg Leu Leu Thr Pro Gly Asp Tyr Met Val Thr Ala Ser Ala Glu Gly Tyr His Ser Val Thr Arg Asn Cys Arg Val Thr 675 680 685 Phe Glu Glu Gly Pro Phe Pro Cys Asn Phe Val Leu Thr Lys Thr Pro Lys Gln Arg Leu Arg Glu Leu Leu Ala Ala Gly Ala Lys Val Pro Pro 705 710 715 720 Asp Leu Arg Arg Arg Leu Glu Arg Leu Arg Gly Gln Lys Asp
725 730

```
<210> 42
<211> 1815
<212> DNA
```

<213> Mus musculus

<220> <221> CDS <222> (98)..(535) <223> SF09, cDNA: NM\_139295, Proteína: NP\_647456 

| gtgcggagaa aagcgtccca gggacggcag ctggcaaggt tcacgttgga gtgcttcgcg                                                                                 | 60   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| actgcgtcgg ggattatcgg ggtacccacc cggaagc atg gca acc cta cag ctg                                                                                  | 115  |
| Met Ala Thr Leu Gln Leu                                                                                                                           |      |
| 1 5                                                                                                                                               |      |
| ctc aga gct ccc ttg ctg tgt gtc ctg ctt tgg gtc ttt tgt gct cca<br>Leu Arg Ala Pro Leu Leu Cys Val Leu Leu Trp Val Phe Cys Ala Pro<br>10 15 20    | 163  |
| ggt gcc aga gcc cat gac cat ggg gct gat gtc cat cat ggc agc gtg<br>Gly Ala Arg Ala His Asp His Gly Ala Asp Val His His Gly Ser Val<br>25 30 35    | 211  |
| ggc ctg gat aag agc aca gtg cac gac caa gag cac atc atg gaa cat<br>Gly Leu Asp Lys Ser Thr Val His Asp Gln Glu His Ile Met Glu His<br>40 45       | 259  |
| ctg gaa ggt gtc atc gac cag cca gag gcg gag atg tcc cca cag gaa<br>Leu Glu Gly Val Ile Asp Gln Pro Glu Ala Glu Met Ser Pro Gln Glu<br>55 60 65 70 | 307  |
| ctg cag ctc cat tac ttc aaa atg cat gat tac gac ggc aac agt ttg<br>Leu Gln Leu His Tyr Phe Lys Met His Asp Tyr Asp Gly Asn Ser Leu<br>75 80 85    | 355  |
| ctt gac ggc cta gag ctc tcc ata gcc atc act cac gtg cac aag gag<br>Leu Asp Gly Leu Glu Leu Ser Ile Ala Ile Thr His Val His Lys Glu<br>90 95 100   | 403  |
| gag ggg agt gag cag gcg cca gtc atg agc gag gat gag ctc gtc agc<br>Glu Gly Ser Glu Gln Ala Pro Val Met Ser Glu Asp Glu Leu Val Ser<br>105 110 115 | 451  |
| atc ata gat ggt gtc ctg agg gac gat gac aag aac aat gac ggc tac<br>Ile Ile Asp Gly Val Leu Arg Asp Asp Asp Lys Asn Asn Asp Gly Tyr<br>120 125 130 | 499  |
| atc gac tac gct gag ttt gca aag tca ctg cag tag accgttggct<br>Ile Asp Tyr Ala Glu Phe Ala Lys Ser Leu Gln<br>135 140 145                          | 545  |
| ctttcctttg tgcacatgtg accettgcta atgtgatgga cgtgtctggt aatgcgaaac                                                                                 | 605  |
| aacttatttc cgtctactgc tcagcacttt ggtaagagcc tgtggcagtc tgtaagagtg                                                                                 | 665  |
| gggtgaggaa gaagccacat gactgtggag agaagtggga caggcctcag tccctagagg                                                                                 | 725  |
| tgtgtttaag cttgttgggc aagageegga tgeggatett eggaagggeg gtgggtatee                                                                                 | 785  |
| cgagttetca ggaateegae tgtagaatge caetetgaet tettgatgtt aateeatget                                                                                 | 845  |
| acctaaagta aagacagget gettggeeaa gtggacacae ttgagaaaca gtggagggag                                                                                 | 905  |
| agtgtgaaag ccacacgett geeetggttg gteetgtett taggeagatg tggteagtat                                                                                 | 965  |
| totgttocco aggoatacag catcatatat taaagocaca goagaagagg aatgtogooo                                                                                 | 1025 |
| actgaggeea eccagatgea gagtetagga tteettgeee actggeettt tggaaatgaa                                                                                 | 1085 |
| gcaccactgg cctgaataat tagcattttc cagatettca gtatetteca caactactge                                                                                 | 1145 |
| cataccctgt gttgtatcat ttgaccagga gggaaacctt gaattggggt gtgttctcta                                                                                 | 1205 |
| atcactttcc actgtctgag ctttcctgac ccctgtattg tatccttgct cccagggctc                                                                                 | 1265 |
| ccttcatggc ttgtgaactg ttaacttggt atctcaggtt aaactgtcag ctggtctagc                                                                                 | 1325 |
| ctgagcgagg cctgagacca tcagtcacta agagcagtgg ctaacctcat cgaagttgga                                                                                 | 1385 |
| aggaatgttt ttaaaattac ctcttcgagc ctgaatacaa agaataaaag aataaaagaa                                                                                 | 1445 |

| ttcttttaat | ttcagggaag | atcagaaaag | aaagcctaaa | gccctttagc | gttgtgaacc | 1505 |
|------------|------------|------------|------------|------------|------------|------|
| tcagtagtag | ctgaaagaga | agctgccaca | ggttgtactt | gctctgtgag | atgttgtaga | 1565 |
| cattccgtaa | gagaatccag | aatgatagca | ggatcaggaa | agāaatggag | ccaaatctgc | 1625 |
| tctaaggtga | atagagactt | atttttcttt | attaaagtat | tcttgtaaga | cagttttctg | 1685 |
| tgtcaagtat | ttgtgaaatc | agagctgaca | tgtaagctat | tcttgtaata | tctcattatt | 1745 |
| ttgaaagatt | tatataatga | actctggcta | tctgacaata | aaatggatga | aaaagcaaaa | 1805 |
| aaaaaaaaa  |            |            |            |            |            | 1815 |

<210> 43

<211> 145

<212> PRT

<213> Mus musculus

<400> 43

Met Ala Thr Leu Gln Leu Leu Arg Ala Pro Leu Leu Cys Val Leu Leu 1 10 15

Trp Val Phe Cys Ala Pro Gly Ala Arg Ala His Asp His Gly Ala Asp 20 25 30

Val His His Gly Ser Val Gly Leu Asp Lys Ser Thr Val His Asp Gln 35 40 45

Glu His Ile Met Glu His Leu Glu Gly Val Ile Asp Gln Pro Glu Ala 50 55 60

Glu Met Ser Pro Gln Glu Leu Gln Leu His Tyr Phe Lys Met His Asp 65 70 75 80

Tyr Asp Gly Asn Ser Leu Leu Asp Gly Leu Glu Leu Ser Ile Ala Ile 85 90 95

Thr His Val His Lys Glu Glu Gly Ser Glu Gln Ala Pro Val Met Ser 100 105 110

Glu Asp Glu Leu Val Ser Ile Ile Asp Gly Val Leu Arg Asp Asp Asp 115 120 125

Lys Asn Asn Asp Gly Tyr Ile Asp Tyr Ala Glu Phe Ala Lys Ser Leu 130 135 140

Gln 145

<210> 44

<211> 4144

<212> DNA

```
<220>
<221> CDS
<222> (95)..(535)
<223> SF09, cDNA: NM_139279, Proteína: NP_644808
<400> 44
```

|   | ggg               | gcga              | agc              | cgag             | gaag              | ag c              | gttt              | tggg             | g ac             | gggg              | gct               | ggtg              | aggo              | tca              | cgtt             | ggaggg            | 6    |
|---|-------------------|-------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|------|
|   | ctt               | cgcg              | tct              | gctt             | cgga              | ga c              | cgta              | agga             | t at             |                   | et 7              |                   |                   |                  | er L             | tg ctc<br>eu Leu  |      |
|   | aga<br>Arg        | acc<br>Thr        | ecc<br>Pro<br>10 | ttc<br>Phe       | ctg<br>Leu        | tgt<br>Cys        | ggc<br>Gly        | ctg<br>Leu<br>15 | ctc<br>Leu       | tgg<br>Trp        | gcc               | ttt<br>Phe        | tgt<br>Cys<br>20  | gcc<br>Ala       | cca<br>Pro       | GJA<br>aac        | 16   |
|   | gcc<br>Ala        | agg<br>Arg<br>25  | gct<br>Ala       | gag<br>Glu       | gag<br>Glu        | cct<br>Pro        | gca<br>Ala<br>30  | gcc<br>Ala       | agc<br>Ser       | ttc<br>Phe        | tcc<br>Ser        | caa<br>Gln<br>35  | ccc<br>Pro        | ggc              | agc<br>Ser       | atg<br>Met        | 21   |
| ) | ggc<br>Gly<br>40  | ctg<br>Leu        | gat<br>Asp       | aag<br>Lys       | aac<br>Asn        | aca<br>Thr<br>45  | gtg<br>Val        | cac<br>His       | gac<br>Asp       | caa<br>Gln        | gag<br>Glu<br>50  | cat<br>His        | atc<br>Ile        | atg<br>Met       | gag<br>Glu       | cat<br>His<br>55  | 259  |
|   | cta<br>Leu        | gaa<br>Glu        | ggt<br>Gly       | gtc<br>Val       | atc<br>Ile<br>60  | aac<br>Asn        | aaa<br>Lys        | cca<br>Pro       | gag<br>Glu       | gcg<br>Ala<br>65  | gag<br>Glu        | atg<br>Met        | tcg<br>Ser        | cca<br>Pro       | caa<br>Gln<br>70 | gaa<br>Glu        | 307  |
|   | ttg<br>Leu        | cag<br>Gln        | ctc<br>Leu       | cat<br>His<br>75 | tac<br>Tyr        | ttc<br>Phe        | aaa<br>Lys        | atg<br>Met       | cat<br>His<br>80 | gat<br>Asp        | tat<br>Tyr        | gat<br>Asp        | ggc<br>Gly        | aat<br>Asn<br>85 | aat<br>Asn       | ttg<br>Leu        | 355  |
|   | ctt<br>Leu        | Asp               | ggc<br>Gly<br>90 | tta<br>Leu       | gaa<br>Glu        | ctc<br>Leu        | tcc<br>Ser        | aca<br>Thr<br>95 | gcc<br>Ala       | atc<br>Ile        | act<br>Thr        | cat<br>His        | gtc<br>Val<br>100 | cat<br>His       | aag<br>Lys       | gag<br>Glu        | 403  |
|   | Glu               | ggg<br>Gly<br>105 | agt<br>Ser       | gaa<br>Glu       | cag<br>Gln        | Ala               | cca<br>Pro<br>110 | cta<br>Leu       | atg<br>Met       | agt<br>Ser        | gaa<br>Glu        | gat<br>Asp<br>115 | gaa<br>Glu        | ctg<br>Leu       | att<br>Ile       | aac<br>Asn        | 451  |
|   | ata<br>Ile<br>120 | ata<br>Ile        | gat<br>Asp       | ggt<br>Gly       | Val               | ttg<br>Leu<br>125 | aga<br>Arg        | gat<br>Asp       | gat<br>Asp       | Asp               | aag<br>Lys<br>130 | aac<br>Asn        | aat<br>Asn        | gat<br>Asp       | Gly              | tac<br>Tyr<br>135 | 499  |
|   | att i             | gac<br>Asp'       | tat<br>Tyr       | Ala              | gaa<br>Glu<br>140 | ttt<br>Phe        | gca<br>Ala        | aaa<br>Lys       | Ser              | ctg<br>Leu<br>145 | cag<br>Gln        | tag               | atgt              | tatt             | tg               |                   | 545  |
|   | gcca              | tctc              | ct g             | gtta             | tata              | c aa              | atgt              | gacc             | cgt              | gata              | atg               | tgat              | tgaa              | ca c             | ttta             | gtaat             | 605  |
|   | gcaaa             | aataa             | ac t             | catt             | tccaa             | a cta             | actg              | ctgc             | agc              | attt              | tgg               | taaa              | aacc              | tg t             | agcg             | attcg             | 665  |
|   | ttaca             | actg              | gg g             | tgag             | aagag             | g ata             | aaga              | gaaa             | tga              | aaga              | gaa               | gaga              | aatg              | gg a             | catc             | taata             | 725  |
|   | gtccc             | ctaag             | gt g             | ctat             | taaat             | aco               | ctta              | ttgg             | aca              | aggg              | ctt               | gctt              | caag              | ca t             | ctgta            | attag             | 785  |
|   | tctgt             | tatta             | aa t             | gctg             | ctgat             | aaa               | gac               | gtac             | ccga             | agac              | tgg               | gaag              | aaaa              | ag a             | ggtt             | tactt             | 845  |
|   | ggact             | taca              | ag ti            | tccad            | catgo             | g ctę             | gggg              | agge             | ctca             | agaat             | tca               | tggc              | ggga              | gg t             | gaaag            | ggcac             | 905  |
|   | ttctt             | acat              | g go             | cagca            | aagag             | g aaa             | atga              | agga             | agaa             | gcaa              | aaa               | gtgg              | aaac              | c c              | gata             | agcc              | 965  |
|   | atcag             | gatct             | t gt             | gaaa             | actta             | tto               | acta              | tca              | caag             | gaata             | agc a             | atggg             | jaaaç             | ja ct            | ggco             | ccca              | 1025 |
|   | tgatt             | caat              | t ac             | ctcc             | cctt              | ggg               | rtcto             | tcc              | caca             | acac              | gt                | gggaa             | ttct              | g gt             | agat             | acaa              | 1085 |
|   | tttca             | agtt              | gaç              | jattt            | gggt              | ggg               | gaca              | tag              | ccaa             | acca              | ıta 1             | tcatt             | ctac              | c cc             | tggc             | ccct              | 1145 |

| ccaaatctca | tgtcctcact | attcaaaacc | aatcatgcct | tcctaacagt | cccccaaagt | 1205 |
|------------|------------|------------|------------|------------|------------|------|
| cttaactctt | ttcagcatta | acgcaaaaat | ccacagtcca | aagtctcatc | tgagacaagg | 1265 |
| caagtccctt | ccacctatga | gcctgtaaaa | tcaaaagcaa | gctagttact | tcctagatac | 1325 |
| caacaggggt | acaggtattg | attaaagacg | gctgttccaa | atgggagaaa | ttggccaaaa | 1385 |
| taaaggggtt | acagggccca | tgcaagtccg | aaatccagca | gggctgtcaa | attttaaagt | 1445 |
| tccagaataa | tctcctttga | ctccaggtct | cacatccagg | tcatactgat | gcaagaagtg | 1505 |
| ggttcccatg | gtcttgggca | gctctgcccc | tgtggctttg | tagggtacag | cctccctcct | 1565 |
| ggctgctttc | acggctgttg | ttcagtgcct | gcggcttttc | caggtgcacg | gtgcaagctg | 1625 |
| ttggtggatc | taccattctg | gggtctggag | gacggtggcc | ctcttctcac | agctccacta | 1685 |
| ggcagtgccc | cagtagggac | tctgtgtggg | ggctcccaca | ccacatttcc | cttctgcact | 1745 |
| gccctagcag | aggttctctc | ccctgccgct | gagagggcct | ctcccctgca | gcaaacgttt | 1805 |
| gcctgggcat | tgaggcattt | ccatacatct | tctgaaaact | aggcggaggt | ttccaaatct | 1865 |
| caattcttga | cttctgtgca | cctgcaggct | taacagcaca | tagaagctgc | caaggcttgg | 1925 |
| ggcttccact | ctgaagccac | agcccgagct | gtatgttggc | ccctttcagc | catggctgga | 1985 |
| gtggctggga | cacaagacac | caagtcccta | ggctgcacac | acatgtcagg | ggctgccctg | 2045 |
| acatggcctg | gagacatttt | ccccatggtg | ttggggatta | acattaggct | ccttgctact | 2105 |
| tatgcaaatt | tctgcagctg | gcttgaattt | ctccccagaa | aatgggtttt | tcttttctat | 2165 |
| tgcatagtca | ggctgcaaat | ttccaaactt | ttatgctttg | cttcccttat | ttataaggga | 2225 |
| atgcctttaa | aagcacccaa | gtcacctgtt | gaacactttg | ctgcttagaa | atttcttccg | 2285 |
| ctagttaacc | taaatcatct | ctctcaagtt | caaagttcca | caaatcccta | tggaaggggc | 2345 |
| aaaatgctgc | cagtctcttt | gctaaaacat | aacaagagtc | acctttactc | cagttcccaa | 2405 |
| caagttcctc | atcttcatct | gaggccacct | cagcctggac | tttgttgtcc | atattgctat | 2465 |
| cagcatttgg | ggcaaagcca | ttcaacaagt | ctgtaggaag | ttccaaactt | tcccacattt | 2525 |
| tcctgttttc | ttctgagccc | tccaaactgt | tccagcctct | gcctgttacc | cagttccaaa | 2585 |
| gtcacttcca | cattttgggt | atttcttcag | caggtcccaa | tctactggta | ccaatttact | 2645 |
| gtattagtcc | gttttcacgc | tgctgataaa | gacatacccg | agactgggaa | gaaaaagtgg | 2705 |
| tttaattgga | cttaaagttc | cacatggctg | gggaggcctc | agaatcatgg | tgggaggcaa | 2765 |
| aagacacttc | ttacattgtg | gcaagaaaaa | atgaggaaga | agcaaaagca | gaaacccctg | 2825 |
| ataaactgat | cagatctcat | gagacttatt | cactgtcacg | agaatagcac | gggaaagact | 2885 |
| ggcccccatg | attcaattac | ctcccctgg  | gtctgtccca | caacacgtgg | gaattctggg | 2945 |
| agatacaatt | caagttgaga | tttgtggggg | gaçacaacca | aaccatatca | gcatcctttc | 3005 |
| aagaatatta | gataattgga | gctgagtact | caggaacttg | actgtagtag | aatactgcta | 3065 |
| gtttcttaat | tttaattcac | atcacctgaa | aagtaaaaca | acaggctttg | ccaagtggat | 3125 |
| gcttttcagt | aacagtgaag | tggagtgaat | accaaatgtt | tgccctggtg | gttcctatct | 3185 |

|   | cttcaggcaa | acatggtcag | tattctgtaa | agttcccctg | gcctaaatga | ttacttgctc | 3245 |
|---|------------|------------|------------|------------|------------|------------|------|
|   |            |            | aggctatttc |            |            |            | 3305 |
|   | cacagagtct | gagattctga | gttcagccta | gccacagagt | ctaagattct | gtatcctctg | 3365 |
|   | acattttgga | aatgatacac | tactggctta | agtgatgact | ctttcagatt | ttcagtattt | 3425 |
|   | tatacaacta | ctgccacatc | cttatacttt | attgcttttc | tgtcttcttc | aacctgggag | 3485 |
|   | agaccctgaa | tttgagtgtg | ttctctaatc | aatagtggtt | tagctttctt | ttctatttca | 3545 |
|   | ctcgtttcta | gggttttta  | tttgcagttt | aggaactatt | aggaatgtca | ggactttatc | 3605 |
|   | agcaggggta | aaactaccac | ctggcctagc | ctaagtagga | agtgaaaaga | taattcacca | 3665 |
|   | aacaatgatt | aatcagatag | aagttctagt | caagagggat | attgttgaag | ttacctcttt | 3725 |
|   | tagcctagat | acatggattc | ttttcaaatc | aggaaagatt | agaaaaggaa | cccaaaaaac | 3785 |
|   | cctttaacag | tgtgaatctt | tatagtattt | gaaaatgaga | agaagcagca | gattgtaatt | 3845 |
|   | tggtttattg | gatgtgatgg | acgttctgta | atagaaaacc | tgaaacgatg | attgaatggg | 3905 |
|   | aaaaagagac | tacaaaattt | gtcgtaggat | gtatacagac | ttattttctt | tattacagta | 3965 |
| , | ttataagaaa | acatatgtat | ttgtaaaaat | ggtttcctgt | gtcaagtatt | tgtgcagtca | 4025 |
| • | gagctgactt | gtaaactatt | cttgtaatag | ctcattattt | tgaaagattt | atatatgatg | 4085 |
|   | aattctggat | atatgaccaa | taaaactgat | gaagcaaaaa | aaaaaaaaa  | aaaaaaaa   | 4144 |

<sup>&</sup>lt;210> 45

<400> 45

Met Thr Met Arg Ser Leu Leu Arg Thr Pro Phe Leu Cys Gly Leu Leu 1 5 10 15

Trp Ala Phe Cys Ala Pro Gly Ala Arg Ala Glu Glu Pro Ala Ala Ser 20 25 30

Phe Ser Gln Pro Gly Ser Met Gly Leu Asp Lys Asn Thr Val His Asp 35 40 45

Gln Glu His Ile Met Glu His Leu Glu Gly Val Ile Asn Lys Pro Glu 50 60

Ala Glu Met Ser Pro Gln Glu Leu Gln Leu His Tyr Phe Lys Met His 65 70 75 80

Asp Tyr Asp Gly Asn Asn Leu Leu Asp Gly Leu Glu Leu Ser Thr Ala 85 90 95

Ile Thr His Val His Lys Glu Glu Gly Ser Glu Gln Ala Pro Leu Met

<sup>&</sup>lt;211> 146

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

Ser Glu Asp Glu Leu Ile Asp Ile Ile Asp Gly Val Leu Arg Asp Asp 115 120 125

Asp Lys Asn Asn Asp Gly Tyr Ile Asp Tyr Ala Glu Phe Ala Lys Ser 130 135 140

Leu Gln 145

<210> 46

<211> 1513

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (37)..(810)

<223> SF10, cDNA: NM\_029568, Proteína: NP\_083844

<400> 46

| agac              | agc | cago | ctct | ct c | aact | gagc | t ga | cacc | atg<br>Met<br>1 | aag<br>Lys | gcc | Leu | cca<br>Pro<br>5 | gcc<br>Ala | 54  |
|-------------------|-----|------|------|------|------|------|------|------|-----------------|------------|-----|-----|-----------------|------------|-----|
|                   |     |      |      |      |      |      |      |      |                 |            |     |     |                 | ccg<br>Pro | 102 |
| gcc<br>Ala        |     |      |      |      |      |      |      |      |                 |            |     |     |                 | cag<br>Gln | 150 |
| ccc<br>Pro<br>40  |     |      |      |      |      |      |      |      |                 |            |     |     |                 |            | 198 |
| gtg<br>Val        |     |      |      |      |      |      |      |      |                 |            |     |     |                 |            | 246 |
| tgc<br>Cys        |     |      |      |      |      |      |      |      |                 |            |     |     |                 |            | 294 |
| ttc<br>Phe        |     |      |      |      |      |      |      |      |                 |            |     |     |                 |            | 342 |
| ggc<br>Gly        |     |      |      |      |      |      |      |      |                 |            |     |     |                 |            | 390 |
| cac<br>His<br>120 |     |      |      |      |      |      |      |      |                 |            |     |     |                 |            | 438 |
| gac<br>Asp        |     |      |      |      |      |      |      |      |                 |            |     |     |                 |            | 486 |
| tcc<br>Ser        |     |      |      |      |      |      | Glu  |      |                 |            |     |     |                 |            | 534 |

| gtg gct ggc ttc gag gat ggc ggg gca ggt gac tca ctg tcc tac cac<br>Val Ala Gly Phe Glu Asp Gly Gly Ala Gly Asp Ser Leu Ser Tyr His<br>170 175 180     | 582   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| agt ggc cag aag ttc tcc acc ttt gat cgg gac cag gac ctc ttc gtg<br>Ser Gly Gln Lys Phe Ser Thr Phe Asp Arg Asp Gln Asp Leu Phe Val<br>185 190 195     | 630   |
| cag aac tgt gca gcc ctc tcc tca gga gcc ttc tgg ttc cga agc tgc Gln Asn Cys Ala Ala Leu Ser Ser Gly Ala Phe Trp Phe Arg Ser Cys 200 205 210           | 678   |
| cat ttc gcc aat ctc aac ggt ttc tac ctg ggt ggt tcc cat ctc tcc<br>His Phe Ala Asn Leu Asn Gly Phe Tyr Leu Gly Gly Ser His Leu Ser<br>215 220 225 230 | 726   |
| tat gcc aat ggc atc aat tgg gcc caa tgg aaa ggc ttc tat tac tcc<br>Tyr Ala Asn Gly Ile Asn Trp Ala Gln Trp Lys Gly Phe Tyr Tyr Ser<br>235 240 245     | 774   |
| ctc aag cgc acg gag atg aaa att cgt cgg gcc tga ggggctggcc<br>Leu Lys Arg Thr Glu Met Lys Ile Arg Arg Ala<br>250 255                                  | 820   |
| caagcaggcc ccatctttcc cctgaagtcc caagggtcca tgttctccct ccacgcttta                                                                                     | 880   |
| cccacaattc ctgagcacca gccatgccct ggcaaatccc tgtcccacat acagccacgc                                                                                     | 940   |
| cctgatgcat tccacctgag gctaggctgt cagcagccct ccaggccttt ctgtggctga                                                                                     | 1000  |
| gccatcctag cctggatctg gctgaaatcc attaaaaact ccaagttgct tctacccctt                                                                                     | 1060  |
| cacgacaget gaaageeaga agetacette tagetgeeag ettttgeace ecaceteage                                                                                     | 1120  |
| agtttcctta ctgcagagcc ttctgtttgg ggctaccctc gacagagtca tgcagcacct                                                                                     | 1180  |
| gtggcattgc caatcagete ttgcacactg ccacacceca gcactcacat ageteteete                                                                                     | 1240  |
| agaatacttc ctaccttggc ctcatcactt tactccctac gtgagcatca tggagcccaa                                                                                     | 1300  |
| teccatetge etteacteat eceteaaaat teaceaceaa aacaataete accaeggeta                                                                                     | 1360  |
| ctgctcaact ctgaagtcgt catggcaaag ataggcttgt tgacttggtc ccctacttgc                                                                                     | 1420  |
| cctagcgatc gtcatgagag gcagcaggga tcaatatgtg gggctggaag tgggtgggta                                                                                     | 1480. |
| gcagaggtct caataaactt caggatctga tgg                                                                                                                  | 1513  |

<sup>&</sup>lt;210> 47

<sup>&</sup>lt;211> 257

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Mus musculus

<sup>&</sup>lt;400> 47

| Met | Lys | Ala | Leu | Pro | Ala | Leu | Pro | Leu | Met | Leu | Met | Leu | Leu | Ser | Met |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1   | _   |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |

Pro Pro Pro Cys Ala Pro Gln Ala Ser Gly Ile Arg Gly Asp Ala Leu 20 25 30

Glu Lys Ser Cys Leu Gln Gln Pro Leu Asp Cys Asp Asp Ile Tyr Ala 35 40 45

Gln Gly Tyr Gln Glu Asp Gly Val Tyr Leu Ile Tyr Pro Tyr Gly Pro 50 55 60

Ser Val Pro Val Pro Val Phe Cys Asp Met Thr Thr Glu Gly Gly Lys 70 75 80

Trp Thr Val Phe Gln Lys Arg Phe Asn Gly Ser Val Ser Phe Phe Arg 85 90 95

Gly Trp Ser Asp Tyr Lys Leu Gly Phe Gly Arg Ala Asp Gly Glu Tyr 100 105 110

Trp Leu Gly Leu Gln Asn Leu His Leu Leu Thr Leu Lys Gln Lys Tyr 115 120 125

Glu Leu Arg Val Asp Leu Glu Asp Phe Glu Asn Asn Thr Ala Tyr Ala 130 135 140

Lys Tyr Ile Asp Phe Ser Ile Ser Pro Asn Ala Ile Ser Ala Glu Glu 145 150 155 160

Asp Gly Tyr Thr Leu Tyr Val Ala Gly Phe Glu Asp Gly Gly Ala Gly 165 170 175

Asp Ser Leu Ser Tyr His Ser Gly Gln Lys Phe Ser Thr Phe Asp Arg 180 185 190

Asp Gln Asp Leu Phe Val Gln Asn Cys Ala Ala Leu Ser Ser Gly Ala 195 200 205

Phe Trp Phe Arg Ser Cys His Phe Ala Asn Leu Asn Gly Phe Tyr Leu 210 215 220

Gly Gly Ser His Leu Ser Tyr Ala Asn Gly Ile Asn Trp Ala Gln Trp 225 230 235 240

Lys Gly Phe Tyr Tyr Ser Leu Lys Arg Thr Glu Met Lys Ile Arg Arg 245 250 255

Ala

```
<210> 48
<211> 1830
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (26)..(793)
<223> SF10, cDNA: NM_002404, Proteína: NP_002395
<400> 48
```

| ago               | cact              | ctg               | agca              | gaac              | tg a              | cagc              |                   |                   |                   |                   |                   |                   |                   |                   | ctg<br>Leu        | 52  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| ctg<br>Leu<br>10  | ctg<br>Leu        | ctt<br>Leu        | ctc<br>Leu        | tcc<br>Ser        | acg<br>Thr<br>15  | ccc<br>Pro        | ccg               | tgt<br>Cys        | gcc<br>Ala        | ccc<br>Pro<br>20  | cag<br>Gln        | gtc<br>Val        | tcc<br>Ser        | Gly               | atc<br>Ile<br>25  | 100 |
| cga<br>Arg        | gga<br>Gly        | gat<br>Asp        | gct<br>Ala        | ctg<br>Leu<br>30  | gag<br>Glu        | agg<br>Arg        | ttt<br>Phe        | tgc<br>Cys        | ctt<br>Leu<br>35  | cag<br>Gln        | caa<br>Gln        | Pro               | ctg<br>Leu        | gac<br>Asp<br>40  | tgt<br>Cys        | 148 |
| gac<br>Asp        | gac<br>Asp        | atc<br>Ile        | tat<br>Tyr<br>45  | gcc<br>Ala        | cag<br>Gln        | ggc<br>Gly        | tac<br>Tyr        | cag<br>Gln<br>50  | tca<br>Ser        | gac<br>Asp        | ggc<br>Gly        | gtg<br>Val        | tac<br>Tyr<br>55  | ctc<br>Leu        | atc<br>Ile        | 196 |
| tac<br>Tyr        | ccc<br>Pro        | tcg<br>Ser<br>60  | ggc               | ccc<br>Pro        | agt<br>Ser        | gtg<br>Val        | cct<br>Pro<br>65  | gtg<br>Val        | ccc<br>Pro        | gtc<br>Val        | ttc<br>Phe        | tgt<br>Cys<br>70  | gac<br>Asp        | atg<br>Met        | acc<br>Thr        | 244 |
| acc<br>Thr        | gag<br>Glu<br>75  | ggc<br>Gly        | ggg<br>Gly        | aag<br>Lys        | tgg<br>Trp        | acg<br>Thr<br>80  | gtt<br>Val        | ttc<br>Phe        | cag<br>Gln        | aag<br>Lys        | aga<br>Arg<br>85  | ttc<br>Phe        | aat<br>Asn        | ggc<br>Gly        | tca<br>Ser        | 292 |
| gta<br>Val<br>90  | agt<br>Ser        | ttc<br>Phe        | ttc<br>Phe        | cgc<br>Arg        | ggc<br>Gly<br>95  | tgg<br>Trp        | aat<br>Asn        | gac<br>Asp        | tac<br>Tyr        | aag<br>Lys<br>100 | ctg<br>Leu        | ggc<br>Gly        | ttc<br>Phe        | ggc<br>Gly        | cgt<br>Arg<br>105 | 340 |
| gct<br>Ala        | gat<br>Asp        | gga<br>Gly        | gag<br>Glu        | tac<br>Tyr<br>110 | tgg<br>Trp        | ctg<br>Leu        | Gly<br>ggg        | ctg<br>Leu        | cag<br>Gln<br>115 | aac<br>Asn        | atg<br>Met        | cac<br>His        | ctc<br>Leu        | ctg<br>Leu<br>120 | aca<br>Thr        | 388 |
| ctg<br>Leu        | aag<br>Lys        | cag<br>Gln        | aag<br>Lys<br>125 | tat<br>Tyr        | gag<br>Glu        | ctg<br>Leu        | cga<br>Arg        | gtg<br>Val<br>130 | gac<br>Asp        | ttg<br>Leu        | gag<br>Glu        | gac<br>Asp        | ttt<br>Phe<br>135 | gag<br>Glu        | aac<br>Asn        | 436 |
| aac<br>Asn        | acg<br>Thr        | gcc<br>Ala<br>140 | tat<br>Tyr        | gcc<br>Ala        | aag<br>Lys        | tac<br>Tyr        | gct<br>Ala<br>145 | gac<br>Asp        | ttc<br>Phe        | tcc<br>Ser        | atc<br>Ile        | tcc<br>Ser<br>150 | ccg<br>Pro        | aac<br>Asn        | gcg<br>Ala        | 484 |
| gtc<br>Val        | agc<br>Ser<br>155 | gca<br>Ala        | gag<br>Glu        | gag<br>Glu        | gat<br>Asp        | ggc<br>Gly<br>160 | tac<br>Tyr        | acc<br>Thr        | ctc<br>Leu        | ttt<br>Phe        | gtg<br>Val<br>165 | gca<br>Ala        | ggc<br>Gly        | ttt<br>Phe        | gag<br>Glu        | 532 |
| gat<br>Asp<br>170 | ggc<br>Gly        | Gly<br>ggg        | gca<br>Ala        | ggt<br>Gly        | gac<br>Asp<br>175 | tcc<br>Ser        | ctg<br>Leu        | tcc<br>Ser        | tac<br>Tyr        | cac<br>His<br>180 | agt<br>Ser        | ggc<br>Gly        | cag<br>Gln        | aag<br>Lys        | ttc<br>Phe<br>185 | 580 |
| tct<br>Ser        | acc<br>Thr        | ttc<br>Phe        | gac<br>Asp        | cgg<br>Arg<br>190 | gac<br>Asp        | cag<br>Gln        | gac<br>Asp        | ctc<br>Leu        | ttt<br>Phe<br>195 | gtg<br>Val        | cag<br>Gln        | aac<br>Asn        | tgc<br>Cys        | gca<br>Ala<br>200 | gct<br>Ala        | 628 |
| ctc<br>Leu        | tcc<br>Ser        | tca<br>Ser        | gga<br>Gly<br>205 | gcc<br>Ala        | ttc<br>Phe        | tgg<br>Trp        | ttc<br>Phe        | cgc<br>Arg<br>210 | agc<br>Ser        | tgc<br>Cys        | cac<br>His        | ttt<br>Phe        | gcc<br>Ala<br>215 | aac<br>Asn        | ctc<br>Leu        | 676 |
| aat<br>Asn        | ggc<br>Gly        | ttc<br>Phe<br>220 | tac<br>Tyr        | cta<br>Leu        | ggt<br>Gly        | Gly               | tcc<br>Ser<br>225 | cac<br>His        | ctc<br>Leu        | tct<br>Ser        | tat<br>Tyr        | gcc<br>Ala<br>230 | aat<br>Asn        | ggc<br>Gly        | atc<br>Ile        | 724 |
| aac<br>Asn        | tgg<br>Trp<br>235 | gcc<br>Ala        | cag<br>Gln        | tgg<br>Trp        | Lys               | ggc<br>Gly<br>240 | ttc<br>Phe        | tac<br>Tyr        | tac<br>Tyr        | Ser               | ctc<br>Leu<br>245 | aaa<br>Lys        | cgc<br>Arg        | act<br>Thr        | gag<br>Glu        | 772 |
|                   |                   |                   | cgc<br>Arg        |                   |                   | tga               | aggg              | ctgg              | cc c              | cctc              | aggc              | a cc              | tttc              | ctcc              |                   | 823 |

| cctggacacc | catggtctcc | atgagtgctc | cctctgctgc | ccctgatgca | tgcttctgct | 883  |
|------------|------------|------------|------------|------------|------------|------|
| gattcccgag | caccaactcc | ttacaagggg | gccttgtggc | tctcagccat | gccacatccc | 943  |
| tgtcacacac | ccagggcatc | cattcctaag | ccagacccgg | ctcccctaca | cctgaagtta | 1003 |
| cactgccagc | agttccccag | gcctcttccg | agaggcacat | ggttctagcc | tggacctggc | 1063 |
| tgggctccat | gagaatgagt | tgcctccacc | ctgtcccaac | agctgacagc | caggagccac | 1123 |
| tctcccagct | gcaggccttt | gtggtccatc | ttgtcctgct | tcctcactgt | ggacccctgt | 1183 |
| ctgggccacc | ctagtgtgct | aagctgagca | gtgcagtgtg | aacagggccc | atggtgtatt | 1243 |
| ctaggccaca | gcccagcact | cctctgggct | gctctcaaac | catgtcccat | cttcagcatc | 1303 |
| cctcccacca | acttactccc | ctgtggtgag | taccgtggaa | ccccagccca | cctcactatc | 1363 |
| atactcagct | tcccctgatg | gcccatccca | gcccctgaag | ctctatgcca | agaacacagc | 1423 |
| taccgcacac | caccctgaaa | cagccacagc | caaggtaggc | atgcatatga | ggtcttcccc | 1483 |
| ataccctctg | ggtgttgaga | ggtttagcca | catgagggag | cagaggacaa | tctctgcagg | 1543 |
| gctgggagtg | ggtagggact | gaaggtctca | ataaaccttc | agaacctgaa | tgaactggct | 1603 |
| tcatacacac | aaacatattt | gtttatcccc | caaatgtagg | cacctggctc | ctccttgctc | 1663 |
| ccctgctgat | ggtgtcctac | cccgaactcc | aaaaattaca | cctggagtca | ggtgcagaag | 1723 |
| ggaaccttgt | atttcacagg | cctcattttg | atggcaaaaa | gacagtgtaa | taataacata | 1783 |
| ataataataa | aaatataata | ctgaaaagga | aaaaaaaaa  | aaaaaaa    |            | 1830 |

<sup>&</sup>lt;210> 49

<sup>&</sup>lt;211> 255

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

Met Lys Ala Leu Leu Ala Leu Pro Leu Leu Leu Leu Ser Thr Pro 1 5 10 15 Pro Cys Ala Pro Gln Val Ser Gly Ile Arg Gly Asp Ala Leu Glu Arg 20 25 30Phe Cys Leu Gln Gln Pro Leu Asp Cys Asp Asp Ile Tyr Ala Gln Gly 35Tyr Gln Ser Asp Gly Val Tyr Leu Ile Tyr Pro Ser Gly Pro Ser Val Pro Val Pro Val Phe Cys Asp Met Thr Thr Glu Gly Gly Lys Trp Thr 65 70 75 80 Val Phe Gln Lys Arg Phe Asn Gly Ser Val Ser Phe Phe Arg Gly Trp 85 90 95 Asn Asp Tyr Lys Leu Gly Phe Gly Arg Ala Asp Gly Glu Tyr Trp Leu 105 100 110 Gly Leu Gln Asn Met His Leu Leu Thr Leu Lys Gln Lys Tyr Glu Leu 115 120 125 Arg Val Asp Leu Glu Asp Phe Glu Asn Asn Thr Ala Tyr Ala Lys Tyr 130 140 Ala Asp Phe Ser Ile Ser Pro Asn Ala Val Ser Ala Glu Glu Asp Gly 145 150 155 160 Tyr Thr Leu Phe Val Ala Gly Phe Glu Asp Gly Gly Ala Gly Asp Ser 165 170 175 Leu Ser Tyr His Ser Gly Gln Lys Phe Ser Thr Phe Asp Arg Asp Gln 180 185 190 Asp Leu Phe Val Gln Asn Cys Ala Ala Leu Ser Ser Gly Ala Phe Trp 195 200 205 Phe Arg Ser Cys His Phe Ala Asn Leu Asn Gly Phe Tyr Leu Gly Gly 210 215 220 Ser His Leu Ser Tyr Ala Asn Gly Ile Asn Trp Ala Gln Trp Lys Gly 225 230 235 Phe Tyr Tyr Ser Leu Lys Arg Thr Glu Met Lys Ile Arg Arg Ala 245 250 255

<210> 50 <211> 749

|                   | 2> DN<br>3> Mu           |                  | culus            |                  |                   |                  |                  |                  |                  |                   |                  |                  |                    |                  |                   |       |
|-------------------|--------------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|--------------------|------------------|-------------------|-------|
| <22               | 1> CD<br>2> (93          | ) (5             | 15)<br>NA: N     | M_00             | 9976,             | Prote            | ína: N           | IP_03            | 4106             |                   |                  |                  |                    |                  |                   |       |
| <40               | 0> 50                    |                  |                  |                  |                   |                  |                  |                  |                  |                   |                  |                  |                    |                  |                   |       |
| ggca              | attt                     | <br>ggg 1        | taaaa            | agtc             | gc ac             | ggag             | gtago            | e ago            | gtc              | gtt               | ctgo             | acca             | aac t              | caga             | agtett            | 60    |
| gttg              | ggago                    | ett 1            | atco             | ctt              | g to              | ctag             | gccaa            | асс              | atg<br>Met<br>1  | gcc<br>Ala        | agc<br>Ser       | ccg<br>Pro       | ctg<br>Leu<br>5    | cgc<br>Arg       | tcc<br>Ser        | 113   |
| ttg<br>Leu        | ctg<br>Leu               | ttc<br>Phe<br>10 | ctg<br>Leu       | ctg<br>Leu       | gcc<br>Ala        | gtc<br>Val       | ctg<br>Leu<br>15 | gcc<br>Ala       | gtg<br>Val       | gcc<br>Ala        | tgg<br>Trp       | gcg<br>Ala<br>20 | gcg<br>Ala         | acc<br>Thr       | cca<br>Pro        | 161   |
| aaa<br>Lys        | caa<br>Gln<br>25         | ggc<br>Gly       | ccg<br>Pro       | cga<br>Arg       | atg<br>Met        | ttg<br>Leu<br>30 | gga<br>Gly       | gcc<br>Ala       | ccg<br>Pro       | gag<br>Glu        | gag<br>Glu<br>35 | gca<br>Ala       | gat<br>Asp         | gcc<br>Ala       | aat<br>Asn        | 209   |
| gag<br>Glu<br>40  | gaa<br>Glu               | ggc<br>Gly       | gtg<br>Val       | cgg<br>Arg       | cga<br>Arg<br>45  | gcg<br>Ala       | ttg<br>Leu       | gac<br>Asp       | ttc<br>Phe       | gct<br>Ala<br>50  | gtg<br>Val       | agc<br>Ser       | gag<br>Glu         | tac<br>Tyr       | aac<br>Asn<br>55  | 257   |
| aag<br>Lys        | ggc                      | agc<br>Ser       | aac<br>Asn       | gat<br>Asp<br>60 | gcg<br>, Ala      | tac<br>Tyr       | cac<br>His       | agc<br>Ser       | cgc<br>Arg<br>65 | gcc<br>Ala        | ata<br>Ile       | cag<br>Gln       | g <b>tg</b><br>Val | gtg<br>Val<br>70 | aga<br>Arg        | 305   |
| gct<br>Ala        | cgt<br>Arg               | aag<br>Lys       | cag<br>Gln<br>75 | ctc<br>Leu       | gtg<br>Val        | gct<br>Ala       | gga<br>Gly       | gtg<br>Val<br>80 | aac<br>Asn       | tat<br>Tyr        | ttt<br>Phe       | ttg<br>Leu       | gat<br>Asp<br>85   | gtg<br>Val       | gag<br>Glu        | 353   |
|                   |                          |                  | act<br>Thr       |                  |                   |                  |                  |                  |                  |                   |                  |                  |                    |                  | tgt<br>Cys        | 401   |
|                   |                          |                  | gac<br>Asp       |                  |                   |                  |                  |                  |                  |                   |                  |                  |                    |                  |                   | . 449 |
| cag<br>Gln<br>120 | atc<br>Ile               | tac<br>Tyr       | agc<br>Ser       | gtg<br>Val       | ccc<br>Pro<br>125 | tgg<br>Trp       | aaa<br>Lys       | ggc<br>Gly       | aca<br>Thr       | cac<br>His<br>130 | tcc<br>Ser       | ctg<br>Leu       | aca<br>Thr         | aaa<br>Lys       | ttc<br>Phe<br>135 | 497   |
|                   |                          |                  | aat<br>Asn       |                  | taa               | ggg              | tgag             | gtc t            | agaa             | aggat             | c at             | gcag             | gacto              | 3                |                   | 545   |
| ttc               | cttac                    | tt g             | tgct             | cctt             | c co              | tata             | gtgt             | tto              | atct             | cgc               | agaa             | ıgggt            | gc t               | ccg              | gctctg            | 605   |
| gagg              | gcac                     | cg d             | cagt             | gtgt             | t tg              | caco             | agga             | gac              | agta             | aaag              | gago             | tgct             | gc a               | aggca            | aggttc            | 665   |
| tgca              | acato                    | tg a             | acag             | ctgt             | c co              | ctgg             | ctco             | act              | ctto             | ttg               | cagt             | acct             | gc c               | atgo             | ccttgc            | 725   |
| tcaa              | ttaa                     | aa a             | aaaa             | aaaa             | a tt              | cg               |                  |                  |                  |                   |                  |                  |                    |                  |                   | 749   |
| <21               | 0> 51<br>1> 14(<br>2> PR |                  |                  |                  |                   |                  |                  |                  |                  |                   |                  |                  |                    |                  |                   |       |

```
<213> Mus musculus
```

<400> 51

Met Ala Ser Pro Leu Arg Ser Leu Leu Phe Leu Leu Ala Val Leu Ala 1 5 10 15

Val Ala Trp Ala Ala Thr Pro Lys Gln Gly Pro Arg Met Leu Gly Ala 20 25 30

Pro Glu Glu Ala Asp Ala Asn Glu Glu Gly Val Arg Arg Ala Leu Asp 35 40 45

Phe Ala Val Ser Glu Tyr Asn Lys Gly Ser Asn Asp Ala Tyr His Ser 50 60

Arg Ala Ile Gln Val Val Arg Ala Arg Lys Gln Leu Val Ala Gly Val 65 70 75 80

Asn Tyr Phe Leu Asp Val Glu Met Gly Arg Thr Thr Cys Thr Lys Ser 85 90 95

Gln Thr Asn Leu Thr Asp Cys Pro Phe His Asp Gln Pro His Leu Met 100 105 110

Arg Lys Ala Leu Cys Ser Phe Gln Ile Tyr Ser Val Pro Trp Lys Gly

Thr His Ser Leu Thr Lys Phe Ser Cys Lys Asn Ala 130 135 140

<210> 52

<211> 818

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (76)..(516)

<223> SF11, cDNA: NM\_000099, Proteína: NP\_000090

| cgca                  | igcg       | gġt              | cctc       | tcta       | tc t              | agct       | ccag              | c ct       | ctcg       | cctg              | cgc        | ссса              | ctc        | cccg       | cgtccc            | : 6 | 60 |
|-----------------------|------------|------------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|-----|----|
| gcgt                  | cct        | agc              | cgac       |            |                   |            |                   |            |            |                   |            |                   |            | u Le       | g ctg<br>u Leu    | 11  | 11 |
| gcc<br>Ala            |            |                  |            |            |                   |            |                   |            |            |                   |            |                   |            |            | agt<br>Ser        | 15  | 59 |
| ccc<br>Pro            |            |                  |            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | 20  | 7  |
| gag<br>Glu<br>45      |            |                  |            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | 25  | 5  |
| aac<br>Asn            |            |                  |            |            |                   |            |                   |            |            |                   |            |                   |            |            | gtg<br>Val        | 30  | 3  |
| cgc<br>Arg            |            |                  |            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | 35  | 1  |
| gag (<br>Glu )        | ctg<br>Leu | ggc<br>Gly<br>95 | cga<br>Arg | acc<br>Thr | acg<br>Thr        | tgt<br>Cys | acc<br>Thr<br>100 | aag<br>Lys | acc<br>Thr | cag<br>Gln        | ccc<br>Pro | aac<br>Asn<br>105 | ttg<br>Leu | gac<br>Asp | aac<br>Asn        | 39  | 9  |
| Cys                   |            |                  |            |            | Gln               |            |                   |            |            |                   |            |                   |            |            | tct<br>Ser        | 44  | 7  |
| ttc (<br>Phe (<br>125 | cag<br>Gln | atc<br>Ile       | tac<br>Tyr | Ala        | gtg<br>Val<br>130 | cct<br>Pro | tgg<br>Trp        | cag<br>Gln | ggc<br>Gly | aca<br>Thr<br>135 | atg<br>Met | acc<br>Thr        | ttg<br>Leu | tcg<br>Ser | aaa<br>Lys<br>140 | 49  | 5  |
| tcc a<br>Ser 1        |            |                  | Gln .      |            |                   | tag        | gggt              | ctgt       | ac c       | gggc              | tggc       | c tg              | tgcc       | tatc       |                   | 546 | 5  |
| accto                 | tta        | tg c             | acac       | ctcc       | c ac              | cccc       | tgta              | ttc        | ccac       | ccc               | tgga       | ctgg              | tg g       | cccc       | tgcct             | 606 | 5  |
| tgggg                 | jaag       | gt c             | tccc       | catg       | t gc              | ctgc       | acca              | gga        | gaca       | gac               | agag       | aagg              | ca g       | cagg       | cggcc             | 666 | 5  |
| tttgt                 | tgc        | tc a             | gcaa       | gggg       | c to              | tgcc       | ctcc              | ctc        | cttc       | ctt               | cttg       | cttc              | tc a       | tagc       | cccgg             | 726 | 5  |
| tgtgc                 | ggt        | gc a             | taca       | cccc       | c ac              | ctcc       | tgca              | ata        | aaat       | agt               | agca       | tcgg              | ca a       | aaaa       | aaaaa             | 786 | 5  |
| aaaaa                 | aaa        | aa a             | aaaa       | aaaa       | a aa              | aaaa       | aaaa              | aa         |            |                   |            |                   |            |            |                   | 818 | 3  |

<210> 53

<211> 146

<212> PRT

<213> Homo sapiens

|       | Met<br>1     | АТА           | GIY        | PIO        | 5         | Arg       | Ald        | PIO        | rea        | 10        | neu       | Leu        | AIG        | 116        | 15        | AIG       |     |
|-------|--------------|---------------|------------|------------|-----------|-----------|------------|------------|------------|-----------|-----------|------------|------------|------------|-----------|-----------|-----|
|       | Val          | Ala           | Leu        | Ala<br>20  | Val       | Ser       | Pro        | Ala        | Ala<br>25  | Gly       | Ser       | Ser        | Pro        | Gly<br>30  | Lys       | Pro       |     |
|       | Pro          | Arg           | Leu<br>35  | Val        | Gly       | Gly       | Pro        | Met<br>40  | Asp        | Ala       | Ser       | Val        | Glu<br>45  | Glu        | Glu       | Gly       |     |
|       | Val          | Arg<br>50     | Arg        | Ala        | Leu       | Asp       | Phe<br>55  | Ala        | Val        | Gly       | Glu       | Туг<br>60  | Asn        | Lys        | Ala       | Ser       |     |
|       | Asn<br>65    | Asp           | Met        | Tyr        | His       | Ser<br>70 | Arg        | Ala        | Leu        | Gln       | Val<br>75 | Val        | Arg        | Ala        | Arg       | Lys<br>80 |     |
|       | Gln          | Ile           | Val        | Ala        | Gly<br>85 | Val       | Asn        | Туr        | Phe        | Leu<br>90 | Asp       | Val        | Glu        | Leu        | Gly<br>95 | Arg       |     |
|       | Thr          | Thr           | Cys        | Thr<br>100 | Lys       | Thr       | Gln        | Pro        | Asn<br>105 | Leu       | Asp       | Asn        | Cys        | Pro<br>110 | Phe       | His       |     |
|       | Asp          | Gln           | Pro<br>115 | His        | Leu       | Lys       | Arg        | Lys<br>120 | Ala        | Phe       | Суѕ       | Ser        | Phe<br>125 | Gln        | Ile       | Tyr       |     |
|       | Ala          | Val<br>130    | Pro        | Trp        | Gln       | Gly       | Thr<br>135 | Met        | Thr        | Leu       | Ser       | Lys<br>140 | Ser        | Thr        | Cys       | Gln ·     |     |
|       | Asp<br>145   | Ala           |            |            |           |           |            |            |            |           |           |            |            |            |           |           |     |
| 212>  | 2709<br>DNA  | muscu         | llus       |            |           |           |            |            |            |           |           |            |            |            |           |           |     |
| :222> | CDS<br>(124) | (224<br>, cDN |            | _0101      | 80, Pr    | oteína    | : NP_      | _0343      | 10         |           |           |            |            |            |           |           |     |
| 400>  | 54           |               |            |            |           |           |            |            |            |           |           |            |            |            |           |           |     |
| cct   | cctc         | cgg (         | gcggg      | gataa      | at to     | gaacg     | cgg        | ge         | gcag       | gagc      | ctc       | gcgtt      | gg (       | ctgc       | cag       | gc        | 60  |
| ctg   | gete         | gag           | cgtgt      | agco       | g ct      | tgcco     | gccg       | g tg       | cctt       | gtc       | cgc       | gccg       | ga g       | gcccg      | gccag     | gc        | 120 |
|       |              |               |            |            |           |           |            |            |            |           |           |            |            |            |           |           |     |

| ccc               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ctg<br>Leu<br>15  | 1  | 168 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----|-----|
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | atc<br>Ile        | 2  | 216 |
| tcc<br>Ser        | atg<br>Met        | gag<br>Glu        | gct<br>Ala<br>35  | tgc<br>Cys        | tgc<br>Cys        | acg<br>Thr        | gat<br>Asp        | cca<br>Pro<br>40  | aat<br>Asn        | cag<br>Gln        | atg<br>Met        | g gct<br>: Ala    | aac<br>Asr<br>45  | cag<br>Glr        | cac<br>His        | 2  | 264 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | atg<br>Met        | 3  | 312 |
| gtc<br>Val        | cag<br>Gln<br>65  | gag<br>Glu        | caa<br>Gln        | tgt<br>Cys        | tgt<br>Cys        | cac<br>His<br>70  | aac<br>Asn        | caa<br>Gln        | ctg<br>Leu        | gaa<br>Glu        | gag<br>Glu<br>75  | ctg<br>Leu        | cac<br>His        | tgt<br>Cys        | gcc<br>Ala        | 3  | 50  |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | cac<br>His<br>95  | 4  | 801 |
| agc<br>Ser        | tac<br>Tyr        | aac<br>Asn        | agt<br>Ser        | agc<br>Ser<br>100 | ctt<br>Leu        | gag<br>Glu        | acc<br>Thr        | atc               | ttc<br>Phe<br>105 | ata<br>Ile        | aag<br>Lys        | agg<br>Arg        | tgc<br>Cys        | tgc<br>Cys<br>110 | cac<br>His        | 4  | 56  |
| tgt<br>Cys        | tgc<br>Cys        | atg<br>Met        | ctg<br>Leu<br>115 | gga<br>Gly        | aag<br>Lys        | gca<br>Ala        | tcc<br>Ser        | ctg<br>Leu<br>120 | gcc<br>Ala        | cga<br>Arg        | gac<br>Asp        | cag<br>Gln        | acc<br>Thr<br>125 | tgt<br>Cys        | gaa<br>Glu        | 5  | 04  |
| ccc<br>Pro        | att<br>Ile        | gtc<br>Val<br>130 | atg<br>Met        | ata<br>Ile        | agc<br>Ser        | tac<br>Tyr        | cag<br>Gln<br>135 | tgt<br>Cys        | ggg<br>Gly        | ctg<br>Leu        | gtg<br>Val        | ttc<br>Phe<br>140 | cgt<br>Arg        | gcc<br>Ala        | tgc<br>Cys        |    | 52  |
|                   |                   |                   |                   |                   |                   | aat<br>Asn<br>150 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 6  | 00  |
| gac<br>Asp<br>160 | ctt<br>Leu        | cag<br>Gln        | gac<br>Asp        | cca<br>Pro        | gct<br>Ala<br>165 | aag<br>Lys        | att<br>Ile        | cct<br>Pro        | gac<br>Asp        | gag<br>Glu<br>170 | gag<br>Glu        | gac<br>Asp        | caa<br>Gln        | gaa<br>Glu        | gac<br>Asp<br>175 | 6  | 48  |
| ccg<br>Pro        | tac<br>Tyr        | ctg<br>Leu        | aat<br>Asn        | gac<br>Asp<br>180 | cgc<br>Arg        | tgt<br>Cys        | cga<br>Arg        | ggt<br>Gly        | ggc<br>Gly<br>185 | GJA<br>aaa        | ccc<br>Pro        | tgt<br>Cys        | aag<br>Lys        | cag<br>Gln<br>190 | cag<br>Gln        | 6  | 96  |
| tgc<br>Cys        | cgt<br>Arg        | gac<br>Asp        | act<br>Thr<br>195 | ggg<br>Gly        | gac<br>Asp        | gag<br>Glu        | gtg<br>Val        | atc<br>Ile<br>200 | tgc<br>Cys        | tct<br>Ser        | tgc<br>Cys        | ttt<br>Phe        | gtg<br>Val<br>205 | ggc<br>Gly        | tac<br>Tyr        | 7  | 44  |
| cag<br>Gln        | ctg<br>Leu        | cag<br>Gln<br>210 | tcg<br>Ser        | gat<br>Asp        | ggt<br>Gly        | gtc<br>Val        | tcc<br>Ser<br>215 | tgc<br>Cys        | gaa<br>Glu        | gat<br>Asp        | atc<br>Ile        | aat<br>Asn<br>220 | gaa<br>Glu        | tgc<br>Cys        | atc<br>Ile        | 79 | 92  |
| aca<br>Thr        | ggc<br>Gly<br>225 | agc<br>Ser        | cat<br>His        | aac<br>Asn        | tgc<br>Cys        | cgg<br>Arg<br>230 | ctg<br>Leu        | gga<br>Gly        | gaa<br>Glu        | tcc<br>Ser        | tgc<br>Cys<br>235 | atc<br>Ile        | aat<br>Asn        | aca<br>Thr        | gtg<br>Val        | 84 | 40  |
| ggc<br>Gly<br>240 | tct<br>Ser        | ttc<br>Phe        | cgc<br>Arg        | tgc<br>Cys        | cag<br>Gln<br>245 | cgg<br>Arg        | gac<br>Asp        | agc<br>Ser        | agc<br>Ser        | tgt<br>Cys<br>250 | ggg<br>Gly        | act<br>Thr        | ggc<br>Gly        | tat<br>Tyr        | gag<br>Glu<br>255 | 88 | 38  |
| ctc<br>Leu        | aca<br>Thr        | gag<br>Glu        | Asp               | aat<br>Asn<br>260 | aac<br>Asn        | tgc<br>Cys        | aaa<br>Lys        | Asp               | att<br>Ile<br>265 | gac<br>Asp        | gaa<br>Glu        | tgt<br>Cys        | gag<br>Glu        | act<br>Thr<br>270 | ggt<br>Gly        | 93 | 36  |

|            |            |                   |                   | Pro               |            |            |                   |                   | e Cys             |            |            |                   |                   | u Gl              | a t <u>c</u> c<br>y Ser |    | 984  |
|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|-------------------------|----|------|
|            |            |                   | Arg               |                   |            |            |                   | суя               |                   |            |            |                   | e Ile             |                   | g gat<br>n Asp          |    | 1032 |
|            |            | ıĞly              |                   |                   |            |            | Ile               |                   |                   |            |            | ı Se              |                   |                   | gct<br>Ala              |    | 1080 |
|            | Cys        |                   |                   |                   |            | Thr        |                   |                   |                   |            | Gli        |                   |                   |                   | aca<br>Thr<br>335       |    | 1128 |
| _          |            | _                 |                   |                   | Pro        |            | _                 |                   | _                 | Ğİy        |            |                   |                   |                   | gaa<br>Glu              |    | 1176 |
|            |            |                   |                   |                   |            |            |                   |                   | Glu               |            |            |                   |                   | Ala               | gag<br>Glu              |    | 1224 |
|            |            |                   | Lys               |                   |            |            |                   |                   |                   |            |            |                   | Ser               |                   | cgc<br>Arg              |    | 1272 |
|            |            | Cys               |                   |                   |            |            |                   |                   |                   |            |            | Ser               |                   |                   | tgc<br>Cys              | -  | 1320 |
|            | Asp        |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | cac<br>His<br>415       |    | 1368 |
|            |            |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | ggc<br>Gly              | ٠. | 1416 |
|            |            |                   |                   |                   |            |            |                   | tct<br>Ser<br>440 |                   |            |            |                   |                   |                   |                         |    | 1464 |
|            |            |                   |                   |                   |            |            |                   | tgt<br>Cys        |                   |            |            |                   |                   |                   |                         |    | 1512 |
|            |            |                   |                   |                   |            |            |                   | cag<br>Gln        |                   |            |            |                   |                   |                   |                         | ٠  | 1560 |
|            |            |                   |                   |                   |            |            |                   | gcc<br>Ala        |                   |            |            |                   |                   |                   |                         |    | 1608 |
| tgc<br>Cys | tcc<br>Ser | tac<br>Tyr        | cgc<br>Arg        | tgc<br>Cys<br>500 | atc<br>Ile | aac<br>Asn | atc<br>Ile        | ccc<br>Pro        | gga<br>Gly<br>505 | agc<br>Ser | ttc<br>Phe | cag<br>Gln        | tgc<br>Cys        | agc<br>Ser<br>510 | tgc<br>Cys              | •  | 1656 |
| ccc<br>Pro | tca<br>Ser | tct<br>Ser        | ggc<br>Gly<br>515 | tac<br>Tyr        | agg<br>Arg | cta<br>Leu | Ala               | ccc<br>Pro<br>520 | aat<br>Asn        | ggc<br>Gly | cgc<br>Arg | aac<br>Asn        | tgc<br>Cys<br>525 | caa<br>Gln        | gac<br>Asp              |    | 1704 |
| att<br>Ile | gat<br>Asp | gag<br>Glu<br>530 | tgt<br>Cys        | gtg<br>Val        | acc<br>Thr | Gly        | atc<br>Ile<br>535 | cat<br>His        | aac<br>Asn        | tgt<br>Cys | tcc<br>Ser | atc<br>Ile<br>540 | aat<br>Asn        | gag<br>Glu        | act<br>Thr              | :  | 1752 |

|      |      | Asn   |       |       |       |       |      | cgc<br>Arg        |       |       |       | Phe   |       |      |       | 1800  |
|------|------|-------|-------|-------|-------|-------|------|-------------------|-------|-------|-------|-------|-------|------|-------|-------|
|      | Asn  |       |       |       |       |       |      | acc<br>Thr        |       |       |       |       |       |      |       | 1848  |
|      |      |       |       |       |       |       |      | cgt<br>Arg        |       |       |       |       |       |      |       | 1896  |
|      |      |       |       |       |       |       |      | cac<br>His<br>600 |       |       |       |       |       |      |       | 1944  |
|      |      |       |       |       |       |       |      | gag<br>Glu        |       |       |       |       |       |      |       | 1992  |
|      |      |       |       |       |       |       |      | gcc<br>Ala        |       |       |       |       |       |      |       | 2040  |
|      |      |       |       |       |       |       |      | gat<br>Asp        |       |       |       |       |       |      |       | 2088  |
|      |      |       | Val   |       |       |       |      | caa<br>Gln        |       |       |       |       |       |      |       | 2136  |
|      |      | Ala   |       |       |       |       |      | atg<br>Met<br>680 |       |       |       | Leu   |       |      |       | 2184  |
|      |      |       |       |       |       | Val . |      | gta<br>Val        |       |       | Phe   |       |       |      |       | .2232 |
| Trp  |      | tga   | gggc  | cggg  | tt g  | cggc  | tcag | с са              | ggag  | tgtg  | сса   | cgcc  | ctt   |      |       | 2281  |
| gctg | ccag | tg a  | cagc  | cagg  | t gc  | ctgt  | ctct | acc               | cctc  | ggg ( | cctc  | cctt  | ga t  | gttt | catat | 2341  |
| tggt | ttgt | at g  | gcca  | cgtg  | c at  | taggo | ctga | gcc               | gaat  | cac   | ttaag | gtcc  | ag c  | tggt | gtact | 2401  |
| gtgg | cgtt | ta a  | acat  | ggct  | c ago | ccag  | gtgg | ttg               | aatc  | att ( | gctti | tttt  | tt t  | tttt | taaat | 2461  |
| gcaa | aggc | ca aa | agcg  | gaati | t tto | gttc  | cctt | ttc               | tacci | tgt ( | gagct | aggo  | a t   | tgct | aagga | 2521  |
| ccaa | ttga | ag ga | agtti | tca   | a ago | cagao | tcc  | acc               | gaaa  | agc o | gagg  | gcago | c a   | gttc | tcact | 2581  |
| gagt | ctgc | at ga | aggat | tgg   | att   | ttgg  | gtac | ttt               | tttt  | tt t  | taac  | caac  | t g   | gct  | tttg  | 2641  |
| tgtt | tcaa | gt to | gatgo | gctgo | tgt:  | agag  | jtgg | cgca              | ataaa | ata a | atgt  | acaa  | it aa | atto | ctccc | 2701  |
| caga | aaaa |       |       |       |       |       |      |                   |       |       |       |       |       |      |       | 2709  |

<210> 55

<211> 705

<212> PRT

<213> Mus musculus

| Me<br>1    | t Gl       | u Ar       | g Pr         | o Va<br>5   | l Pro       | o Se       | r Ar       | g Le         | u Va<br>10 |             | o Le       | u Pr        | o Le        | u Le<br>15 | u Leu      |
|------------|------------|------------|--------------|-------------|-------------|------------|------------|--------------|------------|-------------|------------|-------------|-------------|------------|------------|
| Le         | ı Se:      | r Se       | r Le<br>20   |             | r Le        | ı Le       | u Ala      | a Ala<br>25  | a Ar       | g Al        | a Ası      | n Ala       | a As;<br>30 | p Il       | e Ser      |
| Met        | Gl         | u Al<br>35 | а Су         | s Cy        | s Thi       | Ası        | Pro<br>40  | Ası          | ı Glı      | n Me        | t Ala      | a Ası<br>45 | n Gl        | n His      | s Arg      |
| Ası        | 50         | s Se       | r Le         | u Pro       | о Туг       | Thi<br>55  | c Ser      | Glu          | ı .Sez     | r Ly:       | Glu<br>60  | ı Cy:       | s Arg       | g Met      | . Val      |
| Glr<br>65  | Glu        | Gl:        | n Cys        | s Cys       | s His<br>70 | Asr        | ı Gln      | Leu          | Glu        | 1 Glu<br>75 | ı Lev      | His         | Cys         | Ala        | Thr<br>80  |
| Gly        | Ile        | Ası        | n Let        | a Ala<br>85 | a Ser       | Glu        | Pro        | Glu          | Gly<br>90  | Cys         | a Ala      | Ser         | Leu         | His<br>95  | Ser        |
| Tyr        | Asn        | Sei        | 7 Ser<br>100 |             | ı Glu       | Thr        | Ile        | Phe<br>105   |            | Lys         | Arg        | Cys         | Cys         |            | Cys        |
| Cys        | Met        | Let<br>115 |              | / Lys       | Ala         | Ser        | Leu<br>120 |              | Arg        | Asp         | Gln        | Thr<br>125  |             | Glu        | Pro        |
| Ile        | Val<br>130 |            | : Ile        | Ser         | Tyr         | Gln<br>135 |            | Gly          | Leu        | Val         | Phe<br>140 |             | Ala         | Cys        | Cys        |
| Val<br>145 |            | Ala        | Arg          | Glu         | Asn<br>150  | Ser        | Asp        | Phe          | Val        | Gln<br>155  | Gly        | Asn         | Gly         | Ala        | Asp<br>160 |
| Leu        | Gln        | Asp        | Pro          | Ala<br>165  | Lys         | Ile        | Pro        | Asp          | Glu<br>170 | Glu         | Asp        | Gln         | Glu         | Asp<br>175 | Pro        |
| Tyr        | Leu        | Asn        | Asp<br>180   |             | Cys         | Arg        | Gly        | Gly<br>185   | Gly        | Pro         | Суз        | Lys         | Gln<br>190  | Gln        | Cys        |
| Arg        | Asp        | Thr<br>195 |              | Asp         | Glu         | Val        | Ile<br>200 | Cys          | Ser        | Cys         | Phe        | Val<br>205  | Gly         | Tyr        | Gln        |
| Leu        | Gln<br>210 | Ser        | Asp          | Gly         | Val         | Ser<br>215 | Cys        | Glu          | Asp        | Ile         | Asn<br>220 | Glu         | Cys         | Ile        | Thr        |
| Gly<br>225 | Ser        | His        | Asn          | Cys         | Arg<br>230  | Leu        | Gly        | Glu          | Ser        | Cys<br>235  | Ile        | Asn         | Thr         | Val        | Gly<br>240 |
| Ser        | Phe        | Arg        | Суѕ          | Gln<br>245  | Arg         | Asp        | Ser        | Ser          | Cys<br>250 | Gly         | Thr        | Gly         | Tyr         | Glu<br>255 | Leu        |
| Thr        | Glu        | Asp        | Asn<br>260   | Asn         | Cys         | Lys        |            | Ile .<br>265 | Asp        | Glu         | Cys        | Glu         | Thr<br>270  | Gly        | lle        |

His Asn Cys Pro Pro Asp Phe Ile Cys Gln Asn Thr Leu Gly Ser Phe 275 280 285 Arg Cys Arg Pro Lys Leu Gln Cys Lys Ser Gly Phe Ile Gln Asp Ala 290 295 300 Leu Gly Asn Cys Ile Asp Ile Asn Glu Cys Leu Ser Ile Ser Ala Pro Cys Pro Val Gly Gln Thr Cys Ile Asn Thr Glu Gly Ser Tyr Thr Cys 325 330 335 Gln Lys Asn Val Pro Asn Cys Gly Arg Gly Tyr His Leu Asn Glu Glu 340 345 Gly Thr Arg Cys Val Asp Val Asp Glu Cys Ala Pro Pro Ala Glu Pro 355 360 365 Cys Gly Lys Gly His His Cys Leu Asn Ser Pro Gly Ser Phe Arg Cys 370 380 Glu Cys Lys Ala Gly Phe Tyr Phe Asp Gly Ile Ser Arg Thr Cys Val 385 390 395 400 Asp Ile Asn Glu Cys Gln Arg Tyr Pro Gly Arg Leu Cys Gly His Lys 405 410 415 Cys Glu Asn Thr Pro Gly Ser Phe His Cys Ser Cys Ser Ala Gly Phe Arg Leu Ser Val Asp Gly Arg Ser Cys Glu Asp Val Asn Glu Cys Leu 435 440 Asn Ser Pro Cys Ser Gln Glu Cys Ala Asn Val Tyr Gly Ser Tyr Gln
450 460 Cys Tyr Cys Arg Arg Gly Tyr Gln Leu Ser Asp Val Asp Gly Val Thr 465 470 475 480 Cys Glu Asp Ile Asp Glu Cys Ala Leu Pro Thr Gly Gly His Ile Cys 485 490 495 Ser Tyr Arg Cys Ile Asn Ile Pro Gly Ser Phe Gln Cys Ser Cys Pro 500 505 510 Ser Ser Gly Tyr Arg Leu Ala Pro Asn Gly Arg Asn Cys Gln Asp Ile 515 520 525 Asp Glu Cys Val Thr Gly Ile His Asn Cys Ser Ile Asn Glu Thr Cys 530 540

 Phe 545
 Asn
 Ile Gln
 Gly
 Ser 550
 Phe Arg
 Cys
 Leu
 Ser Phe Glu
 Cys
 Pro 560

 Asn
 Tyr
 Arg
 Arg
 Ser
 Ala
 Asp
 Thr
 Phe Arg
 Glu
 Glu
 Lys
 Thr
 Asp
 Thr
 Fro
 Fro
 Glu
 Lys
 Thr
 Arg
 Fro
 Asp
 Glu
 Ala
 Cys
 Val
 Arg
 Fro
 Asp
 Asp
 Glu
 Ala
 Cys
 Val
 Arg
 Fro
 Asp
 Glu
 Ala
 Cys
 Val
 Arg
 Fro
 Asp
 Glu
 Asp
 Glu
 Ala
 Cys
 Fro
 Arg
 Fro
 Thr
 Fro
 Asp
 Glu
 Asp
 Glu
 Fro
 Asp
 Glu
 Arg
 Fro
 Thr
 Fro
 Arg
 Arg
 Fro
 Thr
 Fro
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 <t

<210> 56 <211> 2947

<212> DNA

<213> Homo sapiens

Phe

<220>

<221> CDS

<222> (148)..(2259)

<223> SF12, cDNA: NM\_006486, Proteína: NP 006477

| 60  | gg gcgggataat tgaacggcgc ggccctggcc cagcgttggc tgccgaggct                                         | ctcctcccgg |
|-----|---------------------------------------------------------------------------------------------------|------------|
| 120 | gc gtggagcccg cgccgctgcc ccaggaccgc gcccgcgcct ttgtccgccg                                         | cggccggagc |
| 174 | cg cccgtcgccc gccgccc atg gag cgc gcc gcg ccg tcg cgc cgg Met Glu Arg Ala Ala Pro Ser Arg Arg 1 5 | ccgcccaccg |
| 222 | ctt ccg ctg ctg ctc ggc ggc ctt gcg ctg ct                                                        |            |

| gg                | a gt<br>y Va      | g ga<br>l As      | c gc              | g ga<br>a As;<br>30 | t gt<br>p Va      | c ct<br>l Le      | c ct<br>u Le         | g gag<br>u Gl         | g gc<br>u Ala<br>35 | c tg<br>a Cy        | c tg<br>s Cy      | rt go<br>'s Al     | g ga<br>.a As     | ic gg<br>sp Gl<br>40  | a cac<br>y His        | 270   |
|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|----------------------|-----------------------|---------------------|---------------------|-------------------|--------------------|-------------------|-----------------------|-----------------------|-------|
| cg:<br>Ar         | g ate             | g gco             | a Thi             | t car               | t ca<br>s Gl      | g aa<br>n Ly      | g gad<br>s As        | c tgo<br>p Cys<br>50  | tc<br>Se            | g ct<br>r Le        | g cc<br>u Pr      | a ta<br>o Ty       | r Al<br>55        | a Th                  | g gaa<br>r Glu        | 318   |
| t co<br>Sei       | aaa<br>Ly:        | gaa<br>Glu<br>60  | a tgo<br>ı Cys    | agg<br>Arg          | g ato             | g gt              | g cag<br>l Gli<br>65 | g gag<br>n Glu        | g cag<br>i Glr      | g tg                | c tg<br>s Cy      | с са<br>s Ні<br>70 | s Se              | c ca<br>r Gl          | g ctg<br>n Leu        | 366   |
|                   |                   |                   |                   |                     |                   |                   |                      |                       |                     |                     |                   |                    |                   |                       | g gac<br>n Asp        | 414   |
| Arg<br>90         | tgt<br>Cys        | gco<br>Ala        | acg<br>Thr        | Pro                 | Cac<br>His<br>95  | ggt<br>Gly        | gac<br>Asp           | aac<br>Asn            | gco                 | e ago<br>Ser<br>100 | Le                | g ga<br>u Gl       | g gco<br>u Ala    | c aca                 | a ttt<br>r Phe<br>105 | 462   |
| gtg<br>Val        | aag<br>Lys        | agg<br>Arg        | tgc<br>Cys        | Cys<br>110          | His               | tgo<br>Cys        | tgt<br>Cys           | ctg<br>Leu            | Leu<br>115          | Gly                 | agg<br>Arg        | g gc               | g gco<br>a Ala    | c cag<br>a Glr<br>120 | g gcc<br>n Ala        | 510   |
|                   |                   |                   |                   | Cys                 |                   |                   |                      |                       | Met                 |                     |                   |                    |                   | 1 Cys                 | gga<br>Gly            | 558   |
| cag<br>Gln        | gtc<br>Val        | Phe<br>140        | Arg               | gca<br>Ala          | tgc<br>Cys        | tgt<br>Cys        | gtc<br>Val<br>145    | Lys                   | agc<br>Ser          | cag<br>Gln          | gag<br>Glu        | Thi<br>150         | : Gly             | a gat<br>⁄ Asp        | ttg<br>Leu            | 606   |
|                   |                   | Gly               |                   |                     |                   |                   | Thr                  |                       |                     |                     |                   | Glu                |                   |                       | gag<br>Glu            | 654   |
| gaa<br>Glu<br>170 | Gln               | gag<br>Glu        | gac<br>Asp        | cca<br>Pro          | tat<br>Tyr<br>175 | ctg<br>Leu        | aat<br>Asn           | gac<br>Asp            | cgc<br>Arg          | tgc<br>Cys<br>180   | cga<br>Arg        | gga                | ggc<br>Gly        | Gly                   | Pro<br>185            | 702   |
|                   |                   |                   |                   |                     |                   |                   |                      | ggt<br>Gly            |                     |                     |                   |                    |                   |                       | Cys                   | 750   |
| ttc<br>Phe        | gtg<br>Val        | ggc<br>Gly        | tac<br>Tyr<br>205 | cag<br>Gln          | ctg<br>Leu        | ctg<br>Leu        | tct<br>Ser           | gat<br>Asp<br>210     | ggt<br>Gly          | gtc<br>Val          | tcc<br>Ser        | tgt<br>Cys         | gaa<br>Glu<br>215 | gat<br>Asp            | gtc<br>Val            | 798   |
| aat<br>Asn        | gaa<br>Glu        | tgc<br>Cys<br>220 | atc<br>Ile        | acg<br>Thr          | ggc<br>Gly        | agc<br>Ser        | cac<br>His<br>225    | agc<br>Ser            | tgc<br>Cys          | cgg<br>Arg          | ctt<br>Leu        | gga<br>Gly<br>230  | gaa<br>Glu        | tcc<br>Ser            | tgc<br>Cys            | 846   |
| atc<br>Ile        | aac<br>Asn<br>235 | aca<br>Thr        | gtg<br>Val        | ggc<br>Gly          | tct<br>Ser        | ttc<br>Phe<br>240 | cgc<br>Arg           | tgc<br>Cys            | cag<br>Gln          | cgg<br>Arg          | gac<br>Asp<br>245 | agc<br>Ser         | agc<br>Ser        | tgc<br>Cys            | Gly<br>ggg            | 894   |
| act<br>Thr<br>250 | ggc<br>Gly        | tat<br>Tyr        | gag<br>Glu        | ctc<br>Leu          | aca<br>Thr<br>255 | gag<br>Glu        | gac<br>Asp           | aat<br>Asn            | agc<br>Ser          | tgc<br>Cys<br>260   | aaa<br>Lys        | gat<br>Asp         | att<br>Ile        | gac<br>Asp            | gag<br>Glu<br>265     | . 942 |
| tgt<br>Cys        | gag<br>Glu        | agt<br>Ser        | Gly               | att<br>Ile<br>270   | cat<br>His        | aac<br>Asn        | tgc<br>Cys           | ctc<br>Leu            | Pro<br>275          | gat<br>Asp          | ttt<br>Phe        | atc<br>Ile         | tgt<br>Cys        | cag<br>Gln<br>280     | aat<br>Asn            | 990   |
| act<br>Thr        | ctg<br>Leu        | gga<br>Gly        | tcc<br>Ser<br>285 | ttc<br>Phe          | cgc<br>Arg        | tgc<br>Cys        | Arg                  | ecc i<br>Pro 1<br>290 | aag<br>Lys 1        | cta<br>Leu          | cag<br>Gln        | tgc<br>Cys         | aag<br>Lys<br>295 | agt<br>Ser            | ggc<br>Gly            | 1038  |

|   | Ph                            | t at              | a ca<br>e Gl<br>30 | n As                  | t gc<br>p Al          | t ct<br>a Le          | a gg<br>u Gl      | c aa<br>y As<br>30 | пСу                 | t at              | t ga<br>e As        | t at<br>p Il       | e As               | at g<br>sn G       | ag t<br>lu C       | gt<br>'ys      | ttg<br>Leu        |   | 1086 |
|---|-------------------------------|-------------------|--------------------|-----------------------|-----------------------|-----------------------|-------------------|--------------------|---------------------|-------------------|---------------------|--------------------|--------------------|--------------------|--------------------|----------------|-------------------|---|------|
|   | agt<br>Sez                    | 110<br>31         | e Se               | t gc<br>r Al          | c cc<br>a Pr          | g tg<br>o Cy          | c cc<br>s Pr      | o Il               | c ggg<br>e Gl       | g car<br>y Hi:    | t ac<br>s Th        | a tg<br>r Cy<br>32 | s Il               | c a                | ac a               | ca<br>hr       | gag<br>Glu        |   | 1134 |
|   | gg(<br>Gl <sub>y</sub><br>33( | / Sea             | ta<br>Ty           | c ac<br>r Th          | g tg                  | c cas<br>s Gli<br>335 | ı Ly:             | g aad<br>s Asi     | c gto               | g cco             | c aa<br>o As:<br>34 | n Cy               | t gg<br>s Gl       | y Ai               | gt g<br>cg G       | gc<br>ly       | tac<br>Tyr<br>345 |   | 1182 |
|   | cat                           | cto<br>Lei        | aa<br>1 As         | c gag<br>n Gl         | g gag<br>u Gli<br>350 | ı Gly                 | a aco             | g cgo              | tgt<br>g Cys        | gtt<br>Val        | As:                 | t gt<br>p Va       | g ga<br>l As       | c ga<br>p Gl       | u C                | gc<br>ys<br>60 | gcg<br>Ala        |   | 1230 |
|   | cca<br>Pro                    | cct<br>Pro        | gc:<br>Ala         | t gag<br>a Glu<br>365 | ı Pro                 | c tgt<br>c Cys        | ggg<br>Gly        | aag<br>Lys         | g gga<br>Gly<br>370 | / His             | cge<br>Are          | c tg<br>g Cy       | c gt<br>s Va       | g aa<br>1 As<br>37 | n S                | et             | ccc<br>Pro        |   | 1278 |
| ) | ggc<br>Gly                    | agt<br>Ser        | Phe<br>380         | Arç                   | tgc<br>g Cys          | gaa<br>Glu            | tgc<br>Cys        | aag<br>Lys<br>385  | acg<br>Thr          | ggt               | tac<br>Typ          | tai                | t tt<br>r Ph<br>39 | e Ās               | c gg<br>p G        | gc<br>ly       | atc<br>Ile        |   | 1326 |
|   | agc<br>Ser                    | agg<br>Arg<br>395 | Met                | tgt<br>Cys            | gto<br>Val            | gat<br>Asp            | gtc<br>Val<br>400 | Asn                | gag<br>Glu          | tgc<br>Cys        | Glr                 | Arg                | Ty:                | c cc<br>r Pr       | c gg<br>o GJ       | gg<br>ly       | cgc<br>Arg        |   | 1374 |
|   | ctg<br>Leu<br>410             | Cys               | ggo                | cac<br>His            | aag<br>Lys            | tgc<br>Cys<br>415     | gag<br>Glu        | aac<br>Asn         | acg<br>Thr          | ctg<br>Leu        | ggc<br>Gly<br>420   | Sei                | tac<br>Ty          | c ct               | c to<br>u Cy       | jc<br>'s       | agc<br>Ser<br>425 |   | 1422 |
|   | tgt<br>Cys                    | tcc<br>Ser        | gtg<br>Val         | ggc                   | Phe<br>430            | Arg                   | ctc<br>Leu        | tct<br>Ser         | gtg<br>Val          | gat<br>Asp<br>435 | ggc                 | agg<br>Arg         | tca<br>Sei         | tg<br>Cy:          | t ga<br>s Gl<br>44 | u              | gac<br>Asp        |   | 1470 |
|   | atc<br>Ile                    | aat<br>Asn        | gag<br>Glu         | tgc<br>Cys<br>445     | agc<br>Ser            | agc<br>Ser            | agc<br>Ser        | CCC<br>Pro         | tgt<br>Cys<br>450   | agc<br>Ser        | cag<br>Gln          | gag                | tgt<br>Cys         | gc<br>Ala<br>455   | a As               | n ·            | gtc<br>Val        |   | 1518 |
|   | tac<br>Tyr                    | ggc<br>Gly        | tcc<br>Ser<br>460  | Tyr                   | cag<br>Gln            | tgt<br>Cys            | tac<br>Tyr        | tgc<br>Cys<br>465  | cgg<br>Arg          | cga<br>Arg        | ggc<br>Gly          | tac<br>Tyr         | Gln<br>470         | Let                | ag<br>Se           | C !            | gat<br>Asp        |   | 1566 |
|   | gtg<br>Val                    | gat<br>Asp<br>475 | gga<br>Gly         | gtc<br>Val            | acc<br>Thr            | tgt<br>Cys            | gaa<br>Glu<br>480 | gac<br>Asp         | atc<br>Ile          | gac<br>Asp        | gag<br>Glu          | tgc<br>Cys<br>485  | gcc<br>Ala         | Leu                | Pr                 | 0 :            | acc<br>Thr        |   | 1614 |
|   | ggg<br>Gly<br>490             | ggc               | cac<br>His         | atc<br>Ile            | tgc<br>Cys            | tcc<br>Ser<br>495     | tac<br>Tyr        | cgc<br>Arg         | tgc<br>Cys          | atc<br>Ile        | aac<br>Asn<br>500   | atc<br>Ile         | cct<br>Pro         | gga<br>Gly         | age<br>Se:         | r I            | ttc<br>Phe<br>505 | : | 1662 |
|   | cag<br>Gln                    | tgc<br>Cys        | agc<br>Ser         | tgc<br>Cys            | ccc<br>Pro<br>510     | tcg<br>Ser            | tct<br>Ser        | ggc<br>Gly         | tac<br>Tyr          | agg<br>Arg<br>515 | ctg<br>Leu          | gcc<br>Ala         | ccc<br>Pro         | aat<br>Asn         | gg(<br>G1)<br>52(  | / A            | gc<br>Arg         | 1 | 1710 |
|   | aac<br>Asn                    | tgc<br>Cys        | caa<br>Gln         | gac<br>Asp<br>525     | att<br>Ile            | gat<br>Asp            | gag<br>Glu        | tgt<br>Cys         | gtg<br>Val<br>530   | act<br>Thr        | ggc<br>Gly          | atc<br>Ile         | cac<br>His         | aac<br>Asn<br>535  | Cys                | s S            | cc<br>er          | 1 | 758  |
|   | atc<br>Ile                    | aac<br>Asn        | gag<br>Glu<br>540  | acc<br>Thr            | tgc<br>Cys            | ttc<br>Phe            | Asn               | atc<br>Ile<br>545  | cag<br>Gln          | ggc<br>Gly        | ggc<br>Gly          | ttc<br>Phe         | cgc<br>Arg<br>550  | tgc<br>Cys         | Leu                | g<br>A         | cc<br>la          | 1 | .806 |
| 1 | Phe                           | gag<br>Glu<br>555 | tgc<br>Cys         | cct<br>Pro            | gag<br>Glu            | Asn                   | tac<br>Tyr<br>560 | cgc<br>Arg         | cgc<br>Arg          | tcc (             | Ala                 | gcc<br>Ala<br>565  | acg<br>Thr         | ctc<br>Leu         | cag<br>Gln         | G              | ag<br>ln          | 1 | 854  |

| gag<br>Glu<br>570 | Lys               | aca<br>Thr        | gac<br>Asp        | acg<br>Thr        | gtc<br>Val<br>575 | cgc<br>Arg        | tgc<br>Cys        | atc<br>Ile        | aag<br>Lys        | tcc<br>Ser<br>580 | tgc<br>Cys        | cgc<br>Arg        | ccc               | aac<br>Asn        | gat<br>Asp<br>585 | 1902 |   |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|---|
| gtc<br>Val        | aca<br>Thr        | tgc<br>Cys        | gtg<br>Val        | ttc<br>Phe<br>590 | gac<br>Asp        | ccc<br>Pro        | gtg<br>Val        | cac<br>His        | acc<br>Thr<br>595 | atc<br>Ile        | tcc<br>Ser        | cac<br>His        | acc<br>Thr        | gtc<br>Val<br>600 | atc<br>Ile        | 1950 | - |
| tcg<br>Ser        | ctg<br>Leu        | cct<br>Pro        | acc<br>Thr<br>605 | ttc<br>Phe        | cgc<br>Arg        | gag<br>Glu        | ttc<br>Phe        | acc<br>Thr<br>610 | cgc<br>Arg        | cct<br>Pro        | gaa<br>Glu        | gag<br>Glu        | atc<br>Ile<br>615 | atc<br>Ile        | ttc<br>Phe        | 1998 |   |
| ctc<br>Leu        | cgg<br>Arg        | gcc<br>Ala<br>620 | atc<br>Ile        | acg<br>Thr        | cca<br>Pro        | ccg<br>Pro        | cat<br>His<br>625 | cct<br>Pro        | gcc<br>Ala        | agc<br>Ser        | cag<br>Gln        | gct<br>Ala<br>630 | aac<br>Asn        | atc<br>Ile        | atc<br>Ile        | 2046 |   |
| ttc<br>Phe        | gac<br>Asp<br>635 | atc<br>Ile        | acg<br>Thr        | gaa<br>Glu        | Gly<br>ggg        | aac<br>Asn<br>640 | ctg<br>Leu        | cgg<br>Arg        | gac<br>Asp        | tct<br>Ser        | ttt<br>Phe<br>645 | gac<br>Asp        | atc<br>Ile        | atc<br>Ile        | aag<br>Lys        | 2094 |   |
| cgt<br>Arg<br>650 | tac<br>Tyr        | atg<br>Met        | gac<br>Asp        | ggc<br>Gly        | atg<br>Met<br>655 | acc<br>Thr        | gtg<br>Val        | ggt<br>Gly        | gtc<br>Val        | gtg<br>Val<br>660 | cgc<br>Arg        | cag<br>Gln        | gtg<br>Val        | cgg<br>Arg        | ccc<br>Pro<br>665 | 2142 |   |
| atc<br>Ile        | gtg<br>Val        | ggc<br>Gly        | cca<br>Pro        | ttt<br>Phe<br>670 | cat<br>His        | gcc<br>Ala        | gtc<br>Val        | ctg<br>Leu        | aag<br>Lys<br>675 | ctg<br>Leu        | gag<br>Glu        | atg<br>Met        | aac<br>Asn        | tat<br>Tyr<br>680 | gtg<br>Val        | 2190 |   |
| gtc<br>Val        | Gly<br>ggg        | ggc<br>Gly        | gtg<br>Val<br>685 | gtc<br>Val        | tcc<br>Ser        | cac<br>His        | cga<br>Arg        | aat<br>Asn<br>690 | gtt<br>Val        | gtc<br>Val        | aac<br>Asn        | gtc<br>Val        | cac<br>His<br>695 | atc<br>Ile        | ttc<br>Phe        | 2238 |   |
|                   |                   | gag<br>Glu<br>700 |                   |                   |                   | tga               | gggc              | tggt              | ctig              | ccgc              | acag              | с сд              | cagg              | tgca              |                   | 2289 |   |
| cctc              | cagg              | сс а              | aato              | attg              | c tg              | ccag              | tgac              | tgt               | ggtc              | tgt               | actt              | gttt              | at a              | ccct              | cagac             | 2349 |   |
| tttt              | ttaa              | tg t              | tagg              | tatt              | t gt              | agca              | ttag              | gcc               | aaca              | tgt               | atta              | agct              | ga g              | ccag              | atgaa             | 2409 |   |
| taag              | tcca              | tc t              | gatg              | tatt              | t tc              | ggtg              | ttta              | aaa               | aatg              | agc               | ccag              | ttgc              | tc a              | actg              | tttgg             | 2469 |   |
| ttga              | aaac              | ct t              | gctc              | attt              | t tt              | aatg              | cgaa              | ggc               | taag              | tgt               | cacc              | ccct              | tt c              | tctg              | cctct             | 2529 |   |
| ggct              | gggc              | ct t              | gcta              | aggg              | с са              | agga              | aaga              | aag               | acat              | ttt               | ttag              | gggg              | ca g              | ccag              | tccaa             | 2589 |   |
| atgc              | caaa              | ag a              | agac              | cagt              | t ct              | tgcc              | ctga              | ttg               | tatg              | aaa               | tttg              | acat              | tt t              | ggca              | ctttt             | 2649 |   |
| tttt              | tttt              | tt t              | ggcc              | aatc              | a ga              | tttt              | ctat              | gtt               | ctaa              | gga               | catg              | gctg              | ct g              | taga              | atagc             | 2709 |   |
| acag              | acgt              | gg a              | tgat              | aaat              | t at              | cccc              | agaa              | gca               | gcat              | gac               | agaa              | tgcc              | tc g              | ggga              | gcact             | 2769 |   |
| tgga              | aggg              | aa a              | ttgc              | agtt              | c tg              | ttgaa             | aata              | gag               | gaaa              | atc               | cctt              | ggta              | aa g              | acaca             | agcct             | 2829 |   |
| gtta              | ggct              | cg t              | gtgg              | gcct              | ca                | gtate             | gttc              | acc               | aggg              | gaa               | tggc              | tggga             | at t              | tctc              | ggcac             | 2889 |   |
| tctg              | catc              | at c              | catc              | tttt              | t t t             | atago             | gtgg              | gaa               | aata              | aac a             | aactt             | ttgt              | ga to             | cctc              | ctg               | 2947 |   |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |   |

<210> 57

<211> 703

<212> PRT

<213> Homo sapiens

Met Glu Arg Ala Ala Pro Ser Arg Arg Val Pro Leu Pro Leu Leu

| _ |
|---|
| 5 |

| 1          |            |             |            | 5           |            |            |             |            | 10         |             |            |            |              | 15         |            |
|------------|------------|-------------|------------|-------------|------------|------------|-------------|------------|------------|-------------|------------|------------|--------------|------------|------------|
| Le         | u Gl       | y Gl        | y Le<br>20 | u Al        | a Le       | u Le       | u Al        | a Al<br>25 | a Gl       | y Va        | l Ası      | Ala        | a Ası<br>30  | o Va       | l Leu      |
| Le         | u Gl       | a Ala<br>35 | а Су       | s Cy        | s Ala      | a As       | p Gl;<br>40 | у Ні       | s Ar       | g Me        | t Ala      | Thi<br>45  | r His        | s Glı      | ı Lys      |
| Asj        | 50 Cys     | s Se        | r Le       | ı Pro       | о Туг      | 55         | a Thi       | r Glı      | ı Sei      | r Lys       | 60         | Cys        | arç          | g Met      | . Val      |
| Glr<br>65  | ı Glı      | ı Glı       | n Cys      | су:         | His<br>70  | Se         | r Glr       | n Lei      | ı Glı      | 1 G11<br>75 | ı Leu      | His        | Cys          | Ala        | Thr<br>80  |
| Gly        | / Ile      | e Sei       | . Let      | 1 Alá<br>85 | a Asn      | Glı        | ı Glr       | a Asg      | Arg<br>90  | Cys         | : Ala      | Thr        | Pro          | His<br>95  | Gly        |
| Asp        | Asn        | Ala         | Ser<br>100 |             | ı Glu      | Ala        | Thr         | Phe<br>105 |            | . Lys       | Arg        | Cys        | Cys<br>110   |            | Cys        |
| Суз        | Leu        | Leu<br>115  |            | Arg         | Ala        | Ala        | Gln<br>120  |            | Gln        | Gly         | Gln        | Ser<br>125 | Cys          | Glu        | тут        |
| Ser        | Leu<br>130 |             | Val        | Gly         | Tyr        | Gln<br>135 | _           | Gly        | Gln        | Val         | Phe<br>140 | Arg        | Ala          | Cys        | Сув        |
| Val<br>145 |            | Ser         | Gln        | Glu         | Thr<br>150 | Gly        | Asp         | Leu        | Asp        | Val<br>155  | Gly        | Gly        | Leu          | Gln        | Glu<br>160 |
| Thr        | Asp        | Lys         | Ile        | Ile<br>165  |            | Val        | Glu         | Glu        | Glu<br>170 | Gln         | Glu        | Asp        | Pro          | Tyr<br>175 | Leu        |
| Asn        | Asp        | Arg         | Cys<br>180 | Arg         | Gly        | Gly        | Gly         | Pro<br>185 | Cys        | Lys         | Gln        | Gln        | Cys<br>190   | Arg        | Asp        |
| Thr        | Gly        | Asp<br>195  | Glu        | Val         | Val        | Cys        | Ser<br>200  | Cys        | Phe        | Val         | Gly        | Tyr<br>205 | Gln          | Leu        | Leu        |
| Ser        | Asp<br>210 | Gly         | Va1        | Ser         | Cys        | Glu<br>215 | Asp         | Val        | Asn        | Glu         | Cys<br>220 | Ile        | Thr          | Gly        | Ser        |
| His<br>225 | Ser        | Cys         | Arg        | Leu         | Gly<br>230 | Glu        | Ser         | Cys        | Ile        | Asn<br>235  | Thr        | Val        | Gly          | Ser        | Phe<br>240 |
| Arg        | Cys        | Gln         | Arg        | Asp<br>245  | Ser        | Ser        | Cys         | Gly        | Thr<br>250 | Gly         | Tyr        | Glu        |              | Thr<br>255 | Glu        |
| Asp        | Asn        | Ser         | Cys<br>260 | Lys         | Asp        | Ile        | Asp         | Glu<br>265 | Cys        | Glu         | Ser        |            | 11e :<br>270 | His        | Asn        |
| Cys        | Leu        | Pro         | Asp        | Phe         | Ile        | Cys        | Gln         | Asn        | Thr        | Leu         | Gly s      | Ser :      | Phe i        | Arg        | Cys        |

|            |            | 27         | 5          |            |              |              | 28         | 0            |            |              |              | 28         | 5          |            |              |
|------------|------------|------------|------------|------------|--------------|--------------|------------|--------------|------------|--------------|--------------|------------|------------|------------|--------------|
| Ar         | g Pr<br>29 |            | s Le       | u Gl       | n Cy         | s Lys<br>295 |            | r Gl         | y Ph       | e Il         | e. Gli<br>30 |            | p Al       | a Le       | u Gly        |
| Ası<br>309 |            | s Il       | e As       | p Ile      | e Ası<br>310 |              | з Су:      | s Le         | u Se:      | r Ile<br>315 |              | c Ala      | a Pr       | о Су       | s Pro<br>320 |
| Ile        | e Gly      | / Hi       | s Th       | 7 Cys      |              | e Asn        | Thi        | r Glu        | 330        |              | туг          | Th         | r Cy       | s Gl<br>33 | n Lys<br>5   |
| Asr        | val        | Pro        | 340        |            | Gly          | / Arg        | Gly        | 7 Tyr<br>345 |            | s Leu        | ı Asr        | Glu        | 350        |            | y. Thr       |
| Arg        | Cys        | 355        |            | Val        | . Asp        | Glu          | Cys<br>360 |              | Pro        | Pro          | Ala          | Glu<br>365 |            | Cy:        | s Gly        |
| Lys        | Gly<br>370 |            | arg        | Cys        | Val          | Asn<br>375   | Ser        | Pro          | Gly        | Ser          | Phe<br>380   | _          | Cys        | Gl:        | ı Cys        |
| Lys<br>385 |            | Gly        | Tyr        | Tyr        | Phe<br>390   |              | Gly        | Ile          | Ser        | Arg<br>395   |              | Суs        | Va]        | Asp        | Val<br>400   |
| Asn        | Glu        | Cys        | Gln        | Arg<br>405 |              | Pro          | Gly        | Arg          | Leu<br>410 | Cys          | Gly          | His        | Lys        | Cys<br>415 | Glu          |
| Asn        | Thr        | Leu        | Gly<br>420 | Ser        | Tyr          | Leu          | Cys        | Ser<br>425   | Cys        | Ser          | Val          | Gly        | Phe<br>430 |            | Leu          |
| Ser        | Val        | Asp<br>435 |            | Arg        | Ser          | Сла          | Glu<br>440 | Asp          | Ile        | Asn          | Glu          | Cys<br>445 | Ser        | Ser        | Ser          |
| Pro        | Cys<br>450 | Ser        | Gln        | Glu        | Cys          | Ala<br>455   | Asn        | Val          | Tyr        | Gly          | Ser<br>460   | Tyr        | Gln        | Суз        | Tyr          |
| Cys<br>465 | Arg        | Arg        | Gly        | Tyr        | Gln<br>470   | Leu          | Ser        | Asp          | Val        | Asp<br>475   | Gly          | Val        | Thr        | Cys        | Glu<br>480   |
| Asp        | Ile        | Asp        | Glu        | Cys<br>485 | Ala          | Leu          | Pro        | Thr          | Gly<br>490 | Gly          | His          | Ile        | Cys        | Ser<br>495 | Tyr          |
| Arg        | Cys        | Ile        | Asn<br>500 | Ile        | Pro          | Gly          | Ser        | Phe<br>505   | Gln        | Cys          | Ser          | Cys        | Pro<br>510 | Ser        | Ser          |
| Gly        | Tyr        | Arg<br>515 | Leu        | Ala        | Pro          |              | Gly<br>520 | Àrg          | Asn        | Cys          |              | Asp<br>525 | Ile        | Asp        | Glu          |
| Cys        | Val<br>530 | Thr        | Glу        | Ile        |              | Asn (        | Cys        | Ser          | Ile        |              | Glu '        | Thr        | Cys        | Phe        | Asn          |

Ile Gln Gly Gly Phe Arg Cys Leu Ala Phe Glu Cys Pro Glu Asn Tyr

550 555 560 545 Arg Arg Ser Ala Ala Thr Leu Gln Glu Lys Thr Asp Thr Val Arg 570 565 Cys Ile Lys Ser Cys Arg Pro Asn Asp Val Thr Cys Val Phe Asp Pro Val His Thr Ile Ser His Thr Val Ile Ser Leu Pro Thr Phe Arg Glu Phe Thr Arg Pro Glu Glu Ile Ile Phe Leu Arg Ala Ile Thr Pro Pro His Pro Ala Ser Gln Ala Asn Ile Ile Phe Asp Ile Thr Glu Gly Asn 625 Leu Arg Asp Ser Phe Asp Ile Ile Lys Arg Tyr Met Asp Gly Met Thr Val Gly Val Val Arg Gln Val Arg Pro Ile Val Gly Pro Phe His Ala Val Leu Lys Leu Glu Met Asn Tyr Val Val Gly Gly Val Val Ser His Arg Asn Val Val Asn Val His Ile Phe Val Ser Glu Tyr Trp Phe 695 700

<210> 58

<211> 979

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (98) .. (748)

<223> SF13, cDNA: NM\_011149, Proteína: NP\_035279

| CCC        | gggt             | cca        | cccc       | acgc       | ct g       | ggcg             | gcca       | c gc       | gcac       | gctg       | cgc              | gtcc       | aca         | ccct       | tttcc          | g | . 60 |
|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|------------|-------------|------------|----------------|---|------|
| gtc        | cggg             | ctg.       | cccg       | accg       | ct c       | ttgc             | tgct       | gcc        | ggtg       |            |                  |            |             |            | g gag<br>r Glu |   | 115  |
|            |                  |            |            |            |            |                  |            |            |            |            |                  |            |             | tcc<br>Ser |                |   | 163  |
|            |                  |            |            |            |            |                  |            |            |            |            |                  |            |             | aag<br>Lys |                |   | 211  |
| gga<br>Gly | cct<br>Pro<br>40 | aaa<br>Lys | gtc<br>Val | aca<br>Thr | gtc<br>Val | aag<br>Lys<br>45 | gta<br>Val | tac<br>Tyr | ttt<br>Phe | gat<br>Asp | tta<br>Leu<br>50 | caa<br>Gln | att.<br>Ile | gga<br>Gly | gat<br>Asp     |   | 259  |

|                   |                   |            |            |                  |            |                   |            |            |                  |            |                   |            |            |                  | cca<br>Pro<br>70 | 307 |
|-------------------|-------------------|------------|------------|------------------|------------|-------------------|------------|------------|------------------|------------|-------------------|------------|------------|------------------|------------------|-----|
| aaa<br>Lys        | aca<br>Thr        | gtg<br>Val | gat<br>Asp | aat<br>Asn<br>75 | ttt<br>Phe | gta<br>Val        | gcc<br>Ala | tta<br>Leu | gct<br>Ala<br>80 | aca<br>Thr | gga<br>Gly        | gag<br>Glu | aaa<br>Lys | gga<br>Gly<br>85 | ttt<br>Phe       | 355 |
|                   |                   |            |            |                  |            |                   |            |            |                  |            | aag<br>Lys        |            |            |                  |                  | 403 |
|                   |                   |            |            |                  |            |                   |            |            |                  |            | gga<br>Gly        |            |            |                  |                  | 451 |
|                   |                   |            |            |                  |            |                   |            |            |                  |            | ctg<br>Leu<br>130 |            |            |                  |                  | 499 |
|                   |                   |            |            |                  |            |                   |            |            |                  |            | gac<br>Asp        |            |            |                  |                  | 547 |
|                   |                   |            |            |                  |            |                   |            |            |                  |            | ctg<br>Leu        |            |            |                  |                  | 595 |
| gtg<br>Val        |                   |            |            |                  |            |                   |            |            |                  |            | gtg<br>Val        |            |            |                  |                  | 643 |
| gag<br>Glu        | Ser               |            |            |                  |            |                   |            |            |                  |            | Leu               |            |            |                  |                  | 691 |
| att<br>Ile        | gtc<br>Val<br>200 | gac<br>Asp | tcc<br>Ser | ggc<br>Gly       | Lys        | atc<br>Ile<br>205 | gaa<br>Glu | gtg<br>Val | gag<br>Glu       | Lys        | ccc<br>Pro<br>210 | ttc<br>Phe | gcc<br>Ala | att<br>Ile       | gcc<br>Ala       | 739 |
| aag<br>Lys<br>215 |                   | tag        | agag       | cctg             | gg g       | gacc              | tcat       | c cc       | tcta             | agca       | gct               | gtct       | gtg        |                  |                  | 788 |
| tggg              | tcct              | gt c       | aatc       | ccca             | c ac       | agac              | gaag       | gta        | gcca             | gtc        | acaa              | ggtt       | ct g       | tgcc             | accct            | 848 |
| ggcc              | ctag              | tg c       | ttcc       | atct             | g at       | gggg              | tgac       | cac        | accc             | ctc (      | acat              | tcca       | ca g       | gcct             | gattt            | 908 |
| ttat              | aaaa              | aa c       | tacca      | aatg             | t tga      | atca              | ataa       | agt        | gggt             | ttt        | tttta             | atago      | ct to      | gaaa             | aaaaa            | 968 |
| aaaa              | aaaa              | aa a       |            |                  |            |                   |            |            |                  |            | •                 |            |            |                  |                  | 979 |

<210> 59

<211> 216

<212> PRT

<213> Mus musculus

Met Leu Arg Leu Ser Glu Arg Asn Met Lys Val Leu Phe Ala Ala Ala 1 5 10 15

Leu Ile Val Gly Ser Val Val Phe Leu Leu Leu Pro Gly Pro Ser Val 20 25 30

Ala Asn Asp Lys Lys Gly Pro Lys Val Thr Val Lys Val Tyr Phe 35 40 45

Asp Leu Gln Ile Gly Asp Glu Ser Val Gly Arg Val Val Phe Gly Leu 50 55 60

Phe Gly Lys Thr Val Pro Lys Thr Val Asp Asn Phe Val Ala Leu Ala 65 70 75 80

Thr Gly Glu Lys Gly Phe Gly Tyr Lys Asn Ser Lys Phe His Arg Val 85 90 95

Ile Lys Asp Phe Met Ile Gln Gly Gly Asp Phe Thr Arg Gly Asp Gly 100 105 110

Thr Gly Gly Lys Ser Ile Tyr Gly Glu Arg Phe Pro Asp Glu Asn Phe 115 120 125

Lys Leu Lys His Tyr Gly Pro Gly Trp Val Ser Met Ala Asn Ala Gly 130 135 140

Lys Asp Thr Asn Gly Ser Gln Phe Phe Ile Thr Thr Val Lys Thr Ser 145 150 155 160

Trp Leu Asp Gly Lys His Val Val Phe Gly Lys Val Leu Glu Gly Met 165 170 175

Asp Val Val Arg Lys Val Glu Ser Thr Lys Thr Asp Ser Arg Asp Lys 180 185 190

Pro Leu Lys Asp Val Ile Ile Val Asp Ser Gly Lys Ile Glu Val Glu 195 200 205

Lys Pro Phe Ala Ile Ala Lys Glu 210 215

<210> 60

<211> 1045

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (170)..(820)

<223> SF13, cDNA: NM\_000942, Proteína: NP\_000933

| - 40 | O-  | $\sim$ |
|------|-----|--------|
| <40  | 115 | 60     |
|      |     |        |

|    | actatecgge | gccgagccgg | aggggggaaa | cggcgcccgc | cgcccgcccg | gagcccgcga                      | 60  |
|----|------------|------------|------------|------------|------------|---------------------------------|-----|
| 5  | gcaaccccag | tccccccac  | ccgcgcgtgg | cggcgccggc | tccctagcca | ccgcggcccc                      | 120 |
| 10 | accctcttcc | ggcctcagct | gtccgggctg | ctttcgcctc |            | atg ctg cgc<br>Met Leu Arg<br>l | 178 |

| ctc<br>Leu        | tcc<br>Ser<br>5   | gaa<br>Glu        | cgc<br>Arg | aac<br>Asn        | atg<br>Met        | aag<br>Lys<br>10  | gtg<br>Val        | ctc<br>Leu | ctt<br>Leu        | gcc<br>Ala        | gcc<br>Ala<br>15  | gcc<br>Ala        | ctc<br>Leu | atc<br>Ile        | gcg<br>Ala        | 226  |
|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|------|
|                   |                   |                   |            |                   |                   | ctg<br>Leu        |                   |            |                   |                   |                   |                   |            |                   |                   | 274  |
| aag<br>Lys        | aag<br>Lys        | aag<br>Lys        | Gly        | ccc<br>Pro<br>40  | aaa<br>Lys        | gtc<br>Val        | acc<br>Thr        | gtc<br>Val | aag<br>Lys<br>45  | gtg<br>Val        | tat<br>Tyr        | ttt<br>Phe        | gac<br>Asp | cta<br>Leu<br>50  | cga<br>Arg        | 322  |
|                   |                   |                   |            |                   |                   | ggc<br>Gly        |                   |            |                   |                   |                   |                   |            |                   |                   | 370  |
|                   |                   |                   |            |                   |                   | gat<br>Asp        |                   |            |                   |                   |                   |                   |            |                   |                   | 418  |
| aaa<br>Lys        | gga<br>Gly<br>85  | ttt<br>Phe        | ggc<br>Gly | tac<br>Tyr        | aaa<br>Lys        | aac<br>Asn<br>90  | agc<br>Ser        | aaa<br>Lys | ttc<br>Phe        | cat<br>His        | cgt<br>Arg<br>95  | gta<br>Val        | atc<br>Ile | aag<br>Lys        | gac<br>Asp        | 466  |
| ttc<br>Phe<br>100 | atg<br>Met        | atc<br>Ile        | cag<br>Gln | ggc<br>Gly        | gga<br>Gly<br>105 | gac<br>Asp        | ttc<br>Phe        | acc<br>Thr | agg<br>Arg        | gga<br>Gly<br>110 | gat<br>Asp        | ggc<br>Gly        | aca<br>Thr | gga<br>Gly        | gga<br>Gly<br>115 | 514  |
| aag<br>Lys        | agc<br>Ser        | atc<br>Ile        | tac<br>Tyr | ggt<br>Gly<br>120 | gag<br>Glu        | cgc<br>Arg        | ttc<br>Phe        | ccc<br>Pro | gat<br>Asp<br>125 | gag<br>Glu        | aac<br>Asn        | ttc<br>Phe        | aaa<br>Lys | ctg<br>Leu<br>130 | aag<br>Lys        | 562  |
|                   |                   |                   |            |                   |                   | gtg<br>Val        |                   |            |                   |                   |                   |                   |            |                   |                   | 610  |
| aac<br>Asn        | ggc<br>Gly        | tcc<br>Ser<br>150 | cag<br>Gln | ttc<br>Phe        | ttc<br>Phe        | atc<br>Ile        | acg<br>Thr<br>155 | aca<br>Thr | gtc<br>Val        | aag<br>Lys        | aca<br>Thr        | gcc<br>Ala<br>160 | tgg<br>Trp | cta<br>Leu        | gat<br>Asp        | 658  |
| Gly               | aag<br>Lys<br>165 | cat<br>His        | gtg<br>Val | gtg<br>Val        | ttt<br>Phe        | ggc<br>Gly<br>170 | aaa<br>Lys        | gtt<br>Val | cta<br>Leu        | gag<br>Glu        | ggc<br>Gly<br>175 | atg<br>Met        | gag<br>Glu | gtg<br>Val        | gtg<br>Val        | 706  |
| cgg<br>Arg<br>180 | aag<br>Lys        | gtg<br>Val        | gag<br>Glu | Ser               | acc<br>Thr<br>185 | aag<br>Lys        | aca<br>Thr        | gac<br>Asp | Ser               | cgg<br>Arg<br>190 | gat<br>Asp        | aaa<br>Lys        | ccc<br>Pro | Leu               | aag<br>Lys<br>195 | 754  |
| gat<br>Asp        |                   |                   | Ile        |                   |                   | tgc<br>Cys        |                   | Lys        |                   |                   |                   |                   | Lys        |                   |                   | 802  |
| gcc<br>Ala        |                   | Ala               |            |                   | tag               | ggca              | cagg              | ga c       | atct              | ttct              | t tg              | agtg              | accg       |                   |                   | 850  |
| tctg              | tgca              | gg c              | cctg       | tagt              | с сд              | ccac              | aggg              | ctc        | tgag              | ctg (             | cact              | ggcc              | cc g       | gtgc              | tggca             | 910  |
| tctg              | gtgg              | ag c              | ggac       | ccac              | t cc              | cctc              | acat              | tcc        | acag              | gcc (             | catg              | gacto             | ca c       | tttt              | gtaac             | 970  |
| aaac              | tact              | ac c              | aaca       | ctga              | с са              | ataa              | aaaa              | aaa        | tgtg              | ggt (             | tttt              | tttt              | t ti       | taata             | ataaa             | 1030 |
| aaaa              | aaaa              | aa a              | aaaa       |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 1045 |

<sup>&</sup>lt;210> 61

<sup>&</sup>lt;211> 216

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

| Ме<br>1    | et Le      | eu A     | rg  | Leu        | Ser<br>5   | r Glu      | ı Arç      | g Asr      | ı Met      | 10         | s Val      | l Leu      | l Let      | ı Ala      | 15         | a Al       |
|------------|------------|----------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| L€         | eu Il      | e A      | la  | Gly<br>20  | Sei        | r Val      | l Ph€      | Phe        | Leu<br>25  | ı Lev      | ı Lev      | Pro        | Gly        | Pro<br>30  | Ser        | r Al       |
| Al         | a As       | p G<br>3 |     | Lys        | Lys        | Lys        | Gl3        | Pro<br>40  | Lys        | Val        | Thr        | · Val      | Lys<br>45  | Val        | . Туг      | Ph         |
| As         | р Le<br>50 |          | rg  | Ile        | Gly        | / Asp      | 55         | l Asp      | Val        | Gly        | Arg        | Val<br>60  | Ile        | Phe        | Gly        | Le         |
| Ph<br>65   |            | у Ь      | ys  | Thr        | Val        | Pro<br>70  | Lys        | Thr        | Val        | Asp        | Asn<br>75  | Phe        | Val        | Ala        | Leu        | Ala<br>80  |
| Th         | r Gl       | y G      | lu  | Lys        | Gly<br>85  | Phe        | Gly        | Tyr        | Lys        | Asn<br>90  | Ser        | Lys        | Phe        | His        | Arg<br>95  | Val        |
| 11         | e Ly       | s As     |     | Phe<br>100 | Met        | Ile        | Gln        | Gly        | Gly<br>105 | Asp        | Phe        | Thr        | Arg        | Gly<br>110 | Asp        | G1)        |
| Th         | r Gl       | 7 G]     |     | Lys        | Ser        | Ile        | Tyr        | Gly<br>120 | Glu        | Arg        | Phe        | Pro        | Asp<br>125 | Glu        | Asn        | Phe        |
| Ly         | s Le       |          | s : | His        | Tyr        | Gly        | Pro<br>135 | Gly        | Trp        | Val        | Ser        | Met<br>140 | Ala        | Asn        | Ala        | Gly        |
| Ly:<br>14: |            | Th       | r   | Asn        | Gly        | Ser<br>150 | Gln        | Phe        | Phe        | Ile        | Thr<br>155 | Thr        | Val        | Lys        | Thr        | Ala<br>160 |
| Tr         | ) Let      | ı As     | p ( | Gly        | Lys<br>165 | His        | Val        | Val        | Phe        | Gly<br>170 | Lys        | Val        | Leu        | Glu        | Gly<br>175 | Met        |
| G11        | ı Va]      | . Va     |     | Arg<br>180 | Lys        | Val        | Glu        | Ser        | Thr<br>185 | Lys        | Thr        | Asp        | Ser        | Arg<br>190 | Asp        | Lys        |
| Pro        | ) Lev      | Ly<br>19 |     | Asp        | Val        | Ile        | Île        | Ala<br>200 | Asp        | Суs        | Gly        | Lys        | Ile<br>205 | G1u        | Val        | Glu        |
| Lys        | 210        |          | e A | la         | Ile        | Ala        | Lys<br>215 | Glu        |            |            |            |            |            |            |            |            |

#### **REIVINDICACIONES**

1. Uso de una composición que comprende una proteína SF06 como se caracteriza por SEQ ID Nos: 30 ó 32 y/o una molécula de ácido nucleico que codifica una proteína SF06 como se caracteriza por SEQ ID Nos: 30 ó 32, siendo preferiblemente la molécula de ácido nucleico una molécula de DNA, más preferiblemente una molécula de cDNA o DNA genómico, y opcionalmente portadores, diluyentes, y/o aditivos farmacéuticamente aceptables para la preparación de un agente para detección de enfermedades o disfunciones seleccionadas del grupo constituido por diabetes, obesidad, y/o síndrome metabólico.

5

10

30

35

- 2. Uso de una composición que comprende una proteína SF06 como se caracteriza por SEQ ID Nos: 30 ó 32 y/o una molécula de ácido nucleico que codifica una proteína SF06 como se caracteriza por SEQ ID Nos: 30 ó 32, siendo dicha molécula de ácido nucleico preferiblemente una molécula de DNA, más preferiblemente una molécula de cDNA o DNA genómico, y opcionalmente portadores, diluyentes, y/o aditivos farmacéuticamente aceptables para la preparación de un medicamento para el tratamiento, alivio y/o prevención de enfermedades o disfunciones seleccionadas del grupo constituido por diabetes, obesidad, y/o síndrome metabólico.
- 3. Uso de acuerdo con la reivindicación 1 ó 2, en donde la molécula de ácido nucleico es un ácido nucleico SF06 de mamífero como se caracteriza por SEQ ID Nos: 30 ó 32, que codifica particularmente el polipéptido humano SF06 como se caracteriza por SEQ ID NO: 32 y/o una molécula de ácido nucleico, que es complementaria al mismo.
  - 4. Uso de acuerdo con una cualquiera de las reivindicaciones 1-3, en donde dicha molécula de ácido nucleico se selecciona del grupo constituido por
- 20 (a) una molécula de ácido nucleico que codifica un polipéptido, teniendo el polipéptido una secuencia como se muestra en SEQ ID NO: 30 o SEQ ID NO: 32, o una isoforma del polipéptido de acuerdo con SEQ ID NO: 30 o SEQ ID NO: 32;
  - (b) una molécula de ácido nucleico que comprende o es la molécula de ácido nucleico de acuerdo con SEQ ID NO: 30 o SEQ ID NO: 32;
- (c) una molécula de ácido nucleico que está degenerada, como resultado del código genético, con las secuencias de ácido nucleico que se definen en (a) o (b);
  - (d) una molécula de ácido nucleico que se hibrida a 50°C en una solución que contiene 1 x SSC y 0,1% SDS a una molécula de ácido nucleico como se define en la reivindicación 3 o como se define en (a) a (c) y/o una molécula de ácido nucleico que es complementaria de la misma:
  - (e) una molécula de ácido nucleico que codifica un polipéptido que es al menos 85%, preferiblemente al menos 90%, más preferiblemente al menos 95%, más preferiblemente al menos 98% y hasta 99,6% idéntico al SF06 humano como se define en la reivindicación 3 o a un polipéptido como se define en (a).
    - 5. Uso de acuerdo con una cualquiera de las reivindicaciones 1-4, en donde dicha molécula de ácido nucleico es una molécula de ácido nucleico recombinante y/o un vector, particularmente un vector de expresión y/o una sonda de hibridación, un cebador o un oligonucleótido antisentido.
    - 6. Uso de acuerdo con una cualquiera de las reivindicaciones 1-5, en donde el polipéptido es un polipéptido recombinante y/o un polipéptido de fusión.
- Uso de acuerdo con una cualquiera de las reivindicaciones 1-6, para monoterapia o terapia de combinación junto con al menos un agente farmacéutico adicional, seleccionándose el al menos un agente farmacéutico adicional del grupo constituido por derivados de 2-amino-1,3-propanodiol, hidrocloruro de 2-amino-2-[2-(4-octilfenil)etil]-40 propano-1,3-diol, 40-O(2-hidroxietil)-rapamicina, SDZ-RAD, Everolimus, 6-(3-dimetil-aminopropionil)-forskolina, 6mercaptopurina (6-MP), A-420983, ABX-CBL (CBL-1), Alefacept, inhibidor ICAM-1 antisentido (ISIS 2302), Enlimomab, BIRR1, Alicaforsén, Inmunoglobulina antitimocitos (ATGAM), Azatioprina, Baohuosido-1, basiliximab, BMS-279700, BTI-322, Cladribina, CP- 690550, Ciclofosfamida (CTX), Ciclosporina (ciclosporina A, ciclosporina), Daclizumab, HAT (Anti-Tac humanizado), Anti-Tac SMART, anti-CD25, receptor anti-IL2 humanizado, Dexametasona 45 (Decadrón, Dexona, Dexasona), DIAPEP-277, dipéptido de ácido borónico (DPBA), ácido docosahexaenoico (DHA), efalizumab, Efomicina M, FTY720 (derivado de miriocina oral), Glatiramer acetato (copolímero-1), proteína ácida Glial Fibrilar (GFAP), Gusperimus (15-desoxiespergualina), péptido HLA-B2702, hu1124 (anti-CD11a), hOKT31y (Ala-Ala), Infliximab, Interferón, ISAtx247, isotretinoína, L-683,742, Leflunomida (ARAVA), Medi-500 (T10B9), Medi-50 507. Metotrexato. Mitoxantrona. micofenolato-mofetil. OKT4A. Muromonab-CD3. Prednisolona. Psora-4. Rifampicina. Rituximab, S100ß, Sirolimus, Rapamicina, Tacrolimus (Prograf; FK-506), o Triptolida.
  - 8. Método de identificación de un (poli)péptido implicado en la regulación de la homeostasis de la energía y/o el metabolismo en un mamífero, que comprende los pasos de

- (a) poner en contacto una colección de (poli)péptidos con un polipéptido SF06 como se caracteriza por SEQ ID Nos: 30 ó 32 o una proteína SF06 codificada por un ácido nucleico seleccionado del grupo constituido por: una molécula de ácido nucleico que codifica un polipéptido, teniendo el polipéptido una se-(i) cuencia como se muestra en SEQ ID NO: 30 ó SEQ ID NO: 32, o una isoforma del polipéptido de acuerdo con SEQ ID NO: 30 ó SEQ ID NO: 32; una molécula de ácido nucleico que comprende o es la molécula de ácido nucleico de acuerdo con SEQ ID NO: 30 ó SEQ ID NO: 32; una molécula de ácido nucleico que está degenerada, como resultado del código genético, con las secuencias de ácido nucleico como se definen en (i) o (ii); una molécula de ácido nucleico que se hibrida a 50°C en una solución que contiene 1 x SSC y 0.1% de SDS a un ácido nucleico SF06 de mamífero como se caracteriza por SEQ ID Nos: 30 ó 32 o como se defina en (i) a (iii) y/o una molécula de ácido nucleico que es complementaria de la misma; una molécula de ácido nucleico que codifica un polipéptido que es al menos 85%, preferiblemente al menos 90%, más preferiblemente al menos 95%, más preferiblemente al menos 98% y hasta 99,6% idéntico al SF06 humano como se caracteriza por SEQ ID NO: 32 o a un polipéptido como se defina en (i) en condiciones que permiten la fijación de dicho o dichos (poli)péptidos; (b) retirar los (poli)péptidos que no se fijan y identificar los (poli)péptidos que se fijan a dicho polipéptido SF06 como se caracteriza por SEQ ID (c) Nos: 30 ó 32 o a dicha proteína SF06 codificada por un ácido nucleico seleccionado del grupo constituido por una molécula de ácido nucleico que codifica un polipéptido, teniendo el polipéptido una secuencia como se muestra en SEQ ID NO: 30 o SEQ ID NO: 32, o una isoforma del polipéptido de acuerdo con SEQ ID NO: 30 o SEQ ID NO: 32; una molécula de ácido nucleico que comprende o es la molécula de ácido nucleico de acuerdo con SEQ ID NO: 30 o SEQ ID NO: 32; una molécula de ácido nucleico que está degenerada, como resultado del código genético, con las secuencias de ácido nucleico que se definen en (i) o (ii); una molécula de ácido nucleico que se hibrida a 50°C en una solución que contiene 1 x SSC y 0,1% SDS a un ácido nucleico SF06 de mamífero como se caracteriza por SEQ ID NOs: 30 ó 32 o como se defina en (i) a (iii) y/o una molécula de ácido nucleico que es complementaria de la misma; una molécula de ácido nucleico que codifica un polipéptido que es al menos 85%, preferiblemente al menos 90%, más preferiblemente al menos 95%, más preferiblemente al menos 98% y hasta 99,6% idéntica a la SF06 humana como se caracteriza por SEQ ID NO: 32 o a un polipéptido como se defina en (i) en condiciones que permiten la fijación de dicho o dichos (poli)péptidos. Método para cribado de un agente, que afecta/modula la actividad de un polipéptido SF06 como se caracteriza por SEQ ID NOs: 30 ó 32, que comprende los pasos de (a) incubar una mixtura que comprende (aa) un polipéptido SF06 como se caracteriza por SEQ ID NO: 30 ó 32; y
- 40 (ab) un agente candidato
  - en condiciones en las cuales dicho polipéptido SF06 o fragmento del mismo exhibe una actividad de referencia.
  - (b) detectar la actividad de dicho polipéptido SF06 para determinar una actividad para el agente; y
  - (c) determinar una diferencia entre la actividad para el agente y la actividad de referencia.

45

5

10

15

20

25

30

35

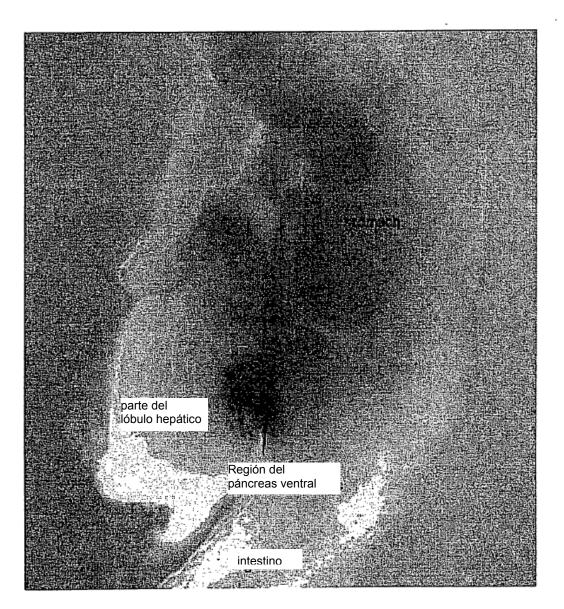



Fig. 1A



Fig. 1B

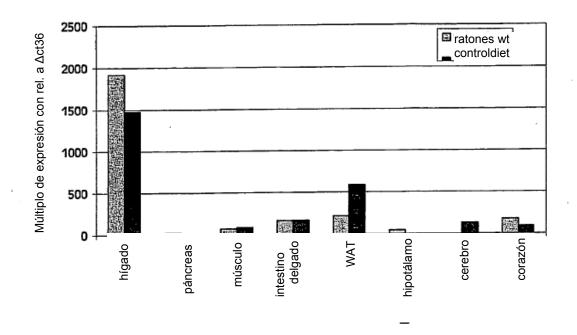



Fig. 2A

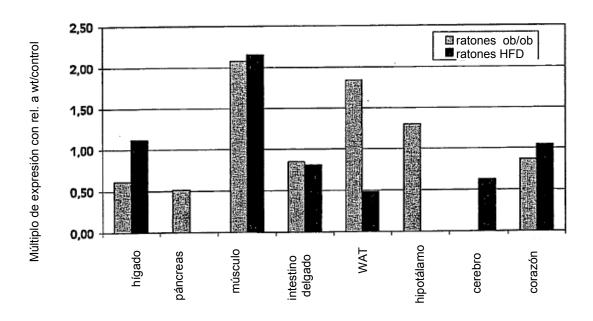



Fig. 2B

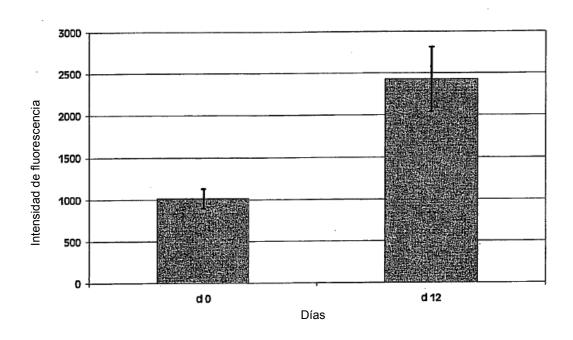



Fig. 3

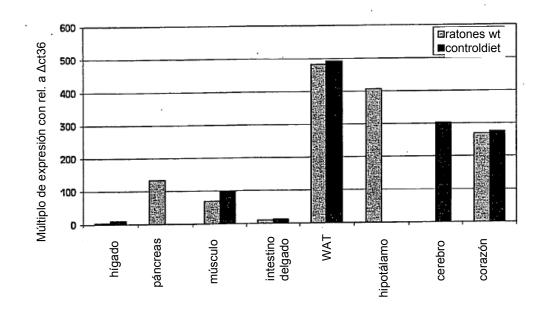



Fig. 4A

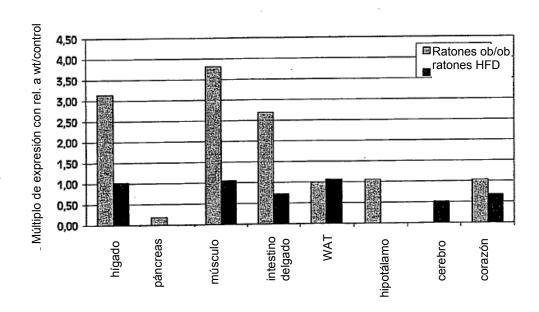



Fig. 4B

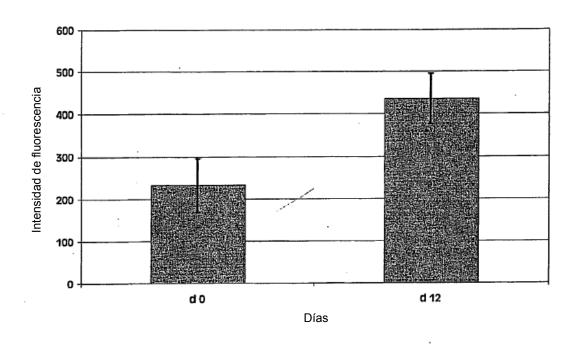



Fig. 5

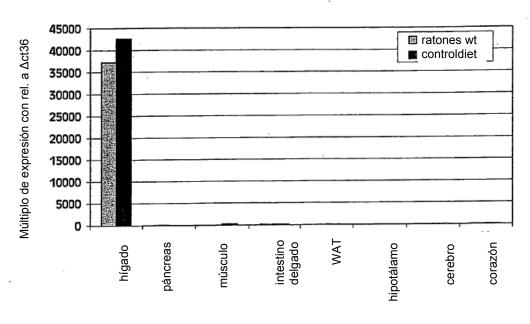



Fig. 6A

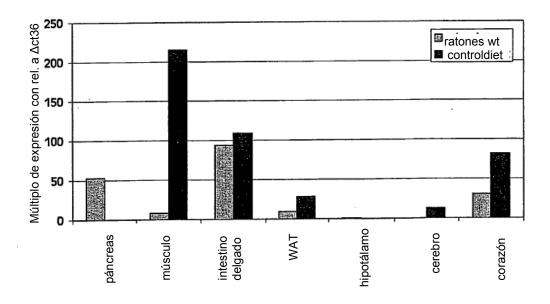



Fig. 6B

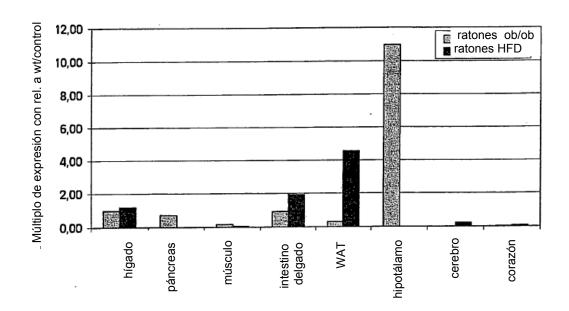



Fig. 6C

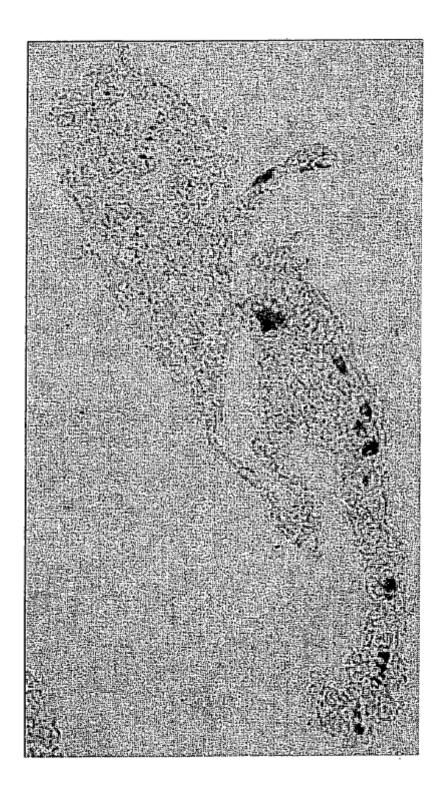



Fig. 7A

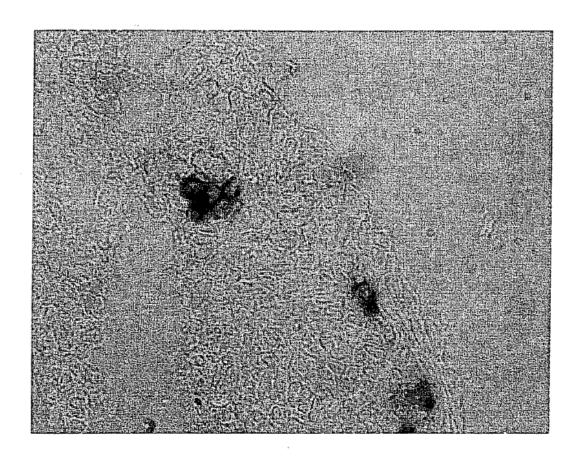



Fig. 7B

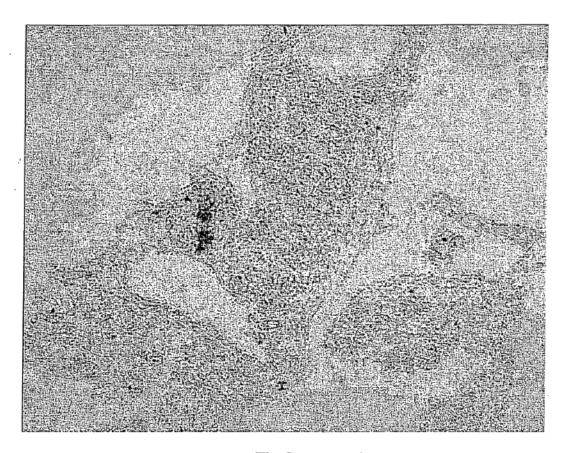



Fig. 8

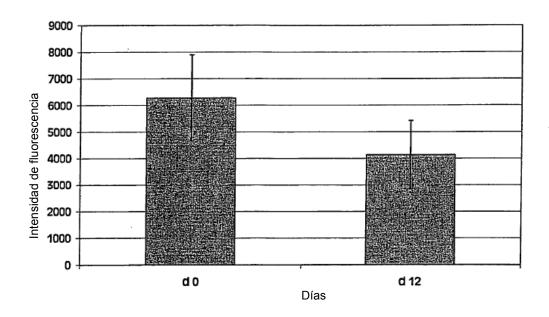



Fig. 9A



Fig. 9B