

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 384 259

51 Int. Cl.: **B63H 25/38**

(2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

Т3

- 96 Número de solicitud europea: 05026203 .9
- 96 Fecha de presentación: 01.12.2005
- Número de publicación de la solicitud: 1787904
 Fecha de publicación de la solicitud: 23.05.2007
- 54 Título: Timón colgante de gran rendimiento
- (30) Prioridad: 18.11.2005 DE 202005018180 U

73 Titular/es:

IBMV MARITIME INNOVATIONSGESELLSCHAFT MBH FÜR DIE GEWERBLICHE WIRTSCHAFT IN MECKLENBURG-VORPOMMERN AM STRANDE 19 18055 ROSTOCK, DE

- 45 Fecha de publicación de la mención BOPI: 03.07.2012
- 72 Inventor/es:

Lehmann, Dirk y Walther, Björn

- Fecha de la publicación del folleto de la patente: 03.07.2012
- 74 Agente/Representante:

Isern Jara, Jorge

ES 2 384 259 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Timón colgante de gran rendimiento

10

15

20

25

35

40

45

55

60

65

5 La presente invención se refiere a un barco según el concepto general de la reivindicación 1.

Con los timones se puede gobernar la dirección de marcha de un barco. El experto o el ingeniero de construcción naval ya conocen, entre otros, los timones semisuspendidos, parcialmente suspendidos y totalmente suspendidos. En ellos la pala del timón va unida a un eje que atraviesa el casco del barco y se hace girar, como ya es sabido, mediante una máquina, para que la pala tome el ángulo deseado respecto al casco. En general la pala del timón está situada bajo el casco, de tal manera que reciba la corriente de la hélice propulsora del barco.

Estando en una determinada posición, la pala del timón se ve sometida a la acción de grandes momentos, sobre todo cuando la velocidad del barco es alta. Para absorberlos mejor y poder transmitirlos al casco, en el caso de los timones semisuspendidos o parcialmente suspendidos la propia pala va fijada, por ejemplo, a un cáncamo mediante un macho.

La patente DE 198 41 391 A1 revela un barco con las características generales de la reivindicación 1. En este timón colgante de gran rendimiento la pala está encajada con su eje en una caña hueca del portatimón. Además como sostén de la caña hueca del portatimón sirve un cabezal-guía que, según el sentido de avance, está situado antes de dicha caña y la sujeta al casco del barco. La caña hueca del portatimón va acoplada al cabezal-guía. De esta forma las fuerzas y cargas originadas al posicionar la pala del timón se pueden transmitir al casco mediante este cabezal-guía y por tanto, especialmente, la estructura de la caña hueca del portatimón puede ser menos masiva. Aquí el cabezal-guía está construido de modo que su canto inferior llega hasta el remolino de la hélice y por debajo del nivel donde se contrae el chorro de la hélice está previsto un cojinete del eje del timón. Así se consigue que la parte inferior de la pala giratoria sea totalmente barrida por el chorro de la hélice y por lo tanto se maximiza la superficie disponible para el cambio de dirección.

Sin embargo este diseño del cabezal-guía puede ocasionar que la pala del timón aún se vea sometida a fuerzas y cargas considerables, de manera que por motivos de estabilidad la pala del timón deba tener una sección mayor y por consiguiente también obligue a dimensionar el cabezal-guía de tamaño suficientemente grande, con lo cual la oposición a la corriente de este timón colgante de gran rendimiento aumenta de forma no deseada.

En este timón colgante de gran rendimiento solo está reforzada la caña hueca del portatimón.

De la patente DE 197 46 853 A1 se conoce un barco caracterizado por disponer de una caña hueca de portatimón combinada con un cabezal-guía fijado al barco y la parte inferior del cojinete reforzada. Dicha caña se prolonga en el cuerpo del timón de manera que reduce su carga por flexión y no obstaculiza el montaje del timón y de los árboles de la hélice. Esta caña hueca de portatimón, combinada con cabezal-guía fijado al barco y cojinete reforzado, está diseñada como módulo de montaje independiente y se suelda con las aberturas de la bovedilla y de la cubierta del motor del timón, así como con las uniones y refuerzos de la popa.

En este caso la parte de caña hueca donde está el cojinete va reforzada desde abajo hasta la zona del cabezal-guía. El cojinete del eje del timón no tiene ningún diseño reforzado.

La presente invención tiene por objeto conseguir un barco con un timón colgante de gran rendimiento que oponga poca resistencia a la corriente, pero que tenga suficiente estabilidad y al mismo tiempo menos carga de flexión en la parte inferior del cuerpo del timón.

50 Este objetivo se resuelve mediante los criterios indicados en la reivindicación 1.

Por consiguiente el barco con las características generales de reivindicación 1 está diseñado, según la presente invención, de manera que en la parte inferior hay un cojinete de limera reforzado cuyo apoyo tiene distintos grosores a lo largo del eje del timón y está dimensionado de forma creciente o decreciente desde arriba hacia abajo, y dicho cojinete está situado a cierta altura junto al cabezal-guía.

Como idea principal de la presente invención, un cabezal-guía – ya conocido - de un timón colgante de gran rendimiento se extiende verticalmente hacia abajo, llegando en concreto hasta el chorro de la hélice, situada antes del timón según el sentido de avance. Esto significa que el canto o la superficie inferior del cabezal-guía queda dentro de una zona diametral de la hélice del barco. De esta forma el cabezal-guía también es barrido, al menos parcialmente, por el chorro de la hélice y la superficie de la pala del timón sometida al chorro se reduce de manera correspondiente. Además hay un cojinete de limera reforzado en la parte inferior, en el cual se aloja el eje giratorio del timón, a fin de absorber mejor las fuerzas y cargas que actúan sobre la pala del timón y poderlas transmitir al casco del barco. La ejecución de este refuerzo, es decir el dimensionado y diseño de dicho cojinete, debe realizarlo el especialista según parámetros técnicos.

La ventaja de la presente invención es que con el diseño del cabezal-guía prolongado hacia abajo el cojinete inferior de limera también puede estar directamente apoyado en el cabezal-guía alargado o situado junto a él, de manera que las fuerzas ejercidas sobre dicho cojinete se deriven inmediatamente hacia el casco del barco por medio de la estructura del cabezal-guía. Así las fuerzas y cargas del timón son absorbidas de manera más efectiva o totalmente por el cabezal-guía. Por lo tanto el perfil o, vista por encima, la superficie de corte de la pala del timón se puede reducir, porque tiene que aguantar menos fuerzas que en el estado técnico. De esta forma se reduce especialmente la resistencia del timón a la corriente. Este tipo de timón es particularmente adecuado para barcos de marcha lenta que llevan un peso total muy grande, como por ejemplo los buques cisterna o cargueros.

- El refuerzo del cojinete inferior de limera está diseñado con distintos grosores a lo largo del eje del timón, con el fin de adaptarse óptimamente a la mejor estructura factible del cabezal-guía y a su perfil, con el menor empleo posible de material. El tamaño o las dimensiones del refuerzo son crecientes o decrecientes de arriba abajo. En cualquier caso la limera y el alojamiento del cojinete están integrados en el cabezal-guía.
- 15 En las reivindicaciones secundarias se indican formas de ejecución ventajosas de la presente invención.

El dimensionado del cabezal-guía garantiza por un lado que éste llegue hacia abajo lo bastante para permitir que las fuerzas y cargas sean suficientemente absorbidas mediante el cojinete inferior de limera reforzado, y por otro lado la buena maniobrabilidad del barco, gracias a la superficie fija del cabezal-guía que se extiende hacia la corriente de la hélice y es barrida por la misma.

Para el especialista es obvio que el timón colgante de gran rendimiento aquí descrito puede ir provisto de una aleta adicional, a fin de poder aprovechar ángulos de timón menores, en concreto para pequeñas correcciones de rumbo o para sostenerlo. La aleta del timón se puede accionar del modo ya conocido, en conexión con la pala del mismo.

Además en la reivindicación 3 se propone que el perfil del cabezal-guía y el de la pala del timón colgante de gran rendimiento se adapten mutuamente de manera que, especialmente en la zona intermedia entre el cabezal-guía y la pala del timón, no se produzcan remolinos innecesarios y la resistencia a la corriente de todo el timón colgante de gran rendimiento sea lo más pequeña posible.

A continuación se explican más detalladamente dos ejemplos de ejecución de la presente invención mediante los esquemas, que representan:

- Fig. 1 un timón colgante de gran rendimiento en perfil y
- Fig. 2 otro timón colgante de gran rendimiento en perfil.

En la representación de las figuras 1 y 2 se ve esquemáticamente la estructura básica de un timón colgante de gran rendimiento 100. El timón colgante de gran rendimiento 100 comprende una pala 10 fijada a un eje de timón 11. El eje 11 es giratorio y está alojado en una limera 12 o caña hueca del portatimón. La limera del timón 12 está unida firmemente al casco 13 del barco. Un motor de timón, aquí no representado para simplificar el esquema, sirve para accionar la pala del timón 10 del modo ya conocido.

Además se prevé un cabezal-guía 14 unido firmemente al casco 13, cuyo canto inferior 15 o una superficie inferior se prolonga verticalmente hacia abajo, de forma que dicho canto 15 llega hasta la corriente 16 de una hélice 17 del barco, de diámetro D.

También hay un cojinete de limera inferior 18 del eje del timón 11 con los refuerzos 19 indicados esquemáticamente.

Gracias a la ejecución prolongada del cabezal-guía 14, el cojinete de limera inferior 18 se puede posicionar con el cabezal-guía 14 o su canto inferior 15 a una altura tal que, al regular la pala del timón 10, las fuerzas y cargas que actúan sobre ella se pueden derivar inmediatamente a través de los refuerzos 19 hacia el cabezal-guía 14 y por lo tanto al casco 13 del barco. El cabezal-guía 14 llega preferiblemente a una zona comprendida entre el 10% y el 20% del diámetro D de la corriente 16 de la hélice.

Para configurar el refuerzo 19 se ha propuesto que su diámetro aumente, tal como está representado en la fig. 1, o disminuya, tal como está representado en la fig. 2, de arriba abajo en la dirección del eje del timón. Así el diseño se puede optimizar respecto a las fuerzas que actúan realmente sobre el cojinete de limera inferior 18 y no hace falta emplear ningún material adicional en la construcción de los refuerzos.

Lista de referencias

20

25

30

35

40

45

50

55

60

- 100 Timón colgante de gran rendimiento
- 10 Pala del timón
- 11 Eje del timón
- 12 Limera del timón
- 65 13 Casco del barco
 - 14 Cabezal-guía

3

ES 2 384 259 T3

- Canto inferior Corriente de la hélice
- Hélice
 Cojinete de limera inferior
 Refuerzo
- D
 - Diámetro de la hélice

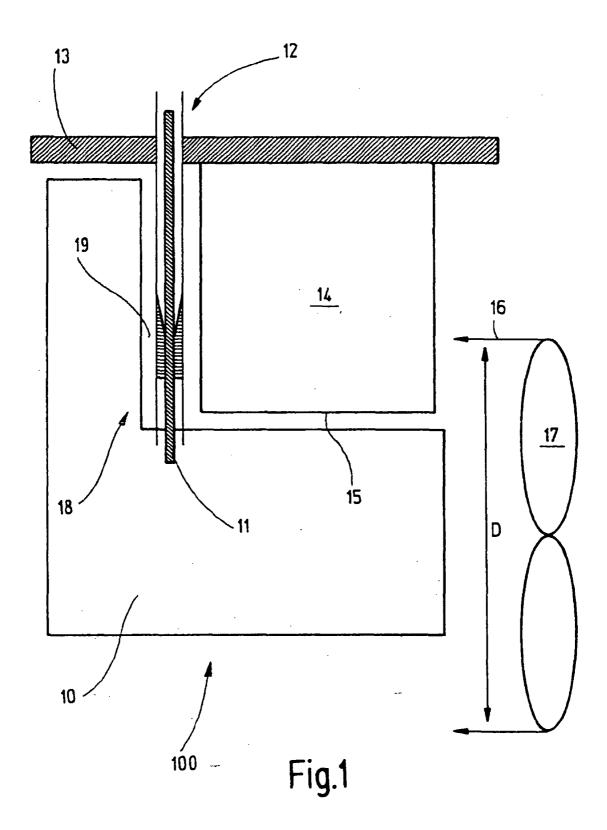
REIVINDICACIONES

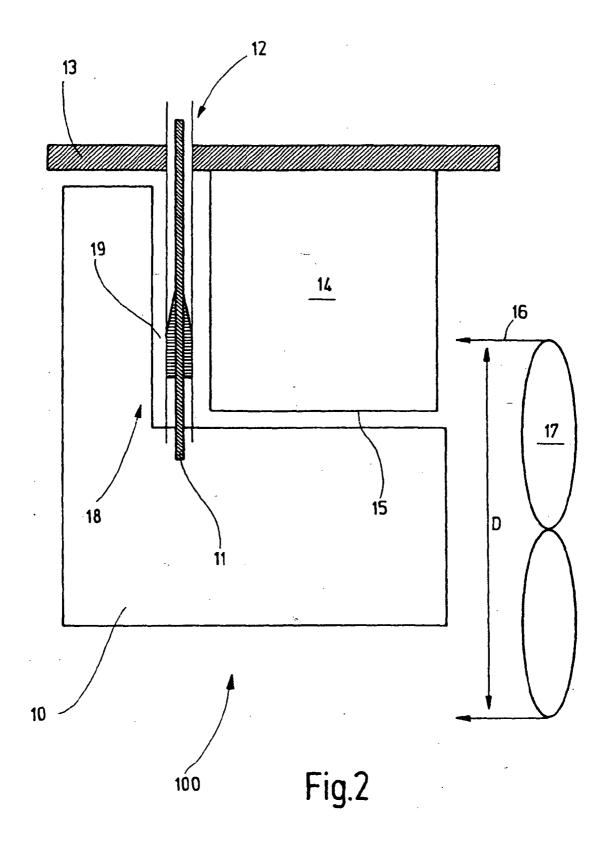
1. Barco con una hélice propulsora (17) y un timón colgante de gran rendimiento dotado de una pala (10), la cual (10) puede girar mediante un eje de timón (11) colocado en una limera (12) sujeta mediante un cabezal-guía fijo (14) a un casco (13) del barco,

caracterizado porque

un canto inferior (15) del cabezal-guía (14) llega hasta el chorro de la hélice en una zona comprendida entre el 10% y el 20% del diámetro (D) de la hélice propulsora (17),

porque un cojinete de limera inferior (18) lleva un refuerzo (19) cuyo grosor varía a lo largo del eje del timón (11), de tal manera que el refuerzo (19) está dimensionado de forma creciente o decreciente en sentido axial, desde arriba hacia abajo, y


porque el cojinete de limera inferior (18) está situado junto al cabezal-guía (14) a un determinado nivel.


- **2.** Barco según la reivindicación 1, **caracterizado porque** está prevista una aleta adicional adosada a la pala del timón (10).
 - **3.** Barco según la reivindicación 1 o 2, **caracterizado porque** el perfil de la pala del timón (10) y el perfil del cabezal-guía (14) están mutuamente adaptados para disminuir la resistencia a la corriente.

20

5

10

